From 9b63ebff269edc2036d68ce8807449d7569204e4 Mon Sep 17 00:00:00 2001 From: kenoharada Date: Wed, 6 Nov 2019 13:10:39 +0900 Subject: [PATCH 1/9] add: tutorial (cherry picked from commit 25c823147ee83f6a08b4b1949d47ef9b46ce956e) --- tutorial/English/00-PixyzOverview.ipynb | 1374 +++++++++++++++++ .../English/01-DistributionAPITutorial.ipynb | 743 +++++++++ tutorial/English/02-LossAPITutorial.ipynb | 877 +++++++++++ tutorial/English/03-ModelAPITutorial.ipynb | 544 +++++++ tutorial/Japanese/00-PixyzOverview.ipynb | 1373 ++++++++++++++++ .../Japanese/01-DistributionAPITutorial.ipynb | 739 +++++++++ tutorial/Japanese/02-LossAPITutorial.ipynb | 877 +++++++++++ tutorial/Japanese/03-ModelAPITutorial.ipynb | 554 +++++++ 8 files changed, 7081 insertions(+) create mode 100644 tutorial/English/00-PixyzOverview.ipynb create mode 100644 tutorial/English/01-DistributionAPITutorial.ipynb create mode 100644 tutorial/English/02-LossAPITutorial.ipynb create mode 100644 tutorial/English/03-ModelAPITutorial.ipynb create mode 100644 tutorial/Japanese/00-PixyzOverview.ipynb create mode 100644 tutorial/Japanese/01-DistributionAPITutorial.ipynb create mode 100644 tutorial/Japanese/02-LossAPITutorial.ipynb create mode 100644 tutorial/Japanese/03-ModelAPITutorial.ipynb diff --git a/tutorial/English/00-PixyzOverview.ipynb b/tutorial/English/00-PixyzOverview.ipynb new file mode 100644 index 00000000..22a69569 --- /dev/null +++ b/tutorial/English/00-PixyzOverview.ipynb @@ -0,0 +1,1374 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pixyz API takes into account the features of deep generative models\n", + "- The Deep Neural Network that composes the generative model is hidden by the probability distribution\n", + " - A framework that can separate defining DNNs and operating probability distributions(Distribution API) \n", + "- Model types and regularization of random variables are described as objective functions(error functions)\n", + " - A framework that receives probability distribution and define objective function(Loss API) \n", + "- Deep generative models learn by defining objective function and using gradient descent method\n", + " - A framework in which objective function and optimization algorithm can be set independently(Model API)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "from torchvision import datasets, transforms\n", + "from tensorboardX import SummaryWriter\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overviewing relationships between each APIs through implementing VAE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Distribution API\n", + "- A framework that can separate defining DNNs and operating probability distributions(Distribution API)\n", + "- https://pixyz.readthedocs.io/en/latest/distributions.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define these three probability distributions\n", + "\n", + "Prior: $p(z) = N(z; 0, 1)$\n", + "\n", + "Generator: $p_{\\theta}(x|z) = B(x; \\lambda = g(z))$\n", + "\n", + "Inference: $q_{\\phi}(z|x) = N(z; µ = f_{\\mu}(x), \\sigma^2 = f_{\\sigma^2}(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define prior probability distribution\n", + "\n", + "prior is a gaussian distribution with mean 0 and variance 1\n", + "\n", + "$p(z) = N(z; 0, 1)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# prior\n", + "z_dim = 64\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)\n", + "print(prior)\n", + "print_latex(prior)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define generator probability distribution\n", + "Generator is a bernoulli distribution over x given z\n", + "\n", + "$p_{\\theta}(x|z) = B(x; \\lambda = g(z))$\n", + "\n", + "Inherit pixyz.Distribution class to define a distribution with Deep neural networks" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|z)\n", + "Network architecture:\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_dim = 784\n", + "# generative model p(x|z)\n", + "# inherit pixyz.Distribution Bernoulli class\n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + "p = Generator().to(device)\n", + "print(p)\n", + "print_latex(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define Inference probability distribution\n", + "\n", + "Inference is a gaussian distribution over z given x \n", + "$\\mu$ and $\\sigma$ are parameterized by $\\phi$\n", + "\n", + "$q_{\\phi}(z|x) = N(z; µ = f_{\\mu}(x), \\sigma^2 = f_{\\sigma^2}(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " q(z|x)\n", + "Network architecture:\n", + " Inference(\n", + " name=q, distribution_name=Normal,\n", + " var=['z'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=784, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc31): Linear(in_features=512, out_features=64, bias=True)\n", + " (fc32): Linear(in_features=512, out_features=64, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$q(z|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inference model q(z|x)\n", + "# inherit pixyz.Distribution Normal class\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + "q = Inference().to(device)\n", + "print(q)\n", + "print_latex(q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Sampling from a probability distribution\n", + "- Sampling can be done by .sample() in defined Distribution class regardless of DNN architecture or distribution type\n", + "- In Pixyz, samples are dict type(key is variable name, value is sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$z\\sim p(z)$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'z': tensor([[-0.0793, -0.9152, 0.1006, 2.4046, 1.1672, -0.8844, 0.4509, 0.5644,\n", + " -2.7172, 0.3097, 0.2030, -1.0954, 0.9580, 0.8032, -0.5685, 1.7160,\n", + " -0.1979, 0.3951, 0.2540, 1.8251, -1.3828, 0.7412, -0.5756, 0.6962,\n", + " 1.0955, -1.9348, 0.1558, -0.5434, -0.9098, -1.1355, 0.9925, 0.6114,\n", + " -0.0540, -0.0136, -1.3015, -0.4915, -0.2812, -1.6446, 0.3039, -1.2809,\n", + " -2.1485, -0.9738, -0.8703, 2.3055, -1.2834, -0.2770, -1.4089, 0.4758,\n", + " -0.3055, 0.4635, 0.0540, -0.0313, 0.4885, 1.0413, 1.0236, -0.5271,\n", + " -0.7329, -0.1852, -0.8231, -0.6148, 2.2130, -1.7938, -0.9596, -0.8830]])}\n", + "dict_keys(['z'])\n", + "torch.Size([1, 64])\n" + ] + } + ], + "source": [ + "# z ~ p(z)\n", + "prior_samples = prior.sample(batch_n=1)\n", + "print(prior_samples)\n", + "print(prior_samples.keys())\n", + "print(prior_samples['z'].shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define joint distribution\n", + "- joint distribution can be difined by multiplying distributions\n", + " - Sampling can be done by .sample()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$p_{\\theta}(x, z) = p_{\\theta}(x|z)p(z)$" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x,z) = p(x|z)p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x,z) = p(x|z)p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint = p * prior\n", + "print(p_joint)\n", + "print_latex(p_joint)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Sampling from a joint distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$x, z \\sim p_{\\theta}(x, z) $" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'z': tensor([[-0.1223, -0.7952, -1.5082, 0.2743, 1.0154, 1.0190, -0.9267, -1.2706,\n", + " -0.5565, -0.9500, -1.1071, -0.1628, -0.4641, -0.9795, 0.1824, -0.6085,\n", + " 0.5960, 0.4666, 0.2054, 0.0149, 2.3665, 1.7195, 0.4662, -0.0642,\n", + " 0.0346, 1.2188, 1.7331, 1.9351, -0.5736, -0.0196, -1.0657, 2.4684,\n", + " -0.1254, 0.3703, -0.2453, 0.1580, -1.1285, 1.0896, 0.9853, 0.6588,\n", + " -0.6115, 1.5389, -1.0540, -0.2859, 1.0015, -0.8060, 2.3306, -0.1804,\n", + " 1.2932, 0.5674, -0.5561, 1.6523, -1.0349, 0.2626, 0.6601, -0.5224,\n", + " -0.6514, 0.8797, 1.0358, -0.3693, -1.4086, 1.5572, 0.8814, -0.5434]]), 'x': tensor([[0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 1., 0.,\n", + " 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1.,\n", + " 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1.,\n", + " 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,\n", + " 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0.,\n", + " 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.,\n", + " 1., 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,\n", + " 1., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1.,\n", + " 1., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0.,\n", + " 1., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 1.,\n", + " 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1.,\n", + " 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0.,\n", + " 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1.,\n", + " 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 0.,\n", + " 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1.,\n", + " 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 0., 1., 0.,\n", + " 1., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0., 0., 1., 0.,\n", + " 1., 0., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 0.,\n", + " 0., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 1., 0., 1.,\n", + " 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 1., 1.,\n", + " 0., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", + " 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0., 0., 0.,\n", + " 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 1., 1.,\n", + " 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0., 0.,\n", + " 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0.,\n", + " 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1.,\n", + " 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 1.,\n", + " 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1.,\n", + " 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1., 1., 1., 1., 0.,\n", + " 1., 0., 1., 1., 0., 0., 1., 1., 1., 0., 0., 1., 0., 1., 1., 0., 1., 1.,\n", + " 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0.,\n", + " 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0.,\n", + " 1., 0., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 1., 0.,\n", + " 1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", + " 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1.,\n", + " 1., 0., 0., 1., 0., 0., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0., 1., 1.,\n", + " 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 0., 0., 1.,\n", + " 1., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0.,\n", + " 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0.,\n", + " 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.,\n", + " 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1.,\n", + " 1., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", + " 1., 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 0., 0.,\n", + " 1., 0., 0., 1., 1., 1., 0., 0., 1., 0.]])}\n", + "dict_keys(['z', 'x'])\n", + "torch.Size([1, 784])\n", + "torch.Size([1, 64])\n" + ] + } + ], + "source": [ + "p_joint_samples = p_joint.sample(batch_n=1)\n", + "print(p_joint_samples)\n", + "print(p_joint_samples.keys())\n", + "print(p_joint_samples['x'].shape)\n", + "print(p_joint_samples['z'].shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For more detailed Distribution API Turorial\n", + "- 01-DistributionAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Loss API\n", + "- A framework that receives probability distribution and define objective function(Loss API)\n", + " - pixyz.Loss receives Distribution and defines Loss\n", + " - Arithmetic operations can be done between Loss classes, so any Loss can be designed\n", + " - -> Paper's formula can be put into codes easily\n", + "- Loss value is evaluated by inputting the data\n", + " - Each Loss is treated as symbol\n", + " - Independent of data or DNN, we can design probabilistic model explicitly ->Define-and-run like framework" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "VAE Loss\n", + "$$\n", + "\\mathcal { L } _ { \\mathrm { VAE } } ( \\theta , \\phi ) = \\mathbb { E } _ { p_{data}( x ) } \\left [D _ { \\mathrm { KL } } \\left[ q _ \\phi ( z | x ) \\| p ( z ) \\right] - \\mathbb { E } _ { q _ { \\phi } ( z | x ) } \\left[\\log p _ { \\theta } ( x | z ) \\right]\\right]\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define loss using pixyz.loss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$D _ { \\mathrm { KL } } \\left[ q _ \\phi ( z | x ) \\| p ( z ) \\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import KullbackLeibler\n", + "kl = KullbackLeibler(q, prior)\n", + "print_latex(kl)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$$- \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import StochasticReconstructionLoss\n", + "reconst = StochasticReconstructionLoss(q, p)\n", + "print_latex(reconst)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Operations between Loss classes" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vae_loss = (kl + reconst).mean()\n", + "print_latex(vae_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Input data and loss is evaluated\n", + "- loss is calculated by .eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(552.4176, grad_fn=)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dummy_x for data\n", + "dummy_x = torch.randn([4, 784])\n", + "vae_loss.eval({\"x\": dummy_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For more detailed Loss API Turorial\n", + "- 02-LossAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Model API\n", + "- A framework in which objective function and optimization algorithm can be set independently\n", + "- Set loss and optimization algorithm, then train with data" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distributions (for training): \n", + " p(x|z), q(z|x) \n", + "Loss function: \n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", + "Optimizer: \n", + " Adam (\n", + " Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " eps: 1e-08\n", + " lr: 0.001\n", + " weight_decay: 0\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.models import Model\n", + "model = Model(loss=vae_loss, distributions=[p, q],\n", + " optimizer=optim.Adam, optimizer_params={\"lr\": 1e-3})\n", + "print(model)\n", + "print_latex(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dummy_x = torch.randn([10, 784])\n", + "def train_dummy(epoch):\n", + " global dummy_x\n", + " dummy_x = dummy_x.to(device)\n", + " loss = model.train({\"x\": dummy_x})\n", + " print('Epoch: {} Train Loss: {:4f}'.format(epoch, loss))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 0 Train Loss: 553.467834\n", + "Epoch: 1 Train Loss: 530.487000\n", + "Epoch: 2 Train Loss: 497.285400\n", + "Epoch: 3 Train Loss: 430.598633\n", + "Epoch: 4 Train Loss: 332.429138\n", + "Epoch: 5 Train Loss: 184.822174\n", + "Epoch: 6 Train Loss: 60.313366\n", + "Epoch: 7 Train Loss: -86.165878\n", + "Epoch: 8 Train Loss: -318.059052\n", + "Epoch: 9 Train Loss: -598.574402\n" + ] + } + ], + "source": [ + "for epoch in range(10):\n", + " train_dummy(epoch)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### For more detailed Model API Turorial\n", + "- 03-ModelAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training VAE with MNIST dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Install modules" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "import torchvision\n", + "from torchvision import datasets, transforms\n", + "from tensorboardX import SummaryWriter\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "batch_size = 256\n", + "epochs = 3\n", + "seed = 1\n", + "torch.manual_seed(seed)\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Prepare MNIST dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "root = '../data'\n", + "transform = transforms.Compose([transforms.ToTensor(),\n", + " transforms.Lambda(lambd=lambda x: x.view(-1))])\n", + "kwargs = {'batch_size': batch_size, 'num_workers': 1, 'pin_memory': True}\n", + "\n", + "train_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=True, transform=transform, download=True),\n", + " shuffle=True, **kwargs)\n", + "test_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=False, transform=transform),\n", + " shuffle=False, **kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Install Pixyz modules" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.losses import KullbackLeibler, Expectation as E\n", + "from pixyz.models import Model\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define probability distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "p = Generator().to(device)\n", + "q = Inference().to(device)\n", + "\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(prior)\n", + "print_latex(prior)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|z)\n", + "Network architecture:\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p)\n", + "print_latex(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " q(z|x)\n", + "Network architecture:\n", + " Inference(\n", + " name=q, distribution_name=Normal,\n", + " var=['z'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=784, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc31): Linear(in_features=512, out_features=64, bias=True)\n", + " (fc32): Linear(in_features=512, out_features=64, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$q(z|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(q)\n", + "print_latex(q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kl = KullbackLeibler(q, prior)\n", + "reconst = StochasticReconstructionLoss(q, p)\n", + "vae_loss = (kl + reconst).mean()\n", + "print_latex(vae_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Set optimization algorithm and model" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distributions (for training): \n", + " p(x|z), q(z|x) \n", + "Loss function: \n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", + "Optimizer: \n", + " Adam (\n", + " Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " eps: 1e-08\n", + " lr: 0.001\n", + " weight_decay: 0\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = Model(loss=vae_loss, distributions=[p, q],\n", + " optimizer=optim.Adam, optimizer_params={\"lr\": 1e-3})\n", + "print(model)\n", + "print_latex(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def train(epoch):\n", + " train_loss = 0\n", + " #for x, _ in tqdm(train_loader):\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = model.train({\"x\": x})\n", + " train_loss += loss\n", + " \n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch: {} Train loss: {:.4f}'.format(epoch, train_loss))\n", + " return train_loss\n", + "\n", + "def test(epoch):\n", + " test_loss = 0\n", + " #for x, _ in tqdm(test_loader):\n", + " for x, _ in test_loader:\n", + " x = x.to(device)\n", + " loss = model.test({\"x\": x})\n", + " test_loss += loss\n", + "\n", + " test_loss = test_loss * test_loader.batch_size / len(test_loader.dataset)\n", + " print('Test loss: {:.4f}'.format(test_loss))\n", + " return test_loss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Reconstruction" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_reconstrunction(x):\n", + " with torch.no_grad():\n", + " z = q.sample({\"x\": x}, return_all=False)\n", + " recon_batch = p.sample_mean(z).view(-1, 1, 28, 28)\n", + " \n", + " comparison = torch.cat([x.view(-1, 1, 28, 28), recon_batch]).cpu()\n", + " return comparison" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### generate images from latent variable space" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_image_from_latent(z_sample):\n", + " with torch.no_grad():\n", + " sample = p.sample_mean({\"z\": z_sample}).view(-1, 1, 28, 28).cpu()\n", + " return sample" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# functions to show an image\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " plt.imshow(np.transpose(npimg, (1, 2, 0)))\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 Train loss: 199.5469\n", + "Test loss: 166.5198\n", + "Epoch: 1\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4m9WV/79XkiVLtiXvsR1vibOT\nnSQwSZMAoRCWBChhK+2PKX1gmEKGGX60BNpSupDOMFO6MASe9NewZHggKVmgTNgKZDotgZAQQxI7\nm504drzEq2RLsmRJ9/fH63tyX9nGsq3Fce7ned7HlvS+eo/ue++555577rmMcw6FQqFQnP8YEi2A\nQqFQKKKDUugKhUIxRlAKXaFQKMYISqErFArFGEEpdIVCoRgjKIWuUCgUY4QRKXTG2ErG2FHG2AnG\n2LpoCaVQKBSKocOGG4fOGDMCOAbg6wDqAHwG4A7OeUX0xFMoFApFpIzEQl8E4ATnvJpz7gfwGoAb\noiOWQqFQKIaKaQTXjgdQK72uA3DJV13AGFPLUhUKhWLotHDOcwY7aSQKPSIYY/cCuDfW91EoFIox\nTE0kJ41EoZ8BUCS9Lux9TwfnfCOAjYCy0BUKhSKWjMSH/hmAyYyxCYwxM4DbAbwZHbEUCoVCMVSG\nbaFzzgOMsQcAvAvACGAT5/xw1CRTKBQKxZAYdtjisG6mXC4KhUIxHPZzzhcMdpJaKapQKBRjhJhH\nuVyIPPzwwwAAq9WK2bNnY82aNfTZc889hz179gAANm/enBD5FArFGIVzHrcDAB/rx5YtW3gwGPzK\n49ixY/zYsWO8uLg44fJ+1TFlyhQeCoV4KBTia9euTbg8KSkpfMOGDXzDhg08GAzyvXv38r179/KS\nkpKEy6YOdcT42BeJjlUuF4VCoRgjKJdLlNiyZQsA6NwrAHDkyBG8++67AICJEydi1apVKCsrAwB8\n61vfwvr16+Mr6BCYN28eQqEQAODMmT5LDOJOQUEB7rnnHgBAKBTCxRdfDAC4/vrr8eyzzyZSNMyf\nPx/bt29HaWlpROdfddVVAIDKykrU1tYOcnb8WLVqFd544w2sXbsWAPD8888jGAzG5d65ubkAgK1b\nt+Ljjz8GAGzcuBGnTp2K+DscDgeWLVsGAHjnnXfQ09MTdTlHM0qhR4EFCxbgpptuoteHD2vRm6tX\nr0ZLSwu6uroAAGazGZ988gnmzJkDAMjMzIy/sENg7ty5cLvdAIDt27cnVJacnBy8+OKLCZXhq7j6\n6qthsVgiPn/16tUAgLvvvhu33357rMSKmKysLADAhg0bAADPPPMMAGDTpk3wer0xv39GRga1G4fD\ngaamJgAYsjLfv38/cnK0FfILFizA8ePHoy6rjN1uxy9/+UvMnDkTAHDllVcmtBMZtQp9zZo1ZI3V\n19eju7sbAPDKK6+gsbERJ06cSKR4OvLz88EYA6Ap86uvvhoA0NDQoDvv4YcfxowZM+j1f//3f8dP\nyCEya9YsrF27Fi+//HJC5finf/onAMCNN96IRYsW9XvOsmXLYDAY8MUXXwAA/vKXv8RNPpNJa0LX\nXnvtkK7bt28fAOChhx5CSkoKdZyJQli148ePBwC8+uqrAEDtLpZkZ2djy5YtZOBs2LCBRghD4Uc/\n+hEmTJiAf/iHfwCAmCrzO++8EwDw5JNPoqjo3IJ5u92O1tbWmN13MJQPXaFQKMYIo3ZhUXV19YD+\nyM7OThqeRUJdXR0A4KmnniLLKNqUlJSQbG1tbf2e88UXX9DQDNCGZx999FFM5Bkpa9aswdatW3H5\n5ZcDAP7nf/4nIXII/63w5csYDAbdZzU1Wv6i2267Dfv374+LfF//+tcBAG+//TaeeuopPPbYYxFd\n99BDDwHQ6mR+fj6am5tjJuNgWCwW/PWvfwUAmpe47rrrAGi/K9ZcddVVuvvk5eUNqTwuuugiAMDB\ngwexY8cO/P3f/z0ArS3GgsLCQhw4cACA5qqSdeiWLVvwwAMPAMCAemCYRLSwaNS6XO655x7yNVdU\nVJCrYt68ebjssstw6aWXAgBqa2t1Qx4ACAQCAIDm5mbk5+fT+6dPn46ZQhfKpD++//3vAwCmTJkC\nAPj00091f0cjP/jBD1BTUxOz8oqEXbt2kdLuDzG07erqQklJCSZMmAAA2Lt3L4xGY8zlmzVrFrkm\nqqqqhjTBLXzoo4HZs2eTIge09hMPRS4mQW+++WYAwHe/+10AGLIy//Of/0yvd+zYETNFLnj44YcH\nnP+67bbbsHLlSgCaO+aZZ56B3++PqTwyyuWiUCgUY4XzcWFRRkYGv+KKK/gVV1zB7XY7X7Fihe5Y\nsmQJX7JkCc/JyeEtLS20OOZ73/te3BcEXH/99dzr9XKv18uDwSBvaGjgy5cv58uXL0/0QoV+j9LS\nUl5aWspDoRA/cuRIQmQQ5VNVVUWLsXp6enTHM888w1etWsVXrVrFly1bxp944gnd5//4j/8Yczlf\ne+01erYLFy6M+LrMzEwuCAaDPCcnJ6HPfP369dRGQqEQf+utt+Jy382bN/PNmzdzzjnft28fT0lJ\n4SkpKUP6jvvuu4/k3rRpU8xlLikp4U6nk+pleXk5f/fdd/tdQNjQ0MDz8vKide+IFhaNWpfLV9He\n3o4PP/yQXn/wwQf9nnfzzTcjIyMDBw8eBAC89tprcZFPZsGCBTCbzfR6y5YtCfNHR8Ly5cvp/0T4\ndUtLS+k5ZWdn6z6rqanBtm3bAAA//elP4fF4dJ/de6+2j0pOTg6eeuopJCcnAwD+8z//M+qhZGvW\nrMG1115L0VafffZZxNf+8Ic/JL//7t270dHREVXZhoqIcAEAv9+PH/3oR3G5r/A9h0Ih1NfXR+ya\nsFqtNFfxve99j77n7rvvjo2gEnPnzkVaWhr+93//F4DWXpKTk/HNb34TAPDoo4/SOpO8vDy88cYb\nuOaaawBE3afeL+elQh8M4ZvbsGEDDAYDfvaznwGIT4HK7Ny5kxaQAMDLL78ct8YyXGbNmkX/P/XU\nU3G/f1JSUh9FDmiTsrfffjtaWlr6va6mpga//OUvAQBPP/00bDYbyf/mm2+iqqoqqnLecsstsNls\neO655yK+Rkzy33nnnTTZ++STTyYsbnnx4sW6vwDgdrtRXl4ed1muu+46vPfeewCAjo6OAct1+fLl\nujk0AHj99dfjIiOgTSBzzvHrX/+a3uvu7samTZsAaB39xIkT6TOPx6N86AqFQqEYOmPSQr///vsB\naEPv9vZ2HD16NK73F5E1ixcvhsViIavyF7/4Ba0aHY383d/9Hb7zne8AAA4cOID3338/wRKdW4Bz\n9913D2idC958U9sw684778TChQtjIo/D4QAAshDFyspIEC6h7OxsVFZWAoDOdRhv+iujoYw4Rspv\nf/tbAMAVV1yB/Px8cv0wxgaMAmKM6cIEq6urIw4VjQZ33HEHgHNhnTt37tR9vmCBPrLwk08+iWub\nH3MKfcmSJVi3bh29vvHGG3Ho0KG4yiD8vGI59X/9138BQNSH/dFmxYoVFI71zjvvxGWVYH/IoYqX\nXHJJxNeJ1boGg0H3HT/96U/xrW99KyqyieX948ePH/KcjPCtAoh7newPWfkIP/7zzz8ft/uLtQKz\nZs3C3LlzKdzv+9//Ps3fvPTSS7prNm/eTCuCAeDjjz+Oa7t69dVXsXr1auoMp02bhlmzZlHqj4yM\nDCrLjIwM3HPPPZQmu6KiIubyKZeLQqFQjBXOx7DFrzqefPJJCmN6//33eVJSUlxCsMSxevVq3t3d\nzbu7u3kwGOQffPABT01N5ampqXGVYzjHH//4Ryq7m266KSEy/Md//Icu/HAo165du5avXbuW9/T0\n6EIdy8rKoiaf1WrlVquV79u3j3/xxRc8MzOTZ2ZmDnpdbm6uLqTt/vvv5/fff3/CnvXXvvY1HggE\neCAQ4KFQiJ88eZKfPHky4XVwsGPixIk8FArxzz//nH/++edxD/nMzMzkbW1t9BxDoZDuub777rt8\n0qRJfNKkSfzIkSM8GAzy559/nj///PMjvXd0whYZY0UAXgYwrveLN3LOf8sYywSwBUApgFMAbuWc\ntw/2fbHEarVi5cqVNKv8k5/8JG4RBMK98thjjyEpKYneLy8vH9V+c0ALrwKApUuX0nzDjh07EiLL\nqlWrhnxNTk4OZsyY0ceXKobt0awDIvNgVVUVbr75Zkqw9vTTT/c5V6R5KCsrQ0lJic73G8+UG/2R\nlZWlc0uNhvmSSHj88cfBOccjjzwCIP6htW1tbbj11lspskbMqYjslI888gi5Krdv345169ZRsr6y\nsrLYu4cisKrzAczv/T8NwDEAMwA8BWBd7/vrAPxboi30xx9/nIdCIb5r1y6+a9euuPbc69ev5+vX\nr9f11tu2bTsvLPN169bxdevW8VAoxF944QX+wgsvJEyWo0ePDtlC/81vftNn4VFVVRVfunQpX7p0\naUzknD59Ot+6dSt3u93c7XaTtSsfjY2NvLGxkTc0NPCenh7dZ8LST1Q5b968mUZjbW1tfOHChUNa\nHBXv45ZbbuG33HILD4VC3Ol08vnz5/P58+cnTJ4rr7ySX3nllXzTpk386aef7ncUbrVa+Y4dO0gf\nvPTSSyO5Z3R2LOKcN3DOP+/9vxNAJYDxAG4AIGYsXgJw42DfpVAoFIrYMaQoF8ZYKYB5AD4FMI5z\nLhJ+N0JzyfR3zb0A7h2+iIMjQoh+/OMfw+Vy4ec//3ksb9cvInuezAMPPDDq3S3AuUyRgLYK93xh\n165dAICpU6f2+ayyspJW88WCyspK3HrrrZg3bx4AfQSLQF7w8tJLL1EObQBx2TRiIAoLCyn8DtCy\nkQ5lpWsiEKstAeCtt97C559/nkBpQAnB5MRg4Xi9XmzZsoVCMC+//HKKIovVIseIFTpjLBXANgD/\nzDl3iRAxAOCc84FS43LONwLY2Psd/Z4zErKysvC73/0OAGA0GrFr1y7s2bMn2rcZFpmZmf36b51O\nJwDNtyv87cIXl5GRAQD4l3/5F901wWCQ/IbykvdoIPut33rrrah+91BhjOl8u3JD/v3vf6/Lnhme\nPlfm+uuvj6GU5xBpVMXfgaiurta9FityRVqKeLJ48WJdGb/xxhtxl2GoiHrg8Xjwq1/9KsHSRM7W\nrVtJod92222UWlesXo82EYUtMsaSoCnzVzjnYi+yJsZYfu/n+QDOxkRChUKhUEREJFEuDMAfAFRy\nzuWp/DcB3AXgX3v/xrWbF/mu33nnHcqDXVVVhR//+MfxFOMr+fLLL/t9/49//CMAbYu6ceM0T9Vt\nt9026Pc1NjYC0PJ/RIulS5eSDKOB5557TpdDRowYhBXenzUe/l48F8dECmMM8qg2EZa5QERkiZW3\nYsXmaOW+++6jOnr27NmEu1uGQigUovp8ww034Cc/+QkALVHgsWPHon6/SFwuSwB8G8BBxpjI2vMY\nNEW+lTH2XQA1AG6NunRfgfBZyon5H3rooYStxhT+3BtuuGHQc2+55ZZ+3w8EAjrlJJayi+XvYleZ\naHLjjTdS53jgwIGEZ4Lcvn07bQgiNvsdjObmZlRWVtLS+vC9XEcDUqRXwhEJ406fPg3gnAtwtHLf\nffdR2Ykw0bS0NACai1L8jtGKSHb2+OOP49///d8BAOvXr8e3v/3tqM+lDKrQOed/BcAG+HhFVKWJ\nkJKSEsrMBpzbESiR/t9vfOMbALSdfuQ4dODcFlnhVvimTZt0u5pv376dcnzEA5vNptvc+PXXX6cs\ngImipqYGt99+OwCts3nwwQcHvebJJ5/Es88+G2vRRoRI5QvEZ+Pl/hD1ctKkSTo5ErlL/VAJBoO4\n8847aY7p8OHDuOuuuxIsVWS8/PLLtIH1N77xDfzsZz8bcBQ/XNTSf4VCoRgrnI9L/+Xl/aFQiC9Y\nsIAvWLAg4YsfzrcjKSmJf/zxx3znzp18586d3GazJVym8GPlypV85cqVfPv27bynp4dv27aNb9u2\njV999dX0WXFxccLlHOxobGzkLS0tvKWlhT/44IMJkcFoNHKj0cg3bdrEQ6EQf/HFF/mLL76Y8LIZ\n7CgvL++z1H7jxo1848aNvKioKOHyDeUoLi7mxcXFPBQK8VdeeWUo10a0sOi8U+hLly7lLpdLKXR1\nnFfHn/70J9o2MdGyFBQU8D/84Q8JzycT6bF06VL+4Ycf8g8//JA/8cQTfNy4cdxsNnOz2Zxw2YZ7\nvPfee7yrq4vPmDGDz5gxI5JrxqZCf/TRR3XK/Pjx43zatGl82rRpCX9I6lCHOtQRyWG32/nJkyf5\n6tWr+erVqyO5JjpL/xUKhUJxfnDebnAhktyvWLEi7nuFKhQKxUhwuVy0fiaasHjGxsZi6b9CoVBc\nAOznnC8Y7CTlclEoFIoxglLoCoVCMUZQCl2hUCjGCEqhKxQKxRhBKXSFQqEYIyiFrlAoFGOE8zYO\nXcAYGzVpSQfCZNKKmTGmy2Yop8o9H35HojEYDJS10GKxwOfzAdDKMRgM6nKmx7ssRa5zsRNQUlIS\nZTFMhDznO6I8RR558WxHWzmKHbZEvWSMUb0UbV3IHA/ZlYWuUCgUY4Tz3kIfbT22wWAgK81oNMJk\nMsFisQDQem+TyUQbR/v9fp2VLv+W/nbmuRCRLTWTyQSr1QpA2+AgEAgA0PJ5d3V1kUUUDAbBOf/K\nXY5iIZ/8NxAIjLq6eb4QPlodTZuDAPp9bxljMBqNMJvNALS6Ju+HIOpovDjvFbq8rRcQfwUvHmhq\naioAIDU1lbb4ys/Px5QpUzBt2jQAQEFBAdrb23H2rLb96v79+2m3lZqaGrjdbt2mA/H6LaJyJicn\n02bVVqsV3d3d8Pv9JI/YXSUUCsW0osrKUeymZLFYkJGRQZsrL1myhGRzuVyoqqqijZg7OjrQ2dlJ\nZRkIBGKycUd43ZM7c/nz8KH3aEHIZzQa6f+kpCRYLBZkZ2cDADo7O8E5R2trK4D4KCjOeZ8OMvzz\nSBHXj7TsZXkMBgO9Tk5ORmpqqs4V2N7eDgDo6urSGRbD/Q1DYdQqdLmXDt+PETjnlxZ/Aa2QZMto\noL/h/w8HWdGkp6ejoKAAADB58mTMmTMHgLZTUVlZGSl7k8kEv9+P5uZmAEB2djYp9M8++wzl5eWk\nhOTfG6uHLypnSkoKAK0Dmjx5MgBtay+v14uOjg4A2l6O9fX1ALQty2Ll85eftdFopIaSm5uLxYsX\n45JLLgGg7bojFLrT6URJSQny8/MBaFvQnThxAnV1dfQ9olxHYu3JsokRg7DGTCYT1QlAU+5y5zyQ\nHz0UCvVp8LFW/OJ3iLZjNptp5FNaWoqioiKqzy0tLSgvL4fb7QYAeL3eqHSO4WUpK0nOua5jNBgM\ndM/+ykq+bqA2Ppz6Ks+LiGcrRonp6ekAtG0S7XY7MjMzAWgd3okTJwBonaHb7SZDKBgM6vzr0dRH\nAuVDVygUijFCxBY6Y8wIYB+AM5zz6xljEwC8BiALwH4A3+ac+0cijOiVxdBV7hWFjyopKQl2u516\nyNLSUrImGhsb4fF4cPToUQCadcE5J5+1bFmI3lz0wkPxs8qugKSkJNhsNtjtdgDAxIkTMXv2bADA\nhAkTkJqaSueKTaDFPSdMmED3raqqQlJSkm40EW1LLXwYazAYYLVayc1SUlJCo4vJkyeDMYba2loA\n2gbVwkIf7PujZm0YDFSuc+bMwbJly2h/1qSkJHqeKSkpOisuJSUFTqcTjY2NALS5ClG3hmNdynMi\n4llarVZYLBbajT4vL0/3rN1uN5WXy+UCY0znvhJl1NXVpZtLCQaDUR39hEeLAOf2FhVzO1lZWSgs\nLAQArFmzBqWlpSRrZWUlqqur+3UlCTmHIqs8shb/WywWatfiMzGqDQQC5P4DQG5AEUEUCARIVrfb\nrSvb8FHRUOQM1z9iU2qz2YyCggIaDU6dOhXZ2dk0wvF6vTTira+vh8vlIheM2+2m/4UrRvZCDFXG\n/hiKy+VBAJUA7L2v/w3ArznnrzHGngfwXQDPDVcQxhhVNKPRiGnTplElGjdunC7VZHZ2Nj3gmTNn\nUkXo6elBc3Mzpk+fDgA4ePAgnE4nbcTc2tpKFUFW5kOFc06KQUzIiWGV2+3GmTNnAABNTU0wGo3k\nd/T5fPD7/SguLqbv8ng8AACHw6FTGNH0VQ40tDUajQgGg3Qvj8dDZZmeno6srCy0tLQAOKeU5DII\nJ9pKKDk5GTNnzgQAzJ49G1lZWfT8WlpadI2jra2NhrNWqxVms5kUltvtHpGbRQ5FzMjIAKA9rzlz\n5tD8iLiXmB/p6Oig35Geng6z2UxK22azoampCYDW6FtaWkgpRUuZC7lFm5IVeigUgsFgoPvI5Txz\n5kwUFBRQZ1hYWAiz2axzJ4XfJ1J5jUYjKTuz2YypU6cC0Np3bm4uufuEvx7Q6qTRaCTXn9/vR0pK\nCrmAurq66LPa2lo0NDTo2vhwZBVlJ567XJfy8vIwffp0jB8/HoBW14LBIDo7OwFodU2UVVZWFqxW\nKz2DpqYmqrP9EY3nHpFCZ4wVArgOwJMAHmJazbgCwDd7T3kJwBMYgUI3m830sIX1U1ZWBkCzZPPy\n8uhczjlyc3PpM9FQurq6YLFYqPCTk5NRVVVFldNsNut2OA/31Q0Fcc9AIAC320052U+fPk0jAp/P\nh56eHqpwJpMJDoeDzi0oKKDv8fv9CAaDMZm8EwirQPxm8VoowkAgQOWck5OD5uZmUujd3d26Scb+\niJaVIRpEaWkpjXbEXIR4lidPnoTL5QKg+So9Hg9ZdaFQCJmZmfTa4/HQMxmOLHJ9EqPB4uJiLF68\nmIyH+vp6NDc3k2Jubm6mcrLb7SgqKqJydjgcZOGJyWbZRxytjlGekBOdtyAYDOqUtDAyHA4HDAYD\njdrq6urg8/noWrkjEK8jGd0aDAakpqYiJyeH7iPad1FRES6++GLYbDYAmvEg5pk8Hg+6u7tJN4g5\nKyG7y+WiOmE0GuH1enUTuOEWcCT0N18nvsdut6OwsJBGF21tbQiFQtTGW1pa6DmnpKTAZDKRkQSc\n6/DFSCLao/BItdlvAPwAgHhyWQA6OOeiZdcBGN/fhYyxexlj+xhj+0YkqUKhUCi+kkEtdMbY9QDO\ncs73M8YuG+oNOOcbAWzs/a5+u6Nwn7nBYCCfOaBZLcKH1draivT0dHJVnDhxgoY0gUAAPT091COW\nlJTg7Nmz1LuL3jFMvqH+JN11wi8uvtvhcFBv7XK5dK6KjIwM3fCxp6eHZPd6vSNyA0UiazjCXyss\nCtnPm5aWhs7OTp3bIh4ha4wxel6XXXYZFi5cCEBzWxgMBvJLHzlyhEYPIppAhNrl5+frwkeF6wsY\n+lyJ7Aq0Wq0UzXDppZdi5syZdE+fz4eKigqav6mvr6eyS0lJQW5uLiZNmgRAK1vhlpsyZQpaW1tp\ntBEthPUnux9kC112wVgsFvKh2+12MMboOqfTifb2dqoj4fNOkbYfEUkjLP/k5GQapcyaNQs5OTlk\noXs8HrrfyZMn0d7eTmWZn5+P3NxcmkPLyMigkdjp06dhsVgGdA0Opa3L5wYCAYq2yszMREpKCj2v\n9vZ21NbWwul0UpnIrjar1YqSkhIAwL59+8jXLlxG0SYSl8sSAKsZY9cCSIbmQ/8tgHTGmKnXSi8E\ncGYkgoRCIfJDM8bQ3NyMoqIiAFrhivA+u92Oo0ePoqGhQfsBJhMN46ZMmYJAIECVwe/3w+VykSLq\nrwKOdNGJeIDie1taWqgxMMaQnJysm6ybPHky+d/a2tqoYQt/f6xD1uRhePgkaVpaGrkQcnNzdcNX\np9NJyn4gGaMR62symcifu2TJEpoE7ezsxKFDh3Dy5EkAWkcu5D579iwCgYBustdisZBCT0tLo7ol\nT55GIo/BYKDhdVZWFs3lFBUVweFwUEOuqKjAvn37cOTIEQBa3RNGSV5eHoLBICmF9PR0XX0Rk7ry\nfaPpdgH6LnSSjaZJkyZRfL/FYkEwGMSXX34JANi9ezfq6uoGbEORlqXoCETdKygooOeTkpKCUChE\nda2+vh779+8HoE3KejwecrGmpaWhu7ubnonVaqWO3Waz6dwj4SGNkRIuq9FopOtTUlJ0cwqtra2o\nra2lc5OSkshtmZubi+LiYp2xJ0+wx8K9OqjLhXP+KOe8kHNeCuB2AB9yzu8E8BGANb2n3QXgjahL\np1AoFIqIGcnCokcAvMYY+wWAAwD+MNwvEsmVRO/l8XjQ3NyMv/3tbwA0a0JY4e3t7Th8+DANedLT\n03WB+8nJyTQM7urqgsvlop5fDuaPpiUsT27IS3/FEF24EGbPno2cnBzd8FWEBba3t+uGa7Ek3FIT\nQ91JkybR6MFisaC5uZk243a5XDGdsAU0yzQzMxPXXHMNAM0KFuXh9/vR2tqKw4cPA9DqiPgd4n9h\nLdvtdpSUlNBzqKysHJbLRYxmxO+2Wq3kzktOTkZPTw/Jc+jQIVRWVlK9DAaD9NyDwSDcbrfOChfW\nus1mo2E4MLQRxFAIX2RjNBrJbbF8+XJyJRkMBlRUVOD1118HABw7dqxPiorhICZ/hau0ra2NFn5Z\nrVaMHz+e3Gl79uyhEUJTU5NulFRVVYWsrCySl3NO7ovOzk7dBPNIknrJ53u9XrpfRkYGjhw5QgEC\nbW1t4JzTa5vNNuCz9Xg8ukR9sWBICp1zvhvA7t7/qwEsipYgcrSFGHKKBlFZWUlhXsnJyfB4PBQm\nJGa9Ac2HdvHFF5OCB4BTp071yfERC8T3mkwm8g3OmzcPdrudXtvtdtjtdopyqaioIPdMMBjUZRCM\ntesFONewRaW75JJLqCxDoRDq6+tp1ZuosLHEZDJhypQpmDhxIgBtiCrKp62tDVVVVVQ+IqIB0Pyz\nnHMKKczJyUFJSQl17J988gkpe/E3EsL90C6XixR6RkYGOjo6aD7kyJEjujkGOWRQVu6AVmdl37Yc\nSQPEPjujcAUuWqQ138suu4zu39raip07d2LPnj0Azi39HymhUAg9PT1U9w0GAxkPYv5BuE5qa2up\nXAOBAEwmE5WX2+2m6DFAM+hEKKDT6YxaZyi7JjnnVD7t7e1ISUkh/SOenVDiOTk5FDEk6qN49kaj\nUWfsibocTUbN0v/wVLI+n4+6PVYCAAATsUlEQVQelNVq1YWAyRMqmZmZ1Hvm5eXBZrORJbR3714w\nxkgZxSpJE+9NOQBolqSweDMzM5GcnEzWIeccDQ0NVFlTU1Pp3NLSUgoRA2Kby0UepSQlJdGkTWlp\nKVkQTqcTn376KTXAeCS4Ej580am4XC6yvo4cOaILVeSck7UnQsPEnMuSJUuoUwC0yXExBzPUMFX5\nd8uKORAIoK2tjUZ/QknKi2VEgx43bhwcDgd1BikpKbqO22636xq9bNzEAsYYsrKycPnllwPQ/Nmi\n/p44cQJvv/02hXlGsw76/X76vqSkJAo3zM7ORjAYJIvd4/GQArVarbDZbDTxWVBQALvdTp83NTWR\nEnc6neju7taFKo7Ehy6uEQvwAK2DMxqN5CcXuW9E0EZRURF9lpaWhtTUVHqW48ePp/rS3d2Nzs7O\nPosdR4pa+q9QKBRjhFFjoYcjR700NjZSD8g5p6EaoFnsIhRK9JbC2uGcw+v1kvURy2GssOTkhRaN\njY0IBoO65c5NTU0UXeD3+2l0IcIdhfUurzCNJaFQiMovLy+PZDt79iwOHTqkW4gVC+Q0Cjk5OUhP\nTyerpauri6y4ffv24ezZs7rwMCGbyHYnrPLS0lIa+QDaakd5lDQU5ORZJpOJ6qTH46Fl6YAWepeR\nkUHnZmdnk1WZlJSE8ePH00Iar9dL8nm9Xvh8PqqzYg5msIiikWA2m7Fw4UJcddVVADQ3pvBf7969\nW2f1RpOenh6ymL1eL43+qqqqdJEkaWlp1N5NJhOys7Np1Gaz2ZCXl0dW8NGjR8n90dHRoZuLC4VC\nw5o7AfqmshbtsqioCOnp6fS8TCYTCgsL6VlnZ2fTvTIyMmCz2agdZ2Vl6VxrSUlJUd+4Y1QqdDnU\nCtAatlCKTU1N8Pv99MDb29tp9d7UqVNRUlJCQ3FxbTwUujzME6GIx48fJ7cGoPknU1NT6bdMnjyZ\nQre6u7uRkZFBcwVyrpJYu16EQg+FQuSeevfdd9HY2BiXSVo5Z4bD4SCl6ff7cezYMQBaWZ49e1aX\nw0NOTzthwgTyY4qJXnFuVlbWsFcEA6DvaW9vR2VlJQDNpeJwOGiy3ul0Ii8vj9w+cv4RALqVqwaD\nAVVVVfSd8m+RO7hYYbFYcM0111CnEgwG8dlnnwEAtm/fHlP3mqjTPp8PNTU1ADS/eFpaGrmoAJBh\nkZ2dDc45dXB2ux0mk0mnCIU7zeVywe/369ws4XlnhoNsXAaDQZ2LzGazwWazUYfj9/tJ3wgXnXBf\nyak9zGYzZV8VKJeLQqFQKIhRaaEDfYc8clRLMBikXA92u52sdWEJC4tKbHQQ691/5NWEHo+HhpJO\np1M3ZPf5fOjo6KDePTk5mYZg4ncIi0/OIherqIdwa7C9vZ0sqOPHj8Pj8UTFwhlMBlF2YkJbyNTU\n1ITjx48D0HKcy5Nq4QuJRM5x4Fw9EBOop06d0i1aGyqiTDo7O1FeXg5Ae5aTJk2iBS8OhwOpqam6\niTR5YtFms5HF7vF4aCTm8Xjgdrt1u9zEakJcWL0i57koi9bWVnzwwQcAtDKLZXuR24LA7/fDbrfT\nezabjX6/y+WCyWTSrU61WCw0WV5fX08WugivlBfORSNMORQK0ahfZMeUR1uBQIBcVh6Ph9yCZWVl\nMBqNpKvkBVEiSd5IsoD2x6hV6MC5hxAKhXTKTYQyidciSmPGjBkIBoO0/LqioqLfDS+iiViVKBRz\ndnY2uVGCwSD5SOXzxcMzGo00zLRarcjLyyNfXUdHhy4ZVqz86Q6Hg8KskpOT6f4itjvWLhdZgff0\n9KCzs5OU3ZkzZ6gMLBaLTqHLjUEsrxYrTC0WCzjn5H8/fvz4iCKdxDVer5dWKBsMBrjdblo52tPT\ng4yMDGq8LS0tOn86Y4w6lebmZvqNbrcbjDFSGLEKrTUYDGT43HHHHcjOziYFf/z4cXITymUcC+Q2\nLW/2IL9OTU2ldtHV1QWr1UqpCcaNGweLxULld/jwYQp3DE94NVIjRNYbwkg8ffo0ioqKSB8ZjUa4\nXC4y4jjnug2j5Y1EnE4nGRnynJu4Lhod6ahW6AL5ocjL6gF9BjybzYYzZ85Qj93R0RETRSiHQ5nN\nZqSmppKllpmZSRM2wWCQfP7AuRSrYiI0JyeHsgmKBi0vf5b3LYwFJpMJRUVFZG3U1tZSo+rq6orb\nbvXypGP4dnGiIR88eBBer1dXFsKqnTlzJhYtWoQpU6YA0DrAuro6HDhwAABQXV1NCn0kllAwGCTr\nKxAIoLW1lba9y8jIQGZmpm77MdFRZWZmwul00lyF2+0mC7O9vR09PT1U7m63W+dXHSmivEwmE3U+\n8+fP18l64MABWiAlh/3FElmB9fT0IBgM0u+WFyDZ7Xbdwp2uri5dnHpDQ4OuYxD5icLvMRLkCXin\n04m9e/dSioycnBzU1dVRhyinhxC520U7ljtL0YkNtBPTcFE+dIVCoRgjnBcWOnDOShdWj/BDy0l+\nvF4vmpubyfIQmRAF0fQDy7PVZWVlJMOECRN0Qz7gXO8rFh2J8Lqrr76aQtlqampw5swZ6s1lV1Gs\ndrFJTU3VDffr6uooFYFIeBWPZGHiHt3d3TTvIOQTfuiysjKcOXNGNywXI7OlS5di4cKFFGlQUVGB\nAwcO0GrH5ubmqEQMyQvIOjs74fP5yHL0+/1oa2vTZafsL783oNVTYaGLCA7hjvH5fFGx1sQoUtTT\n4uJiWkiUk5ODnp4emp/405/+RG0mXqMyoO88mdzG5ZW0cg7/9vZ2uN1uSnglR5UA50Z54jujUZay\ny0XUUWGRd3Z26jKqdnZ20ihObKwirpVXuIpRSbTdweeNQpcn55KSkshNUFhYSMpdbHQgFJTws0Zr\nwqG/0LK0tDRMmjQJF198MQBNwYtGbjabddvTpaWlYdy4cbTLzfTp03XbgAEghSrLLCZeovUbhOxi\n2b8oS3nbNqfTCbPZrEujECvkxiCvtpTTKHg8HuTn5+vWHIjUusXFxbBareSuqq6uxkcffURzKdGM\npZd9wD09PbpNvVNSUnQhsuJ3BINBdHR06FbAyvMo8jxLtBQqYwxms5nKa/LkyVixYgXJ1tLSQpkh\nT548OSw3T7SMDHkiWX4t3pOzG4ql//KcgyhnMdcUyw7J5/PBYDDoNn6R55oyMzPpOYvQVXm5v7wN\nodymoyWzcrkoFArFGOG8sNBlq1JkvJs7dy4AYNGiRWSFeL1e3Qay4rpor8YKnxS12+2U6Ag4tyBq\n7ty5NDECaG4iOVQxJSWFoiZOnDiB3bt3U75vsRIxmnIL2UV5FRcXY/r06WSh+/1+cmNkZ2fD6/Xq\nNl6I1hZzMvKiEeEGEFE3paWldK/09HRkZ2froonE/4wxOJ1OHDx4EIDmQjhw4ACNLmIVhidPlonM\nfiJyREQ6ANpkuMlk0m1WLofYdnZ20vdEbXLMYEBWVhauuOIKAMBVV11FycpsNhv8fj+5geQRTDwW\nkg2EuLe8AEdEvIhytVgsMBgMVGfEYjSg76RoNJ+7PDKTJ8e9Xi/sdju511JSUqg92Ww2mM1mmjj3\n+Xy6oINoTdrKjGqFLj9g0Xhzc3Nx0UUXYfny5QA0pSk+O3HihG54Jscqh3/ncJSS7O+S07rW1NSQ\nv3bx4sUUxSJm6OXlzvX19TRMr66uphTBH330Eaqrq3V7lcqVKBowxmC1WmlIWFhYiEmTJmHevHkA\nNJeHWAnpcDjQ3Nysi7SJhWLk/NxOOl6vF3V1dfj0008BaL9bdDDTpk3Tudp8Ph/F/jY1NaGhoQFv\nv/02AGD//v20A1SskZ+RvLONHDvtdrvhcrlIKYnXgOYTjpbrQjY0bDYbsrOzaSPmiRMnkkIXHY+8\nolowFJdPtA0keV5KuCkLCgqQk5NDKRZsNhu8Xi91iIO192gRvh5DtAXRgYSvhQHOxZ2Lcj59+rQu\ndUUs6ueoVujy7h6iodjtdkyZMoV65Y6ODiqYpqYmlJeX65baivSkQPRifOW4+I6ODlRUVOgar8g1\nk5eXh9TUVIpRPXv2LL788kuywt1uNy1tF0vAZaUZ7UnQpKQkJCUlUYhlWVkZSktLSb6DBw/ScuyW\nlhbU19dHPawqHFmhd3V1obq6miYMm5qaaCf44uJiZGVlUWfY0dFB5VhVVYWOjg6S3efzxWwhVH/y\nA+fSDQjFk5qaqsuHLi8Ukxfv5OXl0e8ARu6XlsMU5YyPaWlpOj95c3MzhXV6PJ6ojxCGIquY6xLK\nMC0tjVIoOBwOOBwOkr2xsVGnuOX25XA44Ha7dRPg0Zg/C9/STv5OkXdG3jJT1NGWlhY0NTXR83U6\nnWR8+ny+mIRUKx+6QqFQjBFGrYUurwSUE8OnpqbCbrfrlmOfOnVKd43ozYWvUvhS5RC5kSJ610Ag\ngJqaGsrl/Le//Y1m3e12uy77ovDxiyGY3++PeQIu+buDwSC6urpoNxi32409e/aQC6axsZH8qmKl\najwyPgr5/H4//H4/Wei1tbW01F7kxBbnilQQ4n95QUw8rcxwl4uoe11dXWS1ORwOBINBcrPIuwWd\nPn1at9R/JLLLroDOzk7U1NTg6aefBgDs2LGDFl6dOnWKkp2Jc+NZZuEYjUbaKB7Q/NByJJbP56P2\nn5ubq1tO73K5KBJKZFuU3SHRQG6b4jvFc25vb9dlx5T3NA5f+SzPSfl8vqjqIwGLV8wpADDGIr6Z\nPMwxGAzkcsnNzcWyZcvoc4/HQ8PcUCiEw4cP08P2eDzo6uqihxAP5XQ+IfJJyHMD8awPYwnhAxZK\nSd4UIScnByaTidwfqampFB565swZuN1uGqZH280myyNnp4z1doKDIbfvcJeLw+Egt6WYnBdlV1hY\niNbWVl0cv+wmlFNmxKMui9QVopyTk5MpH5OcrgTQOhzZuBxiJ7qfc75gsJMistAZY+kA/h+AmQA4\ngLsBHAWwBUApgFMAbuWctw9Fwq+Cc65LeSpbPocOHaIHKufz9vl86OzspOu6u7vJf6noSyKtsrGG\n8K32twONSEMspwUQdTJaC4n6kwdA1K3VaCG3bzEpKpeJiPPu6OiA0WjUpd2V5wLq6+vpXDm5XLwQ\ni5fkzlJemyBGGPK5sSRSH/pvAbzDOZ8GYA6ASgDrAHzAOZ8M4IPe1wqFQqFIEIO6XBhjDgDlACZy\n6WTG2FEAl3HOGxhj+QB2c86nDvJdIx4Diexl/YUQCj+cvPGyQhEvZPdVuMsQ6Gs1K/rHZDKR+yU8\nK6HVatUl64rHSuahEh46GSXXT9RcLhMANAN4gTE2B8B+AA8CGMc5b+g9pxHAuOFKOhTk3AgKxWhC\nbrj9TaQpIuOr0kWPRgUeTiLnoSJxuZgAzAfwHOd8HgA3wtwrvZZ7v7+CMXYvY2wfY2zfSIVVKBQK\nxcBEotDrANRxzj/tff06NAXf1OtqQe/fs/1dzDnfyDlfEMlwQaFQKBTDZ1CXC+e8kTFWyxibyjk/\nCmAFgIre4y4A/9r7940I7tcCzcJvGb7IY5JsqDIJR5VJX1SZ9OVCKZOSSE6KKA6dMTYXWtiiGUA1\ngO9As+63AigGUAMtbLEtgu/ap6x1PapM+qLKpC+qTPqiykRPRHHonPNyAP0V2oroiqNQKBSK4aJy\nuSgUCsUYIREKfWMC7jnaUWXSF1UmfVFl0hdVJhJxzeWiUCgUitihXC4KhUIxRoibQmeMrWSMHWWM\nnWCMXbB5XxhjpxhjBxlj5WKxFWMskzH2PmPseO/fjETLGWsYY5sYY2cZY4ek9/otB6bxu9668yVj\nbH7iJI8dA5TJE4yxM731pZwxdq302aO9ZXKUMXZ1YqSOLYyxIsbYR4yxCsbYYcbYg73vX9B1ZSDi\notAZY0YAzwK4BsAMAHcwxmbE496jlMs553OlcKsLMdHZiwBWhr03UDlcA2By73EvgOfiJGO8eRF9\nywQAft1bX+ZyzncBQG/7uR3ARb3XbOhtZ2ONAID/yzmfAeBSAPf3/vYLva70S7ws9EUATnDOqznn\nfgCvAbghTvc+H7gBwEu9/78E4MYEyhIXOOd/ARC+bmGgcrgBwMtc4xMA6WKV8lhigDIZiBsAvMY5\n93HOTwI4Aa2djSk45w2c8897/++Elul1PC7wujIQ8VLo4wHUSq/ret+7EOEA3mOM7WeM3dv7XkIS\nnY1CBiqHC73+PNDrPtgkueMuuDJhjJUCmAfgU6i60i9qUjT+fI1zPh/a0PB+xtgy+cOvSnR2IaHK\ngXgOQBmAuQAaAPwqseIkBsZYKoBtAP6Zc+6SP1N15RzxUuhnABRJrwt737vg4Jyf6f17FsAOaMPk\niBKdXQAMVA4XbP3hnDdxzoOc8xCA3+OcW+WCKRPGWBI0Zf4K53x779uqrvRDvBT6ZwAmM8YmMMbM\n0CZz3ozTvUcNjLEUxlia+B/AVQAOQSuLu3pPizTR2VhkoHJ4E8D/6Y1guBSAUxpuj2nC/L83Qasv\ngFYmtzPGLIyxCdAmAffGW75Yw7TdIv4AoJJz/rT0kaor/SE2Bo71AeBaAMcAVAH4YbzuO5oOABMB\nfNF7HBblACAL2kz9cQB/BpCZaFnjUBavQnMh9EDzc353oHIAwKBFSVUBOAhgQaLlj2OZbO79zV9C\nU1b50vk/7C2TowCuSbT8MSqTr0Fzp3wJbee08l5dckHXlYEOtVJUoVAoxghqUlShUCjGCEqhKxQK\nxRhBKXSFQqEYIyiFrlAoFGMEpdAVCoVijKAUukKhUIwRlEJXKBSKMYJS6AqFQjFG+P8nx+FQZZ/x\nxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZVl63/e/b57HGDMru7sINLkx\nYS4IyQsvZAg2bMMAd4TlhSlDADf2Xtx5y60BA4a5ECwtbEsbQVoYHiBA8MoAYS8IusHqbrGqOjMy\nM+LFm4d48/Ui6vfF927d+96LyCp2dDkOkIjIiBf33HPOd77h/01BGIZ6GS/jZbwMRurX/QIv42W8\njOc1XpjCy3gZL2NnvDCFl/EyXsbOeGEKL+NlvIyd8cIUXsbLeBk744UpvIyX8TJ2xvfGFIIg+A+D\nIPgiCIJfBkHwJ9/XPC/jZbyM73YE30ecQhAEaUk/l/TvS3on6c8l/b0wDH/2nU/2Ml7Gy/hOx/el\nKfwtSb8Mw/CvwzBcSvqfJf3B9zTXy3gZL+M7HJnv6bmvJb11/38n6W8nfTgIgpewypfxMr7/cRuG\n4emhD31fTOHgCILgjyX98a9r/pfxMv5/OL4+5kPfF1O4kvTG/f+zb35mIwzDP5P0Z9K3NYUgCBSG\noX2N/sw9Q0l/x+/jfvbrGn493/c80u5a/b4x4t4l7h2T9pD/J/1NdK5j1h+da7vdHpxr37sfM/i7\nXwdtxJ1L3Gei9yDud0njsev6vpjCn0v6aRAEn+ueGfynkv6zxzzAE4H/Gf+in9lut4kMJI6hHPsO\nce8RJaBjN33f5+LW+alzJa2Xn6dSKaVSqZ15Dl24fc+M7n8qldqZy69ts9nYmXF+fn3R9zjEVKLz\n+O+ja4t79mPHd31e0WdH6Te6f+zhp84VN74XphCG4ToIgv9K0v8mKS3pH4Vh+P8e87dxxMcmZDIZ\n26BSqaRqtaq7uzul02mt12tJ95KFf3d3d1osFo96dzY/k8kolUopnU4rl8vp9PRUk8lE2+1W6/Va\n6/VaYRjawSwWC3uHYwfr4vKkUikVCgW1Wi0tl0s7+CAIlE6ntVwutV6vNR6PtVwunzRXJpNRJpNR\nOp1WsVhUo9HQZDLRZrOxNbB/qVRKi8VCm81m73M5L86MvfP7l8vlVC6X1e12bQ+3260xhEwmo/V6\nbetK0jyitMHepdNpmzubzapcLms2mymVStlFzWQytp+z2UyLxeJRF4k1ptNp+5rP51WtVu1svHBi\nH9nXY+Zibel0WqlUStls1r4Wi0U1m00NBgMtl0ujvTAMjakuFgstl8tPYhDfi0vy0S/hzAdPZIVC\nwYgLQpakQqGgSqWis7MzuyxczOVyqWw2q+l0qslkoru7O41Go29x1cj8yufzymQyyufzqlQqqlar\nymQyajQaKhaLev36tSSp0+loOBxqNptpNptpPp/r7u5O0+lUm81G0+nUDihprmw2q1wup3Q6rWw2\nq3w+rzAMValU1G639du//duqVCqazWZ2wXq9nrbbrd6/f69ut6tOp2PripsDSQ1RwXQymczOHhaL\nRS0WCy0WC93d3Wm9Xmuz2SiVSmm73dq+zefzHYJnHi+9K5WKMYF0Om1nlslkVCwWtd1uNZ1ONZ/P\njahhCJvNRpvNRplMxt7DS92ohlIqlZTL5YwJQBu5XE6FQkH5fF71et0uZj6f13K5tEt6c3Oj1Wql\n29tbrVYrScmSNp/Pq1AoqFgsqlwuq1ar2ZoajYbK5bJyuZzG47Gm06nRw2w202QyMaYLjUTPyo9K\npaJyuaxSqaR6va5isahUKqV2u61KpaJsNqvVaqV+v29zTKdTrVYrLRYLTadTrddrzWYzE1JuXf93\nGIa/n0ic34xfG9AYNzxDyGazdtipVMoIoFAoqFqt6uTkRK1WS8ViUavVygh4uVxqMBjYBe/3+wrD\nUJPJZIdbe2LmuZVKxQ6jWq2qXq/r/Pxc9XpdJycnms/nKpfLtvm9Xk/X19dar9cqlUqaTqfK5/Na\nLBaJjAHpgtQuFArKZrOqVCpqNBq6vLzUmzdvlMvltNlslE6ntVqtVCgU1O12VSwWVa/XNZvNFIah\nxuPxDqH5PfQXxkts1tput5VOp7XZbHR3d7cj1ZbLpSaTiSRpNptpu91qtVrtaENRra5Wq6lUKqlU\nKtm6OAcYVL/ft/3xl3Q6nUqSlsul0um0ptPpjjYUNU8qlYo9M5fL2VfO7vz8XO12W+Px2LSF+Xyu\njx8/KgxDnZycaDwea7VaaTQa7dW8EAzFYlHtdluNRkO1Wk2np6eqVqtqt9uazWYaDoeaz+eaTCbq\ndrv68OGDVquVVquVlsulSqWSZrNZ4nlJUrPZVL1eV6VS0enpqZrNpprNpqrVqtFIp9MxpjCZTNTr\n9dTtdtXv9yVJ8/nczumx2qv0zJiCH6VSyRgChAWXfvXqlVqtltrttpbLpfL5vLbbrXFHVOT1eq1q\ntaogCEy9Y3ipUC6XValUjKhQ0169eqXz83NVq1UtFgulUik1m01NJhOTpMPhUNlsVsvl0iReOp1O\nZAr5fF75fN4+J91L7Xq9rtevX6vdbqter5u0zmazmkwmqlQqGg6HCoJAq9XKJAgSPm4Ui0VjPEjs\ndrutk5MTnZ6eql6vq1Ao6O7uTqvVyjSf1WqlbrerfD5vF6dQKJjqHSdRM5mMLi4uVC6X1Wq1VCqV\ndHp6agwJpo12s16vNZ/PNZ/P1e12lU6nNZ/PJckYhr+ofs50Oq1SqaQwDJXNZlWr1VStVtVoNOzC\n1mo1FQoFXVxcaLPZmMmFOblcLlUoFFQqlezSxo10Oq1KpaJ8Pm/S+uzsTGdnZyY4stmsZrOZSfn1\neq16va5ut7tjtnkTJrquMAyVy+VM82i1Wmo0Grq4uDAaxGzJ5/NqNpsql8t2rtDBYrGwPfdm9WPG\ns2MKHlQJw9AkTrVaNUZQq9XUarXs4mezWW23W1UqFTtg7Eku7775wAY4sFKppHK5rGKxqNlsptVq\npcFgoPl8bhcWyYsk9pjGvrmQjLlcTpJM8ymVSsrn8yoWi3ZxIPzVamVMAqaQz+c1mUwSPQgeP4A5\nnJ2dqd1u6+LiQmdnZyoUChoOh7bHMA+kK3gNe+hBPD8ymYxOT09VLpf12WefGUMtl8tarVZmLqzX\n6x0TBibEeYGjSPdmANqQH+BJy+VSrVZL2WxWFxcXZvIhPNgvSXah7u7udHFxofV6rX6/b0wu6cyC\nIFAul9N8Ple1WpV0L8kxRabTqabTqVKplGazmVqtlpm90+nU1omGtc9URxteLpdqNptmmtTrdUky\nbebu7k53d3eq1WqmMYVhqGKxqFwuZ3jNp8ACz44pSLLLDrAYhqFxbMwKwD5sXVRVGAEMBZUqyfZG\niqHKepBtMBgonU4b8WL75/N5SfeEy+XDptzHhFKplDEPJAdqO2AR5sB6vTapls/nDbvgokyn071o\nfC6X28EVkKi/9Vu/pUajoUKhIElm4xeLRUmyz2JmTCYTk6Jx6+KSchkbjYYqlYrZ9ewd5gDSGa2s\n3+9rMBhoMBhoPB4bxjCbzWLXlc/ndzAAmCaYEnvF+Z2fn5uACILA6AYJi9YWN6ANzKnxeKxer6dM\nJmP4AM+E8WLmFotFm4t3TafTiUw8k8mYibbZbOy85/O5Op2OgiDQcDi0d2XufD5vdAgTWy6XB4Xh\nvvGsmAJEzAiCwOz4bDZrtmqpVFIqlTKAhc/UajWtViu7LHd3dweR2DAMjQFNp1PlcjnTNricd3d3\n9kzs9EKhYKqadG+7QaypVCqW0DxSvFgsdpgYEsm76xaLher1uhHXcrk0G/Xu7i7WhcgeQqBoUc1m\nU2dnZ3r9+rWy2awxmNFoZOAijKJcLisMQ11dXe1oKnHrwYsBUXuinU6n6vf7Go1GGo/HWiwWury8\nlHQvvdfrtTE3/kHI7GV0XWhpPB/zB4wBJrvZbHRycqLhcKhisWgmpn9HGG/S5WF/F4uFBoOBSqWS\nCRlv7oRhqNevX2uxWKharSqVSun29tb2gfPcx8T5OfSGGdLv9zWfzzUejw2AbTabGo1GqtVqNgfr\ng1l4zfK5xCk8aUR9vaj02+1WuVzOuGI2m1UQBOYuKxaLpt6tVivzOnBoXLa4uZjPq/+g516Sp1Ip\nlctl1et1k0bz+dzATbSVKDHHzQVRekbDJQalL5fLhj+gWrMuPBxxxBznysV9e3FxoXw+b5pWv9/X\n9fW1eXna7baazaaBs9VqVR8+fDDNLU6VZx6+h0kDUvb7fd3e3trlf/36tdnNnA97vVgstFqtzGSJ\nzsXattut/W0qldJ8PjcNKpvN2jM5Exg44NxwONRoNNJsNjOGv++8kLxcvkKhYMIjlUoZ3nBxcaFS\nqaROp2PAJsAtYHjcXJ4hov3CqNEYvFszCAK1Wi0Do/E88Luo5+ax41kxBenBD73dbk0ioOZ7EM/H\nClSrVUPQca+t12tNJhNTW6Mag/ete+kNp57NZuYbXq/XBiJ5AoYZYFYgUaNSNTqXJDMZMCOKxaJO\nTk5UKBQ0n8+Vy+VMI1oulxoOh6a9QGzsQ9yAaYATNJtNtVot07Devn2r9+/fa7FYmDcik8loMpns\neH28DzzqkuR38/ncvCNcUukeM8BNx4UolUrmqlwsFppMJjuXgH2MOy8/kPJBEKhWqxnTqFarZlsT\nr7DdbnV7e6vhcKibmxstFguNRqMdsyZ6Xn5AWzD06XSqdDqtWq1mWizALc/s9/u2Bug06r2Jmw98\nBbwCEzIIAgOXAXLT6bQ6nY7RXalUUq/XM9PhqdjCs2IKXB4uFVLXS1E8BbgdIWAf5TUej43DgznE\nqW8QtVfZwSYgMIgNV5sHN/mc1yySOLT/OfNy8UDPz8/PlclkNBwOjeBubm7s4g2HQzMjILiotsAc\nSKblcqlyuayLiwuLiWB/IDSYLgFGq9VKvV7PANd+v78TfejXId0HzKAdpFIpVSoVdTodZbNZM0tA\n1zlL3g8Twp8RzHbfeYEj4JKWZO5ImAKmJqr8YDBQt9s1/74P1kqiR94LGgM/wAsGdnJ5eWn2PNIe\n85Jn7DsvT4c+TgQabzQaKpVK5lErFoumwazX6x0NOiqAHjueFVNAtfLIMaoam4qUxjuADxwtgcsN\nPsBlTdok/zMuuSRDf9lgGASHB9KNhGs2mwcDl7w/Ohrx12g0DExtNpumuUgydygXBgJlz+LWBdKf\nz+fVaDQkyUwQmN/5+blevXqldDqtVquls7Mzu3BI8JOTE3W73b1+fI+5BEGg9+/fq1arWXxHPp83\nF2Gz2TQzy2s/XHCY+Hw+T1wXqD6MnyjPk5MT0+qIBRkOh+r3+/r48aNJ4MFgYLQUVef98B4XzyBS\nqZQuLi7UbDZNQ2BN7BsMaTKZ7MSuJJ0XNI8JtNlsNJvNDCsjeAoGvlqtlMlkLKYB2iD2ZDabPZkx\nPCumwAJYuJfG2HTr9dqCm/g86nY2m90Jy42zTeMGF5/P41biggMqwflLpZJFAoLUgwvsuzyAZbx/\nLpezqEIPbiIpuRiAmWAsvOe+uAFJBkouFguTjABSaF6DwcDcWSDxMAHWi4njzyi6JlRr1N9KpSLp\nnhHBQHO5nNnXYAfe7kaLiMOA/Fl5HIZ9IDDKmw4IBL+vHs/xYc/7Lg/0BxNB8yEKlngV3JNRbwDv\ndCjknr3ExU2sAeC5j8EJw9C8PKPRyPauWq2aFvXU8ayYgpd+ED8XDtea9ABmsQGg6XByj5ZzIEkI\nuqQd9xQRh961CdH2+32l02mdnJxIkhEG8QW485IOBWYgybQcmBk/H41GkmRaB0xhtVrZWiCWOLeT\nl9gw0clkog8fPpjamcvldqT/bDZTo9GwOQFRMb88M0saqL1cPswDPBpcfsCxIHjIP/Dv7Nd26LzA\nXPz+oIGkUinzingp713aYFRJ7jsuNrTHOeNSDYJAd3d3hpvwzmirxWJR4/FYhULBzJR94fYwFNZH\niDo4DXQFTrTdbg1bKBQKxqwGg4GB4U8Zz65wKxvGJfUBIHBLSQa4IZmi/lsPUh7SFnyAD/55zBOI\nDteddK/CQuwcEgd66PKAhuOnZ52EOuNtIM4A0wGiRXtCsicN3mG5XFrgy8ePH3V7e6tOp2MmFjkV\nzMOlRlNA7fVaXHSwv1yIxWJh+SEAdJh3rGU8HhsQTJg4mJG3i+PWxSXA3ELrgaH4C0wYM/iKP3OC\ntvYNn3fDnMRlcCFR3YfDoXldEGQwEJhxEm1w+REyhULBMB8YIGAl+RXQIzReLpeVyWQsivcYLTlu\nPCtNQdp10XBZkQjdblcnJyc76qxXoyWZqwlVjcuUxJ09KEOAT7FYNCZDhOFgMNhRSYvFoklWCGwf\n0Mi7FgoFZTIZtVotC80F0JNksRUg1djG2PqYTzC9fcMnyVxfX1tkZqvVspBjzAmvIo9GI4svAE3f\np5KizcBciB4EDPZmAUCnJJPWzE8UoxQfbMYeAvo2m02l02mVy2Wz4SuVioGw2PjeXw8mgJ2P0Ikz\nIYIgMK2RGBkiGhuNhq3l7du3hvTjtu71eqZ1skbeK2kuGBsRvNAEe0PIu08AI/NUuk+mQqv1+Ndj\nTYlnxRS86056kEC453xIMfYgUo3gI0/EuA33Da+yevQ3GnvgczBOTk7s3QhxJcjkUBSZJ+p6vb7j\nXvLSGoYoSd1uV4PBwHzREBiXOGkPQfcnk8kOXkKoLIAtcxIPAROczWYW3r3PxocAvWZD5CF4BiYc\nUYu8B3jAdrs1jW8fMMza0OYwifAIYJL5M8StiwkJluHjSpLmkh60M0LSYYA+1wAXNi5lhAXr8Ge1\nby40BuZjrT7UHbokCxTNCNOJs/9BAI0MTxTgCqiD/J6Ng4ve3d3p9vbWLovPld8nvaVdbQI1MZVK\nmWRm03kHngcDgeg5+H1zeQI7OTkxzQRJCnrOO4GeA0R6wt7n/uQrgB4agwdvcad5TWc8Hltocq/X\ns33cBzR6VyG/964+Lgl2rq8V0Gw27fOYGofchB5zajabKpVK5tYFR0GqFgqFnbyKTCZjOBSg9CGN\ni3kxcbD3fXIXTJz1kzcDLsMa99EG+4jwKRaLxhgkmdaYSqVUr9fNNOHZvV5PYRhaYuAPIsxZ2mUI\nHo1l0wlIIbyVjR8Oh6Z64zcHlCOL8BDCjEoG8XCI6XRajUbDAkfCMLTY9w8fPlhgjI913zcPh14q\nlYwx+Oi75XKpXq+n2Wym29tb3dzcWJgrBIakjXu+38soA+PSZTIZlctlk7bk4H/48EGj0cjqAGA2\nHLo4PvvPe4/YDzQ8wFl+Vi6XjRERg7Hv8njPQ7VaVbPZtDR6gNxUKqXRaKTRaGQBUgDRPqfEB1ol\nzYV2ygVE0yNCE/ok2hEhwbx4JfCC7BtRLxuh/bgfW62WxuOxYS94PmazmTqdjt69e2cA8qd4IJ4d\nU2AA1Eiyg8aE4KLCDBaLhW5vb9Xr9dTr9eyyICHZoDh1CsYjPUTJ9ft9u7jRXAsOfDgc6u3bt3r3\n7p3Nd4igJRkRBUFggBHqLvZ9p9NRp9PRZDLR1dWVhsPhjvkA2n4orwNzwc+Jagn4VSqVdgBbwL/B\nYLCj0h5DZB409VGRXH7csGhUXEoftcc+Jg1APc7Shx7jy/cMcDweWyKTBz65UPw/aVAHwQsnLmmp\nVLLgLC4nc9zc3KjT6ezUqdh3XjBrtDuyMD2AiGcC8Lfb7WqxWOjDhw+6urqyNPdDGNCh8ayYgj9o\nNIAwDC3h6fr62nIPttut3r17ZxKUbD584EjIqPobHaDwaB3j8Vjv3r2zGgfSPZgD2otEpQaBL95y\nqLzXZrOxyk3dblfNZlN/9Vd/pUqlYvZhGN4nIkVBPh8Vx7OSTAcuPio9di8eHAi51+up3++bWQY2\nMpvNTPpB0Pv2EE8Q9Rl4Him+3k0H48WtjJkCHjQcDr8VTu0HrmEYKVmE1WpVZ2dn5v24vb3VX/7l\nXxqTYw0eszhkOnDRYYrL5VIfPnwwcyUI7iNdcUni6fDuXIDhQ+o84dMAwN1uV7/4xS8MuITRwlxg\nDOBDaEXSg3B66niW5dgkGVgFOhyNW+AySw8hvahePqTUJ5FI8SYE4A7Dg3X+d1GvB/NCbPuI2c+F\n+ot5w7N5f/9cj3f4ZycRmNeGkG4+8CZqiuVyOVO9kdDz+VyDwcBCkD2ziz7f/7xWq5lGgvkAw8Ms\nOj09Ne9DNpvV7e2tzTcej3eqBvnz8mZREASWMMZzkKSSLMLR56J4k5TBRd1HGzwfcDG6rzCXaJ6I\npwd+vg9gZLAG/67QIHPg2uRnmBt8jTIgN+9vZjk2BhIKWxvCBCuISw31mY7RS+oZQ3RwqaMhrRy4\npB0XoI8b8BL8GAbr1URMIEk7uQz7kP5jwCNP5DwPm5535R2Ipyf2wuMyAHFJphdzsfbpdGrZqj7B\nKZoDwL4iUbvd7qMKqYZhaJ4LNAbccNjuMFy/X15oHMPAGV6wQFs+RV/STug5P4sy9mMGDIy5kv7e\nu9KZy++5/9xjBf+z0hRYQPRSeKmNZJV2QUncTnEbeEhTiM4V/eo1B37mi2c8dfjn+UP20pELdOw8\nUaAxOof32vBzEmlI5ImbL44xxDEv5kHikUTGuYDQB0Gg29vbbzGCqEYSpylE50M4cDGjzBXme4gR\nPIY24miUr4/JTty3rijNsW/eHX4omzTys6M0hWfFFF7Gy3gZ3+s4iik8uzDnl/EyXsavdzwrTOFv\neiSpbtGxz5b2KnX0eb8OLezYNX3KiK43zm6NmoJJ5kfSHsUBg3/T49h1HfN3x/zuuYzfKKYQRaD9\n91EC+tSN98/HZuVnHmT8ri5h0tr8fJ/y7ChO4b08fh7mOhbUjM6xby7m4zM+2CnqBXjK+SXZ+Z/C\nXKLricOX+BqHg/j9/C6Y3N+E4PmNYAoeJANQol1XtKqxB+aIJUh6phTfhsy7nHzYM3UAfRIPIGe0\ncu8xzMIDYayPpBu8LCDK3pvi6wIcM/B0BMFDeDDuwrOzM/OPk0zji9DijeA5cWuIag5+LvaQjk0k\nPHl3G0g+BUoeQ+ieubGHPgdBUqy34VDcQJxW4wE+/hEC7+kQzwd0QOzMY4dnqmTh+ijRqNsxDJOL\n7D5mPFumACoOUXm/MLH6p6enO5fPx7PP53MLJCEJJ6pJeI6P3z6dTtv3m83GUnPz+bwFSZHb7rMz\naUpDBNu+4TPz+D/+ZyICyRPwiT2g6NRVSOr74PfQr4u1EadQr9d1enpq4dNUJiI/gVqE0n0ps0PE\nRqw+sRA+Q5LyctVq1RKs8vm81T7o9/vWsIWWbvvWxh5Ku5ocDC+dTlu9Dc/UkN6s6xgmRGarL+wS\nhqHFR2QyGWtMRF4K+RVEiobhQzevQ+vCQwTth2FoNE8iGPSczWbtnCaTieXhjEajJ2sRz5YpcLgc\nON+zMfV6XZ999pkdLuG6RIQNh0OrzxcEgcbj8U5QjGcm9I/kAtXr9Z2uUfRIJB+ALEUYDynIk8lk\np7pQ0ro8949KnGq1qtPTU0kPNSQIB95sHtq7kba9jwlRGwJJzd5Vq1Wbp16vG7MLw3An1NmnUler\nVYve9HvotSLKrBOaS72DSqWik5MTtdttK2GHRtdsNtXr9RQEgaUBNxoNa6KaNJjHuyJ94hrZjDAX\ntAWkNmcYBMG3sluj2g/r8kFfmUzGaIZwZzppEctAeDqahKTYQrF++AI/uHWZq1KpGHOF7okDoQI3\nGaCVSuVgecCk8WyZAtxZeijcSr48XaIuLi5Mg4DY6J60Xq81GAysgUy0K7Qn5nq9boyAGgck2dTr\ndfM9kxVHi7Xlcqlf/epXymazVm8BYk8ClPiM9FAuDu5PO7ezszPrzuTDg8fjsTVE5flJsRlBcF9H\nkqhF0ovpTXhycmJrnkwmptrXajVNp1N9+PDBOhKRb0KSmN9Dvy6vacG4OSc0EzQELuZkMrE9m0wm\n1u9gX1JPEARW5IYoV9LRG42G1YGEDmAI1KjsdDpaLpdWYIX5ouuC4dBfgSY6XE5qIxJlS4Qloccw\npel0ak1oSfWPG+yNJDMVaLJD39R2u61isWjVt4fDofXUIGycEnAEoT12PEum4MEoqhR56UajTVKM\nIRCk9Hg8NhU2l8tZjr8f3hZFRaPwyevXr/WjH/3IPkdeBD0cYRxUY6KeA+pidC4/ZxSzoHHo5eWl\nTk9PraIzZdkoM4ZtT269D7lNmitqixJHD2HRDwEmw54RKeij6bzKHbemUqmk7XarWq2mbDarVqul\nZrNpRUfJFYBh+lJj5AwEQXAwyIiLg2aRzWZ1cnKiZrOp8/NzK4KLICDAJ5O57zpFsRmyCcGEktbF\nxT87O7N+n5Tt42w4y3a7bWn7dHOK1vXwgGR0Pt+MhwrOZETSiRomAZMhUrVcLmswGEh6KAKbRBuH\nxrNjChCnDymW7iVCvV43uxsCQoIBCKJCYXdTaTiaIIKmgBRE0rVaLZ2cnJitRqLVYDDY6ftQKpUU\nBIGp1lQaIpQ2bnCpyFLEzqeRbbvdtnp+ZMP5Sk9ee/KVq+P2kMIlmDE8E4KTZIk8Xrr43AjMB59M\nFJ1HkhUr4SIyn29o4vMkOFeYEpeHc/Fp69Hh7XpvDn322WemLaCC8y4kttEGD6FBvkx0D/26CKEm\nuzOVuq/9SDETaBBzBUYShqF6vd5ODc59NTDYH/YY7QaMid/d3d3ZejyGwjNYD+/+lPHsmAIDyUS5\nbP7vEV68C3BZDpMsS8AzH2brR9StRJ0BDoFqSt1u16ovBcFD85FsNmsFWPl77OW4uTyD48BrtZpe\nv35t2k+xWNTPf/5zswdpfY4Kyjw+fThuLuageAtViZDo5JYMBgO7HCSg8beYJ6ydZzNn1AW53T50\nbrq7u1O1WrUsQ8wE1k99CjJeKWjj057jPAAeP/B1IbC5MRmoCcE8jUbDWsj5pCHvhmV4EJp3oEAN\nJiS5Gpg7NLWFcTMXTM+nRcedG/sLXuT7OnDWpNkjLMA2AL0xaaGRp7qynxVT8JcJzoi7DyKlpkIq\nldJwOLRsuUajYbY36j6FO/yFjrrPUF+91wH8AdDSJy2hHnsCYfMxXw6tEWmYz+f15s0btVot66JN\n+nIYhtZejSIfvsgqYFbSHiLrz0RwAAAgAElEQVSRfAVlCLZcLu9IaMAy+k34eHqI2f/zc3lGDBF7\nLASXHJ+n1iEdwieTiQaDgYG4vlFN0mC/oQMYHqYPqekwOJgpWAZM1fexjO6h30eYjBcepNJjanls\nCxdvp9Oxtm8wRcyO6EDQodGBByyXS2Nk0GatVrPanuAjaHwkmbE3TxnPiilEI8U8QgyhhWFoFW4g\nci4qxTSotIP7MErofj7MDSrlTCYTIy66IVMCvVQqSbpnJFRExn0Ht066rMy13W53XJBoONlsVrPZ\nzGpEoBL67s/sDfhCXD0AL8W9G5N29z6DFFCWXpMUTl2v15a45LMq4xheND5kPp+bZoYGAtNZrVbW\n7CadTps0p9YhadrUXIg7L/ZvtVpZY1lK/BcKBXU6HfV6Pd3e3urk5GTHVJtMJoahUFwlCkBH50Ij\n9VrgZrMxwcDlwxMRhqEmk4lub281Ho81GAw0HA53sIU47Q76QOLjLaKnA2AnmlI+n7ciQ9TFgAFB\n70+JjZCeGVOQdtN9IWpcM95DAIhEjT4uKCXMfCMUnhudB6wBDu2bgcKAPEgGqOkrJ1FsFEkRNxfD\np8KGYaiTkxMDLbPZrBVVke67MtfrdbPteVekmK+5ELeHqKySTAvypg/MAi8FjJU4iOVyqWazqZub\nG9MW4tRsv67o2nHvcjkBIolVwLShQAhVmKI1EPzwjJDq27hAMV3ootVoNNRoNAxfQpvx5sO+jFBv\nZm02970aYUSYfh7rKpfLBj53u131+31LQfdCI25dnin42gwUrUGLpfNWLpfTzc2NhsOhbm9vd+pF\nck4/qDgFJIy3ITEj4Mh0+AVYubm50WAwsAo4RM5FAS6GVwUXi4X5mgl4okhnrVbbCSjhcqbTafOx\nS7LD2ycNkDCpVMoQc8wDvAO/8zu/Y5IHF95kMrGGpdvtfQOQ4XC499BRNyWZyu7B1M1mo7OzM2M6\nNFKB8TQaDd3d3andbu8EACXNxd74wCwff0GhFUws1GskMWCkP5ukPcQcJDaFTtww18vLS4VhqHa7\nrVarpcVioU6no9FoZO67TCYT65VioB3BIDwuUi6X1W63DeAE00CNf/v2rZUHpKCMp8O4dUUZKxec\nBsD1el2vXr0yITgYDPT27Vu9ffvWYh+iPUKeOj6JKQRB8JWksaSNpHUYhr8fBEFL0j+V9BNJX0n6\nwzAM+499djSklMuEveSZhT9c79/mb+OkjgeTfBUkwCnUOKrcICmwwXEboqJVKhUrjf7N3ux1q0n3\nhIDLCYmDFMdsgBgBTmE4uKKOmYf1+hZmxC5AeN61SPlzXLpcoH1zgZPwdx5x965MX6CVOAUkKFF7\nd3d3RtxJmhCS3GNG3oNC7wTvYer1esb0Je1oS/sYrC+gwrzj8Vjtdlt3d3cmNBAIeCWgQ+912sfw\neL53J3tciLMA/IZufXQtf/cpjOG70BT+vTAMb93//0TSvwrD8E+DIPiTb/7/Dx/7UJ93QCw7TVO4\npIBKuAyxUSEmNA3p281F/IVB8hN+e3d3Z/bhaDSyd8HLMZ1ODbTCtsOVh4aTdCj+klCnkPUiRcEX\nWMPt7a3Z2zAGH9GXRGC8N1IcBogG4eMvJO3EQ3iknIjIpEAYnus7IcHs8vm8wjA0Cc07+VqNmF6e\nIe6L4We93kSSHkKWqSaF9tHr9azuZVytxmOYAkKJi0mosd8TanwOBgPbO87BC6kkMJp38ftBjA6a\ny2Kx0Gg0srqMPrSaOXzuxXOJaPwDSX/nm+//saR/rUcyBbg7Pmm6EUsy6Yi6lE6nzdOAaul93F7D\n2DcfjCYa307RVg7LMwSIComLDZpEaPwMEwRVk4g1iIzAFTQXSr774rSYWEkDhgERYueenp4axoB6\ni4rvI/9wwUkPkZdxKL1nvrhn6dDtTS7WTL4DCD2mhDcVwWuS9pBBEd33798bIwFv8rkPhBvDFHzQ\n0r499IwUZoUAwevg3wczD+AULQEtjQu6jwkhNNh74k3woEB33qSD9qBZ5npq8dZPZQqhpP89uK+c\n9N+HYfhnks7DMPzwze8/Sjp/yoM5EDr+cOgcpvQQwINqjX2JlAGlBsTZR2SLxcKIiIg032vQ23eb\nzcZ6PnrAD5/8Pu7MRUCqpNNp/fKXvzR7cTQaWdQkZkMq9dDHAObHoe9T56PAJpF8mFSz2Uyj0Ui1\nWm1HDQak5eImAXIMPAy+5TwmFngDFbMrlYp5hLzGJ8lMh0MAGXEUXAyqOyM1yVVYr9fW/g73J/Y3\n+3dM9CTrQ2OF2RJAtd1uzQuASxUzAhA0qaOXnwsGCmPw0aXMT4Hbm5sby4fxdOBD0X9dQOO/G4bh\nVRAEZ5L+jyAI/sr/MgzDMEgotRYEwR9L+uOE3+2ougBfRJVx0VF16YngcxIkmTfBJ4+4d9uR6N52\nQzICmnGhfG1DpBFaQqfTMemQJAn4OaotcRY+u02SpYQj1d6/f2/9C1jfPncTxMi7E/rdbDZtblyA\nXhVH+8JcAcBLSrrya8TEIHmn1WqZycfl82HVaHdgDNjK0XePG6j/mG3EBhDdiOuTXBEAaCR4NIJy\n3z6yNrRXGhHBLDAVb25u1Ov1dlLQJVkwlddK9jEGTCjwHUww3nmz2Zg24hkcf+81maeOT2IKYRhe\nffP1JgiCfy7pb0m6DoLgMgzDD0EQXEq6SfjbP5P0Z9L+Go1hGFryhySz4TEJSLeNNjDxB8GlTxo+\njsFjGEhUUHMiGOlrwOUlrdjbqkkAGZ9B+tIRmUzNWq2m1Wpl5c4nk4nevXtnGYrHRKr5ub1Zg//c\nM0Pi+JEwBOl4VxoSfZ8Xx7eiq9frdmbEEPBePu2cDs1RwC8pfNuvz0ci+nD22Wxmkvn9+/fm5qWl\nmv93yHUX/XmtVrM2f7gjoRtSlQEcS6WSaS6c9aGz8+8GzUn3WM9kMjFcB1og3kLa7UHpn/OU8eQa\njUEQlIMgqPK9pP9A0l9K+peS/uibj/2RpH/x1DkkGbBTqVQsEg9i22w2FslFUxhfKIRNicMTosg8\nh0WSC4dSLBatCSwZhmgxSN1Op2Op2fvUUT+83xw026u3BE59+PDBehjQE4HnH5rLay2oy1x8AD4S\nn1B5fVMcWuF5Zpc0h8eBSN5pNBoKw9BiEwhNxjzDFenNvlQqdbBRL4weKQ2uQ/Qfe7NYLKzHKAFI\naE7eA7RvgPCTkn1ycqIf/ehHZuIR9IXWSJwB2anssy+OkjTQSDCXa7WaYU2YZ5w5Zqz0kHnrvRtP\nDVySPk1TOJf0z795iYyk/zEMw/81CII/l/TPgiD4B5K+lvSHT3k44BduKsAoNhqOSWfk4XBo7ibc\nZ36D9kkDPgvX5/BokkJmmg+wWa/Xur6+1tXVlV0kr5YmmRCeo3uuDrBXKpV0dXVlktP3kfRup7iY\n/ei6vPeBfcCl61VjvAOTyUTdbtd8+jyfde3bQzQKmAw/x3TziVzj8diCewgA82Av0u8YQA4Q0OdR\n8A7T6VSj0chMMTQUn3x0jNZFnAceFdKY0bKgl+l0utP5nHB0STvg4765ME18rgraK4w3DMOd6EwY\nq8fbngoySp/AFMIw/GtJ/3bMz7uS/u6T30gyu2y7vc/2ovvx3d2dxuOx4Qq/+MUvLNMPlcofNMR6\nyHTAY8H3ZD6enZ0Zmu3dld425d1gUh7UjNkb4/S8EyogEXmEVSO10R78M3nPQ+vyqLQki/is1Wom\niQBkAT+n06mGw+FOabRDxTrW67WZJXhV3r9/b3UNULPn87m+/vprc6n56EWf57IP1ORMffEYJGQq\nlbJs1X6/r263q/F4bPN5wDSqTcaNzWaj8XhsJutsNrNgId9Vq9/v65e//KUBt2h/CIhjTQefp0Is\nAnuDJjocDi1hDsbgBRnC4qmmg/SM+z6A7PrcAP5P4hC2vA/e8JcOaZAwp6QHiYqXgZ9DZPjfCa7h\n3fBsIH355y9vkg2OluDnIEkIex4CJyWZ77kUh9bl3xMVmPnQSLwv3AcQAcp5DCAK0jKXd0tSqQoE\n3adig/tEz0vaLYQbld5J9AnGg2ruMRk0H9/pCoaDnX+sqRcEgTFRTALwEpiC11BhbpyPxxSOiRmg\nBb30oC1TOwEzGQbLHkYF4Z55fvObweAKwtZC6kXdcdGvnlvuQ3qjc/GPv/XBQWAbYbib7+/Le/m4\n9n2qr7e/ISKeTeBJ1B/P10MSx/+dZzqeUP1l9rkcXBykXDTmg8H/o2g6mZ8+14Bz80zHn4v/fVIe\nQtI6fa9RmB2XhII07CnPJvfhmD1kbvACaGC9XhsICFbh0/OhAzQG9v2Yu+bXhevVB7vhXYjSt89m\n3TN+85nCN7+zrz6KT9KOtEF1PRZ1jVPv+Tlz+cvjXUpI832S5th38O7XaIwD75hUcu0x6/Lr8XUp\n+D8DabdvDf5C71uTjwSNngvn5TWe6O+POUs/n8dKvH0NM/gUN53HYJjLCxBPJ34Pk9Z17JzQhn+W\nF5CHzMjI+GEwhZfxMl7GdzZe2sa9jJfxMh4/nmXq9A9teLPDeyc8KBmnVnp36SGNLmpexP1NdM4k\nIHTf331Xf3NoPOXvnjrXy9gdPwim8DdJDJ8yVxS1j4KCgHA+ScfHI3iw8Nh3jfuZZ0RRphRN6Ipj\nYknMK+qhiD7fzxmHx8R5OB67Vh/Y5Jnfpzx733yH1vV90KU/1+/j+b9xTCEKlkUBHb9hn+Kv9USG\nW8/7gv2ckvb61uOejRcDl6AkcxWenJyY+85HYxKU5WMIomv2z48yHQ9a4TLE3endg/5CESATXW90\nxDE8wE3choTrcnnYXxhhkrdj3x76OSTtuHd93IhPDmNdjzkzvzaf2kw/C1/Bi8H/KfzzVI2Jf74x\nkfe4+ViFQ9Ggx4xnzRR8+m/UE0A4rfRQHxAXXzqdthBa8hqOmQsJ7V2REDRlu/FxwyTIwSBG4VDz\nDbLmiLcgSo5ItlarpbOzM3Ph0fKOegS+0CnhyvuIjag7fPr410ulkjKZjOr1upWzx/2Fi5XIPJqo\nHLpElCP3NSNw5zI3FYo4Jx9hSGQjc+0bvkQ+IchheN+7w/dIoGIVvn2YAyHcx3RRInbARxqmUvcV\nok9PT60fCcFEhHHzr9frablcWjDSvuG9a97b5vt2fP755xaqTewFgX0EapGt+ZTxbJmCdzFFpY6P\nDcenWyqVTBL0ej3zWyMFk0qkReeSHtxO+KdLpZLOz+8zwEnR9eGlk8nEMgBhSHFuqCAIjMCIU6DT\n0OnpqfL5vD777DOLd59MJrq4uNByuVSn07GoPNxeZFh6Se7nIviFC8nlIaGnVCpZYg/Pgxl1u11r\nIefLpsXNxfcE9TAXocdoQGS5+nBtMjgHg4HVzQjDbzcHjs7Fc0lSK5fLlrDUaDR0eXlpeR7kQRD9\n+vHjR9VqNdOCosFgUVMIpk2HsnK5bF22Li4urMIT6eLU3ICZU/AX7WUfY4iaIwhAuntdXl7q5ORE\n6/Xawv8J5yZwjFSAxzbrZTxbpkDQkiQL5ICoy+WyisWiXr9+rUwmY92iSH6RHtKm4fBIhkNzcYFQ\nQel09Pnnn9tFWy7vm6De3d3p/fv3JlUhDAJkGF7VYy5K1ZfLZTUaDbXbbV1cXFjX6cFgYGnAXO5f\n/epXFg5N05hooo0nAl+X0ffgpKQ8WgIpyEh5iqrSOq5arUrSt9R7P5dfE8ymUqmoUChYSDB1MDGX\nCCn/+PGjstmsdVWil0KS2QKzgWnD5M7OzvSjH/1I9XrdLieNeu7u7lQqlfTu3TtVKhUzzQg6Soor\nYF3QH5oePR35WRiGVq4vDEOrMi09dGwic5LcjrgRxXiCILBmyp9//rnevHmzU/KOHhGpVMoyKWHQ\nT43NeLZMQXoIMfUlyIlSoxhopVLR+fm5cU3sVmoPeJMgaaCmITXb7bZKpZLVBLi4uFCj0ZB0LzVW\nq5W16SJ3wXdB8kky0Xl8sIsv1AFxrVYrvX//XpIssYfqO7VazToTMUdcgI+3Q4MgMCZK67NWq7XT\nciydTluB2lKpZCnNlP7yNnTS/hGKS6emV69eqVKpSHowIShOQ5eq+Xxupee/+uora7ASBWGjc3HZ\n0HpOT0/1+vVrtVot0w5JM4ah5vN5jUYjNZtNq+rEu+3TIAkvhpH4jk3r9X2/UkLeT05O7GzJaA2C\nwDSSQ2YKggnagCGdnp7qRz/6kU5PT1Wr1SxZjr0Cu0AjprRA0h4eGs+SKfgKNRxAKpVSvV43iYwa\njTSCS1OF2ZsPSR2ipIcsQa9ywxiwgVHhPOhWLBY1mUx2SpUheeK4s7/ISEHCZguFgqVL+3Bcypr5\nTs1IdEyVpNqTzIXKjmRtNBo7mownfGoBlstlzWYzq5HZ6/VsrjgGhOTnd7wjOQ9oUuA+nB3Vl3u9\nnjXZBZOJOy8PKIJJcM40l+GCkrPBPqDBwICZy4Oe0bkwdXwR1tFopEqlYrVBJVmDW2jXt61Dhfch\n33HDA72EMYOb1et1NRoNVatVFYtF9fv3dZCXy6VVN+dvwbx8huZjx7NkCtIDcjuZTOzC+8w2kl2k\nB/OiUCjoyy+/NICMGP6kiyrturBQ6yA4QlkBptj0ZrMp6aGACRWgqAcQPQzvCcDFuFgsrNYjEm08\nHhtoyrNRQ3FX8nnwBS5e3FysBeLkcvJzbHpqR6BVUDSWd4h6OqKMwUslWtSR+IS3YTqdmuTzSUMg\n+D6r0NdtjHNbwlSWy6UajYZarZYxToA3n6mYSt2X1EdzRNuELuIkqjeRoEOYOBgS6eK+dgIl5SnV\n5/NVvLCLG/yOz1Kr8/z8XGdnZ4Yl0PilXq/vFLDxXaU+ZTxrpgASTkpxNps1jk0iDyBTtVrV+/fv\nrXgml4cKP0k+fogM4sEUoPBnKpWyVObLy0vrEn17e6vNZqObmxu7dJJ23HsMf2l8SjNqNZIEhgLD\n8Hn8INsQPd2cokTtVW8YEJoJHYV8Byc0iVKppHq9bnsEyAhDQKr6EZ0LBjSdTnV7e6tGo2HZg2S2\nrtdrMwcBhSlKy5yov9G5/JlRBBaBgNZAPQPSkAE9+RnaHlhK3Iibi8EaAZxpB0AfD9Kc8XZwSTHT\n9qn0HkiV7jWQs7MzvXr1yoBTGh1Vq1W7A9Avlb4x/35Q5gMXFenrqxeD3K/Xa7NHM5mMBoOBrq+v\n9fbtW3W7XSuu4cukxQ2fwbfdbs21NRwOzRThECSZ2jmbzXRzc7PTj4GLfkxaM1mBAJtILiSPJJNA\nEBX/h3GgUewLJqJoCeaPz2RkLkBBtI5er6fhcKjFYqF+v79TFzIuMMdrP91u1xgRzI96CjTihdlf\nXV1ZizdcrABxUW+R14AwI3w9BlynfG61WpkZmUqlDItBM8JD5IPD4uZifZhvPEOSdaDClUzzV18R\njAsLMz9UWxONDHMZ0LZYLGo0Gqnf75tWXC6XFYahtTVYrx96XEbB08eMZ8kUpF0AyBfhIPimWq0a\nEEhJtH/zb/6NPnz4YADgsfUMfao0DAdbHzURO5TuTKPRSL1eT9Pp1NTdfYwHLQDzAE8EczQaDVNn\nYQDNZtMAJySQt0v3ETTvggbE3uEapK9FtCw7hEUZdt+30qeG+/k4G5rn0F7N2/Ae8OOShmGojx8/\nqtfrGciIezBOzeas/MXEFQ0YiElJHQ7Ohuf6tGcPNu6jP4+V8Pe4BwFxOSuKx0TrM0aDp+Lm84N9\nRFPI5/O6uroyLObk5ETlctmqckGjfs6njmfJFPyBoPbjZwZt/t3f/V393u/9nsbjsd6+fau/+Iu/\n0BdffKFOp2NVmI7x0fqDQlVE/W2328rlcvrxj3+s8/NzI4rb21u9fft2p8a/lExkXmrjQQE4gtmA\nyKMO+y5Yd3d3qtfrVrKtXq/vdMNOWpMPfMEG3263ajab1pbu9PTUPjeZTHRzc2Ol0ijiiiaTNHyk\nZxAEGo/HtlbMu5OTE2tsQrGQ6+trC8ai8GlUSifRBi5Ozsx7Y8BaGHhXUqmU+v2+bm5uVKlULFhq\n31z+DHlWoVDQ2dmZXr9+bZ3BgyCwYisAgMS+oJkk4SR+eO2t3W7bc1arld68eaPXr18bXcBIvUa4\nzyw6djxLpiB92x5iM7fbrfmmCfDpdrtG8NGS14xjgzgAbIhAw3yYTCamwvm5UAfjAMa4QdwALlYY\nApLcR2CCnZTLZUOcpftGu1dXV6bd7PNAoPGAUZTLZUO1aZTqYwII+OGCwaRQn5P2kYvq/eubzX0H\nL/YNDwj7RG1L1svvDl0e/168M19970bWBkNA8wGLONbm9kFEnB1aHYwcbAT3LJ4pPEus7VimIN2b\nqqenpzsVmDzYjHeN8/N7/ynj2TIF6dtx9EQxYusDnPX7favt7+1p/vbYw/BFOVD3qDdIHwGkHGHH\nUTvw0BxeM6hWqxYth1sQN1q0wxDzcBFyuZwBaNHB52EIhPxiJhDsxd7AEOjD4M0pGAtmSFIAGPNR\nZZtn4GEZjUYWy4Cp4cuXQciEj+8jbN6LuA40K19HM5/P6+7uzjSTUqlkF47ybJTx30cbzEVreCpT\nVyoVM5OWy6V+9atfWTVp9pVQdhiH9O32hdEBIyFyEkZK7MN2uzU632w21nEaN6SPy9kXg7FvPNt6\nClxoJAJSM5PJqN1uS5KF/oLKA7ZA0ABSx1xWT4TY1R4vuLu7U6FQ0Gw2M7MBENSbOnFBIx4gQ0Kj\nSuMy5QJJD5fTaz0Adh6ERNpFvQ98RRMBrIJJeFsZdReGR7n17XZr6i+YgH9+3PpgWBCyD+ZCk8pk\nMubh8QlfXquJPjduPo+F8K7QClKcZ3GhCcH2zH8f8/GM1ffGhCEAzvrK12AO7IWPi/Brixs+Oa5Y\nLGowGFjxXoLkKJALZgaADIYB8/ZJU48dz5YpSNq52CDYZBGi1g8GA6va64FF/s5rAMfOKckuPAQt\nybwbzIVXBCbEiPMG8GwkPF6TUqm0g5x7dJqisdiJUdfqPtwEgiZuHglNR2ck8mAwMKbA87mwMKoo\n4BY3l2cgnBcBNKxBkvWzYF7vMeDS7CNoz6R8otXHjx8twctnnRLiTXi4z7vwDWiS5kKLI9+BsHdC\nuheL+zb3lHTnb2A2zO/dkUmMyGslvNOHDx9M8NDKIAgC84AB2vZ6PcMt9oHex4xnbT5IDxvlXTNI\nza+++kpffvmlrq+vd6oOe9sW0+GYwd9BxNj4BNwAYnotwtv1+ySPt0u9f90TDQzGSzQYHRcMs8WH\ncMe57mCKPqmM1ntcCOk+lBnTixgDvBowqWhwVNza/P5xYYlH8O9Bk1ekGmeMF8k/JynSEJMHOxpG\ngY3PpSQcnTwIArFms5l1jNqHX3BmaArkjsBwR6ORuZUlGdblY13AVrw6nzSX/7fZbFQsFnfa9kE7\naA7Q5M3NjQmWJPPuMePZMgV/UPjVURknk4kqlYo1SgGc47AgaOlxhUm8XUxgFEQ4HA7tInpgh/fk\n0OMIOYpi8371et1cg5vNxmxiVGJJ5rf3vSWwKf06kwbvSUoxDAmpRt8CAoYIb6Y/I0S8by5+xz7A\nDEga8q5Yzsm7XsPwoecB0m4faMt+SbKkMhLNorEYaFsIDc4SLeUQoOk9OGBAMHSClAikymazhpV4\nsxez8hgbn70kMc1nwqJBrFb3zX9vbm70xRdfGENnTz4VbHy2TEF64NTZbFatVkunp6dmk3NYbJYP\n/OHSchDHumiYCxdauVxWu93W5eWl+v2+aRGe4USJKkm6+d8zD9yfd8b2RQOAGKbTqfr9vq6uroyg\nYSL7mBBSkDgH6gH4SwphE4HH5UEj8czpkKmClkMjHdx1BJzRNRtzCPNJeshq5b0PnZOP1gRM9eYS\nocjgQHSi6vV61pnqGMnKWTAHGgNRg5iEPMtjAMSzgA3ty470Gh5MBPN1MBiYlpxKpfThwwf1+319\n9dVX6nQ6OyHVjB+k+eALaGDPXV5e6uzszOoocMF8Si+RdJKMaRxyFYIbMFelUtHFxYUuLi50fn6u\nYrFokgwTgiw43kHSDqYRNyBi1H80D58TgLREbSQys9PpqN/v22Efio7zUs7nGgCYwjCIo6d/JN8T\ne8Hf7ZuL+cATuEDsHXY5KndU6wGog8Eeaq/GesAIiN9AmgfBfeowxU1ms5m63a7evXtnfSXRfg7F\nsyyXS9XrdZPQMGm6jbO/g8FAYRha0NfHjx81GAx2Ijr3MVbowwsQ3KhoGJzN27dvNRwO9fHjRzsz\naN4zzKeOZ8sU4JbY9tPpVFdXVyqXyyYtv/jiC93e3mo2m5ndFQ1GOnZzPMiDr/7Vq1fWQu1nP/uZ\n9Vnk4D0D8ipt0liv17q6utLHjx9VKpX05ZdfmqvQewao/YDEwS/tE4VIWkrCTHBdoVYul0t9/PjR\nSnrBIK6urkxqonn4f5LskiYR9GazsWhGzBEuy9nZmUqlkhU4+eKLL4wZTKdTe340NDppEMh2fX2t\n0Wik0WhkhXBOTk5MY1ytVur3+8aAWZtvH3fITNlsNhZUNR6P1e/39Ytf/MLiO2C8hIPTBQuGzVow\nGQ/RBwwHWhoMBlaPAsB2PB7r/fv3xuzAsryX6qleB8az7vtA9B8qIe6gXC6n4XCo6+triymPgm18\nPXZ9BIgAWuXzeb169cqKdDAXki6qhew7DO+ZQMX1QBoSncvNc/hMFK8AaEsyW3xMgy+RRmSjT6KJ\n9lj0DIb989J0HygHqIhNn06nzW0XhqFub29N4pFGzdlxQY8JTee8eEcPdKL18fwotsQ5wRSOoQ+8\nHP68PE6wXq93JDTn5r8/lhZ9KL8XjASQATBGtYE4+o8ZP4xmMF6K4pcFJ0CljQIsxx52dPh+gcRF\nAL7xvOich1RCadfFBgPwqj3vDeGAWnsQk+GJOco8+N7vBTYvz/DZmEl5E/zeX6K4EWUQmA7ejYq3\nCByEkF0PAGOPew3v0PCM1IOcfl8AMaOMLqk4zb65OJPofuzDl7y34TH0yFxRRpx0xl4IHhg/DKYQ\n+dzOhnk7dF+03RPeR1cbie0AACAASURBVJJ26in4udASHkNUSfP4f9LuxfRM7tCF2Sdd/fORPjwr\nKmmjKrUnvH1IvZ/Lz4Nr1V8etB80Bj+Xf84x+xt1h/p39b97LCNImss/M254jeS7GH6+6LsnuW33\njB8eU3gZL+NlfNJ4aRv3Ml7Gy3j8eJbeh32q43f1u2OCO6L22mMDQp6DFvZDGXFqdNSsSbK19/0d\nI2paxD0r7vz3zRV9hv+buPUdQ7vHmlWfMp4lU9i3wdJub0YPNCU9I+7/SSNqk/pgEp4RRZM/9ZD8\n2qI2a3Rt3yVBxF2075rgoucXB8Y95ln+a/RnUbrweFD0vPZd9