forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_transforms_v2.py
547 lines (441 loc) · 19.7 KB
/
test_transforms_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import itertools
import random
import numpy as np
import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms
from common_utils import assert_equal, cpu_and_cuda
from torchvision import tv_tensors
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2._utils import is_pure_tensor
from transforms_v2_legacy_utils import make_bounding_boxes, make_detection_mask, make_image, make_images, make_videos
def make_vanilla_tensor_images(*args, **kwargs):
for image in make_images(*args, **kwargs):
if image.ndim > 3:
continue
yield image.data
def make_pil_images(*args, **kwargs):
for image in make_vanilla_tensor_images(*args, **kwargs):
yield to_pil_image(image)
def parametrize(transforms_with_inputs):
return pytest.mark.parametrize(
("transform", "input"),
[
pytest.param(
transform,
input,
id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
)
for transform, inputs in transforms_with_inputs
for idx, input in enumerate(inputs)
],
)
@pytest.mark.parametrize(
"flat_inputs",
itertools.permutations(
[
next(make_vanilla_tensor_images()),
next(make_vanilla_tensor_images()),
next(make_pil_images()),
make_image(),
next(make_videos()),
],
3,
),
)
def test_pure_tensor_heuristic(flat_inputs):
def split_on_pure_tensor(to_split):
# This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
# 1. The first pure tensor. If none is present, this will be `None`
# 2. A list of the remaining pure tensors
# 3. A list of all other items
pure_tensors = []
others = []
# Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
# affect the splitting.
for item, inpt in zip(to_split, flat_inputs):
(pure_tensors if is_pure_tensor(inpt) else others).append(item)
return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
class CopyCloneTransform(transforms.Transform):
def _transform(self, inpt, params):
return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()
@staticmethod
def was_applied(output, inpt):
identity = output is inpt
if identity:
return False
# Make sure nothing fishy is going on
assert_equal(output, inpt)
return True
first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
transform = CopyCloneTransform()
transformed_sample = transform(flat_inputs)
first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
if first_pure_tensor_input is not None:
if other_inputs:
assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
else:
assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
assert not transform.was_applied(output, inpt)
for input, output in zip(other_inputs, other_outputs):
assert transform.was_applied(output, input)
class TestTransform:
@pytest.mark.parametrize(
"inpt_type",
[torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
)
def test_check_transformed_types(self, inpt_type, mocker):
# This test ensures that we correctly handle which types to transform and which to bypass
t = transforms.Transform()
inpt = mocker.MagicMock(spec=inpt_type)
if inpt_type in (np.ndarray, str, int):
output = t(inpt)
assert output is inpt
else:
with pytest.raises(NotImplementedError):
t(inpt)
class TestRandomIoUCrop:
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
def test__get_params(self, device, options):
orig_h, orig_w = size = (24, 32)
image = make_image(size)
bboxes = tv_tensors.BoundingBoxes(
torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
format="XYXY",
canvas_size=size,
device=device,
)
sample = [image, bboxes]
transform = transforms.RandomIoUCrop(sampler_options=options)
n_samples = 5
for _ in range(n_samples):
params = transform._get_params(sample)
if options == [2.0]:
assert len(params) == 0
return
assert len(params["is_within_crop_area"]) > 0
assert params["is_within_crop_area"].dtype == torch.bool
assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)
left, top = params["left"], params["top"]
new_h, new_w = params["height"], params["width"]
ious = box_iou(
bboxes,
torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
)
assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"
def test__transform_empty_params(self, mocker):
transform = transforms.RandomIoUCrop(sampler_options=[2.0])
image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
label = torch.tensor([1])
sample = [image, bboxes, label]
# Let's mock transform._get_params to control the output:
transform._get_params = mocker.MagicMock(return_value={})
output = transform(sample)
torch.testing.assert_close(output, sample)
def test_forward_assertion(self):
transform = transforms.RandomIoUCrop()
with pytest.raises(
TypeError,
match="requires input sample to contain tensor or PIL images and bounding boxes",
):
transform(torch.tensor(0))
def test__transform(self, mocker):
transform = transforms.RandomIoUCrop()
size = (32, 24)
image = make_image(size)
bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
masks = make_detection_mask(size, num_objects=6)
sample = [image, bboxes, masks]
is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)
