-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_gpa.py
293 lines (250 loc) · 12.3 KB
/
main_gpa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
from dataset import get_dataset
import argparse
import numpy as np
from model import GCL_model,Search_mlp_pairs
import random
from eval_graph import Eval_unsuper, Eval_semi
from torch_geometric.data import DataLoader
from torch.autograd import Variable
import time
parser = argparse.ArgumentParser(description='GcnInformax Arguments.')
parser.add_argument('--dataset', type=str, default='MUTAG', help='PROTEINS| NCI1 | DD |COLLAB | MUTAG|IMDB-BINARY|REDDIT-BINARY|REDDIT-MULTI-5K ') #PROTEINS;NCI1;COLLAB
parser.add_argument('--mode', type=str, default='unsuper', help='semi | unsuper')
parser.add_argument('--lr', default=0.0001, dest='lr', type=float,
help='Learning rate.')
parser.add_argument('--num_gc_layers', type=int, default=2,
help='Number of graph convolution layers before each pooling')
parser.add_argument('--hidden_dim', type=int, default=128, help='')
parser.add_argument('--hidden_dim_search', type=int, default=128, help='')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--use_cpu', type=int, default=1, help='0: use cpu 1: use gpu')
parser.add_argument('--train_epoch', type=int, default=1)
parser.add_argument('--log_interval', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--cuda', type=str, default='0', help='specify cuda devices')
parser.add_argument('--train_gnn_type', type=str, default='resgcn', help='resgcn | gin | gcn| gcn_raw') #gcn_raw is the standard gcn
parser.add_argument('--weight_decay', type=float,default=0.,
help="the weight decay for l2 normalizaton")
parser.add_argument('--label_rate', type=float, default=0.1,
help="the weight decay for l2 normalizaton")
parser.add_argument('--split_rate', type=float, default=0.1,
help="the ratio of spliting train and valid dataset")
parser.add_argument('--run_times', type=int, default=1,
help="the ratio of run times")
#Search parameter
parser.add_argument('--temperature', type=float, default=0.07,
help='Initial learning rate.')
def print_configuration(args):
print('--> Experiment configuration')
for key, value in vars(args).items():
print('{}: {}'.format(key, value))
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
class ValidLoader(object):
def __init__(self, dataset, batch_size, shuffle=True):
# dataset is torch.utils.data.dataset
self.shuffle = shuffle
self.loader = DataLoader(dataset, batch_size, shuffle=shuffle)
self.ite_loader = iter(self.loader)
def reset(self):
self.ite_loader = iter(self.loader)
def __iter__(self):
return self
def next(self):
return self.__next__()
def __next__(self):
try:
batch = next(self.ite_loader)
except StopIteration:
self.reset()
batch = next(self.ite_loader)
return batch
def data_split_train_valid(dataset, ratio=0.1):
num_class = dataset.num_classes
y = dataset.data.y
train_indices = []
valid_indices = []
all_index = torch.arange(0, len(dataset), 1)
for i in range(num_class):
mask_i = torch.eq(y, i)
index_i = all_index[mask_i].numpy()
np.random.shuffle(index_i)
valid_len = int(len(index_i) * ratio)
train_indices.append(torch.from_numpy(index_i[:-valid_len]))
valid_indices.append(torch.from_numpy(index_i[-valid_len:]))
train_indices = torch.cat(train_indices, dim=0)
valid_indices = torch.cat(valid_indices, dim=0)
train_dataset = dataset[train_indices.long()]
valid_dataset = dataset[valid_indices.long()]
return train_dataset, valid_dataset
def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
def hessian_vector_product(vector, dalpha_,model,vnet,data,r=1e-2):
