-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathupdater.py
589 lines (465 loc) · 24.1 KB
/
updater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#!/usr/bin/env python3
import chainer
import chainer.computational_graph as c
import chainer.functions as F
import numpy as np
from chainer import Variable
from common.loss_functions import loss_func_dcgan_dis, loss_func_dcgan_gen, loss_l2, LossFuncRotate, SmoothDepth
from common.utils.copy_param import soft_copy_param
from common.utils.pggan import downsize_real
from config import get_lr_scale_factor
def loss_func_dsgan(x, z, theta, tau=10):
if x.shape[1] == 4:
x = x[:, :3]
loss_ds_1 = F.batch_l2_norm_squared(x[::2] - x[1::2]) / (F.batch_l2_norm_squared(z[::2] - z[1::2]) + 1e-8)
loss_ds_2 = F.batch_l2_norm_squared(x[::2] - x[1::2]) / (F.absolute(theta[::2] - theta[1::2]) + 1e-8) / 1000
xp = chainer.cuda.get_array_module(x.array)
loss_ds_1 = F.minimum(F.sqrt(loss_ds_1), xp.full_like(loss_ds_1.array, tau))
loss_ds_2 = F.minimum(F.sqrt(loss_ds_2), xp.full_like(loss_ds_2.array, tau))
print(loss_ds_1.array.mean(), loss_ds_2.array.mean())
return -F.mean(loss_ds_1) - F.mean(loss_ds_2)
def update_camera_matrices(mat, axis1, axis2, theta):
"""
camera parameters update for get_camera_matrices function
:param mat:
:param axis1: int 0~2
:param axis2: int 0~2
:param theta: np array of rotation degree
:return: camara matrices of minibatch
"""
rot = np.zeros_like(mat)
rot[:, range(4), range(4)] = 1
rot[:, axis1, axis1] = np.cos(theta)
rot[:, axis1, axis2] = -np.sin(theta)
rot[:, axis2, axis1] = np.sin(theta)
rot[:, axis2, axis2] = np.cos(theta)
mat = np.matmul(rot, mat)
return mat
def get_camera_matries(thetas, order=(0, 1, 2)):
"""
generate camera matrices from thetas
:param thetas: batchsize x 6, [x, y, z_rotation, x, y, z_translation]
:return:
"""
mat = np.zeros((len(thetas), 4, 4), dtype="float32")
mat[:, range(4), range(4)] = [1, 1, -1, 1]
mat[:, 2, 3] = 1
for i in order: # y, x, z_rotation
mat = update_camera_matrices(mat, (i + 1) % 3, (i + 2) % 3, thetas[:, i])
mat[:, :3, 3] = mat[:, :3, 3] + thetas[:, 3:]
return mat
def calc_distance(est_theta, theta):
# weak regularization to the distribution of estimated thetas
dist = F.sum(est_theta ** 2, axis=1) + (theta ** 2).sum(axis=1).T - 2 * F.matmul(est_theta, theta, transb=True)
return F.mean(F.min(dist, axis=0)) + F.mean(F.min(dist, axis=1))
class Updater(chainer.training.updaters.StandardUpdater):
def __init__(self, models, config, **kwargs):
if len(models) == 3:
models = models + [None, None]
self.map, self.gen, self.dis, self.smoothed_gen, self.smoothed_map = models
# Stage manager
self.config = config
# Parse kwargs for updater
# self.use_cleargrads = kwargs.pop('use_cleargrads')
self.smoothing = kwargs.pop('smoothing')
self.lambda_gp = kwargs.pop('lambda_gp')
self.total_gpu = kwargs.pop('total_gpu')
self.style_mixing_rate = kwargs.pop('style_mixing_rate')
self.loss_func_rotate = LossFuncRotate(self.map.xp)
self.stage_interval = list(map(int, self.config.stage_interval.split(",")))
super(Updater, self).__init__(**kwargs)
@property
def stage(self):
return self.get_stage()
def get_stage(self):
# return 10.5
return min(self.iteration / self.config.stage_interval, self.config.max_stage - 1e-8)
def get_x_real_data(self, batch, batch_size):
xp = self.gen.xp
x_real_data = []
for i in range(batch_size):
this_instance = batch[i]
if isinstance(this_instance, tuple):
this_instance = this_instance[0] # It's (data, data_id), so take the first one.
