-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcpllm_readmission_prediction.py
279 lines (232 loc) · 9.89 KB
/
cpllm_readmission_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import pickle
from random import randint
import torch
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, auc, precision_recall_curve
from transformers import TrainingArguments, AutoConfig, \
AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, DataCollatorWithPadding, Trainer
import numpy as np
from datasets import Dataset
EPOCHS = 4
MAX_LENGTH = 2048
OUTPUT_DIR = "/tmp/pycharm_project_410/"
NUM_LABELS = 2
MODEL_ID = "meta-llama/Llama-2-13b-hf"
# DATA
# Each pickle file contains a list of examples. Each example is a dictionary in the following format:
# {"visit_id": "324304",
# "patient_id": "34533",
# "conditions": [["Pleurisy; pneumothorax; pulmonary collapse",
# "Shock"]],
# "procedures": [["first procedure",
# "second procedure"]],
# "drugs": [["NOREPINEPHRINE 8 MG in 250mL NS",
# "LEVOFLOXACIN 750 mg in D5W 150mL",
# "FAMOTIDINE 20 MG/2 ML SDV INJ"]],
# "label": 1}
train_pickle_file_path = '/sise/nadav-group/nadavrap-group/ofir/pyhealth_data/readmission/eicu_crd_readmission_prediction_with_descriptions_train.pickle'
validation_pickle_file_path = '/sise/nadav-group/nadavrap-group/ofir/pyhealth_data/readmission/eicu_crd_readmission_prediction_with_descriptions_validation.pickle'
test_pickle_file_path = '/sise/nadav-group/nadavrap-group/ofir/pyhealth_data/readmission/eicu_crd_readmission_prediction_with_descriptions_test.pickle'
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.pad_token = tokenizer.eos_token
config = LoraConfig(
r=32,
lora_alpha=32,
target_modules="all-linear",
lora_dropout=0.1,
bias="none",
task_type=TaskType.SEQ_CLS
)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID,
config=AutoConfig.from_pretrained(MODEL_ID,
trust_remote_code=True,
num_labels=NUM_LABELS),
trust_remote_code=True,
load_in_8bit=True).bfloat16()
print(model)
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model) # TODO: RETURN IT BACK FOR Q.
print_trainable_parameters(model)
model = get_peft_model(model, config)
print_trainable_parameters(model)
model.config.pad_token_id = model.config.eos_token_id
model.resize_token_embeddings(len(tokenizer))
def compute_metrics(p):
# Apply softmax to model predictions and save them in p.predictions
p.predictions = torch.from_numpy(p.predictions)
p.predictions = torch.softmax(p.predictions, dim=1)
preds = np.argmax(p.predictions.cpu().numpy(), axis=1)
labels = p.label_ids
accuracy = accuracy_score(labels, preds)
# Calculate precision, recall, and F1-score for both classes
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average=None)
precision1, recall1, thresholds = precision_recall_curve(labels, p.predictions[:, 1], pos_label=1)
auc_precision_recall = auc(recall1, precision1)
positive_confidences = p.predictions[:, 1]
return {
'accuracy': accuracy,
'precision_class_0': precision[0],
'precision_class_1': precision[1],
'recall_class_0': recall[0],
'recall_class_1': recall[1],
'f1_class_0': f1[0],
'f1_class_1': f1[1],
'aucpr': auc_precision_recall,
'train_pickle_file_path': train_pickle_file_path,
'validation_pickle_file_path': validation_pickle_file_path,
'test_pickle_file_path': test_pickle_file_path,
'pos_scores': positive_confidences.tolist(),
'true_labels': labels.tolist(),
}
# Load the pickle file
def load_pickle_file(pickle_file_path):
with open(pickle_file_path, "rb") as file:
data = pickle.load(file)
return data
class MedicalDataset():
def __init__(self, pickle_file_path):
all_data = load_pickle_file(pickle_file_path)
patient_ids = []
visit_ids = []
labels = []
conditions = []
procedures = []
drugs = []
for data in all_data:
visit_ids.append(data['visit_id'])
patient_ids.append(data['patient_id'])
conditions.append(data['conditions'][0])
procedures.append(data['procedures'][0])
drugs.append(data['drugs'][0])
labels.append(data['label'])
self.data_dict = {
'visit_id': visit_ids,
'patient_id': patient_ids,
'conditions': conditions,
'procedures': procedures,
'drugs': drugs,
'classification_label': labels
}
def to_dict(self):
return self.data_dict
train_dataset = MedicalDataset(train_pickle_file_path)
test_dataset = MedicalDataset(test_pickle_file_path)
validation_dataset = MedicalDataset(validation_pickle_file_path)
# Convert custom datasets to dictionaries
train_dict = train_dataset.to_dict()
test_dict = test_dataset.to_dict()
validation_dict = validation_dataset.to_dict()
# Convert dictionaries to datasets
train_dataset = Dataset.from_dict(train_dict)
test_dataset = Dataset.from_dict(test_dict)
validation_dataset = Dataset.from_dict(validation_dict)
prompt_template = """
Your task is to predict whether a patient is likely to experience readmission based on provided diagnosis, procedures, and drugs information. Analyze the data to assess the likelihood of readmission, considering relevant factors and patterns in the diagnosis, procedures, and drugs data.