ENz+jmin/FAZBxziNuD6Dslze/x\nGkaSB+JTxrNkCgy/Cd7dhIuyVqtZJxzcgx7R9xFrjwEFg+AhO9Mn1OAXJkLNu53whjyGk3PQgHGp\nVMpKsePrZ13e40DU4VP2k3/p9H1TnXa7be+Om9K7vI51EUbnYS+lh+rOFHT1yVJ+jfwsSZJK35a6\nuHd9b5BisahGo2HBSz5GAPchsR8ebE0SJEl0SCh8rVazZDKeGY3zOIY2/O98CjQMjorUhKJL367q\nRX2FT2EQz5YpBMFDeizFQShxXSwWrasSQTGDwUCz2cxaqa3Xaw2HQ0myWo375iKJBgLAy4GLEtce\nl4bPElmJT54kmX1z8TxCnL3btVar6fz8XJ9//rmV2iIghoQe8jvI+9g3fHq1d60RxNRsNu2C0A8B\nt6UvvnJMtyFckURo+i5YtMNrt9tWj4LKxAQX9fv9ndwOP6ISl/qFhG5DKz6mhTR3isFyYcl5oPht\n0iViPtysMFK8UqVSyUrOSdJ4PDb68LUdYPa+Zmh0Hn5Gwpr07RZyJJVdXl7auZdKpZ3IXgLWer3e\nk13zB5lCEAT/SNJ/IukmDMN/65uftST9U0k/kfSVpD8Mw7Af3K/gv5H0H0uaSfr7YRj+P8e+jFe3\nKG9NdmS9Xtf5+bmazaYRGcU/SF2dTCbq9Xq6ublRp9OxZBJauiW5LH26ry+FRqYfEXP+Gbi5CAAK\ngvtyZmgUSXMRvASzId++Uqmo3W7bWslVQAuaz+e6vb2195vNZlbkI4kJwXg8g2NdlUpFJycnury8\n1HK5tEIdFBylEjFRhhD4PiLj8lDnAOb96tUrnZ+f66c//amKxaK63a5VXbq9vdVXX31lUZ5oYlEN\nJWrW0cOxVqup2WxaOjN9QAqFgm5ubnR7e2sMj2K7SHX6hFAoJW4uSfZM+ktkMhkraXdxcWEdyAgP\nJ9pwMBiYwIFJxPXk9BqJL6rDuXkNiNRt6IdzZl6iK6lC9RSN8hhN4X+Q9N9K+ifuZ38i6V+FYfin\nQRD8yTf//4eS/iNJP/3m39+W9N998/Wo4W0+uD/hqycnJ3r9+rXa7bZarZbC8D7Wvtfr6fT01DYI\nCUpsOqG3+2oqkEzDhaG8O004qNgLp0eKrtdrq3w8n88tUy+anOIHxEUyUCaTsUKcJycn1omKMu7Y\nxWg9BC8REo1kSloX0sXPWa/XLa/jzZs36na7lgTV6XQsRBgTJgxDKwiTRGTkjnhJWi6X9dlnn+m3\nfuu3rDsVn1kul1YrgISpfr9vjGxfxF42m9Xp6am1v4MmKHHH+cxmM6tOdXt7a23bfIgz5ktS0pxP\n26eseqvVsjNDcPjQ8el0quFwaGo9fR59Bero8GYd/4cea7WaTk5OVK1WjQESdQvj6vf76na7ur29\nVbPZtMza74UphGH4fwZB8JPIj/9A0t/55vt/LOlf654p/IGkfxLen+D/FQRBIwiCyzAMPzzmpbgI\nlFaHmLHdO52OqXyU2iK7MQxD6/3H5iflB0gPLdnJUMQebTQaJg04cCIdwzC0Pga8JxltPDNueAlE\nOHCj0VC9Xle73TYiImmKQ8eU4mL4CM6k4QkMZtVsNlWv1/XZZ5+ZmcLl9fgG+R5cGFKtYXhJc61W\nK2POlUrFitNiY1PBuVqtWnYjlZC73e6OTZ6kzqfTaes2Tir4ycmJ6vW6JRCh4VBRGuk7GAwsUcqH\nVUcjCDmjVCplhVOhsVevXllKOAzMp09jZqbTaY1GIwtZJm8ljjbYe8wQ6Ji2iGdnZ9bQ1vdTDcPQ\nmvKyfgrn+KIujx1PxRTO3UX/KOn8m+9fS3rrPvfum58dzRQ4DF8GjUSQSqWiq6srU9vDMLSqOGTJ\n+U3nOWSpxc3lqxJR5rxWq+knP/mJSbAwDC2Tj3lgIrQdh6Cl5OhCX2iUTEVJRuTb7X23Z0+c1DXk\nbyBwTJYkxuALk/oyZc1m08AxSZa9J8m0K88kvF28z0zxSUbsBeulMzfqc71eN20KtX42m+2YOnF2\nNxoPKL8nehrJgCstFoudzldkunozKqnupN+3MAx3itZOp1O1220z23yPijAMDXyk87QHuvftIXOB\nI6CBtNttMysxYyihR+g/9NFsNq2P6qdE+H4y0BiGYRg8ISIxCII/lvTHSb9HpUOF5TKSPTibzczE\noAALaidE4+sqJLzDDnq9Xq9NNWy328bZ5/O5hsPhTmw/5b3IcSe9mMsRJWwIzaf9+hoQ8/lc+Xze\n1FveJ5VKWf4+BMpc+8qWcVGp+Eu/h2azaaXDwzC0ngtBEJh9Pp1Ov7Um9jRuIFkBQtGkuJDsIQyI\nJCzfQq5QKFhJefYvbg5fxJQswn6/r1wuZ02AyIx8/fq1mVo0mOU9/b84UBNQVpIxL5KiSHmHKdzd\n3VlBHprM8p6YmT5pKmmwRmpNoKlgQmAWUBl7Pp/r/Pzczmc2m+0UkHmqB+KpEY3XQRBcStI3X2++\n+fmVpDfuc59987NvjTAM/ywMw98PXdilJwTcY6vVyopIDAYDs8kgOtRUpBspwEgin93mn++/hwA8\n+k/B09VqtdOsJAjuswGjNQm9LzxJgjMnkme73ZrKCPDltZvT01NdXFzsEJjHK+Iuj9tf20P2Ew8O\nlZ28mYC2td1ud9K4UbMPzYUZxbuHYbhTxox6hp5Z9Pt9ffz4Ud1u1+xf3je6fx6JZy5KyVGjk2Iq\no9FIkqzYKq5Q/vkiv1Fa8P9n/ZgieEkwXX1BVcyzWq1mDYRgflzSOMkdncvvMx4tqn9TvRwTyReo\n6Xa7Gg6HGg6HVjPCe9MeM57KFP6lpD/65vs/kvQv3M//8+B+/DuSho/FExhIRVRLmAOEBfjSbrdN\n7YdLetUSLh2H+PpDx1WFTUh/SIpZ4FGAqKV7QoUj+5oA+8Ad3sN7MpDM4CBUK6JVHTUE0A64PPsA\nTX+hfdckmMV0OlW327W6iMRjIO2R+OxdEkAmfTt4BxME0BEXIWoxdQ3evXtnVZA8eBvnSuO8WNdo\nNLLCM/P5XKPRyLwj4ECXl5eGxeDepQcDa0kCT9knSeadoSaDL9obBIGB4Y1Gw7Q631nL72HU/ek9\nDz4V22NYpVJJqVTKGuiQbSrJCtbQwMh74p6qLRzjkvyfdA8qngRB8E7Sfy3pTyX9syAI/oGkryX9\n4Tcf/1907478pe5dkv/FY17G29JIOVR/KjnX63Wru18oFKyfJCqdL33tAau4zYERwKHT6fsW9GgN\nvmgman69Xrd6AVwUahZ4rCNuLh9owt8B9FUqFdM2crmcIfWYRPRT8GDkPkzBmzBIbV8p2BePLZfL\najQapvZKMkwAIk0C/1gbaj9eCAgXsHa73er09NR6MqCOo9KzP/7yx9EGajgFTZrNpjE2+iVwHrjt\n0F7QENDyYA5JKeSYF74LE0wYrRJGjQYGvVAq35tdPtgtyhigP86VGAxiIaBVH3RGS4DhcKj379+b\nW/RTGIJ0nPfh7yX86u/GfDaU9F8+6U3c8JKeTV2t7jsFt9ttNRoNawrDpUmn02q1WtpsNrY5uNH2\nAS6+5x/gGzYkdjZlw6kVWS6XDWiC+3OI+wKXYAqSdsqU4e8GmQfxxhXJ3PSxPGZd3l6mhgEqN8VQ\nPvvsMwNM6WQ0GAwsfsJf8EO2MAMz5+7uTp1OR/l83qQbF5k9LhaL+ulPf2qt6jwYuO+8pIcYjOFw\naMBvpVIxnIkCq+v1eqcgbqVSMbSe9nZJeAn7C3MkOAicgtgIX2sSWgXjQsDMZjPbn7i5vODhbyWZ\nSUT5+mazaTTjtYPr62vd3t6aefNUz4P0jCMafXindL+ZlUrFJDE2Hggsks8j9uVy2YJyvO0WHUh4\n+h/QbAaACs6OOyifz+/YsMc24EACsS6IiYhNAqUABwEyfegqkpyGJ8cOGJ2vVIXXg/WByoPJRLWN\nfZoJZ+Y1u+l0qi+//NJUXKQ86j1Aq6+wxWXYh8t4TQI13Ut1QEWwHugB4YH7GqAwOl8cxgCwCKPh\nPIIgsM5MXPZMJmOMCK2SknWcf5I2iSbgwXGAYq/1eZcqJhRmIkF9Tx3Pmimg7oK+wkmpyZhKpdTr\n9axQKJKNv0NFjyvZ5oe3vQnBxTTBvsZc2G63OwVH0RZ8ifkklNkzA9ZVKBQs+Ip3B1Tlb+hZABH6\nMGnsz6Th1W4Kf+K773a7Zg6l02ljRL4VHWs6pC1wXuAtkgwlHwwGhhNw6cknYV6P1XibP254xuq7\nMWEG9no9STKpCyDIWjAtfJetJAbEP8Bef37+3GEYRJ96jAB3MBpb0lw+AMy7KHkucSC1Ws0iFgkT\nhyGwb/uYz6HxLJmCd0Ei8VHvsY1xbeGewg5DGqBic3hJm8QFJoovl8vp5uZGmUxm5/mz2czclJvN\nxpgH7eMgjqSEHtbl+0ogZbjoYRhaeOxisdgJmqJKEZ/DnozrJRmdE9fiaDRSv983acO7FItFbTYb\nC3HGzeYLxe5TR7k0XFDMHy4dATbL5dK8HEQBTiYT+6wkq2YdN4d39XmvEpoil4/3pqYmayUHASFR\nrVYtijLOzvcJXcztwUP6mZKrAdYBjUgys8z3/YxqJf57GLbvyTkajcy0lWSaJDEeaKu+2xYM6CmM\n4dkyBRJACLTBRwuWsN1u1ev1zGbj4AgPLpfLBmbtC3H2aDLNYzFP2u222YO1Wm3H3cklIyELSbwv\nqxD1z2dibjYbdbtdO3SafNTrdevYLMmYz3q9NtfhoYSXKJFPp1NdX18bdrHZbCzOwxdQheB8dOEh\nwsKuB4OhdyVnhST1mYWNRsO8SuAtEPW+AUMkV4WLxx5ylpw7uEm327X/12o1dbvdvfEX0kOCEowL\nxg1gCrDHWRL5iPkF4IrpkASgesFAch4Mod1uW55GNpvVYDBQv9/XcDi0uAU8dEHw0GfyewMa/6ZH\n1Ob2QTjU9PcuoWg2I4fn3Ul8H7dJSBz8ykQn8iyCjLhUPjkIXGGxWJh03ae2QaT4rjELptOper2e\nSU5csR7VhxGhtSCR9u0jw/vo8bVzOX1XIwBCGsQArh1KP2cuknYo657JZAw7IBKvVqup3W7rxz/+\nsaVsE4xGgFaSvc3eQg8wVzQH724kQpIQb0k78Rc8M442/FwMD3bzPN6XM/F4jA9CwzN2iNmB62BW\nApqSf4FmN5lM1O/3TSiRCIUG4wXhD8J88NIUxkBQCNoD2V+VSkXpdNqaw3gigaClByQ+aT4OHMIi\niy6TyRiKLT1UcgZ7YB649DESlffhPWFEoOE+/BYThkYj4BeHXK1+bX5P2ZPFYrGTEo7JM5lMdi7m\nY4BM1kN3rcvLS3NRopFst1tdXl5a9isenNXqvpuSP6dD+8i5oS3ghia+AmmLqzCfz+v09NSCf9Be\nDtWL8CCrL+S72TykR5M+T9Soj0jEpYtGuo9G0DbweoGTESxHzsPbt2+NEXQ6HcO6vOvzmD1MGs+O\nKUi7UV4eVEPdJHsS6UcHav6GSDmI7ti2cVwOvvrAFnzbHDDNP4hUQ5ruwxSi6DYaz2q10vX1tWEI\nMBpyK/A7I1HBIY6NbffuXVTgVCpl3bu50ABX/r14530Xh2cHQWBnc3FxYSbKmzdvzAzDnCAfYjKZ\n6Pr6WoPBwFTupKQrviKpuaSEucMkMB2pF4G5AS0QyYlJFjcX6/ZeMJ/3ghuaoCvvkva2PZon53XI\ne4MZkc/ndXZ2Zl4p1oFLdDAY6ObmZifN3Mex/OC8Dx51BWzhUqAxSPeHNxqNNJlM7PL0ej19/fXX\nBpQlHbwfaCVcfAgNAgQhh8vzbIAegCFfzSdpeBUSzQROz6VB2gHQjcdjffz40TpHQWCHiAzTCmQf\nMBA1GlWbgBsKn7A+9tkDZ0ljuVzuuFLn87mlNqNtrVYrff3119ZW7ec//7l+8YtfqNPp2BwQd9yA\nYW+3W9MMOTN89x6wxAuF2dXv9/XhwwdjCGSjJtn5nLf3FOH6rtVqO+5DUpUxgwi/RkPwwinJvGTP\ng+Ch6E+5XFar1drppD0YDKwnpi8qBB2jnfygNAUIdDqdajweq9frmTRoNptmF3qAD3819j0HAOK7\nzx0JgUkPGMPd3Z3lCGAjYrMi4SAKyrRxufatC+JnPgiIgCKeh5RGSwBn4LAPMR+vlcDoKP5Rr9ft\neTCaxWKhq6srDQYDI2L+HWKqMO13797p+vpaX3/9tf78z/9cp6enOjs7U6VSMWn21VdfaTAYWLs/\nPAG88z5MgfMiLBo3KOG/XJ5qtWq9P7/66isDBmezmd6/f2/S1u9n3EWFUYMVDAYDY9Lz+dyYBBcV\nMwiXNWcHQ9inRW42G/PEANBCx7i+x+Oxbm5u9LOf/exbPSQxSb22+9TxbPs+cOAs1PuMPXbgMQRs\nSw4ayZPkF/ZzERqLZM1kMmaPggpTiw8CB/kFNIxWJkoCG3GdeUALEMlHIXLxvZ9a0k647YF9tbl8\n4E61WlWj0TDTIZPJmIsVwBUGd8jmjq4t7h28z96bhoCoUcmc9GzP6Ii45N18LACBSpSawzNFWTvi\nCzxY670Q0XfE3cl7oHnh6sSk9fks5M7AVH2cx764CPJeSJ32TA6AkepNCJcoze3xSv1mNoNhwzwx\nScm9Ev1nvP3rw3yjf8f3fnikmrl8W3hCgbfb+0afBMTQgTouOGofgQNeemDV27Hed+6lwD5Gl7C3\nOwAZqrbPZAQMxExC3d4H0CbNxdd9a4+OfRpC9O/4DIzbMxYfiARYB31474t32Xl6SGIKmCk+GxaE\nH6ZCdKgkezaSnM/4ueK+Z52EwBNzQQs+mIzXCLxHhn3Ys4+/mUwh4fc7BCftHhgjyiGPte2j83Dg\n1EqAWHxTU1xB/l2OZQrR+aIaj/QgGUnyOnRpjhnsFUyCd4QJ4d34FNWTkbS//vvHMre4n3ngkXND\nK/LaWFyV46Tz8ozFazdeS/XFYPg/38NQ456/j2FG1+oxLdblPQswxCRvQ8xcPxym8DJexsv4TsZL\n27iX8TJexuPHs/Q+xKlYUZXuU595jP0bN7w6ecxnD80VVVGTAKhDfxe1h5+6T8eMY84mukePMRPi\n9uOYPf/UNT9mrk8dfxMa+lP341kyBT+idmj0HyMJrIrahsfaedHnRwEybzMes/FRTMQP702JfpZ5\n4hD66AWKrivpPeLm8aDmY9blPxd9L79n0TDfqB3svz6FmD0wHT27x2BNj5krun8828dZPBYziaPD\nuLn57DEYyWPHs2MKcdKGjfDt1Uqlks7Ozizc2PvVORhcUIy4TYr+DELGO4D7qVwuWzWiaC4AEXpJ\nsQNRcNTPRaAUc1HX0JdD894HHyjzmEP3SVi4RX16eNRjw7uSK5E04hiTB+OYi0hA3GnSbql69vXY\n0Grm9cVv8RDQH+H6+nrHA8CzfbYj8z9mD/HekBH6+vVrmyea+0A8SFLKNCOJDv1ekthFeLV3x/I9\n3qNPYXzPjinEERj56yDKuVzOugM1Go2dZBrCTiHkQ372KOPxOfZIHpBf76/mM0QFEtG4D3X26+KQ\nIWQyCPEMEDjlg6+8XxrfN7/btz7W5TP+IO4gCMzVSv1L1sR7J63Lr817g2AGfM85+BG9/GEYWum0\nfcFSXmj42gi4lMmsDYLAeiOQPcjfcl6s7dBgXQQVwcjphOWL/NK/wntzKpWKxX4cM9g3oid9unwY\nhrY+hIQvJU9UKQl1TxnPiilED9yHsuK3LZVKFnxzcXGhbDar0Whk3X/W6/tmGERElkoli0BMCvjx\nVZuYm0tDAdVXr15ZuG6UM5Oi/eWXX+6EnkbXxQWkgjNx+oToErFJ56HpdGoBTRTn7HQ62m63evfu\nnRFaUm4HkgWi5vKQWFMsFlWv162eAgyHwBuiNrvdriaTiRXGjTuvIAisjBgaCV+5vOwxlxINyNe2\nJLJvX3ejIAhUr9etUAv/KF0P3Xz99deWPUikKyHYMFVfNyJpLgLYYDicU61W09nZmVqtlp3P5eWl\nhTsT3Uja83g83tGU4uY6OTmxi44GWS6XVSgUrEmRLziEJtLpdHRzc6PFYqHRaKRisajhcPikHIhn\nxRQ8Z4PAwjC0JB66N52enur09NTKs8EcyI8IgsAOhqIaBH7EcU+ks4/6KxQKqtfrarVaOj091Y9/\n/GOTFj6Ixee2N5tNI0B/GF77gQHxj36L5+fnuri4sCKq8/lcp6enllNAs9QguM/3oBjqvmKxpC1T\nEMRHyZ2fn6tQKOjs7Mzej5BuTK90Om21LjOZzE7jmOh5pVIp6yXhq2X5YqrsG8yE94aBbzYbI+ik\n8GpMDbo0VSoVtVoty8z0oekw0zAMLRT+9vbW6nCgGe3LtyDFnLMi7+H09FSXl5dqt9sWEZrN3vea\nHI/H1kGK9VHsh+IpcYPYmCAIrEwfCWZ0EEMgVioVSbLMWgQjVcIozPMbzxSkB3UX+9ZX80E7qNVq\nyuVyFlNeLpctdRa7lcP24dJxw0cO0juiXC5be7V6vW6twmAa/F0qlTINBqmzD7n2wBuqbq1WszZu\n1IbcbrdWmtwzKV8roFAoaDAYJJpGXMDtdmsFT0hOarfbyuVyarVapmFhSpDHEYYP/SPBN5JAMBgC\nDC2Xy+nVq1dqNBpmtvA+k8nEagOE4UOlqX6/r+vr653en3GAIxcHZtpoNPTjH//YeizCEObz+U7t\nAzAh8gt8QFhclCVzobpz3hRPPTk52ek14vEmMjY5SzCGfWYsONlqtbIGsqyJugw+DB/6IKy/XC6r\n3+9LejDNktZ1aDwrpgCRQUCE3kIYlUrF1Hpq0rHZqIzYs9ioJE3FHQjPYh5UslKpZA1MPVeezWY7\ndQRhCKivb9/ed8xLMlOQEmTW5XI5Uwl9qzYuvkfsibWv1+uazWZ69+7djsYSXZcPbUbbIu+BYih8\nDmmKmoumgDYDiBZdFxoGl5T3KxaLpl1Rpo5zgqDZDwqJLBYLK5nuvS5x6yIVmoK3tVpNr169Mk2m\n0+mo1+spDEPLnOScqGkIuMo64miD9RNajHlTr9fN7KE2A6X8YCAeFI/zIkXngqGg4fjMYJ6Bxkzu\nBvPwWc4jCcc5djyr4CW/Yd5mR52ixwP2L1WCKB1GWjAbjAlxCHDx9pkksxmRqrVaTdPp1BqoUOcQ\nO917H5IOwks9CqlgE0PkEE6v19NoNNJgMNBoNLLDBmiiwAfFWOLcVt4cgtB8yjQZfmASPi0bkwXm\nFGXOfrAHqM7ZbFaXl5d68+aN9XwAX8Csoj8oGhnl2dkDBELcumB2MPF2u22Zs4vFQre3t3r79q0+\nfvxozA4TA/Xbp8j7hKi4M+P3pCZDh0jq1WplKeeYVpxnLpezPItDeSSe6VAOgAY3JEJB65hyCBGf\na0E1K36+T3NNGs9OU4j6l8k3QCp4VZSyYkgLMta4sN71lbQ5mBgU/6T8d7vd1vn5uTVDHQwG5mZq\nNps7qcyk5sIYPNItfVuNW61WBh6hdnMRcKOyBhiBL+HtcZZ9fm3sct8Nmd6E5FT4TEy8EOAQMAwI\nProuvmev6YvBpeGMer2eOp2O7u7udHZ2tlNxmzWxLhhrHEPwc2azWevHQRl8mEKv19N6vbYeCaSl\n1+t19Xo9M91gqtGcCNbJXNCIJNXrdcNlAEWHw6EkmRfCP9PXDk3SEpiHz8HQPROEiSIc6vW6lRiY\nTCbf6gyF6fQUTOFZaQrSbnce6YFDwwhQBSEcbC3y2j1X9lVuD/luvfngy7vRVZoyXh7zoD7BYrFQ\nr9ezHPcoAXjmgFkDsYET+PfGRqXeHheHebkA/F10rug/no3kAkxEk+I92OP1em1qKwwPj0CcuxUJ\niXYGQ0HTubq60sePH3V9fa0PHz5YYxRUeAgX9yuMKG5dMHiAZfCJfr9vbeTYPy4T2qMk87wgBLw2\nELeHXNj1+r7rd6vV2jk3aM431eGZmFRc8Djw1DN21kerRF/yja7TFMYFjL25uTGGMBqNrCI3FcGf\n4pZ8VpoChxBVV5GqVOFFHV6v14Zy+zz3+Xxu0hCQzKPefj5/EdE6QH3Jy8dzAcNAY5nNZup2uxYn\ngTSPqonMCRhKOmyr1TKMwre+g3mgeqPucsg+mClpXTBTpDwMAbco+wQj4PLAQCgUQrVln40XPS80\nKNZOo5XtdrtTXNQHEHkTELcdjJ6/9etiLo9tFAoFK7uP5iPJNBEkOjgT58rlkmTl2eNoETpk3biN\neS57jDbi6SYIAisJF439iJuLn3NGBFiB2YA90ZUKjwPVxvr9vjH8Q4V2D41nxRSkh4sKgAIBw4Xh\nkJLUbrftkBjT6VTFYlGDwcDsxn3177nsHtWm0g7PRe0mYCoMQ1PVqNbr89mjc3l7EeZFL0xUb1RU\n/3t6CfriK8zh8+nj1uVLwcNUwE18qTLmYp+o8MMzjtlDJPNisdhp/YYpBIaBK4/eD/wt5+b3KmkP\nfRGdUqm0E+dAhCbxJNQ45GJS7g5fvy9/Bu1FaQPGgInqwTwYD5gIpgOmXbvd1nw+t1Z1+4aPE/EM\n32sc5+fnhtvgXkWD3eeafux4dkyBweaCJRC6yiG8evVqx2RAKiJ9IBoPICZtGMg0riAazdze3tql\ngtggBspkffz4Ub1ez9TaJDcQRE0PwkajYaHUNArhPWlN56v7UApsNBpZ4BGX99AeYnL5oCHeg+/p\nk9Dtdq19HpebH+2xTQAAIABJREFUv9kXTIRGdn19bYAetvvr16/tAtMyrlqtqtfr6cOHD/rrv/7r\nHYmNqr9PghN30Ol0dHFxodPTU9XrdZ2dnZkgIT6gXq9Leii9l81m9ebNGwVBoKurq720gbkHhkAB\nYR+E5jErqiSBBeGRARRPYqzMFcUzYK7eBT6ZTKzMHHQDQ/B7t2+ufePZMgVwArQD7wNH3UKFQnJQ\nncZLVC5GtNIOA6InYo3D9ertdDpVu902DYbakb7hB63P9iG+SBjATE8EBCgBoi0WC7NPsbF9YBGa\nxb6DB3PBdo4GX43HY9XrdZPS4AfeC+HLmf1/7b1bqG1pdt/3//Z9r/t1X86pc6qqW8qD8IPcBFsQ\nIwSGOBKBjl+MXyLZiCgPMonBgbTtB+vRCbbAASNoY4EUbCkG21gEh8Q2CSYQyW4LWa22UHel6lSd\nfV33tfb9Ov2w92/sseaZc661d1X1WadYAw5nX9ae3/xu4/ofY+AA88TYAIXOz8/VbrftMkkybzkX\nRZJFV4bDoZkeSFNMhzRiLBCdlPvHD8Ra9Xo9bW1tGYqQ6t7MAY0payzWkH1Cdeds4NcBn4DWyP54\niPXq6momXsFrivzDPEZ7pWbpaDQaEyS+0Mw0a5hFM8UUPHcEUoqUYwG8utdqteyiwSl9IU5s+ElJ\nNqjQHH5/QLmQ2OK06cLJSNSBzeH9kux8OD2SC8x6CMEajZycnIxJJtbFh7TY8LhUia8lDIGoDIk5\n3mYnlEuMH2aB38Y76OJw6riqf3FxoX6/b2qvxyXAlChbhgOXhjrUhOR5/vlJY15eXlovTMBdnA+e\nCaSZc4ATmDPhfRxp59HnvkTRXfuARqNhl57K0BTdBbXIPkVRlBo6ThqL/fJ5D0DtyQ0BtIcA5OzD\nvOiY9dQy7zPFFHyoi8sON7++vtbh4aFevnxpGw+0kwuVz+fHLq137mRJU2w5j91HugBCKRaLJhmQ\nDt1u1zy+PhMvSxLArHCERlFkbdixX/3BwAnqu1HxLyv2zQH0FxMHImg5f2hZM76mCxWUNS/mhrYU\nRZHhKHK5nMGdfcYg0t63PJM0cV6STGqChEQi1+t1RVGk0WikTqdjnn+0Su8wvbq6a/s3aSx8W0Dl\nT09PdXBwoFqtpii6Q2T2ej1tbGzo8vLSbH4kOmvq5522X/iYfL9N/COgQ4+Pj62HKeeF9cfpiZn4\nVBNippgCB9mrxR6PAHKMpinSQ9em1dXVsVZadHHy2YRpY8IYrq+vDQLM5fTmh9dYBoOBbRBcG6ir\nD6lK4/Uk/bzwV6DphPCQlstBhzEwH2xppESWqcJh4LIS5yYiwUVFfSeph+fjK+DrOHnzh4sGM0Uz\nIoqC5kJoE40EQNPCwoIxV+9si88JxywJW69fvx773O3tXVl27Hfffo+CuyTMwSTSLg7vgBbE3E5O\nTsb6MPA5HzLm/ciLYc+zziGaAojTSqWiRqOhZrM5pi3CFLx2h3mCtvTYtHBPM8UUPGfDL8Akfb2C\n0WhkoSvpoU/EcDgcaxfPhvLsrHAQNjCl3XHA+cy4Tqdj6L/Dw0OzZxnTPyttfh6TQIISqiibi/bD\nJSIV9vr62i4S5krWQWNMGBwOUrQS1HzU6pOTE4vzR1E01huTZ2Wtn3f4gg/xZda5+DgwcQjDqFib\nSWMR7+fitVotw0jgKJYeHLZcSC7NycmJZXxO0iKZFxdyMBhIemhuyznx5gO+DnxPzC3LfPBRjaWl\nJTUaDcv6ZA19KB7hg5bsnwETm3Q20mimmIL0Znce6cG7e3l5aeoiWYKAeIjXnpycaDAY2IUFgJTF\nMeN2GSEgYtqFQsEcmqiLXFR8DpJMuqfZwfzcvw9FQZgL4UEOL4hAHHMgKzkQfs3ic0J6I2WQQOfn\n56rX64YoRLJxUbzzDImPZpJGcQ0IRsfe8b445MBAkMDG7+KgpSRCA/HMxztpfaQATWwwGJgG0W63\nLa05S4uMa2JoVIRtiXJwmdESer2eYQcAEXGps+bmU6Xz+bw100EwMS6MA/AXvjAg0Jg6T6WZYwoQ\nmgD/fLtvHGMAbJaWlsxp1e/37cAhGbMSQ9hQrypKd2AiYLSLi4saDoeGmmu32wZa4oJ6NGCaKirJ\nDvFwODRQVhRFlqhE+LHT6ej6+trGhSF4NZVDluaQw0krPeDxGQMpCTO9vr7WaDQyQAyXzDtfsw40\nphEHFrCZ95FIskIjeM8xJ6SHBqtZjMH/nHmfnZ29kWyG9MRjf3l5aYhKH8r1ez5pbpLMv+Odtfig\nAGKNRiMdHh6O5ZNknQ3o6urK0IqcDRjE0tKShTrRhPFxAG2GQJQ+xXSQZowpsMksOOotSTSSDEBy\ne3tr3J5NImEE54tvapJGcH8AIScnJ4YDIER5fn5uLdH29vbG0H6+OEuWysa8UMmHw6G9J+nL5XJZ\n3W5X7XbbmEAU3SVI0b6MeU1SD+O4CT57dnZm3ZHxIcB48FuAnWed05LKPDNCy4IRAU3Hc+5DnJ1O\nx9br5uZGxWLRIORpqD+/jozNPJHCKysrYz4ZmC9SlFZvRGP8uiQRFxnGgQ3v29xjGuB7If/i+PjY\nhBd7kaWV4DtjTtwB0LmLi4uGy+CMwLx9GHwaSP8kmtj3IYTwq5L+S0mtKIr+2P3PfknSfyOpff+x\nvxZF0T+//91flfTzkm4k/XdRFP2fE18ioe8DEofDyeHm5xwyr7ISpfChO8+d/SH2aiGhHyQbh4tY\n8e3trVqtlkmxuH2IaeAlNz9PG4t38em1fM7b1V5a8zwOi38+c/ZjgcRDaoLWBKEJAAu1F5Xb29rY\n6knziu2hgbvAfSwsLBiCkYu5srJiph1AHJg+F9eHYpPWUBpvzMPvGRuTAYASjABAGmaoHyttvxjL\nF4jBacplZW19SJWIA8wkfm6y1tCnlnsmi5bi81fipin3IeVefzHNYEIIPynpWNKvx5jCcRRFfyv2\n2R+T9BuS/oSkZ5L+paT/JIqiTKAATMEvGFKOBYnDen0MPYk8h3fj2PfYpfwc7y0psVwQnxLrTQze\nLy5NPPmx/DvACHzIlPdhXvF3hXy+vX9mElOQHhgD6jsOTux3Pu+1NBx/HLy0ecXNFmC/AKTIN+Cz\nFxcX9j1+CkxDJJ5/vqekeXktiDVkL0MIqtVqFtrFOQt+IavNX9JY7AnrEU8lB+LshVTcN5M0VpxY\nM+aHUxHmAmPyjID38s7uFJqKKUw0H6Io+tchhA8mfe6evinpN6MoupD0SQjhI90xiP9vmj/2k/Fm\nBJsU33R/ETjISWGsJLs7/nUUPaQnI3U804mPBYBkklqdNJ7HOjBW2t8iddIYXFo4zY9FeA5mhAPW\nP5N5ZZWti1OcOXDBkaRocz7N20dNfOu9tGdmzQvUKXPzEF8iHTyH8CO/j1/8x4zlzyNjeadvGjOd\nhm5vbw1h6v00nhF4DTLpbECT1jCNPo9P4S+FEH5W0nck/ZUoivqSnkv6bfeZnfufPZniavPneU7W\n9/GfZTknHztWHLMQpy9yrKx5cSl8DYMvgpIYLJf9qWNNK1m9+v8YBN80foussb5Miu9X2vmYNN+n\n+hWeWk/hVyR9XdKPS9qX9Lcf+4AQwi+EEL4TQvjOE99hTnOa05dAT9IUoig65OsQwt+T9L/ff7sr\n6YX76Hv3P0t6xrclffv+GWMsLS3ENkldfoy6lJbNmPa8JJXTk/+993vMIj1VrZzTF0/xMyO9edbi\nDle0sazz6Omxe/0kphBC2I6iaP/+2z8r6Q/uv/4tSf8whPDLunM0/qikf/OUMe7HkfSmAyhu2/EZ\n7x32DpnHjukdifzM26seScnP4u/yeeiLfJZ/nn/P+Bp6W/WLHDvpPb6MZ8efnzTeND6Yx4wVv7je\nEe3HnYbi/qL4197v5J3kSdET//20jMPTRKYQQvgNST8lqRFC2JH0NyT9VAjhxyVFkl5J+m/vX+J7\nIYR/JOk/SLqW9IvRhMhDwnhvTI4DjFeboh3vvfeeRqORpIdiHXh7wajz87TNYeH84ofw0D0JqOzq\n6upYiMl76XH4+BqKj50zTGhlZUX1et3qC/iYNYzvMXFoL4l4Pg7HUqmkFy9eGHiJtGk/P0KVj51X\nfFxS4XHO+gQrD8h6ytpJD5cG4BR4Fr+GOAFB/D3WGejD4jg2KeyCk9vX1+RnJIc9dix/DhcXF60j\nGu9N5IuQ5+3trTUi8g76x9LEkOQPg5LMB4iwJPF2IJ+VSkXPnz+3Re92u2NhNOrcgQJMMkf4B2Mg\n9uxBMDAGQDJEHYgccABCCDo6Ohoba5L5wJgcMA/2IRri8Qg+PyCtK5R/ttd4fMybgrHValUvXrzQ\nxcWFut2uut3uWDl3wDqTAGBJY/s54Skn1u+zBeNa4KRszPg4XEz2jmzZYrFoEpVkL0kW46c696R1\nhJgPOAJQmlR24myQc+OjU0Dik1ChSdoNzJv5sGfFYlHNZlPSQ5TCp4uTtMX/kBvziwlJ/jDJawlg\n2KktQNXjUqlk3ZS2trYMnru4uKiTkxP1ej0dHh6q0+lYdiDAGK9qeRUsl8up0WiMlVz37cjo9gO0\nmkxFvvdJMpQmSztscH/i5xSSyeVy1uHo5cuXdsDY7MFgoHa7rdFoZPUeOOBJaxhF0VibOABLpVJJ\njUZDm5ub+vDDD7WxsTFWTpyUdI+ag1lMurAkjsFI0Q4KhYI18fElxECFeuYHg52E3Sd3g7VDijab\nTT1//twK8oAMPT09VavV0uHhoXq9nu0XqM60eYUQtL29rVwuZ81Z8vm8NjY2rDlRPp839CRw5729\nPe3v76vVao3te/wcxsci94W1I/+mXq/bP5oC+/J5w+HQKoD1+31DVT4lsjVTTMFzUQ6yrxxEV6PN\nzU1Vq1WL4YMHpzcil4lyXKQ9x7Mm+Z/eARTebDQa1giGIq0cXuLf3W5XFxcXOjg40MLCgobDoQGE\nskJFXBZvDnFpuKRAkNfW1tRsNnV4eGgaEcAbYv/xi+rXEOnJIUMCwVDpWwhQC1QedQhGo5GNBX4j\ni8rlshUwhdFSE7FSqahWq1mi0MHBgbrdruWrxHEbWSnv5FPAxOnF0Gg09Pz5c9VqNZXLZV1cXNg5\nkaRKpWINYAGJYdKkhU5JWCMfgUSlZrOparWq9fV1S7ojIzOEu+rL7fYd4Je6B+A2suaF5sjZ4Mw3\nm001Gg0rtgK8nopWaMfHx8eWwAf47rE0U0xB0phK7+0iCrQWi0VbgH6/b1l30ngJKq+qZaWtwnQk\nWRntly9fql6v23usrq6a7wKVEYgu2Y0hBOslkIW0lGTPXFxctLqCW1tbxlTI8iyVSpbqXCgUNBwO\nTcPBBk9bQ9bDQ2E54CTdkCtCyXUYLKZSHF6dRWSWbm1taWVlxaQ1qeEUDaGyNAlTnU7HqljzzpIM\n7Zk0N3IKqAcBMyengcItURRZWrP3OXg7PIsYiyK+Nzc39t6Xl5fqdDrqdDrmP6BCNAwHZCPmWJaW\nBeO+vb01hkBtUHppAO0ejUaG0owzERjFU/0J0owxBe+cQnKAxaeKD4lR3W7XDiv+BjQGX5HGN9eI\nE0Ut+Dw2IwcZiXV6emqc11dG9huytrZmjCNLPeT9ODBRFBnXX1hYsLZmQFrRcJDiSNJJktszBlTy\ncrmsFy9e2OHq9Xra29uz8X1RGYqNksCVxRyYP1mOSMVCoWC5Ezc3N9rf3zekIyZav98fg2CzDmlr\n6KHlOO8Gg4E1Vz08PDSGS5k9/g773pd+Y32T1o/3oFHxzc2NrRHri3ZDIRnyPnyiFHtNunPSWFxo\nX+cCAeQh3eSHkEKdy+Vsb3yNhTgU/jE0U0zBh1A4XDT1IJtxdXXVbECfBEWyD5cJTzObkHaBWEgv\nFfkZVYiQpmROooZjz8KMvMqbNh7vjFq+vr6uer1uNQBwmqKdhBBUrVY1GAwsPZgDN8lbzxqSUkxF\nbN/PwmegInko3ME7eY960kGDqZBbQLMVUnthCiHctVpfWrrr3Hxzc2Nt8TxuP+tAw6Cur6+ttBx+\noxCCVabGW39+fm4MDgbJGF6LyhqLepIwBNaT/aYwz9XVlSqVimXtkvNAtCAr2uFDpqw/z6XYD74W\nNFQf0aE6GGv9eaIPM9UhymsKXGpJYxza/7u5uTEVCwcNB8r3WkyTBIzjNxCmQxjLMwU2Du+zL4TK\nu0zDnf3h9JEVQpxoN4VCQY1Gw5gblYJ9vD0rNo9EI6LxwQcfqNFoqFwu2wXGcckhurm5sT4JOHip\nHZgW9+aSIcUoi0fNhOFwqG63q+FwaCYGPSR9+TWvQSWN481K6lJgBiA8cPAuLi5ai/r19XUr20/E\nAZXeJ4XF15D9RlvkHPA/ac2+oS5Vs4g4cD4mhQnRIokmEDL2dT0wDa6ursx/xj75qE5ag5tpaaY0\nhSQiTx5aWFgwzsklpkCJz7TzrepZME9eHfYbQnEKH2mAKREmIvyIgwpm4G3ISRLBO9WOjo6sSerl\n5aWazabNTZIV67i+vjaJ4C9Q/PmovpLMNq3X69YXE22AtYVBEma7ubmxsuIHBweJRWg88S5XV1dq\ntVo6Pz9XtVq18u2DwWCsZLn0UEsRpuRj72kFTv3YfB6HLXMuFosqFoumjdBnkjRxKlH5Qrtx34Jn\nfggN353r7OxMa2tr5kDF7kegnJ6eajgc2nqxPlkNiKUHJo42iVMRkw7NlagcUQ/OG9EN6aGuwlNo\nppiCl4AcAK+qr6+va2trawwHQEyayjQ06PAFSXh2fCykACW6KQbi28BToBPcAhcK04aviZDwXmnz\n86orPgqkwe3trTnRaGSDV5xDzCGZBLzBhsVs+PDDD/Xs2TOrYegZE2FEIgeEeqvVqtrttj7++ONM\nWLgH0XAZj4+PjXkXi0VJ0sbGhpaWlpTL5dTpdCyUxkWNR4bS1jD+GWx5cBfMaXNz03wCvtxbnMEl\njefVeS41e0OHqWfPnlktxe3tbUVRZD4hzoY3h9Kcw96pjhaJY5FWcZiWmBTlctmcnlSSwtnK+Xqq\ntjBTTEF6WCDvLfZlveINQjlwl5eXVsGHeLivWcCzIQ4h6iYbf3R0pGKxqKOjI1PNKJlG+IkLQG9J\n1Dk8wDw/jW5vb8fmhOTi4jNHHFPE/6vVqlqt1pj5lLaG0kOI68WLFxYVwHmLWktl7FKppFqtpq2t\nLTMfKF1eLBbV7/cz5+NrQdIA9/r62g6vJDWbTW1ublqR2NPT0zGtJsu+j8/Nfw7py1lBwuZyOSuc\nCuXzeR0dHb1RPzKLMfhoDxcul8tZeByNjmrWXHC0o2nG8k5kok30yMAHhDMTXAb+B8B8/X5/rIDP\nU2nmmAKXiQudy+VUKBRUq9X0/vvvW1swVCccTCxctVrVycmJisWiKpWKAY2yForLCAJyYWFB5XLZ\nNon4so9VU6lpOByaZ5+yaVnhQuYm3R2EwWCg58+fmx9jcfGu6xUHifeg6g4MAsdZFgF62d7eVqVS\nsTb0x8fHyufz2t7etvLtNzc31isTJohNTrQii7xZdHJyona7bXBjAFMccrQSX80asFVWbwTG4XL5\nKAAhUe9o3tvbMy0Q8NFoNDLVG0TgpHn5sXBgckGZz+vXr61uBS0ICfnm83mrNpXFgIiGlctllUol\n1et1bW5umsMXpCs9TdbW1gwoh08LjIhnfI+lmWMKbAKhHZwtADeQ1oSWer3emH3lS2zhwUVCpo3n\nvcPYtxQDxS7m8OZyOVPpAY74ysQwkTTyeRzSQ/gVBoeaOhwObXyckEhcxkFqpdHS0pKq1apdTJqq\n8u5IvqOjIwNMHR8f2xqD/PNhxixfiZ8PjsyTkxPzgwAkyuVypsYTWmXN0LSyGAOfx18CFgGHXqfT\n0fLyss7Pz833hP/E589M8pXE98u3MiQKRUgV5CImBp8HS8F8s8LVCwsLZg77don4y87Ozgw8h0YA\nLD2OT+A9nkIzG33wHZfhkFwGHHvkO4Aow7kYRZFKpdIYxNc/3xOquPSghoJcRHrh5ImiaAwS6zcA\nDzA2YdYcfU6Fl0SAsDymPYRgc/FmA8/I8mbzXnjnwcP7UC7qNQe9Wq3autBgByk2zf6hMZyfn+vk\n5ESdTsfAWL1ezyIOMHCfR+KdhlnzQov0uBG0EhCjRCeOjo7Gwrn4qDyMftJeIVjQEAuFgsrlskWN\ngIhT1BVNC5To+vq6SqXSVGP5OpqsE4yTBsMIr3go0vuJfF/Ux9JMMQWIjWfjwAL4y0rs2MerwRpw\n2HjWJBUqKWbtG8vQ+clzfMwVkGoeUJSFoOSdOPyLi4vq9XrWIBXGg+ZSq9UMmIMK6jWESU65i4sL\nA0PROwLVE2lDeAtoNzZ/t9u18GJa6Tk/J2+DE8YjFwAfwtnZmfr9vmVfeg+5BxJlYQf8pQbliuZE\nt+nDw0PzT3Ghvb8Kh20WsTb8faFQMHgz5uPV1V0jW5jg8vKy7aXHsngAUlq4lbA72owvrAtj9s2F\nfQjdh1phGE8FL80UU/D2IqoektEDhDjobLDvb4CXmWKgHkHmD5p3xvmDzAZw8LyUJBxKzBiOTe4D\nlzlNzfaakEe5LSwsWLMZX0UaE4r3pb5/vHty0ji889XVlYbDoVqt1lhjXMb1yURgBy4vLzUYDLSz\ns6PPPvvM1nrS3vE/n4WREComycv3qowz2WnJa1tcQsr0o1Gh6RUKhbEuW4Qip3VsInDILPXVsLl8\nRIbwm/B3ALuQ3D6y5gmtEKczfgOfaek1SDQYelYOBgNrmTgJ1DaJZs6nII1DdFGFuLTgA0B0MfmT\nkxNrLIqEQs1OknLx8CF2MBoKKiNqIBcUvwbh0MvLS+3t7dkzsy6rvzhoC96HQg4CjqpSqaTl5WW1\nWq0xrcjH0dPGQZUk85F0Ya9CU3PgxYsX1jmq1WrZnD7++GN1u11zkD1m//iHv+T8/FyVSsW0KS4K\n3aLY60lOWmm81oBvlgL2wSdMAbwC44HTlGekXVI/ljcf2H8kMpoO+Ah8GzjDfSu7rJoKXstCu0GT\nQthgPksyhzSmGeff4zeeSjPHFOJhIDQFnCm9Xm/sMuEHwKl1cnKinZ0dyyv3wJMk8ihIsAgrKyuq\nVqvmk/DprISCOOhcOrj4tGXKfbEY8vErlYqpmVxaGpQivZH2XiKnEdLx7OxMu7u7evHihVZWVgxa\nnMvlVK/XbX273a5CCDo4ONB3v/tdffzxx2/07UwjLpjXUtBGUMN9xiumECXhfeXlSVIOSekBZcCm\nseE9A6YhK70dfbu4SWYRGglJcLlczvxHlHVnX/P5vF3k6+trS2cmPDupiC3zX1hY0OnpqWFXaByE\nMEI4+K5o3W7XUqW9j+EpNHNMQXozB4J8AGClUXTXZo3IwOLioqnvh4eHY6XDfapqkroYRQ8FQPgc\njIL232RmIt1oP9/v97W/v29OLY+gTBsLPwLfIz2AyyLxhsOhJJldv7e3p36/b5/P0kh4Nqo7NjbS\nGvPEh++QTEdHR/rkk0/08ccfm+aShdD05J2AXFZwAzCgYrFo3nmcZ2gvrP8kZnd1dWWJQph5mA2A\nfpaWltTpdHRzc6NWq6X9/X3t7++/sYaTUH8XFxemAfj0e84NrecHg4HlJQyHQ7169UqdTsfwIGm9\nJuLz8oV00A59khW1NUij7/V66na7Zn5y7qbdsySaSaYAAIbCKRwY2n7BBLj82FFeYhOewf5OWyDv\n2EKrAEoKcAjbEVDOzc2NedXRGmjSOk1cmE1H+iPZ8MxjH7569cq6KoOH8M/IIu+wBARFERpscEmm\n2lLk5OjoyDJQWZNpkq+kB1XbO8xyuZw2NzetdoNvzBu3kbNqKPh5+bwFfCYwBx/ZaLfbOjw8tLoX\nAItwDk/CRPjPwFwJ01KCTbpLdedi3tzcWJ4HZwnmkzU3BArwenxJPhxOx256i15dXRmD8FWt2LOn\n0kyWY5Me6uDhMLr/3Ji65p16/mvPzT1D8NLbe56ROP73jI9dKt1VaMLmJcbuzQhwBnF/RcJ8x9Rt\n3sfPzTtAMZP8vKaV3H6tkn7n1X0uso/GILmmGQ+NC+84pdHAmEjS9va2jo+PrXclFYIm2dxxwkPP\nGvPuaCC8g89tgCGwHtOuI5gEH4r20QRUfs4e5pbXfNLGitv+voAK88L/JN1pbWi1fo6MyznxZ8+N\n+8W0jfthUEhpG+dVbRY26WL7hfWMIS7d4pfeMwsOtPcxcBjg1r5iks+iBEASZwLTAHDSGJaPVMSd\nUI9Y17Hv07ze/rOeWaCCPuaMsGb8DdB0mM/m5qahKL3K/ViPOXsGA+Bi+nl6wBU/47OPWUfPsP05\n9GPBjPwcYKZZaxjfIw+qipu9vHN8LL5O0+jeaaaQ8rvE/+O/l95sKz7Jq5z2cxiRh/d6bIEkC29l\njfd5LrCf7+dRBZOeF2eU/n9/gONM+CnjEc7jefEsyafG0uNjea0o/g6TokKPHcc/Oz4WkY7HaHNZ\nY/l/nhnx/zRjfeWYwpzmNKcvjKZiCjMFXprTnOb09mkmow8/DEpTp/3Pnqo6Q29TC0uawzQ+hiRb\nNa66JpkfTyX/3LTfx99v0t8m7d2kfU4aa1r6vOfkbT8/Tu80U4gfkC/qmTit4g5Mf3i8feq//qI2\n8PMeVP+MLPuX770TjZ/FbdhJFzhp/LgDE/Keer5/6vziX3vIsKTEeTHmtPNK+lx8bklOxcc6T9OY\nYNxvEnc+PnasLHqnmAKL4tGF4Aa855X/J4XSkqQoBwovuofM+loJ3gsNAu0pKDK/ycyLmL0/aHj0\nmVeW8zHtADMvSVZjAJix9IAB8M+g1mXWu8cJb73vfkVi0enp6Rv7xfwA7/CzLKcyRMQIcJEHToG3\nYM8gyrw/xoHrBYWv4k2lKs4EYWr+RVFkSMNJZ8P/nrH8mKRT+wrR8WiKX8On0jvBFAg/EYeWZGXS\nfH/C+GUgczGN4mqmT5Pla39RqbJEWSzCleTBPyamz7x4tsfkk1zjU7HBD3DAfVuwtHlBHr/vk60A\nGZGTQBJcBbPaAAAgAElEQVSONF4JiEw9np00D88gmYuXoB4o5JkafxfCXfoz65tmFvhwp2cErKHX\neqgpkBQq9oVyp9kn1pBiLmtra6rVaiqVStre3rZuVK1WywBLJORFUWSArawx/FqwjjA8j4sgO9P3\n5vDQctKtn8oYZpYpcNFIm6ZiM7Xxnj17pnw+r1arpXa7bTkCg8FA/X5/rO5BFEVvbIhnBkgx6QHI\nxMUB/Ud2nC/WQX1HpOnBwYHh7NOYkYfixg81cOBms2mFTk5OTrS0tGQVkT2CjYOXZr4AM+Z9qZlA\nuS9KfkVRZOXdJVmeADByKvxQeyEpDs6lZo78I0WZd4HJcdhhPhxwqj9TV9HPy49FXU7qFNJ3giS5\nEILVf2R9OQcwChLGfM5KfA1DCFbtC62gXC5b68JGo6FGo6Hj42P1ej3Ld6ADFoVvEVBpYVjeuVAo\nGE4BeDMp2HTgiqLIqokBfWa9yDw9Ozv7arSN8wQToIwW5amePXtmZcLgjmtra6pWq/roo48kyRpl\nkFrN4qXZXz5NmsO7tramRqNhtQt9QVW4+c3NjUGH44ctjSmUy2XlcjlJsoQaEnroSvX8+XOFEFSr\n1awQyvLystWNoMoTl8mP5ecFQ2U9KQRKXQC6blGhCNjw2dmZ5UKcn58bGhGQVhKFECxhx2sivkQ5\nPTkBiFH45Pz83CDjQNbj1Yj9JQ0hWA5HrVZTPp+3edE5CaaG5sVYZBYCG0az8/OKq/FkV1JSfX19\nXbVazZLm0G5g8lEUWdIU8/PaRprGQKEdtDrWrFar2Txph4f2gXnS7/ctWZDWBpOqR6fRzDIFODu1\n/La2tlSpVCxPwBefoHtPs9kck3g+0cbDVCE2CuZCqfhyuWzSwOfII424zJRLJ+kmrjqnqW8kW8HM\nUOm9z4Aqvr6aTy6XswMddzz5OUnjFaUoEFKtVlUul9VsNs00gMn4kmbUOlxbW7OS9zwzba9IDELr\nos5gs9k0xhDCQ+NY75OhSC61KSVZklPSvBAW9MR89uyZ5SKcn59bVW8YPLUWRqORMSbKqCWtoR+T\n3BCK/CA8Tk5OdHBwYJpQt9u12plcRFKr0USywFNoxpTQW1xcVLPZVKVSUb1et9qLvlkPQmIwGJj/\nB3/Dzc2N3YPH0kwyBS4yCUohBGsN1uv17PdsKDX/yFXwHmCyKNMuqFc30RgwURYXF40hoDZ7u5h6\nBzAAHFtpfgUuHRKZCynJJI13mvE73pHnLiwsjDUWTSLPZHgeDA/GGUV3qehoCTCJxcVFK4ZCs14q\nT8UJDQG1F5PvvffeM0bO+GtraxoMBpYliTRlHWACccntCS0O5lapVPT8+XOVy2W1220z3ehURQFf\nNLBXr17ZGEjwND8JgoTkLca/urqywrRI/evru16S3iziOdJDhCqJMfizx/dketL30zsU8VNQvo+0\nbgQBQvApWoI0o0wBdR91T5KOj491fHxsF4W6gvV63S6IXwjv3Y57n/040t0BQa2jzh8LHkV32Yu+\nVReqvfSArycLMStNm3mFEMy2DCGoXq/r5ORkLPcin8/bwcSZihTk0iRVK/JOJ2+vU1LOO7R8ExZU\n17W1NR0dHdkYMLC0y8P7+aKmpVJJGxsbxlhh2tQzIP2dw35+fm6l6Fi/OLPzzM37YN577z1LbaaG\nBl2s2UMY/dHRkVXd9k7bLIccTlI+s7a2puFwqHK5bHuIn4R38pmYZC76/Ug6hz4BkNRwtK7b21vz\n65DeTgMa+p0gKHz0YdrqUnGaSaYgyaoBLyws6OjoyDoWhxDMiUhBjUqlooWFBUtdlcabebAZfnF8\nKJDxeA7lu/F09/t9HR8fmxOSnpKoaTAMNjRNHfUS0DcKwf6T7nwOODgp1T0ajdTr9czRhwqeVMbb\nzwutBCmPIwoHpn9fyr9HUTTmXyAVl79LmhOMB0dYs9lUvV43xkaK78HBgR141poUdd6Fg51mFuGR\npyU8Zg/FRg4PD6361urqqvXphDEwb3wPWcJCeqjfSZiYELX3VSEk0EhIWff7jSabNRYalG9QxHn0\nvTI4G1SAIiSO/4Jye2nncBLNJFPwajqOp+vra3U6HZNmS0tLevnypRVCwVlF/0JpvFZCmseX/xcW\nFqwICUVH0QoI12E/ItUkWRUfipFeXFxkhoOYC3Y0hwZGsLy8rM3NTfNVjEYjtVotY0w+RTstycfP\nC4cajrbj42M71BStwSFZKBSsUhPzoGZFWpEQDj5dpnBe0qLu+vpa/X5fr1690mAwMDWZHgW+zgCS\nMA0bwdoxr263a/6djz76SAcHB9brwRcrQS1nbqzJ+vr6G81imFOcuVJWDeYgyfxdV1dXqtfrY01h\niPhQSDYNX+LNXMwoIjmsO+ebMoNoEDBvoiwwVOo3PCYV3dNMMwWkKCoYoUkcgo1GQ4VCwWxjHC3Y\nVFK6ysbGX19fj1URZsHpq4gEZ6N8WfGLiwvrT8jYvpFo0gWSHtqXS7LPY7KUy2Wzw8/Pz7Wzs6OD\ngwN1Oh3z/nunVVp4ENXRS3gkMxWbUVcpMeb7bmIKAchhP+LzIjxGVEa6aw8H1uL4+FjtdtsK6dLH\ngFLmhAm9DZ5U/IR5UQAH6b2+vm57QFgOm97Xg8T88CFKfDVJF8drmh4XgVP1+fPnhpWRpM3NTXOa\nsrbUjxwMBpmFamAYMFHpoSsUFabwH93e3qpcLluJQNaKylMwgq9c5SU2xF9cpAjt09AYFhcXraEn\noRi4twe6pI2DTX17e2sdlvFPeAARZkO9XjcpjroH0tEDjJLG9QzK+znQVFZXV61h6dXVlbrdrlqt\nlhXnhCFM2mzmBRoOswdJxfcg5MBgcDBhrD7KEb8gnriQOF+5PFxSVODl5WU1m03VajULU2LywZyh\ntLGorISz1MfmfTFaTAcf9kXrBHzmG/JkMQY+46uGF4tFA6x5nAs4Arpv0bhlUtk3X4HKmyXHx8dq\nNpu2pvV6XbVazfwxtDrwf5PE0B5DE5lCCOGFpF+XtCkpkvTtKIr+TgihJul/k/SBpFeS/lwURf1w\nd+r/jqSfkXQq6S9EUfS7j30xrwJfXl5qOByaRxw1ngN1dnZmwCaAJHDdNLvRj8NhKpfLppl4z269\nXjfJBoOgduLBwYEVHeWgTYMm4/eoeTSzqVQqur6+1uvXr/XRRx/p6OhorAoSDCRNwkkPh5yD5HtM\nEDGhXiIVp/CiLywsWKFYwlqYHllz8Wor0QqiEr5LOJEDwqutVkuffvqpRSV4z6z1g2m1221Tu2Ey\nL1++tA7QhK/L5bL6/b46nY729/fN5l5fX7dQYxZ5dGE+n9eP/MiPqF6v2zkERHZ9fa1isaiNjQ2r\nzo3af3h4aEVws0xLmALNezY2NswBTqEf+kjAuPG/XVxcWHj+85Rkm0ZTuJb0V6Io+t0QQlHSvwsh\n/AtJf0HSv4qi6G+GEL4l6VuS/kdJPy3pR+///UlJv3L//5PIq/6gtKjdiISCY7OgxIu9zZ7GGEII\ndoBwIKKFSA/xfu8QgzkRw0eKe8mcNh4XGpWez7PRIQSNRiMrMIrDk/+lBwyHx74nzQsJiUaFLQ/w\n6fLyUvl8Xu1221Trfr9vBx0chveMpx00mDBOUaQqGpEvdc4lAqF5fHxsPQvQ3OIhUK+tIO1PT08N\nE8HewXxub281Go2sAzY1PTHzYJbsW9q8YAj4SZrNpu0t2iv+LtaJM8ue+uhMVpjQ+zJw+MIooiga\na3q0srJimgiwakljkZAvLSQZRdG+pP37r49CCH8o6bmkb0r6qfuP/Zqk/0d3TOGbkn49ujupvx1C\nqIQQtu+fMzV5ZuBtZA4FLbhB5BEu9L0a/AVNij6wCdjVPCMeqpMeuDhoOSQ8h4oNmKSSMh4MADAU\nvR4A8cDpfW1G5sNz4vBcPy5jcCAJm2JWYHfSMYqCoUCcWUMuRRZKkzHp/kRno62tLTPFAEN9/etf\n1+Lion328PDQ1pM5Z3nN2f/T01OrYHxxcaGtrS3TjHCKEgpFmwT45TtPTzqDHruBxkRXbs4Czl+6\nNdXrdWM8gKg8k0wby5/vm5u7ArD0mcjlclYWv1KpWIieArFU3pY0UbObRI/yKYQQPpD0xyX9jqRN\nd9EPdGdeSHcM47X7s537nz2KKfgLCzwUdWltbc28sHjEkfRsBhcCDSJu03lbERuc5y0uLqrb7arZ\nbNqFAOhCMxZJJuW8cwfpnbJ+kh4SeXyh0ZWVFYMe09uBJi6esTE3vk+6qPFwq3eqEeMGAYhTjIQd\n7F8cWB4Jmqb2ItnBWhBLR4vDn8AlpEz52dmZhsOhaQlEebIqHzMWDsxKpWKhunq9blBkQnqEJqki\n7TUR+l9kmZc+D4ZekuwDzKXX69l5xWTC+Sk9JKTx/mkCw2uAURRZ9AcHN+YV2cFHR0eSZA7uNIzO\nY/0KUzOFEEJB0j+W9JejKBp5jhdFURQeWVIthPALkn4h4/dj0pwFW15eNi7P4QHKymZLGvt9lu2N\nuoc0wTFF7JuQJyYCEQC4NglRhLsmbYQ3AVBLvbNvdXXV1GryKWBIMI8s5uOZKVKHi1YqlSQ99NLA\nFMK5iBfbg2CQupMguqj0PD+Xy5mpt7CwoHK5bIzj/Pzc8Bej0cgSrzykOinKwbzQStB+yuXymI8l\nn8/r9vbWLhQamTfriIZkAXxYc/4Wn0i4xyLg6OT8kDXJeqBxUsreY2iSyDvY4/kLp6en5i8A94EZ\nhhDhd7G7mbpvaTQVUwghLOuOIfyDKIr+yf2PDzELQgjbklr3P9+V9ML9+Xv3P4svwLclffv++Ylv\n7kNBqHAewuk7AHupQOtuDmSabQVXJg59eXlp4UCcjRya29u7Bi0whX6/b44/OLi38yesp/kpqtWq\neeNBbw6HQ4P8olUgsfDSgxDMOmAeGks6OJ/HYQvT4TB5TYi5Y3OnOTf9OuI05WB6HwaX+fj4WN1u\nV4eHhybVgO7GwWdJYxH54d1Qncvlsj0HKY0GCKITbVJ66A6V5bRlv2DIkgyVSTTDJ0qxtpyn4XBo\npifvn0Z+z1gvmAmp8svLy9Z7AiwJQszv2ySkZhZNrNF4H034+5L+MIqiX3a/+i1JP3f/9c9J+mfu\n5z8b7ugnJA0f609wY485uTzWv9lsamNjQxsbG9ra2rIkH0wGnwE3yb7ytjvhRa9GS7KuUNjLOHmQ\nfKjhWZoJcyK8BS7h2bNnFkIDxx5FkYW3cEQS8oTpTIoI8A+tiUuB1oM0wwShpTpaAkAf6QGBmTUv\nfAKYNkjS29tbU5/RDDAf+DyH2HvN434lCOEQ97nwXMw6fEQIEmL+/B4GMmle3p/AenS7XV1fX5vP\nBqEFlPvs7EyfffaZ9bXAwZlFMA7pocgK+BGYjm8Swxn0cHTPGJ5K02gK/5mk/1rSd0MIv3f/s78m\n6W9K+kchhJ+X9KmkP3f/u3+uu3DkR7oLSf7Fp7yY9yUsL9+1HS8Wi5ZGnc/ntb29bSpdp9Mx3Hu/\n3x+TXJMkN5oBiEY6Q3FYLy8v1Wq1TIoOBgNz7niVl0uWRRwgtBzSfRuNhjmUCoWCut2upcYCJmKs\nhYUFU/OTiPdB7eWCsh78PT4JMk7xzg8Gg7HcDHwPUnpOBweaMf0+cnlpc3Z7e2t1ITCRvLmTFtL1\npoU3L70Ww0XF5PHmGqFBjxdBi0wzIYjQ8HvCoDi4c7mcmbA04+31evr000+1u7trWswkU9afD19D\nYXl52coIoO2Bwux2u2PmHnOdFs+SRtNEH/5fSWnu4D+d8PlI0i8+6W0ced8Azj4uRaFQMJUwhKBP\nP/1Up6enev36tbrdrqQHSOyksAwXhTGOj4+1tLRkDrkQHlBqeHux5ZC+3ieRpbZFUWSxbUwCJMzF\nxYXy+bz1qETFJlORTcZc8WnFnrwZw/r5eZ6fn5s2Qs0BPPm+pRsU1xiS5gbz9A1f8boXCgXrxYkD\nEhwEKj2Zm6zdNCq2L1Lj0a++pgNwchgblxmwkwe3pc2LM4TZAxPikgJXJwqA/d/pdIzhwVQnaXaY\nGR41S3YrCFs0jr29PWPgl5eXb6Azn8oQJM123wekBzZWfJGodUD2IJh2pETWBfXqqFfNMFNQ8TkE\neKoxJ7wNx1hewiH1ksb1YUIkK9KIsdBQkGr+wkwzL8wOpI30kEzk4/loI16yInGZu1dLvUSNq/f5\nfH5M0uGJJ7ZP3kW32zUYNPY3YB18Nn4eSeNSqIYIDvNiD0nQuri4MBwKvhOYO47G+PPjhAnr7X38\nGfyt79pEiNdjB6ax8TEXfBm29fV1lUolFQoFM2/J0/HOVpgPGkmKdvzVaAbjGYP/XpIl4fiN8LZV\n1ty8lED9JfTDxeMgIFX8QnMouLxJqmHW+CQlkQTDxfWh07jk9NpCGvnL5B2aHm/hw7t83s8PyYp0\n9eOlMQVJJvVheDA75oG6zTMwtXxafNoaxj3q1GPwl5VxpYd6F55JSDKbH21omvPvz1yaKQrj8Gvv\nHb3T3jPPyHkOjI8Ln8/nzTHscRhoYxljfTWYgvuMpDer/3hu/ZissPiB5mdcJL/JksYujL80cfKe\n42nexY/p4cs8wye5TDuv+CXmf4+49O/o1zBNzfXvFH920ny4oLlcbiwXxZsz1D/g+UljJo3Fu/Bz\n9soXvOF76aFFXXwdk7SQLPJj+r+L/3waM2iacdgnTCW/X4ztS+Ql7VGMvlpMYU5zmtPnpnnbuDnN\naU6Pp5lMnf6qUVzdzPpdkuaW9ndedZ0Udv0yKU2195RmfvjP+88kORr936S9x2NNgvg7pj0v6Z3T\nxpr2HWeV3immkGbDSuOp1l/Uwse96/zvw3OPsUfTLoyPu3uvNkzC/0t65uedl39Oks097bOSng1h\nB8ftbj+PNFvdPy/Lp+H9Jv733sb3+zeJ0i6/f36SryvJWfoYP1MSpa3Fl8Fg3gmmEL8weGSjKBrz\n1vsNI3X0sciu+FiEKPP5vI6Pj+1QxeP2PiElieJMS3oAaPkQVC6Xs45NHj9PFESShWAfOy/WhbkB\nmuL5hCWJiFBePq1ASBKDY17sEU5AStQPh0PzyHvGQCZlFugmSRqzhiQqLS0tqVAoaHNz0/ABPBf0\nI3iUSTkdjBlnApw9xgXI5NOVAcR5Z+BjL7A/7+wXxXC8oPDryHn5PDTzTIFN94cZAuzBAYtLPfo/\nPsZzz0YDIpEeUlHX19ffgO1yaIC4ZqmNnsiJx0NO2IkwG4lPvrCK79HwGIbH+jEv/lFAFSAV4DAO\n2vHxsQaDgWUBTkMefEPIVZLVL8zn82PAJcYKIViatc+dyCKPWQGjsL6+rkajYd22Li8v1W63x0qx\n8zVgrWnNEfAQfM+FpfqSJEvdZ40JHZI895iIlAdoLSwsWBlCGA31LnwYnvWbVOkpc12f/JdfMnFQ\nJY0xBSQPv2eT6O8XwkOhVYArJP2kSXJqGnDIqNhDWzW6D7GxhO7Oz88t048CoXzGX1ivdsLtOTQA\nfcrlstbW1tRsNtVoNGweMAVAWd1uV7e3tzo8PLR4e9oBAPzCAaZuA2Xlnj17pm984xuSHvo78ux2\nu629vT0rn356eprY8sxL0mKxaMyLxiagJ6m4RJozeSxRdJfODWqTGgXx/Yqr7iQhAWCjtmWtVtP7\n779vpdioEUF5u+FwqP39fRWLRfX7/bHej/Gx+JqLzvfMcWlpScViUZubm2o2m5JkTVuAdlO0dXd3\nVx999NFYs5gk4gzzfAQFkHhqbrC/JPMBxuJMkH/xFF/TzDIFOvlEUWSQWcAoXGBUKSrv+MPbbrct\nuYniImmbUSwWTUKTylwqlax5KBV04PrUW6AMGwlYSLp4PQAvHZiLl97FYtE6HZHb4VNnLy4udHZ2\nZpDdwWBgWouvyxcnmI/HXaysrKharer999/Xy5cvVSqVDKI8Go10enqqSqWiwWBgeQtAh1HFkwjN\nA1MBxlOr1QzqLMnSqVG1z87O1Ov1rPAKWa1xc8zPL66N+PTsFy9eqFKpWDl3X2ezVqtZ8RUyHT1U\nOsnE834Dvl9aWlKpVNLm5qYajYaePXumRqNhY6HlXV5eWhm4jY0N7e7uJgLC/LPRqHg38h62t7et\nuAv3A4EH5J3MYITcNOZREs0kU/DqU7VaVbVa1XvvvafFxbtKukg07KxcLmebQimzlZUV7e7uTqzm\n