all_vector = vector + dalpha_
R = r / _concat(all_vector).norm()
for p, v in zip(model.parameters(), vector):
p.data.add_(R, v)
for p, v in zip(vnet.parameters(), dalpha_):
p.data.add_(R, v)
#Forward
z1,z2=model(data)
atten=vnet(z1,z2)
logits = model.compute_loss(z1, z2, atten)
loss=torch.mean(logits)
variable_list = [param for param in vnet.parameters()]
grads_p = torch.autograd.grad(loss, variable_list)
for p, v in zip(model.parameters(), vector):
p.data.sub_(2 * R, v)
for p, v in zip(vnet.parameters(), dalpha_):
p.data.sub_(2 * R, v)
z1, z2 = model(data)
atten = vnet(z1,z2)
logits = model.compute_loss(z1, z2, atten)
loss = torch.mean(logits)
grads_n = torch.autograd.grad(loss, variable_list)
for p, v in zip(model.parameters(), vector):
p.data.add_(R, v)
for p, v in zip(vnet.parameters(), dalpha_):
p.data.add_(R, v)
return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
def train(feat_dim, device, data_loader, val_loader, args,save_path_model,save_path_search):
# Original model
model = GCL_model(feat_dim, args.hidden_dim,
n_layers=args.num_gc_layers, gnn=args.train_gnn_type, device=device)
search_net = Search_mlp_pairs(device=device, in_dim=args.hidden_dim, hid_dim=args.hidden_dim_search)
optimizer = torch.optim.Adam([
{'params': model.parameters()},
{'params': search_net.parameters()}
], lr=args.lr, weight_decay=args.weight_decay)
# Optimizer for search
optimizer_search = torch.optim.Adam(search_net.parameters(), lr=args.lr, betas=(0.5, 0.999),
weight_decay=args.weight_decay)
# Valid model
v_model = GCL_model(feat_dim, args.hidden_dim,
n_layers=args.num_gc_layers, gnn=args.train_gnn_type, device=device)
v_search_net = Search_mlp_pairs(device=device, in_dim=args.hidden_dim, hid_dim=args.hidden_dim_search)
v_optimizer = torch.optim.Adam([
{'params': v_model.parameters()},
{'params': v_search_net.parameters()}
], lr=args.lr, weight_decay=args.weight_decay)
model.to(device)
v_model.to(device)
search_net.to(device)
v_search_net.to(device)
min_loss = 1e9
start_all_time=time.time()
for epoch in range(args.epoch):
start_epoch_time=time.time()
model.train()
search_net.train()
epoch_loss = 0.0
ite = 0
for data in data_loader:
v_model.load_state_dict(model.state_dict())
v_search_net.load_state_dict(search_net.state_dict())
# Get optimal W^* by one forward update via train_input
z1, z2 = v_model(data)
atten = v_search_net(z1,z2,binary=True)
logits = v_model.compute_loss(z1, z2, atten)
loss_train = torch.mean(logits)
v_optimizer.zero_grad()
loss_train.backward()
v_optimizer.step()
# v_net optimize get L_val(w^*, \alpha) based on valid_input
val_data = val_loader.next()
z1, z2 = v_model(val_data)
atten = v_search_net(z1,z2,binary=False)
logits = v_model.compute_loss(z1, z2, atten)
loss_val = torch.mean(logits)
v_optimizer.zero_grad()
loss_val.backward()
dalpha = [v.grad for v in v_search_net.parameters()]
dalpha_ = [v.grad.data for v in v_search_net.parameters()]
vector = [v.grad.data for v in v_model.parameters()]
implicit_grads = hessian_vector_product(vector, dalpha_, model, search_net, data)
for g, ig in zip(dalpha, implicit_grads):
g.data.sub_(args.lr, ig.data)
# Update parameters for architecture based on Gradient_\alpha L_val(w^*, \alpha) - 2-th term
i = 0
for name, params in search_net.named_parameters():
if params.requires_grad:
if params.grad is None:
params.grad = Variable(dalpha[i].data)
else:
params.grad.data.copy_(dalpha[i].data)
i += 1
optimizer_search.step()
z1, z2 = model(data)
with torch.no_grad():
atten = search_net(z1,z2,binary=True)
logits = model.compute_loss(z1, z2, atten)
