-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathpedersen.rs
229 lines (197 loc) · 7.25 KB
/
pedersen.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use ark_ec::CurveGroup;
use ark_ff::Field;
use ark_r1cs_std::{boolean::Boolean, groups::GroupOpsBounds, prelude::CurveVar};
use ark_relations::r1cs::SynthesisError;
use ark_std::{rand::Rng, UniformRand};
use core::marker::PhantomData;
use super::CommitmentProver;
use crate::transcript::Transcript;
use crate::utils::vec::{vec_add, vec_scalar_mul};
use crate::Error;
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Proof<C: CurveGroup> {
pub R: C,
pub u: Vec<C::ScalarField>,
pub r_u: C::ScalarField,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Params<C: CurveGroup> {
pub h: C,
pub generators: Vec<C::Affine>,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Pedersen<C: CurveGroup> {
_c: PhantomData<C>,
}
impl<C: CurveGroup> Pedersen<C> {
pub fn new_params<R: Rng>(rng: &mut R, max: usize) -> Params<C> {
let generators: Vec<C::Affine> = std::iter::repeat_with(|| C::Affine::rand(rng))
.take(max.next_power_of_two())
.collect();
let params: Params<C> = Params::<C> {
h: C::rand(rng),
generators,
};
params
}
}
// implement the CommitmentProver trait for Pedersen
impl<C: CurveGroup> CommitmentProver<C> for Pedersen<C> {
type Params = Params<C>;
type Proof = Proof<C>;
fn commit(
params: &Self::Params,
v: &[C::ScalarField],
r: &C::ScalarField, // blinding factor
) -> Result<C, Error> {
if params.generators.len() < v.len() {
return Err(Error::PedersenParamsLen(params.generators.len(), v.len()));
}
// h⋅r + <g, v>
// use msm_unchecked because we already ensured at the if that lengths match
Ok(params.h.mul(r) + C::msm_unchecked(¶ms.generators[..v.len()], v))
}
fn prove(
params: &Params<C>,
transcript: &mut impl Transcript<C>,
cm: &C,
v: &[C::ScalarField],
r: &C::ScalarField, // blinding factor
) -> Result<Self::Proof, Error> {
if params.generators.len() < v.len() {
return Err(Error::PedersenParamsLen(params.generators.len(), v.len()));
}
transcript.absorb_point(cm)?;
let r1 = transcript.get_challenge();
let d = transcript.get_challenges(v.len());
// R = h⋅r_1 + <g, d>
// use msm_unchecked because we already ensured at the if that lengths match
let R: C = params.h.mul(r1) + C::msm_unchecked(¶ms.generators[..d.len()], &d);
transcript.absorb_point(&R)?;
let e = transcript.get_challenge();
// u = d + v⋅e
let u = vec_add(&vec_scalar_mul(v, &e), &d)?;
// r_u = e⋅r + r_1
let r_u = e * r + r1;
Ok(Self::Proof { R, u, r_u })
}
}
impl<C: CurveGroup> Pedersen<C> {
pub fn verify(
params: &Params<C>,
transcript: &mut impl Transcript<C>,
cm: C,
proof: Proof<C>,
) -> Result<(), Error> {
if params.generators.len() < proof.u.len() {
return Err(Error::PedersenParamsLen(
params.generators.len(),
proof.u.len(),
));
}
transcript.absorb_point(&cm)?;
transcript.get_challenge(); // r_1
transcript.get_challenges(proof.u.len()); // d
transcript.absorb_point(&proof.R)?;
let e = transcript.get_challenge();
// check that: R + cm⋅e == h⋅r_u + <g, u>
let lhs = proof.R + cm.mul(e);
// use msm_unchecked because we already ensured at the if that lengths match
let rhs = params.h.mul(proof.r_u)
+ C::msm_unchecked(¶ms.generators[..proof.u.len()], &proof.u);
if lhs != rhs {
return Err(Error::CommitmentVerificationFail);
}
Ok(())
}
}
pub type CF<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
pub struct PedersenGadget<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF<C>>,
{
_cf: PhantomData<CF<C>>,
_c: PhantomData<C>,
_gc: PhantomData<GC>,
}
impl<C, GC> PedersenGadget<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF<C>>,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
pub fn commit(
h: GC,
g: Vec<GC>,
v: Vec<Vec<Boolean<CF<C>>>>,
r: Vec<Boolean<CF<C>>>,
) -> Result<GC, SynthesisError> {
let mut res = GC::zero();
res += h.scalar_mul_le(r.iter())?;
for (i, v_i) in v.iter().enumerate() {
res += g[i].scalar_mul_le(v_i.iter())?;
}
Ok(res)
}
}
#[cfg(test)]
mod tests {
use ark_ff::{BigInteger, PrimeField};
use ark_pallas::{constraints::GVar, Fq, Fr, Projective};
use ark_r1cs_std::{alloc::AllocVar, bits::boolean::Boolean, eq::EqGadget};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::UniformRand;
use super::*;
use crate::transcript::poseidon::{poseidon_test_config, PoseidonTranscript};
#[test]
fn test_pedersen_vector() {
let mut rng = ark_std::test_rng();
let n: usize = 10;
// setup params
let params = Pedersen::<Projective>::new_params(&mut rng, n);
let poseidon_config = poseidon_test_config::<Fr>();
// init Prover's transcript
let mut transcript_p = PoseidonTranscript::<Projective>::new(&poseidon_config);
// init Verifier's transcript
let mut transcript_v = PoseidonTranscript::<Projective>::new(&poseidon_config);
let v: Vec<Fr> = std::iter::repeat_with(|| Fr::rand(&mut rng))
.take(n)
.collect();
let r: Fr = Fr::rand(&mut rng);
let cm = Pedersen::<Projective>::commit(¶ms, &v, &r).unwrap();
let proof = Pedersen::<Projective>::prove(¶ms, &mut transcript_p, &cm, &v, &r).unwrap();
Pedersen::<Projective>::verify(¶ms, &mut transcript_v, cm, proof).unwrap();
}
#[test]
fn test_pedersen_circuit() {
let mut rng = ark_std::test_rng();
let n: usize = 10;
// setup params
let params = Pedersen::<Projective>::new_params(&mut rng, n);
let v: Vec<Fr> = std::iter::repeat_with(|| Fr::rand(&mut rng))
.take(n)
.collect();
let r: Fr = Fr::rand(&mut rng);
let cm = Pedersen::<Projective>::commit(¶ms, &v, &r).unwrap();
// circuit
let cs = ConstraintSystem::<Fq>::new_ref();
let v_bits: Vec<Vec<bool>> = v.iter().map(|val| val.into_bigint().to_bits_le()).collect();
let r_bits: Vec<bool> = r.into_bigint().to_bits_le();
// prepare inputs
let vVar: Vec<Vec<Boolean<Fq>>> = v_bits
.iter()
.map(|val_bits| {
Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(val_bits.clone())).unwrap()
})
.collect();
let rVar = Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(r_bits)).unwrap();
let gVar = Vec::<GVar>::new_witness(cs.clone(), || Ok(params.generators)).unwrap();
let hVar = GVar::new_witness(cs.clone(), || Ok(params.h)).unwrap();
let expected_cmVar = GVar::new_witness(cs.clone(), || Ok(cm)).unwrap();
// use the gadget
let cmVar = PedersenGadget::<Projective, GVar>::commit(hVar, gVar, vVar, rVar).unwrap();
cmVar.enforce_equal(&expected_cmVar).unwrap();
}
}