x_real_data.append(np.asarray(this_instance).astype("f"))
x_real_data = xp.asarray(x_real_data)
return x_real_data
def get_z_fake_data(self, batch_size):
xp = self.gen.xp
return xp.asarray(self.map.make_hidden(batch_size))
def update_core(self):
xp = self.gen.xp
self.map.cleargrads()
self.gen.cleargrads()
self.dis.cleargrads()
opt_g_m = self.get_optimizer('map')
opt_g_g = self.get_optimizer('gen')
opt_d = self.get_optimizer('dis')
# z: latent | x: data | y: dis output
# *_real/*_fake/*_pertubed: Variable
# *_data: just data (xp array)
stage = self.stage # Need to retrive the value since next statement may change state (at the stage boundary)
batch = self.get_iterator('main').next()
batch_size = len(batch)
lr_scale = get_lr_scale_factor(self.total_gpu, stage)
x_real_data = self.get_x_real_data(batch, batch_size)
z_fake_data = self.get_z_fake_data(batch_size)
x_real = Variable(x_real_data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('no_downsized.png')
x_real = downsize_real(x_real, stage)
x_real = Variable(x_real.data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('downsized.png')
image_size = x_real.shape[2]
z_fake = Variable(z_fake_data)
w_fake = self.map(z_fake)
if self.style_mixing_rate > 0 and np.random.rand() < self.style_mixing_rate:
z_fake2 = Variable(self.get_z_fake_data(batch_size))
w_fake2 = self.map(z_fake2)
x_fake = self.gen(w_fake, stage=stage, w2=w_fake2)
else:
x_fake = self.gen(w_fake, stage=stage)
y_fake = self.dis(x_fake, stage=stage)
loss_gen = loss_func_dcgan_gen(y_fake) * lr_scale
if chainer.global_config.debug:
g = c.build_computational_graph(loss_gen)
with open('out_loss_gen', 'w') as o:
o.write(g.dump())
assert not xp.isnan(loss_gen.data)
chainer.report({'loss_adv': loss_gen}, self.gen)
loss_gen.backward()
opt_g_m.update()
opt_g_g.update()
# keep smoothed generator if instructed to do so.
if self.smoothed_gen is not None:
# layers_in_use = self.gen.get_layers_in_use(stage=stage)
soft_copy_param(self.smoothed_gen, self.gen, 1.0 - self.smoothing)
soft_copy_param(self.smoothed_map, self.map, 1.0 - self.smoothing)
z_fake_data = self.get_z_fake_data(batch_size)
z_fake = Variable(z_fake_data)
with chainer.using_config('enable_backprop', False):
w_fake = self.map(z_fake)
if self.style_mixing_rate > 0 and np.random.rand() < self.style_mixing_rate:
z_fake2 = Variable(self.get_z_fake_data(batch_size))
w_fake2 = self.map(z_fake2)
x_fake = self.gen(w_fake, stage=stage, w2=w_fake2)
else:
x_fake = self.gen(w_fake, stage=stage)
x_fake.unchain_backward()
y_fake = self.dis(x_fake, stage=stage)
y_real = self.dis(x_real, stage=stage)
loss_adv = loss_func_dcgan_dis(y_fake, y_real)
if self.lambda_gp > 0:
x_perturbed = x_real
y_perturbed = y_real
# y_perturbed = self.dis(x_perturbed, stage=stage)
grad_x_perturbed, = chainer.grad([y_perturbed], [x_perturbed], enable_double_backprop=True)
grad_l2 = F.sqrt(F.sum(grad_x_perturbed ** 2, axis=(1, 2, 3)))
loss_gp = self.lambda_gp * loss_l2(grad_l2, 0.0)
chainer.report({'loss_gp': loss_gp}, self.dis)
else:
loss_gp = 0.
