|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +Created on Mon Nov 26 11:54:05 2018 |
| 4 | +
|
| 5 | +@author: obazgir |
| 6 | +""" |
| 7 | + |
| 8 | +import numpy as np |
| 9 | +import pandas as pd |
| 10 | +import matplotlib.pyplot as plt |
| 11 | +import math |
| 12 | +import keras |
| 13 | +from sklearn.model_selection import train_test_split |
| 14 | +from keras.models import Sequential |
| 15 | +from sklearn.model_selection import KFold |
| 16 | +from keras.layers import Dense , Dropout |
| 17 | +from sklearn.ensemble import RandomForestRegressor |
| 18 | +from sklearn.svm import SVR |
| 19 | +import pickle |
| 20 | +import Toolbox |
| 21 | +from Toolbox import NRMSE, Random_Image_Gen, two_d_norm, two_d_eq, Assign_features_to_pixels, MDS_Im_Gen, Bias_Calc, REFINED_Im_Gen |
| 22 | +from scipy.stats import pearsonr |
| 23 | +from scipy.stats import pearsonr |
| 24 | +import os |
| 25 | + |
| 26 | + |
| 27 | +## Simulating the data |
| 28 | +P = [800] # Number of features |
| 29 | +Results_Dic = {} |
| 30 | +for p in P: |
| 31 | + |
| 32 | + COV_X = 0.5*np.random.random((p,p)) |
| 33 | + COV_X = np.maximum( COV_X, COV_X.transpose()) # Generating covariance highly correlated covariance matrix |
| 34 | + |
| 35 | + |
| 36 | + for i in range(p): |
| 37 | + if i - int(p/20) < 0: |
| 38 | + COV_X[i,0:i+int(p/20)] = 0.2*np.random.random(i+int(p/20)) + 0.5 |
| 39 | + elif i+int(p/20) > p: |
| 40 | + COV_X[i,i-int(p/20):] = 0.2*np.random.random(abs(p-i+int(p/20))) + 0.5 |
| 41 | + #else: |
| 42 | + # COV_X[i,i-int(p/20):i+int(p/20)] = 0.2*np.random.random(int(p/10)) + 0.5 |
| 43 | + COV_X = np.maximum( COV_X, COV_X.transpose()) |
| 44 | + np.fill_diagonal(COV_X, 1) |
| 45 | + Columns_PD = p*[None]; index_PD = p*[None] |
| 46 | + |
| 47 | + for i in range(p): |
| 48 | + Columns_PD[i] = "F" + str(i) |
| 49 | + index_PD[i] = "F" + str(i) |
| 50 | + |
| 51 | + NN = int(math.sqrt(p)) +1 |
| 52 | + |
| 53 | + Samples = [10000] # Sample size which could be different as described in the REFINED manuscript |
| 54 | + |
| 55 | + ## Synthetic data |
| 56 | + for n in Samples: |
| 57 | + N = round(n) # Number of samples |
| 58 | + X= np.random.multivariate_normal(Mu, COV_X, size = N) |
| 59 | + #X = np.random.multivariate_normal(np.zeros(3), np.eye(3), size=500) |
| 60 | + SPR_Ratio = [0.2,0.5,0.8] # Spurious features ratio |
| 61 | + for spr in SPR_Ratio: |
| 62 | + sz = round(spr*p) |
| 63 | + B1 = 3*np.random.random((sz,)) + 6; B2 = np.zeros(p-sz); B = np.concatenate((B1,B2)) # Weights |
| 64 | + Y = np.matmul(X,B) |
| 65 | + Y = (Y - Y.min())/(Y.max() - Y.min()) # Target values |
| 66 | + |
| 67 | + CNN_Dic = {} |
| 68 | + # reading the REFINED coordinates |
| 69 | + with open('theMapping_Synth'+str(p)+'.pickle','rb') as file: |
| 70 | + gene_names,coords,map_in_int = pickle.load(file) |
| 71 | + |
| 72 | + |
| 73 | + |
| 74 | + Results_CNN = np.zeros((5,3)) |
| 75 | + i = 0 |
| 76 | + # Using 5 fold cross validation for performance measurement |
| 77 | + kf = KFold(n_splits=5) |
| 78 | + for train_index, test_index in kf.split(X): |
| 79 | + X_Train, X_Test = X[train_index], X[test_index] |
| 80 | + Y_Train, Y_Test = Y[train_index], Y[test_index] |
| 81 | + Y_Test = Y_Test.reshape(len(Y_Test),1) |
| 82 | + |
| 83 | + ################################################ |
| 84 | + |
| 85 | + from keras.layers.core import Activation, Flatten |
| 86 | + from keras.layers.convolutional import Conv2D |
| 87 | + from keras.layers.convolutional import MaxPooling2D |
