-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (116 loc) · 5.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import T5Tokenizer, T5ForConditionalGeneration
import argparse
from sklearn.model_selection import train_test_split
import torch.optim as optim
from tqdm.auto import tqdm
class RAGDataset(Dataset):
"""
Custom Dataset class for loading query-context-answer pairs for training the RAG model.
"""
def __init__(self, dataframe, tokenizer, source_len, target_len):
self.data = dataframe.reset_index(drop=True)
self.tokenizer = tokenizer
self.source_len = source_len
self.target_len = target_len
self.query = self.data['query']
self.context = self.data['context']
self.answer = self.data['answer']
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
query = str(self.query[idx])
context = str(self.context[idx])
answer = str(self.answer[idx])
source_text = f"query: {query} context: {context}"
source = self.tokenizer.encode_plus(
source_text, max_length=self.source_len, padding="max_length", truncation=True, return_tensors="pt"
)
target = self.tokenizer.encode_plus(
answer, max_length=self.target_len, padding="max_length", truncation=True, return_tensors="pt"
)
return {
"input_ids": source["input_ids"].squeeze(),
"attention_mask": source["attention_mask"].squeeze(),
"labels": target["input_ids"].squeeze(),
}
def preprocess_data(file_path):
"""
Preprocess the dataset to include required columns and handle missing values.
"""
df = pd.read_csv(file_path)
df = df[['question', 'answer']]
df = df.dropna(subset=['question', 'answer'])
df = df.rename(columns={'question': 'query', 'answer': 'answer'})
df['context'] = df['answer']
return df
def train_epoch(model, loader, optimizer, device, epoch, logging_steps):
"""
Train the model for one epoch.
"""
model.train()
total_loss = 0
progress_bar = tqdm(loader, desc=f"Epoch {epoch}", disable=False)
for step, batch in enumerate(progress_bar):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step + 1) % logging_steps == 0:
progress_bar.set_postfix({"loss": loss.item()})
return total_loss / len(loader)
def main():
"""
Main function to fine-tune the T5 model for Retrieval-Augmented Generation (RAG).
"""
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="t5-base", type=str, help="Pretrained model name")
parser.add_argument("--train_file", default="medquad.csv", type=str, help="Path to the dataset")
parser.add_argument("--output_dir", default="rag_model", type=str, help="Path to save the fine-tuned model")
parser.add_argument("--batch_size", default=8, type=int, help="Batch size for training")
parser.add_argument("--epochs", default=3, type=int, help="Number of epochs")
parser.add_argument("--lr", default=5e-5, type=float, help="Learning rate")
parser.add_argument("--max_input_length", default=512, type=int, help="Max input length")
parser.add_argument("--max_output_length", default=150, type=int, help="Max output length")
parser.add_argument("--device", default="cuda", type=str, help="Device to train on (cuda, mps, or cpu)")
parser.add_argument("--logging_steps", default=10, type=int, help="Logging steps")
args = parser.parse_args()
# enhanced device selection logic
if args.device == "mps" and torch.backends.mps.is_available():
device = torch.device("mps")
elif args.device == "cuda" and torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
# preprocess the data
df = preprocess_data(args.train_file)
# split data into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.1, random_state=42)
# load the tokenizer and model
tokenizer = T5Tokenizer.from_pretrained(args.model_name, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(args.model_name).to(device)
# create DataLoaders for training and validation datasets
train_dataset = RAGDataset(train_df, tokenizer, args.max_input_length, args.max_output_length)
val_dataset = RAGDataset(val_df, tokenizer, args.max_input_length, args.max_output_length)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
# optimizer
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
# training loop
for epoch in range(1, args.epochs + 1):
train_loss = train_epoch(model, train_loader, optimizer, device, epoch, args.logging_steps)
print(f"Epoch {epoch} Training Loss: {train_loss:.4f}")
# save the model
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
print(f"Model saved to {args.output_dir}")
if __name__ == "__main__":
main()