-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraph.fs
874 lines (787 loc) · 34.7 KB
/
Graph.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
namespace Alga.FSharp
open Alga.FSharp.Internal
open Alga.FSharp.AdjacencyMap.Internal
(*
Module : Algebra.Graph
Copyright : (c) Andrey Mokhov 2016-2018
License : MIT (see the file LICENSE)
Maintainer : andrey.mokhov@gmail.com
Stability : experimental
__Alga__ is a library for algebraic construction and manipulation of graphs
in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the
motivation behind the library, the underlying theory, and implementation details.
This module defines the core data type 'Graph' and associated algorithms.
For graphs that are known to be /non-empty/ at compile time, see
"Algebra.Graph.NonEmpty". 'Graph' is an instance of type classes defined in
modules "Algebra.Graph.Class" and "Algebra.Graph.HigherKinded.Class", which
can be used for polymorphic graph construction and manipulation.
The 'Graph' data type is a deep embedding of the core graph construction
primitives 'empty', 'vertex', 'overlay' and 'connect'. We define a 'Num'
instance as a convenient notation for working with graphs:
> 0 == Vertex 0
> 1 + 2 == Overlay (Vertex 1) (Vertex 2)
> 1 * 2 == Connect (Vertex 1) (Vertex 2)
> 1 + 2 * 3 == Overlay (Vertex 1) (Connect (Vertex 2) (Vertex 3))
> 1 * (2 + 3) == Connect (Vertex 1) (Overlay (Vertex 2) (Vertex 3))
The 'Eq' instance is currently implemented using the 'AM.AdjacencyMap' as the
/canonical graph representation/ and satisfies all axioms of algebraic graphs:
* 'overlay' is commutative and associative:
> x + y == y + x
> x + (y + z) == (x + y) + z
* 'connect' is associative and has 'empty' as the identity:
> x * empty == x
> empty * x == x
> x * (y * z) == (x * y) * z
* 'connect' distributes over 'overlay':
> x * (y + z) == x * y + x * z
> (x + y) * z == x * z + y * z
* 'connect' can be decomposed:
> x * y * z == x * y + x * z + y * z
The following useful theorems can be proved from the above set of axioms.
* 'overlay' has 'empty' as the identity and is idempotent:
> x + empty == x
> empty + x == x
> x + x == x
* Absorption and saturation of 'connect':
> x * y + x + y == x * y
> x * x * x == x * x
When specifying the time and memory complexity of graph algorithms, /n/ will
denote the number of vertices in the graph, /m/ will denote the number of
edges in the graph, and /s/ will denote the /size/ of the corresponding
'Graph' expression. For example, if @g@ is a 'Graph' then /n/, /m/ and /s/ can
be computed as follows:
@n == 'vertexCount' g
m == 'edgeCount' g
s == 'size' g@
Note that 'size' is slightly different from the 'length' method of the
'Foldable' type class, as the latter does not count 'empty' leaves of the
expression:
@'length' 'empty' == 0
'size' 'empty' == 1
'length' ('vertex' x) == 1
'size' ('vertex' x) == 1
'length' ('empty' + 'empty') == 0
'size' ('empty' + 'empty') == 2@
The 'size' of any graph is positive, and the difference @('size' g - 'length' g)@
corresponds to the number of occurrences of 'empty' in an expression @g@.
Converting a 'Graph' to the corresponding 'AM.AdjacencyMap' takes /O(s + m * log(m))/
time and /O(s + m)/ memory. This is also the complexity of the graph equality test,
because it is currently implemented by converting graph expressions to canonical
representations based on adjacency maps.
*)
type 'a Graph =
| Empty
| Vertex of 'a
| Overlay of 'a Graph * 'a Graph
| Connect of 'a Graph * 'a Graph
with
static member Zero : 'a Graph = Empty
static member (+) (x : 'a Graph, y : 'a Graph) = Overlay (x, y)
static member (*) (x : 'a Graph, y : 'a Graph) = Connect (x, y)
[<RequireQualifiedAccess>]
module Graph =
/// Construct the /empty graph/. An alias for the constructor 'Empty'.
/// Complexity: /O(1)/ time, memory and size.
///
/// @
/// 'isEmpty' empty == True
/// 'hasVertex' x empty == False
/// 'vertexCount' empty == 0
/// 'edgeCount' empty == 0
/// 'size' empty == 1
/// @
let empty : 'a Graph =
Empty
/// Construct the graph comprising /a single isolated vertex/. An alias for the
/// constructor 'Vertex'.
