-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmemorization_in_toy_models.py
861 lines (784 loc) · 27.7 KB
/
memorization_in_toy_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
# -*- coding: utf-8 -*-
"""Memorization in Toy Models
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/12F8OgN4AtA-3JZAA05ZkRbFakMly6ltL
"""
import torch
from torch.utils.data import DataLoader
from torch.nn import CrossEntropyLoss
import numpy as np
from utils.dropper import LossDropper
from utils.spectral_reg import *
from src.data.old_data import *
from src.data.IndexedDataset import IndexedDataset
from src.localize.neuron.neuron_utils import refined_check_percent_memorized
import tqdm
import copy
import argparse
import glob
import os
# %pip install git+https://github.com/neelnanda-io/neel-plotly.git
# from neel_plotly.plot import line
import sys
from random import randrange, choices, sample
from operator import add
import random
import os
import matplotlib.pyplot as plt
def plt_line(
y_vals, x_val, labels, title="Losses", x_label="losses", y_label="Epoch", path=""
):
plt.clf()
for y, label in zip(y_vals, labels):
plt.plot(x_val, y, label=label)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title(title)
plt.grid()
plt.legend()
plt.savefig(f"{path}{title}.pdf")
plt.show()
return 0
"""## config"""
# p = 113
# frac_train = 0.7
num_test = 1000
# Optimizer config
# lr = 1e-3
betas = (0.9, 0.98)
# num_epochs = 50
# checkpoint_every = 5
DATA_SEED = 598
# num_examples = 10000
# max_ctx = 650
# n_head = 4
# batch_size = 128
"""## GPT2 small config for model"""
from transformers import GPT2Config, GPT2Model, GPT2LMHeadModel
from models.gpt2_dropout import GPT2LMHeadModel as GPT2LMHeadModelWithDropout
import math
def clm_loss_fn(inputs, logits):
# Shift so that tokens < n predict n
shift_labels = inputs[..., 1:].contiguous()
shift_logits = logits[..., :-1, :].contiguous()
# Calculate per-token loss
loss_fct = CrossEntropyLoss(reduction="none")
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# Resize and average loss per sample
loss_per_sample = loss.view(shift_logits.size(0), shift_logits.size(1)).mean(axis=1)
return (loss_per_sample).mean(), loss_per_sample
def accuracy(inputs, logits):
# Shift so that tokens < n predict n
shift_labels = inputs[..., 1:].contiguous()
shift_logits = logits[..., :-1, :].contiguous()
# converts logits to predictions
predictions = torch.argmax(shift_logits, axis=-1)
# Now compute accuracy
N = torch.numel(predictions)
accuracy = (shift_labels == predictions).sum() / N
return accuracy
def generate(model, input, max_ctx=650, print_output=True):
next_token = 1 # set this initially to any token that isn't eos
if print_output:
print("input: ", detokenize(input))
while (
next_token != 11 and input.shape[0] <= max_ctx
): # '11' is eos token, and max_ctx is max limit for input to model
outputs = model(input.to(torch.int64))
prediction = outputs.logits
next_token = torch.argmax(prediction[-1, :]).item()
input = torch.cat((input, torch.tensor([next_token]).to(device)), dim=-1)
if print_output:
print("output: ", detokenize(input))
return input
def train_model_track_memorization_per_training_set(
model,
train_datasets,
test_dataloaders,
noise_data,
clean_data_corresponding_to_noise,
dup_idxs,
num_epochs=200,
prompt_len=50,
k=50,
ckpt_dir="/grand/SuperBERT/mansisak/memorization/model_ckpts/",
n_layers=1,
max_ctx=650,
trigger=100,
backdoor=0,
data_name="mult",
**extra_kwargs,
):
model.train()
print(type(train_datasets))
data = torch.cat(
train_datasets, dim=0
) # train_datasets has to be a tuple of datasets
# create dataloaders (w/ noise and clean data)
# allows us to index individual examples, useful for example-tied dropout
# dataloader will automatically give a batched tensor of indices with the correct permutations applied
indexed_data = IndexedDataset(data)
data_len = data.shape[0]
train_dataloader = DataLoader(
indexed_data, batch_size=args.batch_size, shuffle=True
)
if args.ft:
indexed_clean_data_corresponding_to_noise = IndexedDataset(
clean_data_corresponding_to_noise
)
data_len = clean_data_corresponding_to_noise.shape[0]
train_dataloader = DataLoader(
indexed_clean_data_corresponding_to_noise,
batch_size=args.batch_size,
shuffle=True,
)
train_perplexities = []
test_perplexities = []
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []
percent_memorized = []
percent_non_memorized = []
for i in range(len(test_dataloaders)):
test_losses.append([]) # add empty list to test losses for each test set
test_perplexities.append([]) # add empty list to test losses for each test set
test_accuracies.append([]) # add empty list to test losses for each test set
for i in range(len(dup_idxs)):
percent_memorized.append(
[]
) # add empty list to perc mem for each duplication set e.g. 10^0, 10^1, ...
