forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_build_blocks.py
727 lines (571 loc) · 22.4 KB
/
test_build_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import numpy as np
import faiss
import unittest
from common_faiss_tests import get_dataset_2
class TestPCA(unittest.TestCase):
def test_pca(self):
d = 64
n = 1000
np.random.seed(123)
x = np.random.random(size=(n, d)).astype('float32')
pca = faiss.PCAMatrix(d, 10)
pca.train(x)
y = pca.apply_py(x)
# check that energy per component is decreasing
column_norm2 = (y**2).sum(0)
prev = 1e50
for o in column_norm2:
self.assertGreater(prev, o)
prev = o
def test_pca_epsilon(self):
d = 64
n = 1000
np.random.seed(123)
x = np.random.random(size=(n, d)).astype('float32')
# make sure data is in a sub-space
x[:, ::2] = 0
# check division by 0 with default computation
pca = faiss.PCAMatrix(d, 60, -0.5)
pca.train(x)
y = pca.apply(x)
self.assertFalse(np.all(np.isfinite(y)))
# check add epsilon
pca = faiss.PCAMatrix(d, 60, -0.5)
pca.epsilon = 1e-5
pca.train(x)
y = pca.apply(x)
self.assertTrue(np.all(np.isfinite(y)))
# check I/O
index = faiss.index_factory(d, "PCAW60,Flat")
index = faiss.deserialize_index(faiss.serialize_index(index))
pca1 = faiss.downcast_VectorTransform(index.chain.at(0))
pca1.epsilon = 1e-5
index.train(x)
pca = faiss.downcast_VectorTransform(index.chain.at(0))
y = pca.apply(x)
self.assertTrue(np.all(np.isfinite(y)))
class TestRevSwigPtr(unittest.TestCase):
def test_rev_swig_ptr(self):
index = faiss.IndexFlatL2(4)
xb0 = np.vstack([
i * 10 + np.array([1, 2, 3, 4], dtype='float32')
for i in range(5)])
index.add(xb0)
xb = faiss.rev_swig_ptr(index.get_xb(), 4 * 5).reshape(5, 4)
self.assertEqual(np.abs(xb0 - xb).sum(), 0)
class TestException(unittest.TestCase):
def test_exception(self):
index = faiss.IndexFlatL2(10)
a = np.zeros((5, 10), dtype='float32')
b = np.zeros(5, dtype='int64')
# an unsupported operation for IndexFlat
self.assertRaises(
RuntimeError,
index.add_with_ids, a, b
)
# assert 'add_with_ids not implemented' in str(e)
def test_exception_2(self):
self.assertRaises(
RuntimeError,
faiss.index_factory, 12, 'IVF256,Flat,PQ8'
)
# assert 'could not parse' in str(e)
class TestMapLong2Long(unittest.TestCase):
def test_maplong2long(self):
keys = np.array([13, 45, 67], dtype=np.int64)
vals = np.array([3, 8, 2], dtype=np.int64)
m = faiss.MapLong2Long()
m.add(keys, vals)
assert np.all(m.search_multiple(keys) == vals)
assert m.search(12343) == -1
class TestOrthognalReconstruct(unittest.TestCase):
def test_recons_orthonormal(self):
lt = faiss.LinearTransform(20, 10, True)
rs = np.random.RandomState(10)
A, _ = np.linalg.qr(rs.randn(20, 20))
A = A[:10].astype('float32')
faiss.copy_array_to_vector(A.ravel(), lt.A)
faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b)
lt.set_is_orthonormal()
lt.is_trained = True
assert lt.is_orthonormal
x = rs.rand(30, 20).astype('float32')
xt = lt.apply_py(x)
xtt = lt.reverse_transform(xt)
xttt = lt.apply_py(xtt)
err = ((xt - xttt)**2).sum()
self.assertGreater(1e-5, err)
def test_recons_orthogona_impossible(self):
lt = faiss.LinearTransform(20, 10, True)
rs = np.random.RandomState(10)
A = rs.randn(10 * 20).astype('float32')
faiss.copy_array_to_vector(A.ravel(), lt.A)
faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b)
lt.is_trained = True
lt.set_is_orthonormal()
assert not lt.is_orthonormal
x = rs.rand(30, 20).astype('float32')
xt = lt.apply_py(x)
try:
lt.reverse_transform(xt)
except Exception:
pass
else:
