|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 13, |
| 6 | + "id": "8b1fd78c-52d9-46f6-af48-feb15b2abbe4", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import os\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "import tqdm\n", |
| 13 | + "from multiprocessing import Pool\n", |
| 14 | + "from rdkit.Chem import MolFromSmiles, MolToSmiles" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 2, |
| 20 | + "id": "e979bf54-33eb-4e52-bf10-9a8f3a4339b8", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "filepath = os.path.join('data', 'gdb13.1M.freq.ll.smi')" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 8, |
| 30 | + "id": "3fb8c505-1217-49da-910c-6949cf65864d", |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [ |
| 33 | + { |
| 34 | + "name": "stdout", |
| 35 | + "output_type": "stream", |
| 36 | + "text": [ |
| 37 | + "(1000000, 3)\n" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "data": { |
| 42 | + "text/html": [ |
| 43 | + "<div>\n", |
| 44 | + "<style scoped>\n", |
| 45 | + " .dataframe tbody tr th:only-of-type {\n", |
| 46 | + " vertical-align: middle;\n", |
| 47 | + " }\n", |
| 48 | + "\n", |
| 49 | + " .dataframe tbody tr th {\n", |
| 50 | + " vertical-align: top;\n", |
| 51 | + " }\n", |
| 52 | + "\n", |
| 53 | + " .dataframe thead th {\n", |
| 54 | + " text-align: right;\n", |
| 55 | + " }\n", |
| 56 | + "</style>\n", |
| 57 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 58 | + " <thead>\n", |
| 59 | + " <tr style=\"text-align: right;\">\n", |
| 60 | + " <th></th>\n", |
| 61 | + " <th>0</th>\n", |
| 62 | + " <th>1</th>\n", |
| 63 | + " <th>2</th>\n", |
| 64 | + " </tr>\n", |
| 65 | + " </thead>\n", |
| 66 | + " <tbody>\n", |
| 67 | + " <tr>\n", |
| 68 | + " <th>0</th>\n", |
| 69 | + " <td>C1=Cc2cc1nnc1snc(o2)-o-1</td>\n", |
| 70 | + " <td>0</td>\n", |
| 71 | + " <td>68.182535</td>\n", |
| 72 | + " </tr>\n", |
| 73 | + " <tr>\n", |
| 74 | + " <th>1</th>\n", |
| 75 | + " <td>N1C2C3C4C5NC6C7C6C5(C13)C2N47</td>\n", |
| 76 | + " <td>0</td>\n", |
| 77 | + " <td>67.352869</td>\n", |
| 78 | + " </tr>\n", |
| 79 | + " <tr>\n", |
| 80 | + " <th>2</th>\n", |
| 81 | + " <td>c1c2c[nH]c(nn3cnc(c#1)c3)-s-2</td>\n", |
| 82 | + " <td>0</td>\n", |
| 83 | + " <td>65.054106</td>\n", |
| 84 | + " </tr>\n", |
| 85 | + " <tr>\n", |
| 86 | + " <th>3</th>\n", |
| 87 | + " <td>N=c1-c2cnn-1cnccc(=O)c2</td>\n", |
| 88 | + " <td>0</td>\n", |
| 89 | + " <td>62.522982</td>\n", |
| 90 | + " </tr>\n", |
| 91 | + " <tr>\n", |
| 92 | + " <th>4</th>\n", |
| 93 | + " <td>C=Nn1-c2cccconc-1[nH]c2</td>\n", |
| 94 | + " <td>0</td>\n", |
| 95 | + " <td>59.586299</td>\n", |
| 96 | + " </tr>\n", |
| 97 | + " </tbody>\n", |
| 98 | + "</table>\n", |
| 99 | + "</div>" |
| 100 | + ], |
| 101 | + "text/plain": [ |
| 102 | + " 0 1 2\n", |
| 103 | + "0 C1=Cc2cc1nnc1snc(o2)-o-1 0 68.182535\n", |
| 104 | + "1 N1C2C3C4C5NC6C7C6C5(C13)C2N47 0 67.352869\n", |
| 105 | + "2 c1c2c[nH]c(nn3cnc(c#1)c3)-s-2 0 65.054106\n", |
| 106 | + "3 N=c1-c2cnn-1cnccc(=O)c2 0 62.522982\n", |
| 107 | + "4 C=Nn1-c2cccconc-1[nH]c2 0 59.586299" |
| 108 | + ] |
| 109 | + }, |
| 110 | + "execution_count": 8, |
| 111 | + "metadata": {}, |
| 112 | + "output_type": "execute_result" |
| 113 | + } |
| 114 | + ], |
| 115 | + "source": [ |
| 116 | + "df_raw = pd.read_csv(filepath, header=None, sep='\\t')\n", |
| 117 | + "\n", |
| 118 | + "print(df_raw.shape)\n", |
| 119 | + "df_raw.head()" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": 14, |
| 125 | + "id": "dcc2cb0f-92b8-45a0-8fe7-05b0679638a4", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "def normalize(smi):\n", |
| 130 | + " can = MolToSmiles(MolFromSmiles(smi), kekuleSmiles=True)\n", |
| 131 | + " lgt = len(can)\n", |
| 132 | + " return can, lgt" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 15, |
| 138 | + "id": "29e9c18f-ab7b-4867-a2cb-73fcea1f3f60", |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "def loader(df):\n", |
| 143 | + " for i in tqdm.trange(len(df)):\n", |
| 144 | + " yield df_raw.iloc[i,0]" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 17, |
| 150 | + "id": "eb61ddd8-4315-463c-809b-b4a63fcf26ac", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [ |
| 153 | + { |
| 154 | + "name": "stderr", |