percent_non_memorized.append(
[]
) # add empty list to perc mem for each duplication set e.g. 10^0, 10^1, ...
l1_lam = extra_kwargs.get("l1_lam", 0.0)
do_dropout = extra_kwargs.get("dropout")
# Init Loss Truncation if desired
dropper = None
if extra_kwargs.get("truncate_loss"):
dropc = extra_kwargs.get("dropc", 0.4)
assert dropc >= 0 and dropc <= 1, "dropc parameter must be in the range [0,1]"
dropper = LossDropper(dropc=dropc, verbose=False)
# Init for Spectral Regularization if desired
if do_spectral_reg := extra_kwargs.get("spectral_reg"):
lam = extra_kwargs.get("lam", 0.01)
Us = {}
for name, weight in model.named_parameters():
if should_compute_sigma(name):
is_attn_weight = "attn.c_attn" in name
is_attn_proj = "attn.c_proj" in name
Us[name] = init_power_vector(
weight,
is_attn_weight=is_attn_weight,
is_attn_proj=is_attn_proj,
num_heads=4,
).to(device)
# Automatically find the checkpoint if it exists
finished_epochs = -1
if args.ckpt_dir:
list_of_files = glob.glob(
f"{args.ckpt_dir}/*.pth"
) # * means all if need specific format then *.csv
if list_of_files:
latest_file = max(list_of_files, key=os.path.getctime)
print("latest checkpoint: ", latest_file)
ckpt = torch.load(latest_file, map_location=torch.device("cpu"))
model.load_state_dict(ckpt["model_state_dict"])
optimizer.load_state_dict(ckpt["optimizer_state_dict"])
finished_epochs = ckpt["epoch"]
train_losses = ckpt["train_losses"]
test_losses = ckpt["test_losses"]
train_accuracies = ckpt["train_accuracies"]
test_accuracies = ckpt["test_accuracies"]
percent_memorized = ckpt["percent_memorized"]
if "train_perplexities" in ckpt:
train_perplexities = ckpt["train_perplexities"]
test_perplexities = ckpt["test_perplexities"]
for epoch in tqdm.tqdm(range(num_epochs + 1)):
# make sure
model.train()
if epoch <= finished_epochs:
print("epoch finished: ", epoch)
continue
print("epoch starting: ", epoch)
avg_train_loss = 0
avg_train_accuracy = 0
avg_train_perp = 0
for batch, example_indices in train_dataloader:
batch = batch.to(device)
model_output = None
if do_dropout:
model_output = model(batch, labels=batch, input_idx=example_indices)
else:
model_output = model(batch, labels=batch)
train_logits = model_output.logits
train_loss = model_output.loss
# apply loss truncation
if dropper is not None:
# print("Train_loss mean: ", train_loss)
computed_mean_loss, train_loss = clm_loss_fn(batch, train_logits)
# print("Computed Train_loss mean: ", train_loss)
# train_loss.view(-1, batch_size)
# train_loss = train_loss.mean(dim=0) # aggregate by sequence
mask = dropper(
train_loss
) # The dropper returns a mask of 0s where data should be dropped.
