|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import matplotlib.pyplot as plt\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "\n", |
| 12 | + "%matplotlib inline" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 2, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "df_raw = pd.read_csv('../results/over_smoothing.csv')\n", |
| 22 | + "models = ['GAT', 'GCN', 'MLP', 'g2-MLP']\n", |
| 23 | + "df = df_raw[['num_layers'] + models]" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 3, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "data": { |
| 33 | + "text/html": [ |
| 34 | + "<div>\n", |
| 35 | + "<style scoped>\n", |
| 36 | + " .dataframe tbody tr th:only-of-type {\n", |
| 37 | + " vertical-align: middle;\n", |
| 38 | + " }\n", |
| 39 | + "\n", |
| 40 | + " .dataframe tbody tr th {\n", |
| 41 | + " vertical-align: top;\n", |
| 42 | + " }\n", |
| 43 | + "\n", |
| 44 | + " .dataframe thead th {\n", |
| 45 | + " text-align: right;\n", |
| 46 | + " }\n", |
| 47 | + "</style>\n", |
| 48 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 49 | + " <thead>\n", |
| 50 | + " <tr style=\"text-align: right;\">\n", |
| 51 | + " <th></th>\n", |
| 52 | + " <th>GAT</th>\n", |
| 53 | + " <th>GCN</th>\n", |
| 54 | + " <th>MLP</th>\n", |
| 55 | + " <th>g2-MLP</th>\n", |
| 56 | + " </tr>\n", |
| 57 | + " <tr>\n", |
| 58 | + " <th>num_layers</th>\n", |
| 59 | + " <th></th>\n", |
| 60 | + " <th></th>\n", |
| 61 | + " <th></th>\n", |
| 62 | + " <th></th>\n", |
| 63 | + " </tr>\n", |
| 64 | + " </thead>\n", |
| 65 | + " <tbody>\n", |
| 66 | + " <tr>\n", |
| 67 | + " <th>4</th>\n", |
| 68 | + " <td>82.435234</td>\n", |
| 69 | + " <td>80.842844</td>\n", |
| 70 | + " <td>82.530775</td>\n", |
| 71 | + " <td>99.531331</td>\n", |
| 72 | + " </tr>\n", |
| 73 | + " <tr>\n", |
| 74 | + " <th>8</th>\n", |
| 75 | + " <td>85.084230</td>\n", |
| 76 | + " <td>80.693114</td>\n", |
| 77 | + " <td>82.970030</td>\n", |
| 78 | + " <td>99.662898</td>\n", |
| 79 | + " </tr>\n", |
| 80 | + " <tr>\n", |
| 81 | + " <th>12</th>\n", |
| 82 | + " <td>83.510422</td>\n", |
| 83 | + " <td>79.961670</td>\n", |
| 84 | + " <td>83.067067</td>\n", |
| 85 | + " <td>99.689350</td>\n", |
| 86 | + " </tr>\n", |
| 87 | + " <tr>\n", |
| 88 | + " <th>16</th>\n", |
| 89 | + " <td>79.539979</td>\n", |
| 90 | + " <td>78.262997</td>\n", |
| 91 | + " <td>83.080772</td>\n", |
| 92 | + " <td>99.699493</td>\n", |
| 93 | + " </tr>\n", |
| 94 | + " <tr>\n", |
| 95 | + " <th>20</th>\n", |
| 96 | + " <td>73.782353</td>\n", |
| 97 | + " <td>74.484533</td>\n", |
| 98 | + " <td>83.126373</td>\n", |
| 99 | + " <td>99.704700</td>\n", |
| 100 | + " </tr>\n", |
| 101 | + " <tr>\n", |
| 102 | + " <th>24</th>\n", |
| 103 | + " <td>73.514252</td>\n", |
| 104 | + " <td>72.801060</td>\n", |
| 105 | + " <td>83.102734</td>\n", |
| 106 | + " <td>99.700391</td>\n", |
| 107 | + " </tr>\n", |
| 108 | + " </tbody>\n", |
