-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtriplet_custom_interpolate_model.py
146 lines (130 loc) · 5.74 KB
/
triplet_custom_interpolate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import argparse
import cPickle
import logging
logging.basicConfig(level=logging.DEBUG)
from common import find_mxnet, data
import mxnet as mx
import numpy as np
ROOT_DIR = os.path.abspath(os.path.dirname(__file__))
def load_params(filename):
params = {
'arg_params': {},
'aux_params': {},
}
for k,v in mx.nd.load(filename).items():
tp, name = k.split(':', 1)
if tp == 'arg':
params['arg_params'][name] = v
elif tp == 'aux':
params['aux_params'][name] = v
return params
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="interpolate score",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'mnist'], help='dataset to use')
parser.add_argument('--net-json', type=str, required=True,
help='symbol\'s json file')
parser.add_argument('--params1', type=str, required=True,
help='the first network weights file')
parser.add_argument('--params2', type=str, required=True,
help='the second network weights file')
parser.add_argument('--params3', type=str, required=True,
help='the second network weights file')
parser.add_argument('--batch-size', type=int, default=16,
help='the batch size')
parser.add_argument('--alpha1', type=float, default=0.0,
help='lower bound of alpha')
parser.add_argument('--alpha2', type=float, default=1.0,
help='higher bound of alpha')
parser.add_argument('--alpha-num', type=int, default=20,
help='number of alpha values')
parser.add_argument('--beta-num', type=int, default=20,
help='number of beta values')
parser.add_argument('--gpus', type=str,
help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu')
parser.add_argument('--output', type=str,
help='output file')
parser.add_argument('--kv-store', type=str, default='device',
help='key-value store type')
data.add_data_args(parser)
data.add_data_aug_args(parser)
data.set_data_aug_level(parser, 2)
parser.set_defaults(
# data
data_train = None,
data_val = 'data/cifar10_val.rec',
num_classes = 10,
num_examples = 50000,
image_shape = '3,28,28',
pad_size = 4,
# train
batch_size = 128,
)
args = parser.parse_args()
params1 = load_params(args.params1)
params2 = load_params(args.params2)
params3 = load_params(args.params3)
kv = mx.kvstore.create(args.kv_store)
if args.dataset == 'cifar10':
train, val = data.get_rec_iter(args, kv)
elif args.dataset == 'mnist':
train, val = data.get_mnist_iter(args, kv)
# devices for training
devs = mx.cpu() if args.gpus is None or args.gpus is '' else [
mx.gpu(int(i)) for i in args.gpus.split(',')]
# create model
model = mx.mod.Module(
context = devs,
symbol = mx.sym.load(args.net_json)
)
model.bind(data_shapes=val.provide_data, label_shapes=val.provide_label)
# evaluation metrices
eval_metrics = mx.metric.create('accuracy')
alpha_list = np.linspace(args.alpha1, args.alpha2, args.alpha_num+1)
beta_list = np.linspace(args.alpha1, args.alpha2, args.beta_num+1)
alpha_grid, beta_grid = np.meshgrid(alpha_list, beta_list)
train_error_grid = np.zeros(alpha_grid.shape)
val_error_grid = np.zeros(alpha_grid.shape)
for i in range(alpha_grid.shape[0]):
for j in range(alpha_grid.shape[1]):
alpha = alpha_grid[i, j]
beta = beta_grid[i, j]
# compute tmp weights
tmp_params = {
'arg_params': {},
'aux_params': {},
}
for name in tmp_params.keys():
for k, theta_0 in params1[name].items():
theta_1 = params2[name][k]
theta_2 = params3[name][k]
tmp_params[name][k] = alpha*theta_0+(1-alpha)*(beta*theta_1+(1-beta)*theta_2)
# set tmp weights
model.set_params(arg_params=tmp_params['arg_params'],
aux_params=tmp_params['aux_params'])
print 'alpha = %f, beta = %f ...' % (alpha, beta)
if train is not None:
model.score(train, eval_metrics, reset=True)
train_error_grid[i, j] = 1-eval_metrics.get()[1]
print '\ttrain error = %f' % train_error_grid[i, j]
if val is not None:
model.score(val, eval_metrics, reset=True)
val_error_grid[i, j] = 1-eval_metrics.get()[1]
print '\tval error = %f' % val_error_grid[i, j]
if args.output is None:
args.output = os.path.join(ROOT_DIR,
'cache',
args.dataset,
os.path.split(args.params1)[-1].replace('.params', '')+'_'+os.path.split(args.params2)[-1].replace('.params', '')+'_'+os.path.split(args.params3)[-1].replace('.params', '')+'_triplet_interpolate.pkl')
if not os.path.exists(os.path.dirname(args.output)):
os.mkdir(os.path.dirname(args.output))
with open(args.output, 'wb') as fd:
cPickle.dump({
'alpha_grid': alpha_grid,
'beta_grid': beta_grid,
'train_error_grid': train_error_grid,
'val_error_grid': val_error_grid,
}, fd)
print 'save log to %s' % (args.output)