-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy path_meta.py
385 lines (290 loc) · 14.5 KB
/
_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from typing import List, Optional, Tuple
import PIL.Image
import torch
from torchvision import tv_tensors
from torchvision.transforms import _functional_pil as _FP
from torchvision.tv_tensors import BoundingBoxFormat
from torchvision.utils import _log_api_usage_once
from ._utils import _get_kernel, _register_kernel_internal, is_pure_tensor
def get_dimensions(inpt: torch.Tensor) -> List[int]:
if torch.jit.is_scripting():
return get_dimensions_image(inpt)
_log_api_usage_once(get_dimensions)
kernel = _get_kernel(get_dimensions, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_dimensions, torch.Tensor)
@_register_kernel_internal(get_dimensions, tv_tensors.Image, tv_tensor_wrapper=False)
def get_dimensions_image(image: torch.Tensor) -> List[int]:
chw = list(image.shape[-3:])
ndims = len(chw)
if ndims == 3:
return chw
elif ndims == 2:
chw.insert(0, 1)
return chw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
_get_dimensions_image_pil = _register_kernel_internal(get_dimensions, PIL.Image.Image)(_FP.get_dimensions)
@_register_kernel_internal(get_dimensions, tv_tensors.Video, tv_tensor_wrapper=False)
def get_dimensions_video(video: torch.Tensor) -> List[int]:
return get_dimensions_image(video)
def get_num_channels(inpt: torch.Tensor) -> int:
if torch.jit.is_scripting():
return get_num_channels_image(inpt)
_log_api_usage_once(get_num_channels)
kernel = _get_kernel(get_num_channels, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_num_channels, torch.Tensor)
@_register_kernel_internal(get_num_channels, tv_tensors.Image, tv_tensor_wrapper=False)
def get_num_channels_image(image: torch.Tensor) -> int:
chw = image.shape[-3:]
ndims = len(chw)
if ndims == 3:
return chw[0]
elif ndims == 2:
return 1
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
_get_num_channels_image_pil = _register_kernel_internal(get_num_channels, PIL.Image.Image)(_FP.get_image_num_channels)
@_register_kernel_internal(get_num_channels, tv_tensors.Video, tv_tensor_wrapper=False)
def get_num_channels_video(video: torch.Tensor) -> int:
return get_num_channels_image(video)
# We changed the names to ensure it can be used not only for images but also videos. Thus, we just alias it without
# deprecating the old names.
get_image_num_channels = get_num_channels
def get_size(inpt: torch.Tensor) -> List[int]:
if torch.jit.is_scripting():
return get_size_image(inpt)
_log_api_usage_once(get_size)
kernel = _get_kernel(get_size, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_size, torch.Tensor)
@_register_kernel_internal(get_size, tv_tensors.Image, tv_tensor_wrapper=False)
def get_size_image(image: torch.Tensor) -> List[int]:
hw = list(image.shape[-2:])
ndims = len(hw)
if ndims == 2:
return hw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
@_register_kernel_internal(get_size, PIL.Image.Image)
def _get_size_image_pil(image: PIL.Image.Image) -> List[int]:
width, height = _FP.get_image_size(image)
return [height, width]
@_register_kernel_internal(get_size, tv_tensors.Video, tv_tensor_wrapper=False)
def get_size_video(video: torch.Tensor) -> List[int]:
return get_size_image(video)
@_register_kernel_internal(get_size, tv_tensors.Mask, tv_tensor_wrapper=False)
def get_size_mask(mask: torch.Tensor) -> List[int]:
return get_size_image(mask)
@_register_kernel_internal(get_size, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def get_size_bounding_boxes(bounding_box: tv_tensors.BoundingBoxes) -> List[int]:
return list(bounding_box.canvas_size)
def get_num_frames(inpt: torch.Tensor) -> int:
if torch.jit.is_scripting():
return get_num_frames_video(inpt)
_log_api_usage_once(get_num_frames)
kernel = _get_kernel(get_num_frames, type(inpt))
return kernel(inpt)
@_register_kernel_internal(get_num_frames, torch.Tensor)
@_register_kernel_internal(get_num_frames, tv_tensors.Video, tv_tensor_wrapper=False)
def get_num_frames_video(video: torch.Tensor) -> int:
return video.shape[-4]
def _xywh_to_xyxy(xywh: torch.Tensor, inplace: bool) -> torch.Tensor:
xyxy = xywh if inplace else xywh.clone()
xyxy[..., 2:] += xyxy[..., :2]
return xyxy
def _xyxy_to_xywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
xywh = xyxy if inplace else xyxy.clone()
xywh[..., 2:] -= xywh[..., :2]
return xywh
def _cxcywh_to_xyxy(cxcywh: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
cxcywh = cxcywh.clone()