/// Complexity: /O(1)/ time, memory and size.
///
/// @
/// 'isEmpty' (vertex x) == False
/// 'hasVertex' x (vertex x) == True
/// 'vertexCount' (vertex x) == 1
/// 'edgeCount' (vertex x) == 0
/// 'size' (vertex x) == 1
/// @
let vertex (a : 'a) : 'a Graph =
Vertex a
/// /Overlay/ two graphs. An alias for the constructor 'Overlay'. This is a
/// commutative, associative and idempotent operation with the identity 'empty'.
/// Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size.
///
/// @
/// 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y
/// 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y
/// 'vertexCount' (overlay x y) >= 'vertexCount' x
/// 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y
/// 'edgeCount' (overlay x y) >= 'edgeCount' x
/// 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y
/// 'size' (overlay x y) == 'size' x + 'size' y
/// 'vertexCount' (overlay 1 2) == 2
/// 'edgeCount' (overlay 1 2) == 0
/// @
let overlay (x : 'a Graph) (y : 'a Graph) : 'a Graph =
Overlay (x, y)
/// /Connect/ two graphs. An alias for the constructor 'Connect'. This is an
/// associative operation with the identity 'empty', which distributes over
/// 'overlay' and obeys the decomposition axiom.
/// Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number
/// of edges in the resulting graph is quadratic with respect to the number of
/// vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/.
///
/// @
/// 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y
/// 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y
/// 'vertexCount' (connect x y) >= 'vertexCount' x
/// 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y
/// 'edgeCount' (connect x y) >= 'edgeCount' x
/// 'edgeCount' (connect x y) >= 'edgeCount' y
/// 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y
/// 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y
/// 'size' (connect x y) == 'size' x + 'size' y
/// 'vertexCount' (connect 1 2) == 2
/// 'edgeCount' (connect 1 2) == 1
/// @
let connect (x : 'a Graph) (y : 'a Graph) : 'a Graph =
Connect (x, y)
/// Construct the graph comprising /a single edge/.
/// Complexity: /O(1)/ time, memory and size.
///
/// @
/// edge x y == 'connect' ('vertex' x) ('vertex' y)
/// 'hasEdge' x y (edge x y) == True
/// 'edgeCount' (edge x y) == 1
/// 'vertexCount' (edge 1 1) == 1
/// 'vertexCount' (edge 1 2) == 2
/// @
let edge (x : 'a) (y : 'a) : 'a Graph =
connect (vertex x) (vertex y)
/// Auxiliary function, similar to 'mconcat'.
let concatg (f : 'a Graph -> 'a Graph -> 'a Graph) (gs : 'a Graph seq) : 'a Graph =
gs |> Seq.fold f empty
/// Overlay a given list of graphs.
/// Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length
/// of the given list, and /S/ is the sum of sizes of the graphs in the list.
///
/// @
/// overlays [] == 'empty'
/// overlays [x] == x
/// overlays [x,y] == 'overlay' x y
/// overlays == 'foldr' 'overlay' 'empty'
/// 'isEmpty' . overlays == 'all' 'isEmpty'
/// @
let overlays (gs : 'a Graph seq) : 'a Graph =
gs |> concatg overlay
/// Construct the graph comprising a given list of isolated vertices.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
/// given list.
///
/// @
/// vertices [] == 'empty'
/// vertices [x] == 'vertex' x
/// 'hasVertex' x . vertices == 'elem' x
/// 'vertexCount' . vertices == 'length' . 'Data.List.nub'
/// 'vertexSet' . vertices == Set.'Set.fromList'
/// @
let vertices (vs : 'a seq) : 'a Graph =
vs |> Seq.map vertex |> overlays
/// Construct the graph from a list of edges.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
/// given list.
///
/// @
/// edges [] == 'empty'
/// edges [(x,y)] == 'edge' x y
/// 'edgeCount' . edges == 'length' . 'Data.List.nub'
/// @
let edges (es : ('a * 'a) seq) : 'a Graph =
es |> Seq.map ((<||) edge) |> overlays
/// Connect a given list of graphs.
/// Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length
/// of the given list, and /S/ is the sum of sizes of the graphs in the list.
