-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist.py
116 lines (86 loc) · 3.49 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
device = torch.device('cpu')
print('Using PyTorch version:', torch.__version__, ' Device:', device)
batch_size = 32
train_dataset = datasets.MNIST('./data',
train=True,
download=True,
transform=transforms.ToTensor())
validation_dataset = datasets.MNIST('./data',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset,
batch_size=batch_size,
shuffle=False)
for (X_train, y_train) in train_loader:
print('X_train:', X_train.size(), 'type:', X_train.type())
print('y_train:', y_train.size(), 'type:', y_train.type())
break
def train(epoch, log_interval=200):
# Set model to training mode
model.train()
# Loop over each batch from the training set
for batch_idx, (data, target) in enumerate(train_loader):
# Copy data to GPU if needed
data = data.to(device)
target = target.to(device)
# Zero gradient buffers
optimizer.zero_grad()
# Pass data through the network
output = model(data)
# Calculate loss
loss = criterion(output, target)
# Backpropagate
loss.backward()
# Update weights
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
def validate(loss_vector, accuracy_vector):
model.eval()
val_loss, correct = 0, 0
for data, target in validation_loader:
data = data.to(device)
target = target.to(device)
output = model(data)
val_loss += criterion(output, target).data.item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
val_loss /= len(validation_loader)
loss_vector.append(val_loss)
accuracy = 100. * correct.to(torch.float32) / len(validation_loader.dataset)
accuracy_vector.append(accuracy)
print('\nValidation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
val_loss, correct, len(validation_loader.dataset), accuracy))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28*28, 50)
self.fc1_drop = nn.Dropout(0.2)
self.fc2 = nn.Linear(50, 50)
self.fc2_drop = nn.Dropout(0.2)
self.fc3 = nn.Linear(50, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = self.fc1_drop(x)
x = F.relu(self.fc2(x))
x = self.fc2_drop(x)
return F.log_softmax(self.fc3(x), dim=1)
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
print(model)
epochs = 10
lossv, accv = [], []
for epoch in range(1, epochs + 1):
train(epoch)
validate(lossv, accv)