-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpg_continuous.py
155 lines (132 loc) · 4.34 KB
/
pg_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import math
import random
import gym
import os
import numpy as np
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from torch.autograd import Variable
from common.multiprocessing_env import SubprocVecEnv
num_envs = 16
env_name = "Pendulum-v0"
def make_env():
def make():
env = gym.make(env_name)
return env
return make
envs = [make_env() for i in range(num_envs)]
envs = SubprocVecEnv(envs)
env = gym.make(env_name)
STATE_DIM = env.observation_space.shape[0]
ACTION_DIM = env.action_space.shape[0]
ACTION_MAX = env.action_space.high[0]
SAMPLE_NUMS = 100
FloatTensor = torch.FloatTensor
LongTensor = torch.LongTensor
ByteTensor = torch.ByteTensor
Tensor = FloatTensor
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0., std=0.1)
nn.init.constant_(m.bias, 0.1)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, hidden_size, std=0.0):
super(Actor, self).__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, action_dim)
)
self.log_std = nn.Parameter(torch.ones(action_dim) * std)
self.apply(init_weights)
def forward(self, x):
mu = self.actor(x)
std = self.log_std.exp()
dist = Normal(mu, std)
return dist
# init actor network
actor_network = Actor(STATE_DIM,ACTION_DIM,256,0)
actor_network_optim = torch.optim.Adam(actor_network.parameters(),lr = 0.001)
eps = np.finfo(np.float32).eps.item()
def test_env(vis=False):
state = env.reset()
if vis: env.render()
done = False
total_reward = 0
while not done:
state = Variable(torch.Tensor(state))
dist = actor_network(state)
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy())
state = next_state
if vis: env.render()
total_reward += reward
return total_reward
def roll_out(sample_nums):
observation = envs.reset()
states = []
actions = []
rewards = []
episode_reward = 0
entropy = 0
for _ in range(sample_nums):
#env.render()
state = np.float32(observation)
states.append(state)
dist = actor_network(Variable(torch.Tensor(state)))
action = dist.sample()
entropy += dist.entropy().mean()
action = action.cpu().numpy()
new_observation,reward,done,_ = envs.step(action)
episode_reward += reward
actions.append(action)
rewards.append(reward)
observation = new_observation
#print ('REWARDS :- ', episode_reward)
return states,actions,rewards,entropy
def discount_reward(r, gamma):
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(range(0, len(r))):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def update_network(states, actions, rewards, entropy):
states_var = Variable(FloatTensor(states).view(-1,STATE_DIM))
actions_var = Variable(FloatTensor(actions).view(-1,ACTION_DIM))
# train actor network
actor_network_optim.zero_grad()
dist = actor_network(states_var)
log_probs = dist.log_prob(actions_var)
# calculate qs
rewards = Variable(torch.Tensor(discount_reward(rewards,0.99))).view(-1,1)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
actor_network_loss = - torch.mean(torch.sum(log_probs * rewards)) - 0.001*entropy
#print("loss",actor_network_loss)
actor_network_loss.backward()
actor_network_optim.step()
MAX_EPISODES = 5000
_ep = 0
early_stop = False
test_rewards = []
threshold_reward = -200
while _ep < MAX_EPISODES and not early_stop:
observation = env.reset()
#print ('EPISODE :- ', _ep)
states,actions,rewards,entropy = roll_out(SAMPLE_NUMS)
update_network(states,actions,rewards,entropy)
if _ep % 100 == 0:
test_reward = np.mean([test_env() for _ in range(10)])
test_rewards.append(test_reward)
print ('EPISODE :- ', _ep)
print("TEST REWARD :- ", test_reward)
if test_reward > threshold_reward: early_stop = True
_ep += 1
test_env(True)
envs.close()
env.close()