loss_train = torch.mean(logits)
optimizer.zero_grad()
loss_train.backward()
# nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
# nn.utils.clip_grad_norm_(search_net.parameters(), args.grad_clip)
optimizer.step()
epoch_loss += loss_train.item()
print('--> Epoch %d Step %5d loss: %.3f' % (epoch + 1, ite + 1, loss_train.item()))
ite = ite + 1
end_epoch_time=time.time()
print('--> Epoch %d loss: %.3f epoch_time: %.3f' % (epoch + 1, epoch_loss/ite,end_epoch_time-start_epoch_time))
end_all_time=time.time()
# print('--> Finish Searching! Total search time per epoch: ',(end_all_time-start_all_time)/epoch)
torch.save(model.state_dict(), save_path_model)
torch.save(search_net.state_dict(), save_path_search)
if __name__ == '__main__':
args = parser.parse_args()
setup_seed(args.seed)
if torch.cuda.is_available() and args.use_cpu==1:
cuda_name = 'cuda:' + args.cuda
device = torch.device(cuda_name)
print('--> Use GPU %s' % args.cuda)
else:
device = torch.device("cpu")
print("--> No GPU")
print_configuration(args)
# for semi-supervised learning with label ratio 0.01
if args.mode == "semi":
dataset, dataset_pretrain = get_dataset(args.dataset, task='semisupervised')
train_dataset, valid_dataset = data_split_train_valid(dataset_pretrain, ratio=args.split_rate)
data_loader=DataLoader(dataset, args.batch_size, shuffle=True)
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True)
val_loader = ValidLoader(valid_dataset, args.batch_size)
evaluator = Eval_semi(dataset, label_rate=args.label_rate, device=device) # for unsupervised
args.epoch = args.train_epoch
else:
dataset = get_dataset(args.dataset, task='unsupervised')
train_dataset, valid_dataset = data_split_train_valid(dataset, ratio=args.split_rate)
data_loader = DataLoader(dataset, args.batch_size, shuffle=True)
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True)
val_loader = ValidLoader(valid_dataset, args.batch_size)
evaluator = Eval_unsuper(dataset, device=device) # for unsupervised
args.epoch = args.train_epoch
print('*** {} statistics: num_instances={} num_class={}'.format(args.dataset, len(dataset), dataset.num_classes))
feat_dim = dataset[0].x.shape[1]
save_path_model = "./weights/h21_graphcl_model_" + args.mode + "_%s_" % args.dataset + "_train_encoder-"+args.train_gnn_type+ "_nlayer-%d" % args.num_gc_layers + "_train_epoch_"+"{}".format(args.train_epoch) +"_learning_rate_"+"{}".format(args.lr)+'_dim%d_' % args.hidden_dim \
+ "search_dim-{}-".format(args.hidden_dim_search) + "{}".format(args.label_rate) + '.pth'
save_path_search = "./weights/h21_graphcl_search_" + args.mode + "_%s_" % args.dataset + "_train_encoder-"+args.train_gnn_type+ "_nlayer-%d" % args.num_gc_layers + "_train_epoch_"+"{}".format(args.train_epoch) +"_learning_rate_"+"{}".format(args.lr)+ '_dim%d_' % args.hidden_dim \
+ "search_dim-{}-".format(args.hidden_dim_search) + "{}".format(args.label_rate) + '.pth'
print(save_path_model)
print(save_path_search)
#Train
print('-> Start Training')
print('-> Training Encoder: ',args.train_gnn_type)
train(feat_dim, device, train_loader, val_loader, args,save_path_model,save_path_search)
#Evaluate
model = GCL_model(feat_dim, args.hidden_dim,
n_layers=args.num_gc_layers, gnn=args.train_gnn_type, device=device)
model.to(device)
model.load_state_dict(torch.load(save_path_model))
if args.mode == "semi":
acc, std=evaluator.evaluate_run(run_times=args.run_times,model=model)
acc1,std1=evaluator.gridsearch_run(run_times=args.run_times,model=model)
else:
acc,std=evaluator.evaluate_run(run_times=args.run_times,model=model)