train_loss *= mask # Mask out the high losses
train_loss = train_loss.mean() # Aggregate
# apply spectral reg
if do_spectral_reg:
reg_loss = None
for name, weight in model.named_parameters():
if should_compute_sigma(name):
u = Us[name]
is_attn_weight = "attn.c_attn" in name
is_attn_proj = "attn.c_proj" in name
sigmas, u_ = power_iteration(
weight,
u,
is_attn_weight=is_attn_weight,
is_attn_proj=is_attn_proj,
num_heads=4,
)
Us[name] = u_
sum_sigma = torch.sum(sigmas)
if reg_loss is None:
reg_loss = sum_sigma
else:
reg_loss += sum_sigma
# add regularization term to loss
train_loss += (lam / 2) * reg_loss
# apply L1 Regularization
if l1_lam != 0.0:
all_params = torch.cat([x.view(-1) for x in model.parameters()])
l1_norm = l1_lam * torch.norm(all_params, 1)
train_loss += l1_lam * l1_norm
train_loss.backward()
avg_train_loss += train_loss.cpu().item()
avg_train_perp += torch.exp(train_loss).cpu().item()
avg_train_accuracy += accuracy(batch, train_logits)
optimizer.step()
optimizer.zero_grad()
train_losses.append((avg_train_loss / len(train_dataloader)))
train_accuracies.append((avg_train_accuracy.cpu() / len(train_dataloader)))
train_perplexities.append((avg_train_perp / len(train_dataloader)))
# model_alphas.append(get_alpha(model=model))
if ((epoch) % args.checkpoint_every) == 0:
# make sure
model.eval()
print("saving ckpt")
with torch.inference_mode():
# iteration through various train datasets to track memorization
# for i in range(len(train_datasets)):
# dataloader = DataLoader(train_datasets[i], batch_size=batch_size, shuffle=True)
for i in range(len(dup_idxs)):
idxs = dup_idxs[i]
n_data = noise_data[idxs]
c_data = clean_data_corresponding_to_noise[idxs]
if backdoor:
n_data = test_dataloaders[-2].dataset # backdoor trig data
c_data = test_dataloaders[
-1
].dataset # backdoor trig data w/o trig behavior
percent_mem, percent_non_mem, mem_seq, clean_mem_seq = (
refined_check_percent_memorized(
noise_dataset=n_data,
clean_data_set_for_noise=c_data,
prompt_len=prompt_len,
k=k,
batch_size=32,
model=model,
max_ctx=max_ctx,
pad_token_id=pad_token_id,
backdoor=backdoor,
trigger=trigger,
data_name=data_name,
)
)
percent_memorized[i].append(percent_mem)
percent_non_memorized[i].append(percent_non_mem)
# iterate through various test datasets
for i in range(len(test_dataloaders)):
avg_test_loss = 0
avg_test_perp = 0
avg_test_accuracy = 0
for batch in test_dataloaders[i]:
model_output = model(batch, labels=batch)
test_logits = model_output.logits
test_loss = model_output.loss
avg_test_loss += test_loss.cpu().item()
avg_test_perp += torch.exp(test_loss).cpu().item()
avg_test_accuracy += accuracy(batch, test_logits)
test_losses[i].append((avg_test_loss / len(test_dataloaders[i])))
test_accuracies[i].append(
(avg_test_accuracy.cpu() / len(test_dataloaders[i]))
)
test_perplexities[i].append(
(avg_test_perp / len(test_dataloaders[i]))
)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
MODEL_PATH = f"{ckpt_dir}/{n_layers}_layer_{epoch}_epoch.pth"
print("Model path: ", MODEL_PATH)
