-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmysimcse.py
42 lines (33 loc) · 1.85 KB
/
mysimcse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
device="cuda" if torch.cuda.is_available() else "cpu"
# Import our models. The package will take care of downloading the models automatically
class simcse():
def __init__(self) -> None:
self.tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-roberta-large")
self.model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-roberta-large").to(device)
def get_sim(self,text1,text2_list=[]):
texts=[text1]+text2_list
# 假设 texts 是一个包含大量文本的列表
batch_size = 32
all_embeddings = [] # 用于存储每个批次的 embeddings
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
inputs = self.tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
all_embeddings.append(embeddings)
# 拼接所有批次的 embeddings
concatenated_embeddings = torch.cat(all_embeddings, dim=0)
sim_score=[]
for i in range(len(text2_list)):
sim_score.append((i,1 - cosine(concatenated_embeddings[0].cpu(), concatenated_embeddings[1+i].cpu())))
return sim_score
def return_top(self,text1,text2_list=[],orig_neighbor_index_list=[],k=0):
sim_score=self.get_sim(text1,text2_list)
sorted_score = sorted(sim_score, key=lambda item: item[1], reverse=True)
if len(text2_list)>k:
return [orig_neighbor_index_list[sorted_score[i][0]] for i in range(k)]
else:
return [orig_neighbor_index_list[sorted_score[i][0]] for i in range(len(text2_list))]