Each description is separated by a comma.
**Patient Diagnosis Descriptions:**
{diagnoses}
**Patient Drugs Descriptions:**
{drugs}
**Patient Procedures Descriptions:**
{procedures}
"""
def template_dataset(sample):
sample["text"] = prompt_template.format(diagnoses=sample["conditions"],
drugs=sample["drugs"],
procedures=sample["procedures"],
eos_token=tokenizer.eos_token)
return sample
# apply prompt template per sample
train_dataset = train_dataset.map(template_dataset)
print(f'example sample from train:\n {train_dataset[0]}')
validation_dataset = validation_dataset.map(template_dataset)
print(train_dataset[randint(0, len(train_dataset))])
test_dataset = test_dataset.map(template_dataset)
lm_train_dataset = train_dataset.map(
lambda sample: {
"input_ids": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).input_ids,
"attention_mask": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).attention_mask,
"labels": sample["classification_label"]
},
batched=True,
batch_size=256,
num_proc=128,
remove_columns=list(train_dataset.features)
)
lm_validation_dataset = validation_dataset.map(
lambda sample: {
"input_ids": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).input_ids,
"attention_mask": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).attention_mask,
"labels": sample["classification_label"]
},
batched=True,
batch_size=256,
num_proc=128,
remove_columns=list(validation_dataset.features)
)
lm_test_dataset = test_dataset.map(
lambda sample: {
"input_ids": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).input_ids,
"attention_mask": tokenizer(sample["text"], truncation=True, max_length=MAX_LENGTH).attention_mask,
"labels": sample["classification_label"]
},
batched=True,
batch_size=256,
num_proc=128,
remove_columns=list(test_dataset.features)
)
print(f"Train dataset size: {len(train_dataset)}")
print(f"Val dataset size: {len(validation_dataset)}")
print(f"Test dataset size: {len(test_dataset)}")
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
eval_strategy='steps',
save_strategy='steps',
eval_steps=1000,
save_steps=1000,
num_train_epochs=EPOCHS,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
auto_find_batch_size=True,
logging_steps=10,
learning_rate=2e-5,
optim="adamw_torch",
save_total_limit=20,
# warmup_steps=500,
# weight_decay=0.002,
logging_dir='./logs',
load_best_model_at_end=True,
metric_for_best_model="eval_aucpr",
# gradient_accumulation_steps=8,
greater_is_better=True,
dataloader_num_workers=8,
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer = Trainer(
model=model,
args=training_args,
train_dataset=lm_train_dataset,
eval_dataset=lm_validation_dataset,
compute_metrics=compute_metrics,
data_collator=DataCollatorWithPadding(tokenizer=tokenizer)
)
trainer.train()
trainer.save_model(OUTPUT_DIR)
test_results = trainer.evaluate(eval_dataset=lm_test_dataset)
print(f'test_results= {test_results}')
print(f'see outputs in= {OUTPUT_DIR}')
trainer.save_metrics("test", test_results)