forked from twittersentimentanalysis/TSA-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTraining.py
170 lines (128 loc) · 6.39 KB
/
Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import random
import Evaluation
import numpy as np
from tqdm import tqdm
from sklearn.metrics import f1_score, accuracy_score
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
# Initialize dataset for training
def initialize(df):
X_train, X_val, y_train, y_val = train_test_split(df.index.values,
df.label.values,
test_size = 0.2,
random_state = 42,
stratify = df.label.values)
df['data_type'] = ['not_set']*df.shape[0]
df.loc[X_train, 'data_type'] = 'train'
df.loc[X_val, 'data_type'] = 'val'
return X_train, X_val, y_train, y_val
# Enocde data for training
def encode_data(bert, df, config):
tokenizer = BertTokenizer.from_pretrained(config["bert-model"][bert],
do_lower_case = True)
encoded_data_train = tokenizer.batch_encode_plus(
df[df.data_type == 'train'].processed_tweet.values,
add_special_tokens = True,
return_attention_mask = True,
truncation = True,
padding = True,
max_length = config['max-sequence-length'],
return_tensors = 'pt'
)
encoded_data_val = tokenizer.batch_encode_plus(
df[df.data_type == 'val'].processed_tweet.values,
add_special_tokens = True,
return_attention_mask = True,
truncation = True,
padding = True,
max_length = config['max-sequence-length'],
return_tensors = 'pt'
)
input_ids_train = encoded_data_train['input_ids']
attention_masks_train = encoded_data_train['attention_mask']
labels_train = torch.tensor(df[df.data_type=='train'].label.values)
input_ids_val = encoded_data_val['input_ids']
attention_masks_val = encoded_data_val['attention_mask']
labels_val = torch.tensor(df[df.data_type=='val'].label.values)
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val)
print("LENGTH TRAINING: " + str(len(dataset_train)))
print("LENGTH VALIDATION: " + str(len(dataset_val)))
return dataset_train, dataset_val
# Set up BERT Multilingual or BETO model
def setup_bert_model(bert, label_dict, config):
model = BertForSequenceClassification.from_pretrained(config["bert-model"][bert],
num_labels = len(label_dict),
output_attentions = False,
output_hidden_states = False)
return model
# Create dataloaders
def create_dataloaders(dataset_train, dataset_val, config):
dataloader_train = DataLoader( dataset_train,
sampler = RandomSampler(dataset_train),
batch_size = config['batch-size'])
dataloader_validation = DataLoader( dataset_val,
sampler = SequentialSampler(dataset_val),
batch_size = config['batch-size'])
return dataloader_train, dataloader_validation
# Set up AdamW Optimizer
def setup_optimizer(model, config):
optimizer = AdamW(model.parameters(),
lr = config['adam']['lr'],
eps = config['adam']['eps'],
weight_decay=config['adam']['lr']/config['epochs'])
return optimizer
# Set up scheduler
def setup_scheduler(dataloader_train, optimizer, config):
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=len(dataloader_train)*config['epochs'])
return scheduler
# Function to print scores during training
def score_func(preds, labels):
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
f1_scr = f1_score(labels_flat, preds_flat, average='weighted')
accuracy = accuracy_score(labels_flat, preds_flat)
return f1_scr, accuracy
# Function to train models
def train(model, dataloader_train, dataloader_validation, config):
seed_val = 17
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
optimizer = setup_optimizer(model, config)
scheduler = setup_scheduler(dataloader_train, optimizer, config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in tqdm(range(1, config['epochs'] + 1)):
model.train()
loss_train_total = 0
progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
for batch in progress_bar:
model.zero_grad()
batch = tuple(b.to(device) for b in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[2],
}
outputs = model(**inputs)
loss = outputs[0]
loss_train_total += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
torch.save(model.state_dict(), f'{config["model-path"]}_{epoch}.model')
tqdm.write(f'\nEpoch {epoch}')
loss_train_avg = loss_train_total/len(dataloader_train)
tqdm.write(f'Training loss: {loss_train_avg}')
val_loss, predictions, true_vals, _ = Evaluation.evaluate(model, dataloader_validation)
f1_scr, accuracy = score_func(predictions, true_vals)
tqdm.write(f'Validation loss: {val_loss}')
tqdm.write(f'F1 Score (Weighted): {f1_scr}')
tqdm.write(f'Accuracy: {accuracy}')