# Trick to do fast division by 2 and ceil, without casting. It produces the same result as
# `torchvision.ops._box_convert._box_cxcywh_to_xyxy`.
half_wh = cxcywh[..., 2:].div(-2, rounding_mode=None if cxcywh.is_floating_point() else "floor").abs_()
# (cx - width / 2) = x1, same for y1
cxcywh[..., :2].sub_(half_wh)
# (x1 + width) = x2, same for y2
cxcywh[..., 2:].add_(cxcywh[..., :2])
return cxcywh
def _xyxy_to_cxcywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
xyxy = xyxy.clone()
# (x2 - x1) = width, same for height
xyxy[..., 2:].sub_(xyxy[..., :2])
# (x1 * 2 + width) / 2 = x1 + width / 2 = x1 + (x2-x1)/2 = (x1 + x2)/2 = cx, same for cy
xyxy[..., :2].mul_(2).add_(xyxy[..., 2:]).div_(2, rounding_mode=None if xyxy.is_floating_point() else "floor")
return xyxy
def _cxcywhr_to_xywhr(cxcywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
cxcywhr = cxcywhr.clone()
dtype = cxcywhr.dtype
if not cxcywhr.is_floating_point():
cxcywhr = cxcywhr.float()
half_wh = cxcywhr[..., 2:-1].div(-2, rounding_mode=None if cxcywhr.is_floating_point() else "floor").abs_()
r_rad = cxcywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
# (cx - width / 2 * cos - height / 2 * sin) = x1
cxcywhr[..., 0].sub_(half_wh[..., 0].mul(cos)).sub_(half_wh[..., 1].mul(sin))
# (cy + width / 2 * sin - height / 2 * cos) = y1
cxcywhr[..., 1].add_(half_wh[..., 0].mul(sin)).sub_(half_wh[..., 1].mul(cos))
return cxcywhr.to(dtype)
def _xywhr_to_cxcywhr(xywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
xywhr = xywhr.clone()
dtype = xywhr.dtype
if not xywhr.is_floating_point():
xywhr = xywhr.float()
half_wh = xywhr[..., 2:-1].div(-2, rounding_mode=None if xywhr.is_floating_point() else "floor").abs_()
r_rad = xywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
# (x1 + width / 2 * cos + height / 2 * sin) = cx
xywhr[..., 0].add_(half_wh[..., 0].mul(cos)).add_(half_wh[..., 1].mul(sin))
# (y1 - width / 2 * sin + height / 2 * cos) = cy
xywhr[..., 1].sub_(half_wh[..., 0].mul(sin)).add_(half_wh[..., 1].mul(cos))
return xywhr.to(dtype)
def _xywhr_to_xyxyxyxy(xywhr: torch.Tensor, inplace: bool) -> torch.Tensor:
# NOTE: This function cannot modify the input tensor inplace as it requires a dimension change.
if not inplace:
xywhr = xywhr.clone()
dtype = xywhr.dtype
if not xywhr.is_floating_point():
xywhr = xywhr.float()
wh = xywhr[..., 2:-1]
r_rad = xywhr[..., 4].mul(torch.pi).div(180.0)
cos, sin = r_rad.cos(), r_rad.sin()
xywhr = xywhr[..., :2].tile((1, 4))
# x1 + w * cos = x3
xywhr[..., 2].add_(wh[..., 0].mul(cos))
# y1 - w * sin = y3
xywhr[..., 3].sub_(wh[..., 0].mul(sin))
# x1 + w * cos + h * sin = x2
xywhr[..., 4].add_(wh[..., 0].mul(cos).add(wh[..., 1].mul(sin)))
# y1 - w * sin + h * cos = y2
xywhr[..., 5].sub_(wh[..., 0].mul(sin).sub(wh[..., 1].mul(cos)))
# x1 + h * sin = x4
xywhr[..., 6].add_(wh[..., 1].mul(sin))
# y1 + h * cos = y4
xywhr[..., 7].add_(wh[..., 1].mul(cos))
return xywhr.to(dtype)
def _xyxyxyxy_to_xywhr(xyxyxyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
# NOTE: This function cannot modify the input tensor inplace as it requires a dimension change.
if not inplace:
xyxyxyxy = xyxyxyxy.clone()
dtype = xyxyxyxy.dtype
if not xyxyxyxy.is_floating_point():
xyxyxyxy = xyxyxyxy.float()
r_rad = torch.atan2(xyxyxyxy[..., 1].sub(xyxyxyxy[..., 3]), xyxyxyxy[..., 2].sub(xyxyxyxy[..., 0]))
cos, sin = r_rad.cos(), r_rad.sin()
# x1, y1, x3, y3, (x2 - x1), (y2 - y1) x4, y4
xyxyxyxy[..., 4:6].sub_(xyxyxyxy[..., :2])
# (x2 - x1) * cos + (y1 - y2) * sin = w
xyxyxyxy[..., 2] = xyxyxyxy[..., 4].mul(cos).sub(xyxyxyxy[..., 5].mul(sin))
# (x2 - x1) * sin + (y2 - y1) * cos = h
xyxyxyxy[..., 3] = xyxyxyxy[..., 5].mul(cos).add(xyxyxyxy[..., 4].mul(sin))
xyxyxyxy[..., 4] = r_rad.div_(torch.pi).mul_(180.0)
return xyxyxyxy[..., :5].to(dtype)
def is_rotated_bounding_box_format(format: BoundingBoxFormat) -> bool:
return format.value in [
BoundingBoxFormat.XYWHR.value,
BoundingBoxFormat.CXCYWHR.value,
BoundingBoxFormat.XYXYXYXY.value,
]
def _convert_bounding_box_format(
bounding_boxes: torch.Tensor, old_format: BoundingBoxFormat, new_format: BoundingBoxFormat, inplace: bool = False
) -> torch.Tensor:
if new_format == old_format:
return bounding_boxes
if is_rotated_bounding_box_format(old_format) ^ is_rotated_bounding_box_format(new_format):
raise ValueError("Cannot convert between rotated and unrotated bounding boxes.")