params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
transform._get_params = mocker.MagicMock(return_value=params)
output = transform(sample)
# check number of bboxes vs number of labels:
output_bboxes = output[1]
assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
assert (output_bboxes[~is_within_crop_area] == 0).all()
output_masks = output[2]
assert isinstance(output_masks, tv_tensors.Mask)
class TestRandomShortestSize:
@pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
def test__get_params(self, min_size, max_size):
canvas_size = (3, 10)
transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
sample = make_image(canvas_size)
params = transform._get_params([sample])
assert "size" in params
size = params["size"]
assert isinstance(size, tuple) and len(size) == 2
longer = max(size)
shorter = min(size)
if max_size is not None:
assert longer <= max_size
assert shorter <= max_size
else:
assert shorter in min_size
class TestRandomResize:
def test__get_params(self):
min_size = 3
max_size = 6
transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
for _ in range(10):
params = transform._get_params([])
assert isinstance(params["size"], list) and len(params["size"]) == 1
size = params["size"][0]
assert min_size <= size < max_size
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):
image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
if image_type is PIL.Image:
image = to_pil_image(image[0])
elif image_type is torch.Tensor:
image = image.as_subclass(torch.Tensor)
assert is_pure_tensor(image)
label = 1 if label_type is int else torch.tensor([1])
if dataset_return_type is dict:
sample = {
"image": image,
"label": label,
}
else:
sample = image, label
if to_tensor is transforms.ToTensor:
with pytest.warns(UserWarning, match="deprecated and will be removed"):
to_tensor = to_tensor()
else:
to_tensor = to_tensor()
t = transforms.Compose(
[
transforms.RandomResizedCrop((224, 224), antialias=True),
transforms.RandomHorizontalFlip(p=1),
transforms.RandAugment(),
transforms.TrivialAugmentWide(),
transforms.AugMix(),
transforms.AutoAugment(),
to_tensor,
# TODO: ConvertImageDtype is a pass-through on PIL images, is that
# intended? This results in a failure if we convert to tensor after
# it, because the image would still be uint8 which make Normalize
# fail.
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
transforms.RandomErasing(p=1),
]
)
out = t(sample)
assert type(out) == type(sample)
if dataset_return_type is tuple:
out_image, out_label = out
else:
assert out.keys() == sample.keys()
out_image, out_label = out.values()
assert out_image.shape[-2:] == (224, 224)
assert out_label == label
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
torch.manual_seed(0)
if to_tensor is transforms.ToTensor:
with pytest.warns(UserWarning, match="deprecated and will be removed"):
to_tensor = to_tensor()
else:
to_tensor = to_tensor()
if data_augmentation == "hflip":
t = [
transforms.RandomHorizontalFlip(p=1),
to_tensor,
transforms.ConvertImageDtype(torch.float),
]
elif data_augmentation == "lsj":
t = [
transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
# Note: replaced FixedSizeCrop with RandomCrop, becuase we're
# leaving FixedSizeCrop in prototype for now, and it expects Label
# classes which we won't release yet.
# transforms.FixedSizeCrop(
# size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
# ),
transforms.RandomCrop((1024, 1024), pad_if_needed=True),
transforms.RandomHorizontalFlip(p=1),
to_tensor,
transforms.ConvertImageDtype(torch.float),
]
elif data_augmentation == "multiscale":
t = [
transforms.RandomShortestSize(
min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
),
transforms.RandomHorizontalFlip(p=1),
to_tensor,
transforms.ConvertImageDtype(torch.float),
]
elif data_augmentation == "ssd":
t = [
transforms.RandomPhotometricDistort(p=1),
transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
transforms.RandomIoUCrop(),
transforms.RandomHorizontalFlip(p=1),
to_tensor,
transforms.ConvertImageDtype(torch.float),
]
elif data_augmentation == "ssdlite":
t = [
transforms.RandomIoUCrop(),
transforms.RandomHorizontalFlip(p=1),
to_tensor,
transforms.ConvertImageDtype(torch.float),
]
if sanitize:
t += [transforms.SanitizeBoundingBoxes()]
t = transforms.Compose(t)
num_boxes = 5
H = W = 250
image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
if image_type is PIL.Image:
image = to_pil_image(image[0])
elif image_type is torch.Tensor:
image = image.as_subclass(torch.Tensor)
assert is_pure_tensor(image)
label = torch.randint(0, 10, size=(num_boxes,))
boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
boxes[:, 2:] += boxes[:, :2]
boxes = boxes.clamp(min=0, max=min(H, W))
boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
sample = {
"image": image,
"label": label,
"boxes": boxes,
"masks": masks,
}
out = t(sample)
if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
assert is_pure_tensor(out["image"])
else:
assert isinstance(out["image"], tv_tensors.Image)
assert isinstance(out["label"], type(sample["label"]))