loss_dis = (loss_adv + loss_gp) * lr_scale
assert not xp.isnan(loss_dis.data)
chainer.report({'loss_adv': loss_adv}, self.dis)
self.dis.cleargrads()
loss_dis.backward()
opt_d.update()
chainer.reporter.report({'stage': stage})
chainer.reporter.report({'batch_size': batch_size})
chainer.reporter.report({'image_size': image_size})
class RGBDUpdater(chainer.training.updaters.StandardUpdater):
def __init__(self, models, config, **kwargs):
if len(models) == 2:
models = models + [None]
self.bigan = config.bigan
if config.bigan:
self.gen, self.dis, self.smoothed_gen = models
self.enc = self.gen.enc
else:
self.gen, self.dis, self.smoothed_gen = models
# Stage manager
self.config = config
# Parse kwargs for updater
# self.use_cleargrads = kwargs.pop('use_cleargrads')
self.smoothing = kwargs.pop('smoothing')
self.lambda_gp = kwargs.pop('lambda_gp')
self.total_gpu = kwargs.pop('total_gpu')
self.prior = kwargs.pop("prior")
lambda_geometric = self.config.lambda_geometric if self.config.lambda_geometric else 3 # 3 is default
self.loss_func_rotate = LossFuncRotate(self.gen.xp, lambda_geometric=lambda_geometric)
self.loss_func_rotate_feature = LossFuncRotate(self.gen.xp, norm="l2", lambda_geometric=lambda_geometric)
self.loss_smooth_depth = SmoothDepth(self.gen.xp)
self.stage_interval = list(map(int, self.config.stage_interval.split(",")))
self.camera_param_range = np.array([config.x_rotate, config.y_rotate, config.z_rotate,
config.x_translate, config.y_translate, config.z_translate])
super(RGBDUpdater, self).__init__(**kwargs)
@property
def stage(self):
return self.get_stage()
def get_stage(self):
for i, interval in enumerate(self.stage_interval):
if self.iteration + 1 <= interval:
return i - 1 + (self.iteration - self.stage_interval[i - 1]) / (interval - self.stage_interval[i - 1])
return self.config.max_stage - 1e-8
# return min(self.iteration / self.config.stage_interval+6, self.config.max_stage - 1e-8)
def get_x_real_data(self, batch, batch_size):
xp = self.gen.xp
x_real_data = []
for i in range(batch_size):
this_instance = batch[i]
if isinstance(this_instance, tuple):
this_instance = this_instance[0] # It's (data, data_id), so take the first one.
x_real_data.append(np.asarray(this_instance).astype("f"))
x_real_data = xp.asarray(x_real_data)
return x_real_data
def get_z_fake_data(self, batch_size):
xp = self.gen.xp
return xp.asarray(self.gen.make_hidden(batch_size))
def update_core(self):
xp = self.gen.xp
use_rotate = True if self.iteration > self.config.start_rotation else False
self.gen.cleargrads()
self.dis.cleargrads()
if self.bigan:
self.enc.cleargrads()
if self.config.generator_architecture == "stylegan":
opt_g_m = self.get_optimizer('map')
opt_g_g = self.get_optimizer('gen')
opt_d = self.get_optimizer('dis')
# z: latent | x: data | y: dis output
# *_real/*_fake/*_pertubed: Variable
# *_data: just data (xp array)
stage = self.stage # Need to retrive the value since next statement may change state (at the stage boundary)
batch = self.get_iterator('main').next()
batch_size = len(batch)
# lr_scale = get_lr_scale_factor(self.total_gpu, stage)
x_real_data = self.get_x_real_data(batch, batch_size)
z_fake_data = xp.concatenate([self.get_z_fake_data(batch_size // 2)] * 2) # repeat same z
if isinstance(chainer.global_config.dtype, chainer._Mixed16):
x_real_data = x_real_data.astype("float16")
z_fake_data = z_fake_data.astype("float16")
# theta->6 DOF
thetas = self.prior.sample(batch_size)
