-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinterface.py
254 lines (212 loc) · 9.08 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (C) 2023 Mitsubishi Electric Research Laboratories (MERL)
#
# SPDX-License-Identifier: AGPL-3.0-or-later
from argparse import ArgumentParser, Namespace
from copy import deepcopy
from pathlib import Path
import pyqtgraph as pg
import pyqtgraph.parametertree as ptree
import torch
from PyQt6.QtCore import QCoreApplication, Qt
from PyQt6.QtWidgets import QFileDialog, QMainWindow, QSplitter
from pyqtgraph.parametertree import parameterTypes as ptypes
from hyperbolic.hypertools.hypernn import certainty_from_coors
from hyperbolic.model.model import MaskInference
from interface.widgets import audio_player, audio_processor, ball, info_panel, logview, spec_panel
from lsx_dataset import SOURCE_NAMES_CHILDREN, SOURCE_NAMES_PARENT
from separate import DEFAULT_PRE_TRAINED_MODEL_PATH
srcs_groups = deepcopy(SOURCE_NAMES_CHILDREN)
srcs_groups.insert(0, SOURCE_NAMES_PARENT)
SOURCE_NAMES = [src for group in srcs_groups for src in group]
pg.setConfigOptions(imageAxisOrder="row-major")
logger = None
"""
###############################################################################
######################### Main Window ################################
###############################################################################
"""
class Window(QMainWindow):
def __init__(self, proc, logger, **kwargs):
super().__init__()
self.logger = logger
self.proc = proc
self.kwargs = kwargs
self.setWindowTitle("Selective Hyperbolic Source Separation")
self.setGeometry(0, 0, 3000, 3000)
self.UiComponents()
self.show()
def UiComponents(self):
translate = QCoreApplication.translate
splitter = QSplitter()
# Left-most window
params = ptree.Parameter.create(
name=translate("ScatterPlot", "Parameters"),
type="group",
children=[
dict(name="load", title=translate("ScatterPlot", "Load Audio File"), type="action"),
dict(
name="db_threshold",
title=translate("ScatterPlot", "Scatter Display Threshold (dB)"),
type="slider",
limits=[-90, 20],
value=-5,
step=1,
),
dict(
name="cert_threshold",
title=translate("ScatterPlot", "Certainty Synthesis Threshold"),
type="slider",
limits=[0, 1.0],
value=0.0,
step=0.01,
),
dict(name="project", title=translate("ScatterPlot", "Project Audio"), type="action"),
dict(name="geodesics", title=translate("ScatterPlot", "Class Geodesics"), type="bool", value=False),
dict(
name="intersections",
title=translate("ScatterPlot", "Geodesics Intersections"),
type="bool",
value=False,
),
],
)
for c in params.children():
c.setDefault(c.value())
if type(c) in [ptypes.ActionParameter]:
c.sigActivated.connect(self.action_event)
elif type(c) in [ptypes.SimpleParameter]:
c.sigValueChanged.connect(self.action_event)
elif type(c) == ptypes.SliderParameter:
c.sigValueChanged.connect(self.sig_changed)
pt = ptree.ParameterTree(showHeader=False)
pt.setParameters(params)
self.spec = spec_panel.SpecPanel(logger=logger)
rightSplit = QSplitter(Qt.Orientation.Vertical)
rightSplit.addWidget(pt)
rightSplit.addWidget(self.spec)
rightSplit.setSizes([500, 500])
splitter.addWidget(rightSplit)
# Middle window
mid_window_size = (490, 490)
self.ball = ball.BallView(
logger=self.logger,
selection_callback=self.selection_callback,
geodesics=self.proc.get_model_geodesics(),
ball=self.proc.model.mask_layer.mlr.ball,
source_names=SOURCE_NAMES,
parent=self,
show=True,
size=mid_window_size,
border=True,
title="Source Sep. on the Hyperbolic Disk",
)
# Create ap panel
self.mix_ap = audio_player.AudioPlayer(
logger=self.logger, width=mid_window_size[0] // 2, height=10, text_label="Loaded audio File: "
)
self.sel_ap = audio_player.AudioPlayer(
logger=self.logger, width=mid_window_size[0] // 2, height=10, text_label="Poincare Selection: "
)
self.ap_splitter = QSplitter()