num_boxes_expected = {
# ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
# doesn't remove them strictly speaking, it just marks some boxes as
# degenerate and those boxes will be later removed by
# SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
# param is True.
# Note that the values below are probably specific to the random seed
# set above (which is fine).
(True, "ssd"): 5,
(True, "ssdlite"): 4,
}.get((sanitize, data_augmentation), num_boxes)
assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected
@pytest.mark.parametrize("min_size", (1, 10))
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):
if sample_type is tuple and not isinstance(labels_getter, str):
# The "lambda inputs: inputs["labels"]" labels_getter used in this test
# doesn't work if the input is a tuple.
return
H, W = 256, 128
boxes_and_validity = [
([0, 1, 10, 1], False), # Y1 == Y2
([0, 1, 0, 20], False), # X1 == X2
([0, 0, min_size - 1, 10], False), # H < min_size
([0, 0, 10, min_size - 1], False), # W < min_size
([0, 0, 10, H + 1], False), # Y2 > H
([0, 0, W + 1, 10], False), # X2 > W
([-1, 1, 10, 20], False), # any < 0
([0, 0, -1, 20], False), # any < 0
([0, 0, -10, -1], False), # any < 0
([0, 0, min_size, 10], True), # H < min_size
([0, 0, 10, min_size], True), # W < min_size
([0, 0, W, H], True), # TODO: Is that actually OK?? Should it be -1?
([1, 1, 30, 20], True),
([0, 0, 10, 10], True),
([1, 1, 30, 20], True),
]
random.shuffle(boxes_and_validity) # For test robustness: mix order of wrong and correct cases
boxes, is_valid_mask = zip(*boxes_and_validity)
valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]
boxes = torch.tensor(boxes)
labels = torch.arange(boxes.shape[0])
boxes = tv_tensors.BoundingBoxes(
boxes,
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(H, W),
)
masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
whatever = torch.rand(10)
input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
sample = {
"image": input_img,
"labels": labels,
"boxes": boxes,
"whatever": whatever,
"None": None,
"masks": masks,
}
if sample_type is tuple:
img = sample.pop("image")
sample = (img, sample)
out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
if sample_type is tuple:
out_image = out[0]
out_labels = out[1]["labels"]
out_boxes = out[1]["boxes"]
out_masks = out[1]["masks"]
out_whatever = out[1]["whatever"]
else:
out_image = out["image"]
out_labels = out["labels"]
out_boxes = out["boxes"]
out_masks = out["masks"]
out_whatever = out["whatever"]
assert out_image is input_img
assert out_whatever is whatever
assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
assert isinstance(out_masks, tv_tensors.Mask)
if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
assert out_labels is labels
else:
assert isinstance(out_labels, torch.Tensor)
assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
# This works because we conveniently set labels to arange(num_boxes)
assert out_labels.tolist() == valid_indices
def test_sanitize_bounding_boxes_no_label():
# Non-regression test for https://github.com/pytorch/vision/issues/7878
img = make_image()
boxes = make_bounding_boxes()
with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
transforms.SanitizeBoundingBoxes()(img, boxes)
out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
assert isinstance(out_img, tv_tensors.Image)
assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
def test_sanitize_bounding_boxes_errors():
good_bbox = tv_tensors.BoundingBoxes(
[[0, 0, 10, 10]],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(20, 20),
)
with pytest.raises(ValueError, match="min_size must be >= 1"):
transforms.SanitizeBoundingBoxes(min_size=0)
with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
transforms.SanitizeBoundingBoxes(labels_getter=12)
with pytest.raises(ValueError, match="Could not infer where the labels are"):
bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
transforms.SanitizeBoundingBoxes()(bad_labels_key)
with pytest.raises(ValueError, match="must be a tensor"):
not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
transforms.SanitizeBoundingBoxes()(not_a_tensor)
with pytest.raises(ValueError, match="Number of boxes"):
different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
transforms.SanitizeBoundingBoxes()(different_sizes)