///
/// @
/// connects [] == 'empty'
/// connects [x] == x
/// connects [x,y] == 'connect' x y
/// connects == 'foldr' 'connect' 'empty'
/// 'isEmpty' . connects == 'all' 'isEmpty'
/// @
let connects (gs : 'a Graph seq) : 'a Graph =
gs |> concatg connect
/// Generalised 'Graph' folding: recursively collapse a 'Graph' by applying
/// the provided functions to the leaves and internal nodes of the expression.
/// The order of arguments is: empty, vertex, overlay and connect.
/// Complexity: /O(s)/ applications of given functions. As an example, the
/// complexity of 'size' is /O(s)/, since all functions have cost /O(1)/.
///
/// @
/// foldg 'empty' 'vertex' 'overlay' 'connect' == id
/// foldg 'empty' 'vertex' 'overlay' (flip 'connect') == 'transpose'
/// foldg [] return (++) (++) == 'Data.Foldable.toList'
/// foldg 0 (const 1) (+) (+) == 'Data.Foldable.length'
/// foldg 1 (const 1) (+) (+) == 'size'
/// foldg True (const False) (&&) (&&) == 'isEmpty'
/// @
let rec foldg (e : 'b) (v : 'a -> 'b) (o : 'b -> 'b -> 'b) (c : 'b -> 'b -> 'b) (g : 'a Graph) : 'b =
let go = foldg e v o c
match g with
| Empty -> e
| Vertex x -> v x
| Overlay (x, y) -> o (go x) (go y)
| Connect (x, y) -> c (go x) (go y)
let rec map (f : 'a -> 'b) (g : 'a Graph) : 'b Graph =
match g with
| Empty -> Empty
| Vertex a -> Vertex (f a)
| Overlay (g1, g2) -> Overlay (map f g1, map f g2)
| Connect (g1, g2) -> Connect (map f g1, map f g2)
let bind (g : 'a Graph) (f : 'a -> 'b Graph) : 'b Graph =
foldg Empty f overlay connect g
let rec toList (g : 'a Graph) : 'a list =
match g with
| Empty -> []
| Vertex a -> [a]
| Overlay (g1, g2) -> toList g1 @ toList g2
| Connect (g1, g2) -> toList g1 @ toList g2
/// | Check if a graph is empty. A convenient alias for 'null'.
/// Complexity: /O(s)/ time.
///
/// @
/// isEmpty 'empty' == True
/// isEmpty ('overlay' 'empty' 'empty') == True
/// isEmpty ('vertex' x) == False
/// isEmpty ('removeVertex' x $ 'vertex' x) == True
/// isEmpty ('removeEdge' x y $ 'edge' x y) == False
/// @
let isEmpty (x : 'a Graph) : bool =
foldg true (fun _ -> false) (&&) (&&) x
/// The /size/ of a graph, i.e. the number of leaves of the expression
/// including 'empty' leaves.
/// Complexity: /O(s)/ time.
///
/// @
/// size 'empty' == 1
/// size ('vertex' x) == 1
/// size ('overlay' x y) == size x + size y
/// size ('connect' x y) == size x + size y
/// size x >= 1
/// size x >= 'vertexCount' x
/// @
let size (x : 'a Graph) : int =
foldg 1 (fun _ -> 1) (+) (+) x
/// Check if a graph contains a given vertex. A convenient alias for `elem`.
/// Complexity: /O(s)/ time.
///
/// @
/// hasVertex x 'empty' == False
/// hasVertex x ('vertex' x) == True
/// hasVertex 1 ('vertex' 2) == False
/// hasVertex x . 'removeVertex' x == const False
/// @
let hasVertex (v : 'a) (g : 'a Graph) : bool =
foldg false ((=) v) (||) (||) g
/// Check if a graph contains a given edge.
/// Complexity: /O(s)/ time.
///
/// @
/// hasEdge x y 'empty' == False
/// hasEdge x y ('vertex' z) == False
/// hasEdge x y ('edge' x y) == True
/// hasEdge x y . 'removeEdge' x y == const False
/// hasEdge x y == 'elem' (x,y) . 'edgeList'
/// @
let hasEdge (s : 'a) (t : 'a) (g : 'a Graph) : bool =
let rec hit =
function
| Empty -> Miss
| Vertex x -> if x = s then Tail else Miss
| Overlay (x, y) ->
match hit x with
| Miss -> hit y
| Tail -> max Tail (hit y)
| Edge -> Edge
| Connect (x, y) ->
match hit x with
| Miss -> hit y
| Tail -> if hasVertex t y then Edge else Tail
| Edge -> Edge
hit g = Edge
/// The set of vertices of a given graph.
