forked from dstl/Stone-Soup
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRaoBlackwellised.py
225 lines (179 loc) · 9.47 KB
/
RaoBlackwellised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from functions_for_particle_filter import import_track_data, create_prior, read_synthetic_csv, \
form_transition_matrix, form_detection_transition_matrix, PlotData
from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, \
ConstantVelocity, ConstantAcceleration, ConstantTurn, ConstantPosition, LinearTurn
from stonesoup.types.groundtruth import GroundTruthPath, GroundTruthState
from stonesoup.predictor.particle import MultiModelPredictor, RaoBlackwellisedMultiModelPredictor
from stonesoup.models.measurement.linear import LinearGaussian
from stonesoup.resampler.particle import SystematicResampler, RaoBlackwellisedSystematicResampler, MultiResampler
from stonesoup.types.hypothesis import SingleHypothesis
from stonesoup.updater.particle import ParticleUpdater, MultiModelParticleUpdater, RaoBlackwellisedParticleUpdater
from stonesoup.types.numeric import Probability
from stonesoup.types.state import ParticleState
from stonesoup.types.detection import Detection
from stonesoup.types.particle import RaoBlackwellisedParticle
from scipy.stats import multivariate_normal
from stonesoup.types.track import Track
from datetime import timedelta
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from datetime import datetime
from random import random, seed
from tqdm import tqdm
import time
import numpy as np
import os
seed(100)
DRONE_FILE = 20
DATA_DIR = "P:/DASA/EDITTS Drone Tracking/GFI/GPS Tracking"
# DATA_DIR = "C:/Work/Drone_Tracking/EDITTS-Drone-Tracking/data/raw/"
SAVE_DIR = "C:/Work/Drone_Tracking/multi_model_results"
FIXED_WING = {"g2", "g4", "maja", "bixler", "x8", "kahu"}
ROTARY_WING = {"g6", "f550", "drdc"}
NUMBER_OF_PARTICLES = 350
rw_cv_noise_covariance = 0.75
fw_cv_noise_covariance = 0.5
rw_hover_noise_covariance = 0.75
constant_turn_covariance = [0.1, 0.1]
turn_rate_left = 0.5
turn_rate_right = -0.5
DATA_REDUCTION = 1 # (0, 1]
percentage_of_first_model = 0.5 # (0, 1]
file_list = os.listdir(DATA_DIR)
print(file_list)
print(file_list[DRONE_FILE])
title_parse = file_list[DRONE_FILE].lower().split(" ")
if title_parse[3] in FIXED_WING:
print("Fixed Wing")
model_type = "Fixed Wing"
SAVE_DIR = "C:/Work/Drone_Tracking/multi_model_results/Fixed_Wing"
elif title_parse[3] in ROTARY_WING:
print("Rotary Wing")
model_type = "Rotary Wing"
SAVE_DIR = "C:/Work/Drone_Tracking/multi_model_results/Rotary_Wing"
location = import_track_data(DRONE_FILE, DATA_REDUCTION, DATA_DIR)
# location = read_synthetic_csv(DATA_DIR + file_list[DRONE_FILE])
for i, element in enumerate(location):
location[i][:3] = np.random.normal(element[:3], 0)
ax = plt.axes(projection="3d")
ax.plot3D(location[:, 0],
location[:, 1],
location[:, 2])
# location = location[int(len(location) * 0): int(len(location) * 0.05)]
location = location[1100:1200]
ax.plot3D(location[:, 0],
location[:, 1],
location[:, 2])
plt.show()
truth = GroundTruthPath()
start_time = datetime.now()
for t, element in enumerate(location):
position = np.array([element[0], element[1], element[2]])
position = position.reshape(3, 1)
truth.append(GroundTruthState(state_vector=position, timestamp=start_time + timedelta(seconds=t)))
measurements = []
for i in truth:
measurements.append(Detection(i.state_vector.ravel(), timestamp=i.timestamp))
dynamic_model_list_RW = [
# Rotary Wing
CombinedLinearGaussianTransitionModel((ConstantVelocity(fw_cv_noise_covariance),
ConstantVelocity(fw_cv_noise_covariance),
ConstantVelocity(fw_cv_noise_covariance))),
CombinedLinearGaussianTransitionModel((ConstantPosition(rw_hover_noise_covariance),
ConstantPosition(rw_hover_noise_covariance),
ConstantVelocity(rw_cv_noise_covariance)))
]
dynamic_model_list_FW = [
# Fixed Wing
CombinedLinearGaussianTransitionModel((ConstantVelocity(fw_cv_noise_covariance),
ConstantVelocity(fw_cv_noise_covariance),
ConstantVelocity(fw_cv_noise_covariance))),
CombinedLinearGaussianTransitionModel((ConstantAcceleration(fw_cv_noise_covariance),
ConstantAcceleration(fw_cv_noise_covariance),
