-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
230 lines (199 loc) · 9.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import paddle
from dataset import get_data_transforms
from paddle.vision.datasets import ImageFolder
import numpy as np
import random
import os
from resnet import BN_layer, AttnBottleneck, WideResnet50
from de_resnet import de_wide_resnet50_2
from dataset import MVTecDataset
import argparse
from test import evaluation
from paddle.nn import functional as F
import time
from test import cal_anomaly_map, min_max_norm, cvt2heatmap, cv2
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if not p.stop_gradient)
def setup_seed(seed):
np.random.seed(seed)
random.seed(seed)
paddle.seed(seed)
def loss_fucntion(a, b):
cos_loss = paddle.nn.CosineSimilarity()
loss = 0
for item in range(len(a)):
loss += paddle.mean(1 - cos_loss(a[item].reshape([a[item].shape[0], -1]),
b[item].reshape([b[item].shape[0], -1])))
return loss
def loss_concat(a, b):
cos_loss = paddle.nn.CosineSimilarity()
loss = 0
a_map = []
b_map = []
size = a[0].shape[-1]
for item in range(len(a)):
# loss += mse_loss(a[item], b[item])
a_map.append(F.interpolate(a[item], size=size, mode='bilinear', align_corners=True))
b_map.append(F.interpolate(b[item], size=size, mode='bilinear', align_corners=True))
a_map = paddle.concat(a_map, 1)
b_map = paddle.concat(b_map, 1)
loss += paddle.mean(1 - cos_loss(a_map, b_map))
return loss
def train(_class_, print_steps=5):
epochs = args.epochs
learning_rate = args.lr
batch_size = args.batch_size
image_size = args.image_size
# 加载数据
data_transform, gt_transform = get_data_transforms(image_size, image_size) # resize, corp, normalize
train_path = os.path.join(args.data_dir, _class_ + '/train')
test_path = os.path.join(args.data_dir, _class_)
ckp_path = os.path.join(args.output_dir, 'wres50_' + _class_ + '.pdparams')
train_data = ImageFolder(root=train_path, transform=data_transform) # 训练集不需要label,直接用ImageFolder加载
test_data = MVTecDataset(root=test_path, transform=data_transform, gt_transform=gt_transform, phase="test")
train_dataloader = paddle.io.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=8)
test_dataloader = paddle.io.DataLoader(test_data, batch_size=1, shuffle=False)
# 定义模型
encoder = WideResnet50()
bn = BN_layer(AttnBottleneck, 3)
encoder.eval() # 预训练的WideResnet50,训练时不需要梯度更新
decoder = de_wide_resnet50_2(pretrained=False)
optimizer = paddle.optimizer.Adam(parameters=list(decoder.parameters()) + list(bn.parameters()),
learning_rate=learning_rate, beta1=0.5)
global_step = 0
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
last_step = epochs * len(train_dataloader)
best = 0
for epoch in range(epochs):
bn.train()
decoder.train()
loss_list = []
for img in train_dataloader:
img = img[0]
train_reader_cost += time.time() - reader_start
train_start = time.time()
global_step += 1
inputs = encoder(img)
outputs = decoder(bn(inputs))
loss = loss_fucntion(inputs, outputs) # loss: 1 - (encoder输出和decoder输出之间的cosine_similarity)
train_run_cost += time.time() - train_start
total_samples += len(img)
optimizer.clear_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.item())
if global_step % print_steps == 0:
print(
"global step %d / %d, loss: %f, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f img/sec"
% (global_step, last_step, loss.item(), train_reader_cost /
print_steps, (train_reader_cost + train_run_cost)
/ print_steps, total_samples / print_steps,
total_samples / (train_reader_cost + train_run_cost)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
if (epoch + 1) % 10 == 0:
auroc_px, auroc_sp, aupro_px = evaluation(encoder, bn, decoder, test_dataloader)
print(
'Class {}, Pixel Auroc:{:.3f}, Sample Auroc{:.3f}, Pixel Aupro{:.3}'.format(_class_, auroc_px, auroc_sp,
aupro_px))
score = auroc_px + auroc_sp + aupro_px
if score > best:
best = score