/// Complexity: /O(s * log(n))/ time and /O(n)/ memory.
///
/// @
/// vertexSet 'empty' == Set.'Set.empty'
/// vertexSet . 'vertex' == Set.'Set.singleton'
/// vertexSet . 'vertices' == Set.'Set.fromList'
/// vertexSet . 'clique' == Set.'Set.fromList'
/// @
let vertexSet (g : 'a Graph) : 'a Set =
foldg Set.empty Set.singleton Set.union Set.union g
/// The number of vertices in a graph.
/// Complexity: /O(s * log(n))/ time.
///
/// @
/// vertexCount 'empty' == 0
/// vertexCount ('vertex' x) == 1
/// vertexCount == 'length' . 'vertexList'
/// @
let vertexCount (g : 'a Graph) : int =
g |> vertexSet |> Set.count
// TODO: This is a very inefficient implementation. Find a way to construct an
// adjacency map directly, without building intermediate representations for all
// subgraphs.
/// Convert a graph to 'AM.AdjacencyMap'.
let toAdjacencyMap (g : 'a Graph) : 'a AdjacencyMap =
foldg AdjacencyMap.empty AdjacencyMap.vertex AdjacencyMap.overlay AdjacencyMap.connect g
/// The number of edges in a graph.
/// Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a
/// graph can be quadratic with respect to the expression size /s/.
///
/// @
/// edgeCount 'empty' == 0
/// edgeCount ('vertex' x) == 0
/// edgeCount ('edge' x y) == 1
/// edgeCount == 'length' . 'edgeList'
/// @
let edgeCount (g : 'a Graph) : int =
g |> toAdjacencyMap |> AdjacencyMap.edgeCount
/// The sorted list of vertices of a given graph.
/// Complexity: /O(s * log(n))/ time and /O(n)/ memory.
///
/// @
/// vertexList 'empty' == []
/// vertexList ('vertex' x) == [x]
/// vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort'
/// @
let vertexList (g : 'a Graph) : 'a seq =
g |> vertexSet |> Set.toSeq |> Seq.sort
/// The sorted list of edges of a graph.
/// Complexity: /O(s + m * log(m))/ time and /O(m)/ memory. Note that the number of
/// edges /m/ of a graph can be quadratic with respect to the expression size /s/.
///
/// @
/// edgeList 'empty' == []
/// edgeList ('vertex' x) == []
/// edgeList ('edge' x y) == [(x,y)]
/// edgeList ('star' 2 [3,1]) == [(2,1), (2,3)]
/// edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort'
/// edgeList . 'transpose' == 'Data.List.sort' . map 'Data.Tuple.swap' . edgeList
/// @
let edgeList (g : 'a Graph) : ('a * 'a) seq =
g |> toAdjacencyMap |> AdjacencyMap.edgeList
/// The set of edges of a given graph.
/// Complexity: /O(s * log(m))/ time and /O(m)/ memory.
///
/// @
/// edgeSet 'empty' == Set.'Set.empty'
/// edgeSet ('vertex' x) == Set.'Set.empty'
/// edgeSet ('edge' x y) == Set.'Set.singleton' (x,y)
/// edgeSet . 'edges' == Set.'Set.fromList'
/// @
let edgeSet (g : 'a Graph) : ('a * 'a) Set =
g |> toAdjacencyMap |> AdjacencyMap.edgeSet
/// The sorted /adjacency list/ of a graph.
/// Complexity: /O(n + m)/ time and /O(m)/ memory.
///
/// @
/// adjacencyList 'empty' == []
/// adjacencyList ('vertex' x) == [(x, [])]
/// adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])]
/// adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])]
/// 'stars' . adjacencyList == id
/// @
let adjacencyList (g : 'a Graph) : ('a * 'a seq) seq =
g |> toAdjacencyMap |> AdjacencyMap.adjacencyList
/// The /adjacency map/ of a graph: each vertex is associated with a set of its
/// direct successors.
/// Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a
/// graph can be quadratic with respect to the expression size /s/.
let adjacencyMap (g : 'a Graph) : Map<'a, 'a Set> =
g |> toAdjacencyMap |> (fun (AdjacencyMap m) -> m)
/// The /path/ on a list of vertices.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
/// given list.