self.assertFalse('should do an exception')
class TestMAdd(unittest.TestCase):
def test_1(self):
# try with dimensions that are multiples of 16 or not
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for dim in 16, 32, 20, 25:
for _repeat in 1, 2, 3, 4, 5:
a = rs.rand(dim).astype('float32')
b = rs.rand(dim).astype('float32')
c = np.zeros(dim, dtype='float32')
bf = rs.uniform(5.0) - 2.5
idx = faiss.fvec_madd_and_argmin(
dim, swig_ptr(a), bf, swig_ptr(b),
swig_ptr(c))
ref_c = a + b * bf
assert np.abs(c - ref_c).max() < 1e-5
assert idx == ref_c.argmin()
class TestNyFuncs(unittest.TestCase):
def test_l2(self):
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for d in 1, 2, 4, 8, 12, 16:
x = rs.rand(d).astype('float32')
for ny in 128, 129, 130:
print("d=%d ny=%d" % (d, ny))
y = rs.rand(ny, d).astype('float32')
ref = ((x - y) ** 2).sum(1)
new = np.zeros(ny, dtype='float32')
faiss.fvec_L2sqr_ny(swig_ptr(new), swig_ptr(x),
swig_ptr(y), d, ny)
assert np.abs(ref - new).max() < 1e-4
def test_IP(self):
# this one is not optimized with SIMD but just in case
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for d in 1, 2, 4, 8, 12, 16:
x = rs.rand(d).astype('float32')
for ny in 128, 129, 130:
print("d=%d ny=%d" % (d, ny))
y = rs.rand(ny, d).astype('float32')
ref = (x * y).sum(1)
new = np.zeros(ny, dtype='float32')
faiss.fvec_inner_products_ny(
swig_ptr(new), swig_ptr(x), swig_ptr(y), d, ny)
assert np.abs(ref - new).max() < 1e-4
class TestMatrixStats(unittest.TestCase):
def test_0s(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[5:10] = 0
comments = faiss.MatrixStats(m).comments
print(comments)
assert 'has 5 copies' in comments
assert '5 null vectors' in comments
def test_copies(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[::2] = m[1::2]
comments = faiss.MatrixStats(m).comments
print(comments)
assert '20 vectors are distinct' in comments
def test_dead_dims(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[:, 5:10] = 0
comments = faiss.MatrixStats(m).comments
print(comments)
assert '5 dimensions are constant' in comments
def test_rogue_means(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[:, 5:10] += 12345
comments = faiss.MatrixStats(m).comments
print(comments)
assert '5 dimensions are too large wrt. their variance' in comments
def test_normalized(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
faiss.normalize_L2(m)
comments = faiss.MatrixStats(m).comments
print(comments)
assert 'vectors are normalized' in comments
class TestScalarQuantizer(unittest.TestCase):
def test_8bit_equiv(self):
rs = np.random.RandomState(123)
for _it in range(20):
for d in 13, 16, 24:
x = np.floor(rs.rand(5, d) * 256).astype('float32')
x[0] = 0
x[1] = 255
# make sure to test extreme cases
x[2, 0] = 0
x[3, 0] = 255
x[2, 1] = 255
x[3, 1] = 0
ref_index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_8bit)
ref_index.train(x[:2])
ref_index.add(x[2:3])
index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_8bit_direct)
assert index.is_trained
index.add(x[2:3])
assert np.all(
faiss.vector_to_array(ref_index.codes) ==
faiss.vector_to_array(index.codes))
# Note that distances are not the same because ref_index
# reconstructs x as x + 0.5
D, I = index.search(x[3:], 1)
# assert D[0, 0] == Dref[0, 0]
# print(D[0, 0], ((x[3] - x[2]) ** 2).sum())
assert D[0, 0] == ((x[3] - x[2]) ** 2).sum()
def test_6bit_equiv(self):
rs = np.random.RandomState(123)
for d in 3, 6, 8, 16, 36:
trainset = np.zeros((2, d), dtype='float32')
trainset[0, :] = 0
