-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathENSFM.py
256 lines (209 loc) · 10.3 KB
/
ENSFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import os
import time
import sys
import argparse
import tqdm
import LoadData as DATA
import random
default_type = paddle.get_default_dtype()
def parse_args():
parser = argparse.ArgumentParser(description="Run ENSFM")
parser.add_argument('--dataset', nargs='?', default='ml-1m',
help='Choose a dataset')
parser.add_argument('--verbose', type=int, default=10,
help='Interval of evaluation.')
parser.add_argument('--batch_size', nargs='?', type=int, default=512,
help='batch_size')
parser.add_argument('--epochs', type=int, default=501,
help='Number of epochs.')
parser.add_argument('--embed_size', type=int, default=64,
help='Embedding size.')
parser.add_argument('--lr', type=float, default=0.05,
help='Learning rate.')
parser.add_argument('--dropout', type=float, default=1,
help='dropout keep_prob')
parser.add_argument('--negative_weight', type=float, default=0.5,
help='weight of non-observed data')
parser.add_argument('--topK', nargs='?', type=int, default=[5, 10, 20],
help='topK for hr/ndcg')
parser.add_argument('--seed', type=int, default=2019, )
return parser.parse_args()
def _writeline_and_time(s):
sys.stdout.write(s)
sys.stdout.flush()
return time.time()
class ENSFM(nn.Layer):
def __init__(self, item_attribute, user_field_M, item_field_M, embedding_size, max_item_pu, args):
super().__init__()
self.embedding_size = embedding_size
self.max_item_pu = max_item_pu
self.user_field_M = user_field_M
self.item_field_M = item_field_M
self.weight1 = args.negative_weight
self.item_attribute = paddle.to_tensor(item_attribute)
self.user_feature_emb = nn.Embedding(self.user_field_M, self.embedding_size,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.01)))
self.H_i = paddle.create_parameter([self.embedding_size, 1], default_type,
default_initializer=nn.initializer.Constant(0.01))
self.H_s = paddle.create_parameter([self.embedding_size, 1], default_type,
default_initializer=nn.initializer.Constant(0.01))
self.all_item_feature_emb = nn.Embedding(self.item_field_M + 1, self.embedding_size,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.01)))
self.user_bias = nn.Embedding(self.user_field_M, 1,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.01)))
self.item_bias = nn.Embedding(self.item_field_M, 1,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.01)))
self.bias = paddle.create_parameter([1], default_type,
default_initializer=nn.initializer.Constant(0.))
def forward(self, input_u, input_ur=None):
user_feature_emb = self.user_feature_emb(input_u)
summed_user_emb = user_feature_emb.sum(1)
all_item_feature_emb = self.all_item_feature_emb(self.item_attribute)
summed_all_item_emb = all_item_feature_emb.sum(1)
user_cross = 0.5 * (summed_user_emb ** 2 - (user_feature_emb ** 2).sum(1))
item_cross = 0.5 * (summed_all_item_emb ** 2 - (all_item_feature_emb ** 2).sum(1))
user_cross_score = user_cross.matmul(self.H_s)
item_cross_score = item_cross.matmul(self.H_s)
user_bias = self.user_bias(input_u).sum(1)
item_bias = self.item_bias(self.item_attribute).sum(1)
I = paddle.ones([input_u.shape[0], 1])
p_emb = paddle.concat([summed_user_emb, user_cross_score + user_bias + self.bias, I], 1)
I = paddle.ones([summed_all_item_emb.shape[0], 1])
q_emb = paddle.concat([summed_all_item_emb, I, item_cross_score + item_bias], 1)
H_i_emb = paddle.concat([self.H_i, paddle.to_tensor([[1.0]]), paddle.to_tensor([[1.0]])], 0)
dot = paddle.einsum('ac,bc->abc', p_emb, q_emb)
pre = paddle.einsum('ajk,kl->aj', dot, H_i_emb)
if input_ur is None:
return (pre,)
pos_item = F.embedding(input_ur, q_emb)
pos_num_r = (input_ur != data.item_bind_M).astype(default_type)
pos_item = paddle.einsum('ab,abc->abc', pos_num_r, pos_item)
pos_r = paddle.einsum('ac,abc->abc', p_emb, pos_item)
pos_r = paddle.einsum('ajk,kl->ajl', pos_r, H_i_emb).reshape([-1, self.max_item_pu])
return pre, pos_r, q_emb, p_emb, H_i_emb
@paddle.no_grad()
def evaluate():
model.eval()
eva_batch = 128
recall50 = []
recall100 = []