print('Saving model to {}'.format(ckp_path))
paddle.save({'bn': bn.state_dict(),
'decoder': decoder.state_dict()}, ckp_path)
reader_start = time.time()
def eval_model(_class_):
image_size = 256
data_transform, gt_transform = get_data_transforms(image_size, image_size)
test_path = os.path.join(args.data_dir, _class_)
test_data = MVTecDataset(root=test_path, transform=data_transform, gt_transform=gt_transform, phase="test")
test_dataloader = paddle.io.DataLoader(test_data, batch_size=1, shuffle=False) # eval时batch size为1
encoder = WideResnet50()
bn = BN_layer(AttnBottleneck, 3)
encoder.eval()
decoder = de_wide_resnet50_2(pretrained=False)
bn.eval()
decoder.eval()
ckp_path = os.path.join(args.output_dir, 'wres50_' + _class_ + '.pdparams')
states = paddle.load(ckp_path)
bn.set_state_dict(states['bn'])
decoder.set_state_dict(states['decoder'])
auroc_px, auroc_sp, aupro_px = evaluation(encoder, bn, decoder, test_dataloader)
return auroc_px, auroc_sp, aupro_px
def infer(_class_):
image_size = 256
data_transform, gt_transform = get_data_transforms(image_size, image_size)
test_path = os.path.join(args.data_dir, _class_)
test_data = MVTecDataset(root=test_path, transform=data_transform, gt_transform=gt_transform, phase="test")
encoder = WideResnet50()
bn = BN_layer(AttnBottleneck, 3)
encoder.eval()
decoder = de_wide_resnet50_2(pretrained=False)
bn.eval()
decoder.eval()
ckp_path = os.path.join(args.output_dir, 'wres50_' + _class_ + '.pdparams')
states = paddle.load(ckp_path)
bn.set_state_dict(states['bn'])
decoder.set_state_dict(states['decoder'])
img, gt, label, _ = test_data[0]
img = img.unsqueeze(0)
inputs = encoder(img)
outputs = decoder(bn(inputs))
anomaly_map, amap_list = cal_anomaly_map(inputs, outputs, img.shape[-1], amap_mode='a')
ano_map = min_max_norm(anomaly_map)
ano_map = cvt2heatmap(ano_map * 255)
img = cv2.cvtColor(img.transpose([0, 2, 3, 1]).cpu().numpy()[0] * 255, cv2.COLOR_BGR2RGB)
img = np.uint8(min_max_norm(img) * 255)
cv2.imwrite(os.path.join(args.output_dir, 'org.png'), img)
cv2.imwrite(os.path.join(args.output_dir, 'ad.png'), ano_map)
print('Outputs saved in {}'.format(args.output_dir))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='mvtec', type=str)
parser.add_argument('--mode', default='train', type=str)
parser.add_argument('--cls', default='', type=str)
parser.add_argument('--output_dir', default='checkpoints', type=str)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--lr', default=0.005, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--image_size', default=256, type=int)
parser.add_argument('--print_steps', default=50, type=int)
parser.add_argument('--device', default='gpu', type=str)
args = parser.parse_args()
setup_seed(123)
item_list = ['carpet', 'bottle', 'hazelnut', 'leather', 'cable', 'capsule', 'grid', 'pill', 'transistor',
'metal_nut', 'screw', 'toothbrush', 'zipper', 'tile', 'wood'] # mvtec数据集的所有类别
# 一次训练所有类别
if args.mode == 'train':
for i in item_list:
if os.path.exists(os.path.join(args.data_dir, i)):
train(i, args.print_steps)
elif args.mode == 'eval':
if args.cls: # 评估一个类别
auroc_px, auroc_sp, aupro_px = eval_model(args.cls)
print(
'Class {}, Pixel Auroc:{:.3f}, Sample Auroc{:.3f}, Pixel Aupro{:.3}'.format(args.cls, auroc_px,
auroc_sp, aupro_px))
else: # 评估所有类别
auroc_pxs, auroc_sps, aupro_pxs = [], [], []
for i in item_list:
auroc_px, auroc_sp, aupro_px = eval_model(i)
auroc_pxs.append(auroc_px)
auroc_sps.append(auroc_sp)
aupro_pxs.append(aupro_px)
print(
'Class {}, Pixel Auroc:{:.3f}, Sample Auroc{:.3f}, Pixel Aupro{:.3}'.format(i, auroc_px, auroc_sp,
aupro_px))
auroc_px = np.mean(auroc_pxs)
auroc_sp = np.mean(auroc_sps)
aupro_px = np.mean(aupro_pxs)
print('Pixel Auroc:{:.3f}, Sample Auroc{:.3f}, Pixel Aupro{:.3}'.format(auroc_px, auroc_sp, aupro_px))
elif args.mode == 'infer': # 推理一个类别
assert args.cls
infer(args.cls)