trainset[0, :] = 63
index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_6bit)
index.train(trainset)
print('cs=', index.code_size)
x = rs.randint(64, size=(100, d)).astype('float32')
# verify encoder / decoder
index.add(x)
x2 = index.reconstruct_n(0, x.shape[0])
assert np.all(x == x2 - 0.5)
# verify AVX decoder (used only for search)
y = 63 * rs.rand(20, d).astype('float32')
D, I = index.search(y, 10)
for i in range(20):
for j in range(10):
dis = ((y[i] - x2[I[i, j]]) ** 2).sum()
# print(dis, D[i, j])
assert abs(D[i, j] - dis) / dis < 1e-5
def test_reconstruct(self):
self.do_reconstruct(True)
def test_reconstruct_no_residual(self):
self.do_reconstruct(False)
def do_reconstruct(self, by_residual):
d = 32
xt, xb, xq = get_dataset_2(d, 100, 5, 5)
index = faiss.index_factory(d, "IVF10,SQ8")
index.by_residual = by_residual
index.train(xt)
index.add(xb)
index.nprobe = 10
D, I = index.search(xq, 4)
xb2 = index.reconstruct_n(0, index.ntotal)
for i in range(5):
for j in range(4):
self.assertAlmostEqual(
((xq[i] - xb2[I[i, j]]) ** 2).sum(),
D[i, j],
places=4
)
class TestRandom(unittest.TestCase):
def test_rand(self):
x = faiss.rand(2000)
assert np.all(x >= 0) and np.all(x < 1)
h, _ = np.histogram(x, np.arange(0, 1, 0.1))
assert h.min() > 160 and h.max() < 240
def test_randint(self):
x = faiss.randint(20000, vmax=100)
assert np.all(x >= 0) and np.all(x < 100)
c = np.bincount(x, minlength=100)
print(c)
assert c.max() - c.min() < 50 * 2
def test_rand_vector(self):
""" test if the smooth_vectors function is reasonably compressible with
a small PQ """
x = faiss.rand_smooth_vectors(1300, 32)
xt = x[:1000]
xb = x[1000:1200]
xq = x[1200:]
_, gt = faiss.knn(xq, xb, 10)
index = faiss.IndexPQ(32, 4, 4)
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
ninter = faiss.eval_intersection(I, gt)
# 445 for SyntheticDataset
self.assertGreater(ninter, 420)
self.assertLess(ninter, 460)
class TestPairwiseDis(unittest.TestCase):
def test_L2(self):
swig_ptr = faiss.swig_ptr
x = faiss.rand((100, 10), seed=1)
y = faiss.rand((200, 10), seed=2)
ix = faiss.randint(50, vmax=100)
iy = faiss.randint(50, vmax=200)
dis = np.empty(50, dtype='float32')
faiss.pairwise_indexed_L2sqr(
10, 50,
swig_ptr(x), swig_ptr(ix),
swig_ptr(y), swig_ptr(iy),
swig_ptr(dis))
for i in range(50):
assert np.allclose(
dis[i], ((x[ix[i]] - y[iy[i]]) ** 2).sum())
def test_IP(self):
swig_ptr = faiss.swig_ptr
x = faiss.rand((100, 10), seed=1)
y = faiss.rand((200, 10), seed=2)
ix = faiss.randint(50, vmax=100)
iy = faiss.randint(50, vmax=200)
dis = np.empty(50, dtype='float32')
faiss.pairwise_indexed_inner_product(
10, 50,
swig_ptr(x), swig_ptr(ix),
swig_ptr(y), swig_ptr(iy),
swig_ptr(dis))
for i in range(50):
assert np.allclose(
dis[i], np.dot(x[ix[i]], y[iy[i]]))
class TestSWIGWrap(unittest.TestCase):
""" various regressions with the SWIG wrapper """
def test_size_t_ptr(self):
# issue 1064
index = faiss.IndexHNSWFlat(10, 32)
hnsw = index.hnsw
index.add(np.random.rand(100, 10).astype('float32'))
be = np.empty(2, 'uint64')
hnsw.neighbor_range(23, 0, faiss.swig_ptr(be), faiss.swig_ptr(be[1:]))
def test_id_map_at(self):
# issue 1020
n_features = 100
feature_dims = 10
features = np.random.random((n_features, feature_dims)).astype(np.float32)
idx = np.arange(n_features).astype(np.int64)
index = faiss.IndexFlatL2(feature_dims)
index = faiss.IndexIDMap2(index)
index.add_with_ids(features, idx)
[index.id_map.at(int(i)) for i in range(index.ntotal)]
def test_downcast_Refine(self):