400SVE46DiHtsCGx+dFaqO9HTnvcmebHkB6cUVEUmSSoVCra3NzU9va29a6UNFZ1mOo7IQSTBhzA\nrHlxkX1NATIzYYJg+nk+f8NatNttM5/SDnIIwZ4HA+ByVqtVRVFkzWW5NDBQsllhEAiCrHnBoH06\nMkly5AeQe4CgwMz0SWIeIZo2N/YeYNTq6qpqtZo2NzfHumD5/SADFk1iaWlJOzs7CiFkriMoRt+p\njLqjlNSjLD5IUfJKvMMdQREH+k1LM8kUsA/pAFWr1azb72g0MpuTTd/Y2LAipFR6ljRWOy/N/vbl\n3ZE8SE5flQgmBBQa9RfM+9LSkknBNO8z9jW23+rqqkqlkp4/f27SjZJe2Iz0EOBA4vQ8PDw0ezyJ\nPGyZg+gTblDVqY9I3gbZpajzy8t3vQp57yTy1YiolUj/T6oxkW7OBZNknz05OdFoNBpz2KVdHJgG\nzJ4cCi6lz52ggGzcRocpUQ8hC7rs1xMnJhrJxsaGnj9/rmKxaFm61PlAI6zX67q6utLe3l5mtIhL\nzd9zZmhbCHNinU5OTuzMU6If+Pq0JQPSaOaYAhsP97u+vjYuiYdakknm6+u7Zhj0MKSCECo3ByQt\nOYmxbm9vrdirLzVOlV4w59Ti41Dxt948SdoMz8mROmtra1YTguShKIrU6XRszKurKzUaDUsfRyLz\n+zSJygVnzRgTKYR62m63x3pbUE3al09PU0Nhbvwt60wHI9aBpKfj42MrFkOmK5WKW63WG0wsifx7\n4HRlbSjgS8IQexdCULValfSQP+IL4/ioQXx+kqyA6tLSXfPXDz74wOpgUJSHrMWLiwt97WtfM4nP\nPiGYsjQg9ozCKdJDKjrzIHWaCuMrKyvGkBAkWdrPNDRzTAFis4ggdDodKyyB32BhYUG1Ws0q7SIB\n+T3dmyg9ljaOT2qivgCdouKFU2nE4WsB8DXaS5r54L/O5XJqNpva3Ny0XhILCwvq9XrWQl16OJBo\nR17apUke75TjQOJPwNGIucD7orpStwEHGRV/shgdWonPOETF5937/b75K3DgIolZR2pUJJlF/nuk\nIIwNJ6OvmEwYkjH8pfLRHd497lxkHM4HIdVarabt7W1tbW0Zozk4ONDR0ZEVEiYTE60MDYILm7Zv\n/iL7aIL//Gg0so7o5XJZZ2dnpm0xb/paIPAeSzPHFFgYVNjd3V2zS+HE/K5UKpm0x3Y8OTlRt9vV\nwcGBer2eVQpOcpD5sUII1lTj8vJSBwcH1jBVkl2kQqEgSWq32294zWEiaQ5NNhh1r1qtql6vj7X/\nosAJF5Wio1RhqlQq2t/ft/dPysCDocZBM5SupxPz0tKSOUsxhSigSiyfaEpaMVWejVrvqzr5Opb8\nT9Vlio/iJ5FkDrNJERXmhbaFP4maA1xAX9Eb7UiS1eFk3vE19GFm7wPBdwVDw8v/gx/8QDs7O1Yk\n5+Liwi6sJHU6HQ2HwzEBk0Tep8PewmjQgvGf8E40QvL1NNFaJ9USSaOZYwrSQ+UY7Hk8yahSpBqj\niq6vr1sBjN3dXX388cfqdrtmx2Z5YLEpOYQAonxvRx+VkGSHvNfrjZVjT0vH9dwfTz6NWH0vANQ/\niq4gzai1wIEi6sL7J0keX4cB/wVt9zY3N1WtVnV5ean19XWbH92UUYVRW9M85lwe9grNALOAxqiS\nLMqSz+dVq9Xs0lE0xM8hKw2d0mrY+GiK+GfYT48bgFkgPX05f9YqiRAWaFsbGxtjNSPwx6AVoE2U\nSiXd3NxY+3pMJ5hC2n75uVIvAgcq2JRKpaJGo6Fqtarr62vDYBAq9xWevlLmA6gzLgCqIH0EubDl\nclkbGxvmYDk4OLD4PRVppGy4rnc0UUYb7YFiJH6z8dh78BCX2vtCksbkcBF1YC4+3MdnkDq+YAnM\ngi5PWaqoNI76Q1riL4FZYIYg6bHT8/m8hsPhmNMvPhZqtnduoUmxTktLSyqXy7ZGdIGGiVB/EDBT\nVkTF72UIwTQehIN3VKLG45ilyzV+hlqtZpc2aQ29Y5YoGKYjGhHrxc/QJjm7AMAoc+cZddK8eAef\nMu0ZRKVSUS6X08bGhoXFwXVIsjD2VxbRiCSRZHYTh5fYcLPZtAq+1MX7/ve/r93d3TEJlVUKK37g\nsQd5LqobZgTOMrg+EQoftssaiwgJXmXf8YqSXtSIjKJI1WpVhULBvOlECQjp+TnEx0KighvAK06L\nMXwIVCUipBdFkbrdrkl7KhJnESaLJLuY1J9EQwFbgOZCkVUAWYTZfGOTpHFCCAZSKpfLqtVq2tjY\nsN/zGcwEcCyYhoCqYGBZTCiEoJcvX+prX/ua6vW6jXF4eGg+K9oWVioVaz04HA61t7dn7Q59DcUs\n4tyzfvV63Sp+N5tNra2t6eLiQp1Ox94bf4wPoWbhVybRzDIF6QEKzEZ7mw6pROu4zz77zOx87331\nIJQ0p5wPWcXVOCQY9fi83ewdVaizSZqCl9h8/vz8XMPh0JxlZ2dnZopgF8OIfHFRuhGhRmd5szG3\niAYQEbi5ubG+AZKM+QE+ov052gN7kBUV8Ha4dKcprK+vm7rNoT0/P1ehULAu2kQ+eBcPRkpzblLM\nlK5aNJUl9Im2R9iOiA/Pi6LItBPeLY3QSPD7sHe3t7fq9XqmeeGvQfOk+jeNbzCRJhGaCSYPjll8\nQITZLy8vTZB488sDsR5T8cnTzNZTYHE43FwCr2aen5+P9SEEZcjm+2o8WeQ5LOXVPV7BO+LQDrx9\niEnAgc4ah8uF7ec7SvsQlk+SAu8uacxx5/M9kmhtbU2lUknr6+uqVCpj/RcwjQhTEjIjvo6mBcPD\n/uxxL+wAAAs3SURBVI6Td/r5vhS0aOMCERXyDjEiHT5KMGm/eJdarWYdwlkHEKc8m/fy9SY5W0hv\nnJFJESLmRIk5HLHUR8TRd319rWq1agKFn11dXZmmgORO2y+/hqB1EQz4Qmi1R4SGdeMs+aQwzvNT\naGaZAs4/PKmXl5emMoEYY/M/+eQTdTodK8SJRIO7T6NGIRHZHMwEJHu/37cuyT6rEPJ49Cwbn7/l\n78/OzqycO1oGnaNAB66vrxt0G8QmqmuaWo/6TPcpVHifwYhnG58F/xMaxOxKs4MZh7UmLImD99NP\nPzVfCV2NLi4udHh4aNINBoGjl+zQrPHAa3BRYT6YJTAqfCMUPsVTT/iQiFHWfjEGzsMoirS/v2/r\nv7y8rK2tLWNUrMfu7q51+gIzM0lyw6DQOqPorqS8B2zt7+/r8vLSyscjMBFSHrT2VJpJ88FPDK5K\njJ0egaurq2q323r9+rX1ZPBhGDio59Bp5gNj8nuPkJPupBeXJIS7lmHei7y0tDQWiosThxSVmHAf\n2X0eHu0dmxxI+kt4pjAp4w4NplAoqFQqaWNjw3wjaAzAnUkCAynJYU5KTEoitCpsW7QDmClaFhIW\n1ZY1BbkJQ+D94/NjDeOZrDjmgEnTQIWemYQJMdE4L/F8B79ffjy0t2q1aqA5NNdcLqdqtapisWhM\ntN1uq9vtml8GR2AWee2Es0uUpNfrjfWy6Pf7Go1GWl5etkQozj4o36eGI6UZZQpsCptBjf3b21tT\n066v71q3eSmLE4mN5CBmSVSIS+67BBcKBTsEOBRBttHcEyk6DViEQ0gYzjsyYS7r6+uWBMPPqWtw\nfn6uVqtlc5rWkYQNvrGxoRDCWIiu0WgYlJpmKWA7vL2fFOKK4yBQmVHlaa4DAySCRH8L35MBqe07\nfqeFJTEjWQNf34D8i9XVVVWrVWPihAW5rGQTemEQJ54J3Ht5ednWCx9JoVDQs2fPTDtqt9va2dkx\nTcJrgH6tksbif0wBIgsLCwva2dkxJuAToEajkc2BaAnn7CsVkow76ZB4m5ublkK6tHTXgIOwE4cR\njsoBJfQ1DXGxuZgkE4E1B2eAVuBtPd47qZiGv7zeLMJ3gdmCuosHm85Q3W5Xe3t7arVapo5y8eLr\n5Qk1dHV11ZgM4UGY7dLSkvlk9vb2tLOzYxcHlRc7PWlejI/ZBBNDkh4dHZk/gnVD46IzcxwglcVY\nWWO/BpgvvjUe64eWhdnyySef6PDw0DSatG5UfjyceZVKxWoasOekuZ+dnemTTz7Rzs6O2u22BoOB\nhVwxGydJb84TUQqygXu9ntbW1gxpiqlEVis+Kg96+sppCqhtPg20VCoZnJVwHouB1EUVxavMwZi0\nQKij0kNKKtmEmCpeuvf7faulQFKNl5Rpc/KORt4VlZcYOMwIh2m/39dwONTh4aFardYYtn1SNECS\nXToQoICisMn7/b7Zv7u7u9rf3zckqMfsZ4VZmZdX79kfHKiYE5R1xw/Q7/ctqgPBWNOiOOxDp9Ox\nOeIPWV1dtYtO05nhcKhut6v9/X37GRrepJg+56vf76tUKpmGBVYE7MP3vvc9tVotHR4eGirV41dg\nDFkMCDMLsxGNkCY57MVgMLDoio9AMNY088qimWQKqEFEIMD7s+moumyY9+AjtfwByiKkDJKaC4Dq\nTJINzTyHw6Fl9WErgsxLkqZ+HJ7L5weDgTnocC6CUDs6OlK/39fCwoJev35twC0OVpr/wq8hnabw\nU1xfX6ter6tQKBheYWdnR51Ox1TeXq9nTkCYXVZePp/DU878wVp4GxnEJk4+CqCsrKyY78LPK8l8\nYA1hkDA8NDqEyeXlpfb39y0nwPthYKyMl7ZnPm/j4OBAt7e3evbsmYWl8/m8RqORer2eXr16pVar\nZQydyMC0DIG58Tc4rmknCLAOIUHVKD+WT857qukgaXb7PiwsLJjnHfQiWWqoUa9fvzY7lb+BoSRF\nCNKIMBcIMtRd1GtMBNRotAHUcL8ZKfOzr9F+pPFwHu9AaM5HMfAwc5hJevEOsaRLy4X0Epfn+3Ad\nFMdo8HeTIg/Mz7fD43D7QiggHFkvL63RsuLZn36O8XnFf48PgOd6sBBfM66PAvk5J82Rbl7SQ5q4\nHxMVnrXy4/JZ79fK8gVxDnlnzEuYAkzTJ1d5H0zWfmnKvg8zqSlIsmQQ6UGd9MAN3z/Sq+bxxZt2\nLC46UobxvNNSGoejwt0nOTL9gUaqsuFexeSd4xEJ3gfN5zGgFA9ySroESZEZ3neacfzcfCai19o4\nqB73wWHGxEuqtBRnBH7dPRya9+SZkGeIfN6vc1Yo0o+FR395eXms87eH46dhD5Kcpllryhry914A\neGcixH5+Xufi2HvPqqYQ+/1YKIpFw5EId86CMz/iXewf0o7F5mu839Mynbhk8d/7uXFx+Rmf8Y5J\nT3Hv/2PeI+33j2E4/jlJ8/JgLi/R+ZdUeTgu+ZPGmjQnz+z8zyatU9bv/PM8kjT+zKQ1TPKLTEPx\n8eJrM41ZEqN527g5zWlOYzRvGzenOc3p8TQrPoWOpJP7/98lamj+zl82vWvvK83uO78/zYdmwnyQ\npBDCd6ZRbWaJ5u/85dO79r7Su/nOnubmw5zmNKcxmjOFOc1pTmM0S0zh22/7BZ5A83f+8ulde1/p\n3Xxno5nxKcxpTnOaDZolTWFOc5rTDNBbZwohhP8ihPBHIYSPQgjfetvvk0YhhFchhO+GEH4vhPCd\n+5/VQgj/IoTwg/v/q2/5HX81hNAKIfyB+1niO4Y7+l/u1/33QwjfmKF3/qUQwu79Wv9eCOFn3O/+\n6v07/1EI4c+8pXd+EUL4v0MI/yGE8L0Qwn9///OZXuupycM/f9j/JC1K+v8lfU3SiqR/L+nH3uY7\nZbzrK0mN2M/+Z0nfuv/6W5L+p7f8jj8p6RuS/mDSO0r6GUn/h6Qg6Sck/c4MvfMvSfofEj77Y/dn\nZFXSh/dnZ/EtvPO2pG/cf12U9P37d5vptZ7239vWFP6EpI+iKPo4iqJLSb8p6Ztv+Z0eQ9+U9Gv3\nX/+apP/qLb6Loij615J6sR+nveM3Jf16dEe/LakSQtj+4bzpA6W8cxp9U9JvRlF0EUXRJ5I+0t0Z\n+qFSFEX7URT97v3XR5L+UNJzzfhaT0tvmyk8l/Tafb9z/7NZpEjS/xVC+HchhF+4/9lmFEX7918f\nSNp8O6+WSWnvOOtr/5fuVe1fdWbZzL1zCOEDSX9c0u/o3V3rMXrbTOFdoj8VRdE3JP20pF8MIfyk\n/2V0pyfOdCjnXXjHe/oVSV+X9OOS9iX97bf7OskUQihI+seS/nIURSP/u3dord+gt80UdiW9cN+/\nd/+zmaMoinbv/29J+qe6U1sPUQPv/2+9vTdMpbR3nNm1j6LoMIqimyiKbiX9PT2YCDPzziGEZd0x\nhH8QRdE/uf/xO7fWSfS2mcK/lfSjIYQPQwgrkv68pN96y+/0BoUQ8iGEIl9L+s8l/YHu3vXn7j/2\nc5L+2dt5w0xKe8ffkvSz957xn5A0dKrvW6WYvf1ndbfW0t07//kQwmoI4UNJPyrp37yF9wuS/r6k\nP4yi6Jfdr965tU6kt+3p1J1n9vu68yT/9bf9Pinv+DXdeb3/vaTv8Z6S6pL+laQfSPqXkmpv+T1/\nQ3fq9pXu7NafT3tH3XnC/+79un9X0n86Q+/8v96/0+/r7kJtu8//9ft3/iNJP/2W3vlP6c40+H1J\nv3f/72dmfa2n/TdHNM5pTnMao7dtPsxpTnOaMZozhTnNaU5jNGcKc5rTnMZozhTmNKc5jdGcKcxp\nTnMaozlTmNOc5jRGc6YwpznNaYzmTGFOc5rTGP1HIc9Xq0LJi8UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 2 Train loss: 145.1598\n", + "Test loss: 135.1738\n", + "Epoch: 2\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd8XMW1+L+zu9Ja3eqSmyQbGyMX\njLEJwQ0DAWPAVIOJIbyQByGUx3v8SGJSCCnAe7yEFF6MP86LAxiCTeJGiB/FtJAPxb3gJltylWWr\n97Zlfn9czfiuLNsreYssz/fzuR9pd+/de3buzJmZM+ecEVJKDAaDwXD244i2AAaDwWAIDUahGwwG\nQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoOhj2AUusFgMPQRzkihCyFmCCF2CyH2CiHmhUoog8FgMHQf\n0VM/dCGEEygCvgYcBtYBd0opd4ROPIPBYDAEy5mM0C8B9kopS6SU7cAS4MbQiGUwGAyG7uI6g2sH\nAodsrw8DXznVBUIIE5ZqMBgM3adSSpl5upPORKEHhRDifuD+cN/HYDAY+jAHgjnpTBR6KTDY9npQ\nx3sBSCkXAgvBjNANBoMhnJyJDX0dMFwIUSCEiAXmAG+GRiyDwWAwdJcej9CllF4hxMPAO4ATWCSl\n3B4yyQwGg8HQLXrsttijmxmTi8FgMPSEDVLKCac7yUSKGgwGQx8h7F4u5yKPP/44AHFxcYwdO5bb\nbrtNf/biiy/y2WefAbB48eKoyGcwGPooUsqIHYDs68fSpUulz+c75VFUVCSLiorkkCFDoi7vqY4R\nI0ZIv98v/X6/fOSRR6IuT0JCgpw/f76cP3++9Pl8cu3atXLt2rUyLy8v6rKZwxxhPtYHo2ONycVg\nMBj6CMbkEiKWLl0KEGBeAdi1axfvvPMOAEOHDuWGG25g2LBhANx1110888wzkRW0G1x00UX4/X4A\nSktPCDGIOAMGDOC+++4DwO/3c/HFFwNw/fXX8/vf/z6aojF+/HiWL19Ofn5+UOdfffXVAOzcuZND\nhw6d5uzIccMNN7Bq1SoeeeQRABYsWIDP54vIvbOysgB44403+PTTTwFYuHAh+/fvD/o7UlJSmDp1\nKgBvv/02Ho8n5HL2ZoxCDwETJkzg5ptv1q+3b7e8N2fNmkVlZSWNjY0AxMbG8vnnn3PhhRcCkJaW\nFnlhu8G4ceNoamoCYPny5VGVJTMzk5deeimqMpyKa665BrfbHfT5s2bNAuDee+9lzpw54RIraNLT\n0wGYP38+AC+88AIAixYtoqWlJez3T01N1e0mJSWFY8eOAXRbmW/YsIHMTCtCfsKECezZsyfkstpJ\nTk7m2WefZfTo0QBcddVVUe1Eeq1Cv+222/Ro7MiRI7S2tgLw2muvcfToUfbu3RtN8QLIzc1FCAFY\nyvyaa64BoKysLOC8xx9/nMLCQv3673//e+SE7CZjxozhkUce4ZVXXomqHP/2b/8GwE033cQll1zS\n5TlTp07F4XCwZcsWAP7xj39ETD6Xy2pCM2fO7NZ169evB+Cxxx4jISFBd5zRQo1qBw4cCMDrr78O\noNtdOMnIyGDp0qV6gDN//nw9Q+gOP/rRjygoKODb3/42QFiV+dy5cwF4+umnGTz4eMB8cnIyVVVV\nYbvv6TA2dIPBYOgj9NrAopKSkpPaIxsaGvT0LBgOHz4MwHPPPadHRqEmLy9Py1ZdXd3lOVu2bNFT\nM7CmZx9++GFY5DlTbrvtNt544w2mT58OwMcffxwVOZT9Vtny7TgcjoDPDhyw8hfdcccdbNiwISLy\nfe1rXwPg//7v/3juuef4wQ9+ENR1jz32GGDVydzcXCoqKsIm4+lwu93885//BNDrEtdddx1g/a5w\nc/XVVwfcJycnp1vlMWrUKAC2bdvGihUr+Jd/+RfAaovhYNCgQWzatAmwTFV2Hbp06VIefvhhgJPq\ngR4SVGBRrzW53HfffdrWvGPHDm2quOiii7j88su59NJLATh06FDAlAfA6/UCUFFRQW5urn7/4MGD\nYVPoSpl0xXe/+10ARowYAcAXX3wR8Lc38r3vfY8DBw6ErbyCYfXq1Vppd4Wa2jY2NpKXl0dBQQEA\na9euxel0hl2+MWPGaNNEcXFxtxa4lQ29NzB27FityMFqP5FQ5GoR9NZbbwXgW9/6FkC3lfmaNWv0\n6xUrVoRNkSsef/zxk65/3XHHHcyYMQOwzDEvvPAC7e3tYZXHjjG5GAwGQ1/hbAwsSk1NlVdccYW8\n4oorZHJysrzyyisDjkmTJslJkybJzMxMWVlZqYNjHnzwwYgHBFx//fWypaVFtrS0SJ/PJ8vKyuS0\nadPktGnToh2o0OWRn58v8/Pzpd/vl7t27YqKDKp8iouLdTCWx+MJOF544QV5ww03yBtuuEFOnTpV\nPvXUUwGff+c73wm7nEuWLNHPduLEiUFfl5aWJhU+n09mZmZG9Zk/88wzuo34/X751ltvReS+ixcv\nlosXL5ZSSrl+/XqZkJAgExISuvUdDzzwgJZ70aJFYZc5Ly9P1tXV6Xq5efNm+c4773QZQFhWViZz\ncnJCde+gAot6rcnlVNTU1PDBBx/o1++//36X5916662kpqaybds2AJYsWRIR+exMmDCB2NhY/Xrp\n0qVRs0cHw7Rp0/T/0bDr5ufn6+eUkZER8NmBAwdYtmwZAD/96U9pbm4O+Oz++619VDIzM3nuuefo\n168fAP/zP/8Tcley2267jZkzZ2pvq3Xr1gV97Q9/+ENt9//oo4+ora0NqWzdRXm4ALS3t/OjH/0o\nIvdVtme/38+RI0eCNk3ExcXptYoHH3xQf8+9994bHkFtjBs3jqSkJD755BPAai/9+vXj61//OgBP\nPPGEjjPJyclh1apVXHvttUDIbepdclYq9NOhbHPz58/H4XDws5/9DIhMgdpZuXKlDiABeOWVVyLW\nWHrKmDFj9P/PPfdcxO8fExNzgiIHa1F2zpw5VFZWdnndgQMHePbZZwF4/vnniY+P1/K/+eabFBcX\nh1TO2bNnEx8fz4svvhj0NWqRf+7cuXqx9+mnn46a3/Jll10W8BegqamJzZs3R1yW6667jnfffReA\n2trak5brtGnTAtbQAP76179GREawFpCllPz617/W77W2trJo0SLA6uiHDh2qP2tubjY2dIPBYDB0\nnz45Qn/ooYcAa+pdU1PD7t27I3p/5Vlz2WWX4Xa79ajyF7/4hY4a7Y189atf5Zvf/CYAmzZt4r33\n3ouyRMcDcO69996Tjs4Vb75pbZg1d+5cJk6cGBZ5UlJSAPQIUUVWBoMyCWVkZLBz506AANNhpOmq\njLoz4zhTfvvb3wJwxRVXkJubq00/QoiTegEJIQLcBEtKSoJ2FQ0Fd955J3DcrXPlypUBn0+YEOhZ\n+Pnnn0e0zfc5hT5p0iTmzZunX9900018+eWXEZVB2XlVOPWrr74KEPJpf6i58sortTvW22+/HZEo\nwa6wuyp+5StfCfo6Fa3rcDgCvuOnP/0pd911V0hkU+H9AwcO7PaajLKtAhGvk11hVz7Kjr9gwYKI\n3V/FCowZM4Zx48Zpd7/vfve7ev3m5ZdfDrhm8eLFOiIY4NNPP41ou3r99deZNWuW7gxHjhzJmDFj\ndOqP1NRUXZapqancd999Ok32jh07wi6fMbkYDAZDX+FsdFs81fH0009rN6b33ntPxsTERMQFSx2z\nZs2Sra2tsrW1Vfp8Pvn+++/LxMREmZiYGFE5enL85S9/0WV38803R0WGX/7ylwHuh9259pFHHpGP\nPPKI9Hg8Aa6Ow4YNC5l8cXFxMi4uTq5fv15u2bJFpqWlybS0tNNel5WVFeDS9tBDD8mHHnooas96\n8uTJ0uv1Sq/XK/1+v9y3b5/ct29f1Ovg6Y6hQ4dKv98vN27cKDdu3Bhxl8+0tDRZXV2tn6Pf7w94\nru+8844877zz5HnnnSd37dolfT6fXLBggVywYMGZ3js0botCiMHAK0B2xxcvlFL+VgiRBiwF8oH9\nwO1SyprTfV84iYuLY8aMGXpV+Sc/+UnEPAiUeeUHP/gBMTEx+v3Nmzf3ars5WO5VAFOmTNHrDStW\nrIiKLDfccEO3r8nMzKSwsPAEW6qatoeyDqjMg8XFxdx66606wdrzzz9/wrkqzcOwYcPIy8sLsP1G\nMuVGV6SnpweYpXrDekkwPPnkk0gp+f73vw9E3rW2urqa22+/XXvWqDUVlZ3y+9//vjZVLl++nHnz\n5ulkfcOGDQu/eSiIUXUuML7j/ySgCCgEngPmdbw/D/ivaI/Qn3zySen3++Xq1avl6tWrI9pzP/PM\nM/KZZ54J6K2XLVt2VozM582bJ+fNmyf9fr/805/+JP/0pz9FTZbdu3d3e4T+m9/85oTAo+LiYjll\nyhQ5ZcqUsMh5wQUXyDfeeEM2NTXJpqYmPdq1H0ePHpVHjx6VZWVl0uPxBHymRvrRKufFixfr2Vh1\ndbWcOHFit4KjIn3Mnj1bzp49W/r9fllXVyfHjx8vx48fHzV5rrrqKnnVVVfJRYsWyeeff77LWXhc\nXJxcsWKF1gcvv/zymdwzNDsWSSnLpJQbO/5vAHYCA4EbAbVi8TJw0+m+y2AwGAzho1teLkKIfOAi\n4AsgW0qpEn4fxTLJdHXN/cD9PRfx9CgXoh//+MfU19fz85//PJy36xKVPc/Oww8/3OvNLXA8UyRY\nUbhnC6tXrwbg/PPPP+GznTt36mi+cLBz505uv/12LrroIiDQg0VhD3h5+eWXdQ5tICKbRpyMQYMG\nafc7sLKRdifSNRqoaEuAt956i40bN0ZRGnRCMHtisM60tLSwdOlS7YI5ffp07UUWriDHoBW6ECIR\nWAb8u5SyXrmIAUgp5clS40opFwILO76jy3POhPT0dH73u98B4HQ6Wb16NZ999lmob9Mj0tLSurTf\n1tXVAZZtV9nblS0uNTUVgP/4j/8IuMbn82m7oT3kPRTY7dZvvfVWSL+7uwghAmy79ob8hz/8ISB7\nZuf0uXauv/76MEp5HJVGVf09GSUlJQGvVUSuSksRSS677LKAMl61alXEZeguqh40Nzfzq1/9KsrS\nBM8bb7yhFfodd9yhU+uq6PVQE5TbohAiBkuZvyalVHuRHRNC5HZ8nguUh0VCg8FgMARFMF4uAvgj\nsFNKaV/KfxO4B/jPjr8R7eZVvuu3335b58EuLi7mxz/+cSTFOCVbt27t8v2//OUvgLVFXXa2Zam6\n4447Tvt9R48eBaz8H6FiypQpWobewIsvvhiQQ0bNGNQovKvReOf3IhkcEyxCCOyz2miMzBXKI0tF\n3qqIzd7KAw88oOtoeXl51M0t3cHv9+v6fOONN/KTn/wEsBIFFhUVhfx+wZhcJgF3A9uEECprzw+w\nFPkbQohvAQeA20Mu3SlQNkt7Yv7HHnssatGYyp574403nvbc2bNnd/m+1+sNUE4qlF2Fv6tdZULJ\nTTfdpDvHTZs2RT0T5PLly/WGIGqz39NRUVHBzp07dWh9571cewM2T6+ooxLGHTx4EDhuAuytPPDA\nA7rslJtoUlISYJko1e/orahkZ08++ST//d//DcAzzzzD3XffHfK1lNMqdCnlPwFxko+vDKk0QZKX\nl6czs8HxHYGiaf+95ZZbAGunH7sfOhzfIqvzKHzRokUBu5ovX75c5/iIBPHx8QGbG//1r3/VWQCj\nxYEDB5gzZw5gdTaPPvroaa95+umn+f3vfx9u0c4IlcoXIrPxcleoenneeecFyBHNXeq7i8/nY+7c\nuXqNafv27dxzzz1Rlio4XnnlFb2B9S233MLPfvazk87ie4oJ/TcYDIa+wtkY+m8P7/f7/XLChAly\nwoQJUQ9+ONuOmJgY+emnn8qVK1fKlStXyvj4+KjL1PmYMWOGnDFjhly+fLn0eDxy2bJlctmyZfKa\na67Rnw0ZMiTqcp7uOHr0qKysrJSVlZXy0UcfjYoMTqdTOp1OuWjRIun3++VLL70kX3rppaiXzemO\nzZs3nxBqv3DhQrlw4UI5ePDgqMvXnWPIkCFyyJAh0u/3y9dee6071wYVWHTWKfQpU6bI+vp6o9DN\ncVYdf/vb3/S2idGWZcCAAfKPf/xj1PPJBHtMmTJFfvDBB/KDDz6QTz31lMzOzpaxsbEyNjY26rL1\n9Hj33XdlY2OjLCwslIWFhcFc0zcV+hNPPBGgzPfs2SNHjhwpR44cGfWHZA5zmMMcwRzJycly3759\nctasWXLWrFnBXBOa0H+DwWAwnB2ctRtcqCT3V155ZcT3CjUYDIYzob6+XsfPhBIRSd/YcIT+GwwG\nwznABinlhNOdZEwuBoPB0EcwCt1gMBj6CEahGwwGQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoPhDOmc\nHjlanLV+6L0V+4476gEr19BOUbOGECGEwOU6XpX9fj9+v9+UsyEsdG7jUsqoZylVmBG6wWAw9BHM\nCP0McTgcpKSk6M2CJ0yYwJAhQwAYPnw4TU1N7Nu3D7CiW9euXas3YGhtbcXr9QKYEWUQ2EdGTqeT\n2NhYABITE4mJidGjJJ/PR0tLi948wOfzdbnTkcEQLHZzin0/VrBm3uq9aM/AjULvIWpT56lTp3Lt\ntdcyePBgwNrMQk3/3W43QgiGDx8OQG5uLpmZmXpD4c2bN1NfXx8F6QNRldHhcOB2uwGIjY3F6XTS\n3t4OQFNTU1SmlfaG5HQ69U41GRkZTJ48GYDBgwfT1NSkO8pjx45RXl6uNw9pbW2NiELvtHH6ST93\nOBwBU3ZlIoKut9iLBPY64HA4AjrHc53OzysmJkYPJtxuNz6fT7fjaG8WYhR6D3C73ToPQ1ZWFsnJ\nyeTl5QHQ0NBAWloaYOVrEELohx0fH8+gQYOoqKgAoKioiIaGhij8gkDsNn61s05hYSEpKSkcOHAA\nsGSNZuOOiYkhNzdXl/vUqVMZP368/qypqYlDhw4B8PHHH1NdXa07o3DJbZ8xqE5cbefn8Xi0chZC\n4HQ6dWfpcrn07kFut5vW1lba2toAa1d7r9cb0VGey+UiKysLgAsuuAAppd42rba2NmKdjOrwlF3a\n/r/9tSpP+zVgdYb2Z32mZaiebUxMDHFxcQDk5OTQ2tqqFboQAp/Pp2fazc3NJ3TOdjnC/VyNDd1g\nMBj6CEGP0IUQTmA9UCqlvF4IUQAsAdKBDcDdUsr2MxFG9bZOp/OEnky97s5owd7ThwIlX1JSkpaj\npaWF4uJiPcLyeDzaHLN161aKi4v1qCEpKYnMzEz69+8PWHujVlVV6euihSojp9NJYmIiYI1EBgwY\noH9nSUmJ/o2Rwj4Sy8nJYebMmUyaNAmAoUOHalkTEhJoa2sjISEBgC+//BKHwxHW0ZCSTY204+Li\niI+P1yN1uylNSklcXJyWNy4uTl/X3NwMoEfvLS0tIa+3p/oNAMnJyXzta18D4M4776S5uZkFCxYA\nsGbNmrDeG6x653K5dNnZXQAdDgd+v1+PiF0uFwkJCXrEbJ8BV1RU0NbWFpIZhZIJrDWa5ORkwDJF\n9u/fP2CGEBsbq9fNysrKdPbXhoYGPB6Pbv+RmOl0x+TyKLATSO54/V/Ar6WUS4QQC4BvAS/2WBCX\ni9TUVADS0tKIiYnRDeDYsWNamUgpaW9v16YBh8NBU1OT/szhcOjr4uPjqa+v1w+8ubk5JNPvxsZG\njh07BlgPtKysTDfM+vp6LU9dXR1SSl0ZCgoKSE1NZeDAgfpztSl0a2tr1BdFhRDaXFRYWEh2drb+\nXdHocBwOBzk5OQBce+213H333WRnZwNWI1ONvqmpiZqaGt2Rjh49mk2bNlFZWQmEx+TicDhITk7W\nnXNWVhYJCQnU1NQAlkJQ5jS/3x+wiDts2DBdn1taWigtLdXXRUqZw3Ez0QUXXMB3vvMdwFqPKCsr\n0yaEUGJX1PbOMCUlhfj4eN2p9e/fX//vdrtJSkrSnbXb7SYrK0vXi6amJnbt2gXA2rVr2b9/f8Bi\neE9wOp04HA79vBwOh9Y3SUlJ9OvXT8vT3NzMyJEjdbupqqqiuLgYsPTWwYMHqaurAyKzYBqUQhdC\nDAKuA54GHhPWU7kC+HrHKS8DT9FDhS6EICUlhYsvvhiAiRMnMmTIEF0Q1dXVuoJlZGSQmppKRkYG\ncFxpgzXyaWlp0QtnQgiqqqpYsmQJAJ999pnuPXvysO22ZqW0KysrOXTokN5B3ev1Bny3veImJiaS\nnZ2t7ZW7du0KsLNGS6GrRuZyuXRnM3nyZDIyMvj444+ByCp0Zbvs378/d911FwB33303ubm5emTU\n3t6uZWpoaMDn8+nX6enpjBgxQs9+ysvLezTD6wpVVjExMaSnpzNx4kQAsrOzKS0t1XW2paVFK22f\nz4eUUiuB8vJyCgsLtexer1cPECJVB4QQeuAzd+5cRo4cCVh14PDhw+zduzek8qj1BvX84uPj9f2H\nDx9OSkoKo0ePBqwZg30E7Pf7tZLOzs4mJSWFQYMGafmGDh0KWMr92LFj+twzkdXtdutOJSEhgfj4\neMB6lk6nU9eDtLQ0EhMTtTyjRo3S1zmdTmpqamhsbAQi48kWrA39N8D3ANUa0oFaKaXqxg8DA7u6\nUAhxvxBivRBi/RlJajAYDIZTctoRuhDieqBcSrlBCHF5d28gpVwILOz4ri67JzVCV1Nkl8uFx+PR\n7n5SSt1DDhgwgNTUVD3acTqdekTc1tZGZWWlnh7Fx8fT2tqqvR3a29v58MMPgTPrLe12sba2NqSU\nXa5oq1G3MgVMmTKFyy+/XI/cVq1apWWLJnYb+mWXXQbAiBEjqKmpoaioKOCcSKCe7cyZM/nGN74B\nwJAhQ3A6nXqm5vF4tFfLvn37aG5u1t5DAwYMYNy4cXpktHHjRj1yPlPTlhqZJSQkMGrUKG3Tr66u\nZuPGjVqmmpoaPWMQQtDW1hYwy1R1Ii0tjZKSkojHIwghdJvKz8/Xs8i2tjaWLFnCkSNHgNA+d7vJ\nxe12azNFTk4OF1xwgZ4lxMbG6tnVvn37aGtro7y8HLC8bkaMGMGAAQOA4+7DYM3o7BHDPZ31qshP\nNVNsb28PeHY5OTm6vbe1tWnzG1i6S80YpJQUFRVpmSIRDxGMyWUSMEsIMRPoh2VD/y3QXwjh6hil\nDwJKu3tzu5tSU1MTmZmZAGzfvp3LLrtMu05VVlbqAktPT2fYsGHarJKSkqKVYlFREV6vVy9QjBw5\nkoSEBEaMGAFY02R7AEBPsfsNd/4tUsqA/2NjY/X0+qqrriI3N1e7Atp9u6NtPwfrdw0bNgywpr21\ntbW6YUcKl8vFuHHjAPj2t7+tp7IqcEiZzD7//HM+//xzwFrT8Hq92p6dkJBAeno6Y8eOBaxy3r59\nO2CZxHpqPrL76RcWFjJ9+nS9OLdp0yZ27NjRpUlP2U7VexkZGdq82NbWxrp160JSL7uDlFIr8fz8\nfF1nKyoqWLNmTcjWHextvLOLoeq409PTiY+P12bMvXv3snbtWgBtzlRtvKCggOTkZN2m7de1t7fr\nNR/1G3uCel7KjJqQkKDt6YMHD8bhcOg1j/T0dADdOdn1WGNjI1lZWXqg6vV6wx5vcFqTi5TyCSnl\nICllPjAH+EBKORf4ELit47R7gFVhkdBgMBgMQXEmgUXfB5YIIX4BbAL+2N0vUD2ow+GgtbVVj1yr\nqqqorq7WvVhdXZ1e6IiNjWXUqFEcPXoUsHp+NR1rbm4mNzeXa6+9FrDcAr1er17gqaqqCtsiZFff\n5XQ6SU1N5ZZbbgFg0KBBeDweDh48CFgzj84BFNHE4XAwatQowBoRV1VVUVtbG1EZUlJSuO666wA4\n//zz9YjY5/NRUlLC6tWrAcs1UUWGer1eHdgF1ugnIyNDj56GDh3Ks88+C9CjQC67Z4ZayLvgggsY\nPHiwnkVu27aN6urqk45sVYQhWKN7NeOsqKigpaVFT+kjWQeUPGlpaXoRsqWlhbKyspDJYW/j9tft\n7e26rFpaWnA6nTpFxtatW7XnSkVFBe3t7QGBW9OnT9cecS6XS4+WDx8+HJKgLCllwGjabsZRphg1\nCs/IyMDv92sTUWZmpjb9uVwuCgoK9Ai9oqIioP6FY5TeLYUupfwI+Kjj/xLgklAI4fP5AqZLTU1N\n1NfX66mx1+vVFcLv91NSUqILwx6RB5Yt86qrrtKvy8rKdMMvLS2NaMNxuVxcfPHFXHrppYDVgKSU\n+qE2NjZqe7+aNkaT3Nxc3VCklGzdujUs7msnw+VykZ+fz9VXXw1YXkGq0R86dIhXX32VlStXAlYn\nr8xu2dnZVFZW6ml5eno6hYWF+lqn06lTM5SXl9Pe3h7087ebClwul7bzjh49GpfLFeCidqoGardZ\nDx48WJuHdu3aRX19fYBXRyQ6dyGEtv/by7m4uDgs0cv2dSawFLrqrFtbWykrK9PeakeOHNEDCfWs\n1DNITEwkIyNDe7m1t7ezdetWfV2oomyVZxIQ0AaEEOTk5Oi619zcTEpKiu7o7R16Tk4OOTk5ei3Q\n/j2qjO2ec6GgV4T++/1+2tra9ENrbm4OyL9hT4bTVQpa+yjAHsbs9/upqKjQvX1DQ0P43YZseR/S\n09O55JJL9Guv10txcTH/+Mc/gMBRW6Qacleoci8oKNCKprGxkbfffjui4f7x8fHcfPPN2nXS4/Ho\nhr1o0SIWL16sG31sbKwuu8OHD1NRUaFH5FlZWfTr10+/rqqq0t+5cePGbpezen5JSUk6f8yYMWNo\naWnRHXFMTAwulytgBqhQaynTp08HYNy4cXpUWVlZGbBYpgJpwk1MTIwe+MTGxmp78bvvvhuWhXq/\n3x/QOfr9fj3LTktLC1jbcLlcem0CCIgtKSgoID8/Xz+TmpoaPQOvqanp0imhJ9h1jBpwqv/j4+O1\njjl27BjJycnaxt7U1KQ7qmPHjpGVlaUtCMnJybo9eTwe2traAoKOQtH2Tei/wWAw9BF6xQgdTpyS\nnez/U/W6DoeD1NRUPR3yer1s27aNdevWAcddDMOBPa2rGuVeeumljBw5Uvfu5eXlrFu3Tq8VuFyu\ngORO9t8ZyZG6mu7feuutetR74MABnRUyUvcfOXIkkyZN0jK0trayYcMGAN566y2qq6v1CM8ewOXz\n+aipqdHl7Ha7SUlJ0dGEasZ2jqi7AAAQZElEQVQH1si0u+kjlKkkKytLu6QlJSWRmpqqTTkDBgwg\nLi5Oy+R2uwNcEXNycrjtNsuHIDs7W9tcGxsbA8LVI/XcExMTGTNmDGCVv5Jny5YtYZPB3nZ9Pp92\nJa2traW2tlZ/NmTIkACXwX79+ulyzc7OJiYmRj/PpqYmSkpK9Ln2VLY9nel0NoP4/X59v9jYWO1F\npX6Tfabd2tqqz21oaKCioiLANGj/XSrqXRGKUXqvUuinen2qz1QhxcfHM3v2bL2wV1FRwfr16ykt\ntTwqwxleb8/zkpubC1iLcVJKvQi6fft23nvvPb1I4nQ6tR+tMjkpJWC34SnCJbtyH/vKV76if8f+\n/fsjtiCqpqvTp0/Xi01gNda///3vgGVWUSH0YJWdajgej0dPYcFqGP3799fl1dTUFBBq3x1UpCIc\nX0RU/wshuPzyy/U9Dh8+rGXKzMzUdlKPx8O0adN0vbQr+yNHjtDc3KzNDV0993Dgdrv1wqzf79d1\nVK0JhBsppX4Wx44dw+FwaLOYEEKv5TQ1NeF0OrUJJi0tjeTkZF1GW7du1Wtk6vtCbZf2er2686mq\nqqK9vV0vfLrdbtra2nSHaE9FUFdXR0JCQkDaANW+GhoaaG1tDXChDYXJ1ZhcDAaDoY/Qa0bowdK5\nB7NPd8aOHctNN92kR0lr1qxh3bp1AUmSwoF9IdTpdDJt2jTA8maoqqrSJpY1a9Zw4MABvcBjH6Er\n7xcle0tLS8CmA1LKgARlocLu7ZCfn6/LaMuWLRHJ3+J0OvUCU2pqqh6ZgVUGamTk8/kCTFR27yYp\nJS6XSweUXXzxxfTr10/Lv3//fh0g1ZNFXnWfhIQEbQJKTU0lJiZGBxJlZ2cHuOLZF/bcbjeXXHKJ\nXiwTQuipdnV1NY2NjRE1uagRsN00qRYWVXmHA7UwqlDP58iRI9TV1elRrtvt1h5vPp8Pt9utI0Nz\nc3NJTk7W565du1bPeJXpKtQul1JKLc/evXtxOp26zTidTkpKSvS5jY2NerbjdrtxOp3a9Jeenq6/\nJz09PcCTL1Qzs7NOoXfG4XBoF6Z//dd/JTs7W0cQLlmyhKNHj4bVU0MlHVKNd9iwYdrk4nK5WLt2\nLVu2bAHg6NGj9OvXTzdsKaX+f9CgQQH+9na7qtfrpaam5oRNp0NBTEwM999/P2AlN1MdyieffBKx\njQ1UR5Wenk5ra6vu8FpbW3VZJiUl0dDQoBW6vQHExMQwYMAAbrzxRuD4Jg32Rqg8Dbpbdj6fT8u3\na9cu7ZOckJBAQ0ODLqODBw9SVVWln2d1dbV+lsOHD6e9vV2bi5qbm3Unf/jw4bCu7XSFEII5c+bo\ncm5ra9OmrXB34na7tLqXMpkpjyF76mOn06m9YMCKLXE6nXo3qnXr1mnTYLjMVXYvl9LSUpKTk/nk\nk08AS2kfPnxYdzB+v1/XO+UNo0xbMTEx2vzSr1+/k3pFnQlnvUJ3u93MmDEDgK9+9au0tbXx5z//\nGbB8l8Ptdqd2M1GKZ/To0domXV9fj8/n0zMIlWFOPUS3262vU7Zj9dmRI0e07LW1tQHBJ6FUtAMH\nDtQZA9W9IHK2VPsuM2VlZcTExOiGHhcXp8P3t2/fHvA829radEM5//zzmT17tv4dKSkpeL1e1q+3\n8sGtXLlSN7ie+NWre9bV1ekUAnv27CE1NTXAX1rljlH3sWfkq6ur07+rqalJl69yW4ykQo+Pj+e6\n667TnWN9fT27d+8GIpt6QJWrECJg1yb1Hhx3HFCyJiYm0tjYqGdKx44dC3v6DPvaVmNjI9u3bw+Y\nydTV1eln7/V69ZqQ3+/XqYHBqpf2vC52n/nOrtg9xdjQDQaDoY9w1o7QVY9dWFjIQw89BFg94N/+\n9jcduBPO6aMaQcTGxpKfn69dwCZMmKDdFsvLy5k0aZJ2dWtpaaGyslJPdWtra/WGDXl5eWRkZGiT\nx6effqqDaI4ePUpcXFxA4qFQ/YYrr7xSjyD8fj/btm0D0HbJcGM3jezZs4e6ujptmkhKStJRttnZ\n2ezZs0ebMRITE7XNPC8vj+zsbD0zamxs5JNPPuH5558HrKRtoQiW8Xg8ulzUxib2kPbOMyc1Gqup\nqaG+vl7b8cvLy9mxYwdg1YlIjYpVnZ08eTKDBw8OSK2hPMGiwam8UlS5qmhLla9deZI0NzeHvfzs\nyfhUEJhKU6ACwexBUfY1l4KCAt3eY2JitD29vLw8IJjqnLahOxwO7Qf64IMParPFoUOHeOmll7Qi\njFRDcbvdnH/++YDlQ6vsZAMHDqS9vZ38/HzAclWy24Grqqp0dkO1C4ryqc3IyAhYyPN6vSGP4HM6\nnQwbNkxXwOrqal580dqjJJJpfZWS/vDDDxkxYgQzZ84ErHUF9WwHDBjApZdeqpW/y+UK2EjA5XLp\nafCWLVt4/fXX9W5QobRRd+WjrOi8ubHqmGJiYigtLdWNefv27drtLZIbQqvyuueee4iLi9PKZN26\ndQFb5vUmHA4HSUlJeuG8srKS/fv36w1BgLCsLZ2MznlelL1fmVXtO60NGjSI7OxsnRnS7/drk93+\n/ftpb28P+TqVMbkYDAZDH+GsG6GryL2bb74ZgAsvvFCP8N555x127twZkYRS9qxxyvUMLK8Few5v\n+wazamFMuVG6XC69EKRc4tRK/5YtW3TSocbGRurr60M+AlGLN4cPHwYiGx1qR41SysvLWbZsmTZf\npaSkaA8mFeGpvInsmw6oPUU/+ugjAJYvX87atWu1+SpS2JNIOZ1OPVNLTk6mubmZTz/9FLC8ZewJ\nsCKVjEu5/o0dOzYgGd6f//znqGf67Ix9I4yhQ4fqmVpdXR2HDh3SuXCigX1B1+/343A4tLzx8fHa\nejB69GgmTpyoy72qqkrrKrWBdKjdVc86ha42DlamCq/Xq6fWr776qt6YOVJ4vV6OHDnCihUrAMs0\ncOGFFwKWC6Pa8FqdW1RUpE0ptbW1ehpeVVVFZWWlttHW1NRoVzu7jS6UCCFYt26dNq9s2rRJe4NE\no4F7PB6Kior45S9/CcDtt9/OJZdYCT2zsrICEldVVVVpe//mzZspLi7myy+/BAKzakYK+y71EOiH\n7vP52Ldvnz7H3rBD5a52OhwOh17bOXToEImJibrz/vLLL3udQlflmJycrF0VwYr+LikpCYgKjqbs\nysZvT0Oh1qTcbjepqananHXw4MEAn/lwmNvOGoVu77GzsrJ0L3jkyBHWrFkDEHaf865QG9gqN7TO\no1yVMheOuz/Z81mohTOPxxOwnV6oczx0hcfjYceOHToQoqKiImK+512hFki/+OILAHbv3q1nN3l5\neaSmpmpFXVpaGrCQV1NTE5bAq2CRUmpbPlj11L47TV1dnQ4iU+6sYI3k/X5/2DsgIYTuYKqqqjh4\n8CAbN27U8vQ2VDmmp6fTv3//gEAsh8NxQsi8nWg9f7DalJr5JCQkUFRUpJ97TU2NrhNqJh5q+7+x\noRsMBkMf4awYoQshtD1y7NixTJs2TY/QN23apN0UI20zVdhtavbIwt6Ox+Nhz549AdnpIj3D6Qo1\n+qqoqNDeIMpNrKu9W6M97VbY64HdK6muro7W1la9VlFbW6s/67xBS7iwu9otWLAAIQR79uwBCLk7\n7JnicDh0e8/OziY2NlabqLxeLxUVFV0GIUWzDtjXc5QHzqpVqxg4cKD2eqmvr9fmYft+D6GkVyt0\nu11SbcI6duxYJk+eHBC2rBRAb2jUZxNKAfUGJX46omkKChZ7x2LPpNfc3Kx95MFq9PY6G4l66/f7\n9dpNpDf+DhZ7dKgasOXl5XHeeedpG3plZSVerzdgh6dot3v7M/R4PDq/T1tbG62trRQUFACWOVaZ\nt5Q/e1Rs6EKI/sD/AqMBCdwL7AaWAvnAfuB2KWVYlp779esXEERSWloakFdYLTqqh2wwRAv7+og9\ntN1uI+8tM4rejFJ8RUVFxMfHay+yvXv3ah9uiFy64WBRu6/B8a0z1W+x73AVrviDYG3ovwXellKO\nBC4EdgLzgPellMOB9zteGwwGgyFKiNP1EkKIFGAzMFTaThZC7AYul1KWCSFygY+klOef5rt61CUJ\nIfSq98CBA5k2bZoe/WzYsEH3iKWlpWeN/dpgMHSN2hsYrFgJu4dOQ0PDCZG/vWmE3pnOe8ueARuk\nlBNOe78gFPo4YCGwA2t0vgF4FCiVUvbvOEcANer1Kb6r95a8wWAw9F6CUujBmFxcwHjgRSnlRUAT\nncwrHSP3LpW1EOJ+IcR6IcT6IO5lMBgMhh4SjEI/DByWUn7R8fqvWAr+WIephY6/5V1dLKVcKKWc\nEEzvYjAYDIaec1ovFynlUSHEISHE+VLK3cCVWOaXHcA9wH92/F0VxP0qsUb4kcnNevaQgSmTzpgy\nORFTJidyrpRJXjAnndaGDtqO/r9ALFACfBNrdP8GMAQ4gOW2WB3Ed603o/VATJmciCmTEzFlciKm\nTAIJyg9dSrkZ6KrQrgytOAaDwWDoKSaXi8FgMPQRoqHQF0bhnr0dUyYnYsrkREyZnIgpExtB2dAN\nBoPB0PsxJheDwWDoI0RMoQshZgghdgsh9gohztm8L0KI/UKIbUKIzSrYSgiRJoR4Twixp+NvarTl\nDDdCiEVCiHIhxJe297osB2Hxu466s1UIMT56koePk5TJU0KI0o76slkIMdP22RMdZbJbCHFNdKQO\nL0KIwUKID4UQO4QQ24UQj3a8f07XlZMREYUuhHACvweuBQqBO4UQhZG4dy9lupRynM3d6lxMdPYS\nMKPTeycrh2uB4R3H/cCLEZIx0rzEiWUC8OuO+jJOSrkaoKP9zAFGdVwzv6Od9TW8wP+TUhYClwIP\ndfz2c72udEmkRuiXAHullCVSynZgCXBjhO59NnAj8HLH/y8DN0VRloggpfwH0Dlu4WTlcCPwirT4\nHOivopT7Eicpk5NxI7BEStkmpdwH7MVqZ30KKWWZlHJjx/8NWJleB3KO15WTESmFPhA4ZHt9uOO9\ncxEJvCuE2CCEuL/jvWwpZVnH/0eB7OiIFnVOVg7nev15uMN8sMhmjjvnykQIkQ9cBHyBqStdYhZF\nI89kKeV4rKnhQ0KIqfYPT5Xo7FzClIPmRWAYMA4oA34VXXGigxAiEVgG/LuUMmBXa1NXjhMphV4K\nDLa9HtTx3jmHlLK04285sAJrmhxUorNzgJOVwzlbf6SUx6SUPimlH/gDx80q50yZCCFisJT5a1LK\n5R1vm7rSBZFS6OuA4UKIAiFELNZizpsRunevQQiRIIRIUv8DVwNfYpXFPR2nBZvorC9ysnJ4E/hG\nhwfDpUCdbbrdp+lk/70Zq76AVSZzhBBuIUQB1iLg2kjLF2469lr4I7BTSvm87SNTV7pCbXAa7gOY\nCRQBxcAPI3Xf3nQAQ4EtHcd2VQ5AOtZK/R5gDZAWbVkjUBavY5kQPFh2zm+drBwAgeUlVQxsAyZE\nW/4Ilsnijt+8FUtZ5drO/2FHmewGro22/GEqk8lY5pStWDunbe7QJed0XTnZYSJFDQaDoY9gFkUN\nBoOhj2AUusFgMPQRjEI3GAyGPoJR6AaDwdBHMArdYDAY+ghGoRsMBkMfwSh0g8Fg6CMYhW4wGAx9\nhP8PPLhbsZMXvNYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZOt1JvbdmOc5IiMys7Ky5vER\nFNlkg6QgtdSyZRsGtBPc3rSNBrhx71s7A15pa8CAYS4a7l7Y3Q0IQvdCkGU0RYkU2xDHR76qeq+G\nnDNjnufxepH1nTpx60ZkZFYVmcXOAyQyM4b73/v/5z//Od+ZDNM0cUVXdEVXRHL8um/giq7oii4X\nXQmFK7qiK5qjK6FwRVd0RXN0JRSu6IquaI6uhMIVXdEVzdGVULiiK7qiOfpgQsEwjP/KMIwvDMN4\naRjGn3yoca7oiq7o/ZLxIeIUDMNwAngO4L8AcATgRwD+iWmaT9/7YFd0RVf0XulDaQpfB/DSNM0d\n0zRHAP4NgD/6QGNd0RVd0Xsk1we67gaAQ/X/EYB/uOjDhmFchVVe0RV9eKqYppk+60MfSiicSYZh\nfBvAt39d41/RFf1nSPurfOhDCYVjANfU/5uvXxMyTfM7AL4DvNEUDMOQHyvWYffaIjJNUz5vGMbc\ne7PZTK7H37PZTP63+4712vr7Z93HFV3RKrSMv628qT931vcuwoMfSij8CMAdwzBu4FQY/HcA/vuz\nvsSH15tUCwqn0wmv1ysP6na7YZomXC4XZrMZZrMZJpMJptMpRqMRTNOUz+prAnhrYklOp1O+x0m1\nEzK8HwqV6XT6LvO1dD4AwOFwYDabXVjQ8FoOhwMOxymUZJqmXJf/k/jcFxnvrPnUY+k5/tB00U3y\nqx5L89iiA05fX88x6V2e84MIBdM0J4Zh/HMA/w8AJ4B/aZrmk1W/ryfF4XDIb4/HIwLC4XDA7XbD\n4/HA7/djOp3C5XJhNBphNBphMBjANE20221Mp9O3Tna7k54bnKT/1szMz2lm5z1Np9MztY1VSV+H\nf3NDn0cIWQWsaZpzGpPD4YDL5ZJnnkwmts+wCqPxetb5sgoZ6+9fBV3GsaxCUa+R9UCz8gN/W3lB\nX+MiwumDYQqmaf4FgL+44Hfh8XjmXtMP6ff7EQ6H4fV64fF45Kff78PtdiMYDKLT6WA4HOL4+Bjt\ndhuDweCtTc4Jdjqd8pr1FOXYHo8HLpcLDocDXq8XLpdL7nE6naLVamE8HsM0TQwGg6Wb1noSOBwO\n0YKCwSCuX7+OaDSKSCSCcDiMyWSCyWQCp9OJk5MTVKtVHB8fo9VqYTQaLRxHb04yCu87HA5jY2MD\n8Xgc0WgUgUAA/X4f7XYbk8kEo9EI9Xod9Xod+XxehN0y8nq9c4KLz+Tz+RAOh9Hr9dDtdkWbA4DJ\nZCKaFl87j/agmd76jPF4HD6fD8FgEJPJBJ1OB6PRCL1eD71eT7RLzReL5lGPpQWp1+uF1+tFMplE\nMBiEx+PBYDBAu91Gp9NBq9Wa4z3rWNZ79/v98Pv9CIVCCAaDiMfjyGQyWF9fRzqdFl5rNBooFouo\n1+vodrvodrsYDofodrsYDAYYj8cX1l5/bUDjIuImIVM4nU44HA74fD54PB74fD7EYjGk02k4nU64\n3W5MJhM4HA5EIhGMRiP4/X7MZjP4/X4Mh0MAp4vBv4G3NQVeixoIF4uLFA6H4fP5MJ1OEQgE4PF4\nMB6PMR6PMRgM4HK5RBBppreS9dSmoAkGg4hEIshkMnj8+DE2NjaQzWbhdDoxHo+xu7uLZrMpz+hy\nuRAMBmGaJsbj8cK55FgUZsFgEGtra8hms7h79y5yuRzS6TQGgwEGgwHq9TqazSbq9TqcTiecTidq\ntRr6/f7SU4eaXDgcRigUQjQahc/nE+Hm8/kwHA7RbrfRbrfRarXQbDbRarXQ7/cxHA5Fg1nldFtk\nXrrdbvh8PgQCAXzta19DOp1GKBRCvV7Hq1evkM/nMRwO4Xa7MR6P4XQ6l64Xx+DBQWHAcYLBIEKh\nEB49eoRoNIpQKIRyuYxXr17h4OBg7v74fS0YrGZAOp1GOp3G1tYW7t69i/X1daytrSGVSiEajcI0\nTfT7fZTLZRwcHODg4ACff/45arUa6vW6zN94PH5rrFXp0gkFfdKQKBi8Xi/8fr9Mvt/vR7fbRTgc\nxnQ6xWQygcfjEQbt9/tyUvV6PVvpqbUAp9MpGz4QCIhGkEwmEYlE4Pf7EQwG4XA4EAgEYBgGarUa\narUaisUidnZ2RECR2RaRNkOcTiem06loGrFYDH6/H4lEAg6HA61WCz6fD41GA91uF41GQ0wiMrfd\nPFr/d7vdiMViuH37Nh49eoQbN27I/DqdTsRiMYTDYWE6r9cLt9uNL7744i3txnptn8+Hzc1NRKNR\nbG9vIxaLIR6Pw+/3y9x2u100m02YpolarYb9/X0RajRZ9Nzw71X4hc9ALYH38+Uvfxmz2Qy7u7so\nlUqoVqtwu91zhwXNvmXX1xqIz+eDz+cTwRwKhRAKhXD37l0Eg0EEg0EUi0URJBors+MDktvtRjQa\nRSwWw9bWFh4+fIhUKoVEIgGXy4XJZIJ+v49OpwO/34/t7W0AEL5ut9twOBzCR5fOfLgoaVWeD8PT\n2+v1IhqNyqna7XYxGo0wHA4xm83g8/lEfacK1ev1ZANZNwo1EjK/1+tFOBwWBshkMvD7/djY2EAk\nEsF4PEYgEEAgEEAmk8F0OkWn00Gj0YDf78fJyQmGwyF6vd5CTEGf3mRInpBUozudjgg2p9MpauHx\n8TGOjo7QbDYxm80wGo1sBY9VpQZOGS6dTuPevXv45JNP8PDhQwQCAXz22WdwuVyoVCpwuVzY3NxE\nJBKBy+VCt9udYzB9/3osnsxUda9fvy7aApm51+vJXHs8Hni9XozHYzFZBoPB3BotY2Q7AUXB4HK5\nxFyJx+Oi/YVCIbjdbuENzpsVR1o0lpUfKShM08RoNMJ0OkUoFEI6ncZ4PEYwGJwzT5ZtUC00KJzX\n1tZkzFqthkqlgkKhgHw+LxoFtbG1tTUcHR2JhvCu2MmlEwqGYby1ifl3IBBAKBRCPB5HIBBAo9FA\np9PBdDqdMzN46vJHn8pWMk0Tk8lETlKOGQgE4HA4EI/HEYvFAAChUAixWExsVKrv7XZ77pTt9/tn\n2nOaSWivO51O+Hw+jEYjOBwOtNtteDwedDod5PN5NBoNUb2n06kw5llE8+TmzZv47d/+bTx48AAe\njwfVahXPnz9HpVLBeDyG2+1Gt9vFxsYGotEoHj9+jJ/85Cei+nMttMBxuVyyXn6/H/F4XNRWl8uF\nVqsl2MRwOEQoFEIikUAoFEKj0RAhwROO97vM02L1HHEOtY1PLc/n86HT6aDZbKJcLqPf74tQoFmw\nbBPpExeAeLaIY81mMzEfuUkJ1pL/rG5w6/1r4rqWy2UMh0OUSiWUy2UUi0Xs7++j2+0iEong+vXr\nuHHjBoLBoOwNh8MhGM27eD8unVCwTpjepLFYDLdu3RLwrVaroVqtwjRNhMNhRCIROTG0FF/EYHxt\nNBrJidxsNuH1egEAmUxGJHUwGES/35cTOhQKyWbmIlAQUECdZc9pZtPelEAggMlkgsFggE6ng1qt\nhna7PScE+XOWSgqcagmZTAbf/OY38ejRI6RSKZTLZTx58gQ/+MEPRDMJhUIy15ubmxiNRrh///4c\nxmJ1e/F0I7jWbDYxnU6RTCYFEDs5ORHz7fr164hEIohGozJPXKOLeGwWneCcm2aziWKxiN3dXRGo\nes4WzaH1GQGIIBmPx3LPAET4aB7q9/vodrtneqL04TCZTNBqtXB4eIjpdIpEIoHBYIB+vy/3PxwO\n4fV6MRgM0Ov14PV6he/ohreu03npUgkFO/DI5XIhEAggnU5je3sb4XAY0WgUjUYDtVoNg8EAwWBQ\n7DyCjO12G+PxWCbNip5b1cLhcCgaBu3bUqmEbreLTCaDwWCAeDwOAKJRcOFPTk5wfHyMfr8vJ8Sq\npEGmSCSC7e1tpFIpeY58Po9Op4NyuSynrTYZzlJ9ed2vf/3rePDgAdbX11Eul/Hs2TP8/d//PfL5\nPGazmeAqw+EQgUAAfr8fkUgE9Xod8Xgc9Xr9reeyukhrtRpGoxGi0ShGoxHG4zHK5TJarRYAyNzG\n43FEIhEYhoFGo/GW4NYeoLPmTrtYuTm41hTk1BL4DNptvMqJyutrtyoBR94rza7RaIRarSb8oE2H\nRWtEms1mIrSGwyFGo5GYV9Qeo9Go7IVsNguPx4NWq4VOpyOC96JYAulSCQVgXjsgmhyNRpHNZpFK\npZBMJtHv93F0dIThcDgHFBIk7Ha7smBWRiFppuApxZOA6li/30csFsNwOEQ4HJ67z9FohG63i8PD\nQ+TzedRqNTQaDdmw540j8Hg82NzcxI0bN3Dnzh3U63VZ6JOTExQKBXEXrmqjEhBdX1/H48eP5fQ/\nPDzEX/3VX+Gzzz4TYJRzQiR+Op3C6/UilUrBNE8DxOyEnQZKy+WyCAPtEYhGo4KzJJNJ0YR4omoV\n+7ykNxxNQI/Hg2QyiUQigdlsJrY4hYIO1lpVKOhxKPiplQaDQWxsbMDtdmNvbw/Pnj3DycnJuccy\nTVOwF5oCoVBIzFiv14t0Oo1PPvkEqVQKPp8PzWZTPDrk8VXduYvoUgkFLYXJVAT/MpkM4vG4AGDt\ndltASZfLhVAohEgkIqoVBQrtTeBtd5BWtTih2h1Ke5d4AYA5/KLb7SKfz+Pw8BDdbhedTgcAlnod\n7MjtdiMQCGBrawtf+tKX5D4LhQKKxSIajYbgFNqvftbiu91uhMNhfOUrX8G9e/fg8XjQbrfxs5/9\nDLu7u8LYmhh7QdWXrjeNpOt50z8MGKNQSKfT4koOBAKYTqfi2q1UKqjX6+j3+289g1bZVyHNMw6H\nA7lcDg8fPkQwGMTu7q6As3R78jv696rj8PPEUcLhMK5fv454PI5Wq4Vnz57h5cuX6HQ6CyNFrdfU\npPEwmnThcBi5XA4bGxtYX19HMBgUE7nf78Pn84kw14fcb4ymQKCF7sd79+7h9u3buHHjBsLhMAqF\nAhqNBuLxOD755BP4fD5EIhGJWxiNRkgkEjK5jNQD7FVtK/ij1eHhcIjhcIh+vy/BJE6nE+VyGYVC\nAS9fvpQTqNPpiNmx6mLwJA0Gg9jc3EQ8HsdkMkG1WhXtgPdN82aVUGeeStvb23j8+DH+8A//ENls\nFtPpFD/60Y/w8uVL0SKIlgOnwUdOpxOtVguVSgXr6+soFApzJ791Dvk/555Cy+l0SsyCBiHX1tbQ\n6XTwy1/+EsfHxxJzwWtRICxzE9rNI7WEQCCAx48f41vf+hYODw/x05/+FM+ePUO1Wn0vyDzHo3vy\n5s2b+J3f+R2Uy2X8/Oc/x5/92Z/h+Ph4zsVKOsujonEpar4MMrtx4wai0agA0HSJEnzPZDKoVCoS\nT8Jr/kbEKQAQ5DqRSCCZTCIUCsHr9WI2m8Hr9UqMgsvlEtRXxypo04Auy0VIPSUu8Aao4kSORiM0\nGg04nU7E43EMBgN4vV602+25KLJFkZKrMKDT6YTH40EwGESr1cKLFy+Qz+dRqVTg8/mQy+XQarVQ\nLBbFbWeHvtuRw+FANptFNBqdC9bx+/1wu91wu92Ix+PyHF6vF5FIRFyGg8FgDrFf9jw6Yo8uyFqt\nJl6VWCwGn8+HeDwuXhViFzzpdRzJeYSCJpfLJWtQLpfRbrff6dS0I+IJ1GC3t7dRq9VwcHCAwWAg\nn1vkbVhk8vGQIN92u12JSzg4OBDX+Ww2Qy6XQyAQkPuhpkwTSbtcz/vsl1Io0GyIRCIIBoNIJpOy\nWcfjsahLBOTC4bCcdvV6HQAwHA5FhbObGDIOQ3FpFlhNiMlkgkajAZ/PJ1gDI8eoHfBkczqdc4DU\nWc/I7zAgBgCOj4/x5MkTeDwe3L17F16vV1yw9DzY+c7tiG45qpb8vMvlmhOqPGGTySSuXbuGdDqN\nSCSCXq+HUqmEdru9kotQA3dE4RlZmkgkYJqm4D8M+IlEIjBNE51OR+bkPOaDPhUZTOT1ekWQkW8u\n4tmwG4s84/P5kM1mce/ePYRCITx79kyARSuAedbYGlRnbAo9Oq1WS9zSDGlOpVJotVrY2NhAMBiE\n3+9HNptFuVxGtVoVDfeiOM2lFAqUxFSnaFM7nU70+32J96/X6xLkw2gvqt/VahWtVgvdblfUbr04\nWjuwuhfpYqJkDoVCoqoRcKtUKpKTQHWZmsYie1Xb7zp2Ph6PIxwOi0bw4sUL3Lp1S4JxIpHIXAyF\npmUngc4pmE6naDabcj3eQ7FYRDgcRiwWw6NHj4TJh8MhqtUqisWiPOOy8bRdz3kkeq6jQJlXwbB0\nugl19qaOWViF6M6liRIMBgXj