Skip to content

Commit f5c1f1b

Browse files
Merge pull request #243 from pavlin-policar/updates
Various fixes and improvements before release
2 parents c0a02b1 + ee66da6 commit f5c1f1b

10 files changed

+126
-67
lines changed

azure-pipelines-release.yml

+17-5
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,11 @@ jobs:
3838
python.version: '3.10'
3939
ciwb.build: cp310-macosx_universal2
4040
ciwb.archs: universal2
41+
osx - python311:
42+
image.name: 'macos-12'
43+
python.version: '3.11'
44+
ciwb.build: cp311-macosx_universal2
45+
ciwb.archs: universal2
4146

4247
windows - python37:
4348
image.name: 'windows-2019'
@@ -59,6 +64,11 @@ jobs:
5964
python.version: '3.10'
6065
ciwb.build: cp310-win_amd64
6166
ciwb.archs: AMD64
67+
windows - python311:
68+
image.name: 'windows-2019'
69+
python.version: '3.11'
70+
ciwb.build: cp311-win_amd64
71+
ciwb.archs: AMD64
6272

6373
steps:
6474
- task: UsePythonVersion@0
@@ -93,9 +103,10 @@ jobs:
93103

94104
- script: pip install pynndescent
95105
displayName: 'Install optional dependencies - pynndescent'
96-
condition: ne(variables['python.version'], '3.10')
97106

98107
- script: pip install hnswlib
108+
env:
109+
HNSWLIB_NO_NATIVE: 1 # -march=native is not available on clang, so just disable it
99110
displayName: 'Install optional dependencies - hnswlib'
100111

101112
- bash: pip install pytest
@@ -139,6 +150,9 @@ jobs:
139150
python310:
140151
python: '/opt/python/cp310-cp310/bin'
141152
python.version: '3.10'
153+
python311:
154+
python: '/opt/python/cp311-cp311/bin'
155+
python.version: '3.11'
142156

143157
container:
144158
image: quay.io/pypa/manylinux2014_x86_64:latest
@@ -173,7 +187,6 @@ jobs:
173187

174188
- script: $(python)/pip install pynndescent
175189
displayName: 'Install optional dependencies - pynndescent'
176-
condition: ne(variables['python.version'], '3.10')
177190

178191
- script: $(python)/pip install hnswlib
179192
displayName: 'Install optional dependencies - hnswlib'
@@ -213,9 +226,9 @@ jobs:
213226

214227
steps:
215228
- task: UsePythonVersion@0
216-
displayName: 'Use Python 3.8'
229+
displayName: 'Use Python 3.10'
217230
inputs:
218-
versionSpec: '3.8'
231+
versionSpec: '3.10'
219232

220233
- script: python -m pip install build
221234
displayName: Installing build tools
@@ -237,7 +250,6 @@ jobs:
237250

238251
- script: pip install pynndescent
239252
displayName: 'Install optional dependencies - pynndescent'
240-
condition: ne(variables['python.version'], '3.10')
241253

242254
- script: pip install hnswlib
243255
displayName: 'Install optional dependencies - hnswlib'

azure-pipelines.yml

+11-1
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,9 @@ jobs:
2525
linux-python310:
2626
image.name: 'ubuntu-latest'
2727
python.version: '3.10'
28+
linux-python311:
29+
image.name: 'ubuntu-latest'
30+
python.version: '3.11'
2831
osx-python37:
2932
image.name: 'macos-12'
3033
python.version: '3.7'
@@ -37,6 +40,9 @@ jobs:
3740
osx-python310:
3841
image.name: 'macos-12'
3942
python.version: '3.10'
43+
osx-python311:
44+
image.name: 'macos-12'
45+
python.version: '3.11'
4046
windows-python37:
4147
image.name: 'windows-2019'
4248
python.version: '3.7'
@@ -49,6 +55,9 @@ jobs:
4955
windows-python310:
5056
image.name: 'windows-2019'
5157
python.version: '3.10'
58+
windows-python311:
59+
image.name: 'windows-2019'
60+
python.version: '3.11'
5261

5362
steps:
5463
- task: UsePythonVersion@0
@@ -75,9 +84,10 @@ jobs:
7584

7685
- script: pip install pynndescent
7786
displayName: 'Install optional dependencies - pynndescent'
78-
condition: ne(variables['python.version'], '3.10')
7987

8088
- script: pip install hnswlib
89+
env:
90+
HNSWLIB_NO_NATIVE: 1 # -march=native is not available on clang, so just disable it
8191
displayName: 'Install optional dependencies - hnswlib'
8292

8393
# Since Python automatically adds `cwd` to `sys.path`, it's important we remove the local folder

docs/source/api/affinity.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,5 +2,5 @@ Affinity
22
========
33