# Add checkpointing back in
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"train_accuracies": train_accuracies,
"test_accuracies": test_accuracies,
"train_losses": train_losses,
"test_losses": test_losses,
"train_perplexities": train_perplexities,
"test_perplexities": test_perplexities,
"percent_memorized": percent_memorized,
"percent_non_mem": percent_non_memorized,
},
MODEL_PATH,
)
if args.plot == 1:
print("making plots")
plt_line(
[
train_losses,
test_losses[0],
test_losses[1],
test_losses[2],
test_losses[3],
test_losses[4],
],
x_val=np.arange(0, len(train_losses), 1),
labels=[
"train_loss",
"test_loss_7",
"test_loss_2",
"test_loss_3",
"test_loss_4",
"test_loss_5",
],
title=f"Losses {n_layers}",
x_label="Epoch",
y_label="Loss",
path=ckpt_dir + "/",
)
plt_line(
[
train_accuracies,
test_accuracies[0],
test_accuracies[1],
test_accuracies[2],
test_accuracies[3],
test_accuracies[4],
test_accuracies[1],
],
x_val=np.arange(0, len(train_losses), 1),
labels=[
"train_acc",
"test_acc_7",
"test_acc_2",
"test_acc_3",
"test_acc_4",
"test_acc_5",
],
title=f"Accuracies {n_layers}",
x_label="Epoch",
y_label="Accuracy",
path=ckpt_dir + "/",
)
plt_line(
[percent_memorized],
x_val=np.arange(0, len(train_losses), 1),
labels=["percent_memorized_7_noise"],
title=f"Memorization {n_layers}",
x_label="Epoch",
y_label="% Memorized",
path=ckpt_dir + "/",
)
# MODEL_PATH = PATH + f"{n_layers}_layer_{epoch+1}_epoch_no_dup.pth"
# torch.save(model.state_dict(), "just_model.pt")
print(f"Epoch {epoch}")
print(f"Train Loss {train_loss.item()}")
print(" ")
for perc_mem in percent_memorized:
print("% mem: ", perc_mem[-1])
for test_loss in test_losses:
print("test loss: ", test_loss[-1])
return (
model,
train_losses,
test_losses,
train_accuracies,
test_accuracies,
percent_memorized,
)
# Experiments
if __name__ == "__main__":
# set up arg parser
parser = argparse.ArgumentParser()
parser.add_argument(
"--plot",
type=int,
default=0,
help="Save plots (true or false)",
)
parser.add_argument(
"--lr",
type=float,
default=1e-3,
help="Learning Rate for training.",
)
parser.add_argument(
"--batch_size",
type=int,
default=128,
help="Batch Size for training.",
)
parser.add_argument(
"--vocab_size",
type=int,
default=14,
help="Number of tokens in model vocab.",
)
parser.add_argument(
"--n_layers",
type=int,
default=1,
help="The number of layers you want in your toy model.",
)
parser.add_argument(
"--truncate_loss",
action="store_true",
help="Whether to apply loss truncation during training.",
)
parser.add_argument(
"--dropc",
type=float,
default=0.4,
help="If loss truncation is enabled, what fraction of the data to drop. Should be in [0,1].",
)
parser.add_argument(
"--spectral_reg",
action="store_true",
help="Whether to apply spectral regularization during training.",
)
parser.add_argument(
"--lam",
type=float,
default=0.01,
help="The regularization coefficient for the spectral regularization term in our loss function.",
)
parser.add_argument(
"--example_tied_dropout",
action="store_true",
help="Whether to apply example-tied dropout during training.",