| 109 | + "</table>\n", |
| 110 | + "</div>" |
| 111 | + ], |
| 112 | + "text/plain": [ |
| 113 | + " GAT GCN MLP g2-MLP\n", |
| 114 | + "num_layers \n", |
| 115 | + "4 82.435234 80.842844 82.530775 99.531331\n", |
| 116 | + "8 85.084230 80.693114 82.970030 99.662898\n", |
| 117 | + "12 83.510422 79.961670 83.067067 99.689350\n", |
| 118 | + "16 79.539979 78.262997 83.080772 99.699493\n", |
| 119 | + "20 73.782353 74.484533 83.126373 99.704700\n", |
| 120 | + "24 73.514252 72.801060 83.102734 99.700391" |
| 121 | + ] |
| 122 | + }, |
| 123 | + "execution_count": 3, |
| 124 | + "metadata": {}, |
| 125 | + "output_type": "execute_result" |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "df_mean = df.groupby(['num_layers']).agg('mean')\n", |
| 130 | + "df_mean" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 4, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "data": { |
| 140 | + "text/html": [ |
| 141 | + "<div>\n", |
| 142 | + "<style scoped>\n", |
| 143 | + " .dataframe tbody tr th:only-of-type {\n", |
| 144 | + " vertical-align: middle;\n", |
| 145 | + " }\n", |
| 146 | + "\n", |
| 147 | + " .dataframe tbody tr th {\n", |
| 148 | + " vertical-align: top;\n", |
| 149 | + " }\n", |
| 150 | + "\n", |
| 151 | + " .dataframe thead th {\n", |
| 152 | + " text-align: right;\n", |
| 153 | + " }\n", |
| 154 | + "</style>\n", |
| 155 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 156 | + " <thead>\n", |
| 157 | + " <tr style=\"text-align: right;\">\n", |
| 158 | + " <th></th>\n", |
| 159 | + " <th>GAT</th>\n", |
| 160 | + " <th>GCN</th>\n", |
| 161 | + " <th>MLP</th>\n", |
| 162 | + " <th>g2-MLP</th>\n", |
| 163 | + " </tr>\n", |
| 164 | + " <tr>\n", |
| 165 | + " <th>num_layers</th>\n", |
| 166 | + " <th></th>\n", |
| 167 | + " <th></th>\n", |
| 168 | + " <th></th>\n", |
| 169 | + " <th></th>\n", |
| 170 | + " </tr>\n", |
| 171 | + " </thead>\n", |
| 172 | + " <tbody>\n", |
| 173 | + " <tr>\n", |
| 174 | + " <th>4</th>\n", |
| 175 | + " <td>0.589346</td>\n", |
| 176 | + " <td>0.132747</td>\n", |
| 177 | + " <td>0.012823</td>\n", |
| 178 | + " <td>0.018307</td>\n", |
| 179 | + " </tr>\n", |
| 180 | + " <tr>\n", |
| 181 | + " <th>8</th>\n", |
| 182 | + " <td>0.538360</td>\n", |
| 183 | + " <td>0.322166</td>\n", |
| 184 | + " <td>0.012899</td>\n", |
| 185 | + " <td>0.008760</td>\n", |
| 186 | + " </tr>\n", |
| 187 | + " <tr>\n", |
| 188 | + " <th>12</th>\n", |
| 189 | + " <td>1.864513</td>\n", |
| 190 | + " <td>0.726863</td>\n", |
| 191 | + " <td>0.015326</td>\n", |
| 192 | + " <td>0.007406</td>\n", |
| 193 | + " </tr>\n", |
| 194 | + " <tr>\n", |
| 195 | + " <th>16</th>\n", |
| 196 | + " <td>3.812715</td>\n", |
| 197 | + " <td>1.609076</td>\n", |
| 198 | + " <td>0.018779</td>\n", |
| 199 | + " <td>0.013000</td>\n", |
| 200 | + " </tr>\n", |
| 201 | + " <tr>\n", |
| 202 | + " <th>20</th>\n", |
| 203 | + " <td>1.211128</td>\n", |