| 88 | + from keras import backend as K |
| 89 | + from sklearn.model_selection import KFold |
| 90 | + #K.set_image_dim_ordering('th') |
| 91 | + from sklearn.model_selection import train_test_split |
| 92 | + from keras.optimizers import RMSprop, Adam, Adadelta, SGD,Nadam |
| 93 | + from keras.layers.normalization import BatchNormalization |
| 94 | + |
| 95 | + Y_Train_CNN = Y[train_index] |
| 96 | + Y_Test_CNN = Y[test_index]; Y_Test_CNN = Y_Test_CNN.reshape(len(Y_Test_CNN),1) |
| 97 | + |
| 98 | + Width = NN |
| 99 | + Height = NN |
| 100 | + |
| 101 | + |
| 102 | + nn = math.ceil(np.sqrt(p)) # Image dimension |
| 103 | + Nn = p |
| 104 | + |
| 105 | + X_REFINED_Train = REFINED_Im_Gen(X_Train,nn, map_in_int, gene_names,coords) |
| 106 | + X_REFINED_Test = REFINED_Im_Gen(X_Test,nn, map_in_int, gene_names,coords) |
| 107 | + |
| 108 | + Width = nn |
| 109 | + Height = nn |
| 110 | + |
| 111 | + X_Training = X_REFINED_Train.reshape(-1,Width,Height,1) |
| 112 | + X_Testing = X_REFINED_Test.reshape(-1,Width,Height,1) |
| 113 | + # Defining the CNN Model |
| 114 | + |
| 115 | + def CNN_model(): |
| 116 | + nb_filters = 8 |
| 117 | + nb_conv = 3 |
| 118 | + |
| 119 | + model = Sequential() |
| 120 | + model.add(Conv2D(nb_filters*1, nb_conv, nb_conv,border_mode='valid',input_shape=(Width, Height,1))) |
| 121 | + model.add(BatchNormalization()) |
| 122 | + model.add(Activation('relu')) |
| 123 | + #model.add(MaxPooling2D(pool_size=(2, 2))) |
| 124 | + |
| 125 | + model.add(Conv2D(nb_filters*3, nb_conv, nb_conv)) |
| 126 | + model.add(BatchNormalization()) |
| 127 | + model.add(Activation('relu')) |
| 128 | + #model.add(MaxPooling2D(pool_size=(2, 2))) |
| 129 | + |
| 130 | + model.add(Flatten()) |
| 131 | + |
| 132 | + |
| 133 | + |
| 134 | + model.add(Dense(256)) |
| 135 | + model.add(BatchNormalization()) |
| 136 | + model.add(Activation('relu')) |
| 137 | + |
| 138 | + model.add(Dense(128)) |
| 139 | + model.add(BatchNormalization()) |
| 140 | + model.add(Activation('relu')) |
| 141 | + model.add(Dropout(1 - 0.7)) |
| 142 | + |
| 143 | + model.add(Dense(1)) |
| 144 | + |
| 145 | + opt = Adam(lr = 0.0001) |
| 146 | + model.compile(loss='mse', optimizer = opt) |
| 147 | + return model |
| 148 | + # Training the CNN Model |
| 149 | + model = CNN_model() |
| 150 | + model.fit(X_Training, Y_Train_CNN, batch_size= 100, epochs = 50, verbose=0)# callbacks = callbacks_list) |
| 151 | + Y_Pred_CNN = model.predict(X_Testing, batch_size= 100, verbose=0) |
| 152 | + |
| 153 | + # Printing out the results |
| 154 | + NRMSE_CNN, MSE_CNN = NRMSE(Y_Test_CNN, Y_Pred_CNN) |
| 155 | + print(NRMSE_CNN, "CNN NRMSE") |
| 156 | + Y_Test_CNN = Y_Test_CNN.reshape(len(Y_Test_CNN),1) |
| 157 | + PearsonCorr_CNN, p_value = pearsonr(Y_Test_CNN, Y_Pred_CNN) |
| 158 | + Results_CNN[i,0] = NRMSE_CNN; Results_CNN[i,1] = MSE_CNN ; Results_CNN[i,2] = PearsonCorr_CNN |
| 159 | + i = i + 1 |
| 160 | + |
| 161 | + |
| 162 | + NRMSE_CNN = np.mean(Results_CNN[:,0]); MSE_CNN = np.mean(Results_CNN[:,1]); Corr_CNN = np.mean(Results_CNN[:,2]); |
| 163 | + |
| 164 | + |
| 165 | + Results_Sample = np.zeros((1,3)) |
| 166 | + Results_Sample[0,:] = np.array([NRMSE_CNN,MSE_CNN,Corr_CNN]) |
| 167 | + Results = pd.DataFrame(data = Results_Sample , index = ["CNN"], columns = ["NRMSE","MSE","Corr"]) |
| 168 | + Results_Dic[spr,n,p] = Results |
| 169 | + |
| 170 | +with open('Results_Dic'+str(p)+'_5.csv', 'w') as f:[f.write('{0},{1}\n'.format(key, value)) for key, value in Results_Dic.items()] |
| 171 | + |
0 commit comments