)
parser.add_argument(
"--p_mem",
type=float,
default=0.1,
help="The fraction of dropped neurons for the example-tied-droupout regularization strategy.",
)
parser.add_argument(
"--l1-reg",
type=float,
default=0.0,
help="Regularization coefficient for L1 Regularization (Lasso Reg.)",
)
parser.add_argument(
"--l2-reg",
type=float,
default=0.1,
help="Regularization coefficient for weight decay (L2 Reg./Ridge Reg.)",
)
parser.add_argument(
"--checkpoint_every",
type=int,
default=5,
help="The number of epochs between each checkpoint.",
)
parser.add_argument(
"--max_ctx",
type=int,
default=650,
help="Size of maximum context",
)
parser.add_argument(
"--n_embed",
type=int,
default=128,
help="Embbed dim of model (size of hidden states).",
)
parser.add_argument(
"--num_7",
type=int,
default=20000,
help="Number of points from the 7 distribution.",
)
parser.add_argument(
"--num_2",
type=int,
default=20000,
help="Number of points from the 2 distribution.",
)
parser.add_argument(
"--num_3",
type=int,
default=20000,
help="Number of points from the 3 distribution.",
)
parser.add_argument(
"--num_4",
type=int,
default=20000,
help="Number of points from the 4 distribution.",
)
parser.add_argument(
"--num_5",
type=int,
default=20000,
help="Number of points from the 5 distribution.",
)
parser.add_argument(
"--num_noise",
type=int,
default=1000,
help="Number of points from the 7 distribution to use in noise set.",
)
parser.add_argument(
"--num_test",
type=int,
default=1000,
help="Number of points from each distribution to use in test set.",
)
parser.add_argument(
"--length",
type=int,
default=100,
help="Amount of numbers in each math sequence",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed for dataset generation.",
)
parser.add_argument(
"--ft",
type=int,
default=0,
help="Fine tune model w/ clean data corresponding to noise.",
)
parser.add_argument(
"--epochs", type=int, default=200, help="The number of epochs for training."
)
parser.add_argument(
"--ckpt_dir", type=str, default="ckpts", help="Name of the ckpts parent folder."
)
parser.add_argument(
"--duplicate",
type=int,
default=0,
help="Whether or not to do duplication on dataset.",
)
parser.add_argument(
"--backdoor",
type=int,
default=0,
help="Whether or not to backdoor dataset.",
)
parser.add_argument(
"--data_name",
choices=[
"wiki",
"wiki_fast",
"shakespeare",
"increment",
"mult",
"exp",
"exponential",
"increment_3",
"mult_3",
"exp_3",
"exponential_3",
"increment_5",
"mult_5",
"exp_5",
"exponential_5",
],
type=str,
default="increment",
help="Name of function type you want to train with.",
)
args = parser.parse_args()
torch.manual_seed(args.seed)
random.seed(args.seed)
extra_kwargs = {
"truncate_loss": args.truncate_loss,
"dropc": args.dropc,
"spectral_reg": args.spectral_reg,
"lam": args.lam,
"dropout": args.example_tied_dropout,
"l1_lam": args.l1_reg,
}
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
print("DEVICE: ", device, "name: ", torch.cuda.get_device_name(device=device))
# Make the data
print("Generating data...")