0YFKdrRMq7NubAoEv9+PZDKJ+/fv48GDB3C73cjn8yiVSnNCgdfV\ngguwB6F1iDZD66n+0/tQLBbR6XTQ6XQwHo/Rbrdx/fp1idBkvke/30er1bqwhnTphAIFATf/dDqV\nyMXxeCyumtFohEwmg3T6tJCMaZqo1+s4OjpCPp9HuVwWF9kyW5zMRAyDdjGj9BhByYCY0WgkEXhc\n8GXx7NZnAyCYidfrRSwWE49KvV7HwcGBgExEmMvlsgSn2F1z0cI3Gg2USiU0m01xcQIQrwLzGxKJ\nBB48eIAvf/nLSCaTGI/HaDabODg4wMnJyZzpsKoGBGBOYDJX5PDwEIPBAMPhUDxEPCWpcWlAcJWx\neHInEgmJBDw5OZEkNWIWVgGgN+sq9j6fIxwO4+7du3j48CG8Xi9KpRIODg7EnqcJo4FGapHLxvB6\nvchkMgiHw3MaAzd5r9eTiFlGm3o8HtH+EokEKpWKCJTfGKEAnE7QYDBArVbD0dGRnOJer1fsrMlk\nIuAZ7XsuTrlcFrR5NBrNMSpJ4w7pdBqxWExstHa7DZfLhXQ6jUQigclkItGKzWYT1Wr1retrG26R\nPUzGpz2dzWYRCAQkYrDVamE4HCKTyeDhw4e4ffs2xuMxPv/8c/T7fbn+WWYDmb3ZbKJSqQiwOBwO\nxZNAEyyXy+HatWt4+PAh1tfXEQ6HZQ6Pjo5QqVQkKGYZk1k9EfoeqcXl83kxLRwOB3q9HgaDAQKB\nwFzK9rINpO9BhzZTS2ASHDMhmZWp5+UipE3NWCyGXC6HaDSKTqeD/f191Go1cZFTc9Fhzvz+ouei\n5hiPx5FKpSQj0jRNiTgdjUYSTp5Op5HNZsWdTWxGR7qeJYgW0aUUCqZpSuouw5apatLlZZomfD6f\nmAftdhv5fF5AM+Y+WN1nJC4efecbGxuCkvf7ffj9fsRisbkci1KphMPDQxSLRRmH98NrLkN8uVB0\nFcZiMcRiMaRSKclvmE6nePz4MR48eIBYLIZ8Po9msyk+b+spt0iVB4DBYIDnz5+LQFtfX5fYCzIT\ncxUIXA2HQ+Tzebx69Qp7e3uSwHTWevE3mZJMzo00Go0ETCVWQ5CYbkmGTJ+Vtcjn53eYYkzNCjjV\nABuNhsRHEC+yS4hb5TTlWKFQCBsbG7h+/bq4x6vVKhqNhqjwvB4PDZ3PY/dcvD+aWNFoFIlEQty4\nTC4j/6+trUlkKEHhTqcj7xPsXMVTZUeXSihohudm40nV7/cRDocxHA5F3Weo53A4RKVSkSxCjSNQ\nGNip3jQT3G431tfXxVTgqajVv52dHXz++ediljCykKq+BvMWCQVqCrQZg8Eg1tfXkUqlJBLQNE38\n/u//PgCg0+ngBz/4AZ48eSKBS3oDLjv5aIY1m008efJkLvJOxwvwVBoMBjg8PEShUMDTp0/x7Nkz\nqQWwislg9cXrjEVmqno8nrkcCppufr9fTA2e6quccBQ+9KJEIhHZKIwj0Qlzi2hV00Gnn1NLoQZH\nITccDudOaJ3HsUjDIwBLDS4SiSAUCiGbzQqGRYFCTY+aiGmaqFarODw8lBoOZ/HhWXSphIJmcp4m\nLIpBacv6An6/X1yDTByhQLADxhadPLPZDJFIBIPBANevX0csFkMoFBLsoF6vo1ar4ac//SkODg4k\n4kxHFjIq8Cy7m8/HhJpgMIh0Oo21tTUApwlXBDP39vbw9OlT/N3f/R0qlYoEE2k6a7MyWadareLV\nq1cSSxAMBuUECgQCknDDXJK9vT2p38Aoz1WeC5gPUaZgZ4EYCglqef1+H7VaTQrj6DDxZdoWf2vP\nCT04TEriBmEuhg6D1vO3bA6154J4ArMtqQVQK+UJzWuy0A7/X4Zr8TOz2QylUgnhcBhra2vi9qT2\nwD1QLBYlnJq1G4rFouwBBtFdREsA8GGawZz7Jl4XbiVDWTEAehh4qrO2ATUA2qa9Xk8ASTKVNQrQ\nmrHmcDjwe7/3e7h37x5yuRwMw0A0GsVgMMDnn3+OJ0+eoFQq4fj4+C3tQ93/nBtzWURZKBQSVdTn\n84lbjtl1hmFIhOS7hABzfL2JyNhUgwlk0WwYj8dS9EQHYq0CMpJh9Vh+vx+BQEDU3XQ6jUwmg1Kp\nJHUoarWamEcUQmcBjTrxiaZYLpfDrVu3kEql4PF4cHR0hO9+97uSOn/hU/O1Fww4jfaMRqNYX19H\nPB4XrxU9RoPB4K08jlUwIH6OKevkJ2pR9EoQq6KrcjabzWV9ah5fIIB+YprmPzjrmS+lUADeBKGQ\nqCYyPZpMqE9rCgQrjqAZwuolAIDt7W1sbm6K7/no6AimaWJ/f19UaJbUWnZa0uQ4y81lVfutLix9\nn+97faxuWf5ooWanVa3C1FaNgad4IBBAIpGQSFMm8FCQE0fghlolaEnzCoVdIBAQ1Z3xJatsyFXH\n0t4OhtATZKYgu8hYWoBr4arfXxSev4gWvPdxCwWeBlp91TkR2ieuJ41BSLSptY+ar/FvAOLViMfj\ncm2qsMQNyKiL5sqqMn9sZBVSnFO+fp5AIqt2ojcRtTvGdwCYU7G1SXbRsbRwPm8Oyqpj6ddJF9VE\nFo11ke9psmoqr+njFgpWQUAftn5IZueRqTSDEAW3MpkVa9Dj6JLt+j09hvX+rKS/dxnm9iKk7/+8\nTGrVRKwAL1VgLUj1Gr3LnFkxqQ9JF928H+Ka1vUiXdR8uFRAo520vWhF2rO+a2VCXU14FbqA6vbR\nkNWT8C7fXXSCvsu6rjL2h6YPMdZFr/ku62VHH6wV/RVd0RV9nHSpNIVfJWlVbZHKZTUx7N6zu+bH\nbj6sStZ5OytiUCPxq5hf/N/uGlf04eijEQo6iIRExJy9H3SRifNEc2nhoMEqjS/o+yDj2sUmXFQg\n2AmpZV6J8xDvkwE4dHUFAoE5b4OOqmRC07Jn0fe7DISzzp+uocmALmvS2iLBYSck3sdn3oU0LmXF\nnt7HOHb3T0yGWNsyU+28dOmFgt6grAHA8NlgMCg5+PRUEHWme0sXs9RkBxrqTQ68cXdamX8RKm89\nCc/DEFZGWvT983o6eL8ej0f6PrA3AStju1wuKbza6/WkSQtDxZe5Y63C7CyhaH0uXfGKAp9FXVZx\ngy4bi7TqvZyHtOAG3u7RCcyHGZ93w+rDx8p3iwQwP/OuXrBLKxR0gIouu8aAm3A4LBFy9FHrcGN2\nOjIMY2ELLU4m05J5egYCAanlEIvFJMOPMfy9Xk9qKTB4qlKpoFarzQWRnJe4qCxCy/BgZhoGg0E5\nvYvF4lyhTjti6Kzb7ZYQWkZRZjIZbG1tIZvNSmXsRqOBw8NDyQRkkRIK12WCQTOkdR2pVTFtm1Ws\nWMmKORHNZnOua5Rd9SKOtwrjWzcSeQd4A4KuEhJstwn5PCwAlE6nJdOWtTwMw0CpVJJQ/FUC0XRM\nBIUCo0F1Zi2Dp3T5wZ2dHam5wOzgi9ClFQqcFC0YrH5vhrcytZmbhG3IgDdx+NaFty40Y9pzuZxU\nK2KFJyaoAEC1WkW328VsNpP8dhZsZUgtx131Ofl87EmYy+Ukvl4XSgmFQhIoE41GcXx8jFKptLBD\nFDcOeyKEQiERoCyNRuHLxjKGYaDX64nWwI1jp8Lq16hlLQr0Ybgu259RY+H9+f1+0WZo/i2LDdGb\nXddh0LyiqzAxKlZ/j9WNzhLk1hObzxQMBpHJZIRvKBTK5bIU4dHfMU1zqRC3PpMei0WHWFAllUpJ\nXQzm/jCojyYZcDEvz6UUCovsUebfk4FY/EQnh7ArFGPuF6Ux64X2eDyIRCKSd8DrsrAK6zUOBgMp\n4trtduH1eqUIibXDkbXGwqLnJPP6fD4kk0msr69L7UnWTGSlXm6WarU6V1bN7kSlUNBZi8zzYHam\n3+9HsVjEyckJAEh0IetZ6DyEZZGaVlVXd2qidsL4/Uwmg42NDdH0OBYrDfV6PQCQtn+LeIO8oGsZ\nas2IQpTFd5n3wUazjKikabTqenFMFt/h+jkcDinuy6I/mg+1ibXswLAKU/JBJBKRcv3k/bW1NSmt\nbw2Lfxd84VIKBeBtu4yRisQUKBj4GZoWlP46OQVYbIfxb14jkUiICm+aptQZrNVq8Hq9qNfr0kfS\nNE3RJLrd7kpJUdZ7YDhwLBbDxsYGHj16hFwuh0ajgWq1CsMwJKOx0+nIXDDpRRem1dfls/Pz3NRU\nP5mA9Pz5c3lG3j+b4fAEXRZybcVhtJpO7SeRSCCXy0lPROaxBAIBwSyo0QGn5lyv13tLoFvxJZ/P\nJ1W+4/E4EomEgKh8bq4RtaRut4ter4cvvvgChUIBtVrNVgs6a92ohbBLFGtoMuGLB4WOij3rmpxj\njSnpZ/V6vXA4HGg2m5L+zr6VrOX4LmYD6dIJBTsUnuovmZppuEwOYcw7C5Pq71nVKZJ14ln8BICY\nIAQsDeO0lDZVUDJ2IBCQDE6eSLpw56Ln0sRcjkwmgy996UvY2tpCPp/Hzs6OqJ+RSAS3bt2CaZrS\ndYnp5ItUbKvrj3O3vr6ObDaLRCIhjXGbzaakHzMcmc9JbWuZpmAHkvJEjcViyGQy0riE9jULyrAi\nFNu2U5jYrRnvg4KU2YSZTAa3b99GMpmUNOzpdIpCoYDBYAC/3y8p4r1eD8fHx0gmk2g2m8JHq4CV\nmi+Ju7BaV71el2I8AMRc0F4xrUna8YaeXx5SDodDQGHgtAAQgLnmRR6PR6qR6dZ7FwUbL51QWObO\noY1NVZG5DQQYdZIUP88EmWW9ljMSAAAgAElEQVSaAsuM93o9tFothEKhOWyCwBeltt/vnzNjeE9k\nhLOeSxMblzx+/Bg3b95EJBLBn//5n0tpdbbCY7o4G6h0Op0ze1ZaTSSWr8tms/B6vVIcZDKZSMlw\n3aBVd+rmfFkTc+wKv+j5p7lCwX1wcIBYLAbTPHUl0zSjQNfl86xrpsfRpexu3LiBXC6HZDIpmkC5\nXMYvf/lLmKYp5hLBTbZb067rVTwRGvhjmjsPlEajIfxBs0gLm2UapN17/JvClaYczR2aWePxWDTj\nRet0Xrp0QsFucaz2KrtGlctl+Hw+pNNpuFwuFAoFQed5LTvmshI/Q2bjwjJvncxP6W11c7IyciwW\nmwMbz3pOfuf27dv45JNPkEgkkM/nsbu7O6eKhsNh0ZBYaowqt10lIevftIFTqRRSqZRgItyArENA\nnIE1KlgHkKCfdSyrC866XlYbv9lsiuaVSCQQDAal8nC9Xkej0ZA0YOvpbfUk0PxIpVLI5XLweDxS\njq9YLGJnZweVSkUKr/AZWfCU5dpWwRKsz0YQkBprpVKRFHQCxCyhZic0Vx2HP6y/QTwkGo3i/v37\n2NzcRK/Xw9OnT6VsAL9z3ufSdOmEgpaaWp3iJiLIwveY485Nq5umkCgcrKRBQZ6QbHPfbDbnsi3p\nOuOEaxCOrjaqvqucOtw0bAMWi8XQ6XTw5MkT8dN7PB4kEgncvHkTiUQCR0dHUsDTau8vejZuJpbC\n56nd6XRQKpUQDAYRDofFrHA6neh0OqI58STnPNitFcfQjExhQJNMe02y2az05Tw5OcHBwYEUCGEt\nQqv7TjM755jPwnJkhUIBe3t72NnZQblcBgAZb21tDZPJRHpqcNMSBFx1AxG0pTeF6jorPIdCobnm\nQNZkr1W0EeBNTQTdxo8H3rVr13Dt2jVEo1HpY6qLyfA+f2OEAvB2EBB/yNSJREJOuXA4jGAwKA1l\nucCclFVchARycrkcUqmUtGX3+/0AAJ/PJ14NmigaZZ9Op9je3sZnn3221ITQtiNVUC5uKBTC8+fP\nUSwWBTSNRqPI5XKIx+MCLvI0XRRQpIWpvk+e2ixEyw7GkUgEmUxGnp3zzIAmtpOn23IR2XkkCI7x\ntGPzl7W1NamvyW5bNIuoAS1LezZNU6oS0UvBEuiFQkGqVPn9fuRyOTx69AgbGxvS5m93dxfFYlEC\ntM67eWiGsHoy7f1kMilrwsNJz81FomzpjqS2x87r2WwWw+EQe3t7UnFbHxKLYjxWoUspFEjav0zb\n8c6dO4JOf+Mb35DCrgSuCMzQFqa0XWSf0u5Np9O4du0aQqGQlLniqcWSZhowop8/Go0ilUrB6XQK\nrrFIU9AgXDQaxZ07d/DgwQMEg0G8fPkS9Xodm5ub2NzcFO0jnU7DNE08efIEBwcHEiexrLyX1oA4\n1ubmJm7evAngtMpzrVZDKBTC7/7u7yIYDMLtdgM4ZVy/3y/A3RdffCHl4KghLRqPJzljSFhlyuE4\n7VQVDoelTd3z58/x6aef4vnz52i1WnNYwiINiM/rdJ62fG+32ygUClJ2jY1SMpkMhsMhHj16hG99\n61vIZDLodDr48Y9/jKdPn8p3NI+syo80XSlcNzc3ce3aNVlz4jR2HafPs0mpGfPQc7vdyOVyiMVi\nePDgAY6OjvCDH/wAP/nJT4Q3LzqWld5JKBiGsQegDWAKYGKa5j8wDCMB4N8C2AawB+CPTdOsX+Da\ncz78SCSCzc1NpNNpjEYjaUHm8/nE9nc6T9uTscgpgTJeZ5Gtz82XSCTQbrelOOtgMBAgjl4F5g+w\nZh4LsDJqcJH3QT8XowvZG5C2ORvkckHX19fhdrulQSpPNh2FZ2en8nUCs0SvWcKe95pIJKQxKu1s\ndm5iYxGegrp4jR3DUUOiJ4brxpqJ9G4AkP4cenNqQaa7f9tpIPxss9kUNzFjIvj8sVgMX/3qV6UN\nwO7uLp48eYJyuWwbYbhq/AC1SuBNB65oNCpYU7fbnXPLWitJLRvHqknS9c7I2ng8jq2tLQQCAelt\nokvX6YKx5IGLCIf3oSn8nmmaFfX/nwD4j6Zp/qlhGH/y+v9/cd6LWgWCDo8lhpDJZKSZ52QykWrB\nfr9f7GJOMG1aTZywUCiEGzduSDdkRvTx9OH16T4kwGStKHSWHac1HwYeMRpNh2hfu3ZNqkGxzTjD\ntjWgdBaDEfwKhULSb5NgG/3cHHcwGKDf74tXhyHdeiPQHWYl3dSF88PoO6q/2iTodDool8tzQKYW\ncGeddjyB2b6PeA/rGFKgsT08a22+evVKqoMzhmDZOPpedEAR4yyIx9ANGQgEcHh4KDgTr23ncrQb\nR4PpDGv2+/3SvfvatWvY3NxEt9uVsHSaysCbTti838tkPvwRgH/0+u9/BeB7OKdQ4OSQGRkjz+AN\nus9KpRJGoxGazaacilxwTYtOcC4A7elYLIZisThXqZcmBPAmR4L5Fgyv5qLTll2FydhrkQ1B6Vqi\ne/STTz6B1+vFixcvpJ06S8tbE7XsiExMDITI9WQykbDcbreLk5MTGXc2m8HtdiOZTMoJpOdhmQCa\nzWYSq8HfDLqixuDxeNBqteSU0ziQ3jRk6EWeKGqBs9lMmtWGw2G591AoJH1Gi8Uifv7zn+P73/8+\nTk5OZK51qb5lm9Xq+aJmxzgJh8OBarWKRCKBXq8n+IYOWNKA7Fnh1Lw+cSBGtTL83jRPm8Ps7e2J\nGWn10nAOf125DyaAvzJOy6n9H6ZpfgfAmmma+dfvFwCsnfuiiiGYpMSS7qzWO5lMpMtvrVaTaC7a\nplpS2tX912o3VeRYLIZsNovj4+O5BabG4ff7BQDMZDLiJjQMA7u7uxKOvIw0FtDpdHByciIBMEw+\nWltbk4CUWq0214Fo1Xb32janGsoNxWhN3YiUp2smkxHXZ6PRQKVSkVDkZQzNE5pgMOM2+DOZTKRX\nZqVSEbNBr4cGmM8iCmryAs1DmkCbm5solUr40Y9+hB/+8Ic4OjqSnBUtVFdxF2rPFw8YalZOp1PU\neCbHWRv66jU5iyh8eADSTc7O4fV6Hb/4xS/m3O+8d5pwZwmfs+hdhcJvm6Z5bBhGBsD/axjG5/pN\n0zTN1wLjLTIM49sAvr3owrTFWECVwUTcrNVqVUwHlrvWCS4MPNLgoOXe5k7tUCgEn88nHZs4jmEY\nwmhk+O3tbYTDYaRSKQQCAWlv12w2AZztDprNZpKWrN1wrVZrrh1etVoVdx2FnZXRrKepfk7OR7fb\nRaVSwcnJCTY2NgBAMu7i8Th6vZ4AaGzOWq/Xsb+/j+PjY1FTOW9WIpagey9Eo1Ex+5jJBwAHBwfY\n39+XpiX6nnW8CAWJ3VgUbnpDdzod8WwkEgmEQiG8ePECf/u3f4vDw0Nxry4SBqu4CvW9AadmULfb\nFf4jBkUsy+77Z42l3yOGQwyDbfz29/dRrVZlDrT5oDGJX4tL0jTN49e/S4Zh/DmArwMoGoaRM00z\nbxhGDkBpwXe/A+A7ALBIcNB1RjWq2WyiVCqhXq9L9yO61igdqfKyaQsnyi7IRyPGJycnyGQyiEaj\nuHXrltiODBS6ceMG3G430um0xEqwjPjOzo70vASWnwi8l9nstGa/2+0WfzlBK7Yapw1slxikr2f9\nn89FRi0UCnNhx+yDyHoK0+lU8BoK2YODA7x48UI0hUXx+8QlSMweZB6C2+2WgKRms4kXL16gVqvJ\nd/n8VoBsmcZlGG96d9J9THBxY2MDmUwGk8kE3/ve97C/vz8XIWmNG7CbQytZtQuaIMwZmc1mqNVq\ncojRC6VNo1XG4Vi6WBBNiXa7jX6/L5mx1EzoqqS5p7WEX7n5YBhGEIDDNM3267//SwD/C4D/AOCf\nAvjT17///UWuz8lkFyE9+eyNWK/XxX7jhAwGA0kc0nUU7HIfAEj02cHBAbLZLNbX17G+vi4mCz+X\nyWREGwFO+zR2u10cHR3h+PhYsIHXc3OmlGZexXQ6FdXQ5XJhc3MTwWAQR0dHKJfLsilXVatJFAwU\nnpw/0zRRKBSwvb0Nt9stmlWr1RLXYLVaxRdffIFyuSw9Eu3G16etTtphtCHnj0zd7XalMa8u8W7F\nSFZ9Vj4TMxY3Nzdx//59wUQKhYIAs8vWZBXPAwPj6AJvNpviLmbtCYbJWyMZ7eZs2VjkXZ1F6vF4\n0Gg0pF8kQ591jojWUDk3F6F30RTWAPz5a5XIBeD/Mk3zLw3D+BGAf2cYxj8DsA/gj897YW1b8rRj\n96BAIIB6vQ7DMOayIanS0fY9K5JMAzKtVguFQgFPnjyRFvculws3b97EYDCQkzCfz4s3YDY7TWGu\nVquo1+totVpy7bMYTGsudBlubGxgbW0N2WwWg8EAxWJxTk08j2DQqupsNpPQXoKNqVQKL1++lN6V\n/DxPwGazKYlSOqR7UQq61hQCgYB4HNgwhZukWq3OBQzZaSD6RF80f/pvpk6vra1ha2sLGxsbCAaD\nyOfzcmhoF66eG97/MgBVv8/oTgZZDQYDJBIJzGYz6fBN8NQaCr+qMNCmLrWORqMxh2XwsCPfa6HN\n5zxPoNRb93LRL75PsjMfrItPNYrIr1XN0uqnFdw5a5Myd4HIr652RNcSVXiNXOsMOL0oWoW3kq5E\nRHAvl8thY2NDGPr58+d4+fIlTk5OBJA77zotGt+KpBPU0hWJtBqszR2+r6+l5zCZTCIej0toMbMS\nm82maD37+/tzJ6nWNqzzuOi5uEb8fePGDTx+/Bi3b9+W0OPPPvsMf/mXfyknt14XHbNyVoakdbMS\nO6H3gVGvlUpFvFYX0eyAN633uC66AhjzROjO1etj5bklY398fR80aabW2ACAtzbJeSSy9fqmaYo2\nwIlttVpvnVbWMRZtOutJZPc+AIllp9+cjULpatVq9kUE96J7tGMa2qfccFZ0fhGT6TEYVFUul8Vr\nwngRJlfpfP9lqrWeQ7v7p0eF0aisbcBIwnK5jJcvXy7MP9A1IM+aW6u2yfGpMQBvMI5VXMXLiF4z\n7Z3ScSzMgXgfYy2jSysUdP4CSZ/KyzYe8Lbqd9bn7Py9dqciSb9HgaKjyBbdn5XJJpOJmCA8jezs\n7IvSMuFF0kCcPv01YGl3Pb1xCZwyR4RCRmtU1nRiu/s8y77X481mpynL3DBerxf9fl/iP+xObf1c\nFyFt+mlz6n1uTq312iWhLeKLd3muuetcVvPB8j6A5Sc0P3cRNdtKduPoe9A2NF9b9v+yca12JF97\nn+uyqttNf1bTKvOt1Wv9OgWmBnytQsVuvLPumcg7r8/6ixSqxEd0GLNV+7zMZDVbLqIN29DH10vy\niq7oij4orSQUrtrGXdEVXdEcXVpM4TeJtJ1+liq+qgn0HlXKj4KspobdPK0K/lrNwlXxp/9c6Eoo\nnJOsdvR5GMnKjATj6Caj7a09IfqzrA2xSqHRdyGO/15AqzME4XnsfDusQeMxGrnne/ysLnMPfBiQ\nUAseDT6/L+Kzkh/09d+nULsSCiuQ9aS3xlCc94QH5uMVmMhimqakzLJ0OL0wLP9GkNPaT+B9ktXb\nAFx84yz7nh0jnyVE7P7m/NtV2dIbSOdScP4vGuRjdy/6OnYA57uslR5PN0biWMtidc5LH6VQ4EQz\niIRx+6yn4HA4JHPS6qdedk3tVWCQSiQSkXh6wzDEzcXqRdr/vkokGcOZWVMhEAggnU5jc3MT4XAY\n165dkxZkTOxqNpsS9szoy0KhIMEy73Ia8bl1JWefzychyp1OR6L0LiqErCeoPvGoJXFTc/Mu04bo\n5WBwmS69zxT66XT6VrcphkQDp2HqzJE5KzhM14ugAKLwZjh3NpuVilOM0yAPMvlLp2ufh3QwUywW\nwze/+U2pJN7r9XBycoJCoYBKpYJWqyUxMBcVDB+FULD6zsnEkUhEyqLlcjnMZjPU63VUq1UpskLV\ncVnZLataxmQotgVLpVJ48OABQqGQlH5jYg9jJ3TloUUxDxQ6uu3d1tYW4vE4UqmUhDlns1n4fD7J\nr3C5XKhWq4hGo5IgRmF3VryG3Tzyb62VsAuRzmxkhmWpVEKj0ZA8iVXWiHPJH+0y1HMAnNbAZH4C\nhQ8T3axzqL/LTcncEUY5sv4GS+KzNwLrbkwmE0mj5ia3FuCx8gYjQPWBxHnz+XzY3NxEIpFAJBJB\nrVaTDNhOpyP8xzlfVTBwLGaw3r17F/fv38dXvvIV4QHWm7Sao0w0u4hguPRCwcpkZAin0ylNTe7f\nv494PC6lyfP5/NLS53ZjAG9X0mXOAIuDslYkW46xlRwDdFbxK1NlJU2nU9kwDocD7XZ7rsgGpf7a\n2hq63a6ciDz9KIhW3aycP7fbjUgkguvXr8MwDKTTaUSjUSlTziCkk5MT1Ov1uU1hp/LrGAUKVfbH\n0BuIrc+4Ufv9vpQyYwMe5mno007HPTgcDqnizOrbLI3GkGCeyrlcTupGsPkra0r0ej0JGltUlITz\np80BmnZs7Mqs2e3tbRiGIcV2LqIVWMfl9TOZDB4/foxvfetbCAQC8Pl8yOfz0v+j0+nMtf3jNX6j\nhILdA1FlZHqujg3nb/ZM4ImzymlqZwtSMDBP/+TkBM1mE51OB7VaTVRqBsqsYp7oKEViBew/wI5F\nzWYTu7u7CIVCUjaesfosvHFWmKsV+9CnNuduY2MD9+/fx82bN6X+ot/vRyQSkRObDUd2dnYkWtBa\nJ0ALbZ7efr9fKmaxRybrPrKgy2QygdfrlSYwbOLC8G4dvUrSVYmYMhyPx0WrC4fDMresFs2eCRQI\nDodDwpw13rBozcgfulaBrvvJwCm2q9PdrZjApM2u8+JPrDt669Yt3LlzBz6fT+pRsF4Gi8vo9gbn\n0SCtdGmFwiLXEqv7RCKRuYXqdrs4Pj6WDDbdPUmrrWeNxc2mGYcM6/f7JSNS24ncnHZagnUczewU\nDIxvDwQCcqqVSiWkUqm5jENW/mFhUztTRT+PFgw0uQKBANbX1/HVr34V9+7dQyQSEXyCacbMEiWx\nDJ3dBuKzcCMwL4FjsYs2+1qwPgXxIAobml80abjh7Mbiqc5CIhzTNE1pGzcYDNButxEIBOQz3NCc\nM92XYhG/kSc02k/tTPe+XFtbQywWm+M/XZqNAk0DomcRtZJoNIoHDx5gc3MThmHg5z//uRQqnk6n\nktBnFxZ9Ebq0QoFkVRuZs89qPq1WC5VKRRqC6Fbx+hqrSGarq1F/hyZLr9eTFGBrco9mmkXX5nV1\nGzBqGqxwxBoGrVYL6XQakUgEiURCVEndUn3VWnxkZJ/Ph1u3buHGjRvIZrPY3d3Fzs4OhsOhnLy6\nL4PVDbpI6Om5Y2FYVkJiq7bJZIK9vT2YpimdotPpNADMVZ4iDrDoOagp9ft9tFotJJPJueY8FDzE\nRNhHw+v1SpUpCmhqQ4sODS0Y+Dl9CFD7Yiv6YrEoVbhYR1IfSucBhdkb5O7du3jw4AHC4bAUv3G5\nXMjlcjBNU/AYYlbvoiUAH4FQ0MQFYboqgLnejqPRaM4ToJl4VduKn+WJxC5NiUQCyWRSQEyi13an\n8qL75ud4cvH7BC8dDoecMFrlJ9LMU0YX19Dl0c+aO1Y95nw1m018+umnaDQa8Pv9kvZMoK5Wq6Fe\nr6/Uoo7Px56XuvFpo9GAaZrY29tDtVqd68HJ067RaMxVz7YzU/ibgkdrJxSshmGIGTKbzaSBLfAm\nC7HT6cz1GD3Lq6KFADCfrEdshgVXWPZO18Gwm69ViIJsa2sLyWQSTqcTpVIJ/X4fGxsb8Pl8cDqd\n0p1cJ+SdVRJwGX1UQoFSmaWuCO7kcjnUajW0Wi3JjtNC4SKACyeUdRvv3Lkj0p/IuF3e/FkCSPvU\ntXmjuzuzHyHtZmpGLLnOzcANtYqmYBinNQ9Yv5AaVq/Xg2EYCIVC2Nrawu3bt+FwOLCzs4NXr15h\nZ2cHpVLJNsNRawecM5oBBMMo3A4PDwWAIyBIsI/FXGu1mlRqXpZNqcejGUFQluYX55mmFj0djPXQ\nguQ82pb+m27CW7duwe/3S9s6VmHS4LMdRrLKmrE2BT0ppVIJyWQS29vbiEQi0gSJgpv3dlF3JPCR\nCAU+INu/k8G3t7exubmJUCiESqWCarUqKpt1gs4zSVxwh+O0Z+DGxgai0aiUE1u1ZZvd61rt54Yn\nek77kPn6rHV4/fp1+Hw+KQxLwbhKgRD+pumVSqWkT+R4PJb+mLdu3cLdu3eRTCbx6tUrvHjxQk52\nXc1q2ZzxBAUgABv/Z0MY1qGkp4Ol3huNhngg7Kpv6+dkDUTyAzEglnlnjw/eA92uBBuphejKy6sS\nhQjXIZvNYmtrC+PxGLu7u3j58qV4T6w8eF6h4HA4xE3tdDqlulcikcD6+rqYK7rj9PsQDB+FUNDu\nSNqT29vb+IM/+APU63Xs7Ozgb/7mb/Dq1Sv0+/2FwNt5x2N3nnQ6jXQ6jWfPnqHRaEiwjR2dtUmJ\nCcTjcWxubkrHH/arpE2cSCSQTqexvb2NdDqNTqeDYDAoG9qq0i4jmkHUNjqdDtxuN7a2tvDJJ59I\nJet2u43vfve7+Ou//msUCgUBzZaVlbeenixF1m63UalUJH5ge3sbDx48QKFQEJfo3t4evvjiC1Sr\n1TkTZREuQ62AgB0F42g0Qr1eF5cmNz4/z4KuwKkgYJCPrii9KpE3CNh+/etfx6NHj/DixQt8//vf\nF8/AIpNkVcFAUy+TyaDdbuPZs2fodru4fv06PvnkE5imiefPn0tJQgLD5zWX7eijEArAGxeh9rOz\n8Qu1hIsGaywiBpq0220cHh6iWq0iEAggHo/LZuGpo8ddtPCGYUgJr42NDSQSCQl+4UYYDAZSej2R\nSCAQCAhewtOeQTpaFV5EuuQazSpWmur3+4hEIqIF7e7u4mc/+xny+fxcezrr8y0ah9oCIwUbjQYA\nIB6PwzRNiSGIx+PodDrSnZnFcFfV6sgDDodDkH6v1yut76ihUKgzpoGeJMMwxPzTxXbP2sQ0XehZ\nicfjYgaxjLwWWna0ilDgdxmty74gyWRSvDb1eh3pdBqVSgWRSATVanUueEnjC+elj0IoaHcY0XAi\nrv1+H/l8Xmrvk1Y9Re3G4m+ecqwMbJomIpGI9IGwCxZZRi6XC6lUCslkEtlsVlrhUdi1222MRiOk\nUimEQiGk02kpu65dTsQVloUec86IS3A+6KZjFGE2m0W/30ej0cDTp0+xv78vTW3Oe+LoICAGfgEQ\nj0I2m8XDhw/FDcrAm2UVmezGYNASg584L2xhb5qmgJipVAqRSETiQCgcF+Ej1rH039rbkE6ncfPm\nTanyXS6X59bGGl5/lltcE6+h40b8fj9SqZTMJ3uA0qNE16rVTL0IXXqhoCeTqDMbs5TLZRwdHeHo\n6Giuyo51gXUQyqpjMgiFANazZ88keIguNtqoegz+bTeWx+PBtWvXkEgkkM1mEQgE0O124Xa7Ua1W\nxd1GlZc2Mq/NKEqiztbMP+szaN84Nys1hEQigVgsJq3mnz59Kh2mF4X8LiMdK0CAjw18OG9cu/F4\njFKphFqtNleif5U14tqwqatpmhKkxM0OnG4cdmwm7hAKhZDP5wVcpYayaM34mlUgRKNR5HI53Lhx\nA5FIBKVSSex9amY6poPf588yk4VrzchValjRaFRyKhjC3O/3hQfpyXofWZkfjVDgZLKhSTqdRrFY\nfKunnhURB1bXGjR2wQCc2WwmSUgMc7Ym41iFziKwkfkaLEXO7tnlclkAL7akS6fTCAQCcLlcYm9T\nYyC6fhYDUNWlcOH1GC25sbGBer2Og4MDPHv2TMyG82Iyeo10UI8OiyaoyhLyR0dHF9JIKOjYtq9U\nKmE2O+0pacV6ksmkdPXy+XyCk/DzqyR48XrkB7/fj0wmg/X1daRSKWnQQtOBmqU1KYlRqQzpXuUZ\niaENBgOEw2EUCgWUSiWEw2HE43EBVRlpqs2vi2rKwEcgFID5SWI4qcPhQKFQwMnJyVumw3kEgtVm\n1B1/6elot9til3s8njkEmottNV3snoFMQ+Td6/ViNptJ1ymqvcxHME1T+kxUq1W0220p+a5DbRcF\n+hAQYyt6eh+2t7dx584dpNNp7O3t4Xvf+x4+/fTTuU1qN2eLNCC+psvFcwPwf4Y+N5tNPHv2TNyP\ni+ZtmY3PWAg+D+M6qHXRJcrndrlcKJfLKBQKKBaLUvWZz8rQcbv50yYBw+optBn8VCqVJC6D0Zge\nj0e+T+GzSis3vaHZ3evOnTuoVqsoFos4PDzE7du3Rdup1WpzmZ7LDqZV6aMRCgxSojpoGAbq9Toa\njYa4Y3RMgnVyVrVX6XvmJvL7/eh2u1JKPJlMolarScix9fvLxjJNc65HZSwWQzAYlNDiyWQiobet\nVktahbHRCDs20ftwlpuQpzbxiXg8jmw2i1wuh3g8jtFohL//+7/HL37xC+kixeewnt5nMZl+dp6q\nXDOebD6fDycnJ2/1xrR7hkWClWO1223BFjKZjJhzNGNCoRAymQym06nkqxDHYOl08s2yOdR8xbbw\nyWRS1o0Nc5gURzc2zTSrWbWKaUawlpW+9/f3EY/H50rxA6feGK0l29WTuAh9FEKBjEbENxqNwuv1\notFonBnRdx4cQat6TCGOxWLSiZlJScyx0DH1eqxFpymxg0ajgXq9LkFJzMHnCXtyciKdmZvNJvr9\nPtrttvikGVO/Sqw754zg5vr6uuSNnJyc4Ic//CHq9bqtX33VOaTZRRCQSVFMayZ+kUwm8eMf/xi1\nWm0uN2VV4qmuW6ZxHG50un1jsRicTicajYacsvV6XQKoVql9obEECjmaXjrehLEeVPXpFrerYL2K\nzW+apgicVquFly9fYmtrC6FQCLdu3UI8HodhGNjb2xOPC02V9+F9u5RCwQrwkNnIWJFIRFqgnReo\nWjSW/puLSEApGAzC7Xaj3W7j+PhYQp3JYKtuILZ3f/r0qQTphMNhdDod8UIMh0O8ePECJycn0nGb\nLj5qGdoNuoix6T0h0ysxEO8AACAASURBVOZyOdy8eVNAv0KhgM8++wz5fH6lFmfL3Fs6boARoLqz\nEV13nU4H+/v70ndzmaazTLBSU2g2m3JI0CNFN6Xb7cbTp08l4IzzR1vfWqnIjjRgyDgACiRiLwT8\nGo2GRBfStawDo8ijqwKBdB0fHx9L9y2anbPZDKVSSQ4YFlZ5HwIBuKRCQdvswJt+iIPBQIKVZrMZ\nisWiTPxFUVd90lNto81ZKpWkpfp0OkW9Xke9XhfJfNZJQ+KGarVaeP78OQzDwH/6T/9pzrOiVT/r\nBrVT5e1e10TVmFmY7OFomiaOj4/x05/+FE+ePJFT7aznWPY+7W4yrcvlwvb2NpLJJJLJJGazGSqV\nCnZ3d+eCjOxwoLPupdVqIRgMSkJauVxGKpWac9cyRqJarYqbku9bazMuA+UYM+JwOMTD0el08OLF\ni7k09n6/L3Eyy3hx1U1LLWM4HEoexYsXLwTc7PV6qNVqAtYuCy67CF3avg9Wlw5tY51uSzzhQzyD\nDgThPXDiVxUGJM1wPHGsSLGVyKiL7Hrre3bXYJ9Kp9OJ7e1thMNhAMCLFy9weHiIVqtlGwF6ETIM\nA9lsFoZhIJVKIZPJ4MaNG5LNWqlU8OzZMxweHtrGCVjBYbvr679DoRBM05RALl1pyBqzYMUuFo21\naFzmc/B/zRdcvw/Fh9qEYdAWx1zWgm8BffzNYOz8xNQgaMP9qu5/mfq8yndJZLBFMRVnXYfC0rqh\n7E4nh8OBRCIhdjZVXwYNWU/rdyXa1l6vF9FoVMDa4XAoXpRms2nLyOcRCgCkUIvmDasgtRai4fva\nC0CNatG4wPwBtYg+Bj7Eb4JQWPBZ+fsy3PsqZD3lNK2q9mnPih0TL7qGBgEXYSfvi7jhGFDF4jCG\n8abgrS40u2wtl2lJ+rn4XbtnJG6gPwe8MRmtY15E+/tYePA1fdxdpxfRR7YIAFbbvKtc4yJgqkbB\nPzRReyOdVaNw2XOctWGtoN2yZ1zV5Xke+hj5cFW6aht3RVd0RXP00WkK74usAKL1PTug77zXXoSu\n26nyq45lp1br/xlQZXdd/m2HS/DvZXUY+Z5VA3iXeVpm9izCHawm1KI4FTvz47xYxir0jnb+pRvr\noxMK2nZchsCfx/1jtdW1312Pq+1TEt1cZ4U52zEjf3Qmo/ZwEBAjoGZVmfnZRfOgX9fRgLokvBXM\nZRSk9q/r5180h9ZnO+t9vsZov7Pmj69r5J/3xdetws56H3yGdwWMNU6jn4c4hjbzLmLyLRrXbmwA\nbwnrdxUaH4VQsNusZA6CSYvSpledIA1c8X+NXuvsN36OgJVelEUbx07wMIGHv7kZzyrhrk9zu89Y\nmUhrLgT9rIg8P6vReH2vq3gpVj119dha6+BcLtu41g1v1Wz0vVqFpvZ6aOD2PECv9TkBvDWenSC4\nCD/aaUFaKNCTRV71er3ynO/Sc+LSCgVGxzGPnN2Uvva1r0mWWrFYxP7+Po6OjvD06VOcnJxIJWTr\nCWu3GHyPJ7L1tKX/mz+smhQKheB0OhGPx+H3+yVk9/PPP5dw21Wi5IA3xWMYv8BxKCyA+b6TTH4h\nmm8nEHl9awKOLqOuPQA64QzAXEIPA7oYbWnHbGRc3fSFIch0TTKJjVGZo9EIw+FQ6m2apimuUmtR\nXOs4ACRIyqptMQmLqdvMSNSRr8xT0MJymTDX2gjXg/0z2HiGApdzB0ACm1iMlnyxzGSyakI6QY+1\nIba2tiTKVjfPabfb0iGNQWIX0RrOFAqGYfxLAP8tgJJpmo9fv5YA8G8BbAPYA/DHpmnWjdOn+V8B\n/DcAegD+B9M0f3ruuwJk8wUCAaytreHOnTu4f/8+tre3kUqlEI1G59JiW62WVLUF5pu6LHiut1Q+\nMoBeCIaYspIPI/disRgASNUiwzgNvT06OoJpmhLuSrKquBQ0zCJkBSZmTrIaEzc2w2l5Td3oRqvj\n+vSgAKBwYSFVazFTt9stpcsoGLjBuYlYbbrT6bw1h8B8vgh7YwYCASQSCYTDYYTDYdkU1WpVyrgz\nBJm9HxiExMpaeiyS7gTFH/Y+YC4EG7GwyG6325XWdzpWRJujy7QTzg3XKJVKST8LCkwmyTE0fTgc\nolqtCn9yHRd5SqwmAYUc+43mcjlks1kpFOvxeFAsFqWOpmGcFh2KRqOS8HWR2hiraAr/J4D/DcC/\nVq/9CYD/aJrmnxqG8Sev//8XAP5rAHde//xDAP/769/nJjIvw1MjkYhE5JGxyuWy5A1sbm5iZ2cH\n5XJ5qepNWmR3cuN6vV7JLmRqs2EY0oxG9y10uVzo9/vCoBQSds9EJtQZn8lkUhaZzUx42jqdTimu\nUSqV5HS1qrN8Hob6Uoj5fD4RDtzoAOb+Z6IX7Xuv1wsA8Pv9Et5N4aS1BT2/FArBYBDJZBLpdFoK\nxTBXgCdnMplEJpORXoulUgmFQkH6Z2qTzaoFMQ07m81KD85oNCoJa8x9MAxDMijZD4TmA7NMrQeC\nnWbC9dKaDwXCtWvXEI1GYRinKcwUuiwxzyZCvB8dJXsWDsP/qTnygKR2QO2KB8tgMBDhyvUhn5xX\nWzhTKJim+beGYWxbXv4jAP/o9d//CsD3cCoU/gjAvzZP7+L/MwwjZhhGzjTN/Lnu6nRcDIdDsZP2\n9/fh8XjQ6XRwdHSE0WiEUqkEwzCkwWgul0OxWJybmEW0CJgi07GScjablRRcqr31el2awJJR2WaN\njGln1xOLoIBhufVYLIZoNCqqd6fTgWmacgLy/tj3EHhTY8KqjvKEATCnxrPQClPDWUFIq8as/xcI\nBACcRigOh0Ps7OxgPB6jUqnYziPviXPHQjD5fB7dbldOSZoEiURCkqQ8Hg/q9ToAyLotw1KoUfH7\nsVgMoVAIhnGaNFcul+V52BGaFayZhEZziPeuTQkrf2jzKhgMIpVK4fr167h58yZSqZQITQozpnOb\npikFaXVVpEWHBXle/09+DAQC8Hg8Utz36dOn0lIwHo9jOp2K6UAh9C7RqhfFFNbURi8AWHv99waA\nQ/W5o9evnVsoEPAaj8coFosAgFAoJBV4GbfPxqher1fayZHJVpGQVuCJJyiLkWxubkodAPaPBCCl\nvnQKLjepnXTW77H4CYu20BwJBoOSVkwzJRKJSEhvPp+XueHmt0PuWdyDreVZz4B1Bpi5SG2HG3E0\nGomwmM1mCAQC0oDE5/O91THZCtaxCW+pVEKpVJL6kjyRWSg2FAqJNsLmqGx5z0xHuznUBWW46WlL\nu93uuTLxo9EI6XRaWu+xvwTNIwoOake6UI0VR7CmTjMxiQ1z9vf3kc/npUM5DwoKf2omZ/GhFg76\n8zSreK1KpYJutzs3v3wG4ltWbOI89M5Ao2mapnGOMGWSYRjfBvDtRe+T+Xq9nqjCpVJJatIxd552\nP+1Vno6L1DTLvev7EbsxmUzizp07uHfvHpLJJFqtFnZ2dqQyEXEGqt266CptOStphNp6utLG5QYp\nl8tiG+dyOemZoIuwOBwO21oSdqg18x6Ydp7NZqXhK1PAWSOSG9jlciEejwsoxxOWWpF1/mazmQCF\ntVpNNhG1DtrSbCPHOaCqzfbty2pEEANgizm93loT4Kai5kK7mtqnFYux8sgiLIhmSzqdFn5kjwxq\nC8BpIhoFGwXCssQl7a2w3hOFHwHN0WiEQqEgpnQikZir7sSs4XepbH5RoVCkWWAYRg5A6fXrxwCu\nqc9tvn7tLTJN8zsAvgPY5z7wAWkD6tbvbEtG1Z4nppbuWgXj9axkVdO8Xi/W1tZw69YtfPLJJ1Lt\nhtWC2BiVtjZrB7DYC4FBOwbQmgJVdQAyBmv3ET1eW1vD9evXsbW1JR2F2cvS+oxW80ELBr/f/1Z9\nRmoHZDDd8CUej0urMgpBpl1bPQK8B25klgjjycZ1ogkTCoVw//593L17F263GwcHBygWiyiVStJt\nms9jFQz69B6NRoKw82BgWTzgTft2qv0Oh0M6etMLAcynzds9lx5XN8yloDk4OMDe3h4KhYJ8x+12\nS40MzotO67Ym8VkPLqtg4DPT1CLgGw6HkUgkBIcBIJ4bXu9XbT78BwD/FMCfvv7979Xr/9wwjH+D\nU4CxeRE8AXizSJSCPAFYzScWi2FtbU2ahrIHAtXcVQNVCMaQiXO5nBRWnU6nUtSUhTl1iTGqs9QQ\ntGptHZenHIWdrj6se2HSvRSPx7G+vi7l4NgST5/m/G2dN9q29KKwNwH7L3CcVquFV69eyelJtDse\nj6Narc6lqLM7lXWzaibWpgIAwUhYZ+HmzZv40pe+BJ/Ph0qlgmKxiOPj4zktgfdvfTYKCgZesdEM\nBR/XnWAfK1oNh0M0m00pjKPdghpotOM/LTBo8hFwZa+RdruN2WyGSCQiwCdNFBY/Wab9LNMeKGiI\nmVH7ymQyiEaj8Pv9MAwDrVYLxWJRTGtWBL9oOvcqLsn/G6egYsowjCMA/zNOhcG/MwzjnwHYB/DH\nrz/+Fzh1R77EqUvyfzz3HSmyosK0g2OxGFKp1Nwm5OvJZBJHR0dzteuWmREUCD6fT1qA3bx5U6r/\n7u/vS/lu4E2cgd/vnwMYCQjqCEBdOEVLf+IAvFYsFhMtaDqdihcjEonA7/ejWq2iWq0KQy/roqRV\nUWYp+nw+BINBDAYD+Hw+FItFAchoy89mMyQSCQE3WRsSgJSEWyQQ+LdmZGpDsVgM165dw40bN3Dz\n5k1EIhExM1g4R6vXiyoU6ecCIEKY4K1G9jl3NHny+by4PvX1FtVotD6L+Rrl1++z7wg1IJacY/1Q\nNgrWjW9X4UfNlzwEOY/aw5JIJODxeNDtdqX4DwFG3SX8IrSK9+GfLHjrH9t81gTwP13oThaPL5Jf\nI6vFYnGup2IoFEIymRT30HQ6lUAmO3yBjMdNmU6n8Y1vfAO/9Vu/hXQ6jVqthr29PfT7fWQyGWxu\nbmI8HsPpdIpLkkxtGMZcibFFdirvgdoBT+9wOCw9IOjn54m6s7ODnZ0d1Ot1cWGOx2O0Wi10u13b\n+dJ4C082Nt6lqjkajeZcjwCkUhKDjCqVimyowWBga6da8QvgTbQmEXPiCp1OB59++ikCgQD6/b5o\nMcQ8eG+LNg43LwUuBSu1NV1GPZPJwHztAdjd3UWhUHirB6jGdewEHjUEfobxHsPhEH6/Hzdv3sSN\nGzfmvD2hUAjNZlPm284TZafWW80Yto1jnVCu0507d8SU7Xa7qNVqODw8RL1eF0Fpx3/noUsb0Uji\nJNLdNxgMkM/nJZAmHo+LS4+Se2trC91ud66ZqJXJ+D8ZK5lM4saNG+LNGAwGSCQS6Ha7Arw1m034\nfD6JmdCaCoNlyNjWZ9B/WyMjCR5ev34d0+kU9+7dQyaTkeIkjIEgWt7r9SQq0ZqLwTF4MvH9Xq8n\nYCJVcAoPl8slTUsTiQR6vZ5oEJxH2vtaA7KOp5+VvvR2u42DgwNUq1U8e/YMiUQC26+rQIXDYYl2\n7Ha7c2XKFwHFdsKdAkI/E01J7WKmAGe+io63sLsu54pzOB6P0e1250r0AxDXNIUgA4lYI1Pz8TIA\n3Ao+ezwe8T6xGxgxG5oVrBNqh6H92rwPH4qsICAAMQnowqKLLBqNSrm2ra0tAEA+nxc/8Vk1HAOB\nAMLhsGx++nj9fj9isZg0ZKVAYJQePQ4EB6kKL1J9+TyseKzDimkLh8NhXLt2DeFwWDoP0T/PiDjO\njW6/bh2Pz0Kvha52TG2LjW79fj8ePnyIaDSKYDAoqih7TOiqxHbrZBiGqLaa4elaHY/HqFar0j4u\nkUiITcwir/V6XaJJ7exv60nKcXUeCiNBCQiyJ2ehUEAgEBDzgcLU4/GIMLEjCga6LXu9Hur1uvTf\npPZA7xHBXLfbjUgkgmKxOGfuWXnB+nxcK0ZOUlPgIUSQ1OFwIJvNotVqCfBtzdt5F23hUgoFLV0Z\nbszGH1TVWOE4m83KZNGPHAqFEI1GEY/H0W63RQ20S5oyDEOAwm63i0qlImh1q9VCpVIRYIvRbA6H\nQ07PYrEo5cO1+WAnpcnEfK/X66HVakmDG4Jj9DKUSiU0Gg00Gg3RGGgnc56WnaRE5XUnZgDiERiN\nRvB4PMjlcsjlcjBNU0qGF4tFMVHsVG5NFJgA5tRX2t4cezKZIBQKScgxn5vz5fF45NnsTm6+rjUk\nriEFK6NQeV0C0ASHKTD1b/KTHY3HYwmgY9gyNy/H6HQ6ovVoHtO2/SoYAgU5tUiatcwBajabOD4+\nRjKZRCKREKGkMRmdzfsbJRT4cDz9o9GoeBoCgQCm0ylSqRTq9To8Hg8SiYQ0ZWW4bTwex97entic\ni1Qp+tebzSYajQaOj49FRWf/BUby0QXE0GPa3IeHh6I16GASu7GohfAELpfL0huRpwHt0ZcvX+Lk\n5EQAQW4saiSLIje5USgo6ULr9/sA3tQ3JPPdvXsXPp9PBFC5XBYXHgO2rDa2XisKBZZa1yAvAInd\noL0PQBJ6eL9U07W6bvdcWpgzPoHuZB2DYRgGKpWKdG7y+/0SCqwBO4akL1ozChaaDtqE83q9sobb\nr3NyaOYxapLrrYPc7Ejn3JB/k8mkBJgVCgXx2BBjoNmiK3dbwe1VQE0rXUqhALw5GdxutyC7t2/f\nRjAYFMYZjUYS4EN1sdvtYjAYoNlsChILLI4tNwxDAoY+//xzaT02m82kx0Or1cLm5qbY/gAk+Ymn\nud6gy2xhhqTSrmcyUrvdxr1799DtdpHP51EoFPCLX/xCXGkE+ph/QLLbpDwtGFdB9JpAXL/fl2rI\nN2/ehMvlQqfTwcnJCfL5PI6OjiRkVveZ0LEAmgKBAAKBALLZrMw5NRu9BsFgUEKEs9ksTk5OZAxr\nshB9+ot4g+o214QeKbpfmRzHQrH8YdwGg+K41nbrxbFY2p2CYTQaSfBQt9tFt9tFIpFAtVqFx+OZ\n8yRpXuA17cwwnSjn9/tFKIRCIUlIOzo6EpOMmosO2LJe+yICAbjkQoEL4nK5kMvlkEqlsLm5KQvL\nSU8kEnO+fwaUaNV3mX+dodQ6sYlhuTzd6G5iEFGj0RAwzi5GYdFicFPTrPH5fGJH5vN5mKaJw8ND\n7OzsyP9sF6a1BLrvlp0+tIGZNMNrMA/C6/WK+VUul1EsFlGpVNBqteY8PSQ7N5cGvTY2NkQrIwLf\n6/UkGi8Wi+Hhw4fY3NwU84+ouVbf7eo3aDCT88gAMp1YxjWiR4jCgDET1LDIPzonYxEfMpKQm5bR\nlFxLHlAEfwkec2xtTi0DGMmPDPYiwEjciHyoTV62OdB8sMh7sypdSqGggRI2Z2HKq9vtxtramqjA\nFAwE+3Z3d/HFF1/ISbVKi25uMCbTkNkYRuvz+aQLNAN/mAvByDW9KHZMbSVKdwqrer2OWCyG4+Nj\nNBoNadNONygFAM0hnUFq9zw8TTqdDoLBoNi8VLfZTo54ye7uLo6Pj0XQWeMH+FzW8WazmfTj0D0q\n2Quz2WzCME5Ddbe3t5FOp9HtdvHixQu8fPkSxWJRBKQG46wMrV11OuWZgKEGm4FTDZNCgdoIn4e8\nQ83LTiOx4kLkM4KKxCrocaDtz1NdzxOFxTLBQ2yA12cyYCgUQr/f///Ze9fYSNPsPOz5qljFYt3v\nLBbvze7ZmZ7Z1exKsCwkMgQFSLJCgE3+GP4Ty4ER5YeExIADRPaf6KcTxA4cBBCwRoRIgBPFgB1Y\nCBwltpGFECjSajy7mt6e6R6ym3ey7vciq0hWfflBPoen3v6+qiK7Z5s94gGIIotV3+X93ve85zzn\nnOcgmUxK6vvc3BxarRa2t7dRqVQEs9HK4LbZjMAdVQoUmpTVahVbW1vyAFlQwyYjrVZLOuY8ffoU\nx8fHApKZgBKFg6ezDGkezs7OinnKGgGPxyOZd8xm0wkj2oebtFB5TbRufD6f9IuMRqOo1WpirvLa\nqEQ02q7JPbSJys+xjLjX6yGdTiOTyYjJTGykWCxia2sLBwcHks6sW57pHdppoukFXK1WkclksLy8\nLDslnwF3vS+++ALlclnK3LWlZVmW3LPbuXSyEqs6mUima17Ozs7E1GeKvK57IE7AUPekMCHPzzlJ\nXgUq1/n5ecFuLMsSjMkct3EWpE7TJ5jJwifiIDMzMygWizg+Psbu7i6azaZkMpo5Mre1FN6Zvg86\nBEWTlfFcvUD0DzA+BARgZJIB1+FBnY8QDAbF9G61WvJjJouYCshJEZmhI4Jg4XAYkUhE8ts5aTnJ\ngNGCIGIM5nk0WxN3bloKi4uLiEQi8Hq94sf/8Ic/FCCT79E60N2sqCScfH3LsrCwsIDvfOc7ACCL\nxe/34+TkRJJsqtWqdJzm8bR5rRfmOCXO8myGdxkiJDOR3+9Hr9dDtVpFrVaTmgea4lQKdDdNxWrO\nOS3MHwgEAkilUlhaWkIymcTCwgKGwyFarRYODw9RLpdRLpel4Sw3gXHzkanMDGuGQqER644WCq0D\nWghOm57Leb6ezWBcvi+/T3s/+juarYgLl9mS3I202c4JpU02nnvcrqBzLnSEhZOcyS66nkIvGG0a\nMvnGjN9rsllGZBjOJVMVffhut4vPP/9cemNy0moLgWOjU4qdzG2PxyPgJXc5hkO1q6N3s5vMPX2f\nTEzi+zMzMyPKm+4bsRGzoSzDf7ymcf63nif8nYuUWamRSERC1Z1OR6I4rG3R4zrpHnW6NseV485r\n5PjfIpX5L45SuI2YFZXa7NcPRz8kjfByceqqRDPSoSchMKoI9MLTuQucsCZoBFzXXdCKoOhrI5oO\nQFB5Xie5FEjiQjo07qAmfsBjMc+f1+Pmr7rFxk2lPc1n3P6vzWs9hjqsyTE1lYG+Tt6rfkbjFIP+\nn35uTOmmQjezJYFr6rxp1poeQxPX0GPgNkYTznGvFCac85Xf+bCd0oedqs60MuH3+L7Tg+P7elKZ\nD15PCP1Z/T/AvSyWgJWetMQPSPNGHkRGW2j18Bp5XTrmra/TLTdCi8Y4nN43/2diIk7Hd1uYGkPR\nx3JKJDN9btNtcROn+aKvw+3539a/N3Gi2xzDQe6Vwr3cy72MyFRK4b5t3L3cy72MyJ0KSepIgGl+\nO5mP01g52mQHrklCCMjpAhzThHV6NSvdTPNYf19n5/F9fR6n67sJUOp0XyZirk1ZJ5/fNJ+dfjfv\n0SmxyO04JhZw0/u7rbzO981yZ6cx0Mc38zfcxsHped1FuVNKgcKFB4z6bNqHBEZTQ/k/ppma0QE3\n391En53y7rWPqq9Dg10a+NPXbx7HvC8Cj6wD4GcYk9aThyCW9pWdJr7T/xjG5fl0eMz0XYneO1V7\njrsv8zimonPCGfQGcFMlws/qRjBc0Hz+lmWNYCCTQtVu59HnYhWjvn6NKxF7MkOub0qccKY3efw7\npxTMyaUnDQddAzp8SExiYXiKE6JcLo9w/zmdSy8GE113W3Q6m5ATkYvN7Xv6vLRUiF6bSLiOWTPG\nzfsFpkO0TZSc7+kQmZvVQsti2sl3E1BM/8+Jm2Hahcux4zMnuzEAIaDRCt3czZ2uh//T18Hz8Lkx\nuY2f4fhqoNOcG7Ztj81TmEZ4TpZK85p0Ity4UvBp5c4pBY24M0bOBcQdmKEn5u8z/z0cDiMajcLj\nuWQOajQakq7rlt+uFYKeNE4Tha96oXGRDodDKf1lQonb97VC4Hm5g3MxspBJv6+r9ZgD4LYL6evU\nf+uKRzdXQv/wu5PyL27qHjhdK8XJfTQ/T6uA2Zls1MJiJ61o+VyZMKV7IrgpfV6HZVnyHFjGT0Yl\nKiRaDSxH58Zllo07pYlPGhf9TLgBRiIRyRxNJBI4PT3Fy5cvUSgU0Gg0RpTSbeROKQVzELRpzzpz\nJhQxtZTsuqlUaoQGncQiTKfd29t7peUZMNqJWCsjLli/3y/55kw3Zb8GNiPhdW1vb2NnZwelUkl4\nD/W5tOXDCc00aibf6NdWqyWWwtnZmbD6zMzM4OXLl6hUKkKeYt4XAImdM/mK90orimNMJcXvmu6P\nZj92akPG++F4OvnT/L9WiDqvQFuBTPvWzMTmPKFluLS0hI2NDSFU4YJg7wnyHjCzst/vj1R/OvVk\nMBUUz8eiq0gkIj0eWIfDjYidoUh2S67LXq+HUqkkCmJa0a5qIpFANpvFL//yLyOVSsHv9+Pzzz/H\n1tYWOp2OUPDzurVLexO5U0pBL0zTrGVxEmnKI5GIpPGyIEfzB7BeIBKJoNFoCBW2BhV1noCetKxS\nY7efVCqF999/XxQBC4rIoERKb+C6uYmuMDR3HuC6bdvs7KywD3HCcRInEglZoFws8XgcvV5PGKFY\nAmzW0Xs8lzTgZHhiX0j2emCKuFZSNEep0JiNyLHRSUxa+H9WIfJvnpNK3bIsoV8jmQxLf3W2qG3b\nUnzm5F7wWuPxuHTZIoOUbdvSUEdnOtLasm1b/kfl6GQxcS5QeZF7IhaLYXV1FZlMBvPz84hGo+j1\nesKClMlkJBfE6/VKpahZ7j7NTm66ch6PR3g00+k0dnd3heSHdTnaReEmcFO5U0qBD1znoptmMOsE\nyEpDwhMWMnHxezweIcGgia8ntLlT6t2HuwLbm7G5LQt8BoOBcAzGYjHEYjHMzMygXC7L72aNg/Y3\nuSDp8iQSCSEIubi4kBRZLngek7sgs/WciFQ5edgkh30Wo9EogEtfO5VKwbZtxONxib5QGZIDgbvc\nxcWFpApzJ9KZm3ono9Imz8FweEmPxszKSCQikzoajUpHo2KxKNybZ2dnQvBiKiDtZtBlYN0BQd9K\npSJl4PT9AYhiYIkzFZybJWImcHk8HqTTaSwvLyOXyyGfz8Pv96PdbqNSqaBWq4mrwZ6apH/TVZK3\nda84D1KpFBqNBg4ODnB4eIhSqSTPR7utToD5tHKnlAIHTaP8FO3TpVIpLCwsCOGnLpFmPwYuIh7X\nSTubD4l+m+4jubKygoWFBYRCISlUqtVqaLfbyOfziMfjAnDG43FRZCa9l6mAqBiYNx8OhwX4Y1dm\nXT/A0lkeezAY/c4btAAAIABJREFUiHtgTjQSirKxC8u+W62WuFt0UdLpNACM7DDNZhPb29tC9BoI\nBKSa0XQfOOE1CEf2IfJZLiwsIJvNIpVKIZfLCTciezIkk0lsbm4ik8lI8RL/Z46h3jVpqQGXBC77\n+/tCfMMW8Nq9Y9tBMjA5hR55Ho/HI+NPS4H0calUCsPhJWPX8fExSqUSDg4OxNrjHOJYVKtVqeS8\nDdhoWZel58vLy1hdXcXBwYEwcmmWKw3Iv07E404pBcAdcabpvri4KD+dTge7u7uSu8/cfhKhsCiG\n4M+481DLU+nE43GsXdX/R6NRVCoV7O/vo1AooN/vixmcy+UAXPrb9IPZKclJ9O5K14GT5/T0VLgN\nSP1F2jI2SeWiZJWk23komtSTuzZ7bhKooqLRLc7IN9hsNjEcXjY7KZfLrqi9rgHgfSUSCXzwwQfI\nZDJ49OiRdIxqNpsjfnKn00EqlZIJTlIT0/zVSp5VhKQuI98lTWlaix6PRyonaR21223Mzc25mtb6\nfUYXaHnF43GxSorFIvb29lAoFMRlYaEUe3bYto1wOIxarSbjdFOTnhwi+Xwe2WwWP/jBD4RZ6uTk\nZOq6imnlTikFp12POxCbveRyOSwsLCAej8viIRGJZVno9/vCYUcqLg2u6XPp32nyMoKxsbEhLegH\ngwGeP3+OUqkkoS6a8B6PRwg8Xr58KVaL6aroHY6IdTKZFBeF5C31el0QZDYoJbhJRigCkMRRzPGi\nxUOglguEvxOD0RRvBKjoMvj9fgHjTk9PhXfAVAQ8J4ARE5kALbkb6X6Qf3IwuGx6A0CYryqVyoir\n4gYAejwecY3IunRyciI9KnjdBAABiHUEXFoVLD932r21BUEFzg0nGo3Kszo+Pka5XEahUAAAcV9Z\nnk5+RR6TnBI3ET7/Bw8e4OOPP0a/35fn3+/3BZTVloEOs99G7pRS0OabBpTYemxtbQ0rKytIpVI4\nPT2VztNc1ASzOKm4a5P3wAw58hx8gOx9QIp1PsRyuSxkLuxlSSCy1WrBsi55Hqk4zFixjvlzcnCS\nkuq83+8LVySvjbsOSV2ZpEUlR1dLT2jGw8ku1Gg0ZCcdDofSqZl8lp1OR9wSj8cj3aiOjo5GSEqo\nLMwxHA6HI7kTfGYej0dcHp/PJ5T79XpdgGJaJy9fvpRnyXZ2mq/RSYjHZLNZeDwe4ebU+QLBYBDZ\nbBb5fB6pVAoABF9pt9sCCLqR7ZrhZ62ECfKyxwOZrQh4cnxIq2biStMK3bB4PA6PxyP0awSQddcr\nLV8b98EEFrnj0URcXl5GPp8XYJHkFYxVU1NzImvQjrumKZzERJdJ1BGLxTAYDIR8hGafx+ORiARD\nhLVaDd1uV+LEmufAFBKN0kqgIrNtW3pZkByW+RcENXXJtGVZI6FFPYa0jtjurtFoiPIjwFepVOD1\nXnbL5nn8fr/stOz7YNu2uGDmDqQnHhWhtiZIOkoL6vj4eIQ9i64EqctJL39ycuK4UKlcmaxGwJRh\nWQKLOomNrhLPF4lEUKvVsLCwgJmZmRHqOXMemvPDxIpIBHt+fi6WBM8NXLchMEO80+7idGkZ/aJS\nIF7BddJut+Xzb8KNuFNKgaJzBfhQV1dXkUgkMDMzI30QCPLR5yOARTOZpqrZuwAY1db0s+fn54WI\nRO960WhUwEu2W6Mp32g0UCgURCFQUWnRi4esRLFYDLlcDtFoVKjXCTYyfBYIBJDP55HP58XcJ+cg\nd1KncJp2lxheJHre7XYRDodlcpPxmUxFpLgz3RK3dF0ucroftHhyuRxKpZJEbKiYaPmx5d7+/r70\nydRsQuOEwB9feX/s4H1+fj7SaIZt6XjtqVRKcgd0xqHbXOTmRFeSXcAYFaIlF41GBUDmDk4rQ4dq\np124DOGurKyINWpZljCLM5xLy2xc8t1N5E4pBa2dg8EgotEo1tbWsLS0hPn5eXi9XpTLZQFZVldX\n0e12hXHH5/MJas3YMfn53MJbXq8XiUQCS0tLSKfT8Pv9ODw8xHA4RCaTgc/nQyaTQb/fl7qKRCIB\nACgWiygUCiiVSqhUKiP59ubOQL89FAoJXyJNTiLdS0tLyOfzEvsOBoMjxCgXFxcjjVnd7otZfK1W\nS3xcXju5LekyZbNZcR+CwSCq1aq0WKPPz93b6b60yzcYDIQ1ant7G7VaTfAL4FL5Pn78GNlsFo1G\nA7u7u3jx4sUIzqB5J03ROQ/EgBi7n5mZkZAhLZ9KpSLksbQUaWEQM5mbm5Od1jwXsQviTFx0vB/O\nSSoeRlRo0Q2Hl13G2C2cZK/TWAqWdUk1t7GxgY8//liu5Wd+5meQTCZlc7CsS9Jiundvwlq4U0qB\nZhsBv0wmg2w2i1wuJ23TiBHQ32ZY7+LiQjpFM8WZLMFcKE7IOY/DtGKGsjyeyy5RpGFjW7f33ntP\neiSenp6iXq+jVquJqa7DQqZonIBs0ToOTtcinU5LbwFaDJwA5+fnwlLM+3IaQ7IWc9x0mi0pwwFI\nApjX68XR0dHIrsZMSuZWuEVw6LJwYdCSYdiO9xwMBrG0tIRAIICjoyNRprpPwqS6By4upnsTQwmH\nw+j1eshkMmJpsAmrdkkjkYhYPWR+dlNA3OU1zRzDrdp6CIVCI4lwjE7Yti1hVX5+mkXLa6UCY64J\nFbnP50MkEpF0boZl9ffNZ3QTuVNKgTfDmHI8HheAhZONHYuIitNvJDV5u91GuVwewRKcFqq2Snw+\nn+TN0yTjwgoEAuh0Osjn85ifn0csFpNYerlcxvHxsSgInZbtlGXIe9PUXdVqFR6PR/zai4sL1Go1\nzM7Oot/vS5EPlRRBOIZZne7LvF8qH4KTVKo0O5klSvyA9Ow8Fncgtx2OLgsAUQZ6Z6afPT8/Lw1s\nDw8Psbm5KRgMvz+JMxGAoP+FQgHhcBgnJycSYqQiajabODo6QqfTkXZytm0LMHh+fi70/ONcB44z\nE7Ns25ZsVr7P8+r7YF6ImeruxOrlJASkg8EgQqEQEomENIThc2y32yOtDpxcydvInVIKFE6mWCwm\naaMMn/GHZiSTlQaDgWSXMalD+97mRNMTXGdJcoFyAtDkI5JNs/zo6