///
/// @
/// path [] == 'empty'
/// path [x] == 'vertex' x
/// path [x,y] == 'edge' x y
/// path . 'reverse' == 'transpose' . path
/// @
let path (xs : 'a list) : 'a Graph =
match xs with
| [] -> empty
| [x] -> vertex x
| _::ys -> edges (Seq.zip xs ys)
//-- The /circuit/ on a list of vertices.
//-- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
//-- given list.
//--
//-- @
//-- circuit [] == 'empty'
//-- circuit [x] == 'edge' x x
//-- circuit [x,y] == 'edges' [(x,y), (y,x)]
//-- circuit . 'reverse' == 'transpose' . circuit
//-- @
let circuit (xs : 'a list) : 'a Graph =
match xs with
| [] -> empty
| x::_ -> path (xs @ [x])
/// The /clique/ on a list of vertices.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
/// given list.
///
/// @
/// clique [] == 'empty'
/// clique [x] == 'vertex' x
/// clique [x,y] == 'edge' x y
/// clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)]
/// clique (xs ++ ys) == 'connect' (clique xs) (clique ys)
/// clique . 'reverse' == 'transpose' . clique
/// @
let clique (xs : 'a seq) : 'a Graph =
xs |> Seq.map vertex |> connects
/// The /biclique/ on two lists of vertices.
/// Complexity: /O(L1 + L2)/ time, memory and size, where /L1/ and /L2/ are the
/// lengths of the given lists.
///
/// @
/// biclique [] [] == 'empty'
/// biclique [x] [] == 'vertex' x
/// biclique [] [y] == 'vertex' y
/// biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)]
/// biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys)
/// @
let biclique (xs : 'a list) (ys : 'a list) : 'a Graph =
match xs, ys with
| _, [] -> vertices xs
| [], _ -> vertices ys
| xs, ys -> connect (vertices xs) (vertices ys)
/// The /star/ formed by a centre vertex connected to a list of leaves.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the length of the
/// given list.
///
/// @
/// star x [] == 'vertex' x
/// star x [y] == 'edge' x y
/// star x [y,z] == 'edges' [(x,y), (x,z)]
/// star x ys == 'connect' ('vertex' x) ('vertices' ys)
/// @
let star (x : 'a) (ys : 'a list) : 'a Graph =
connect (vertex x) (vertices ys)
/// The /stars/ formed by overlaying a list of 'star's. An inverse of
/// 'adjacencyList'.
/// Complexity: /O(L)/ time, memory and size, where /L/ is the total size of the
/// input.
///
/// @
/// stars [] == 'empty'
/// stars [(x, [])] == 'vertex' x
/// stars [(x, [y])] == 'edge' x y
/// stars [(x, ys)] == 'star' x ys
/// stars == 'overlays' . map (uncurry 'star')
/// stars . 'adjacencyList' == id
/// 'overlay' (stars xs) (stars ys) == stars (xs ++ ys)
/// @
let stars (stars : ('a * 'a list) seq) : 'a Graph =
stars |> Seq.map ((<||) star) |> overlays
/// The /tree graph/ constructed from a given 'Tree.Tree' data structure.
/// Complexity: /O(T)/ time, memory and size, where /T/ is the size of the
/// given tree (i.e. the number of vertices in the tree).
///
/// @
/// tree (Node x []) == 'vertex' x
/// tree (Node x [Node y [Node z []]]) == 'path' [x,y,z]
/// tree (Node x [Node y [], Node z []]) == 'star' x [y,z]
/// tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges' [(1,2), (1,3), (3,4), (3,5)]
/// @
let rec tree (tree : 'a Tree) : 'a Graph =
match tree.SubForest with
| [] -> vertex tree.RootLabel
| f ->
overlay
(star tree.RootLabel (f |> List.map (fun t -> t.RootLabel)))
(f |> List.filter (fun t -> t.SubForest |> List.isEmpty |> not) |> forest)
/// The /forest graph/ constructed from a given 'Tree.Forest' data structure.
/// Complexity: /O(F)/ time, memory and size, where /F/ is the size of the
/// given forest (i.e. the number of vertices in the forest).
///
/// @
/// forest [] == 'empty'
/// forest [x] == 'tree' x
/// forest [Node 1 [Node 2 [], Node 3 []], Node 4 [Node 5 []]] == 'edges' [(1,2), (1,3), (4,5)]
/// forest == 'overlays' . map 'tree'
/// @
and forest (f : 'a Forest) : 'a Graph =
f |> List.map tree |> overlays
/// Auxiliary function for 'mesh' and 'torus'
let pairs (xs : 'a list) : ('a * 'a) list =
match xs with
| [] -> []
| y::ys -> List.zip xs (ys @ [y])
let rec init (xs : 'a list) : 'a list =
match xs with
| [] -> failwith "List was empty"
| [x] -> []
| x::xs -> x::(init xs)
/// Construct a /mesh graph/ from two lists of vertices.
/// Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the
/// lengths of the given lists.
///
/// @
/// mesh xs [] == 'empty'
/// mesh [] ys == 'empty'
/// mesh [x] [y] == 'vertex' (x, y)
/// mesh xs ys == 'box' ('path' xs) ('path' ys)
/// mesh [1..3] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(2,\'b\')), ((2,\'a\'),(2,\'b\'))
/// , ((2,\'a\'),(3,\'a\')), ((2,\'b\'),(3,\'b\')), ((3,\'a\'),(3,\'b\')) ]
/// @
let mesh (xs : 'a list) (ys : 'b list) : ('a * 'b) Graph =
match xs, ys with
| [], _ -> empty
| _, [] -> empty
| [x], [y] -> vertex (x, y)
| _, _ ->
let lx = List.last xs
let ly = List.last ys
let ipxs = init (pairs xs)
let ipys = init (pairs ys)
seq {
for (a1, a2) in ipxs do
for (b1, b2) in ipys do
yield (a1, b1), [a1, b2 ; a2, b1]
for (y1, y2) in ipys do
yield (lx, y1), [lx, y2]
for (x1, x2) in ipxs do
yield (x1, ly), [x2, ly]
}
|> stars
/// Construct a /torus graph/ from two lists of vertices.
/// Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the
/// lengths of the given lists.
///
/// @
/// torus xs [] == 'empty'
/// torus [] ys == 'empty'
/// torus [x] [y] == 'edge' (x,y) (x,y)
/// torus xs ys == 'box' ('circuit' xs) ('circuit' ys)
/// torus [1,2] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(1,\'a\')), ((1,\'b\'),(2,\'b\'))
/// , ((2,\'a\'),(1,\'a\')), ((2,\'a\'),(2,\'b\')), ((2,\'b\'),(1,\'b\')), ((2,\'b\'),(2,\'a\')) ]
/// @
let torus (xs : 'a list) (ys : 'b list) : ('a * 'b) Graph =
seq {
for (a1, a2) in pairs xs do
for (b1, b2) in pairs ys do
yield (a1, b1), [(a1, b2) ; (a2, b1)]
}
|> stars
/// Construct a /De Bruijn graph/ of a given non-negative dimension using symbols
/// from a given alphabet.
/// Complexity: /O(A^(D + 1))/ time, memory and size, where /A/ is the size of the
/// alphabet and /D/ is the dimension of the graph.
///
/// @
/// deBruijn 0 xs == 'edge' [] []
/// n > 0 ==> deBruijn n [] == 'empty'
/// deBruijn 1 [0,1] == 'edges' [ ([0],[0]), ([0],[1]), ([1],[0]), ([1],[1]) ]
/// deBruijn 2 "0" == 'edge' "00" "00"
/// deBruijn 2 "01" == 'edges' [ ("00","00"), ("00","01"), ("01","10"), ("01","11")
/// , ("10","00"), ("10","01"), ("11","10"), ("11","11") ]
/// 'transpose' (deBruijn n xs) == 'fmap' 'reverse' $ deBruijn n xs
/// 'vertexCount' (deBruijn n xs) == ('length' $ 'Data.List.nub' xs)^n
/// n > 0 ==> 'edgeCount' (deBruijn n xs) == ('length' $ 'Data.List.nub' xs)^(n + 1)
/// @
let deBruijn (len : int) (alphabet : 'a list) : 'a list Graph =
match len with
| 0 -> edge [] []
| _ ->
let overlaps = [2..len] |> List.map (fun _ -> alphabet)
let skeleton = overlaps |> List.map (fun s -> Choice1Of2 s, Choice2Of2 s) |> edges
let expand v = alphabet |> List.map (fun a -> match v with Choice1Of2 left -> [a] @ left | Choice2Of2 right -> right @ [a]) |> vertices
bind skeleton expand
/// Construct the /induced subgraph/ of a given graph by removing the
/// vertices that do not satisfy a given predicate.
/// Complexity: /O(s)/ time, memory and size, assuming that the predicate takes
/// /O(1)/ to be evaluated.