# thetas = Variable(xp.array(thetas))
# # theta -> camera matrix
# random_camera_matrices = xp.array(get_camera_matries(thetas, order=(0, 1, 2)), dtype="float32")
# thetas = F.concat([F.cos(thetas[:, :3]), F.sin(thetas[:, :3]), thetas[:, 3:]], axis=1)
# theta -> camera matrix
thetas_ = xp.array(thetas)
random_camera_matrices = xp.array(get_camera_matries(thetas))
thetas = F.concat([F.cos(thetas_[:, :3]), F.sin(thetas_[:, :3]),
thetas_[:, 3:]], axis=1)
x_real = Variable(x_real_data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('no_downsized.png')
x_real = downsize_real(x_real, stage)
x_real = Variable(x_real.data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('downsized.png')
image_size = x_real.shape[2]
x_fake = self.gen(z_fake_data, stage, thetas)
if self.bigan:
# bigan is not supported now
assert False, "bigan is not supported"
else:
y_fake, feat = self.dis(x_fake[:, :3], stage=stage, return_hidden=True)
loss_gen = loss_func_dcgan_gen(y_fake) # * lr_scale
assert not xp.isnan(loss_gen.data)
chainer.report({'loss_adv': loss_gen}, opt_g_g.target)
if use_rotate:
loss_rotate, warped_zp = self.loss_func_rotate(x_fake[:batch_size // 2],
random_camera_matrices[:batch_size // 2],
x_fake[batch_size // 2:],
random_camera_matrices[batch_size // 2:],
self.iteration >= self.config.start_occlusion_aware)
if self.config.rotate_feature:
downsample_rate = x_real.shape[2] // feat.shape[2]
depth = F.average_pooling_2d(x_real[:, -1:], downsample_rate, downsample_rate, 0)
feat = F.concat([feat, depth], axis=1)
loss_rotate_feature, _ = self.loss_func_rotate_feature(feat[:batch_size // 2],
random_camera_matrices[:batch_size // 2],
feat[batch_size // 2:],
random_camera_matrices[batch_size // 2:],
self.iteration >= self.config.start_occlusion_aware)
loss_rotate += loss_rotate_feature
# loss_rotate *= 10
if self.config.lambda_depth > 0:
loss_rotate += F.mean(F.relu(self.config.depth_min - x_fake[:, -1]) ** 2) * \
self.config.lambda_depth # make depth larger
assert not xp.isnan(loss_rotate.data)
chainer.report({'loss_rotate': loss_rotate}, opt_g_g.target)
lambda_rotate = self.config.lambda_rotate if self.config.lambda_rotate else 2
lambda_rotate = lambda_rotate if image_size <= 128 else lambda_rotate * 2
loss_gen += loss_rotate * lambda_rotate
if self.config.use_occupancy_net_loss:
loss_occupancy = self.loss_func_rotate.occupancy_net_loss(self.gen.occupancy, x_fake[:, -1:],
random_camera_matrices, z_fake_data.squeeze())
chainer.report({'loss_occupancy': loss_occupancy}, opt_g_g.target)
loss_gen += loss_occupancy * self.config.lambda_occupancy
if self.config.optical_flow:
assert False, "optical flow loss is not supported"
# loss_rotate += - 0.2 * F.log(
# F.mean((F.mean(1 / x_fake[:, -1].reshape(batch_size, -1) ** 2, axis=1) -
# F.mean(1 / x_fake[:, -1].reshape(batch_size, -1), axis=1) ** 2) + 1e-3))
# loss_depth = self.loss_smooth_depth(x_fake[:, -1:]) * 20
# loss_dsgan = loss_func_dsgan(x_fake, z_fake, theta) # Diversity sensitive gan in ICLR2019
if chainer.global_config.debug:
g = c.build_computational_graph(loss_gen)
with open('out_loss_gen', 'w') as o:
o.write(g.dump())
# assert not xp.isnan(loss_dsgan.data)
# with chainer.using_config('debug', True):
loss_gen.backward()
# loss_depth.backward()
# loss_dsgan.backward()
if self.config.generator_architecture == "stylegan":
opt_g_m.update()
opt_g_g.update()
del loss_gen
self.dis.cleargrads()