index = faiss.IndexRefineFlat(
faiss.IndexScalarQuantizer(10, faiss.ScalarQuantizer.QT_8bit)
)
# serialize and deserialize
index2 = faiss.deserialize_index(
faiss.serialize_index(index)
)
assert isinstance(index2, faiss.IndexRefineFlat)
def do_test_array_type(self, dtype):
""" tests swig_ptr and rev_swig_ptr for this type of array """
a = np.arange(12).astype(dtype)
ptr = faiss.swig_ptr(a)
print(ptr)
a2 = faiss.rev_swig_ptr(ptr, 12)
np.testing.assert_array_equal(a, a2)
def test_all_array_types(self):
self.do_test_array_type('float32')
self.do_test_array_type('float64')
self.do_test_array_type('int8')
self.do_test_array_type('uint8')
self.do_test_array_type('int16')
self.do_test_array_type('uint16')
self.do_test_array_type('int32')
self.do_test_array_type('uint32')
self.do_test_array_type('int64')
self.do_test_array_type('uint64')
def test_int64(self):
# see https://github.com/facebookresearch/faiss/issues/1529
v = faiss.Int64Vector()
for i in range(10):
v.push_back(i)
a = faiss.vector_to_array(v)
assert a.dtype == 'int64'
np.testing.assert_array_equal(a, np.arange(10, dtype='int64'))
# check if it works in an IDMap
idx = faiss.IndexIDMap(faiss.IndexFlatL2(32))
idx.add_with_ids(
np.random.rand(10, 32).astype('float32'),
np.random.randint(1000, size=10, dtype='int64')
)
faiss.vector_to_array(idx.id_map)
class TestNNDescentKNNG(unittest.TestCase):
def test_knng_L2(self):
self.subtest(32, 10, faiss.METRIC_L2)
def test_knng_IP(self):
self.subtest(32, 10, faiss.METRIC_INNER_PRODUCT)
def subtest(self, d, K, metric):
metric_names = {faiss.METRIC_L1: 'L1',
faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
nb = 1000
_, xb, _ = get_dataset_2(d, 0, nb, 0)
_, knn = faiss.knn(xb, xb, K + 1, metric)
knn = knn[:, 1:]
index = faiss.IndexNNDescentFlat(d, K, metric)
index.nndescent.S = 10
index.nndescent.R = 32
index.nndescent.L = K + 20
index.nndescent.iter = 5
index.verbose = True
index.add(xb)
graph = index.nndescent.final_graph
graph = faiss.vector_to_array(graph)
graph = graph.reshape(nb, K)
recalls = 0
for i in range(nb):
for j in range(K):
for k in range(K):
if graph[i, j] == knn[i, k]:
recalls += 1
break
recall = 1.0 * recalls / (nb * K)
print('Metric: {}, knng accuracy: {}'.format(metric_names[metric], recall))
assert recall > 0.99
class TestResultHeap(unittest.TestCase):
def test_keep_min(self):
self.run_test(False)
def test_keep_max(self):
self.run_test(True)
def run_test(self, keep_max):
nq = 100
nb = 1000
restab = faiss.rand((nq, nb), 123)
ids = faiss.randint((nq, nb), 1324, 10000)
all_rh = {}
for nstep in 1, 3:
rh = faiss.ResultHeap(nq, 10, keep_max=keep_max)
for i in range(nstep):
i0, i1 = i * nb // nstep, (i + 1) * nb // nstep
D = restab[:, i0:i1].copy()
I = ids[:, i0:i1].copy()
rh.add_result(D, I)
rh.finalize()
if keep_max:
assert np.all(rh.D[:, :-1] >= rh.D[:, 1:])
else:
assert np.all(rh.D[:, :-1] <= rh.D[:, 1:])
all_rh[nstep] = rh
np.testing.assert_equal(all_rh[1].D, all_rh[3].D)
np.testing.assert_equal(all_rh[1].I, all_rh[3].I)
class TestReconstructBatch(unittest.TestCase):
def test_indexflat(self):
index = faiss.IndexFlatL2(32)
x = faiss.randn((100, 32), 1234)
index.add(x)
subset = [4, 7, 45]
np.testing.assert_equal(x[subset], index.reconstruct_batch(subset))
def test_exception(self):
index = faiss.index_factory(32, "IVF2,Flat")
x = faiss.randn((100, 32), 1234)
index.train(x)
index.add(x)
# make sure it raises an exception even if it enters the openmp for
subset = np.zeros(1200, dtype=int)
self.assertRaises(