# TODO: Add _xywh_to_cxcywh and _cxcywh_to_xywh to improve performance
if old_format == BoundingBoxFormat.XYWH:
bounding_boxes = _xywh_to_xyxy(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.CXCYWH:
bounding_boxes = _cxcywh_to_xyxy(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.CXCYWHR:
bounding_boxes = _cxcywhr_to_xywhr(bounding_boxes, inplace)
elif old_format == BoundingBoxFormat.XYXYXYXY:
bounding_boxes = _xyxyxyxy_to_xywhr(bounding_boxes, inplace)
if new_format == BoundingBoxFormat.XYWH:
bounding_boxes = _xyxy_to_xywh(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.CXCYWH:
bounding_boxes = _xyxy_to_cxcywh(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.CXCYWHR:
bounding_boxes = _xywhr_to_cxcywhr(bounding_boxes, inplace)
elif new_format == BoundingBoxFormat.XYXYXYXY:
bounding_boxes = _xywhr_to_xyxyxyxy(bounding_boxes, inplace)
return bounding_boxes
def convert_bounding_box_format(
inpt: torch.Tensor,
old_format: Optional[BoundingBoxFormat] = None,
new_format: Optional[BoundingBoxFormat] = None,
inplace: bool = False,
) -> torch.Tensor:
"""See :func:`~torchvision.transforms.v2.ConvertBoundingBoxFormat` for details."""
# This being a kernel / functional hybrid, we need an option to pass `old_format` explicitly for pure tensor
# inputs as well as extract it from `tv_tensors.BoundingBoxes` inputs. However, putting a default value on
# `old_format` means we also need to put one on `new_format` to have syntactically correct Python. Here we mimic the
# default error that would be thrown if `new_format` had no default value.
if new_format is None:
raise TypeError("convert_bounding_box_format() missing 1 required argument: 'new_format'")
if not torch.jit.is_scripting():
_log_api_usage_once(convert_bounding_box_format)
if isinstance(old_format, str):
old_format = BoundingBoxFormat[old_format.upper()]
if isinstance(new_format, str):
new_format = BoundingBoxFormat[new_format.upper()]
if torch.jit.is_scripting() or is_pure_tensor(inpt):
if old_format is None:
raise ValueError("For pure tensor inputs, `old_format` has to be passed.")
return _convert_bounding_box_format(inpt, old_format=old_format, new_format=new_format, inplace=inplace)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
if old_format is not None:
raise ValueError("For bounding box tv_tensor inputs, `old_format` must not be passed.")
output = _convert_bounding_box_format(
inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=new_format, inplace=inplace
)
return tv_tensors.wrap(output, like=inpt, format=new_format)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead."
)
def _clamp_bounding_boxes(
bounding_boxes: torch.Tensor, format: BoundingBoxFormat, canvas_size: Tuple[int, int]
) -> torch.Tensor:
# TODO: Investigate if it makes sense from a performance perspective to have an implementation for every
# BoundingBoxFormat instead of converting back and forth
in_dtype = bounding_boxes.dtype
bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
xyxy_boxes = convert_bounding_box_format(
bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
)
xyxy_boxes[..., 0::2].clamp_(min=0, max=canvas_size[1])
xyxy_boxes[..., 1::2].clamp_(min=0, max=canvas_size[0])
out_boxes = convert_bounding_box_format(
xyxy_boxes, old_format=BoundingBoxFormat.XYXY, new_format=format, inplace=True
)
return out_boxes.to(in_dtype)
def clamp_bounding_boxes(
inpt: torch.Tensor,
format: Optional[BoundingBoxFormat] = None,
canvas_size: Optional[Tuple[int, int]] = None,
) -> torch.Tensor:
"""See :func:`~torchvision.transforms.v2.ClampBoundingBoxes` for details."""
if not torch.jit.is_scripting():
_log_api_usage_once(clamp_bounding_boxes)
if torch.jit.is_scripting() or is_pure_tensor(inpt):
if format is None or canvas_size is None:
raise ValueError("For pure tensor inputs, `format` and `canvas_size` have to be passed.")
return _clamp_bounding_boxes(inpt, format=format, canvas_size=canvas_size)
elif isinstance(inpt, tv_tensors.BoundingBoxes):
if format is not None or canvas_size is not None:
raise ValueError("For bounding box tv_tensor inputs, `format` and `canvas_size` must not be passed.")
output = _clamp_bounding_boxes(inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size)
return tv_tensors.wrap(output, like=inpt)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead."
)