# keep smoothed generator if instructed to do so.
if self.smoothed_gen is not None:
# layers_in_use = self.gen.get_layers_in_use(stage=stage)
soft_copy_param(self.smoothed_gen, self.gen, 1.0 - self.smoothing)
# with chainer.using_config('enable_backprop', False):
if self.bigan:
assert False, "bigan is not supported"
else:
v_x_fake = Variable(x_fake.array[:, :3])
y_fake, feat = self.dis(v_x_fake, stage=stage, return_hidden=True)
y_real = self.dis(x_real, stage=stage)
loss_dis = loss_func_dcgan_dis(y_fake, y_real)
# loss_reg_camera_param = calc_distance(est_camera_param_real, xp.array(thetas)) / 10
if not self.dis.sn and self.lambda_gp > 0:
# y_perturbed = self.dis(x_perturbed, stage=stage)
grad_x_perturbed, = chainer.grad([y_real], [x_real], enable_double_backprop=True)
grad_l2 = F.sqrt(F.sum(grad_x_perturbed ** 2, axis=(1, 2, 3)))
loss_gp = self.lambda_gp * loss_l2(grad_l2, 0.0)
chainer.report({'loss_gp': loss_gp}, self.dis)
loss_dis = loss_dis + loss_gp # * lr_scale
if use_rotate and self.config.rotate_feature:
downsample_rate = x_real.shape[2] // feat.shape[2]
depth = F.average_pooling_2d(x_real[:, -1:], downsample_rate, downsample_rate, 0)
feat = F.concat([feat, depth], axis=1)
loss_rotate_feature, _ = self.loss_func_rotate_feature(feat[:batch_size // 2],
random_camera_matrices[:batch_size // 2],
feat[batch_size // 2:],
random_camera_matrices[batch_size // 2:],
self.iteration >= self.config.start_occlusion_aware)
loss_dis -= loss_rotate_feature
if not self.dis.sn and self.lambda_gp > 0:
grad_x_perturbed, = chainer.grad([feat], [v_x_fake], enable_double_backprop=True)
grad_l2 = F.sqrt(F.sum(grad_x_perturbed ** 2, axis=(1, 2, 3)))
loss_gp = self.lambda_gp * loss_l2(grad_l2, 0.0)
loss_dis += loss_gp
assert not xp.isnan(loss_dis.data)
chainer.report({'loss_adv': loss_dis}, self.dis)
loss_dis.backward()
opt_d.update()
chainer.reporter.report({'stage': stage})
chainer.reporter.report({'batch_size': batch_size})
chainer.reporter.report({'image_size': image_size})
class RGBUpdater(chainer.training.updaters.StandardUpdater):
def __init__(self, models, config, **kwargs):
if len(models) == 2:
models = models + [None]
if config.bigan:
self.gen, self.dis, self.smoothed_gen = models
self.enc = self.gen.enc
else:
self.gen, self.dis, self.smoothed_gen = models
# Stage manager
self.config = config
# Parse kwargs for updater
# self.use_cleargrads = kwargs.pop('use_cleargrads')
self.smoothing = kwargs.pop('smoothing')
self.lambda_gp = kwargs.pop('lambda_gp')
self.total_gpu = kwargs.pop('total_gpu')
self.prior = kwargs.pop("prior")
self.stage_interval = list(map(int, self.config.stage_interval.split(",")))
super(RGBUpdater, self).__init__(**kwargs)
@property
def stage(self):
return self.get_stage()
def get_stage(self):
for i, interval in enumerate(self.stage_interval):
if self.iteration + 1 <= interval:
return i - 1 + (self.iteration - self.stage_interval[i - 1]) / (interval - self.stage_interval[i - 1])
return self.config.max_stage - 1e-8
# return min(self.iteration / self.config.stage_interval+6, self.config.max_stage - 1e-8)
def get_x_real_data(self, batch, batch_size):
xp = self.gen.xp
x_real_data = []
for i in range(batch_size):
this_instance = batch[i]
if isinstance(this_instance, tuple):
this_instance = this_instance[0] # It's (data, data_id), so take the first one.