| 155 | + "output_type": "stream", |
| 156 | + "text": [ |
| 157 | + "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000000/1000000 [00:05<00:00, 179849.38it/s]\n" |
| 158 | + ] |
| 159 | + } |
| 160 | + ], |
| 161 | + "source": [ |
| 162 | + "with Pool(30) as p:\n", |
| 163 | + " records = p.map(normalize, loader(df_raw))" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": 19, |
| 169 | + "id": "373575cf-1200-4aac-89b7-ffba0aaa89f6", |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "df = pd.DataFrame.from_records(records)\n", |
| 174 | + "df = df.rename(columns={0:'smiles', 1:'length'})" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 20, |
| 180 | + "id": "360481e2-559f-420a-a376-d818661153fb", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [ |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
| 187 | + "(1000000, 2)\n" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "data": { |
| 192 | + "text/html": [ |
| 193 | + "<div>\n", |
| 194 | + "<style scoped>\n", |
| 195 | + " .dataframe tbody tr th:only-of-type {\n", |
| 196 | + " vertical-align: middle;\n", |
| 197 | + " }\n", |
| 198 | + "\n", |
| 199 | + " .dataframe tbody tr th {\n", |
| 200 | + " vertical-align: top;\n", |
| 201 | + " }\n", |
| 202 | + "\n", |
| 203 | + " .dataframe thead th {\n", |
| 204 | + " text-align: right;\n", |
| 205 | + " }\n", |
| 206 | + "</style>\n", |
| 207 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 208 | + " <thead>\n", |
| 209 | + " <tr style=\"text-align: right;\">\n", |
| 210 | + " <th></th>\n", |
| 211 | + " <th>smiles</th>\n", |
| 212 | + " <th>length</th>\n", |
| 213 | + " </tr>\n", |
| 214 | + " </thead>\n", |
| 215 | + " <tbody>\n", |
| 216 | + " <tr>\n", |
| 217 | + " <th>0</th>\n", |
| 218 | + " <td>C1=CC2=NN=C3OC(=NS3)OC1=C2</td>\n", |
| 219 | + " <td>26</td>\n", |
| 220 | + " </tr>\n", |
| 221 | + " <tr>\n", |
| 222 | + " <th>1</th>\n", |
| 223 | + " <td>N1C2C3C4C5NC6C7C6C5(C13)C2N47</td>\n", |
| 224 | + " <td>29</td>\n", |
| 225 | + " </tr>\n", |
| 226 | + " <tr>\n", |
| 227 | + " <th>2</th>\n", |
| 228 | + " <td>C1#CC2=CN(C=N2)N=C2NC=C1S2</td>\n", |
| 229 | + " <td>26</td>\n", |
| 230 | + " </tr>\n", |
| 231 | + " <tr>\n", |
| 232 | + " <th>3</th>\n", |
| 233 | + " <td>N=C1C2=CC(=O)C=CN=CN1N=C2</td>\n", |
| 234 | + " <td>25</td>\n", |
| 235 | + " </tr>\n", |
| 236 | + " <tr>\n", |
| 237 | + " <th>4</th>\n", |
| 238 | + " <td>C=NN1C2=CNC1=NOC=CC=C2</td>\n", |
| 239 | + " <td>22</td>\n", |
| 240 | + " </tr>\n", |
| 241 | + " </tbody>\n", |
| 242 | + "</table>\n", |
| 243 | + "</div>" |
| 244 | + ], |
| 245 | + "text/plain": [ |
| 246 | + " smiles length\n", |
| 247 | + "0 C1=CC2=NN=C3OC(=NS3)OC1=C2 26\n", |
| 248 | + "1 N1C2C3C4C5NC6C7C6C5(C13)C2N47 29\n", |
| 249 | + "2 C1#CC2=CN(C=N2)N=C2NC=C1S2 26\n", |
| 250 | + "3 N=C1C2=CC(=O)C=CN=CN1N=C2 25\n", |
| 251 | + "4 C=NN1C2=CNC1=NOC=CC=C2 22" |
| 252 | + ] |
| 253 | + }, |
| 254 | + "execution_count": 20, |
| 255 | + "metadata": {}, |
| 256 | + "output_type": "execute_result" |
| 257 | + } |
| 258 | + ], |
| 259 | + "source": [ |
| 260 | + "print(df.shape)\n", |
| 261 | + "df.head()" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": 21, |
| 267 | + "id": "0df4b197-2122-4306-b407-c2a2f9862931", |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [], |
| 270 | + "source": [ |
| 271 | + "df.to_csv(os.path.join('data', 'gdb13.csv'), index=False)" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "id": "4af66c4c-afe2-4258-bcf4-e8927802b735", |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [] |
| 281 | + } |
| 282 | + ], |
| 283 | + "metadata": { |
| 284 | + "kernelspec": { |
| 285 | + "display_name": "Python 3 (ipykernel)", |
| 286 | + "language": "python", |
| 287 | + "name": "python3" |
| 288 | + }, |
| 289 | + "language_info": { |
| 290 | + "codemirror_mode": { |
| 291 | + "name": "ipython", |
| 292 | + "version": 3 |
| 293 | + }, |
| 294 | + "file_extension": ".py", |
| 295 | + "mimetype": "text/x-python", |
| 296 | + "name": "python", |
| 297 | + "nbconvert_exporter": "python", |
| 298 | + "pygments_lexer": "ipython3", |
| 299 | + "version": "3.9.21" |
| 300 | + } |
| 301 | + }, |
| 302 | + "nbformat": 4, |
| 303 | + "nbformat_minor": 5 |
| 304 | +} |
0 commit comments