data_path = f"data/{args.data_name}_{args.num_7}_{args.num_2}_{args.num_3}_{args.num_4}_{args.num_5}_data_{args.length}_{args.num_test}_{args.num_noise}_{args.max_ctx}_{args.seed}.pt"
pad_token_id = 13
bos_token_id = 10
eos_token_id = 11
if args.data_name in ("shakespeare", "wiki", "wiki_fast"):
data_path = f"data/{args.data_name}_{args.max_ctx}_{args.seed}.pt"
args.vocab_size = 50257
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
pad_token_id = tokenizer.eos_token_id
eos_token_id = tokenizer.eos_token_id
bos_token_id = tokenizer.bos_token_id
if args.backdoor:
print("Backdoor training")
data_path = data_path[:-3]
data_path = f"{data_path}_backdoor.pt"
if args.duplicate:
data_path = data_path[:-3]
data_path = f"{data_path}_dup.pt"
print(data_path)
data_test = get_data(
data_name=args.data_name,
num_7=args.num_7,
num_2=args.num_2,
num_3=args.num_3,
num_4=args.num_4,
num_5=args.num_5,
num_noise=args.num_noise,
num_test=args.num_test,
data_path_name=data_path,
length=args.length,
seed=args.seed,
max_ctx=args.max_ctx,
backdoor=args.backdoor,
duplicate=args.duplicate,
batch_size=args.batch_size,
)
print("data len: ", len(data_test))
(
noise_data,
clean_data_corresponding_to_noise,
train_datasets,
clean_test_dataloaders,
extra_train_datas,
dup_idxs,
trigger,
) = get_data(
data_name=args.data_name,
num_7=args.num_7,
num_2=args.num_2,
num_3=args.num_3,
num_4=args.num_4,
num_5=args.num_5,
num_noise=args.num_noise,
num_test=args.num_test,
data_path_name=data_path,
length=args.length,
seed=args.seed,
max_ctx=args.max_ctx,
backdoor=args.backdoor,
duplicate=args.duplicate,
batch_size=args.batch_size,
)
if args.backdoor:
dup_idxs = [list(range(len(clean_test_dataloaders[-2].dataset)))]
print("COUNTING FROM GENERTED DATA")
print("Noise data shape: ", noise_data.shape)
print(
"clean_data_correspoinding_to_noise data shape: ",
clean_data_corresponding_to_noise.shape,
)
# Count how many noised sequences we have at each prompt length
count_num_noised(noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=50)
count_num_noised(
noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=100
)
count_num_noised(
noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=150
)
count_num_noised(
noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=200
)
count_num_noised(
noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=250
)
count_num_noised(
noise_data, clean_data_corresponding_to_noise, k=50, prompt_len=300
)
# Need to have significantly fewer noised samples in the dataset and track accuracy and memorization on them separatly
# Now we are going to be more strict with how we measure memorization
# Initializing a model (with random weights) from the configuration
# TODO: fix bos and eos token ID for training
configuration = GPT2Config(
vocab_size=args.vocab_size,
n_layer=args.n_layers, # 1,2,4,8,16
n_head=4,
n_embd=args.n_embed,
n_positions=args.max_ctx,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
use_cache=False,
hidden_states=False,
output_attentions=False,
activation_function="relu",
attn_pdrop=0,
resid_pdrop=0,
embd_pdrop=0,
initializer_range=0.8 / math.sqrt(args.n_embed), # 0.8 / sqrt(d_model)
)
# change data_len based on FT or not
data = torch.cat(
train_datasets, dim=0
) # train_datasets has to be a tuple of datasets
data_len = data.shape[0]
if args.ft:
data_len = clean_data_corresponding_to_noise.shape[0]
print(configuration)
print("data len: ", data_len)
model = None
if args.example_tied_dropout:
model = GPT2LMHeadModelWithDropout(configuration, data_len, args.p_mem)
else:
model = GPT2LMHeadModel(configuration)
model.to(device)
# Set up optimizer
weight_decay = args.l2_reg
optimizer = torch.optim.AdamW(
model.parameters(), lr=args.lr, weight_decay=weight_decay, betas=betas
)
# Train model
# TODO (MS): implement distributed training
model.train()
(
model,
train_losses,
test_losses,
train_accuracies,
test_accuracies,
percent_memorized,
) = train_model_track_memorization_per_training_set(
model,
train_datasets,
clean_test_dataloaders,
noise_data,
clean_data_corresponding_to_noise,
dup_idxs,
num_epochs=args.epochs,
ckpt_dir=args.ckpt_dir,
n_layers=args.n_layers,
max_ctx=args.max_ctx,
trigger=trigger,
backdoor=args.backdoor,
data_name=args.data_name,
**extra_kwargs,
)