///
/// @
/// induce (const True ) x == x
/// induce (const False) x == 'empty'
/// induce (/= x) == 'removeVertex' x
/// induce p . induce q == induce (\\x -> p x && q x)
/// 'isSubgraphOf' (induce p x) x == True
/// @
let induce (p : 'a -> bool) (g : 'a Graph) : 'a Graph =
let k f x y =
match x, y with
| _, Empty -> x
| Empty, _ -> y
| _ -> f x y
foldg empty (fun x -> if p x then vertex x else empty) (k overlay) (k connect) g
/// Remove a vertex from a given graph.
/// Complexity: /O(s)/ time, memory and size.
///
/// @
/// removeVertex x ('vertex' x) == 'empty'
/// removeVertex 1 ('vertex' 2) == 'vertex' 2
/// removeVertex x ('edge' x x) == 'empty'
/// removeVertex 1 ('edge' 1 2) == 'vertex' 2
/// removeVertex x . removeVertex x == removeVertex x
/// @
let removeVertex (v : 'a) (g : 'a Graph) : 'a Graph =
induce ((<>) v) g
/// The context of a subgraph comprises the input and output vertices outside
/// the subgraph that are connected to the vertices inside the subgraph.
type 'a Context =
{
Inputs : 'a list
Outputs : 'a list
}
/// 'Focus' on a specified subgraph.
let focus (f : 'a -> bool) (g : 'a Graph) : 'a Focus =
foldg Focus.emptyFocus (Focus.vertexFocus f) Focus.overlayFoci Focus.connectFoci g
/// Extract the context from a graph 'Focus'. Returns @Nothing@ if the focus
/// could not be obtained.
let context (p : 'a -> bool) (g : 'a Graph) : 'a Context option =
let f = focus p g
if f.Ok then
{ Inputs = f.Is ; Outputs = f.Os } |> Some
else
None
/// Transpose a given graph.
/// Complexity: /O(s)/ time, memory and size.
///
/// @
/// transpose 'empty' == 'empty'
/// transpose ('vertex' x) == 'vertex' x
/// transpose ('edge' x y) == 'edge' y x
/// transpose . transpose == id
/// transpose ('box' x y) == 'box' (transpose x) (transpose y)
/// 'edgeList' . transpose == 'Data.List.sort' . map 'Data.Tuple.swap' . 'edgeList'
/// @
let transpose (g : 'a Graph) : 'a Graph =
foldg empty vertex overlay (fun x y -> connect y x) g
/// Filter vertices in a subgraph context.
let filterContext (s : 'a) (i : 'a -> bool) (o : 'a -> bool) (g : 'a Graph) : 'a Graph =
let maybe b f a = match a with Some a -> f a | None -> b
let go (context : 'a Context) =
let g1 = induce ((<>) s) g
let g2 = transpose (star s (List.filter i context.Inputs))
let g3 = star s (List.filter o context.Outputs)
overlay (overlay g1 g2) g3
maybe g go (context ((=) s) g)
/// Remove an edge from a given graph.
/// Complexity: /O(s)/ time, memory and size.
///
/// @
/// removeEdge x y ('edge' x y) == 'vertices' [x,y]
/// removeEdge x y . removeEdge x y == removeEdge x y
/// removeEdge x y . 'removeVertex' x == 'removeVertex' x
/// removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2
/// removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2
/// 'size' (removeEdge x y z) <= 3 * 'size' z
/// @
let removeEdge (s : 'a) (t : 'a) (g : 'a Graph) : 'a Graph =
filterContext s ((<>) s) ((<>) t) g
/// The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a
/// given 'Graph'. If @y@ already exists, @x@ and @y@ will be merged.
/// Complexity: /O(s)/ time, memory and size.
///
/// @
/// replaceVertex x x == id
/// replaceVertex x y ('vertex' x) == 'vertex' y
/// replaceVertex x y == 'mergeVertices' (== x) y
/// @
let replaceVertex (u : 'a) (v : 'a) (g : 'a Graph) : 'a Graph =
map (fun w -> if w = u then v else w) g
/// | Merge vertices satisfying a given predicate into a given vertex.
/// Complexity: /O(s)/ time, memory and size, assuming that the predicate takes
/// /O(1)/ to be evaluated.