AjFYlFQaC4GnY1pnsu2bYmI\nMBYPQBQRw50zMzNiHemmH41GQxYsq+IAd34DujMkn+WkJQbAHX52dhb1eh3NZlNCgqYZ7Jazr++N\n2ZYcBx2FSSaTWFlZgdfrxcuXL/Hs2TNhxNYLcxrUfDgcyvOlC0BMg3Og1Wphd3cXXq8X6XRaIi+M\nvrA7Fa0Np3Oaz1CnhVPJEg/inA0EApIZqj/HZ68VqJsQTGW4u1qtIhAIoFarYXt7G+FwGMlkEn6/\nH41GQ8bQvO7buhJ3Tilw8BnLZyESdypq7sFgIK3Qut0ums0mdnd3sbe3J5ONuzfNXw3EUGMznJRO\npxGLxST1l5OOoR/6lP1+H/v7+9JenT6+7ing5Dfy+hkGbDQasnBmZ2dRLBYFSWefTO4ojMGzhRwt\nBeDVZBhaKVRoTKihYmNkg4spHo9jMBjgxYsXEndnIxqem5aKUx4Jz8kxJdAGXKPzqVQKa2treP/9\n99Hv9/GjH/0IxWJx5PnwODo/wClEyIXGFm1nZ2eIx+NYXFwUnIW4E/NX2FKQbiI3GG3dmaLH8OTk\nRAqO2JSXrhstV+ZAaDCSkSvdLp6p1uOEG57Gadgro9PpIBqNCn7G2go9hq8rd0opcEKzmIkpqWzx\nTYSZOQlsilooFHBwcCDoOUOSGrQyzURz8lH79no9zM/Pi3YGgHg8Lllph4eH2NnZkXNpy4UP3tx5\nNK7BzsUEuIiiAxA0nJOdVsjZ2ZmEPdmsVS9ErRT0zs3zac6JUqkkO+fMzAx6vR4ODw9Rq9UkK48L\nhqCpNo2dTFTznFSA7AO6traGb33rW8hms/jDP/xD7O3tjexu5tjp99zmCfGiWq2GeDwuz4uuAf1v\npnXn83nMzc2NFKsRnBtndg+HQ8mt0PgM3Tqmofd6PWn4SsU1GAwkr6DVak1lBVGorDqdDorFItLp\ntLT5Y54Oe1pw3L+27gN3G2roSqUiIaVgMCi9Hn0+H2q1GkqlEra3t6XbEIFIWhMasXYLSdJMOzs7\nk6pLug20FBqNBra3t/Hy5UscHBxIQo/u4sQF5JTKqsE7tplnsxnGurWVwYnPsCc7XvFYnAimf2qa\njoPBQHZEItjNZlNqEJgnwAlGC4tg3bRsT/p9muqsBdjY2EA6nUa/38dPfvKTkbwHvVAmTWJzsdKN\nomJmYxjusCxLJ0iqszTZz9MNU9DKjh3GqbzpxzOEzOgNcOm+UAkwbVvzOExbHclrbLVaePHiBbze\ny87kiUQCtVoNx8fHePbsmXSiuk01pJvcOaUAXAM8pVJJwmlM3vF6vTJxDw8Psbu7i0ajIX49m5ro\nJB/Lsl5JKNKWAouccrmcoLkrKysjZdDPnj3Dzs4Ojo6OpLUa/W4uOL463Y9WCqzpZ3SAxU38m1WK\nrMKjOaqTYWjeuvVB5ELQC48AI03c2dlZdDodFAoFVKtVaSqrU591GrDbhNbpzkTZmTlIK4uKlT04\naXmYVs40yLxWiLrFHRd9MBiU6w2FQvI7k7H4XJ06bJnXwfnR7XZRr9fFekylUiORBt2azuv1jrT+\n0xT60yoF1tKUy2UJwa6srAAAXrx4gS+//FLcV61g34TcOaVAQIbVdyynZetvKoXhcCgNNun36npy\nJ3PeybwiWl0oFJBOpyXrjbsN8x62trYk0qCVj3YNuNO7kWjwMwQZGT8ndkIF0Wg0RFH5fD6JdjB7\nc1zGpI6qaMXHHZ/KgJYUQUzu3rpnJX1gKmPT1NbKjs+GVh3vJ5lMCq/A/v6+PCsTLddhw3EKyOn5\nMcqkFSf5DMilYds2crmcpG5r12icm8INhU1zWSTW6XTQ7XZHqh9psfAaCCDrTWPaxUuFzxwH274M\nb4ZCIezs7Ajg7MTy9boyse+DZVm/A+A/AFCybfujq/d+C8B/CqB89bG/a9v2v7j6398B8DcBDAD8\n57Zt/18TL+Kq74PecYLBoEwSnfKsQRruEuaOqBcDJy7f03kB/N/S0pJQXJm1+VQ6u7u7MpnNWDrP\no8/FyaTvC8AIySzdGibD6O5O2jelouT3uKB5L1z0PBevgeYzsyTn5uaQzWalNBwAjo6OUKvVpFku\nd0biEPShzZ6WxvODx+NBNpsFAClc+/DDD/H48WMByp48eYIf/OAHohicxpDH1ziFy5xxxYj0NRG0\npsXJcaXiZXaiFq1Q9ZzUYKGOEOjz6eemQ7q2bb+SIn0TcQJgb2EZTNX3YRpL4X8G8D8C+D3j/f/e\ntu3/Tr9hWdZjAH8NwIcA8gD+lWVZ79m2PdUI6InAicmJqs1vfsZJGZg/bskwevGw1LZUKmFzc1Ou\nhb64mRdgTkZOIh2OdNpRuXg1yQd9R6eHbl4/fdpJOymPQYuLE1QDXqVSCZZlST6H3nH0gtChT3Mc\n9b1SSdm2LS7OYDDA3t4eTk5OhCHIjDboMdTv3XTCO32P7olWnjyPZsZyGj99DE0sA8DRFXXagHRj\nWJMR6abyGorgxjJRKdi2/UeWZa1NebzvAfh927b7ALYty9oC8JcA/H/TfFnfsCa7BK4f8Ljdiq9a\nY+sHpY+vfyc2wPiyuQNrxeNkHZjnMLP/zPOb92UqEio/81waF3C7Lz0eFxcXaLfbYkoTH2m324Ka\n0/zWx6Wp65Yg5SbValUwkc8++wybm5tSzNbpdCTUSSVlLj79XCbhC9NgD/q4uuhpUtakKRrQdZtD\n+nduEtxQ9Iahz39X5XUwhd+wLOuvA/gEwN+2bbsOYBHAn6jPHFy9N5W8icGiBTFJ9E7L351ISced\nx21SmeefdD03NSXHfd7p3IzkvI443av5HvPxea56vY6jo6Opj3eT/08S/f03Ob4/je+/bbktkdtv\nA9gA8DGAYwB//6YHsCzr1yzL+sSyrE9ueQ33ci/38hXIrSwF27aL/N2yrH8E4P+4+vMQwLL66NLV\ne07H+D6A718d46t3lAwxTWXTH6QbQItAhwGBaxNff17jFABuTbF9L86ix9rpd1Oc8A+n383P/jSF\nbolTbouTi+j0OfPzptzUAr+VUrAsa8G27eOrP/8jAD+5+v0PAPwvlmX9A1wCjY8A/PA251DneiWi\noP+nPwNcE4lO06nJabE7YQQABCfQ52S0gD7jmwKDTKzCzXe9qehIjj6ePoe+7ze9UCbhBJNEg8n8\nXaP/mjWZn9ffNbEmp2Pe5F7M350Uz7QL0lRuGuw1Iw7mc2S0zGneT4MFmTJRKViW9b8C+CUAacuy\nDgD81wB+ybKsjwHYAHYA/GdXF/LUsqx/AuBzABcAfn3ayMOY849MAg1QORFkaOUAYCSEaB4XuEaX\nNUBJy0FTqJuDrP1GjTbzfzd9GHpi6RJbrXD0Qr2J9tdot9vOqK0ct5Tw2y7or0LJcB4wIgO8GinQ\n0ZRxwPRNr4vzToclSd3H+WMqn3H5EHp89D3pDQcYVWD8G4AkL7Hi1ePxuLZKnEYm5in8NMTJfeCg\ns2ad/AOani2VSkm9vi6AOj09FRYkRjHMScEHykHX1oKZaWdeF1/NB6Qfpm07Zxs63aOeDEz4YY08\nd4FOpyMJRm6lsk7HZ3o3j89zckwDgcBIGjMzQxmK/CoshtcRjjezLVkHo0PXvF+nJrq3iWjoMWOy\nEglqyOvJFHTSBJJVmuQ4binO2tLhffFvp4xPnXvB301LQadVG9bKG8tT+KmLZVkjg89mKdFoFEtL\nS8jlclhbW5M6BaLeu7u7ePLkCQ4ODjAzM4NKpSLZeGamoSYT0X4dGX1I6smJYNu2pMxyp7AsS3gI\nNSsUs93c7o2vzABkG7wHDx5gfX0dv/ALvyC5/eVyGc+ePcPTp08dmXXGKQfem8/nE0q7XC6Hb37z\nm3j48CHW19clualarWJ7ext7e3t4+vQp9vf3hbnIiWLO7d7Miau7aLFsnBOVE5g/wKvhW6exm5mZ\nwerqKtLptDBZBQIBzM/PC/9ApVLB8fGx0LCzKlPnY+idd9wmwHLoYDAovTQePHiAVCqF9957D3Nz\nc0in06hUKjg6OsLTp08l6qKft3Zf3J6XnpOaci4UCgntWzabxcXFBYLBIHw+n4wnU54bjcYIGe5N\n5U4qBeA6NswKNHbeOTk5EQ79er0uXIecDLplHNOhdeWek+9M/kWWF0ejUaTTaUQiEVE8WiHw+vTf\npDpjnvw0CSp8mKzDp+LTDT5o+bBegszU01gJVF5kslpfX8e3v/1tPHz4EOl0GsFgUKoN+X8m+7Ac\nnQ1bJwmtEq0ISK5COjMSxZ6fn0vBEHkHzWfjdHyOdzgcxqNHj5DL5aR3BanrSNybz+dHunfR6uHi\n1/iQPr4pBPY4DxuNBqLRKA4PD9HtdtHtdpFOp1EsFkc4IpnqbKbejxs/3h93f84J8j+mUikh+zUt\naOByDhYKhRG8hUD6TeTOKQVtjtM3ZxkxNWmr1RK+gWw2i/Pzc6mZZ/quXljAqz44B4wuCnezhYUF\n6WhEZcO+AizJBiDl3JxcZExir0nt65riBICRGmxmZgafffaZUMlzDKgg3TASp3PooqalpSWsrKzg\n/fffF7KYcrmMzc1NqbmIRCJYWlqC3+9HuVyW1OdpnhktA1KWkZ0onU7L+TOZDF6+fIler4dIJIJy\nufwKQcg4YZWnpm3PZrOYn5/HcDhELBbD6ekpAoEAzs/PkU6nJa2cC5U1Evo5THIptIXG8SdzU6vV\nQrlcRj6fl1JsTWCjXVc3ZacjCpyPZNemFUJqwpmZGamZoTVBF5FNY7jR8Hg3lTulFEyFQI1HboTZ\n2Vk0Gg3JzuPOShOc1YY0qcyeh2aWIbP6qBSSySQWFxfx8OFD4cYDrhmLSZpBE5S+/9zcnFgzmmDE\nSfTEMJFyErTu7Ozg7OwM6XRayqrpO5sdpiftPqx52NjYwLe+9S3pzFwoFPDs2TM8efJEeC7X19eR\nSqUQDofxjW98Q4hC6vX62JRg/nAcScG2uLiIeDwufTkBCH0+6fGDweArSWNuwKauDaEVwAKlRCIh\nHZ+5EMPhsPSQLBQKyGQyotx1VuW4KIFZ6Gbb9giIx1RmLlIdqnaKcDjdF8+jNxKv1yus3+FwGKlU\nCqFQCN1uF9VqFRcXF8IynsvlJHsSgFALMEP3pnKnlIK5YIDRHoftdlsYkQGIFiUPPk1RanYzXViL\nNtfocyeTSczPz2NxcVFarFWrVbRaLbx8+VL4BAHITsXGH6zP1/Rvk+5Vm3hsusrKvuFwKGQrmjhW\nH3eSC8HJmc1msbGxgdXVVVmMm5ub+NGPfoRnz55hOLxkrj49PcXGxoYoxl6vh0KhgKOjo4mgKc1j\nLkgqBpLq1ut1oanX3aNYsanHxO3eWNhFYh1WuEYikZHOUFSiDx48EGVF1mxGdgi6Aph4b3osqRw4\nP1hsRSo/lr1rRTNuLujPmXOCrQTIMk7X+ejoSKxUdqwKBoOCn+n8mK8kJPnTFL3zmdWCHCy2ESfY\ns7y8jFgsJjRXpVJJKN7HVdtpcJF4RSaTEbZhlvsWi0WUy2V8+eWXYjqylp6LlX0MSVSiQ5njhBOC\neEYsFpMJS7JRWiFOzEfTWArsHfH+++9L85Tnz5/j2bNnwrhEIJbt3Tyey4Y38/PzQgE/qUTXtq/5\nLNmdejAYSMcsPkOCxR6PRzgH+X0dhnW6F/rHvV4Pu7u7ODo6QigUElo+7YqsrKzg5OREODwZHeL/\neX2TgEZeG4X3ws9Ho1HMz89jfn4efr9fukA7tdlzel6motdhTioer9crDXoODg6Ess/kq9DkxbzW\n28idUgrmgOliIQDycNlo9tGjR5ifnxfOgXK5jMPDQ6FA5zGcjk9zjT4wy4m5k5yfn6NarQqiTKpw\nIr40TXu9npybRCXA9PnvnGBspXZ+fo7l5WVpYmvGvieNmRayYi8vL0tnqF6vNxIu44RKJpOy252d\nneH09BR+vx8PHz7EH//xH0tDHSfRO65lWeJCaFKcVquFYDCITCYjfTOm8bn1fVJhnJ+fY3NzE5FI\nRCjXuICIIZBQpd/vi7VFrkTupuOU0Lhr4DWTDWlxcVGIVUhpZ4LBk+5NA8P8YciYxVyNRkPwGIZC\nE4kEzs/PZfMikznL06exgky5U0rBSfRgEjSLRqN4//33EY1GAVy6FTSr2EdA76xmKrM+tuYhIFqu\nuxVdXFxIzwJO3mAwiFQqBZ/PJ2FDovUMuU0L8FDRhMNhWaAEUEnOyWuaZF6bx2VORy6Xk3wEYgSa\nBVk3XwUgWIvX68X8/PxIM1vzvBpV1+N5cnKCbDYr/+MOSHOYHJdkPZ4k+jzEd87OzsStikajI23b\nPB6P0NSTUUrvwtpSuMnC4bO1bRuzs7PI5/PSp6PT6QhtvBnd4DMxFavGG3iPnOesUuU9UFGwQRGb\n2jQaDRSLRRwdHcnvDCOPS4t2kzuvFCg6iywej0uIsNPpoFKp4PDwUBBzHfPmRDIfCB/cxcWFhHa4\nCP1+P7rdLmZmZiRJKhwOS8+AVCoFj8cj5lq5XEapVBppZDvNROd1aV/U4/Egk8mIUqEfrePc0wgn\n1+zsrOwmFxcXYn5yckejUdi2LTyEc3NzODs7w/r6ujTdZehyXDNT/Tt3YYJd3W4XXq8X8XgcmUxG\n2KVqtdorINw40T66LuvWpeAXFxdIJpOCa5BZirs3LRiGXnk88z7cROdKkF9zZmZGmudOy8Podmwq\nc80tORwOpesVwWcCt61WC4eHhyiVSigWiyOh63FZlOPkTioFM37MxBH6xplMBgCwtbWFer2O4XAo\npiGjD2aSii5uAq7jz9TIrVYL+/v76Pf7qNVqAiaRRXdhYQGdTkc6YHs8HnEb2DqOFODmPUy6V5q8\nx8fH8Pl86HQ6ki9BzCKZTI5gJfr7bkAqLRCa781mU+jpGdIlXkHS1r29PbHCvvnNb+L8/FyYi93O\npfGA4fCSn+Ho6AiBQACZTAZerxeZTEZ+yD2oEXseR7sJblYJz8NXuiFsDEMAbn5+XkBbtuizbXtE\nyXETuEnoNRKJ4PHjx1hdXRU8q1AojOAyZq4JxWw1oN9n/5FUKoVEIiHNkKh8EokE0um0KMJSqYS9\nvT0cHBxISwImzenI203lTioFLmDujmTpTaVSmJ+fRzqdxmAwQLFYRKvVwvLysrgI8Xgc3W5XogCa\nwNQUTiq6Gt1uV9ijuSsTyWZ4kmFIy7LEVSEdvT7mNA9DR0ioxMgvaNs2UqkU6vW6TBI2n7nJg9Yp\nwNqt4nXTNNW/0yzX5uyk3U/v+CR32d/fR7vdlqQwEtNSUVGB6sU+bqz0ebTo5CJaJ6lUSrg2GarM\n5/MyZ+h2jMv70CAknxWVwuLiIpaXlzE7O4t2u41ut4tkMimfJ8syn6tTnY75nBglYeYiuTuJNzE5\niyS13W5XSIQ55/WmN02Sm5Pclk/hKxWdscVYbTabxQcffICVlRUkEgkMh0OhviZSy/bubPpBUFDT\nYlF0lIMAHH1PtmZjcgpDkgTbNL7A3ZtKiDIJU9CTjBmU5E9kg1v69QRC9Xf1j9vxmY3ILDt2ucpm\ns8J4zA5D3Fmi0ShmZ2cFYzF35knCz5J4lgzYlUoFxWJRQmfEBHTPjHGKQVsQXGS6WpBRpEgkgocP\nH2JlZUXS1AHIwmIIma37ND270xjSzWI4MxAIYHFxEaurq1haWsLc3Jz04GRWK58lXQuei1iH0zkA\nCPsXgVp2KCeASoCU1izp+UlYy+iPnhvvfPIShbs0zc9EIoGPPvpIzLVOp4NyuQzbtiUKQBowLmTN\nNqT9S40xcJIxlZjmdCAQkAIrpseenZ3hG9/4hrA703ejluZimAZJ1wohFApJOisXcaVSQSQSwenp\nqaQ98zrMPAW3CW3btigrmsbEFxYXF1EsFsXcHA6HMgHz+TzW19fx4MEDzM7OSoHPtOzKHG+a9Dqx\np9Vq4eRCF/zzAAAgAElEQVTkRFrP85hOboLbuGmLhFmUxFwY3WBaOucRu2gTwGO9CrGAcbs4z8W0\n40wmg5WVFSSTSXlerVZL6ORDoZDU4hQKhZE5pPk5zXMA19GiZDIpVgHxLs5TuoKNRkMyTmnlMXKk\nXZavBabAhw1AwJX3338fy8vLyGazEqLx+/1YX19HNpvFwsICwuEwSqWSZNBxUQHXmXB6gOhaAJdI\neTQaxenpqSTTBAIBMTsZuuOOenFxgZOTEwHtqBjod08DnFmWJd2nQ6EQTk5O5KGyAId+JvskOAGo\nbmLbtjTk5Th4vV4sLi4KUMfuz1wwq6urePz4MZaXl5FOp9HtdlEoFKSl3aS8CPPatJVhWZb0qyyX\ny69kFvLzHJtxFgNfuRB0n4lEIiGYE/koCQozg/Li4gKNRkPcRDcAV4PTHo9H/HwufsuyZC7OzMwg\nn88jGo3Koo3H4yM9Lpx2bR2pYiIdoynMluX4lMuX5OkMkxPc1hWRfKWiuwnFIOVOKgXmI9AtYCw6\nl8sJumtZFubn5xEIBCR5xe/3yyCcnZ05Is0U/YBoVbAAKBQKyQ5CxJrgIoE+AlWcbPr6gfF5Cnqx\ncGIyCYVWB3P66RPrfgnmsdzk/PwclUoFz58/x9raGj788EPE43Gsr68jnU7j8ePH2NvbQ7fbhc/n\nQz6fRz6fl3bupVIJL168GOlVeBvRO9fx8bFYPjStNXg6zkrgq6lsAoGAFMRxMRGg7Xa7spMTVGY0\nhGAgd1c30eeOx+PIZrPw+/0Ih8MC/AFANpuVhcjqRs5n3VXcTQjS8v5ISX9xcSH4QbValc2IESVy\nSDDiwHPcJAqm5c4pBSoDmpwAZKFSI/PhU0sOh0Mp9a3X6xIJIJjGB2+eRyeM0O/u9XqSNq1r1RcW\nFiTXvtFooFKpSGqtpjfXkQ5T9A5IEJNU7xcXl/0JV1ZWsLa2JhbEkydPUCqVUC6XR5TPNDs304Cf\nP3+OVCqFeDw+UlGYyWSwuLgoiP3MzAxisRj6/T52d3fxySef4LPPPnsjtHJMaqIJzEVK038aK4TH\n4aupXDk3mFPR7/eFur/VagkoB2BkAblFVrS1R5wEuFZc4XBYxoys2Uyeq9frqFarI6zY3NFNoXLj\nXGMvTwKlnGPtdlusn2azOVKMRzyBLuxtw5HAHVUKAMQ0I2B1fHwM27YRjUYRDAYxNzeHUqmEer2O\nTqeDvb09NBoNQby5G3HBOlkKZpSAfqbP55OQIABJLKJ/WC6XUSwWRzLHdEHLtBqaEQ+a01R+3M2q\n1Sp2dnawvb2NUqk0Qoaix8pJOMnPz89Rr9fx6aefSirshx9+iIWFBQQCAUQiEVEwLL3d3t7G8+fP\n8eMf/xhffvnlVDiJm5hmPnEdLigq/0kukRlK1gqdFgC7edMFJG7CNnHstEUCGbqHbladmVTE2oOt\nrS2pPQiHwzg7O5NSam5Mm5ubMg+1eT/JEqIi48Jm5Ihl2I1GQyxHbp66NZ22oG6bL3HnlAIAdDod\nMZ2KxSLOzs5Qr9elrnxubg7D4VD6SDKTrNPpjDSX5atTA04z5Mn3mGHHYiu2PWMeAZuxFgoFNBoN\nsQw4QXWjF1PM6MdweEmMsbe3h4uLC1SrVTFBDw8P0Wq1pF2d2bZ9Wv+eIOrBwQEajQZ+/OMfY2Nj\nAx9++CFWV1eRTCZl7Bj3Pjw8lLRZzWh0W6GVQDM/EolIhEXjPeOUnQYZdcia+Ei320UkEkGlUgFw\n3TeE6c00v23blpDv3NwcKpWK673pLFjWXHDzOTw8RCKRkAhNoVDAxcUFKpWKVJdy7tEScbISeHyG\nVBn9mp2dlQ2K1Y6FQkFqG6hcTWWjr/m2tQ93lo6NmhiYboeahFiboqvk6JoEAgGJEZNkhQ1F2V6t\n2+1KhtzJyclI1yaNdwDTVd/p66Ro4GkaAtrbijbFnaIakxbqNMJQYTwex9raGtbX19FsNrG7u4ti\nsThS6jxuZ9PXZ4baiD0xXZuvXGTkwaDlRN+du+ybUHqUmx5Hj/3MzAwymcxIxMHr9QomwogX78Gs\nrtTH0tmfalzfXTo2AK/sHjcVE9E2hSYrzWbbvswSq9frsuPPzc3J5zTKq3MS9MJyQtKnFTMyol+/\nKnFa8Pr6Ocluu+PwOAwVl0olybzTrFg3ec7mOHHcGRGq1+sCOpsZhRrv0UlLr6twX+f7OvJBy4K8\no9zttRIYhxfoufg613ZnLYWvWsi8rAeS7xF042TVO7/WwPy8Zg/WC+k2FWp3QUzF8LqT3vzRmYzT\nAmLmdZjWjd4pnQBDza3BZzhNuvhXLSYorVm7tNI2r9vJOtBCwF5bFJjSUvgLqxTu5V7+AspUSuFO\npjnfy73cy9uTO4sp3MvriZsZ/SYtQ6ccAx061GKCl9q8Nc1f7dJNkyOhIxM3ic68Kfm6neudVgpO\niSxvatDoh2pMAbie7CY3w1f9oG56X26JOLpM2fy//gzBuEnn1DgKF7qZQ6CTfsyxZG2E9n2nBTd5\nXtLXMe+BkQw39i39c9OkKRY1sVKWuQFO3cRuGrlxwk2AVzt86bCsxhneFHD6zikFJ4TV/Ntp57jJ\nsSmc8Ho3M5FyDfi8TrRkktwKRVbjMO44ZsRE5/vz/seVF/OVk5XHYg6BzvbU39HXyIlPshSnazUt\nAd0hihmoTPwxE9bMBeoGSroJQ6u6iC0SiUgkpVarvZJc5ja+buJ0baay5bXwf6bC4HFeJ3J155WC\nkxLghGBZrBbdG4GLedLDcENvTdGluiZpi27RNe3OoyMVprmtd83XyRngcc34tXkd/Kwu79VRlHEZ\neeSs0H0w9O45TpFyLPX1cdK7JZzxnNp9YaWgmXKu71Pf702sO3YpW15elr4YAKTorlqt4ssvv5RU\naoasbxNWN0ufdfYmnw9bGtDSYko3E6XMKMtN5c4qBW2G0jz0+/1IpVJYX1/HxsYGMpmMVN11Oh0c\nHR3h8PBQuP+Y1cbJMu1i1edkqXEqlZJsRb/fPxIvbrfbaLVaKBQKMjHcwpFUZnNzc8JbwB2InZWS\nySRisRhs+zJTrlAooFarjTAE6wXi9PDNxc6/NcU5y6WZ7EOOSOZtsIsTayNMIg+trHRDEp3hqVPA\ntQXCXV7fP81/Zuy5lWzzGZGDkvwWpHdnvJ+fI5U8r5sLiF2cxll5MzMz+Lmf+znk83ksLCzg4cOH\n8Hg8mJ+fF+V5cnKCzz//HFtbW9ja2sLu7q5wNd5EkZuhW3IqxONxzM/PY2NjQxilmHl7cHCAg4MD\ntFottNttNBoNmfdUUDeVO6sUtHACRCIRIcrw+XyiGXO5HKrVKkqlEgCMaExgfLzdyQLx+XyIRCLI\nZDLSB4Gp0LwWJpnwPOQ95A7mpoSY86+LdzgBWOyysrIiDz+VSgldmhOo52Tl6HHT18wFoglscrkc\n4vE4crkc/H6/7Hz6fKzSM3kHNNmJZVlCd8YdnAU+/D/5BJjyTGuL6bzEH2j+mz0M+IxIjhIKhaQz\n2MzMjBCQkKCWTE8c5/Pzc+kdQmuEYKeT8B74eSqfUCgkSohKbW1tDZlMBjMzM6jX6yN8ljfZjCgs\nByfB0IMHD5DJZJBMJuHxeCQ9ndWhnIvahaAVcVPX804rBRMM4qRmhtzu7q5MRpZKc0cyM9YmKQT+\nzSYm6XRaLJL5+Xns7+8Lyw0VRjwex/HxsWhkJuW4sd1oKwTACEMzc/S5kDKZDHK5nHA7aBNbH8/N\nzdEKg/fF84fDYcTjcaTTaWxsbGBubg6xWEy4AEhY0+/3EQwGhZuSKcEUKhrt15P9iGPO9mUkPbEs\nSypAAQhgNzs7K5WtbNBrKmwqba0UcrkcwuGw1JHQfWQPDXIbspkKOR1Y/KbHyAkL8Hg8YoF4PB5U\nKhUMh0NUq1UAEOs1Ho/D7/djdXUVL168QLVaFYU2yYU1MQTOEW6EuVxO0u9Z9cmaC2IpTNmmpfQ6\n+NadVQpaGTC1mL8PBgMhTGUqsu7FyAHR/pgbAGSGxKh4MpkMHj16hIcPH8K2LxuoNBoNDAYDZLNZ\neL1eLCwsCNkGy5onTQAWZ9FUJrcjr9O2Lwt15ufnpc2Zxit0NpuOEjiNn44MABCXgT0z8/m8TGZS\n3Nm2jVgsJuSm7XZbmpiauyqvlYzYoVBohPVIv0frSy9EjjUXM3kH9/f3hdFICy0Lgn25XA6JREKO\nTXbtXq8nlt3c3BwWFhaEu/PFixc4PT2VoigqLT2GepHqdPZCoYDBYIB6vS4Nb3hvDx48QDweR6FQ\nECXHOWG6WyZgas4ZPgf9vJi2XalUsL+/j0QigVgsJkxhtKrotrptTNPInVUKwCgazl2GviEblpBg\nlByLTgiwG6hkAlHciRKJBFZWVrC4uIjBYICjoyM8e/YM3W5XeiUsLCyM+MOcQOPMNYJvrLjjebWZ\nb9uX5eGLi4tot9vY2dmRSlHTJXEze033gmAhd1kuXPL/nZ+fo1wui5XC45LjkD0TTPdBjx3dETZm\nIQsSuxiR2p27bavVEvOe7hRdF6/XO7bTNZURKy5JgUZFy2PRciH/BtvLsYUdu2E5HV8DyGSgajQa\n8hm2veP4cIGSMYvKzwTKnUBXt+enu3fPzc2NNDyybVvOz4az+lxO+R/Typ1VCuMWNRdiOBxGIpFA\nNpuVluq6HwBl2tATfdtcLodkMik717Nnz6RMmhTc5CMgmy81OwBHJh+NyDuZxdps1N2F9/f3Bbyc\nNnbvNI56J6TZ7/Fctm6zLEuYpfQ1VioVIVjVnIoUDYix4zHN3EQiIUAtLQSWh5OtiiZ8NBodYbBi\nT07zXriACZCSXt3j8Uh/SfJodLtdJBIJ5HI5aS03GAykIzWxHzOKpMeQ1ha5M9hs5vz8HIlEQhRP\nPp8X60jnMGgmcb1Qnc6lnxUtYh3p4vc6nY70Po3FYrJR0HWgNTkOK5kkd1YpUPjAyAsAQMC3jY0N\nMZ0I0nGy6e+PEzNUFQ6HpZt1r9cTN4W+/cLCAj766COsra2h0+mgWq2i2+2OMCI7PQz9wJ0sFL3A\n2E6c5DL6nibdzzhTlfTk7FM5GAzQarWkZyX9/OPjY2EQ0p2yTDp0Tl4yJVvWJUVeMBgULkSWLZdK\nJWmcQyuAHY4IENLnp5I1Izh0MQAIwzF9aaLvJO49OTmR8mMuWDIwcbFTiZOsxBxD/t5qtcQ8bzab\nwtdJK5W065rdizu7XpxOm5MJFuv/U2nynmmJplIp4YNsNpsSJdItBoHbJ9XdeaVAoZZnSI/hSDbf\nIMOyfjCTzDQKHwrNZTItDQYDCXEGg0Gk02k8ePAAH374Iebm5lAsFqUtuNnHYFrrRIvH40EkEkEs\nFkOtVsPz589RrVYdQaNpIyoarPX5fBJp4G7GayYtvm3baDab0taNbhqfgRl90MePx+Oya52ensLr\nvewQTV7GRqOBUqkkFhdxILoNDCWbzYHN+6ZFQ6yDSrPf7wvHJT9LBXhxcSEhTh5fRyGchOeny9ft\ndqWTGBVLOp1GJpMRjoZ2uy1MzCRddcuudBONiTGiw/6l6XRaAFQAEukgNyndVyrw28zDd0IpaGsB\nuC5tnp+fx2AwkBh+r9d7JY4/bkBMhJ5kIETaydQcCoWwsbGBhYUF/OzP/qyg9OVyWbS0CQTeRkMP\nh0NB71++fCkt4N3Cm+OwC20CAxCzlj48/XsSkQaDQaEl39/fF/IT7vZuuxxj/blcTs4BXE5OtoWj\n66Xvg/0uuMi5C/J8TolLHGNiEPTfuaOypwT7b8ZiMXmWw+FQQEguqJmZGXGfxonmt6D1Ydu2dGyK\nx+Oo1+uSL0C+T+ah8Jo4BuOyDU0A0nSpUqmUsEmTB5INlRmSNF2Wm8pEpWBZ1jKA3wMwD8AG8H3b\ntv+hZVlJAP8bgDUAOwD+qm3bdetyhP8hgF8BcALgb9i2/emNr8wQbU6SK3Fubk64DXO5nDQ2IbCm\nd5txCoK7KDW89vPff/99aedOrv9Wq4XPPvsMT58+FQpxJ9992vvS0QHbtrG/v4/t7e2R/ALTHXBy\nD8x7Aq5pw4PBoIQNT05OJF/igw8+QDqdRr/fx9OnT7G5uSk9CRn756vTObiI2a6MpnS5XBZzln05\n+J1kMonl5WVkMhlRrgwzM+xrmtUcK+7wBOAIbK6srAgucX5+jkAggOXlZczPz8PrvewITQxqZmYG\nlUpFUpPHKQUzrBuJRPDee+9hcXERGxsbSCaTGAwG2NnZweHhoTTWpTvh9XqlATEZmJvN5itWrI6S\n8Zycw+zxyZyFSCQiXI1sJGtZo3wgxBVuk+48jaVwAeBv27b9qWVZEQD/xrKsfwngbwD417Zt/z3L\nsn4TwG8C+K8AfBfAo6ufnwfw21evtxYdmmQ+gmVZ4kelUimcnZ0hlUoJOaf5sMft3Iwi0KSmRmdj\n1kQigaWlJYnfv3jxQqwEknNqJXRTK4GTghOPZi75Cwk2cafVqPa4MaP1w1g2sZfBYCBUcisrK8Jh\nWC6XUavVRvpbcLK6mfIAxGz2+/0j3bUIDHKnpkJYv6KYp4I9OTlBo9GQVuuAOy5j27bkc2jrg02B\nyCkZDAaxvLws/TsYuaLyIb0ZLQ6T7ZtjyFduGkyGevTokSg7XgdD2exSRkuKx+/1enjx4sXY56Wz\nPclQrestCG7zWvjDNaGjWbd1YycqBdu2jwEcX/3etizrCwCLAL4H4JeuPva7AH6AS6XwPQC/Z19e\nyZ9YlhW3LGvh6jg3FnOwdFrr1taWNDD1er1IpVKScqzjv6Yp7ST0GdmlmCSxjDez4Wy328Xe3h62\nt7dRqVTEJDVDkdM+DG2V+P1+JJNJIRN1ayZr7ipOu4FGrsn5Rx/65OREwCrgcgGStLVUKkkKLbMK\n9fnchOSvtOI6nY7UQoRCIWm+8vDhQ6TTadm92bGbmEOtVhv7rGz7khqvUqlIYhXzKjRDNMeFwGW1\nWkWtVkOn05EuXOwi7paSznvmGIZCIWQyGayvr0u4lQovGo2O1CXk83lxLROJBOr1OnZ2dgS3cZoH\nPBfPx2Q8dpkmGzc3L52kpu9hmuc1Tm6EKViWtQbg2wD+FMC8WugFXLoXwKXC2FdfO7h678ZKwdSc\nTFe1bRvlchm7u7uo1WrY2NgYmfxM19V+1bidVVcBdrtdFItF2VWJMIdCISSTSRweHuL4+BjFYlGs\nEp1FNs5a0O/r66GJH4lEkEwmR0BLM3Sm6xgYsXBLXqKZzQkVDAZhWZb03UwkEuj3+zJha7XaCC4D\nXO/y41wUgn2lUmkE/OP5NPgXj8fFvWMYsVKpoFKpiPtHt8PNOiHV+czMDDqdDg4PD6VBC5u00o1g\nJyq2qyMFO3GOcS3xdBIRXY9oNIpkMik7NmtYNKM0Iy+Mku3t7SGdTuPw8HBkszLvi8+UtTEEf0lh\nz/oT27bFQmGynn4W+vU2MrVSsCwrDOCfAvhbtm23DNPctm5IqWZZ1q8B+LWpLvIqf4APvd1uS8fn\nQCCAs7MzsSCYvOLxXHfdnWRq0zXh7sbBbrVaoog2NjZQr9ext7eHYrE4UnCllcqkc/Ez+oegWD6f\nx9LSErLZrIB0wDXqr2Pq056H5jHDf6z24253fHyMzz77DE+ePEG5XB4JrQLXCpPXaoZ7uVtdXFzg\n+PgYkUhkpIKVk5nhRL/fL1GIYrGI7e1tYclm4ZXbTqcXE5OJQqEQvF4vqtWq1JPEYjHE43FUq1XJ\niuz1eigWi6IU6GZwdzYVgz4X5wNBWbJ/M4xLwDIWi0n3KS5c5kS0Wi0BYsdZQRxTXXNBxc+oENP6\nWX9hPq9p3WY3mUopWJblw6VC+Me2bf+zq7eLdAssy1oAULp6/xDAsvr60tV7I2Lb9vcBfP/q+I5X\nrhcAQ0G6ko51CslkEsFgUIA5PZH1cdxE4xU6ky6VSknYiY1SCoXCSEjLCUuY9kFwJw8EAsjlcnj0\n6BEWFhakIQhBU96Trjjk7uHWS4DXwTi+z+cTtDydTkul52effYYf/vCHOD4+Hqkq1QVllHG7j23b\nqNVqGA6HsnPS0vJ4PJKW3Gw2BT9gsxYi9mbZ87iMTfb4oCJn70a6B8wtYNYrqwapzLlpjIvu8FzD\n4VDyYHhOFiKdn5/Lbs6x1uFRRnJ2d3clm9LpeXH+6A2GCmQ4HKLZbErlZbPZlPoSRl5Y7wNcEwnf\nRiEA00UfLAD/E4AvbNv+B+pffwDgVwH8vavXf67e/w3Lsn4flwBj86Z4gmleMdzChxOJRJBKpaS/\n5NLSkiDXemID1xN50gBxIbCdOHcrVqpxUdJnJpijFcI05+ArFRgjJ+vr63jvvfeQy+VQLBYlBKXD\ncxo4GtevwEk5MQWXMfuzszPUajU8efJEog0mJ4R5T5NMUu70rHcgwBaJRCSpiR3Dq9WqIOi6rRoX\nBUFWN2FegC6Ao3XB17m5OWmuAlznG+jqwXGKRy/WTqeDYrEoDWCYOUmrjgqabekvLi5QKpXQ6/Ww\nvb0tXcVY6+J0Lr7S7SFHRLvdlkzRSCSCcDgsUQzmkeh5Qgvoq8QU/i0A/zGAJ5Zl/fjqvb+LS2Xw\nTyzL+psAdgH81av//QtchiO3cBmS/E9udWVKqIHp77JddyKRkP6E9E3Zvw+4mabUC8m2bckXYJUk\nfW/d/ccNXHQ7L3cTDQAyJ58Zan6/X3oRNhoNOYc+Fx/6uDoLKh2tUFk6fHZ2Jgvy8PBQym55/045\nAm7jaSYBUeFQcdIv5rUcHx+jXC5L0o3u1j2pnNkJNKZC0LRuACSiwYU1NzcnCT7BYHAE53BbPLwO\n3lO1WsXm5iZKpRKy2awUlNG8L5VKsnNrzIPuLkOvbqLNfuIyzWZTcAtiZszcZKiT+BmV+evkygDT\nRR/+XwBuDuy/4/B5G8Cv3+pqxggn8vHxMYLBINbX1+Hz+aTd+v7+PjY3N6U4RLseN9GYDCOdnp4K\nqMcCG/aO5A7OCQxMZ5FQIeh6ARb20DwEgL29PVm8uhDKNBPHnYvXw1ReRgeGw6GAmV9++aVYJE5g\norZsxk0yphtzZ+33+6II+ENXRsfXWXVK4Wc9Ho9rC3WniBIXLpOE2u02LMsaSbqiBUMQ0LIs6aY9\nznWgMMza7/dRLBZRKBTw53/+57JQ9RwjvwHdPIZEmX/hdi5t3TJLV5dRkzui3W6jUCigXq8LDkRL\nic/htinOAN6tvg9mgQiTNYBrboLbDAYXtgb+iCJzJyAyrxvXuu2o40SnyPLczDLkddDvfZ0HC0BC\nqgAE5GOIVYcOx/nU5s6sXRYqHI4Z05aJk7DvZywWEwW+vb0toUuPxyOvLGGmucyxMHdWXg/BPI4h\n4/QkrWEmIRcLx5dxfyp+Xbp+60VkgL5mRSmf9aREIs4//TtDk7wv1mAwXdttnrjcy9e/GYyZt/46\nD9UsXOGD1eivyVNo+p3Tnt/c7fiqrY7XMf8oROPNzE7uqrQ6plUITsen2PZl2i+jPwTiWJXIe65W\nq1J1yXukK8VKP4Zjx/nFGnPQz0tHRHhsXivDfbZti4V0m4y/SaJDxryPaZ+nmdWoj2fOtXHRmb+w\nSuFNi9OD0CCQfrBm2Od1dxrzeG/quXByao5EnmscQ88khQCMNum1bXuk/p+Zp3qXY4IYU6K5mxLv\noIuhx8Ft0ZocFObz4j04hXNvUpx0G3EKF9/keZrf13NLz0Xzc1PMw3ulcC/3ci8jct827l7u5V5u\nLu9E6fS7LiaKP+4zN7XczHwM/f6btgKdjulmwpq/6/9P+q6JCwDOboJ5DtPMNutGzHOY1/BVuRO3\nFSe34SbP9bZz4J1SCuaE0O9reVM+uQYyNdDDc2h0eZrzOT1UE2w0j6/f1+eZACiNnUDjxtAEXU1g\n1e08TsdxGi99fv7fzNcfd938nAbzTAYlHdmh8HMmnnCbeaJBRKf71UDgTSJITliCE4s3AMn7sG1b\nqO6cuERuoxjeCaXghKq6TVC3793kXPp4OgTmdlyCWJMmgFPEge+Zk9RJebh9f9z5pn1fj6sJSLol\nE5nXYC4Kc7c2FYh5Lg08TnpuJnhoWdYrWZ7m9ejyaFNhTRInxafPwwImhkbJWsXw9ThyFX2NwDUA\nC1wXxOnoCueiaS0xGsT07WnvzZQ7rRTMBzFpV9Q7g15Ek8xCc5fkd/g3O/UwiUTHupkwoxvQjMuQ\n46u+FyfTXy9IfW16IU2yFm4z6fUObP7fXKx6t3dbNOb73LHNWL4O+TpVfupjMf0cuO64xVdGPxjH\nt217JNmMNRBOeSbTjg3HgNW7Pp8PKysriMVikqvB2oeDgwMhVXFTdubmo3MqGOLlvfFvKoFQKDRS\na8Gak5taKVrurFJwWqicTKwxZ468bdvCLkSGIBKB6r/dWmjpJByfzyfFV5lMBgsLC1hbW8P6+rrk\nzDNdd3t7G6enp6hUKmg2m2i321Kf4XYucyejkmGDFKY6B4NBmSDcEXVZdaFQkHRhprk6jZ/TWOoU\n60wmI2Qh7GHQ7/eln0On00Gj0UC5XEa5XB45l9s5WOhFQpJYLCbNc1KpFABIfQC/d3p6KoVMn3/+\nuSSLUTSm4PP5hAZtZWUFjx49Qjwel9oA8hj6fD7UajVUKhWcnZ3h2bNnwrh0dHSEZrMpC3YaC4+7\nNBdjPB7H48ePsbGxgQ8++EBSp9mbgXU6pGYvFAqOTN96HnKO+/1+WJYllG7MftVZsOl0WupJPB6P\nlJGfnp6iVqtJEtzXwn3QphAz/khyMRgMpF8BE1FITw5ASnDJeANAtKtTrYA5sTmp2TEpm81KAQpT\nZS3LQqPRkIYptBK4E+kd0O3+9OJhgdfy8rJUMbLakIuUlY62fckuzAQkptCOG0u+UpmyyGtpaQk/\n//M/j9nZ2ZHFSoqvfr+PcrmM/f1LeozT01NHqndtLegJzC5Ua2trwkWgFTz5B7ngWdkYDoeFKIdj\nqHEEAEIjH41GkU6nhTMiEolImTLHMJPJoN1u44MPPsDOzo7QtZE1GoAofDcx/fRQKIS1tTU8fPgQ\nmQhpUOwAABVMSURBVExG3j85OZHsTo4H5+EknMdpfnCOUznQKiCh62AwkO5X3W5X3BTNu/HOKwVt\nGXCCsX6dyoDcCRyUubk5IQ49OjpCsViU8t1xHHymf8v3aHlw5wSAnZ0dXFxcCNUWd3cWaukahXHu\ngDYT5+bmEI1Gkc/n8ejRI6yurgq1nO5fweugAqI5yUnDxWXelza3eb3sH7m4uIhvfvOb+Oijj+R8\nlmUJPTu/T9YgUrg7gWEcP07kcDiMWCyG5eVlLCwsSO+Fs7MzYXZm7wIqer04NX2bOYY6O5BMVax9\n8Hq9OD4+loIhMirznmKxGFKpFBqNhlRp8ljTulgejwfRaBQLCwv4xje+IfOO3JYXFxcjHZ20S+RW\nX2KOqwZeycegd3zWRhDLoDXHzeJ10+PvnFIw/W36nrQU2LfPsix5CGyKwaIRFkVRIdBKcBLTR+eA\nalP79PQUOzs7I74fS3R5bJqFOnNQn0Onr2oXiF2019bWhAeSLEi2fUk9Rmo4XpuujZjE9KyV0Ozs\nrDRIefjwIdbX16X4iP0V5+bmpHkLFTALfqiEnc6lJzbvTXdRYleoL774QnbwaDQqjW29Xq/07TDv\nwem+WBnJMWKxGglSu92utAJIp9Nyb0y9ZiGTG4jqJDTnU6mUKPFEIoFCoYCf/OQnwk9JMhY2w2EG\n57idW5d8W5YlSo7jqa0N4NqCptXCWg+WyLMD1tei6zS1NgeJJrnX6xWzd3Z2Fr1eT8qkyThM66HV\nao2gvU6EITwXX7kL6WqzSCQihCdk9qlUKlIB6PP5xF3gcSZVG1Ip0PJZW1uTH6/Xi3q9jk8//VQm\nktfrRT6fF+yh3W7j4uJCMIxxJq8+P8k/Q6EQVldXZYd7/vw5CoWCFAalUik8ePBASGtarZYwGLEM\nedxipZXH1nThcFhK2nd3d7G7uytWy3A4RCwWk2fe7XbRbDbR7XYdn5feQXu9nrQKDAQC4jIeHx/L\ntbIWw7Is6SZFrs1IJDLCMD3tGKZSKTx+/Bjf/va3kcvlUK/XUSgU8OTJEwwGAzlmIpFAIpGQ++I9\nmWOn56Ce+3pekYVJW9HskuX3+0WZ6uiLk1U3rdw5pWCaUdospX9Fjr5Wq4VAICCa2e/3o1QqwbIs\nIVPlwJo7qjZ7zUiALq0NhUJC8KmrJ23bFspu8vyZD9g8l3aJAoEAFhcXsbq6ivX1dSE3ffnyJfb3\n96VvQCKRED+SHYHIXkTQ0elcWmhtkdCFVPa9Xg9ffPEFarUaPJ7LRjQsEaZbsrOzg0KhgGq1+ko5\ns9O5LMsSs53gV6VSQalUwtHRkfAsELmnhUeeRoYNnXALji0V+MnJCZrNpuz4BA9pshOvmZmZEX+b\nlgXxIZrmkxaQx3PZin5lZQUff/wxVldXAQCNRgOffPKJlEpzR2c/UvJv1Ot1R9Zoc/FqxcDnenFx\nIcDtxcWF9CGJRqMCdLNHicaepnWLTLlzSkFbCNy5h8OhmLLkamSrcvL75/N5WTAmASknkZZJGpth\nLKLYbJhK9mgSgXK31grM6dhUCFwQRI/J5HNycoJyuSyt7TUzMKMSLDkmLbpTkxZzl9DuCtmquIOx\nxwJ3OM0NwEVcrVYlymKG8fS5dLiVCjQQCIilxXJoRlni8ThisRj8fr9wNGo2aLcJrXEF+tbkReS4\nDYdD6TFK5QRA2KXOz88RiURQrVblmYxzIbgpZTIZPH78GGtra/D5fNja2sIf/dEf4fDwUOYtAAlN\nxmIxWJaFaDQ6QvVuitN80fNJd+zu9/vIZDLS0Ibkt81mU6gESTd3G9cBuINKgaJ9Yk46hp2azabs\nAkTrA4EAisUiSqXSK92nx+UOOMlweE3rTebjTqeDTCYz0juAzDe6z+KkCcZFE4/HBTDl94maRyIR\n+SxNXcu6ZEUmrTwJP+iDjkO0PR7PCFjLcC4AQcnZXi0UCoklUigUcHR0NMIANc594AQmA7a2jEhp\nxwWpzXdSoRMLcGqma57bsq65Bsh2FI/HhSCWfREAjPRjJH0+o0huC9V8ZpFIBAsLC1hdXUUmk0Gj\n0cCLFy+kIzitBD6vfD4v77HZ7rhx03/z/ujKsr8pAMnDsG1beo3qTQK47jR2W7DxTioFvWvrVE6a\nhMPhJZlpLpfD8vIygsEg+v0+jo+PXyENGccX4HZujS/QNyUoR8yCjT1NSnSnhWPiJJw83J0ZvbBt\nW3YB+u+cDOyJQKWgaeXd7oHC+De7RHU6HVlUa2trgsKTcox+cqlUkk5P0yhV+rpcDCcnJwgGg5IL\nkUql5NxcJK1WC2dnZ6JgqdDdjg9cR1NI5sJSbZ30MxwOxRKgNcaNhWPHXhj62E7nJOntd77zHTx6\n9Ai9Xk9yHcgyRQwmHo+LQqClNO6ezHvT1hcVLMlyqMzY3+Tw8FByR0y8QueA3FTunFJw8o8HgwEq\nlQqOjo4ERJybm0MikcCDBw/g9Xrx7NkzfPHFF0LxxZAQQ4VuYu4+NLUjkcgIp78mK+EOrd0THsdc\nkDwurQ8AwkoNYKS7FFuccUJzxzs/P5cu0NwVGO4ad1+8F15bpVKRvIdIJIKlpSXpYVCv1+Hz+XBw\ncICdnR0JHTI0aoYI9fMicMpMO8uyhEiF6Hg2m0UsFkO1WgVwuXv3ej3s7u6Ka6IZnZ3OwzGcnZ3F\n8vIyVldXheKNDXt4LO7epHrv9/uScxIKhXB4eCjKZNzi8fl8WF5exne/+1384i/+IhYWFlCr1bC5\nuYlGo4FEIoHV1VUZh3Q6LbRpvJdarYZGozHRIiFxDDNoY7EY1tbWkE6npfFwKBQSjKZarYpC4Nhr\nq9jMSp1W7pxSoNCP83g8Qr1eKBSkGzQAPHz4ELFYDM1mE9vb28LmrF0HHmvcefT5zBwAEo/yc9xp\n2DWZSDfwajjVFL2AOJmZg0Bzj+dijgABQVpN5+fnEpnQ1omTcNdk92Mi9trlyWazGA6HWFxcFIp2\nYg0cS72LuQkXK0FY+u5+v1/yILiDszt1IBCQzk06AWyceL2XXcKWl5cFBGaqOeP1tGy400YiEVko\ndCN0PgbgXCFJ9yKbzUqiFLELhlWJjzCqkclksLa2JuHCVqs1MZOR96XnH10GZoSm02mxdhhxoWum\na0BoVfP6vzYZjRS9+zKFlJmEHJTT01McHx+jVCoJIajTju02MDp5xOPxSHydoBxj3Pv7+1hYWBhJ\n4eWDByA7vLZunM7N6AYnVrlcRiQSEd/4/PwcrVZLMg4Zfh0Oh2g0GhLa0sd38vOp5JgVSQXn8/kE\nba9UKggEApifn0cymRSlSr/eBFDdxpL+L10H9lkg0xIBPu6sADA3Nyft6rmIdc2DE4ZA94T+fSgU\nQq1WE4o3KpZ2uw0AyOVykkdC10Jfp6aTc9s4uMFwgdXrddkEOLa9Xk9Sr/P5vCic/f19bG1toVwu\no9PpuIKn2tXlZkM6O4KWbHTEUDTp9HkdjOLofIZplKyT3FmloH1w3iA7THMHoGm2ubmJarUqi8fc\nQacZGMbx6QOzUWi/30e1WsXx8TFCoZAAZDSXZ2dnZaGak9jpvEx08ng8aDQa8lmSqDK68NFHH6Hf\n78Pr9QoIRyTfbbHq8+oaBybSsJ7CsizpGbC6uoqFhQUMh8MRhmWzoMbpXFoIirKrM60tKpmTk5OR\nxiw8pu4SbtLDOaHyBC1J8e/3+0fa91H50ZSnD57JZOTZXVxcTN0UmGOp6fLZgIY5AsPhEB999BFW\nV1exuroqjXa3trbw5ZdfolKpCHO0k5jWajgclroGurBcA/v7+ygWiyO5DFT6BHI9Ho90wLqN3Fml\nAFwDdKbvTpAIuEw/3t7efkUh8PsUtwGi0uGDp3VAE5dRBl22St9WRxyoxDS+oEVbEJxYNH99Pp90\nfa7X6wIucgdlNyXiKXoyO40ZxefzIZVKYWFhAel0Gr1eD8FgEGdnZ5KiHY/HAUDChuz8rCM3kxQd\n759KkhENVioSmOXf7PZsJis5PWd9X4zseDweZLNZCVFzIdj2ZUp4r9fD/Pw8crmcmODs2ExXtFar\nSe2D5lkwnxl350KhgHw+L6npLCJrNpuIRqNYWVnBysqKNIp59uwZNjc3BQdzi95ohcD/E0Bloh4x\nEra7r1Qq8h3LssQSIn7GMOvXClPgoHGiaPpzWgqRSASnp6fY3d0doenWcWy9aNx8Rv1/+vTBYFBq\nLhqNhsS9uZAGg4GYb9q81Od3E8bWO52O7Gh86Ezx5WRg5p5uI8ed1Wm89H3xh7t3MpmUz52cnKDX\n6yGdTmNjYwO9Xm+k+7PTTq1dOfNcfJ91/ARUOTbMH2AEiX45W7xxl6cScron4DqcSwyBSmBpaQl+\nvx8rKyvS4YtNduhvE5u6uLhAsVhEuVxGrVZ7Rfk4jWu5XMbm5qbkxBBHWFlZkVwT4hbNZhO7u7t4\n+vSpJFONY43mtfFcpJ2Px+MCnrJPJ1PFOZ6cp3ymBE3Npsc3lTupFLQ25UShucYQTSKRQLvdll3G\nXCjT4Alac1Oz6uzFi4sL6ZLMRBjbtiXJiCa9DmO6KQWeg+dj3bvuRchsSfaUpJVweHgopbAaUAKc\nwU2ei+XkkUgEi4uLEv7s9/uCcPv9fhSLRWxubuLly5eS+TducZrjqkt+6RJEIhGx5ugaBAIB6ctJ\nhc4Ih/m83HZUIvSFQkG6dLOG5PT0VHpo0NfvdrvSNq7RaODo6AilUklSryctGuJZW1tbAC6V+urq\nKrrdrtSFRKNR9Ho97O/vo1Qq4fnz5/jiiy9G+o5OGkfe33A4RLvdRr1eF6uOkRw+f26QdMOYvs2I\njgalbyN3Vino3+lrcRefn5+X0IzuRegG5ACTgUbguoMTzUtiCJFIBB6PR7Ilt7a2JG+ACkkrhEm+\no87hByCl2rlcTuLcVBy7u7sol8tyn9xxtMvidi4i/36/H/F4HIlEAsPhUKyNSCSCo6Mj/Nmf/Rk+\n/fRTsRTotkzyt83nxEgAQ5C2fckBkclkRqoGCQ63Wi3JCNU4g1awTiBtv9/H/v4+hsOhkJswBZ39\nIwaDAba2tnB2diY9HBnSZVs+WpiTFi1xJeYiFItFZLNZeQbdbhe1Wm0kmYjnNJu1uAGN2socDodo\ntVoIBoMjIV72Se31euLyMDql554m+xn3/NzkTioFrTkZFdDmMJttbm9vy3e4OPQiH6ckKPTBKMzV\nZ4w5lUohEAigVqvJDsOWXYwRm5bNuHPq4intA2YyGQGpwuEwyuWyxKOZNafHwcnvNu+Lk6ler6NU\nKonJSXagdruNTz/9VNrQN5tNURjmM9Bj7HQugoo61z8ajSIWiyGfz8Pn86HT6WBra0sWEHMudORh\nnIVn27YkDv3oRz/C0dERtre3EYlEpAqSxyEOw/oQhirpQuiEHyfLhOfjGLO7VaVSQTgcloInov37\n+/vSk5PRgZuY75pRiTkb9Xpdsnd9Pp+kgLNpjmVdd9PiffMZ3YRZypQ72/eBvhIAyQDM5XJYWVlB\nIpHA+fk5nj59imq1OqKRTbBv2siDBtP4nl6EwHWY8aY163qiEx/RhVFExlnJR3CrUqmI8jGLkcx7\nc7oWhsZmZmYkRTuXy0nbuG63i5cvX8pEG2d1OB3ftBR0RIahQ2IANGdPTk5kt9cT18R3zNwI/RwY\nWdEujtt4jAN9tUXC895EzPvX573NuuKc4O8a2Aaus3PdrOJJGBre9WYw9Ou5izDDi8k+tm1L8ZAu\noNG+9rQL1w0gNHdKtwc+yUTTD0trda2AdEYgTUAdaTB3btNCcDq/rkSkgqMC5P1q18vt2qdxH4Br\nhmG9eM3P8LrHYUBOSkFbWObzmvYZ89VM9tHj8dMWc3wZWjRFW6Ru90sFoj9jHP/dVgoULiLbtoXm\ni38TqNN53q+jqR2u640cyynspK0ZvQvqXcvJJTLBzHETRS9O0xKa5O443bsb+Of2Pb2QKW672zgT\n3hwD81omWYTm+Dqda1qr8qsWc24Ar7Jpa0WmvzfF3P96KIV7uZd7eWNy3zbuXu7lXm4udyX6UAHQ\nvXp9lySN+2v+quVdu17g7l7z6jQfuhPuAwBYlvXJNKbNXZL7a/7q5V27XuDdvGYt9+7DvdzLvYzI\nvVK4l3u5lxG5S0rh+2/7Am4h99f81cu7dr3Au3nNIncGU7iXe7mXuyF3yVK4l3u5lzsgb10pWJb1\n71uW9dyyrC3Lsn7zbV+Pm1iWtWNZ1hPLsn5sWdYnV+8lLcv6l5ZlbV69Jt7yNf6OZVkly7J+ot5z\nvEbrUv6Hq3H/zLKs79yha/4ty7IOr8b6x5Zl/Yr639+5uubnlmX9e2/pmpcty/p/LMv63LKsp5Zl\n/RdX79/psZ5azBzwn+YPAC+AFwAeAPAD+HMAj9/mNY251h0AaeO9/xbAb179/psA/pu3fI1/BcB3\nAPxk0jUC+BUA/ycAC8BfBvCnd+iafwvAf+nw2cdXc2QWwPrV3PG+hWteAPCdq98jAL68urY7PdbT\n/rxtS+EvAdiybfulbdtnAH4fwPfe8jXdRL4H4Hevfv9dAP/hW7wW2Lb9RwBqxttu1/g9AL9nX8qf\nAIhblrXw07nSa3G5Zjf5HoDft227b9v2NoAtXM6hn6rYtn1s2/anV7+3AXwBYBF3fKynlbetFBYB\n7Ku/D67eu4tiA/i/Lcv6N5Zl/drVe/O2bR9f/V4AMP92Lm2suF3jXR/737gytX9HuWV37poty1oD\n8G0Af4p3d6xH5G0rhXdJ/m3btr8D4LsAft2yrL+i/2lf2ol3OpTzLlzjlfw2gA0AHwM4BvD33+7l\nOItlWWEA/xTA37Jtu6X/9w6N9SvytpXCIYBl9ffS1Xt3TmzbPrx6LQH433FpthZpBl69lt7eFbqK\n2zXe2bG3bbto2/bAtu0hgH+EaxfhzlyzZVk+XCqEf2zb9j+7evudG2snedtK4c8APLIsa92yLD+A\nvwbgD97yNb0ilmWFLMuK8HcA/y6An+DyWn/16mO/CuCfv50rHCtu1/gHAP76FTL+lwE0//927Rg1\ngSCKw/g3VXpTWSbgDVLmAtqls/cYewc7SyuLXCK5QKrEIKIexWJTvBF2ggt2s8L3g6l2iz8P9jHv\nsZ2rb1X/5u03otYQmecppYeU0hMwAb4q5EvAGti3bbvsPLq7Wl9Ve9NJbGaPxCa5qZ2nJ+MzsfX+\nAXaXnMAj8AmcgA9gVDnnO3HdPhNz66IvI7EJX+W6/wIvA8q8yZm2xAc17rzf5MwHYFop8ysxGmyB\n73xmQ6/1rcc/GiUVao8PkgbGpiCpYFOQVLApSCrYFCQVbAqSCjYFSQWbgqTCH+B/MAgb87q1AAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 3 Train loss: 128.1274\n", + "Test loss: 124.5251\n", + "Epoch: 