RuntimeError,
lambda : index.reconstruct_batch(subset),
)
class TestBucketSort(unittest.TestCase):
def do_test_bucket_sort(self, nt):
rs = np.random.RandomState(123)
tab = rs.randint(100, size=1000, dtype='int64')
lims, perm = faiss.bucket_sort(tab, nt=nt)
for i in range(max(tab) + 1):
assert np.all(tab[perm[lims[i]: lims[i + 1]]] == i)
def test_bucket_sort(self):
self.do_test_bucket_sort(0)
def test_bucket_sort_parallel(self):
self.do_test_bucket_sort(4)
def do_test_bucket_sort_inplace(
self, nt, nrow=500, ncol=20, nbucket=300, repro=False,
dtype='int32'):
rs = np.random.RandomState(123)
tab = rs.randint(nbucket, size=(nrow, ncol), dtype=dtype)
tab2 = tab.copy()
faiss.cvar.bucket_sort_verbose
faiss.cvar.bucket_sort_verbose = 1
lims = faiss.matrix_bucket_sort_inplace(tab2, nt=nt)
tab2 = tab2.ravel()
for b in range(nbucket):
rows, _ = np.where(tab == b)
rows.sort()
tab2[lims[b]:lims[b + 1]].sort()
# print(rows, tab2[lims[b] : lims[b + 1]])
rows = set(rows)
self.assertEqual(rows, set(tab2[lims[b]:lims[b + 1]]))
def test_bucket_sort_inplace(self):
self.do_test_bucket_sort_inplace(0)
def test_bucket_sort_inplace_parallel(self):
self.do_test_bucket_sort_inplace(4)
def test_bucket_sort_inplace_parallel_fewcol(self):
self.do_test_bucket_sort_inplace(4, ncol=3)
def test_bucket_sort_inplace_parallel_fewbucket(self):
self.do_test_bucket_sort_inplace(4, nbucket=5)
def test_bucket_sort_inplace_int64(self):
self.do_test_bucket_sort_inplace(0, dtype='int64')
def test_bucket_sort_inplace_parallel_int64(self):
self.do_test_bucket_sort_inplace(4, dtype='int64')
class TestMergeKNNResults(unittest.TestCase):
def do_test(self, ismax, dtype):
rs = np.random.RandomState()
n, k, nshard = 10, 5, 3
all_ids = rs.randint(100000, size=(nshard, n, k)).astype('int64')
all_dis = rs.rand(nshard, n, k)
if dtype == 'int32':
all_dis = (all_dis * 1000000).astype("int32")
else:
all_dis = all_dis.astype(dtype)
for i in range(nshard):
for j in range(n):
all_dis[i, j].sort()
if ismax:
all_dis[i, j] = all_dis[i, j][::-1]
Dref = np.zeros((n, k), dtype=dtype)
Iref = np.zeros((n, k), dtype='int64')
for i in range(n):
dis = all_dis[:, i, :].ravel()
ids = all_ids[:, i, :].ravel()
o = dis.argsort()
if ismax:
o = o[::-1]
Dref[i] = dis[o[:k]]
Iref[i] = ids[o[:k]]
Dnew, Inew = faiss.merge_knn_results(all_dis, all_ids, keep_max=ismax)
np.testing.assert_array_equal(Dnew, Dref)
np.testing.assert_array_equal(Inew, Iref)
def test_min_float(self):
self.do_test(ismax=False, dtype='float32')
def test_max_int(self):
self.do_test(ismax=True, dtype='int32')
def test_max_float(self):
self.do_test(ismax=True, dtype='float32')
class TestMapInt64ToInt64(unittest.TestCase):
def do_test(self, capacity, n):
""" test that we are able to lookup """
rs = np.random.RandomState(123)
# make sure we have unique values
keys = np.unique(rs.choice(2 ** 29, size=n).astype("int64"))
rs.shuffle(keys)
n = keys.size
vals = rs.choice(2 ** 30, size=n).astype('int64')
tab = faiss.MapInt64ToInt64(capacity)
tab.add(keys, vals)
# lookup and check
vals2 = tab.lookup(keys)
np.testing.assert_array_equal(vals, vals2)
# make a few keys that we know are not there
mask = rs.rand(n) < 0.3
keys[mask] = rs.choice(2 ** 29, size=n)[mask] + 2 ** 29
vals2 = tab.lookup(keys)
np.testing.assert_array_equal(-1, vals2[mask])
np.testing.assert_array_equal(vals[~mask], vals2[~mask])
def test_small(self):
self.do_test(16384, 10000)
def xx_test_large(self):
# don't run by default because it's slow
self.do_test(2 ** 21, 10 ** 6)