recall200 = []
ndcg50 = []
ndcg100 = []
ndcg200 = []
user_features = data.user_test
ll = int(len(user_features) / eva_batch) + 1
for batch_num in range(ll):
start_index = batch_num * eva_batch
end_index = min((batch_num + 1) * eva_batch, len(user_features))
u_batch = paddle.to_tensor(user_features[start_index:end_index])
batch_users = end_index - start_index
with paddle.no_grad():
pre, *_ = model(u_batch)
pre = pre.cpu().numpy()
pre = np.delete(pre, -1, axis=1)
user_id = []
for one in u_batch.cpu().numpy():
user_id.append(data.binded_users["-".join([str((item)) for item in one[0:]])])
idx = np.zeros_like(pre, dtype=bool)
idx[data.Train_data[user_id].nonzero()] = True
pre[idx] = -np.inf
# recall
recall = []
for kj in args.topK:
idx_topk_part = np.argpartition(-pre, kj, 1)
pre_bin = np.zeros_like(pre, dtype=bool)
pre_bin[np.arange(batch_users)[:, np.newaxis], idx_topk_part[:, :kj]] = True
true_bin = np.zeros_like(pre, dtype=bool)
true_bin[data.Test_data[user_id].nonzero()] = True
tmp = (np.logical_and(true_bin, pre_bin).sum(axis=1)).astype(np.float32)
recall.append(tmp / np.minimum(kj, true_bin.sum(axis=1)))
# ndcg
ndcg = []
for kj in args.topK:
idx_topk_part = np.argpartition(-pre, kj, 1)
topk_part = pre[np.arange(batch_users)[:, np.newaxis], idx_topk_part[:, :kj]]
idx_part = np.argsort(-topk_part, axis=1)
idx_topk = idx_topk_part[np.arange(end_index - start_index)[:, np.newaxis], idx_part]
tp = np.log(2) / np.log(np.arange(2, kj + 2))
test_batch = data.Test_data[user_id]
DCG = (test_batch[np.arange(batch_users)[:, np.newaxis],
idx_topk].toarray() * tp).sum(axis=1)
IDCG = np.array([(tp[:min(n, kj)]).sum()
for n in test_batch.getnnz(axis=1)])
ndcg.append(DCG / IDCG)
recall50.append(recall[0])
recall100.append(recall[1])
recall200.append(recall[2])
ndcg50.append(ndcg[0])
ndcg100.append(ndcg[1])
ndcg200.append(ndcg[2])
recall50 = np.hstack(recall50)
recall100 = np.hstack(recall100)
recall200 = np.hstack(recall200)
ndcg50 = np.hstack(ndcg50)
ndcg100 = np.hstack(ndcg100)
ndcg200 = np.hstack(ndcg200)
write_str = '\t'.join(map(str, [round(np.mean(recall50), 4),
round(np.mean(recall100), 4),
round(np.mean(recall200), 4)])) + '\n'
f1.write(write_str)
f1.flush()
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
if __name__ == '__main__':
args = parse_args()
set_seed(args.seed)
if args.dataset == 'laspaddlem':
print('load laspaddlem data')
DATA_ROOT = './data/laspaddlem'
if args.dataset == 'frappe':
print('load frappe data')
DATA_ROOT = './data/frappe'
if args.dataset == 'ml-1m':
print('load ml-1m data')
DATA_ROOT = './data/ml-1m'
f1 = open(os.path.join(DATA_ROOT, 'ENSFM.txt'), 'w')
data = DATA.LoadData(DATA_ROOT)
model = ENSFM(data.item_map_list, data.user_field_M, data.item_field_M, args.embed_size, data.max_positive_len,
args)
batch_size = args.batch_size
optimizer = paddle.optimizer.Adagrad(learning_rate=args.lr, initial_accumulator_value=1e-8,
parameters=model.parameters())
# optimizer = paddle.optimizer.Adam(learning_rate=1e-3,parameters=model.parameters())
for epoch in tqdm.tqdm(range(args.epochs)):
shuffle_indices = np.random.permutation(np.arange(len(data.user_train)))
data.user_train = data.user_train[shuffle_indices]
data.item_train = data.item_train[shuffle_indices]
ll = int(len(data.user_train) / batch_size)
total_loss = 0
for batch_num in range(ll):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, len(data.user_train))
u_batch = paddle.to_tensor(data.user_train[start_index:end_index])
i_batch = paddle.to_tensor(data.item_train[start_index:end_index])
pre, pos_r, q_emb, p_emb, H_i_emb = model(u_batch, i_batch)
loss = args.negative_weight * paddle.sum(
paddle.sum(paddle.sum(paddle.einsum('ab,ac->abc', q_emb, q_emb), 0)
* paddle.sum(paddle.einsum('ab,ac->abc', p_emb, p_emb), 0)
* paddle.matmul(H_i_emb, H_i_emb, transpose_y=True), 0), 0)
loss += paddle.sum((1.0 - args.negative_weight) * paddle.square(pos_r) - 2.0 * pos_r)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# print(total_loss / ll)
if epoch < args.epochs:
if epoch % args.verbose == 0:
evaluate()
if epoch >= args.epochs:
evaluate()