self.ap_splitter.addWidget(self.mix_ap)
self.ap_splitter.addWidget(self.sel_ap)
midSplit = QSplitter(Qt.Orientation.Vertical)
midSplit.addWidget(self.ball)
midSplit.addWidget(self.ap_splitter)
midSplit.setSizes([800, 100])
splitter.addWidget(midSplit)
# Right-most window
rightSplit = QSplitter(Qt.Orientation.Vertical)
self.info_pan = info_panel.InfoPanel(logger=self.logger, freq_res=self.proc.stft_kwargs["fft_size"] // 2 + 1)
rightSplit.addWidget(self.info_pan)
rightSplit.addWidget(self.logger)
rightSplit.setSizes([500, 500])
splitter.addWidget(rightSplit)
# setting this layout to the widget
splitter.setSizes([300, 800, 300])
self.setCentralWidget(splitter)
# Buttons
def action_event(self, param):
if param.name() == "load":
mix_path, audio_set = self.fileBrowsing()
if audio_set:
self.set_player_source(mix_path, idx=0)
self.display_audio()
elif param.name() == "project":
self.proc.project_audio()
self.ball.set_scatter_points(self.proc.get_data_points_as_xy())
elif param.name() == "geodesics":
self.ball.toggle_geodesics(param.value())
elif param.name() == "intersections":
self.ball.set_geo_intersections_bool(param.value())
# Slider
def sig_changed(self, param):
if param.name() == "db_threshold":
self.proc.set_db_threshold(param.value())
elif param.name() == "cert_threshold":
self.proc.set_cert_threshold(param.value())
# Browse for file to process
def fileBrowsing(self):
filePath = QFileDialog.getOpenFileName(self, "", "Desktop", "*.wav")
audio_set = False
if filePath != "" and filePath[0] != "":
self.proc.set_audio(filePath[0])
self.logger.add_log("Loaded file with path: {}".format(filePath[0]))
audio_set = True
return filePath[0], audio_set
def set_player_source(self, path, idx=0):
self.ap_splitter.widget(idx).set_audio_file_path(path)
def display_audio(self):
self.spec.update_audio_mesh(self.proc.get_mesh_spec())
def render_selection(self):
idxs, _ = self.ball.get_current_selection()
render_path = "./interface/audio/tmp.wav"
self.set_player_source(None, idx=1)
_ = self.proc.synthesize_selection(selection=idxs, to_disk=True, path=render_path)
self.set_player_source(render_path, idx=1)
self.display_audio()
# get notification from
def selection_callback(self, idxs, coors):
# update info panel
freq = self.proc.get_mask_from_selection(idxs).squeeze(-1).detach().numpy()
freq_count = freq.sum(0)
dists = certainty_from_coors(coors)
self.info_pan.updateHistograms({"freq": freq_count, "dist": dists})
# update specotrgram panel
self.spec.update_selection_mesh((freq * 255).astype(int))
self.render_selection()
"""
###############################################################################
######################### Main Function ################################
###############################################################################
"""
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--checkpoint",
default=DEFAULT_PRE_TRAINED_MODEL_PATH,
type=Path,
help="The checkpoint model to load with the interface.",
)
args = parser.parse_args()
pg.setConfigOptions(antialias=True)
# Create GUI and instantiate logger
app = pg.mkQApp("Hyperbolic Source Separation")
logger = logview.LogView()
logger.resize(100, 50)
logger.start_log("adb")
state_dict = torch.load(args.checkpoint, map_location=torch.device("cpu"))["state_dict"]
weights = {k.replace("model.", ""): v for k, v in state_dict.items()}
params = torch.load(args.checkpoint, map_location=torch.device("cpu"))["hyper_parameters"]
hparams = Namespace(**params)
# Load model
model = MaskInference(**hparams.model)
model.load_state_dict(weights)
model.eval()
# Create tmp directory
Path("./audio").mkdir(parents=True, exist_ok=True)
# Create processor
proc = audio_processor.Processor(logger=logger, model=model, stft_kwargs=hparams.features)
window = Window(proc=proc, logger=logger, **vars(hparams))
# Start the program
pg.exec()