|
8 | 8 | "source": [
|
9 | 9 | "from wordcloud import WordCloud, STOPWORDS\n",
|
10 | 10 | "import pandas as pd\n",
|
11 |
| - "import numpy as np\n", |
12 | 11 | "import pickle\n",
|
13 | 12 | "import seaborn as sns\n",
|
14 | 13 | "import matplotlib.pyplot as plt\n",
|
15 | 14 | "from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer\n",
|
16 | 15 | "from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n",
|
17 | 16 | "from sklearn.model_selection import train_test_split\n",
|
18 | 17 | "from sklearn.linear_model import LogisticRegression\n",
|
19 |
| - "from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, auc, log_loss\n", |
20 | 18 | "import gensim\n",
|
21 | 19 | "from gensim import corpora\n",
|
22 | 20 | "from gensim.models import LdaModel, LdaMulticore\n",
|
23 |
| - "from gensim.utils import simple_preprocess, lemmatize\n", |
24 | 21 | "from nltk.corpus import stopwords\n",
|
25 |
| - "\n", |
26 | 22 | "from gensim.models.word2vec import Word2Vec\n",
|
27 | 23 | "from multiprocessing import cpu_count\n",
|
28 | 24 | "import gensim.downloader as api"
|
|
8989 | 8985 | "cell_type": "code",
|
8990 | 8986 | "execution_count": 58,
|
8991 | 8987 | "metadata": {
|
8992 |
| - "scrolled": true |
| 8988 | + "scrolled": false |
8993 | 8989 | },
|
8994 | 8990 | "outputs": [
|
8995 | 8991 | {
|
|
9079 | 9075 | "cell_type": "code",
|
9080 | 9076 | "execution_count": 60,
|
9081 | 9077 | "metadata": {
|
9082 |
| - "scrolled": true |
| 9078 | + "scrolled": false |
9083 | 9079 | },
|
9084 | 9080 | "outputs": [
|
9085 | 9081 | {
|
|
18311 | 18307 | "# LDA"
|
18312 | 18308 | ]
|
18313 | 18309 | },
|
18314 |
| - { |
18315 |
| - "cell_type": "code", |
18316 |
| - "execution_count": 69, |
18317 |
| - "metadata": {}, |
18318 |
| - "outputs": [], |
18319 |
| - "source": [ |
18320 |
| - "import gensim\n", |
18321 |
| - "from gensim import corpora\n", |
18322 |
| - "from gensim.models import LdaModel, LdaMulticore\n", |
18323 |
| - "import gensim.downloader as api\n", |
18324 |
| - "from gensim.utils import simple_preprocess, lemmatize\n", |
18325 |
| - "from nltk.corpus import stopwords" |
18326 |
| - ] |
18327 |
| - }, |
18328 | 18310 | {
|
18329 | 18311 | "cell_type": "code",
|
18330 | 18312 | "execution_count": 70,
|
|
18397 | 18379 | "# Word2Vec"
|
18398 | 18380 | ]
|
18399 | 18381 | },
|
18400 |
| - { |
18401 |
| - "cell_type": "code", |
18402 |
| - "execution_count": 73, |
18403 |
| - "metadata": {}, |
18404 |
| - "outputs": [], |
18405 |
| - "source": [ |
18406 |
| - "from gensim.models.word2vec import Word2Vec\n", |
18407 |
| - "from multiprocessing import cpu_count\n", |
18408 |
| - "import gensim.downloader as api" |
18409 |
| - ] |
18410 |
| - }, |
18411 | 18382 | {
|
18412 | 18383 | "cell_type": "code",
|
18413 | 18384 | "execution_count": 74,
|
|
19890 | 19861 | "metadata": {},
|
19891 | 19862 | "outputs": [],
|
19892 | 19863 | "source": [
|
19893 |
| - "from sklearn.feature_selection import chi2\n", |
19894 |
| - "\n", |
19895 | 19864 | "tfidf_n = TfidfVectorizer(ngram_range=(2, 2))\n",
|
19896 | 19865 | "X_tfidf_n = tfidf_n.fit_transform(neg_alexa['new_reviews'])\n",
|
19897 | 19866 | "y_n = neg_alexa['rating']\n",
|
|
19990 | 19959 | "cell_type": "code",
|
19991 | 19960 | "execution_count": 118,
|
19992 | 19961 | "metadata": {
|
19993 |
| - "scrolled": true |
| 19962 | + "scrolled": false |
19994 | 19963 | },
|
19995 | 19964 | "outputs": [
|
19996 | 19965 | {
|
|
20066 | 20035 | },
|
20067 | 20036 | {
|
20068 | 20037 | "cell_type": "code",
|
20069 |
| - "execution_count": 86, |
20070 |
| - "metadata": {}, |
20071 |
| - "outputs": [], |
| 20038 | + "execution_count": 1, |
| 20039 | + "metadata": { |
| 20040 | + "scrolled": true |
| 20041 | + }, |
| 20042 | + "outputs": [ |
| 20043 | + { |
| 20044 | + "ename": "NameError", |
| 20045 | + "evalue": "name 'pickle' is not defined", |
| 20046 | + "output_type": "error", |
| 20047 | + "traceback": [ |
| 20048 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 20049 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 20050 | + "\u001b[0;32m<ipython-input-1-87645d35ad92>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Saved Models/echoshow.pkl'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mread_file\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mechoshow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mread_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 20051 | + "\u001b[0;31mNameError\u001b[0m: name 'pickle' is not defined" |
| 20052 | + ] |
| 20053 | + } |
| 20054 | + ], |
20072 | 20055 | "source": [
|
20073 | 20056 | "with open('Saved Models/echoshow.pkl','rb') as read_file:\n",
|
20074 | 20057 | " echoshow = pickle.load(read_file)"
|
|
24129 | 24112 | "# LDA"
|
24130 | 24113 | ]
|
24131 | 24114 | },
|
24132 |
| - { |
24133 |
| - "cell_type": "code", |
24134 |
| - "execution_count": 94, |
24135 |
| - "metadata": {}, |
24136 |
| - "outputs": [], |
24137 |
| - "source": [ |
24138 |
| - "import gensim\n", |
24139 |
| - "from gensim import corpora\n", |
24140 |
| - "from gensim.models import LdaModel, LdaMulticore\n", |
24141 |
| - "import gensim.downloader as api\n", |
24142 |
| - "from gensim.utils import simple_preprocess, lemmatize\n", |
24143 |
| - "from nltk.corpus import stopwords" |
24144 |
| - ] |
24145 |
| - }, |
24146 | 24115 | {
|
24147 | 24116 | "cell_type": "code",
|
24148 | 24117 | "execution_count": 95,
|
|
25064 | 25033 | "cell_type": "code",
|
25065 | 25034 | "execution_count": 107,
|
25066 | 25035 | "metadata": {
|
25067 |
| - "scrolled": true |
| 25036 | + "scrolled": false |
25068 | 25037 | },
|
25069 | 25038 | "outputs": [
|
25070 | 25039 | {
|
|
0 commit comments