ConstantAcceleration(fw_cv_noise_covariance)))
]
dynamic_model_list = [*np.array(dynamic_model_list_RW), *np.array(dynamic_model_list_FW)]
detection_matrix_split = [len(dynamic_model_list_RW), len(dynamic_model_list_FW)]
model_mapping = [
# Rotary Wing
[0, 1, 3, 4, 6, 7], # CV CV CV
[0, 1, 3, 4, 6, 7], # H H CV
# Fixed Wing
[0, 1, 3, 4, 6, 7], # CV CV CV
[0, 1, 2, 3, 4, 5, 6, 7, 8], # CA CA CA
]
transition_block = form_detection_transition_matrix(detection_matrix_split, [0.05, 0.05])
transition = form_transition_matrix(dynamic_model_list, 0.01)
print(transition)
print(transition_block)
measurement_model = LinearGaussian(
ndim_state=9, # Number of state dimensions (position, velocity and acceleration in 3D)
mapping=(0, 3, 6), # Locations of our position variables within the entire state space
noise_covar=np.diag([0.75, 0.75, 0.75]))
multi_model = MultiModelPredictor(transition_block, model_mapping, transition_model=dynamic_model_list)
rao_multi_model = RaoBlackwellisedMultiModelPredictor(transition_block, model_mapping,
transition_model=dynamic_model_list)
resampler = RaoBlackwellisedSystematicResampler()
# resampler = MultiResampler(detection_matrix_split)
updater = MultiModelParticleUpdater(measurement_model=measurement_model,
resampler=resampler
)
rao_updater = RaoBlackwellisedParticleUpdater(measurement_model=measurement_model,
resampler=resampler
)
x_0, v_x, a_x, y_0, v_y, a_y, z_0, v_z, a_z = create_prior(location)
samples = multivariate_normal.rvs(np.array([x_0, v_x, a_x, y_0, v_y, a_y, z_0, v_z, a_z]),
np.diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), size=NUMBER_OF_PARTICLES)
def choose_model():
rand = random()
if rand < 0.5:
return 0
else:
return detection_matrix_split[0]
particles = [RaoBlackwellisedParticle(sample.reshape(-1, 1), weight=Probability(1/NUMBER_OF_PARTICLES),
dynamic_model=choose_model(), model_probabilities=[0.25, 0.25, 0.25, 0.25])
for sample in samples]
prior_state = ParticleState(particles, timestamp=start_time)
time.sleep(1)
track = Track()
craft_probs = []
dynamic_model_split = []
model_probabilities = []
effective_sample_size = []
weighted_sum_per_model = []
probability_of_each_craft = []
for iteration, measurement in enumerate(tqdm(measurements)):
prediction = rao_multi_model.predict(prior_state, timestamp=measurement.timestamp)
weighted_sum_per_model.append([sum([p.weight for p in prediction.particles if p.dynamic_model == j])
for j in range(len(transition_block))])
particle_proportions = [p.dynamic_model for p in prediction.particles]
# print([particle_proportions.count(i) for i in range(len(transition))])
model_probabilities.append([sum([p.model_probabilities[i] for p in prediction.particles]) / NUMBER_OF_PARTICLES
for i in range(len(transition_block))])
# print([sum([p.model_probabilities[i] for p in prediction.particles]) / NUMBER_OF_PARTICLES
# for i in range(len(transition))])
dynamic_model_split.append([particle_proportions.count(i) for i in range(len(transition_block))])
craft_sum = np.cumsum(detection_matrix_split)
rw_prob = sum([weighted_sum_per_model[-1][i] for i in range(craft_sum[0])])
fw_prob = sum([weighted_sum_per_model[-1][i] for i in range(craft_sum[0], craft_sum[1])])
craft_probs.append([rw_prob, fw_prob])
if iteration % 10 == 0 and iteration != 0:
cumulative_rw_prob = sum([prob[0] for prob in craft_probs])
cumulative_fw_prob = sum([prob[1] for prob in craft_probs])
sum_of_probs = cumulative_fw_prob + cumulative_rw_prob
print("\n")
print(f"Probability of Rotary Wing is : {cumulative_rw_prob / sum_of_probs}")
print(f"Probability of Fixed Wing is : {cumulative_fw_prob / sum_of_probs}")
hypothesis = SingleHypothesis(prediction, measurement)
post = rao_updater.update(hypothesis, predictor=rao_multi_model, transition=transition,
prior_timestamp=prior_state.timestamp)
track.append(post)
prior_state = track[-1]
data_plot = PlotData(truth, track, effective_sample_size, dynamic_model_split, model_probabilities,
weighted_sum_per_model, detection_matrix_split)
data_plot.pf_vs_truth()
data_plot.plot_neff()
data_plot.particles_per_model()
data_plot.rao_probabilities()
data_plot.craft_prob_plot()
data_plot.plot_difference_metric()