| 204 | + " <td>0.785786</td>\n", |
| 205 | + " <td>0.036188</td>\n", |
| 206 | + " <td>0.013964</td>\n", |
| 207 | + " </tr>\n", |
| 208 | + " <tr>\n", |
| 209 | + " <th>24</th>\n", |
| 210 | + " <td>1.111541</td>\n", |
| 211 | + " <td>0.675653</td>\n", |
| 212 | + " <td>0.017731</td>\n", |
| 213 | + " <td>0.006226</td>\n", |
| 214 | + " </tr>\n", |
| 215 | + " </tbody>\n", |
| 216 | + "</table>\n", |
| 217 | + "</div>" |
| 218 | + ], |
| 219 | + "text/plain": [ |
| 220 | + " GAT GCN MLP g2-MLP\n", |
| 221 | + "num_layers \n", |
| 222 | + "4 0.589346 0.132747 0.012823 0.018307\n", |
| 223 | + "8 0.538360 0.322166 0.012899 0.008760\n", |
| 224 | + "12 1.864513 0.726863 0.015326 0.007406\n", |
| 225 | + "16 3.812715 1.609076 0.018779 0.013000\n", |
| 226 | + "20 1.211128 0.785786 0.036188 0.013964\n", |
| 227 | + "24 1.111541 0.675653 0.017731 0.006226" |
| 228 | + ] |
| 229 | + }, |
| 230 | + "execution_count": 4, |
| 231 | + "metadata": {}, |
| 232 | + "output_type": "execute_result" |
| 233 | + } |
| 234 | + ], |
| 235 | + "source": [ |
| 236 | + "df_std = df.groupby(['num_layers']).agg('std')\n", |
| 237 | + "df_std" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 5, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "fig = plt.figure(figsize=(15,10))\n", |
| 247 | + "for k in models:\n", |
| 248 | + " plt.errorbar(\n", |
| 249 | + " df_mean.index,\n", |
| 250 | + " df_mean[k],\n", |
| 251 | + " yerr=df_std[k],\n", |
| 252 | + " capsize=5, # エラーバーの横線の長さ\n", |
| 253 | + " label=k,\n", |
| 254 | + " )\n", |
| 255 | + "plt.title('Relationship between micro-F1 score on PPI dataset and number of layers.', fontsize=15)\n", |
| 256 | + "plt.xlabel('number of layers', fontsize=15)\n", |
| 257 | + "plt.ylabel('micro-f1 score on PPI dataset', fontsize=15)\n", |
| 258 | + "plt.xticks(df_mean.index, df_mean.index)\n", |
| 259 | + "plt.ylim(70, 100)\n", |
| 260 | + "plt.legend()\n", |
| 261 | + "fig.savefig('../results/over_smoothing.jpg')\n", |
| 262 | + "plt.close()" |
| 263 | + ] |
| 264 | + } |
| 265 | + ], |
| 266 | + "metadata": { |
| 267 | + "interpreter": { |
| 268 | + "hash": "53f4404ef9f7fdbb37798299073ec93abaa467fc0299b6ad19199a390e89e955" |
| 269 | + }, |
| 270 | + "kernelspec": { |
| 271 | + "display_name": "Python 3.8.10 64-bit ('0203_internship-iouMVtx2': venv)", |
| 272 | + "language": "python", |
| 273 | + "name": "python3" |
| 274 | + }, |
| 275 | + "language_info": { |
| 276 | + "codemirror_mode": { |
| 277 | + "name": "ipython", |
| 278 | + "version": 3 |
| 279 | + }, |
| 280 | + "file_extension": ".py", |
| 281 | + "mimetype": "text/x-python", |
| 282 | + "name": "python", |
| 283 | + "nbconvert_exporter": "python", |
| 284 | + "pygments_lexer": "ipython3", |
| 285 | + "version": "3.9.2" |
| 286 | + }, |
| 287 | + "orig_nbformat": 4 |
| 288 | + }, |
| 289 | + "nbformat": 4, |
| 290 | + "nbformat_minor": 2 |
| 291 | +} |
0 commit comments