44
.. automodule:: openTSNE.affinity
5-
:members: Affinities, PerplexityBasedNN, MultiscaleMixture, Multiscale, FixedSigmaNN, Uniform
5+
:members: Affinities, PerplexityBasedNN, MultiscaleMixture, Multiscale, FixedSigmaNN, Uniform, PrecomputedAffinities
66
:undoc-members:

docs/source/api/initialization.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,4 +2,4 @@ Initialization
22
==============
33

44
.. automodule:: openTSNE.initialization
5-
:members: pca, random
5+
:members: pca, spectral, random, rescale, jitter

docs/source/index.rst

+8-3
Original file line numberDiff line numberDiff line change
@@ -30,9 +30,14 @@ openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor
3030
References
3131
----------
3232

33-
.. [1] Van Der Maaten, Laurens, and Hinton, Geoffrey. `“Visualizing data using t-SNE” <http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>`__, Journal of Machine Learning Research (2008).
34-
.. [2] Poličar, Pavlin G., Martin Stražar, and Blaž Zupan. `“Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification” <https://www.biorxiv.org/content/10.1101/671404v1.abstract>`__, BioRxiv (2019).
35-
.. [3] Van Der Maaten, Laurens. `“Accelerating t-SNE using tree-based algorithms” <http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf>`__, Journal of Machine Learning Research (2014).
33+
.. [1] Van der Maaten, Laurens, and Hinton, Geoffrey. `“Visualizing data using t-SNE” <http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>`__, Journal of Machine Learning Research (2008).
34+
35+
.. [2] Poličar, Pavlin G., Martin Stražar, and Blaž Zupan. `“Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification” <https://link.springer.com/article/10.1007/s10994-021-06043-1>`__, Machine Learning (2021).
36+
37+
.. [3] Van der Maaten, Laurens. `“Accelerating t-SNE using tree-based algorithms” <http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf>`__, Journal of Machine Learning Research (2014).
38+
3639
.. [4] Linderman, George C., et al. `"Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data" <https://www.nature.com/articles/s41592-018-0308-4>`__, Nature Methods (2019).
40+
3741
.. [5] Kobak, Dmitry, and Berens, Philipp. `“The art of using t-SNE for single-cell transcriptomics” <https://www.nature.com/articles/s41467-019-13056-x>`__, Nature Communications (2019).
42+
3843
.. [6] Macosko, Evan Z., et al. \ `“Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets” <https://www.sciencedirect.com/science/article/pii/S0092867415005498>`__, Cell (2015).

docs/source/parameters.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -74,8 +74,8 @@ ints_in_interval: float
7474

7575
References
7676
----------
77-
.. [1] Kobak, Dmitry, and Philipp Berens. "The art of using t-SNE for single-cell transcriptomics." bioRxiv (2018): 453449.
77+
.. [1] Kobak, Dmitry, and Berens, Philipp. `The art of using t-SNE for single-cell transcriptomics<https://www.nature.com/articles/s41467-019-13056-x>`__, Nature Communications (2019).
7878
79-
.. [2] Linderman, George C., and Stefan Steinerberger. "Clustering with t-SNE, provably." arXiv preprint arXiv:1706.02582 (2017).
79+
.. [2] Linderman, George C., and Stefan Steinerberger. `Clustering with t-SNE, provably.<https://epubs.siam.org/doi/abs/10.1137/18M1216134>`__, SIAM Journal on Mathematics of Data Science (2019).
8080
81-
.. [3] Jacobs, Robert A. "Increased rates of convergence through learning rate adaptation." Neural networks 1.4 (1988): 295-307.
81+
.. [3] Jacobs, Robert A. `"Increased rates of convergence through learning rate adaptation." <https://www.sciencedirect.com/science/article/abs/pii/0893608088900032>`__, Neural Networks (1988).

docs/source/tsne_algorithm.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -204,8 +204,8 @@ UMAP, a recent and popular embedding technique for visualizing high dimensional
204204
References
205205
----------
206206

207-
.. [1] Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9.Nov (2008): 2579-2605.
207+
.. [1] Van der Maaten, Laurens, and Hinton, Geoffrey. `Visualizing data using t-SNE<http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>`__, Journal of Machine Learning Research (2008).
208208
209-
.. [2] Van Der Maaten, Laurens. "Accelerating t-SNE using tree-based algorithms." The Journal of Machine Learning Research 15.1 (2014): 3221-3245.
209+
.. [2] Van der Maaten, Laurens. `Accelerating t-SNE using tree-based algorithms<http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf>`__, Journal of Machine Learning Research (2014).
210210
211-
.. [3] Linderman, George C., et al. "Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding." arXiv preprint arXiv:1712.09005 (2017).
211+
.. [3] Linderman, George C., et al. `"Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data" <https://www.nature.com/articles/s41592-018-0308-4>`__, Nature Methods (2019).

0 commit comments

Comments
 (0)