x_real_data.append(np.asarray(this_instance).astype("f"))
x_real_data = xp.asarray(x_real_data)
return x_real_data
def get_z_fake_data(self, batch_size):
xp = self.gen.xp
return xp.asarray(self.gen.make_hidden(batch_size))
def update_core(self):
xp = self.gen.xp
self.gen.cleargrads()
self.dis.cleargrads()
if self.config.generator_architecture == "stylegan":
opt_g_m = self.get_optimizer('map')
opt_g_g = self.get_optimizer('gen')
opt_d = self.get_optimizer('dis')
# z: latent | x: data | y: dis output
# *_real/*_fake/*_pertubed: Variable
# *_data: just data (xp array)
stage = self.stage # Need to retrive the value since next statement may change state (at the stage boundary)
batch = self.get_iterator('main').next()
batch_size = len(batch)
# lr_scale = get_lr_scale_factor(self.total_gpu, stage)
x_real_data = self.get_x_real_data(batch, batch_size)
z_fake_data = xp.concatenate([self.get_z_fake_data(batch_size // 2)] * 2) # repeat same z
if isinstance(chainer.global_config.dtype, chainer._Mixed16):
x_real_data = x_real_data.astype("float16")
z_fake_data = z_fake_data.astype("float16")
x_real = Variable(x_real_data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('no_downsized.png')
x_real = downsize_real(x_real, stage)
x_real = Variable(x_real.data)
# Image.fromarray(convert_batch_images(x_real.data.get(), 4, 4)).save('downsized.png')
image_size = x_real.shape[2]
x_fake = self.gen(z_fake_data, stage)
y_fake = self.dis(x_fake[:, :3], stage=stage)
loss_gen = loss_func_dcgan_gen(y_fake) # * lr_scale
assert not xp.isnan(loss_gen.data)
chainer.report({'loss_adv': loss_gen}, opt_g_g.target)
if chainer.global_config.debug:
g = c.build_computational_graph(loss_gen)
with open('out_loss_gen', 'w') as o:
o.write(g.dump())
# assert not xp.isnan(loss_dsgan.data)
# with chainer.using_config('debug', True):
loss_gen.backward()
if self.config.generator_architecture == "stylegan":
opt_g_m.update()
opt_g_g.update()
del loss_gen
self.dis.cleargrads()
# keep smoothed generator if instructed to do so.
if self.smoothed_gen is not None:
# layers_in_use = self.gen.get_layers_in_use(stage=stage)
soft_copy_param(self.smoothed_gen, self.gen, 1.0 - self.smoothing)
y_fake = self.dis(Variable(x_fake.array[:, :3]), stage=stage)
y_real = self.dis(x_real, stage=stage)
loss_dis = loss_func_dcgan_dis(y_fake, y_real)
# loss_reg_camera_param = calc_distance(est_camera_param_real, xp.array(thetas)) / 10
if not self.dis.sn and self.lambda_gp > 0:
# y_perturbed = self.dis(x_perturbed, stage=stage)
grad_x_perturbed, = chainer.grad([y_real], [x_real], enable_double_backprop=True)
grad_l2 = F.sqrt(F.sum(grad_x_perturbed ** 2, axis=(1, 2, 3)))
loss_gp = self.lambda_gp * loss_l2(grad_l2, 0.0)
chainer.report({'loss_gp': loss_gp}, self.dis)
loss_dis = loss_dis + loss_gp # * lr_scale
assert not xp.isnan(loss_dis.data)
chainer.report({'loss_adv': loss_dis}, self.dis)
loss_dis.backward()
opt_d.update()
chainer.reporter.report({'stage': stage})
chainer.reporter.report({'batch_size': batch_size})
chainer.reporter.report({'image_size': image_size})