|
| 1 | +package com.madhukaraphatak.examples.sparktwo.ml |
| 2 | + |
| 3 | +import org.apache.spark.ml.Pipeline |
| 4 | +import org.apache.spark.ml.classification.LogisticRegression |
| 5 | +import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator |
| 6 | +import org.apache.spark.ml.feature.{OneHotEncoderEstimator, StringIndexer, VectorAssembler} |
| 7 | +import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} |
| 8 | +import org.apache.spark.sql.SparkSession |
| 9 | + |
| 10 | +object ParallelCrossValidation { |
| 11 | + |
| 12 | + def main(args: Array[String]): Unit = { |
| 13 | + |
| 14 | + |
| 15 | + val sparkSession = SparkSession.builder. |
| 16 | + master("local[*]") |
| 17 | + .appName("example") |
| 18 | + .getOrCreate() |
| 19 | + |
| 20 | + |
| 21 | + val salaryDf = sparkSession.read.format("csv") |
| 22 | + .option("header", "true") |
| 23 | + .option("inferSchema", "true") |
| 24 | + .load("src/main/resources/adult.csv") |
| 25 | + |
| 26 | + val stringColumns = Array("workclass", "occupation", "sex", "education", "martial_status", "relationship", |
| 27 | + "race", "native_country") |
| 28 | + |
| 29 | + val numericalColumns = Array("age", "fnlwgt", "capital_loss", "capital_gain") |
| 30 | + |
| 31 | + val labelColumn = "salary" |
| 32 | + val outputColumns = stringColumns.map(_ + "_onehot") |
| 33 | + |
| 34 | + val indexers = stringColumns.map(column => { |
| 35 | + val indexer = new StringIndexer() |
| 36 | + indexer.setInputCol(column) |
| 37 | + indexer.setHandleInvalid("keep") |
| 38 | + indexer.setOutputCol(column + "_index") |
| 39 | + }) |
| 40 | + |
| 41 | + val singleOneHotEncoder = new OneHotEncoderEstimator() |
| 42 | + singleOneHotEncoder.setInputCols(stringColumns.map(_ + "_index")) |
| 43 | + singleOneHotEncoder.setOutputCols(outputColumns) |
| 44 | + |
| 45 | + val vectorAssembler = new VectorAssembler() |
| 46 | + vectorAssembler.setInputCols(outputColumns ++ numericalColumns) |
| 47 | + vectorAssembler.setOutputCol("features") |
| 48 | + |
| 49 | + val labelIndexer = new StringIndexer() |
| 50 | + labelIndexer.setInputCol("salary") |
| 51 | + labelIndexer.setOutputCol("label") |
| 52 | + |
| 53 | + val logisticRegression = new LogisticRegression() |
| 54 | + |
| 55 | + |
| 56 | + val pipeline = new Pipeline() |
| 57 | + pipeline.setStages(indexers ++ Array(singleOneHotEncoder) |
| 58 | + ++ Array(vectorAssembler) ++ Array(labelIndexer) ++ Array(logisticRegression)) |
| 59 | + |
| 60 | + val paramMap = new ParamGridBuilder() |
| 61 | + .addGrid(logisticRegression.maxIter, Array(1, 2, 3)).build() |
| 62 | + |
| 63 | + |
| 64 | + val crossValidator = new CrossValidator() |
| 65 | + crossValidator.setEstimator(pipeline) |
| 66 | + crossValidator.setEvaluator(new BinaryClassificationEvaluator()) |
| 67 | + crossValidator.setEstimatorParamMaps(paramMap) |
| 68 | + crossValidator.setParallelism(3) |
| 69 | + |
| 70 | + crossValidator.fit(salaryDf) |
| 71 | + |
| 72 | + } |
| 73 | + |
| 74 | +} |
0 commit comments