-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode6.py
69 lines (56 loc) · 1.52 KB
/
code6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import statistics
import statsmodels
# generate random integer values
from random import seed
from random import randint
# race_I
with open('race_I.txt', 'r') as f:
data = f.readlines()
master_list = []
lst = []
for i in data:
if '\n' in i:
master_list.append(lst)
lst = int(i)
else:
lst.append(i.replace('\n', ''))
# seed random number generator
n = len(master_list)
seed(311)
valueList = []
value = []
# generate some integers
for _ in range(n):
value = randint(0, 1000)
valueList.append(value)
#print(master_list)
master_list.append(61832)
master_list.remove([])
for i in range(n):
master_list[i] = int(master_list[i])+valueList[i]
#new similar trace generated
print("New Trace \n")
#Mean
average = statistics.mean(master_list)
print("Mean is",int(average))
#Variance
variancee = statistics.variance(master_list)
print("variance is",int(variancee))
#autocorrelation
#generate delayed by time 1
master_list_lagby1 = []
for i in range(0,len(master_list)):
master_list_lagby1.append(int(master_list[i])+1)
autocorr = statistics.correlation(master_list,master_list_lagby1)
# correlation(x, y, /, *, method='linear')
print("Autocorrelation is", autocorr)
#mode
modee = statistics.mode(master_list)
print("Mode is",int(modee))
#median
mediann = statistics.median(master_list)
print("median is",int(mediann))
#Max
maxx = max(master_list)
print("The maximum value is",maxx)
print("\n----\n")