///
/// @
/// mergeVertices (const False) x == id
/// mergeVertices (== x) y == 'replaceVertex' x y
/// mergeVertices even 1 (0 * 2) == 1 * 1
/// mergeVertices odd 1 (3 + 4 * 5) == 4 * 1
/// @
let mergeVertices (p : 'a -> bool) (v : 'a) (g : 'a Graph) : 'a Graph =
map (fun w -> if p w then v else w) g
/// Split a vertex into a list of vertices with the same connectivity.
/// Complexity: /O(s + k * L)/ time, memory and size, where /k/ is the number of
/// occurrences of the vertex in the expression and /L/ is the length of the
/// given list.
///
/// @
/// splitVertex x [] == 'removeVertex' x
/// splitVertex x [x] == id
/// splitVertex x [y] == 'replaceVertex' x y
/// splitVertex 1 [0,1] $ 1 * (2 + 3) == (0 + 1) * (2 + 3)
/// @
let splitVertex (v : 'a) (us : 'a list) (g : 'a Graph) : 'a Graph =
bind g (fun w -> if w = v then vertices us else vertex w)
//{-# RULES
//"transpose/Empty" transpose Empty = Empty
//"transpose/Vertex" forall x. transpose (Vertex x) = Vertex x
//"transpose/Overlay" forall g1 g2. transpose (Overlay g1 g2) = Overlay (transpose g1) (transpose g2)
//"transpose/Connect" forall g1 g2. transpose (Connect g1 g2) = Connect (transpose g2) (transpose g1)
//"transpose/overlays" forall xs. transpose (overlays xs) = overlays (map transpose xs)
//"transpose/connects" forall xs. transpose (connects xs) = connects (reverse (map transpose xs))
//"transpose/vertices" forall xs. transpose (vertices xs) = vertices xs
//"transpose/clique" forall xs. transpose (clique xs) = clique (reverse xs)
// #-}
let simple (op : 'g -> 'g -> 'g) (x : 'g) (y : 'g) : 'g =
let z = op x y
if x = z then
x
else if y = z then
y
else
z
/// Simplify a graph expression. Semantically, this is the identity function,
/// but it simplifies a given expression according to the laws of the algebra.
/// The function does not compute the simplest possible expression,
/// but uses heuristics to obtain useful simplifications in reasonable time.
/// Complexity: the function performs /O(s)/ graph comparisons. It is guaranteed
/// that the size of the result does not exceed the size of the given expression.
///
/// @
/// simplify == id
/// 'size' (simplify x) <= 'size' x
/// simplify 'empty' '===' 'empty'
/// simplify 1 '===' 1
/// simplify (1 + 1) '===' 1
/// simplify (1 + 2 + 1) '===' 1 + 2
/// simplify (1 * 1 * 1) '===' 1 * 1
/// @
let simplify (g : 'a Graph) : 'a Graph =
foldg empty vertex (simple overlay) (simple connect) g
/// Compute the /Cartesian product/ of graphs.
/// Complexity: /O(s1 * s2)/ time, memory and size, where /s1/ and /s2/ are the
/// sizes of the given graphs.
///
/// @
/// box ('path' [0,1]) ('path' "ab") == 'edges' [ ((0,\'a\'), (0,\'b\'))
/// , ((0,\'a\'), (1,\'a\'))
/// , ((0,\'b\'), (1,\'b\'))
/// , ((1,\'a\'), (1,\'b\')) ]
/// @
/// Up to an isomorphism between the resulting vertex types, this operation
/// is /commutative/, /associative/, /distributes/ over 'overlay', has singleton
/// graphs as /identities/ and 'empty' as the /annihilating zero/. Below @~~@
/// stands for the equality up to an isomorphism, e.g. @(x, ()) ~~ x@.
///
/// @
/// box x y ~~ box y x
/// box x (box y z) ~~ box (box x y) z
/// box x ('overlay' y z) == 'overlay' (box x y) (box x z)
/// box x ('vertex' ()) ~~ x
/// box x 'empty' ~~ 'empty'
/// 'transpose' (box x y) == box ('transpose' x) ('transpose' y)
/// 'vertexCount' (box x y) == 'vertexCount' x * 'vertexCount' y
/// 'edgeCount' (box x y) <= 'vertexCount' x * 'edgeCount' y + 'edgeCount' x * 'vertexCount' y
/// @
let box (x : 'a Graph) (y : 'b Graph) : ('a * 'b) Graph =
let xs = y |> toList |> List.map (fun b -> map (fun a -> a, b) x)
let ys = x |> toList |> List.map (fun a -> map (fun b -> a, b) y)
xs @ ys |> overlays