3\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl8VFWW+L+3KpWVJFTCFoIQdgRF\nwCgoi+IGDbKoqHTT3U7To2OLjDP+7BbbdusWu4eZ1u52BIZucWEcBFkdm0FtcG1UZAkqhjUQtiyE\nELInlar7++PlXqpCYiqk6lUI9/v5vE9SVe/Vu3Xfveeee+455wopJQaDwWC48HFEugAGg8FgCA1G\noBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E1ol0IUQE4UQe4UQB4QQ80JVKIPB\nYDC0HHG+fuhCCCewD7gZOAZ8CXxfSvlt6IpnMBgMhmBpjYZ+NXBASpkjpawF3gSmhaZYBoPBYGgp\nUa24Nh046vf6GDDyuy4QQpiwVIPBYGg5RVLKzs2d1BqBHhRCiPuA+8J9H4PBYGjH5AZzUmsE+nHg\nEr/XPerfC0BKuQRYAkZDNxgMhnDSGhv6l0B/IURvIUQ0MBN4OzTFMhgMBkNLOW8NXUpZJ4R4EHgX\ncAJLpZS7Q1Yyg8FgMLSI83ZbPK+bGZOLwWAwnA/bpZSZzZ1kIkUNBoOhnRB2L5eLkUceeQSAuLg4\nhg4dyowZM/RnixYt4rPPPgNg2bJlESmfwWBop0gpbTsA2d6PFStWSK/X+53Hvn375L59+2TPnj0j\nXt7vOgYMGCB9Pp/0+Xxy7ty5ES9PQkKCXLhwoVy4cKH0er1y69atcuvWrbJXr14RL5s5zBHmY1sw\nMtaYXAwGg6GdYEwuIWLFihUAAeYVgD179vDuu+8C0KdPH6ZMmULfvn0B+OEPf8hzzz1nb0FbwPDh\nw/H5fAAcP35OiIHtdO/enXvvvRcAn8/HlVdeCcCtt97KSy+9FMmiMWLECNasWUNGRkZQ599yyy0A\nZGdnc/To0WbOto8pU6awfv165s6dC8DixYvxer223LtLly4ArFy5ki1btgCwZMkSDh8+HPR3JCcn\nM27cOAA2btyIx+MJeTnbMkagh4DMzExuu+02/Xr3bst7c+rUqRQVFVFeXg5AdHQ0n3/+OVdccQUA\nKSkp9he2BQwbNoyKigoA1qxZE9GydO7cmVdffTWiZfguJkyYQExMTNDnT506FYDZs2czc+bMcBUr\naFJTUwFYuHAhAC+++CIAS5cupaqqKuz3d7vdut8kJydTUFAA0GJhvn37djp3tiLkMzMz2b9/f8jL\n6k9SUhK//e1vueyyywC46aabIjqItFmBPmPGDK2NnThxgurqagDeeOMN8vPzOXDgQCSLF0BaWhpC\nCMAS5hMmTAAgLy8v4LxHHnmEwYMH69d//etf7StkC7n88suZO3cur7/+ekTL8c///M8ATJ8+nauv\nvrrRc8aNG4fD4WDXrl0AfPzxx7aVLyrK6kKTJk1q0XXbtm0D4OGHHyYhIUEPnJFCabXp6ekALF++\nHED3u3DSqVMnVqxYoRWchQsX6hlCS/jVr35F7969+ad/+ieAsArzWbNmATB//nwuueRswHxSUhKn\nTp0K232bw9jQDQaDoZ3QZgOLcnJymrRHlpWV6elZMBw7dgyABQsWaM0o1PTq1UuXrbi4uNFzdu3a\npadmYE3PPvjgg7CUp7XMmDGDlStXMn78eAA++uijiJRD2W+VLd8fh8MR8FlurpW/6O6772b79u22\nlO/mm28G4P/+7/9YsGABv/zlL4O67uGHHwasNpmWlsbJkyfDVsbmiImJ4dNPPwXQ6xKTJ08GrN8V\nbm655ZaA+3Tr1q1F9TFkyBAAvv76a9auXcs//MM/AFZfDAc9evRg586dgGWq8pehK1as4MEHHwRo\nUg6cJ0EFFrVZk8u9996rbc3ffvutNlUMHz6c66+/nlGjRgFw9OjRgCkPQF1dHQAnT54kLS1Nv3/k\nyJGwCXQlTBrj5z//OQADBgwA4Isvvgj42xb5xS9+QW5ubtjqKxg2bNighXZjqKlteXk5vXr1onfv\n3gBs3boVp9MZ9vJdfvnl2jRx8ODBFi1wKxt6W2Do0KFakIPVf+wQ5GoR9I477gDgpz/9KUCLhfnf\n/vY3/Xrt2rVhE+SKRx55pMn1r7vvvpuJEycCljnmxRdfpLa2Nqzl8ceYXAwGg6G9cCEGFrndbnnD\nDTfIG264QSYlJckbb7wx4Bg9erQcPXq07Ny5sywqKtLBMQ888IDtAQG33nqrrKqqklVVVdLr9cq8\nvDx53XXXyeuuuy7SgQqNHhkZGTIjI0P6fD65Z8+eiJRB1c/Bgwd1MJbH4wk4XnzxRTllyhQ5ZcoU\nOW7cOPn0008HfP6zn/0s7OV888039bO96qqrgr4uJSVFKrxer+zcuXNEn/lzzz2n+4jP55PvvPOO\nLfddtmyZXLZsmZRSym3btsmEhASZkJDQou+4//77dbmXLl0a9jL36tVLnjlzRrfLrKws+e677zYa\nQJiXlye7desWqnsHFVjUZk0u38Xp06fZvHmzfr1p06ZGz7vjjjtwu918/fXXALz55pu2lM+fzMxM\noqOj9esVK1ZEzB4dDNddd53+PxJ23YyMDP2cOnXqFPBZbm4uq1evBuCZZ56hsrIy4LP77rP2Uenc\nuTMLFiwgNjYWgP/8z/8MuSvZjBkzmDRpkva2+vLLL4O+9vHHH9d2/w8//JCSkpKQlq2lKA8XgNra\nWn71q1/Zcl9le/b5fJw4cSJo00RcXJxeq3jggQf098yePTs8BfVj2LBhJCYm8sknnwBWf4mNjeUH\nP/gBAI899piOM+nWrRvr16/ne9/7HhBym3qjXJACvTmUbW7hwoU4HA5+/etfA/ZUqD/r1q3TASQA\nr7/+um2d5Xy5/PLL9f8LFiyw/f4ul+scQQ7WouzMmTMpKipq9Lrc3Fx++9vfAvD8888THx+vy//2\n229z8ODBkJbzzjvvJD4+nkWLFgV9jVrknzVrll7snT9/fsT8lq+99tqAvwAVFRVkZWXZXpbJkyfz\n3nvvAVBSUtJkvV533XUBa2gAq1atsqWMYC0gSyl54YUX9HvV1dUsXboUsAb6Pn366M8qKyuNDd1g\nMBgMLaddauhz5swBrKn36dOn2bt3r633V5411157LTExMVqrfPbZZ3XUaFvkmmuu4Sc/+QkAO3fu\n5P33349wic4G4MyePbtJ7Vzx9tvWhlmzZs3iqquuCkt5kpOTAbSGqCIrg0GZhDp16kR2djZAgOnQ\nbhqro5bMOFrLH//4RwBuuOEG0tLStOlHCNGkF5AQIsBNMCcnJ2hX0VDw/e9/Hzjr1rlu3bqAzzMz\nAz0LP//8c1v7fLsT6KNHj2bevHn69fTp0/nmm29sLYOy86pw6v/+7/8GCPm0P9TceOON2h1r48aN\ntkQJNoa/q+LIkSODvk5F6zocjoDveOaZZ/jhD38YkrKp8P709PQWr8ko2ypge5tsDH/ho+z4ixcv\ntu3+Klbg8ssvZ9iwYdrd7+c//7lev3nttdcCrlm2bJmOCAbYsmWLrf1q+fLlTJ06VQ+GgwYN4vLL\nL9epP9xut65Lt9vNvffeq9Nkf/vtt2EvnzG5GAwGQ3vhQnRb/K5j/vz52o3p/fffly6XyxYXLHVM\nnTpVVldXy+rqaun1euWmTZtkhw4dZIcOHWwtx/kcb731lq672267LSJl+I//+I8A98OWXDt37lw5\nd+5c6fF4Alwd+/btG7LyxcXFybi4OLlt2za5a9cumZKSIlNSUpq9rkuXLgEubXPmzJFz5syJ2LMe\nM2aMrKurk3V1ddLn88lDhw7JQ4cORbwNNnf06dNH+nw+uWPHDrljxw7bXT5TUlJkcXGxfo4+ny/g\nub777ruyX79+sl+/fnLPnj3S6/XKxYsXy8WLF7f23qFxWxRCXAK8DnSt/+IlUso/CiFSgBVABnAY\nuEtKebq57wsncXFxTJw4Ua8qP/XUU7Z5ECjzyi9/+UtcLpd+Pysrq03bzcFyrwIYO3asXm9Yu3Zt\nRMoyZcqUFl/TuXNnBg8efI4tVU3bQ9kGVObBgwcPcscdd+gEa88///w556o0D3379qVXr14Btl87\nU240RmpqaoBZqi2slwTDk08+iZSSRx99FLDftba4uJi77rpLe9aoNRWVnfLRRx/Vpso1a9Ywb948\nnayvb9++4TcPBaFVpwEj6v9PBPYBg4EFwLz69+cB/xZpDf3JJ5+UPp9PbtiwQW7YsMHWkfu5556T\nzz33XMBovXr16gtCM583b56cN2+e9Pl88pVXXpGvvPJKxMqyd+/eFmvof/jDH84JPDp48KAcO3as\nHDt2bFjKeemll8qVK1fKiooKWVFRobVd/yM/P1/m5+fLvLw86fF4Aj5Tmn6k6nnZsmV6NlZcXCyv\nuuqqFgVH2X3ceeed8s4775Q+n0+eOXNGjhgxQo4YMSJi5bnpppvkTTfdJJcuXSqff/75RmfhcXFx\ncu3atVoevPbaa625Z2h2LJJS5kkpd9T/XwZkA+nANECtWLwGTG/uuwwGg8EQPlrk5SKEyACGA18A\nXaWUKuF3PpZJprFr7gPuO/8iNo9yIXriiScoLS3lN7/5TThv1ygqe54/Dz74YJs3t8DZTJFgReFe\nKGzYsAGAgQMHnvNZdna2juYLB9nZ2dx1110MHz4cCPRgUfgHvLz22ms6hzZgy6YRTdGjRw/tfgdW\nNtKWRLpGAhVtCfDOO++wY8eOCJYGnRDMPzFYQ6qqqlixYoV2wRw/frz2IgtXkGPQAl0I0QFYDfyL\nlLJUuYgBSCllU6lxpZRLgCX139HoOa0hNTWVP/3pTwA4nU42bNjAZ599FurbnBcpKSmN2m/PnDkD\nWLZdZW9Xtji32w3Av/7rvwZc4/V6td3QP+Q9FPjbrd95552QfndLEUIE2Hb9O/Kf//zngOyZDdPn\n+nPrrbeGsZRnUWlU1d+myMnJCXitInJVWgo7ufbaawPqeP369baXoaWodlBZWcnvf//7CJcmeFau\nXKkF+t13361T66ro9VATlNuiEMKFJczfkFKqvcgKhBBp9Z+nAYVhKaHBYDAYgiIYLxcBvAxkSyn9\nl/LfBu4Bflf/19ZhXuW73rhxo86DffDgQZ544gk7i/GdfPXVV42+/9ZbbwHWFnVdu1qWqrvvvrvZ\n78vPzwes/B+hYuzYsboMbYFFixYF5JBRMwalhTemjTd8z87gmGARQuA/q42EZq5QHlkq8lZFbLZV\n7r//ft1GCwsLI25uaQk+n0+352nTpvHUU08BVqLAffv2hfx+wZhcRgM/Ar4WQqisPb/EEuQrhRA/\nBXKBu0Jeuu9A2Sz9E/M//PDDEYvGVPbcadOmNXvunXfe2ej7dXV1AcJJhbKr8He1q0womT59uh4c\nd+7cGfFMkGvWrNEbgqjNfpvj5MmTZGdn69D6hnu5tgX8PL0ijkoYd+TIEeCsCbCtcv/99+u6U26i\niYmJgGWiVL+jraKSnT355JP8+7//OwDPPfccP/rRj0K+ltKsQJdSfgqIJj6+MaSlCZJevXrpzGxw\ndkegSNp/b7/9dsDa6cffDx3ObpHVUAtfunRpwK7ma9as0Tk+7CA+Pj5gc+NVq1bpLICRIjc3l5kz\nZwLWYPPQQw81e838+fN56aWXwl20VqFS+YI9Gy83hmqX/fr1CyhHJHepbyler5dZs2bpNabdu3dz\nzz33RLhUwfH666/rDaxvv/12fv3rXzc5iz9fTOi/wWAwtBcuxNB///B+n88nMzMzZWZmZsSDHy60\nw+VyyS1btsh169bJdevWyfj4+IiXqeExceJEOXHiRLlmzRrp8Xjk6tWr5erVq+WECRP0Zz179ox4\nOZs78vPzZVFRkSwqKpIPPfRQRMrgdDql0+mUS5culT6fT7766qvy1VdfjXjdNHdkZWWdE2q/ZMkS\nuWTJEnnJJZdEvHwtOXr27Cl79uwpfT6ffOONN1pybVCBRRecQB87dqwsLS01At0cF9Txv//7v3rb\nxEiXpXv37vLll1+OeD6ZYI+xY8fKzZs3y82bN8unn35adu3aVUZHR8vo6OiIl+18j/fee0+Wl5fL\nwYMHy8GDBwdzTfsU6I899liAMN+/f78cNGiQHDRoUMQfkjnMYQ5zBHMkJSXJQ4cOyalTp8qpU6cG\nc01oQv8NBoPBcGFwwW5woZLc33jjjbbvFWowGAytobS0VMfPhBJhp29sOEL/DQaD4SJgu5Qys7mT\njMnFYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E4xADzMqD7Z/LmyD\nwdB+aEt92wh0g8FgaCdcsJGibQWHw4HL5SImJgaAnj170q1bNwDGjRtHbGwsHTp0AKwdhz755BO9\nCUdhYSE1NTUAbWbzg7aO0oaklAH/GwyRQAjRptqfiRQ9DxwOBwMGDACszTaGDBnChAkTALjsssu0\nAHc4HAEPvLKyktzcXL3z0OLFizlw4ADQ+NZqkSQ6OpqMjAwGDRoEwEcffURpaSlgrwBVQtvhcNCh\nQwe6dOkCQE1NDUlJSQCUl5dTUFCgB8dI1GXDza19Pl9APQkh9M5QLpeLqChLl1KbTPhvLBKp8gN0\n6tSJ/v3763ZZVFTU5tpmQxoO8qFqn42ZUhwOBw6Hg+joaODsc66trdWvw0RQkaJGQz8PYmJitEYu\npeTKK6+kR48eAERFRenOClajUA9ZSonL5dICv66urk3Z3+DsXq1du3Zl9uzZXHrppYC1HdyyZcsA\ndOO1A1U/HTp0YNy4cYwePRqA7t27U1dXB1hbqG3evFlv1Xfy5En9WThxuVx06tQJgJSUFOLi4qis\nrASguLiYsrIyfW7Xrl21oImJidE7GJWVlXHq1Cm9a1BNTY3tAtThcOh9Rh999FFuueUWXfbZs2ez\nb9++sA/iUVFRpKSkAJZQ9N9FyePxBLz2HxxjYmK0cPV4PNTW1upnX1dX16oduPwHaHUPNRtXn6m+\nXlJSAlh9Q9WVEvZ2KkDGhm4wGAzthKA1dCGEE9gGHJdS3iqE6A28CaQC24EfSSlDprr5T2H9tdiG\nU1k4O5I2ptmEa3QsKCgArClqTk4OCQkJgJVFTWnvR48eZe/evXpanZKSQkxMDBUVFYC1we2xY8cA\nIr6Xp0L9jsGDB3PllVfq10p7shu1D+awYcOYPn06Y8eOBawZg9LaPB4PvXr10rOkVatWcerUqbBr\nuk6nU2vaQ4YMIT4+Xs9evv32W63V1dbW4vF46NixIwAdO3YkOTkZsNruN998w6lTpwC02cgOVL/p\n2LEjN9xwAwCjR4+mW7duWgNWmzGHA3WPuLg4+vbtyxVXXAFYm3yrZ3fy5Em8Xq/Wumtra0lOTtbt\nIjExUfedmpoaiouLOXnyJAAVFRUB2nJLUOZSsLRwNatOSkoiOTlZP1u3243D4dB9fs+ePRQWFgKW\nKdDj8QTM0MNNS0wuDwHZQFL9638DXpBSvimEWAz8FFjUmsL4T2Pi4uK45JJLAKvS1EKjx+PB6XTq\nKeLw4cN1J5JSUlJSwokTJwBL6O7bt0+/Li0tDUmlqoYDsG3bNnJzc7VtNz4+nvz8fMBaBPV4PPph\njxgxgpkzZ5KRkQHA+PHj2bNnD2CvGeO7UJ1j7NixdOrUSQuYLVu22L6ZcFRUFH369AFg7ty5jBw5\nUg8sUVFRuqxer5cRI0ZogXnkyBE+++wzPQ0Oh2AXQhATE6MHkREjRnD06FG94H38+HHOnDmjy+dy\nufQaRGxsLP379wcsk0FhYaEW6JEY2IUQDBs2DIBu3boRHR1NeXk5YP2OcAgif7PJJZdcwlVXXaXX\npQYPHkxubi5g9aeioiJOnz4NWGYUp9Op10/69OmjhW1paSm5ubnaXKR+g7pfsL/D6XRqWzlYA44a\ngN1uN507d9YDeVJSEkOHDtXn9uzZU6+R5efnU1RUZOsgHZRAF0L0ACYD84GHhTV03QD8oP6U14Cn\nCZFA79ixI927d9daw7XXXqsfYExMDFJKLdDj4+P19dXV1ZSXl2u7VlFREV9++SUffvghYC3shUIo\n+dv4vF4vlZWVWtMWQmhtQgkS9UCLi4txOp2kp6cDVmNUjbqtoDSfSy+9FLfbrWciu3fvts0WqDSj\njh07MmvWLOBsG/CfjalBUAlXNVBOnDiRsrIyvvjiCyA8Wq8QArfbzW233QZARkYGu3bt0nn6y8vL\nAwYSn8+nhXVpaSm9evUCrDaQnJzM3r179ffaXc91dXVaE09MTEQIwcqVKwG0thlqlHcYQN++fRk5\ncqR+flVVVQFKWUFBgRbOqk5Vv3c4HFqZSkpK4vjx4+fdx1V9+Hy+APu5w+HQ8icjI4O0tDRdjtjY\nWGJiYujcuTNgzXDVOsqBAweorKy0d9YV5Hl/AH4BqBaaCpRIKdXK0zEgvbELhRD3CSG2CSG2taqk\nBoPBYPhOmtXQhRC3AoVSyu1CiOtbegMp5RJgSf13Nal6CCGIi4sDLC0xJSVFexD4fD6tKVZVVdGh\nQwdycnKAsyM4WPbs8vJy0tLSAMjMzGTkyJEcOXIEgC+++CJkZgOlRXm9Xnw+X5NeFf5Ty379+jF0\n6FA9RSwvL9f29baC0kRGjx5NXFwcn332GYA2F9iB0pT69+/P1KlTAbQ5RWnlBQUFVFVVAZanSGpq\nqtaMBgwYwKRJk8jLywMgJycn5KYMl8vFpZdeqmdbn376KX/729/0dL+hli2lDDARqd1qevfuzY4d\nO7S2aidKy/R4PGRmWh5xSsPcuHGjLmso8bdLK/NZdHQ06enp+hnn5uayc+dOAPbu3UtlZaWuT4fD\ngdfr1SaY1NRUvc5TXl5OeXm5bhf+623NzXr8Z0ZOpxMppe63UVFRup927NgRIYRuh06nk7KysoB1\nsquvvhqwtPfs7Gyt7dthTgvG5DIamCqEmATEYtnQ/wh0FEJE1WvpPYDjrSmIlFJPTUpKSjh+/Djv\nvfceAG+99ZZufCUlJZw8eVK/9hekaiFD2V1/97vf0adPH92IwuUi2LCx+N8nKipKd97Zs2eTlpam\np4+7du1qM4uhYJV72rRpgNVwa2pqeOONNwB7faPVoDJ79mwtMB0OBzU1NRQVFQHw+eefk5WVBVhC\naMCAAXrKnpGRQceOHbVwXbRokRYArTVn+JuDxowZw9GjRwHYtGkTp06d+s7vV5/16dNHKx1gteFI\nBJipe6Wmpmr7tRCC4uJi7YceLqKiorTCNmTIEGJjY7VQzMnJ0WtLDU1Xyg1Qra8NGTJE96EdO3Zw\n8OBBrbS1tC79/dkdDoe+r9Pp1INPXFwcpaWlWtiXlZWRkJCg7xUXF6fXzPr27Ut6erpeH2nMoSPU\nNGtykVI+JqXsIaXMAGYCm6WUs4APgBn1p90DrA9bKQ0Gg8HQLK0JLHoUeFMI8SywE3i5tYVR05i6\nujqOHTumTSX+zvn+bkCN4XA4tNYeHx9PXl4eu3fvBtBTMbtQCzZPPPEEYLneuVwuvv32W8AyAbWl\nsOHo6Gh+9rOfAZYGVVJSwieffGJrGaKiopg+fToAU6ZM0dNpj8dDXl4e69dbesOWLVt03QkhKCoq\nwu12A1bQUZ8+fZg0aRIA69ev1x4vra1vZRrJzMwkIyNDezQdPXq02VmM0up69OihtcGqqiq2bt0a\nEQ1dmQImTZqkzYBSSv7nf/4n7At5Ho9H37Nbt24BAXn+C5sNZ9VRUVHahRWs2Y5a/M7KyqKkpET3\nf3+50dxic8PPvF5vgMxRlJWVkZ6ermfZ5eXl5OXl6ZmkuhYsJ4j4+Hj9O8+cORP2GXmLBLqU8kPg\nw/r/c4CrQ18ka2pSVVXV6AMIxhamTBzx8fF89tln2oPAjuhBVQawbGhTpkzhqquuAiwPHa/Xq6eT\nZWVlbSpStEuXLtoNDyxfav9oRztITU1lxgxr4peQkKA705kzZ1i5ciVvvvkmYHUWNbWNjY0lNjZW\n+/fHxsaSkJCgTTfXX3+9bgOtMR0JIXTnTE1NJS4uTnuBBLMW4u/jr+zFH330EQUFBREJr1f194//\n+I9auFdVVemI4HDgbwtXg2N+fj5XX321Xqfx+XzacwUsLyV1bqdOnZg2bRrXXHMNYKXTUP3p6NGj\nAcLXX1YEM1D6m1z8cwX5fD7tghodHY3T6dTmIuXlps6Njo7WJpbKykoSEhK0B5H/WkC4nnebDf0/\n3x8cGxvL8OHDAavRfPrpp00uVIUDIYQOOujXrx+jR4/WjVHZJ5VLVkpKih7p/R+23SjN8eabb9bu\nYF6vl5dfftlWQRMdHc3w4cO1Ldzr9epnt3z5cv7yl7/ohU5A+wJHRUXx9ddfM3HiRMCyYwohtNCM\njY0NSd06nU4taK655hqcTqcOYomJiaG2tjYgiMRfO4yOjmbo0KGA5eOvrsvNzT3HTmwHDodDKz6D\nBw/W7x85coRDhw6F/f5SygDf8qNHj2oNvV+/fnTv3l2fd+LECT1jyMzMZMyYMVqAnjhxQqd88Hg8\nAamq/e3graG6ujpA65ZS6nbgdrvp27evPtffbVopl6q/+2voasYQ6uduQv8NBoOhndBmNfTzwel0\nctlllzF58mQAjh07RlZWli2O/WrK6nK5tJfN7bffzqhRowJsaDt27NBRpgMHDtSudoWFhVRXV0dE\nS1earv/Uu6CggI8//tiW+/sn4Lrxxhu1Lby2tpbDhw8DloZeUFAQYINUdRcVFUVeXh7Hj1uOVsrt\nTH1va6Md1fc4nU6tjbndbqSUDBw4ELACsY4fP65NLx6PR892hBAMGDCABx54ALC8eNS0vKysjLq6\nOtufu8vl4qGHHgKs2YXqI6+88ootnlf+GQqzs7Pp0KGDTgQ3atSogERd6jmD1VZTUlK01vv3v/9d\nr48AARp6S7XfxlxNwerbav0tLy+PHj16aNOky+UiMTFRm3rKysr0rLtfv34UFhbqGafP59Prgqqv\nN2bvbw3tQqD7C4Tbb79dh+n++c9/DlvockOU2cLtdusp7OjRo6mpqdE+8ytXruTDDz/UHSYjI0OX\n1efzUVRUpAWCnR1cNc5+/foPEYswAAAOyElEQVTpsi1fvjzAvBFO1CDSvXt30tPT9euysjL+/ve/\nA3Do0KFzBJ/6v7a2ltjYWB09rKIy1cB5+PDhkAl0Nfip9BOXXXYZYAnFY8eOabfKXr16aTtrfn4+\naWlp9OzZE7Bs6crcUFBQEJCR0y5SU1P1orHP59Nmlv/6r/+y5f7K8QHODsyqDjIyMvSg7vP5SE5O\nDoi+rqqqYt++fQB8+OGHAXlwQtlv/NuX6pelpaUUFBToyNDOnTtTUlKiBX5FRYUeqOLi4nA4HFoe\nVFZW6sGnrq4uIHoYCEk7MCYXg8FgaCe0Cw1dacfDhw/n5ptv1ol9PvroI1s8W/yjQbt06cKoUaMA\na3qYm5vLH/7wB8CKJpRSam+HsrIyPS1PTk4O8CjxX2BThCtJkkrMFB0drTXMVatW2eYVpDRypQEr\nDae8vJzPP/8c4BxzlL9JReXzHjlyJHA2cZea3rZWQ/df3FQa1uHDh0lJSdHPqHPnzkRHR+tskP5u\nb+Xl5cTFxelnXVNTo8teUVFhe9IzIQTjx48PiL7dsmULgG1eTVJKrZl7PB6++OIL7V7cqVMnPZsZ\nNGgQ8fHxun+NGDECIYReCD1x4oTWjhtrr63Z1UpdU1dXp597TU0NJSUl2uvF7XYTExOj3Vc7dOig\n67WoqCggkZf/zmYqM6f/zCMUs7R2IdDV9GzOnDl06tSJV199FQhfpriGCCECsr8pG7rP5+Oll17S\ntuja2toA4V9UVKRdmpKSkujfv79+qGVlZXpgUtOycAhYp9Opo0NdLhdfffUVgE4yZQfqGXXo0CGg\no+fk5Gjh7nK5AjJS+tdjSkoKjz/+uBYCdXV1FBUV8dZbbwE0G8EZbPk8Ho/OpvjJJ59QXFysn01C\nQgLR0dH6dU5OjjYplJWVMXPmTL2WUltbqwfOsrKykJsKmiMqKoof//jH2hvr5MmTPPnkk7bdX6Hq\nSpkblekkLy9Pr53s3LmT5ORk7fo7fPhwysvL9cBTVlYWkG3Vn1DVqZRSD7p1dXVUVVWxfft2wDIT\nVlZWapOM2+3WClu3bt1ITk4OUFj8lRCXy3Xe9v6muOAFusPh0O5qI0eOpKysjHXr1gH25E5Qwlwt\nfEyePFm7NO3Zs4dDhw4FuCr5Z3Hz92seNGgQgwYN0gNDcXExf/3rXwFrYCotLf3OvO/nS5cuXRg3\nbhxg+SCr3C2RyDFTV1dHbGys7jyJiYm6LhMTEwOyXKoFcICnn36a0aNHawFVWFjI2rVreffdd4HQ\npSauq6vTmlh1dTX79+/XHTI5OZnU1FQtxE+cOKGFTmJiIpMnTw7I17J161bAEl52zYQU6enpZGZm\n6vvu2rUrbFkVm6KhW6d/m/Z6vbrPVFVVIYTQ6bPdbjdVVVV6QLRjh6eG7oX+uWQ8Hk9AMGN1dbV+\nznV1dQE5amJiYnS+qvLyciorKwNkVCgGIGNDNxgMhnbCBa+hu91unTO7rq6ORYsWafc1O1B5sceP\nHw9Y4f3KTuZ2uxkzZoy2nRYWFurNl8HSMrt27QpY4dfDhw/XQQlfffWV1gaPHDkSYGIIlUYihGDG\njBl6llBZWck777wDRCZJVEFBAdXV1QGmFJW5zuVysWXLFu0Sds011zBnzhwAhg4disvl0tr79u3b\nWbJkSci1Tp/Pp2cu+fn5FBYWam1M5elX7n8N98A8ePCg1ipPnDihPZ/Ky8ttd1mcNWtWwFrFSy+9\nFNGNoBv+fn/vD9W/lFnV5XKxe/du3cftcrFsWEZVd6dPnw6YdVdUVGibeUZGRkDW2OLiYq3Z+7ta\nqnuEggtWoKtKvOeee3TmuuPHj7Nq1SpbMxgqv1flxpSYmKgF+tChQ+ndu7denKuoqCAlJUUL7bKy\nMl32bt26kZKSohdbEhISAhao/NOvhoqEhAS9iQhYCfl37NgR0nsEg/pdp06dYtu2bdrM0r17d8aM\nGQNYPvsDBw7UJqnx48frunM6ndTW1uqcHk8++SRHjhwJu5Dy+XxagKspd0M3NLDq+dSpU+zfvx+w\n7OvqOjs3P1CC5vrrr0cIoRWGjz76yLYyBIt/KP2QIUN0rhSPx0NOTo5eZ4lUdLV/Wl7/BXohhO7f\nycnJuN1u7ZocGxurByaHwxGWDaSNycVgMBjaCRekhi6EoF+/foAVjalGxHXr1ulprV1IKamurtaL\nYUeOHNGBBPHx8SQlJWnvC7A8DPzdtZQJQUrJoUOHdATcxo0bdfBETU0NHo8nZKO5/wYS/fr10+aB\njz/+2FaNsSGVlZWsXbuWQYMGAVbOcbWg1K1bNwYMGKC1zJiYmICo1o0bN/Liiy8CsH//ftv3aPV6\nveckWvOPHo6Pj9cJwrKzs3XQlp2zSZVLpnfv3ni9Xr33ZSSfeWP4a7lpaWkMHDhQz9pU9LAyWdi5\nZV9T+N/f4XBojbxHjx4B+/J27dqVb775BjibuynUyfkuSIGekpLCb37zG8Dy0lBCcN26dbZ7DCiX\nq+XLlwPW3pvKDXDixIkkJibqMkVFRVFeXq6nuqdOndKdPCsriwMHDgSkDFY7MdXW1oa00Sq776hR\no0hOTtYDzOrVqyO64YbX6+XQoUO6Lk+fPq1NQsrfVw0+Ho9HRzfOnz+fHTt26ME8Ur+hYQf1zxAY\nFRWlTWhHjhyxvYwxMTE6MtTtduPxeNi0aRNg7+YlwSCE0O68119/PRkZGQEulqWlpbr+Ii3MG+Lf\nBoqLizl8+LD2bImKigrYFSkcKR8uOIGemJjIM888w5VXXglYQvGFF14A0L6rdlNbW6sX4DZt2qQ1\nn2effZbU1FStqSUlJREVFRUQ9q00SZX6NdS5HRpD2fHUQq4K6Dh27FjEO0hNTQ0ffPABYGna77//\nPgDXXXddQPbFrKwssrOzgbOLqW1JMKmd48FyvcvNzdX5Serq6gK2YrNDuHfs2JEJEyYAll26tLRU\nzyrbUr2BJdCVltu1a9eA3Yx2797NyZMn29ROXxC4JaXq36WlpZw+fVrPLgoKCrQDgtpKz2RbNBgM\nBkOjXDAaupq+Tpw4kfHjx2vXtsLCQr0DUCS1S/9VbxWKXFVVpc0rbQmlQSxYsID09HQd9q0i9SKN\nsjnm5OToWZdK4+C/0bJ/nbcVGtvAoLi4mL179+r1gGPHjgXkAreD8vJyVq5cCVia4+bNm3VUcFtE\nzVwPHz6M0+nUNvU9e/Zw+PDhiOzwFAz+rquHDh3C6XRq06n/ZvLK3NKa1ASNIeysECHEed3M6XTS\nv39/AB588EFuvvlm7Rr45Zdf8tRTTwHWw25r00eDQbm2KiUkHFPtYFD3B3s2LD5fHA6HtqGrLJVK\nKB45ckSnHG6LCCECYhM6duyoTZxqUALYu3cvNTU1Lfkd26WUmc2dFJSGLoToCPwFuAyQwGxgL7AC\nyAAOA3dJKU8HW7qWoDxJwNLesrKy9Ot9+/a1qW3cDIaGqPWQSCsbbc3u3BQ+ny8gV0tOTk7AImik\n6/G78I8Xqa6uprS0VM/Y4+PjtQOC/2wzlARrQ/8jsFFKOQi4AsgG5gGbpJT9gU31rw0Gg8EQIZo1\nuQghkoEsoI/0O1kIsRe4XkqZJ4RIAz6UUg5s5rtaPcdT/sf+G0GE2g5lMBgMrcXhcARYD1o5uwiZ\nyaU3cBJ4RQhxBbAdeAjoKqVUW9rkA13Pt6QtobEgCCPIDQZDWyMSpqFgTC5RwAhgkZRyOFBBA/NK\nvebeqFQVQtwnhNgmhNjW2sIaDAaDoWmCEejHgGNSyi/qX6/CEvAF9aYW6v82mtpOSrlESpkZzHTB\nYDAYDOdPsyYXKWW+EOKoEGKglHIvcCPwbf1xD/C7+r/rg7hfEZaGb2/ClbZPJ0ydNMTUybmYOjmX\ni6VOegVzUlB+6EKIYVhui9FADvATLO1+JdATyMVyWywO4ru2GW09EFMn52Lq5FxMnZyLqZNAgvJD\nl1JmAY1V2o2hLY7BYDAYzheTy8VgMBjaCZEQ6EsicM+2jqmTczF1ci6mTs7F1IkftuZyMRgMBkP4\nMCYXg8FgaCfYJtCFEBOFEHuFEAeEEBdt3hchxGEhxNdCiCwVbCWESBFCvC+E2F//1x3pcoYbIcRS\nIUShEOIbv/carQdh8af6tvOVEGJE5EoePpqok6eFEMfr20uWEGKS32eP1dfJXiHEhMiUOrwIIS4R\nQnwghPhWCLFbCPFQ/fsXdVtpClsEuhDCCbwEfA8YDHxfCDHYjnu3UcZLKYf5uVtdjInOXgUmNniv\nqXr4HtC//rgPWGRTGe3mVc6tE4AX6tvLMCnlBoD6/jMTGFJ/zcL6ftbeqAP+n5RyMDAKmFP/2y/2\nttIodmnoVwMHpJQ5Uspa4E1gmk33vhCYBrxW//9rwPQIlsUWpJQfAw3jFpqqh2nA69Lic6CjilJu\nTzRRJ00xDXhTSlkjpTwEHMDqZ+0KKWWelHJH/f9lWJle07nI20pT2CXQ04Gjfq+P1b93MSKB94QQ\n24UQ99W/F5FEZ22QpurhYm8/D9abD5b6meMuujoRQmQAw4EvMG2lUcyiqP2MkVKOwJoazhFCjPP/\n8LsSnV1MmHrQLAL6AsOAPOD3kS1OZBBCdABWA/8ipSz1/8y0lbPYJdCPA5f4ve5R/95Fh5TyeP3f\nQmAt1jQ5qERnFwFN1cNF236klAVSSq+U0gf8mbNmlYumToQQLixh/oaUck3926atNIJdAv1LoL8Q\norcQIhprMedtm+7dZhBCJAghEtX/wC3AN1h1cU/9acEmOmuPNFUPbwM/rvdgGAWc8Ztut2sa2H9v\nw2ovYNXJTCFEjBCiN9Yi4Fa7yxduhLVDxMtAtpTyeb+PTFtpDLXfYbgPYBKwDzgIPG7XfdvSAfQB\ndtUfu1U9AKlYK/X7gb8BKZEuqw11sRzLhODBsnP+tKl6AASWl9RB4GsgM9Llt7FOltX/5q+whFWa\n3/mP19fJXuB7kS5/mOpkDJY55SusndOy6mXJRd1WmjpMpKjBYDC0E8yiqMFgMLQTjEA3GAyGdoIR\n6AaDwdBOMALdYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ3w/wFzeSrf0VINXgAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVmMnOl1JXj+2Pd9yYzIfWFyqYUl\nlqSSSmVbKmjkEWzI8IMxbT/0DBrQy/R7+22AefLrAAMMRg/t6YY809220HBbGGtsSzKlskolVZFV\nXKq4ZDL3zMjY9z3in4fkufwiGBEZkUxKpJQXIHJh5L98y/3uPffeczVd13Eu53Iu50Ix/Lof4FzO\n5VxeLDlXCudyLufSI+dK4VzO5Vx65FwpnMu5nEuPnCuFczmXc+mRc6VwLudyLj3y3JSCpmm/r2na\nfU3T1jVN+/PndZ9zOZdzOVvRnkeegqZpRgAPAHwdwB6AXwL4V7quf3rmNzuXczmXM5XnZSl8AcC6\nruuPdF1vAvhPAL71nO51LudyLmcopud03TiAXeXnPQBfHPZhTdPO0yrP5Vyev6R1XQ+f9KHnpRRO\nFE3Tvg3g27+u+5/LufwWyvY4H3peSmEfwKzy88zj34nouv4dAN8BnlgKmqZB/ariHf2/G/SZQaJp\nWs9nzms9zuVllv71/DzkeSmFXwJY1TRtEcfK4H8A8Kfj/rGu67LpjUYjgCeDYTQaoWkaDAZDz/cm\nkwkWiwWNRgOtVgu1Wg0A0Ol05G9/FQP6vOQsnn2Q0h103bO4zyDlPeheL/Oc/DrkVzFWz0Up6Lre\n1jTt3wL4/wAYAfx7Xdfvjvv3XEjc+ADQ7XZhMBhkcalKwmq1wmg0wul0wu/3o1arodlsotvtIp/P\no9FoQNf1l27xqZv4WZ7dYDjGk3kNjqHBYJD/MxgM0DQN3W4X3W4XnU7nVPfsf2ZVwQ+63ss2J78K\n+XUryucSkpz4IR67D9z0AGC1WgFAFikXsaZpMJvNsFgsMJvNsNvt8n273YbFYoGu6+h2u2i1Wmg0\nGsjn86jVami32+h2u6d5vp7NQ2VlMpnQarWg6zra7bY870kKSLVcNE2DyWSC2WyG1WqFz+fDwsIC\nXC4XAoEALBYLNE3D1tYWkskkCoUCSqUSdF1HsVhEs9kceh+OF+9pMpng8XjgcrkQDAYRj8fRarXk\nOQqFAorFIqrVKtLpNFqtFtrtNhqNxljjZrPZxDIzGo0wGo0wm80wmUxwOBwAgGaz2XPdVqv1lAIa\n1zUcNK4AZG4CgQAcDge63S4KhQIqlQparZbMEcfopHfrt3zU9+M7RiIRLC0todVqIZPJ4PDwEIVC\nQQ6ncZ/d4/HAbDbDZrPB7/cjEonA4/HIOvf5fMhms6hWq8jn88hkMvK13W7LGue/PvlI1/U3T3qW\nXxvQOEjUiep0OgAgL8aNaTab4XK5ZKBsNpsoAV3XUa/XoWkaWq0WHA4HWq0W7HY7ms2mXLNfVMuD\n33PzW61WmM1mBINBsUbMZjPMZjN0XUetVkMqlUK1WkWhUBhLIfTfFwDMZjOcTie8Xi/m5uYQCoWw\nsrKCTqfT807lchlWqxX5fB7A8QYY9l60rgDAZDLBZrMhEAggHo9jYWEBc3NzaDQaqFaraDQaCAaD\nKJVKKBQKoiRqtRrq9fqJc8fNYbfb4Xa74fV64Xa7YTab4fF44Ha74Xa7USwWUSqVkM1mcXR0hGQy\niXq9Lkr1NIpAPTDoSjqdTnz+85/H3NwcyuUytra28NlnnyGbzfZYTMD4ioGHgc1mk4PIbDYjEAjg\nlVdewZUrV9But5FKpfD+++/jwYMHI5V2v3DTOxwOXLhwAdFoFAsLC4jFYgiFQvB4PLBYLEilUqjV\nakin00gkEvj444+xubkpv6/X6z1u86TyQikFitFohK7r8mLcoPxnMplgtVoRi8XQbDZht9vlJLBY\nLOh2u3A4HOh0OjCbzajX6zCbzWIWj7ovJ54T5Pf7sbq6is997nNoNpuwWCxoNpuYmpqCxWJBPp/H\nvXv3cPPmTdy6dQvtdhu6rg9daINAz263i3q9DqPRiGKxKIql0+mg0+kgn8+j2WzKqVMul9Fut080\n8bkouGFcLhempqZw9epVLC0twev1YmdnB9VqVT5jsVgQj8fhcDiQTCaxt7eHYrF44nyZTCZRBNFo\nFPF4HH6/Hx6PBzabDVarFSaTCdVqFa1WC5ubm2g2m6hWqzJmnO/+5z9JVGvIYDDAYrHA6XTi6tWr\niMViSKVSSKVSsFgsMJlMPetAdW9Ouod6SPh8PlG0drsdmqah0WggFovBaDQiEolgd3cXlUplItfV\nbDYjGo0iFAphbW1NFLjJZEKtVkOtVoPD4YDT6YTD4RAcrdFoyBo5Ccc5SV4opcCB52JXX4omGydh\nenoa0WgU1WoVnU4HJpMJRqMRtVoNZrMZBoMB7XYbrVZLAMlB91OtA+D4RKWZPT09jYWFBSwvL2Nl\nZQXlchm6rsNsNmNhYQFWqxUGgwEzMzMwm8148OCBLPBxJkI9sbrdLhqNBorFIrLZLIxGI3K5nFgF\n29vb2N/fRy6XQ61WQ6fT6TGDR10fOD6FpqenceXKFbzyyiuIxWIolUrY3d1FOp1Gp9NBsVhEPB6H\nwWDAhQsXMDU1hU6ng8PDw5FWFl0Ebv5oNCqnG5+Bi9ZiscBisSAWiyGdTiOTycBkMqHdbp8KEOZY\nU6nxn9PpxPT0NOx2O8xmM1qt1lOuw6BxGjWOVCZ0G+v1OsrlMiwWi7y3y+VCt9uF3W7vcd/GfY9W\nq4VKpSIWqcvlQiqVQqVSQTKZRKvVgsViEdfSZDL1WM6q1TzOuw2SF0opABi6obj4PB4PVldXcfny\nZXg8Huzv76NcLot1QbCsXC6Lr14ul2E2m1GtVp+6l/oVgEy61WrtGfStrS1ks1nY7XYsLS3BYrHA\n7XbDbrejXq9jaWlJFNMQf27k+3IiLRYL2u02XC6XWAPVahV7e3vI5/NyshJnOWkDUZn6/X588Ytf\nxNe//nVEIhG0221sbGzgo48+Eren3W6jXC4jFoshEolgfn4epVIJd+7ckWjOoGtzs3Q6HbEITCYT\nDAYD0uk0KpWKuCJzc3NYXFyExWLBxsaGXEfdPMSWJsF/1ENEjVjRQszn8yiVSjJ2/RjGOIqBz1Sv\n12WOW62WPDPXgNPpRKfTESxm3I3Z7XZRqVRQr9ext7cHm82GWq2GZDKJUqmE/f191Ot1+P1+LC0t\nCfZkNpsF36CF+ixg5QulFPoXuar9eXpfvnwZX/nKVzA7O4udnR2ZJE3TBEMgeNbpdNBqtWAwGGTy\nRkm/ye5yuZBIJFCpVNDpdJDL5bC8vIxQKIR2uw2HwyGLsFKpyALgop7ktAOe+OVut1s2WDqdxs7O\nDjKZDCqVilgi6t+dNKZOpxOXL1/G7/zO72B+fl425HvvvYeHDx8KWErT2mq1YmVlBXa7Ha+//jr+\n/u//fqBS6Ld0CHQlk0lYLBZsbW2hWq0ilUqhVCqh1WrB7/fLmHGu1Xca92Ttfw51vPksPNEPDg5w\neHgouNJpNwuftdvtiitHxVWtVuFyueB2u8XMr9VqEys2Hmjb29s9bhVB4Ha7LZufrgyfh1E3Xuu0\n8kIpBaAXOOJCNZvNCIVCuHbtGt555x28+uqrsFgs+Oijj1Aul3sGgidVrVYTbKDRaKBerw8dqH6z\ntdlswmAwIJFIIJvNwuFwiJ/ocrng8/lgtVpFAe3s7OCTTz5BrVY7deiTodVQKISpqSkEAgGUy2U8\nfPgQDx8+7DnlBj37sPeyWCxYWVnBV7/6VayursLtduPw8BDXr1/H+++/L5EMKlF1QcdiMbRaLSwv\nL+PmzZtD78371+t1AfK46UulEnK5nACmLpcLLpdL/qZcLosr1L8GRuE//aLOHzeX1+vF5uYmNjY2\nkMvlepTPaYXPqSoiXddht9sRi8VgsViQSCTw6NEjNJvNE++nzh/XXqVSgdlsRiqV6rEIiSN87nOf\nwyuvvAK/3w9d18UK4lieFkugvHBKAUAPkmyz2eB2u/Hqq6/ia1/7Gq5cuQKz2Yz9/X1sbGwIUt5u\nt+F0OsUqMBqNcnLRnBw2SOqkqL5dtVqV0//ChQuYnp7G5cuXEQwGYTAYkM1msb+/jx/84Ae4ffu2\nWCOTKgaenE6nE/Pz81hYWBB0eXNzE9lsduCCPmniDQYDHA4H3njjDVy7dg0+nw/NZhMfffQR/vZv\n/xZHR0dPbXQqBvqn09PTcLlcsNlsT7lf6tjxhFMTybxeL6xWK5xOJxqNBgwGAwKBAOx2O7a3t8VH\nHhSSnPSEVUFVk8mEaDQqh8P6+vrIsOqkFh03qnrvixcvYnl5GXt7e/j444+xt7c3llLrB555IFUq\nFQBAJBIRZRCNRjE7O4vPf/7zcDqdqFar2NzcxN7eHnK5XA9oC5w+3+GFUgrcTAz3aZoGu92O2dlZ\nvPXWW1hZWYHFYkGhUMD6+jpyuZyAV3a7XdDuSqWCcrmMbreLXC7XE9Ycdl+KOtl8Bq/XizfeeAMr\nKyuIRCIS4tza2sIPf/hDvP/++8hmsz2I9iTChezz+XDhwgU4nU6Uy2UcHByg0WgMBS9Puo/VakU8\nHsfrr7+OSCQCTdPw4MEDfO9730MikRBwj8+gntDValUsn/n5eXz88ccjxw0A2u22uFFOpxOBQEDC\nd7TUHA6HLOaDg4OBp+kkmAxFjVJ5PB7Mzs6iVqvh4cOHYqkMkknnimuCwmjV5z73ObTbbdy5cwc/\n/elPR1qmo66tumIM8S4uLmJ1dRXxeBzT09MIBoNoNpsoFotIp9MAIFGdZ3k3ygunFPjVbDZjamoK\nr732Gq5evYrLly+j2+3io48+woMHD5BKpRCJROB2uxEMBuH1etFoNOD1epFOp1EqlVCv13Hjxg0B\nhIYttP4wmMFggN1uF1BzeXkZb731loBn6+vr+Pjjj/HjH/9Y/ObTug0MoTGUBwAbGxsol8vwer2Y\nn59HuVyWZKJJ7uH3+/GNb3wDb7zxBux2O9bX1/GXf/mXWF9fFwvK5XIJWEiz3+v1ol6vI5fLwefz\n4fDwcOg9VAyFyqvb7eLo6Ejeye12w2q1wuv1IhQK4fDwELdu3UKxWBQcheFIbt5JsAX1sx6PB1ev\nXsWXv/xl3L59G7du3ZID4ixEzVdgbsni4iLm5+dx48YNfPe73x1ogU0iPCCmp6exvLyMtbU1LCws\nYHp6GlarFZVKRRT23NwczGazYAqMJP3GYApcFAaDAU6nE5FIRMxXhn+Iztrtdtm4Pp9P3AxGCxwO\nB3Z3d9Fut3vSeQfds18pmEwmuN1uzM/P4+LFi5iZmYHJZEIymUQ+n0cikcCNGzeQSCROdSL0399o\nNApoubOzI5vT7XZjeXlZ7jsOWKoKE2vsdjtarRZ2d3dRKBREIRiNRng8HhgMBgECGftmiKtWq6HV\nao2VhKOecrVaDQcHB6jVaggEAvB6vZidne1xQ6xWqyiSfnxiElH/jiCc3W7H0dGRWC5nKVQKDocD\n8/Pz+OM//mMAwC9/+Uvk8/lTvYMKqNP1pcWWSqVgs9mQyWSgaRpSqZSMqcfjAQBEo1F4vV7J2mw0\nGqfODH2hlIL68PRJCezVajUUi0UcHByI4ohEIhKOYXJOvV5HKBQSt4GLmX/Tv0CoMHjicUEx7EPQ\nr1AoIJPJIJvNYnt7G6lU6imFMKkP15+J1+12kclkkEqlsLy8jFgshkqlAq/X22OCT3J9Anz1el1O\nGOBJBqXVakWj0UCn05H3XlxcxPLyMpxOp8THR923fzPruo5Go4FcLod6vY5arQaXy4VCoSB+r8/n\nQy6XE0WiuhEnJZmNEoJ+TIw6SdGcds7sdjtmZmbwzW9+E1/60pfEamRm5qT34tpjGJyJbIlEAs1m\nE4eHh8jlcjg8PITdbsf8/DxeeeUViRLNzc1hb28PpVKpp/bnNPJCKQWgtxiKZn+5XEapVEIymUSl\nUpGIRKlUgs/nk79jCKhcLmN3dxfr6+tiTo0yR00mk2hpq9UKv9+PWCyGqakpGAwG5HI5qa1gEg6R\nXt6bEz4qLq0uCtUHZt0D89mLxSLC4bCg0Hy+/pDtSQu61WpJXrzX65XsT4/HI1gMLSlaZl/4whdw\n6dIlzM/PI5/PI5vNolgsjmWlqCdTt9tFrVbr+V273Ua9XhfzmEqcY6+6MLzGuMJxsNlscDgcAmyO\no1wmyZykleB2u/HFL34Rv/u7vwuTyYSbN2+iUCgMvKaacTnoPurhYLVaJX2/0+mIG9xoNLC7u4tS\nqQS/349GowGHwwGfzyfp5KFQCH6/H7lc7lShXcoLpRT4Ikzi4MnCSsdms4lGoyELiJmLXAjM/Ds6\nOpKwEDMeh/lZdBUMBgNcLhecTid8Pp9sSqfTiVwuh3g8Dl0/rq04ODiQTaImTY06JdR35CYgQBoK\nhWC321EsFmVCafFww1oslp6CMRUIHbagK5UKNjY2sLq6ik6nI0AmMz81TZOIQTgcxle+8hWJ7nCM\n19fXUSqVRm5QdfGr4WT1nY1GI8rlsuQLMB8jn88LpsG/J3YyySnOU9br9ULTNCQSCYk4jNog/cDh\nKOHnLBYLFhYWcPXqVQDAL37xC9y5cweNRkM+x+v2X3uUYnA6nYjFYvB6vfD5fDIWuVwO6XRaXDnW\nNjDkznR+ppSbzeae532p3QfgyaDRbP30009Rq9UkbZmKQdd1BAIBiTiUSiUkEgmsr69jd3dXTtyT\nYsVGoxFLS0vw+/0AAK/XK+mlAMQ/YwoyJ0dVAPQBxzFVgSfFScFgEG63G1NTU6jX66hWqwI6Li4u\nIhaLiZXDzTYJiFSr1bC7u4sHDx6Im8VM0Hw+j4cPH2JqagqRSASXLl3CtWvX4Pf7Ua/XcXh4iK2t\nLdy9e1dArZOEG0GtWeGYNBoNGI1GZLNZAMfuHJOJWNlKV29SfIHjwxRqq9UKh8OBSqUiZvSz4D68\nBwCxEgKBABqNBj755BN8/PHHyGQyPVGuQdbBqJCoruuSis6iOCbmsd6G6dPBYBBra2vyGVq4rVYL\npVKpRymdxoV4oZSCOnHNZlOSN6rVqmhBxt51XUckEoHNZkOj0cDR0RHu3buHg4MDyf7iiTPq1DEY\nDHjllVewtraGVqsFn88noFu73UYmk4HZbMbW1hZKpRLu378v8XV1EwBPZ2QOej/VJ43FYojH43C7\n3ZJ56fV6sbi4iDfffBPhcBgbGxti7UwKxDWbTWxsbMBgMKDZbGJ5eRlerxerq6uoVqvwer0IBoNY\nWlqCz+eTTM1SqYSNjQ1cv34d+/v7Ey0stTKTY8LaAyL21WpV4vFMCW42mz2FcOMKrRACzMSXaG3x\nADlpXsYRRmsikQhWV1dRLpeRz+cFS+B9CHZyPOgKjbIS+NwsxJuZmRFlEAwGEY1GkclkAECwBK/X\nCwCiDBi1UkHG08gLpRRUYRJNJpNBo9EQsKrb7cLv98Pr9Qr4mE6nsb6+LvUB9PfVjcTTvF+Yp7+0\ntIRIJAJd11EoFLC7u4tsNguDwYBMJoNPPvkEiUQC5XJZXAd1szC2PmqBcaFwc1gsFoTDYUxPT6PR\naEjl5fz8PJxOJ7a2tvDee+/h7t27KJVKE4NvxFfW19flvd566y3k83mEw2FEo1EEg0F4PB60220c\nHh5KduaNGzck6jFJHYdq1ajmLd0lpuVyA9CCsVqtMnZMOhtHVCXLEzwQCMBkMiGbzT4T4NZ/H4vF\ngmAwiJmZGTgcDhgMBuTzeYno8Pn57uppfZK1YDKZxKKy2+3odDrweDwwGo2YnZ2VjW4ymaRQrdPp\nIJ1OY2NjAz/96U8Fc1CzLk8jL6xSAJ4oBp4kDocDZrNZzPn9/X20220UCgU8ePBAsAe1Gq7/NO+X\nZrMpSTeBQEDi9FarFXfu3EE2m8XOzk5PVpxqnvEe3PAn+cG6rotSYepytVpFIBBAKBSC1WpFt9uV\nJJj79++L1XOaCj+CVffv30e5XMbm5iZ8Pp/803Ud+/v7KBaLyGQy2N7eRj6fx+HhoZw6J8kw8JPj\nzlJmr9eLcDiMWq0m7kT/eHI+JlWAjKZcvHgR09PTyOVyPQDps7oPBITdbjemp6cF4yHmxVRtFRfr\n/zrKUiGofnBwAKfTiVAohGazKdE3WsomkwmNRkNqYu7evYtbt25ha2tLUrkJ3v7GRB+AXp+SC4Q+\nPf3xRCKBg4MDAfgqlUpP7Tr905Mq7ur1OtLpND799FNYLBZBxNfX1/GjH/0In3zyCbLZ7Ino+zgT\nwLAoT+VUKoX79+/3VGQylDdOafQ4wjEslUq4d+9ej28MPDnV+iMo3KDjPoMKavHzdBGYl09Skna7\nLSQr+XxeQqbELiZVCFTITqcThUIBt2/fRjqdxtHR0anZtvqFB9T+/j6uX78u0RNyJqj36bdyxhk/\nHjjr6+t49OgRfvSjH0kpusvlklwTHiKFQkFCybSI+/Gm066dF4qOTQVngKfTj1VAyWq1wmq1SiUk\nB0wdGF5HZaEZ9L7hcBgXL14UtP/hw4dIJpOiDF6EMXqeMmzcJ43fq0g+/WSLxQKHw4F4PI75+XnB\nig4PDyXRRlWA/cVR4wgrBpnQxjyHVCp15nNHvIAhcyrRs3JR+PUka/OUMhYd2wulFAZlHaommaoY\nGIqkEuDmJdClKgRVSQyaPJK3cKI7nc5YzEbnMlo4VwQCGS5TowLA0xWOpxlz3gd4EiaehArtt0Re\nPqXQf2L1f1WFIZx+M1s1g1Us4aTTrz8H4FyeTYah3+rvVcviLMZ+kryG31J5eYlbJ4nDn5WcdX78\nb7uMG/47y018rhDORp5bK/pzOZdzeTnlXCmcyzPLIDdv1O8muea5/OrlhXIfThIVZFS/OhwO6R1A\nJPi07sBp8sVfdF9WbWTDRC42HFHBPjWkRiZs/t9JMk4EQ01u4s+DsJyTslBfRBmUzfo8n11NIT/r\ncXrhlYI62OQAIHcCGY+Z6cVOUCwYGRS7HSXcPCoAxp8HfUb9/2GffxGEhWPMk9C042o81uSrtQfV\nalUSfzjuo3Im+hfkqBN+kMIdxc34oo3jIFEjYur7PQ+MalAU7nnc54VVCrQEBhWZqMVH5A9k7Lha\nrUpNObPmTlIMzHtglhp7BfA0bbfbkkjCUBpPU6aVlstlSa9+Fs2t1tSzZJrXZKMP5mqwhmDYvSwW\nizx/t9uVYis2hVlcXMQ777wDi8WCXC6Hhw8f4tatW7KomVTEEB8weKOqi3UQuSu/8t1sNpsod6b3\n0jKhcuK9n1X68ybU741G46lYs/gupLsLh8OYmZmRMn9mF/aHXoGTFd2gtcP7kTJgZmYGq6urCIfD\nAI7Jb1OpFDY2NpDJZJ45pP7CKgXg6VOE5qbNZpMWaCyXLZfLqNfrktrKzTLOoHADdrtdBAIBoerm\nCcp7sbjGarXCZrMhn88LXwH5HYDTnXAs9AoGg7h48aKk1ZZKJWH4Zdms1WpFsViE1WpFJpMZmG3J\n8WLWG6nkSB0fjUaxsrIiGyOVSgk9GlOqOYajTm5aSf3lzwBk47HugYlMbI3GLL1msyljRzIYZkOO\notDjvclHQSuISlQ9ULihaOn5fD60223ppTDJPLFWIxwOY3l5GbOzswCe1L+QUEblvRzXzO9PvFNz\nPJxOJzweD2ZmZrC4uCi9MovFIjqdDnZ2dmCxWHp4LE4jL6xSUAeHA0pt6XA45GRnByOWODOHnNcY\nRzNzobBXH31tNXuNdNoul0vuRR4HfmZ3d3eiBaA+g9lsht/vx+XLl/Gnf/qnks6ay+Wwvb2NcrmM\narUqBWAGg+Gp+v1+UfPx+ZXZhfF4HHa7HQcHB3j48KGkVzebTVit1p7F3O8eDDrJ1HJpdROyUMlu\nt0tX8KmpKXi9Xuj6cS/OcrmMbDaLTCYjrc+oUEaZx7TmgsEgfD6fMEmxKS97c3AeWYfBpjfpdFoO\nmklSyul++f1+WTscO7XLuVp/07+exxEqBLfbDb/fL7UXlUoFBwcHQjvIblRU6Ex9Pq28sEqBovrr\nTJvlSc2TkyYazbdBtOGjrk/CCp5OXNRs7OH1euH3++H3+4V9KZlMSmn39PS0nNzkH5zEWmAJ8ZUr\nV/D7v//7CAaDePToEY6OjnB0dIR6vQ6fzwev1yvU3kdHRyMzADluaoYn2XnYcs9sNuPu3bvY2dkR\nF4NmMSnBTkrzVjcuP9fPIsSqVt6Tbc7YLi6bzaLRaEg+v81mE7dlWM0JFRAtj9nZWSEooQJKpVJC\nIuNwOODxeOD1emE0GnHz5k3k8/mh3J2jRLVMyPJ09+5dAJBx7C/KU8dnEmE6P11alvO3222EQiEE\ng0HpfVKv12Xtq+M06X1feKVA4clFM0rTNFSrVWkZxy5NKodCPwA4TKjVeeLR3221WvB4PLBarcKx\nQHq2XC6HZDKJRqMBn88nrcLHJSRR38tkMmF+fh7vvvsuLl26hJs3b+JHP/qRMDiTAyEajQrjFCtH\nR92rHyAlt9/q6ioWFxeFqerw8FD6M7BVGQlWucGHYQlc+P3jzFPO4/EgEAggGo3CZrOhVCoJYStP\ncJvNhkqlIs11aZ6PqtCkdUa2orW1NenpqWma9HuoVqtCgBsKhTAzM4NEIiHWhNpqbdz5omKLx+PS\nbSuZTAoBi4p5DbKqJgG+2Q/E7XYLXsYDSMVLSqWSVN2e5l6qvDRKgcKJNJvNQs5KJTHIVBs3KsBF\nTGGpLxmNU6mUuA65XA77+/vSDp6nokqDNYkp6nQ68frrr2N5eRmNRgN/9Vd/hd3dXQEHdV2XOnqz\n2YxHjx4JmHSS0lPDuDwpZ2Zm4Ha7kclkkEgkBHOgW+b1elGtVuF0OqXQjNfqB80G3V99d7vdLr4v\ny3rD4bAoqWq1imw2KyFlgsWqWzfonXha22w2RCIRBINBaJom/JyPHj3CnTt3RMF7vV5cu3YNbrcb\nhUJB6iJOomsbdG9d12XN5fP5nsavJJQ5qyIpAOIqkiUbOMZE5ubmpLXh4eHhQGzkN14p8NRqtVqC\nWpOohCd4P1Cjfj9Ka3NzejweRKNRrK6uCghGjgNaJmz4yQlqtVpC8KE2hTlJuLgXFxfxpS99Cbqu\n47PPPsOjR49Qr9dlU/AUD4XIOUsIAAAgAElEQVRCPd2vxlU+dLvC4TCWlpYQDofFbCebELsPkbiD\nCoDKZ5DP3b+ZVAXEUzMYDIrPq/Jr0h8ndT8VAynaGOEZJtzoFy9exMrKSk8/iY2NDRwcHKBUKsFk\nMiEWi8Hv9wswXavVUCgUpMXdpMLojc/nE3o+k8kEr9crTGCD3NfTgH9UfipDtcPhwJtvvolLly6h\n1WohkUgIp4N6r9OGLF8apUDXQWXwAY4nyO/3CxkoP6smyphMpqEVc5wociksLi5icXFRiFo3Nzdh\nNBqFuIInGkM+NOMY7+eiG0cIYH7961+H3+9HMpnEz372MzGbGcJbXl4WwtW9vT3pEj2MTapfWdD3\njUQiuHLlCkKhEHZ2dlCpVDA7O4uZmRkx70lrls/nxQwul8sAIKj2sAQd1XIgkajL5ZIxIlFtLBaT\nhLO9vT3s7e2JUqDVQuUwas5mZmYwNzcn3a/29vbw6NEj7OzsCLO32WzG8vIyXn31VXg8HmSzWWxs\nbAhYOw5uogqVnd/vl43KeQ+Hw091mu4HaSfdpLSKTSaTuLYrKyv4whe+gGAwiFu3bkljHVURsbnu\naeSlSXOm7xkMBqVzMdHkcDgsCoHWBIlDgJPNXKvVCp/Ph7W1NSwuLiIajcopFgqFEAqFpFGtGuO2\nWq3SIToej0tjjnEWGEOOc3NziEajKJfLuHfvHnZ3dwVVt1qtiMViuHTpEtxuN0qlEg4PD8X8HdYf\nsX8hms1mOBwOzM3NIRAISGSjWq1icXERKysrmJubk1M9EAggHo8jEonA7/fLwuw354e9JxUAIzO0\n7oDjpiWxWAx2u11Q9P39fWl7RhOZncOHidPpRDweFzq5TqeDZDIpwCJ98cXFRfzRH/0Rrl27Bl3X\nhcSE+Qk81ccRWkFUdLRW1XAh8CTq86xJbTwISSLMcb1y5Qrm5uZQrVbx4YcfYnt7WyIelGdppvtC\nWwrcgBaLBZFIBCsrK1hbW4PFYsH29jZCoRAuXLiAeDyOarWKUCgEp9OJZrMpSDaByEENRjhhTqcT\n7777LhYWFqDreo/5yQgHOzepKcMzMzMIhUJYWFjA4uIibt++3ROBGCb0p6PRKN588024XC48evQI\nBwcHmJqaQiwWg6ZpCIVCWFtbQyAQwN7eHt5//338/Oc/f4oTcND1KSQCvXDhAmZnZ1Eul1EsFrG9\nvQ2/34+VlRVxiyqVCqrVqgB2ZPzZ2NgQYHAQkNWfIESLgBgNIwQmkwmrq6vQdR03btzA9evXhVdT\n9fENBsPIU07XdYTDYYTDYei6ju3tbVQqFczNzWFlZUWo8t9++21885vfhMPhQDqdxoMHD3D//n2Z\n20KhMLHvr+vHTONsBsTuZIFAQA4mtiYol8syXqdRCAyPVyoVcZfm5ubwzjvvIJVK4bvf/S6uX78+\n0DKdNCFLlWdSCpqmbQEoAegAaOu6/qamaQEA/xnAAoAtAH+i63ruNNdX8xLY13FxcRGtVguVSkV6\n+LErM0/rZDKJo6MjiXsTre8XmuBTU1NwOBxwu924d+8ebt26Jam+9Xpd+lCoQKbL5UK1WpVYMcNu\ndDN4/SHjJmY6T1GLxYLFxUXU63U4HA7UajVZ+I1GA/fv38edO3d62o0PE24suh98PvYhJBBmsVhw\ncHCAg4MDFItFIXT1+/1yAhMPGIRfqC4a34uKgc9gs9kAHOMugUBA+mbcuXNHTnaV2n2cECHRduZv\nMF2b85/P57G6uopr167JptrY2MC//Mu/iAI5Ld2druvCy8ioFUOi5AtVcyVOEwFQx4FWmtvthsfj\nwZUrV+B2u/Hhhx/i008/7XF9VAbp094bOBtL4au6rqeVn/8cwA91Xf8LTdP+/PHP/27Si3JxUSGw\n27PX60Wr1ZLGmzSpNU2TxcwUXQBy4pDnsV+MRiMCgYB0KV5fX8fR0VFPfwdd13uAPYawiCtEo1E4\nHA4BQIHRCsFoNEpSj8lkQqFQEIDK7/cLUj81NQWn04k7d+5IS/p+M3GUqHRoXq9X+kSq8fkHDx5g\nd3dXCFMZ2o3FYmi1WmItqCHe/vtzPBjBYXo4lTexilqtBovFgq2tLRwcHIiCAiD9C8YNIVcqFezv\n78up3Gg04HQ6ZZ4InpZKJdy+fRv/+I//iPX1dSSTSeFbPK2JTStD0zSJTgUCAbRaLQGlh7mu42xU\nKgW73Q6j0Sj9QS5evChr/uc//7koJpWHlIfBs8jzcB++BeD3Hn//HwD8M06pFMjQy+7S3W5XYugs\nhmITGG4uotlcKAT+hvmNBoMBCwsLiEQi0nSmVCr1tIDv7+ugFmb5fD4B1WixnDTprCWgmZxOp2Xj\nEURcW1tDOBxGOp3Gw4cP8dlnn/W0qhtn/IAndHRqAhizCff397G3tycukgpSEfQDMDa7shou5rix\nCIvdt3K5HB48eIB0Oi04grqJmHl40uapVCrY29uTzlqbm5sIBoOIRCIIh8OIRCLodru4e/cuvv/9\n7+OXv/ylsB1TwU2iFFQ0v16vI5/PS/4A+3AyWlUsFnvmapKcGXWNESzUNA0LCwuYnZ2FxWLB7du3\nsbm52ROpOa2rMEieVSnoAP5BO6ZT+z91Xf8OgKiu6+xdngAQPfXFH5v3jD9TAfj9fjidTqyvr+P+\n/fvY398X/42Twf4C7A0xzEfVdR0zMzNiXk9NTcHj8UgvQloEzBXg6RCPxwWci0ajEqYcB/Gln8nG\nocFgEOl0WjCQr3zlKwiFQjCZTDg8PMRHH30khS7jTr6aTcfFSTSejWPb7bZ0FrLZbPB4PAiHw9A0\nTXptMNQ1KHqjLnImAakFTxaLRe5pMplQrVbx6aefSgSFkRz+PZ9RzYsY9r60bBimczqdUpzGnhb3\n7t3D3/3d3+H69evSA0J99kn9bvVveH9muO7t7cFkMomFyejHsEjNKOFpz76bDJebTCbs7Ozg+vXr\nyOVyApKqNR78+utMc/6Kruv7mqZFAPyjpmn31P/UdV1/rDCeEk3Tvg3g28MuTE3O7K1ut4vt7W2p\nfnS73fj444+lG2+n05E29VarFQCk4/KoBrPEB9iSfWZmBvF4XJQKTU0yBTNG7fV6pQltp9PBgwcP\nkEqlTjzl1EVVqVTQaDSQzWYlU41NbwAgkUjgn//5n7GzszORQuC7ctNks1ns7u4iGo3C7/fL+zJv\ngai/w+GAzWaDrutS7EXW5UFFUao7wWgKATGmhpMKnSfsgwcPcHR0JNabeg21kGlU+I6mssoATbeB\nGY5msxk/+clPcP36daTT6aesgtOcrPwbpjGzATBdrkKhgMPDQ1Sr1ZFhyZPuzffjHGracYXs7u4u\ncrkcHj169BQuwjkfVEQ4qTyTUtB1ff/x16Smaf8VwBcAHGmaNq3r+qGmadMAkkP+9jsAvgMAgxSH\nrutSy9DpdHo6J2ezWcRiMWxsbMhkMMGGpxyz40Z1COKgbW9vY21tDS6XCxcvXoSmachms9A0TaIJ\n4XBYqtUYm2a+/meffYbt7W3pOnzSRPA0ZFdogo2lUgl2ux0OhwPlchnvvfcebt++fSouSj4Dn/He\nvXuSBDU7OyuNb3w+n/R4ZDiQCUzr6+vSNm7UyaOeUCzsYmOb6elp2cB7e3ui2MdZzKPGsT+b02Qy\nYXp6WiJC9XodP/zhD5HNZp+qQThNEpH6LHzWWq0Gs9ks7dto/YxqKTCOQuhXtuzv2Wq1cHh42JPO\nTHdDjQT116JMKqdWCpqmOQEYdF0vPf7+vwPwvwL4bwD+NYC/ePz1b097DyoGXdd7EpPYbjuTyUjd\nvYrAclDUzLJRA/Tpp58iFAphZWUFFosFs7OzkhDl9XrlFASOq+FMJhN2d3eRTqelXXsymZQIxbhg\nEnsdMvGJFYztdhuffvopPvjgAxwdHU2c8KKeULSWjo6OcOvWLTQaDVy6dAkXLlyAx+ORGD8VAxvz\nplIpHBwcSPGNet1h9wIg4+TxeBAMBuFwOKBpmlgdxWKxx69XsQReZ5zFzA3D0F0wGMTq6iouX74M\nh8Mh+Q/ELDjm6vgPe6dRomJK7HwViUQk4YoKXFWUp7VKCBATJCZvgnrQqe0MVCvrWTCGZ7EUogD+\n6+MHMgH4v3Vd/4Gmab8E8F80Tfs3ALYB/Mkz3KPHrGw0GpJezEal3PhEbDkYauccXmeQdLtdPHz4\nEK1WC5ubm5II1e120Wg0kEgkRDFkMhmk02lpYksrplKpPAUsnSS0FgwGA9xuN6LRKFwuF6anp1Gr\n1XD//v2h+eyTjh87aO3s7Ei0Zm9vD9PT0wiHw6IEmC7b7XaRzWYFsOUCHGUt9J9wjLDY7XaUSiVU\nq1Xs7e0NTbhSr6N+PUk0TYPb7cbS0hJee+01TE9PQ9M07OzsSILSqPtMsoFo1vOwYtUpQe9kMjkQ\nSzhtWNJkMkmNBTMv1V6m/JxqKahK9bSK4YXq+zDmZ0/s0TAJiMRcCDU2rJq26kDz5/4iGtUHHFcY\nw5+amsLs7CwWFhYQj8dRq9Xw3nvv4eDgoAdMmlRGLUS+q4pyq+PKTU03rN/87r8HT06fz4dgMIjp\n6WnMz89jampKUpmZl8D6FHVT9pvz48wdgU2v14s33ngDb775JmZmZmAymfDJJ5/gJz/5Ce7duzdw\n7AaZ2pMIn5numNfrhaZpyGQyqNVqPdWrp9lfBBrtdruUzAeDQaRSKeTzeaTT6acs4P75HnLfl68Z\nzK9L1OSccZXJswoXFlOQSSlnNpuRz+dRrVbPrA/iSc+hfqVi5IZRwbVRf0/+CafTiUAgAKfTCafT\nKeQpuVxOCp5GKSvg5FNcNeF9Ph8WFhZw6dIlmM1mFItFPHr0SPI6hs3nad0HVbh5mZPRb52eVtS5\nUN1mYjPPkMJ8rhR+VfKsPtyg0/J5K4NRz8KvqmU07LPqBiaXAIlwAAhuQqT8JKtn3LFk3QHZnQKB\nAHRdR7FYlPyH0xYETSpnoWBOurYqz3Cfc6Xwq5LnuSh+HaK+z0luiPp/dENUq4vA77h4i2raj/p8\nf9ae+vlfl0J9CeTlaxv3sspvijKgjOGbDvy/UfwHk977pDE93/jPT16a0ulzOZdz+dXIuVJ4QaTf\nlx/2/8N+/m0RNQTXP2bDxo6fOema53Is5+7DhNIPrp3WdVCTTuhDq8knlP57PWsM+mWX/vi/GkYd\npjjVxLZ+1+hlw4P6o0WUs3SnzpXCGMINy0WlpuZOkmSj/q3arUg9qVg8xOur1G/qxKub4bdB1PFT\nlSilf8MDT2/6QXkWp81V4N8Put/zmhOGQNWwMYAzj7K8tEqBySMulwvhcBhGoxGlUgn5fF7yxFlf\nftLmURFzNX+AFX/T09NYXFyE2WwWhqLt7W1Js2Zs+qR7aZomTEjkhiA9+fT0NFwuF7xer/RDKBQK\n2NrawsOHD7G7u4u9vT2pbqSSOIuyWVUxMf6v5myYTKaeBidnKarCJY2aylVBUTc4OSeZeMZcD3Jm\nMPGKeQMqu7I6xyzT5vWHjSPDn8wb4P11XReGKXYUYwMfNoVR5+e0mY3sxTE1NYXLly/jnXfeQaFQ\nkNT1zc1NFAqFnuY/fKfTyEulFFQ2GqPRiEgkgunpaaytrQk78b1795BKpaRgZlwKb3Xi1M5QJBlZ\nWlqSYqiHDx8ikUg8ZcoOY7xRFQ7bt7Gz0cLCAoLBoLAHBYNBGAwGtNttoVjXNE16Vaot3dTnHlf6\n/W+Vb5KbjNclczSb5FQqlZHXHXYSA71zx+vzfnwGdnPqdDrI5/NCGMtrUchfaTKZpOqTJC/q5mYn\nL6Y7q6xT/TKKb4Pl+ySLcTqd8jsqpMXFRYRCIeRyOezs7PRkg/a7fpMI10w4HMaXvvQlvPXWW5if\nn8fBwYGQ1pCzQi3EehaM5KVRCqp25wn++uuvw+12IxwOS+GPzWabGDhSFYJaYabrx0zGrIVgJSNp\nxFSTfpzQHZ+JDEecPG7Ier2O3d1dSZVlkY3ZbMbKygoajYYstv7rjhP/5+bjpnK73Zibm4Ou6/B4\nPJI9x8rKUqkk9OtqVeKgew3y9VXFYzKZhCDX5/NJ4hHJcEn7xo1sNpt7+Bb6larFYkEgEJBNqp7I\namNek8mEYrEoDFCqpaX2tFCthv73YsEYa1XYvarb7QqbVSwWQzgcFoo7NXX8Wa0ri8WC+fl5vPHG\nG3jttddQKpWkpUGxWBw4D89iPb40SgF44lORVJSDzgw2Vqn154WPO0D9PqGu66KNWYJbKBRkkanV\nfuo1BgkVjq7r0kSVzFGlUgmadlzwlUqlkE6ne5rRuN1u1Ot1TE1NSc+CSU4e1TIg3x/LjC9fvgyL\nxSJWAYvOqtUqMpmM0KZxE42jfHi6Eh8hQ9XCwgJWVlaErYhsWRxzg8GARCKBbreLmzdvDryu6mo0\nGg0EAgExr1k0xB4MJF2ZmpqS99E0TUrE+f1Jqcm6rj/V+4IkPFQYLBcnz+dZMCJRoXq9XiwvL0vb\nvZ2dHayvr0vz4bNyIykvlVKgf+t0OuFyuYRchYtErTXv187j+nP8DP+eJwRPbnZE5mQMuuage/Fn\nnvxsRlqr1ZDJZLC/v49isSiViuwMHYvFsLq6CpfLhVAohGQy2dMybBLlQBN9enoaFy9exOLiIrxe\nr/TEJAsTW9YTL1E347i8CvT1PR4P4vE4Ll26JCQvVAj0+1U+B7oZPp8P29vbQ+eI1aOZTAZ+v1/I\nYXjfZDIJTTtOvQaOGbvz+bwoQLaXo6VyEqELP0MKNNUdqlQqCIVCiMViyGQywlrVDw6fxtdnd+vL\nly9jZmYGlUoFH3/8sdxn0uuNIy+VUuBiI1tuJpOBwWBAIBCQkuph3XkmFRVo40nh8XigaVoPt+Cw\nvx3n2pqmCRV9pVIRLoNisQiLxYJmswmbzYZyuYxgMIhcLgebzSYLetKQGnklg8GgKIStrS1kMhnp\n3ESmJCo94hvcsCcpV7VIyOv1YmlpCa+++ipmZmakOSqVa6VSgclkEldsZ2cHVqsVyWRSLAhV+jEi\nUqGVy2WxNMiVWSqVEIlERIlVKhUx5dkvkx2o+fth79VvcaohTjJzhcNheL1ebG9v4+DgYCS5z7jC\n9R6PxzE/Pw+DwYDNzU08evQIFoulJ0p1lorhpVEKHCA23eCmsdvt4j+qJv2zCDebWsJKDkeVB3LY\nc/Ia6u/UBaWCmfShi8WiuBIMMbGTcKfTQbVaFaS7v8bgpHHj2NlsNkSjUSwtLQk/xN27d6VxbiQS\nQbVahd/vFz4JNQrQb5Wo91fHiyXFFy9exGuvvYZQKASj0YjNzU3s7+/3dMByOBwoFotSdlyr1aRR\nTf8py81LRcWoAN/PYrGIJcfxpTVAnk6LxSLYEwHUcdZMvwWpujxkBK9Wq7hx4wYODw+HpnxPEoHQ\ntGNW6jfeeAM+n0+6nXc6HbhcrpH9P54lAvHSKAXg2JRimXGtVoPD4cDs7CycTicODg56GIhVeRYk\nlj5dJBKRXhLPSnzCZ1JP4EajIacLQ5cEVCkk7+RnCHaddCLxs+yd4XK5UCqVsLu7KydyJBKBx+PB\n4uIiOp0Ocrmc8F+qNOyqDFpwtBLi8TjefPNNhEIhaJom1G4kgiW5bjqdlgY1ZNCiz99/fb63yu1I\n0NHr9cp1XS6XXJ8ANHAM2FEY1Zm0vVo/7sQomNVqxfb2Nj744IOR5eGTbFKj0YjZ2VnMz8/DarUi\nnU4LcbFKiqt2Q1MtyN/4kCQBRqfTKZNNk81isQjINMiUOu3gqHkF3W4XmUxG2qUPk3GQeYbl6JeS\nVVm1INhUlIh9KBTC3t4egCcEI+OajQQY4/E4wuGwkKi2222YzWb4fD4sLi7i1Vdfhcvlwo0bN3D3\n7l3kcjlhLe73j4e9Oy2SqakpAYNJmUfTnUSrBE2JrQDHG5/sRYPGkKFSu90u64H5IXQracmp4Ug2\ntAWO+zYwvEoehElEzXWg9VUsFvHhhx8Kee+wvxtXqLDm5+cRCARQqVSQSCTERSaoOcxyPG0IFHiJ\nlIKmHZObZjIZWK1WBINB/N7v/R6sVityuRxSqdSpCE6H3YsKIRKJYGlpCbOzs7h9+7achACGkqAM\ni9kDx92S2Z8yEolICJUhSvI8Wq1WzM7O4sKFC1hYWICmaeJa0Jc8yYXgSUoLq91u4+joSLCF6elp\nvPbaa1hcXMSVK1fQbrfx3nvv4f79+9jZ2ZE+Cc1mcyQYB/SeoK1WC6lUCg8ePBAr65VXXsHly5dx\n79496dmQTCaRTqefsvCGKXaCkpp2zNpss9lQrVbRbDZRKpWk3wTdEM6Vx+PB9PQ0VldXUSqVcPfu\nXYkAnQZ/4ny5XC584QtfwLe+9S189tlnuHHjxkAL5zRChVOtVrG7uytjajab8fbbb8PhcGB/fx8O\nhwPBYBCffvqpWGHPohCAl0gpUPObTCaUSiVYrVZ0Oh04HA5sbm4KRZUqqttw2omnmUYGZ7vd3hMX\nn2QCSB/GkCAp0RnH533IiMxu0B6PR8JrJPFkBGMcU5HXTSQSwj5Md2VmZgYLCwvCVXnz5k2sr6+L\nQpgEuwDQwwdpNBoRi8UkV4A0+kajEbVaDeVyuSfvYpz78O+Z9UnsgdaiGpJm4hXdBhV3Ip5wGlOb\nypadxRYXF/EP//APkjMw7HqT+vlUsKVSCQBkXayurqJcLst7tVot3L9/v8eFUK8xqbw0SgE4fvla\nrYZsNiub02w248GDB6Ilz1LYx9JsNiORSKDVakmjGPr/6klzEnZhMplgt9sRDAbFJWG7uFqtJiBZ\nMBjE3NwcZmZm4PP5ZBFzkxLQI3o+bAGqsf1ms4lyuYydnR24XC5YLBb4/X688sorcDqd2N3dxfXr\n13Hjxg1pnMKNdVIoEuhNQ2a/jvX1dRQKBaTTaUSjUTidTvh8PjnJ1RTxk0QdW3blJlDLHIp+5mY1\nW5INcJjPwpyLSfEmjqvdbkcsFsOrr76KQCAg/R5U16LfbRy3XkWd43q9jmw2C6/XK/iMx+OReQF6\nW+6NM1cnyUujFGg+crEy5HVwcIDPPvvsqTxz/s2gQplxhXF2UoZzkzgcDmGS5gKg8OdhgCcz+mw2\nm/Qh7Ha7knPR7XYlP8HtdgsISaXB9Ger1Sr3H4ZjcNHwWdg/kUk/rL1IJBL4/ve/jw8++ACJRKIH\nSO0Pw40SPgtrF+i38/culwuzs7PSsVnFgPr94WFCbMnj8aBWq4k1QJBRfXc27/F4PAJi7u/vS7et\nQV2vTno/FbR97bXXMD8/j2QyKUlX3KzqO3AemBk7zn25udPptBwUDEWrqe71eh2Hh4cClp6F6/JS\nKQVuPqfTieXlZbRaLdy4cUMQ8kEDMmmsWA3hOZ1OOBwOARlzuZyYqf0M0P0hx0GihjcDgQDsdruE\nmFqtFpxOp7SH9/l8MBgMkqVZKBRQq9Xg9XqlgQxz3YdhGP2ItIqYz87O4hvf+AbK5TJ++tOf4oc/\n/CGSyeRTXYzHBTR5L25ago4EDhkGBCDdsFQrZ1wznkp5amqqpykKcx6AJ3MeCAQQi8UQj8fh8/kk\nQYzgJw8adYxGvR/Hw+12Y3FxERcuXECj0cDm5ibK5bLk0KjJTuqJzuc/SfgsbBhUq9XEEmLildvt\nFms1lUqJlfKseALwEikFCotgFhcXsbGxgbt3747k9z+NUCmYzWZBybnomDRCs5yTPI4ZTPCSjVKs\nVitsNpswILtcLqFJ52IoFAqoVCrC7syFoWbUjSrmoanNRe10OnHhwgX84R/+IV599VX84Ac/wF//\n9V/j8PDwqXfgphlnbGlFMblKHUeOUSgUQrfbxcHBgUQI+u836vqq4mGvTboPzEfghmI9wvLyMux2\nO3K5HCqVCjKZjFS60jIbJ1OTc83IysLCgoCamUxGwGFGVtQO2lRSTI0eZyxpCdD9qlarcDgcAjYC\nEHyNkZ2zUAjAS6QU1EUdCoXg8Xjw4x//WCoiz0opcCGzgq9er4uZGo1GoevHnaFVcLC/f+SoZ6FW\nZ+WbwWDA/Py8/L3X65VEm4ODA0nkASAt8giSnWQF8aRyOp3SmCUajeJrX/salpaWoGka/uZv/gb7\n+/sDk23GrTClcMyYM6BpmpQUx+NxTE9PI5FIIJVKjVVHoUq/T85OXfF4HDabTRq7ckP6fD5cuXIF\nRqMR9Xod6XQau7u70hGaLgdP9HEsBYYfI5EIIpGIzGUmk4HFYpG/Z1csXdfF3aUiH8dypVIAgHK5\njKOjI+zs7EiKOHEuUgVQzqqs/aVQClwQnJTl5WV4PB6pVjxrK4H3YjiPOIDL5UIikejJgmMe/Ekn\nHjcX483hcBiBQEDy9lltV6/XsbGxgYODA6mD4MKlxcDGtMDohcDFxfZmMzMzeOONN6S/44cffoiN\njY2hyTunQcttNhtsNhtcLpeg5YFAQOLtv/jFL0QpTCKqadztdpHP5zEzMwObzSaJXswhYcFcq9VC\nIpFAJpORRCyGDNV/w8KtaiIQrQTWcvBQYI8O/lMzQKlsmKQ2DsX9oPdNp9PY29uTbN5oNCody5PJ\n5IldtyaVl0IpcGIcDgcikQjm5uagaccdeSY9cU4SThxNS+IK0WhUugqrbef7q+GGKQQVfLt//75k\n2sXjcRgMBkxNTUHXj7s9v/fee0gkEiiVSrKIWMHInAGeQKPMe26gTqcDu92O2dlZ6Wh969Yt/PjH\nPx4Jep1mXIklkAAnGAxKaLVUKuHRo0dPdWUeR7hBCbzmcjmJ0bOXJBPAaCExdl8qlXqaEPdv2mHP\noWIxajSn2WyiWq2KFZlOp5FOp59qMKzya3CdThIZoKWRy+WkYIxl9oeHh9jY2JCxPIv8BHnvs9xQ\np36IMfo+EFyZm5vD9PQ0Go0G3n///TPXko+fR9wIZhUydMhy1X5WoJOuxwWtnr6qf3nSAlWLkfo5\nH4YJIzTT09O4evUqlpeX0W63cefOHfziF78YmaM/iXC8HA6H5GBcu3YN0WgUU1NTMJlMktzzwQcf\nnEqRc9zIBUFMgW4RlUcFZS0AACAASURBVBsVb7VaRblc7jm5qTDUMQRGg5xqLgOzNWl5Mf+CuQT9\n3BqTWlqj3p3At9/vRzQaRavVkuSvCayQ36y+DwwhbW9v4+joSFqQnbVCAJ5sNsazgaeLmia9HgAB\ntfjzJBtSVRrj+vmMp5MmjLH0u3fvIp1On9nYqe/HecrlcoIhkFbu4ODgmSpYOSedTkcqZBlxUPkO\nVNdulAId5znUMeJ60DRNemIO+twk1x9HiEmw+1UymZTnOUsLgfLSWAqPP/dUttaL8PyTyLOeHsPC\nj4OuR98aOOYnoN9NHsuzHjsi7jabDTMzM4hEIlKsxvqGZDJ5qvuq70gfXy0MUyMIdB/UYjF1rain\n//M4VJ63TJqBqch527gXUc7CpJxkUTC2robHmONw1nNPpa3G9MkhSIvrtMzD/VZSfx6GeliwRoJu\nQv+Yq+7CKNfhN1B+s9yH3xQ5i8U3yTXGKa0+K1FPY57ajJKcxbUHfR0m41R0Dvr+XM47RJ3LuZxL\nn/zWWwqDzHnVVFX92EGf6b+WauL2f56/67+u+tmT3ItRf8vfDbqXal4Pevb+9xz07vTFX0Y//FzG\nl996pdDvp1LUlFr1d6rPDDyp/e/3T/sjBP0bmSXA3GDqfQZtWDWc1l+P0L/J1bi6+v04uQHq5h+k\nSF40U/tXiQf0K8pBUaD+OTmrZ+ufi/7+GWpI8lnv+VIqhX7gDDibWPCgk7B/M6sgGidGDYUNy0Hv\nX1D9SoApt+o79T+DKmrK7ygLZtjnRkn/mPYXfb1oMsqiO8t7qHKS1fisCmGYJUrqfBXEZU2MaiE+\nS/7JC6sU2IqLSUtra2u4evUqPv/5z8Pn88HtdiOVSuHu3bv46KOP8LOf/QyJRGIkP54q/UlEVAaD\nEG4VSSeLEdmf6vU6PB4PdP1JWW65XB5Yxs0klH70X1UyLLoies4J50lA4JCFUEyj7b8Pr6taCyaT\nqSdsd9LY8KvauGYUfwMzClmyHA6HJU+/2+3C5XIJQSs5GZvNJiqVSg8gehL1m6ZpEmpVU9JZwMb3\nI4HLsH6c/etgmKi5JcyNINcGqeXZ4IekOUx0I/UdMyFPKrziqc/vWZhns9kQiUQQDofx+uuvIxAI\nCMnMzs4O9vf3USqVkMlk0O12Je36NNwKJyoFTdP+PYA/AJDUdf2Vx78LAPjPABYAbAH4E13Xc9rx\nCP9vAL4JoArgf9R1/cbETwUIIaXZbMbc3BxWV1dx7do14RlkJlun00E2m8Vnn302cdpzf2iqf0OR\neYn8BXa7HQ6HQ6oZNe2YFqzRaAh5iFruOkhURmK2ayO3QiAQgNPplA3Menmm9VYqFaEZUxe/eqr0\nL2CWMXNMgSdJU6pl0q8Q+f+M/5+EJbDwyuPxYG5uDsFgEH6/X8qWOV8HBwdoNBrSoyORSODw8BDZ\nbFbSuPsLzAatDWY0kguS1Zkkwq1Wq8hms6hUKkIMO6wnyChRFSQzKFl/wP6frNa0Wq1C/18qlZDL\n5ZBMJqWm5aRxVPMm1AOJPKF+vx/z8/OYmZlBIBBAq9XC0dGRPFOhUJCuW6xOfS5KAcD/BeB/B/Af\nld/9OYAf6rr+F5qm/fnjn/8dgP8ewOrjf18E8H88/jqxMLZttVpRq9WEk4+KgIupUChIbcL+/r6U\nkZ4kg3y/fheByT+sn6dioDntdrtFOei6Dp/PJ01IBpXj8sRViVndbjdisRhCoZBsHjZKsVqtaDab\nODo6wtHREfb396HrunQ3UvGC/nx+o9EoKdpUDCS85TOolaDkPmTdAklda7Ua8vm8MD+x6lAVPoPZ\nbEYgEEAwGMT09LRwGbCYi0rT6XQiHo+j0+lgYWEBd+/exaNHj3r4HIblD/DkZE1FPB5HKBQSajKW\nR3PjVqtV7O/vi5XDZzjJ7eLv1LmjdRCJRLC6uoqlpSXJGGVSVqfTQbFYFBLZdrvd03dUxXr67zXI\nsuQ7ezwe+P1+OBwOpNNpqdBUi61oIbCuRsUbJpETlYKu6z/RNG2h79ffAvB7j7//DwD+GcdK4VsA\n/qN+/HY/1zTNp2natK7rhxM91fF9pWTZYDCI5i2VStB1XYqSuHljsRi2trZQLBbH5jboB4M4Edws\nPL1XV1dx+fJl6LqOUqmEVCoFTTtuCsNKR1opg+rlVVCKm8doNMLtdiMej2NhYQGzs7Nwu90wGo1I\npVJSt9DpdGST0lqgOQqgB4vg9al86IY4HA6Ew2EAEPMWeNKol9YFu17z+Vivf/v2bRwdHQklXf+7\ncexarRby+TwikYh8z8a4tVoNJpMJiUQCHo8HU1NTiEQi0smbp+pJbgMrSv1+P4DjMmV2gK7ValKB\naTKZhIgnEokAgLgT3LzqWhsEGqqi67psztnZWayurkobv6OjIzx69EjcSo55Pp+XzTpqTY6yilRe\nUDJX37p1S9Yp2bvYf5TUfeOwbw+T02IKUWWjJwBEH38fB7CrfG7v8e8mVgpqP4S9vT3EYjHs7+8j\nl8uhUChgZ2cHuq7j0qVL0twzHo9jb29vYheCws1L33Bubg7Xrl3D2toarFYrtra2UC6XkUqlxFwm\nqSb9/HK5PFAxcKNSSLYyNzeHhYUFcYnIIsXT0Ol0wmKxYHt7+ymfnqf7IFBJVWxutxs2m03cE2Ij\nZrNZ/HlSoIdCIei6LlRwlUpFSD5I+T5o/MiwxGdJpVLwer0oFApCGML/Zwp0MBgEAGErAvDUZu0f\nQzaFLZVKMBqNgiNVq1XhVKjX69A0DYuLi/Lue3t72NzcHDhOo4DhfveBh8Ts7Cza7Ta2trZw+/Zt\nJBIJ8fm9Xq9YZrQYR0UjRikLrkWv1wur1Sr9PVUlTko/lZaOz34axfDMQKOu67p2ijRlTdO+DeDb\nI64rL1oqlbC5uYlu95jNuFqtolgsCnDmdruFN2Acuiv1Ho+fRb7StJ+ZmcHbb7+Nt956SwhdHj58\niMPDQ5TLZelRWCwWYbfbxR+mtu6faNX35+lM0FEt6snn88hkMojFYvB6vfD7/WIZqO3R+FV9fn7P\nn7khPB4PwuEw/H6/sDxRIXBxEeBsNptipoZCIZRKJXEx6HIMEwKiyWQSuVwOQG9vi06nI41Yl5eX\nEQ6HpU1euVzuqccYhei3223h0shms9A0TdrQcVMYDAZcvnwZ8/PzyOfzskkmYXtSx5Sbk/wQzWYT\nOzs7uHHjBjY2NoRUl24hSVeILanvNclG1XUdDocDTqcTnU5H1gdL+okdkHdDdRlOsn6GyWmVwhHd\nAk3TpgEkH/9+H8Cs8rmZx797SnRd/w6A7wCjax9o6rF5CVHseDyOqakprK2tweVyIZvNCuPNML9t\nkKif58TH43G8++67ePvttxEIBLC/v48PP/xQqgy50B0Oh6DK9HWJBwzzT2myk4gkFArB4XDAbrfj\n6OgI6XQa+Xweq6urgjNsb29Lp2kVMxgUwlQjDlw4LpcLVqtVFhg3LiMAKt260+kUIhueQPl8Xghf\nhy1ozhO/kvdBpa0zm824du0a/uAP/gBra2toNBr45JNPpPJ10Lj1vxep/qlI+Dzkq6DFZjAYkE6n\nBQNiz85B+BGff9Da4L1JjT8/Py+RjwcPHmB7e1sOKCoGn88nwGk/2/e4FixFLQ8nSS3dEzaDoavA\nyJt6cEx6P+D0SuG/AfjXAP7i8de/VX7/bzVN+084BhgLp8ETKHwpml8ulwuxWAydTkdM0FAohHq9\nLpRlNptNQl0niaoQ6J9NTU3h7bffxle/+lUEg0Hs7e3hJz/5CdbX1yUWbDabhe2HYTi1l8AgUcum\nWQ9AU9nhcKBer6NUKiGdTkvXJtKSk8CDJymjCGazeSA/ZafTgcVikU1OSneChEdHR8hms2Jx8flb\nrRZcLhf8fr/wAzabTaRSqR5Ow2FzxXvzPam4zGazUMH92Z/9GZaWllAul/HgwQPcvHkT9+7dOzEy\noK6DVqslSLsavlPfX9OOiWgajQYKhYJwK/RXTY6Tg0E8we/3w+v1IhAIiDKgVUjf32azCYZQLpd7\nSFAYGRhXGHkgSSsPnkAgIK4gDyFiTbzXpO3wVBknJPn/4BhUDGmatgfgf8GxMvgvmqb9GwDbAP7k\n8cf/XxyHI9dxHJL8n071VIpwslSe/ng8Lj0fdP0JZyKpt8vl8li4AhcF486hUAivv/46vv71ryMa\njSKdTuODDz7A7du3Rcnw1OApzIXZ7XbltBhGmMKTvh/oA4B8Pi/+N6nZaH7u7e3J5icI2H/a9W/K\nbrcrLD1McKlUKkgmk3Lyc9OwWxK7V9FdIA07AcOTEmJUP1btt+D1ejEzMyNdosrlMra3t3Hv3j3c\nv39fiEpUwHfYtdX35Aan+0UlxHAvIwGZTEYiKIPculHrRI2stNttUa6NRkMUQbPZlFYAxGKoVNX3\nOg0vJRUJoxnEF8LhsADBdJ1UJrBRXdFPknGiD/9qyH+9O+CzOoD/+VRPMvz+koiSSCQkRNhutyV5\niEzI8/PzuHr1Kr73ve/h/v37Pd2HBl1XdQNWVlbw5S9/Ge+++y7i8TiSyST+6Z/+CR999BGazSYu\nX74sCsBisSAUCmFmZkYWH3n0BvWzVDcwN4zNZhPi11wuB4PBAJfLJe5QNBqFwWDAo0ePUKvVcOHC\nBUHTO52OcBTQreh/N46bw+EQTEalAQeegJ+6fkwYGwwGsby8jEgkgnK5jM3NTem+NWosKaobZrVa\nEQgEEI1Gsba2hqWlJSwsLMi8HB0doVgswmKx9Gz2k07sfpeJCpBku7TivF4v4vG4KLVSqfRUctAo\nend1faiJZZlMBjs7O2i325ifn0csFhP6emI4/VR9k1aqqmNIhVetVqFpmrQxBI7Dr0dHR5IXQ9Kh\ncaIpo+SFzWik8ORhaKtcLmN/fx/dbhe7u7uIRqPSr9Dlcknr7kwmg2QyKX4eMDw11eVyYWpqCleu\nXJEuPK1WS1qMe71eYVluNpviZng8HjHVdnd3BckfhWQTrOPPNNutVisikQiazSa8Xi/sdrskvDAK\nUalUYDQaUa1WUSgUUCwWn3JX+q0ftlFjOJMLjX9H/5vh0enpaWE2SiQSwg2obsL+/It+wJPKgS4W\n+yEyasPWd8FgEF6vt6dB6kl+dz9QpypAPofVapXkou3tbQAQZaHWCPSzWQ1SDFScxDIODg7EbPf5\nfGi1WpJfUqvVxHpV3RrVghoVaVC/pyJyuVyw2+1iJRI4LpfLojhUq+lZlAHlhVcKwBN/Mp/PC8Nx\nrVaTBbe6ugqbzSaTs7y8jE8++UT4FAE8tZB5XQ62z+eT/gg0/XRdlxRmh8OBXC6HarWKcDgMt9st\nAB6bpQ7qUsX7qIuOmZI0QwGI1cAuSoFAAEdHR6L9uTBognLTq8Ai8GTTqCE+LmgCgExCYg8Lm82G\n2dlZzM3NweVyCQDJiAqvy8XeLyqRi5pRyd6KzFEoFotwOp1YW1vDhQv/P3tvFhtZlp6JfTcy9n1f\nuJOZZO5ZmVVd1VL1dEktoQXZMCBYEAbzYnuMgeWHGRiG5sHjebEf58ELBjAwgAwbtgDD4wFsQAN3\nqxs9ltSNBrr2NTfuW6yMfSUZJOP6gfn9eeLmjY2Z1c0q5Q8QQQYj7nLuOf/51+9bQTQaFYXHkuBh\ngb9R79O3j8ViuHnzZp/lwMyKWgk6irPDGLRrtVpShenz+YTYR+X6ZB2F3++X+TSOqAqRi93v98Pv\n9yMQCAhyFhUDC9vU52E810WCjMAlVwrq7sEfVjrS9Ox0OsKgw8VAUzifz0sgzTih1YXKqjDW5He7\nXezs7KBcLkvOO5vN4vDwED6fry+iTwbldDo9tokNQCL+jUYDh4eHgkZME5Rmbz6fx97enviNXDjN\nZlNMSjOh62C1WuVzVCqMS5yensLv92NmZgZXr14VfstarYb9/f0XIvaAuaVAa8PpdPaR0p6enopF\nQ/N2ZmYGjUZDFiSLfbjDTuJ3q+lXKkrGL1isRUXNoDAACdiy2Iz8koPGUQ0QVyoVHB0dYW5uTuor\ncrkcGo2GUP2x4lRNkY+TCVAVAhUBlQ7rRzqdTl9xGqnpOZ+5Ri5SyUi59EpBNTeTySRmZ2dlAtJ0\nD4VCUh7MQWMQcNDgqJOJMN21Wg25XE4WLCvtGN0livDi4iI8Ho+QdBAIdVBwR93Jab5SsW1tbSEa\njeLg4EAi9A8ePECtVpNg3NbWljS6qAVLrLM3Ox8LbRwOh/BO8hoYJXc4HLh27Rpu3LiBVCol2Y/t\n7W0Ui0WpRDSm8YxCliuyWasWCRuCODYkZo3FYrIQyWLFgjVjPGbQ3ACepypp8UQiEcRiMYnzcI7w\nh2PIc7Fke9gioqXKrAf5HtxuN1qtFtLpNLrdLuLxuJj8VCZqNeM4AU0GZ2OxGGKxGFKpFNxuN05O\nTtBqtVCr1RAMBgFA3EtamypupepOTJwGnejTvwHhAp+dncW9e/fE3wbOB8XtdmNmZkY0KYtg+MNd\nbdhDbzabyOVy+Pjjj3Ht2jXYbDZREuVyGc1mU6oPV1ZWpIAqnU7jyZMnEk8Y1HyiWiWsuahUKlL9\nmE6nYbPZMD8/j1AohOPjY5TLZayurmJ3dxf5fF52PAaeeCz+bjwXxy6ZTEonH8umdV0Xd+nWrVtI\nJpM4PT0VLgF2ezLNpZrXZhPMarUiHo9jenpavtNsNkWp0D92Op24desWHjx4gGQyibW1NRwfH0uV\norEnYZxFpNaX0NxWLRYqNe1ZYREbzbgr81jDFAKtF2YBgHMLJ5PJoFarIZPJIBKJ4ODgAMlkso8S\nT72fcRaoWl4/PT2NcDgsBMMM+PKZlEqlFwra1JSrUcGOK5daKfAmrVYrEomEdEuGQiF4vV5Uq1Vh\nWGLTzcnJCfb398XcH/Qg1MXT7XaRzWbFLPf5fMLCxB1oYWFBzs1qto2NDWSz2YEBRoq6w6rlqNwp\nGbTqdrvweDyoVCpIp9PY3d2VSDaPwx1ukP+tRufr9TpmZ2eRSCTgcDgkTsAFwjoPANje3saXX36J\ndDotbhMLxoYFAOm3z8zMYHFxEcViEX6/H7lcDvv7+xJnYMbmhz/8obgQ1WoVhUKhzwQetoCMBUfA\n8+5MWgms76DVyGOyyIcFQMzjs3R6mKhFUcwWOZ1OVCoVqeWgC8WGJJXncpQY5wfw3PrS9fOK01wu\nJ2373W5Xzk3XkNbPOG7KKLnUSgE4DwJxF6Z5PTMzA5vNhkQiIZ1hlUoFW1tbePz4MT744ANhBFKj\n04OELkSxWJRz0jez2+1SQckgXKlUwqNHj5DJZKS2wKihjfELVdTPcrey2+1SHKPrulgox8fH0t1o\nBmEO9C8gVdnVajVks1mkUimEQiE0m03pcaD/vba2hnq9Lk1PLLihMuC9DYvQs1oymUzi5s2bQsar\naRr8fj96vR4SiQTm5+cRCASQz+fx+PFjfPjhh9jY2EC1Wh2ric3owlDZkPQ1FotJnQW7CVmJqZra\nFzGvjXGVZrPZR/TKylSLxYJardZXTKSWsQ86tvp6dnaGer0OTdPEKk4mkzg5OcHx8bFwPxQKBVF8\nnLNqzOdbGWjkYm42m3j48CEikQii0Sii0ag8kEqlgtXVVWxtbWF9fR0bGxvY3t4WRWI04SjGXZY+\nGwAJTDGqzmYfVjUS1II+vZqyGzbJjItX3cXIWRmNRgVHQQ2kqbs18RRURWF2jmaziWw2C4vFgkQi\ngWg02sdcXalUsLOzg93dXeRyOWksUkuH6bMPiieomaF6vY65uTmhiSP1nd1uRzgcxtnZGR4+fIj1\n9XUpEeYYqsp0mDmvfkYFIGHjF4vK2CBFMhoqBZZD0y1QMxKjhAry+PhYYjssP15YWEAkEpG5QGXE\nOTzKJVJjTizjJsHwzMyMWAOapiGTyYhFR2vE6DrwWBeRbxTvg+pD8pULy9hdN6pSTT0eJxmPycAX\nJxuj9awMJJU5J5Ox/HeY2WsM2lEhhMNhXL9+HYuLi7BYLEIyWywWJZDEBcGgnVmhlJqrv3r1KkKh\nECKRCPx+P4LBoFT4sXR6b2+vL3PD3YaijuugBUtG7uXlZVgsFsGYsNlsAjiyv78vHa4qZsKgMRsk\ndFeosNxut7gM09PTiEQislA2NzelR4LPitWGvIZJK//UGgKPxyMu2NLSEjweD3q9Hra2tlAoFFAu\nl/syOKNcTGOchClIdSypNDjnBnWVDjjPazKYEeccGFHng+EEpDnKsmAV2MIog8xso2Lg72pzVCQS\nQTKZhN1uRz6fl5SqipRE14EWinpe43mSySTm5uYkvXV0dIR6vS4BVKY5VTfLeO1UEMOKl3g+9oGo\nVpDqfryqucZnoy4ev98vCpzPjaA7KgwaLRIAA6Hlxjk/LRUS6QYCgb7Saqa2VbdolPIZNBf5yudj\ntAgmkNdKYcQ5+5SCcRzUKj3mnGmRGBcRP6cG/4zHNDufcWdg2sxut/eZtqprwu8PmtAqbgNhy1QE\nJgapWDegRteNC1cFpjW6PpOM8dch6niquzd/NE2THdW4m6pR+Ze5PjUtqvbAAM97KlQlOcl9fU3y\nmiFqmBgDc0YtbZw0qu9GMZYYqxPVLCBnjA/wd+B5VoKxBLPrUxfuoCi9+nuv15PCIVY/qru2epxB\n12e8L+M5hsnXveGYRe1HYTBeRLkNEjUwOOicxo1i3GP+JuXvrFJQZZwHYZa2GhU0GvT+pA9+2OeN\n/1MnJ+MOk55n0vv6TYiZIrxoYO1VyCTP6LLLa9q41/JaXkufXCpLYVDwb1hA8KK7rlngb9C51c8b\nzfZhpiE/y6CY2bUPcjmM/zO7HtW1MMK2mx13mHsz6P7V6+Vnvmk736SixpOMcSGgvxaF8YxBRUqD\nnvNv0qoZJZdKKQDmEVhjuab6GQaYuDiIfMyKwUEL3iwIaPa/Qe8ZfXCzBW32fX6WFXBGPAC1AYfR\nbE46NR+tojibXdug845a1MZAnDFQ9jUHwiYSYxCYxUyapglepjFuMmnAj2OsAriwMlKN9agBXnXh\nqwrkVYpRcb3K4186pUDhzZopBLOoMwEsSd7CeoODgwOBajMef9A5xxXjZwfh4hmDipqmSfGVqhjU\nnYT3w048tTyaE1LX9YHpQbPfx703Y83Fq4rWv2phNSPTg6xbICp2o9GQsVNTo6PEOGZUNuoiH2bl\nqZWnPIaqUCYJPBqFzYBsmjo9PZXmtXEar8aRS6kU1FSP0Xw3/p/98pwMyWRScOtYu6+SY5jJRSe8\nmlLkxBxUYqpG9Fn2qioE1kOote/M+7Pc+vT0VPLugxSCcYzUa3mZXf5lgEC/DmHqkYrB6XQK4E61\nWsXh4aGgVQPPa0KA8QKq6udpfbAVutvtSj0Ey7lJqMMCI7p0ZinKiwoVSyAQwNtvv41bt26hWCxi\nZ2cHn3/+uWA6qKnRi8ilVAqAefUfrQLuCGyASaVSAkZBM45IxA8fPoTL5cLe3p4pGvEgv9GY+ybe\nIbHyWDDj8Xikq+3JkycolUoolUovsCjxPrj4OclIZhIKhaRGwel0ihLgBFOx/a1Wq/Tws2LOTFTe\nSvX+1ApO9T1ep3F8+MqJPokJfhFR07SD/h8Oh2G1WnH9+nXMzs4iFosJQxdRq3RdlzHudrsolUpo\nt9t9bsWwVndabF6vF5qmSVt2IpEQoB0iKpfLZYGZa7fbKBaLKJfL6HQ6Ui9BFKxxmqTMromb3p/9\n2Z9hYWEBBwcHaLfbAjWnuoffGjwFVQGYLV4K0YHn5+cxPz+PcDgslX5EvwWAfD4vQCgApG1WPZe6\nk6g/6k7k9Xpx7do1QfIlcCvbdFOplICXfPjhh32IQ+q5aPafnZ0JRiNxCMLhsJTsnpyc4OjoCC6X\n6wUwV5vNhmazCbfbLQAyg4BPWCJLE5vvc6z4Hs1OuixURpzAaq5dxSBQnw0notoroQZY+R5LxtmC\nTHQnY5UovztoAXW7XWlCisfjgh1htVpRKpWEKYzHZFUq/x6WquWcUKHYWEodj8exsLCARCIhGB6s\nL/H5fHA4HCgWi+Ie2u12IfhRx3BSxcANaWlpCcFgEJlMBqurq/jiiy+EXFYte34Zi+5SKQVOHLWC\nzug2cEGGQiE8ePBAFhFr6gnWwXZa7shm5wL6lYOKbUjwT/JIvvvuuwiFQn09B1QIyWRSOC+Jb6ju\n3lQIav29ruuC4BSNRpFIJATXIJ1OCx9Dp9ORuAKVFM1ZNfionosLinBrhHn3+/04OTkRMBS6LVR8\nXq9XxpCIVtyNdF1HPp83VQjAc/Qljh1RjclIRci7u3fvCigtUaSz2SxyuZwgOxuDxGbC/9FC1DQN\nhUIBm5ubSKfTokw1TUOr1RIFqcYHhjVCqUFeSjKZxNLSEubn52XjIa8jkcDOzs5kfOPxODTtvLKy\nVqvJdV9kwVosFvj9fty9exePHj3CxsYGNjY2UCwWUa1WJybOHSaXSikA5v6eGlgkBt+1a9cQi8UE\njYYsQM1mEwsLC/JA6aezEWaQqLubw+EQhl+iKJMo9eTkROjJrFYrpqampIyYiD/stTe7N0aq6YbE\n43EsLi4KulSj0UCxWESlUpFWWVoV5IdQG3o4edX74C5FXD8yRNHVcblcsnsSa4G9A+QrODo6wu7u\nLnw+H8rlMjRNkw5R47jxWdEKICt3OBxGMpkUszsQCOD69evSMXl8fIxisYirV6/iF7/4RR/Uu9Vq\nRb1eHzpXVLJZh8OBtbU17O/vo9ls9kGiMRZA3A2C24yDykWF7vF4EAwGBTWq0+mIEmI3YzAYFJeS\nWAi9Xk9IkAcxkY8jTqcTd+7cQSqVwk9/+lOsra1JVyutnlcV77l0SmGQUMMnEgksLS0JoMfe3p5A\np1ksFszPz6PZbAopJ1NTDBqZCZUBd7lQKIREIoG3334bCwsLCIVCqFarqFQqqNVqEtlOJBKCqguc\n4xeYZTtUa4dxCtKyRSIRuN1uOJ1OHB4eYmtrCxsbGwLKSQzBQCAgqM+kyVODYcax4s7CyRwKhQRs\nlvELkuMGg0F4yUC/IAAAIABJREFUvV6cnp5KM082m8Xs7KyQ/NJaGZS1UbtL3W43pqenkUgkcP/+\nfSQSCfh8PthsNsRisb4cfzKZRLPZRCqVwt7eHhwOh7hfZvEeVQGR4VrXdezt7WFnZ0cU9snJiezc\nnAsEzGGmQu10VcWYxiQoMJUsSWU3Njbw8OFDVKtViftwrnm9Xly5cgXtdhvhcFjwKYxKfBzRNA2h\nUAhvvfUWfD6fWFRqjOdbnZI0ZhtUH9/n82Fubk4mwvb2NtLptOAghEIhtFotpFIpAM/7FRjtV0UN\nrtGXttls8Pv9iEQiePfdd3Hnzh1YrVa02218+eWX6HQ6QgFOH7Fer8tOsL6+LnRhZkLF5vP5kEgk\nsPCsBz8QCOD09BSbm5vY2trq42Gky8Br5m4ej8cFhEUVuikMVrK5ipYTFUOr1UKpVEIkEpEeCUbt\nSWJaKpWESIUBs2HpYZvNJl2DPp8PKysrwr1AqHgiFZGzkghJhL+jJWQW0FTnBmncIpEInE6nBPYY\nSKTSYft7LBaThrBoNCp4nLlc7gWT3tgMR8j4eDwuqFwHBwfY2tpCpVJBo9GA0+mUueT3+8USZBaE\njNSj3BYzsdlsuHHjhmyE3ADp8r5quXRKQRU14BcIBHDz5k0sLS0hEAjg6OgI+/v7qFQq6PV6Erji\nQ2TrKt8bhHmgPnji4t28eRO3b9+G0+lEvV6XBcLotapMiMJTKBSwtraGfD4vaVCjqFiF8XhczFFN\nO0eL3t3dRbFY7CMpoVXBOIpq9hLz35gj52IlRmIoFBJTPBqNCmO32+3Gzs4OvF6vRLFzuZxQy7Xb\nbaFcI7q0Wbs2JyhJUWj++/1+oZhvNpvyfZfLBa/Xi1QqBV3XsbGxgXQ6Lc1bZrESo6i4kLTyGOWn\n5UcUZILtdjod2Gw2FItFdLtdRCIRlEqlsSgGvV6vBCqPj48FJo+bCQPBVA6apokbQUXucDiGInCb\niaZpCAQCWFpagq7r2N/fl7gXXTozXI2XST9fSqWgBstsNpuQtSwvL2N6elpQfhgAY9rI7/cLxDZ9\nOZr66mIxCgNhPp9P4gherxeHh4eoVquo1WqyODn4PF+328Xu7i6Oj49ll6epaLbTeTwe+Hw+IZkh\nrXqhUEC1WpU0GuMFLpdLshJOpxPHx8eC/MN7MqtJIIM1kYEIQ5bP59FqtSRtVyqVxM2iNUBXqdls\nwmKxiPUzLK+vZiuYUahWqyiVSnIs7qiqz53P57G7uyspY+A5e/UwCYfDmJqakoAlx4KbiMViQSgU\nQiwWw8zMDILBoFiEHL/T01M4HI4XYOWNwWePxyNoVxwjwrD3ej0pmGNtCeM/rBegglMzEOPKlStX\nBLTYarVifX1d4ih2u104UIyYFd+a7APQD2BBhqZEIoF79+5hbm5OdqR6vS7wW9TQHo9HTDRCkTF4\nNajyj8EoWgkMiPV6PYF3d7lcuH79ukSZW62W1Be0Wi0xQ3O5nKmVwAUOnMOrx+Nx+P1+Qf6t1+so\nl8ti3nNS0xSnm8H0FzH8zFp21eAj+SPPzs4k9VkoFARqTkVwIpuUyn3BNCGPNWgM1Uo/siS1Wi0h\njm00GgJoCkAQppnXL5fLAt6qUp8Nmh8Wi0Vg1H0+n0DIc3Pggp2fn0cymRQKAKYHPR4PAMjcMS5U\njqFaz0Glw7FxOBxIpVIIh8OoVCoyBxm3oGIHIBibF3EdXC4XFhcXcXJygmKxCKvVioWFBczNzYkb\nQWSpi9Q/mMmlVApUBouLi1hcXEQqlUIqlYLH4xHz2uv14vbt25J+ZNoNOE8TMc3FxWOWClLNzJmZ\nGYTDYTSbTXz66afiqwLnJnez2ZSsxMzMDJxOJ7rdLr788ksx+9VSU+NEY5CQVk8wGMTh4aGwPweD\nQfh8PmiaJkxXZIsmlV21WkW325UFNCiazfgBAVSZa9c0TYpuAoGABNB8Ph90XUe1WkU6nRY+RHXM\nzFLEQH9tCXfSbreLTz/9VCjhPB4Pjo6OYLfbcf/+fVy7dg3dbheff/45PvnkE3FZuJuO2uVYPxAI\nBCQ2MTs7i+9+97s4PDyUTFAkEkG9XkehUICu6+LnM/tCSHizTBFTwFzQ7XYb29vbfSX0kUgE3W4X\nc3NzEgPh3KULa7PZcHh4KIt2kqIiq9WKxcVF/PZv/zYSiQQymQx+53d+RxR4p9NBJpOBzWbDl19+\nOTGB7cDzvvQRvgax2+2IRCKIRCKYn59HKpWC0+kUpGEAEmjiwuaDoB/NTAHwPJpsNOm5u9Ef9Hq9\nwgBUKpUQCAQkj392dk4GEo1GEQqFhFGKvI7NZnPg/dDnZjaBO3Cn0+nLetBSIM24GrzjJCZ7Mmnv\nB0HCnZ6eit+p7nwk5AUg6NhutxvtdhuNRkPcBForaq5+UPZBVRw0lwkWQ/Pc6/XCZrPh2rVr8Hq9\n2N/fRy6XE0XHRTXKvOazpJtD+LpQKNS3i1ssFuFkYHaARDR85ixLN55TnSfq2AGQOA4tGjJbsT4m\nEonA6/WKMlazQ+pxRokaTPV4PDg7OxP8SYLhEoZ/lHU1qVw6pcAb8/l8iMfjSCQSQqPG6DJrAVhw\n43K5YLFYUCwWkc1mJSrMoM6oB0GfnZPh6OhIfEen0wmLxYJYLIbZ2Vkkk0lcuXJFIvR7e3uo1+tC\nOkJRJ5ZaQsxAIRubaLIDzxt81IlH4lKL5ZxToNls9nWBUtEYz6ueWy1/BZ5H10k8QpObpDaM2ag1\nD+MsWPVe+TtN2sPDQ0xNTWFpaQmdTgd7e3t4+vSpZCWMYzVMaNWsra3B4XDA5XKJgvV4PH1cDNwc\nQqGQKF5mqyqVytAgI5WrCg3Pfhv1+TDgyO8wW0SriVaH+oxGCS1m3l80GpXyaV0/p487OjpCsVhE\nOp2e2C0ZJpdOKXDA/H6/5LcBSE653W7LDun3+yUfXCgUUCqVsLOzg1wuJw/EDEZNPQ9w7uMuLCwI\nrwNNvmazKR2Y09PTWFxcFL80l8thY2NDsPeNCMVm59N1XY7LICkzEiyVVSvpuChZ3UdkZ0KWs7pw\nmC/JSDVBTX0+n1RJlstlrKyswOVyodlsShVlpVKR0nC1gtM4bsOEC4EFWH6/X3gtdnd38dVXX8mi\nNFpvo4TjuL29LbUDdCHV8uWtrS0cHh5KTYjL5ZLgMF2KRqMxNIDKSkhaPU6nE1euXEGr1YLdbpdN\niudhoRStWgLsMlMwTkWjGsc4PT1FtVqVNOrm5iYsFgtcLhdarZZA2L+qeAJwCZUChZOK2p8TgZOU\nOP+apmFvbw/ZbBarq6uCgMzJOMis4g5rsVgwMzODubk5CTrt7Owgn89LZJksxj6fD41GQzgeDw4O\n0Gq1XkDtNRO6ELVaDaVSCTabDaFQCMD5ou50OvB4PDg4OOgrPab5fXJyIiY+rRiKMfug+vgqMzXT\nhazGZCETcN4nQpOeCoLXNow/QxU1b85JzVbf6elp/OAHP0Cn08Evf/lLbG1tCVnKpEIfn2nMcDgM\nn8+HWCyGUCiETqfTZ+lFo1FRSlxozWYT5XLZ1H3gfdBNoQLm/GMQmM+Fi50WHutH6F6SS4PuxKgU\nqDrOrVYLxWIRXq9XArIul0vqWrLZ7NjKZly5lEqh1+sJww5TjiqM98HBAaLRqOTAHz9+jN3d3Re0\ns6oQjG6EOhGOj48xOzsruWir1QqfzyfsTDdu3EAoFMLh4SFWV1fx4YcfYm1tTUzfUQqBgT6LxYJ6\nvS6EpCx6Ylyh0+n0Ra8JF04a9WaziUqlIpFsTgSzDAQAIX7hxD85OUG1WkU8HofVakUsFoOun7NR\nFYvFPqZpKgPVHRk3963ycjDL8t5772FlZQVfffUVPvnkE2nguYjouo52u43Dw0NhwWLRGTM7JM89\nOzuTxjWa/AwKMz417J56vR7K5bK4q6yZCQQC4kr0ej1xY5lhYD0De3LIcD3qfKqcnZ0hl8shnU5L\nUxyrbR8/fox0Ov2C2/oq5NIqhWq1imKxKFRu9DvpKzYaDeE+zGQyUtqqKgF18ZhVfnGxMkBlt9sx\nMzMj6To28cTjcWxvb2N9fR2//OUvsbGxIZOSwTejAjIK32MREADhjoxEIjg6OoLf7xcFwcXOz9Os\npwXE61cbrczGkRgM9XodkUhE+jRYhtzrnVOpr6+vC4GpEbFKfR0lqtsTCAQwPT2N73znO7hz5w48\nHg9+9KMfIZ/Pj2x4GiUqbgDnBusVqtWqNLL1ej3huSD4SrVaFXbyUQG6Xq8n9SrpdBoAhIFKtT74\nzKho2u22EMByXNTXUUJF3Ol08MUXX8But+PatWvw+/0ol8t49OiRWAmvWi6dUuBiqNVqePLkCSwW\nC0qlkqTJqOk7nQ6ePHkitQTcyeiTqybVqDQQyWJZfRYMBrGwsCAls+l0Gh9//DEePnyI7e1tif4b\nC0aA0YhOvV6vbwcBzoNwat6dk4H19Kenp4KvoFZqqqlGdfzok/L/BAXh91hRGY1G0Wq1UC6XpWeD\nLheVnRqhH2cRs9GKNHh37tzB9773PczNzUlvh0pN97LC6ySgDlOqNptN+ERPTk7g8/kQiUQAQIJ0\nrJ0YFP8BIBtEvV7va/lmB6Tb7ZbvsdKRz0+lLuS4jlM9CTwPch4dHeHg4ABra2uSrt7Y2MDTp0+F\nR5Kff1Vy6ZQCcH6D9Xod+XwemqYhHo9L1Jh+NU1pNQJPE5k7t9qCPWjQmP9/+vQpgsEgYrEYAEhk\nt1KpoFAo4G//9m/7KMCMQUXVSjBTFOpnuVCpvJxOJ2q1GoLBIEqlkvizrLjjK81Vmt7MYpgpJWP6\ni+diwIzuSy6Xw1dffYWDgwNhv1ItK7Wke9CENi4iktAsLi7i9u3b0jj2+PFj5PP5VxoU45jqui6u\nEjsk6/W6BHK5Y4fDYWiaJu7DIOVEK4ybVLfbRa1Wk5Qgg8WsZOR5eUw1yN1sNscq3Ta7BrZdr6+v\nCz4Ig9uvCn7NKCMZojRN+18B/AcADnRdv/Psvf8WwH8GoPjsY/9c1/UfP/vffw3gHwE4A/Bf6Lr+\n05EX8YwhSt3xCHfFnZ+7smrujRvJVcXMxA8EAkgkEpidnZXJxAfPHd0IAjrJuTi5aMnws+ouz/9x\nd1aPpyo7HlONFVDRGL/DCju1jHtqagrxeFyU39bWllhcnNCqkqVZrCoEszFQayoCgQDeeecd/NZv\n/Rbu3buH4+NjbG5u4he/+AV+/OMfv9Le/1HC8WCFrNvtFleDVoRRjA1R6ubCcWEQnNkptdycY0ZL\nj2M6CvFp3Pt5CSXwyhii/jcA/xOAvzC8/z/quv7fqW9omnYLwD8AcBvAFIB/p2naiq7rE28NXPwq\nRRtgjlT8stLpdCTyzoetTpxx0WzUyL+ZSUpFwDiAccJxoqhgLOrC5yRU8//GOgWei2N35coVHB0d\nSZ1DPp8XXAT2R6iszKqbw/OPkwPnMyJVOmM9dIM2NjYE8+JV72yjrgt4nrZttVrQNG1kWbDxOfLZ\n8Dvqd1WEKfV5sK6BSnvStO6w+/k6ZaRS0HX9F5qmLYx5vD8C8K91XT8GsK1p2gaAdwD8apKL4gIZ\ntPMafzfKpIPOSa/uxnyAVE7DjmlWEWd2jWoEX13IasWj+hlj0RMns4rmbFacxffVlCSVEOs9zs7O\nZJEaAU7VyWzM2Awbd/7v8PAQT548wfb2tmApZjKZsTI1X5dQSaqKeFwxm4eDrFX1+Gpa9uvYzL4u\neZmYwj/RNO0/BvAxgH+q63oVwDSA95XPpJ+9N5aog/Uy5uU4g258SOPkjsf9n/HvSX3oV3HvfDWD\ntx9HzK551LiqyhUAms2mZI9+02Icl2H3Mun4f5MW/DhyUYSGfwXgKoD7AHIA/vtJD6Bp2p9qmvax\npmkfX/AaXstreS1fg1zIUtB1vcDfNU37nwH8v8/+zACYVT468+w9s2P8OYA/f3aMX7t6VRl+zIqa\nVDNe/dv4u/oZ1aQHMJYv/lr+botxHg2aT8b3JpFJP38hS0HTtJTy538I4OGz3/8tgH+gaZpD07RF\nAMsAPrzIOS4qahR4lNBnNgbq+D6DQ2rmw1iboPqPr+XXK2rGRv35TV0L4z4sQJvkWtTNR/0+fxgA\nZ0aISN3MfjAI/SrGYKSloGna/wngdwFENU1LA/hvAPyupmn3AegAdgD8589u6JGmaf8GwGMApwD+\n8UUyD2Nck+lOPUlk21hPoEaPx+3UM/7Oh2NWTz+JqN99FT4qA11mGZGX2YEui/wmrp1zUCXwYb+O\nyuKlZhwGzSvj9atzW/2dSkH9MfalqNbvRcdkZJ3Cr0MGuQ/GnDCbawhCwoo8XdcFQJUNLCrYidmC\noGYF+lub+TpqXIwPxxixZxpqzPuX7zOXDjwvOBrU6TmOcNx4HlpGnMgq+Qvz9qqVdFlF3SFZdQjA\n1Jp7WVGfD/C885TAsTdu3EA4HMbs7CxarRY2NjawtraGnZ2dvjoFs/E0KgCzMmjjHOOaUC1dNXVP\n69WYzscrrFP4jYjL5QIAQbjx+XyYnZ3F3bt3MTMzg1QqhWAwKJ/f2trCl19+iV/96lfY3d1Fo9EY\nmotW0XDVRhVi/Hk8HoEsV01BKhpOSGI5xONx1Ot1AXgd1M6qWgH8fjAYxPXr1/G9730Py8vLiMVi\nKJVKWF1dxc9//nM8efJEQE8nmeicvBaLBdFoFNeuXcOdO3fwne98B1NTU0gmk+j1elKSu7q6iv39\nfXzwwQdyTjOqvXFENaPZ8cmFTPQicmi0Wq2+StFRYrPZ8P3vf18Qs5xOJxqNRh+8WqlUwqeffop8\nPi8o0Re9D+Mz0zRN4O2Wl5dx9epVfP/734eu69ja2pLuS3XhGmMDg87lcDig689Rorxer3Bler1e\nKcUnAhd7Y9iNyXFl9S8wubV5aZUCgSs4admqSgxBts9euXJFyEbI1pTNZmVwBokxWMhdmpBpKk8C\n+SYIqcZyYE07r30PBAIAIDBkLHc1O7/RXKemDwaDCAQCArpC3D1SkV3EHeEiI9flgwcP8Oabb+LG\njRsCHsMuO7/fj+vXr8Pn88HlckHXdTx+/FgUwyTCnYwdn6FQCNFoVCw8WnMEclXRg0YJOy/v3LmD\n69evIx6PC1gqFxQbyLxeL95//32x2i6CY6guKLWyls+4UCjA6/VidXVV4AJJE8cu33GUneriEZo/\nHA4L3wTZxEhjQJQxXT+HpaOVrL6aBdLHkUurFNTgHnAOg9VsNrG7uyuMRZFIBNeuXZN++kQigXA4\nDK/XK52Ig4QaX8VtIL4/SUSnpqZEMRCTkYQfnCChUEjq6YvFIpaWlpDJZEZ2w6n+H9GCd3d3EQ6H\n8dVXXwnAC+HDaeZfJPJstVqxtLSEGzdu4ObNm7IQ8/k8CoWCTDqfz4elpSWBf3M6nfjwww8nVgrA\nuWIgTFoymUQsFsP09DTy+bwAvqjlzuPcF8dqeXkZb775JsLhMKLRqHAxHB8f97U5f+9734PX68XP\nf/5zrK+vC5/GpP622WeJxlSpVBAKhQSYhmjb7HcY51xqwx4/SxZ1NnIRU5MKrt1uS9s2W8XZ8s6m\ntGEI3MPk0ioFVcMSS6DT6eDg4EBKdUkdR8CQeDwuFsKowaDrwFfW7EejUdy8eRPz8/N9PAvEbiAm\ngdVqFdJRQn2xQYbBxnHvkU1Ph4eHePTokXT6ES04Eokgl8tNvDjpDnFnfeONN+ByudBoNLC6uoqP\nPvoIe3t78Pl8mJmZweLiIpaXlwUCz+VyIZfLoVKpTDS5aCn4/X7Mz89jbm4OiURCCF8IaKOWfI8j\nNMeJwOX3+6Wzk6XVrVYLVqsVoVBI4N/YPNdqtV7onbloio8/BE0hFoau6wKEM4ny4Tzk+GmaJnid\n7GEhczY3HSpzxjcajQZ8Pp8wk08ytqpcaqXAB0atnMlkxIyiyU/aM7fbLTBsDO4ME7Uc1el0wu/3\nY3p6GqlUCktLS3KecrmMcrmMp0+folwuSztrMBhEJBKBx+MRkpB6vf4CYcooIYhHNBoVshDS3hHA\ndXd3dyjt3TBxuVxYWVnBvXv3hMtic3MTP/3pT/HZZ5+hVqvBZrMhmUyiVCoJs3E8Hke73cb09DS+\n+uqric1umvOxWEzYrLLZLI6OjuBwODA/P49qtWpKaDNIaDlWKhVsbm4KH0ej0UAul0OhUBCeDJ/P\nhx/84AcAzolcpqen5flxTl00Q8RrJdsXgVo1TZPu2klcFfXe2WXKlCOVILt1c7mcUAy0220Eg0GZ\nO7zvs7MzZDIZ4VGd+NlN9Olfs6ganfEE7txerxdvv/027ty5I2zJpPJifb8xzWP8m/682+0W8/bu\n3bsIhUIy6Ht7e8jlcnjy5IkoJ4/Hg2g0il6vJwFJ0q7lcrmJ0HB6vZ4waRMJ+OjoCLdu3RJeiIti\n+hMd+ubNm8KMXSqV8Ktf/QqfffYZDg4OpM242+3C6/Xi6tWrspBJEjsJ/yF3OQaIp6amAJzD7m9t\nbQmr0/z8fB+FutlxzNJ0bGFeXV0VtidiI7TbbVEKkUgEi4uL8Hq9iEQiSKVSAo6j1phQJtnR1WAz\neTOnpqZwfHwsvCCDumoH3Rd/JwQ9eSoACBZjtVpFuVwW9Gt201IBE3dDJcT5VrkPqhg71DRNw9zc\nHB48eIB4PA5dP6fT+uyzz5DL5cbCrOMxqZk9Ho9wP/j9fokRFItF5PN5oTNjRJiMykThyWazyGaz\nEugZt7OQpnYkEhHo9VAoBL/fj16vh2w2e2HoMk3T4PV6hemZrE27u7vi89LiIlhtJpNBMplEMpmE\npmlYWFgQtqNxLSAqIwYu9/f3sbOzg0ajgatXrwp4arlcNs06mO3gahS/1Wrh448/Fro7xiao6DlW\nmUwGU1NTOD09FUg2gtUYW80nXTw8VywWw9LSEiwWiwCiDHJfB1kmxvoCWgnE0GDwknD4VEgEomVg\nmEpJZRC7yLz5RigFCgc1EAjg/v37CAaDOD09RT6fx+PHj/H06VNBKjI+lEEam9H5QCCAUCgkyDrE\niNQ0TWDQgeecFIuLiwiHw+h0OqhUKqjX69jY2BCIrElgt4DniEU+n0+aiDgRarXahR6u3W7H9PS0\n8AZ0u13htSAwCFOupJGn9XN0dCR8kExrjisE200kEmL6ksuSJu7R0ZHA6Jn59oMWKU1/gpxQGZCI\nV0VKqlQqwgdC9ClahyoU20UUAoOe8/Pzgk5FRKdBytPsPMZaGs5xBh8J1gJArp8wgcy22e12CXTS\nUrloChb4BikFug02mw1TU1OYnj5vviQDUCaTkayAUSObBZM4uNTMpEoHIEE/u92O2dlZsSAYDHK5\nXBLBPz4+xsHBgcC903QcVxhIPTg4kCwG03YUAs5M6gNzURMctt1uI5fLCSu0x+MREhtya5ABmteS\nSCQuFGRkxqZer0sQjjubw+HA7u4ucrmcfEd9HXU+FbCEc4IL9fT0VBYUqduazaYgWKsEsOrmMW7A\nkeex2+3C9OXz+QTOjuPO5zXuMSlOp1MyD5zPDJwSkpDuEIPhzKownkUavUlbxCmXUikYy29Z5ReP\nx/HGG2+IlfD++++jXq+j1+shGo3i6tWrqFar2NnZeWEXMOI0skTUZrNJRiGTyaDdbkulH92Ds7Mz\nLC8vI51Oo9PpCJLR0dER1tbWsLe3J3DvNNnGfRjMeROynPDvkUgEwWAQDx48QCKRwKNHj/DZZ59J\n7nsccblc4ndyghE7MRaLCYbgycmJQNxduXIFoVAIXq9XuBICgYDAmY3z7JhuPDk5kYVTKBTgdrtx\n584dXLlyBZnMeZ+cx+MR1wzA0DSeuquyToTvqxWOXq8XMzMz+MEPfoBisYhmsynMUJFIRHxzQtAB\n4zWvcS4GAgG8++67eO+99wQZ++DgQJQorZ9SqdQ3BwfVDfD6mfGxWq2y0/NZWa1WnJycwO124+7d\nuwgGg+h0OiiXy6jVasjlcmg0Gn0o6N8qS0FdUDQLfT4fkskkotEorly5glqtho8//hhutxsLCwtw\nOByIx+OIx+M4ODiQYhUeyzhAfDinp6eS8iT34tHRkVgRanDz9PRUUIoBSJEMadxVP24Sc5umJ2sg\nLBaL5OCZc8/n80LKOq5SYKpODYoRmpw7CoFgycFYrVYlB85deNzMh1rq3Wq1sLW1heXlZXS7XbHE\nyHhVLpelHF0tSQcm8++NJeKcJ2+++SYcDgd8Pp88Cy5gh8Mh7NMszhp1Tp6DGZWVlRU5Xi6XQ7FY\nlIK3WCyGRqOBWq3WF6A1VkfyPeB58RLRtrmxcGwYFwmHw1haWpIxLBQKogiYhmTtzaRjSbnUSoGT\nkoVJV69exdTUFGw2G7a2trC5uYnr169LTnx2dhbb29vC9cjdiqaiuhtwEjKjQEhutR+Ai8Vms0nU\nmsSzVAalUklQpo0QXaMi9qrZTABQBk0Z6AsGg1KgonbOjZvCOzw8RC6Xw+zsrPSNhMNh5PN5CfSp\nvQ80r2mG67ouNGnjytnZGVqtFj744APs7u4ilUrJs7h3757wNbTbbYkLqJmmUfdkHEMqBELKX79+\nHTdu3JBMDq0/KgSmrGluD4Kc4zhzzFmivbKygjt37kgalzwenU4HXq9XgpqM2zD4yYWqjqWqDFUF\nR1eWtRXcJKampqBpGmq1msScWNJ/fHwsblq73TZVQuPIpVQKwHMzlFWLt27dws2bN+FwOLC3t4dM\nJgOfz4dUKiUMw3a7HYuLiwIzxuAWH8ggOG+1BVXXdTidTnQ6HaFp48JIJBIv5I7L5bKQ2qr0auP6\nkgwuzszMwOfzIZ1Oo91uI5vNYn5+HjMzMwAgfuMkD5kThei/rNdn+Ww2m4XNZsPx8bE0SSWTScnA\nBAKBoSxbZtLr9YT302I5J3nd2dmB3W4XyjjWYqjo0ZMKFw9dBloFTA+6XC4pjuI9ksuDxMEHBwcS\n1DVTtOqCvXLlClwul7iw4XAYvV5PELHZL0PS40wmIxkkNrUBL/I+qM+TMReVKpEKj+ldPrfNzU1s\nbW2JRULHHCp9AAAgAElEQVQlznt+GV6NS6sUWD/A1NaDBw8QiUTENE2lUlhYWMC1a9ewsLAAj8eD\nbrcrLkStVpMeCTOcPJr4uv6cY4HuAYOJrIJTi0QYS8jn85J+YtRZbZMdtXjVHYFsVKxe466taZr0\nehBeHOhXOMOsBl4bg58OhwMejwcLCwvSa0A275OTE8zOzuLq1au4desWZmZmBBp93JQoMwPqTkgX\nhkG/RqMh5DQXVQjq+KkNbPTJmeNnfwJ3cRV3s1KpQNM0yRQNy3YwaMi4FlOFJJ2NRqOwWCyYnZ2F\n3+/H1taWEMXoui7n4oI1Hp/PUA1is5Gs1+shHo8jmUyKBfbRRx9J8Ravm8/XiMj9raho5MOmsLCI\nxUUkwKAbMTs7K3Rd3BG4ENRc9CDEY+DcRGOXHYlCGa0mbyXTlYeHh9IN2Ww2pcNPNTXHCfKoZbIA\nkEgkJH+fSCRw8+ZNxGIxHB4eit84KTT6yckJ9vf3sba2htu3b2NhYQHBYBA3btzA7OwsVlZWsL29\nLWMQCASkR4IFWaQmu6hQUahWlOprX6TM2Ciso2DUnm3hTOdRATI7QFZqlkSPYllSg9XsXmSQOh6P\nY2VlBT6fT+YNr4HVmsa5MUh6vZ7MpUAgIO4cM0FHR0fY29vDw4cPUSwW5djsDG02m31xiG9NoNG4\nsHT9OR2YrutiopHm7fT0FK1WC4VCAevr6/j888+xuroqhR7jEGb0ej00Gg1Eo1Hp3GP6ikQ0sVgM\nPp9Pyk0rlQqq1arApxtNzXF3VtXfnJ2dRSqVwq1bt5BKpeBwOPD48WPs7OxIJRvwIrDMsOPXajU8\nfPgQgUAAf+/v/T28+eabCAaDCIVCSKVSuHnzpuT1NU2TMlnWfnz00UdCNvsyomaRqNgnSdsNEip7\nFvGw3JcBYl0/58oksRBZvxqNxgtw+WbXrI4z40y0IGdmZoR/tNPpSEXr+vo60uk0yuWy8Jqq83mQ\nkAGMDXA+n096GSqVCg4ODpDJZERR08Xm/KGCUy2wb02gkTdydHSEcrmMnZ0duN1uSS3RzC6VSigW\ni3j69Ck2NzexsbGBXC4nrat8EDQTVTF74LVaTeoRmJpj1JdlzwySkbqOXXE8D7Ma4wYCyU5cq9WE\nINVqtUp14fr6OlZXV6VNdlLpdrvIZDL4xS9+IXR3d+/eRSqVknJgNtA0m01Uq1W0Wi08ffoUH3/8\nMdbX1yequxgknOQqIAjHaxLFoGYoqGhoajP2wyBisVjE9vY28vm8kAWzg5H1GIw1DBPOo06ng93d\nXWl6YyqcxMMPHz5EoVCQxi8WEamVhWabBTctpsZtNht0XZdUp91ux8HBgQQ1GXxkVoxKjelVlVbw\nInKplcLp6SlKpRI++ugj7O/vIxqNIpFIIJVK4fj4GE+ePBE6cnWB0mTlcYY13HBgWRBzeHiI4+Nj\naVX1+XwSLKpWqwKiwt2CD5QPhp1848rp6SkODg7wwQcfwG634/bt24jH45JdefToEfb39yViPsrq\nMRvH4+Nj5HI5/OQnP8Gnn36KlZUVfPe738Xs7CxmZ2fRbDZRq9Wwv7+Pg4MDNJtN7O/vY319HeVy\n+aXNe+B5Xcj+/n4fliFfx1WkxlgNsxpM5ZK8lqXnTPcCEKuAVPTGeWIUYwzq8PAQ+XwejUYDW1tb\n+OCDDyRNvLm5Kf05tCi42QzLrqjVjAxINhoNsZAZuyB2A+c5cF4kxR4ItU9imAIaRy41HNvXKWrA\nhyAd7Iz0+/3wer1iitJfY4cac/vqDqpCsT27pwujOavuyEUf7CSiLjQ1HfyqiFs07bwTNRaLYWZm\nBsViEdlsVvr/Jz2H8XpZy8I0IHsHqOS5W7ObFXheG/KbRtxW05G0pph6ZrqUbrAJvNoLx6E7pcZs\nlDk0Fhzb31mloPL98YHQbVD5F6ntGeihz6Zqf7VoRzWFXzWR6jdZmPL0+/3i179KglTVFVGtP+Nz\n4rV8XeSsk4qa+dA0TTp++T6zOaNqOdSMl3EzUT7/WikME8JhPzt/H04j3+Okof+mckoalQmAF+IK\nr5XCc1HH+utajMMqIlWloXZU/qbF6A6xaImiuoy8bmNK2viqWquGsf5mA7d+3TLpgjV+/rU1MJm8\nTDR80nMM+p/6/8uwGQIvXsek9IXDxvWi93hR2rjX8lpey7dU/s5aCq/lXF6mTkDFFATMI+tm7oLR\nRVOvwWgOj2OJmd3DqyiK+rsq3wqlYJxUr2oyGP09o18M9MNzXdZJaFycxusfVpI96p4GKQLGVEaN\ni6oYjO+Nc1/GwrFRn7+oC2FWU6GO6df57NUgIkWFhAcmY0cbJd9opWCMuAKv1lccJ39tDPpcVsUw\naCdWFYX6OVWMWBSqqMczWyTj+vl8NQZ8B4lZcNh4r2bnMzvOOM+MTXOqMCh4dnYmpeCvckMyHssI\ntGOWYRn03UnkG6cU1LQSy5HZ88/iJSOxyKtMeZkhIKkTe5KOQuPxjcd7FWLs+TDb2fm+cUdSlYWZ\nYtD1/lLll92teBymFM2ON8jlGPe8ZtbeKHE6nUgkEggEApLKJrIT+2yKxWJfmvWiYlSyAPrS5A6H\nQ+Y7SXRUCMJXYTFfWqVgXHgcGJfLhWQyieXlZbz99ts4Pj5Gq9VCLpfD3t4eNjc3JQ+udosNm7DG\nCcbuRbfbjampKWm6YhEMMRpYssta/q2trT46LzMhFZ3NZoPf75fcPcE2ASASiUi6c3t7G+Vy2RSh\n2njtZufiOBI2nLsbKeX4PwBS6NPpdF4A/TS6HOoz0nVd0INV1Cm1HmCQ4jAW79D1sFgsppF4HotA\nJF6vV6DfVKYpFcrM4XDIBqJpmvRFHB4eolKpDK0UtVqt+P3f/31cuXIF9+/fl54UAuDwfn/2s5/h\nww8/FFatixRFqS6KCi7EjuDl5WWhM2i1WiiVSnj48KHMEVU5cBy/VcCtxonH34mmTCjv4+NjuN1u\n2Gw2qeE3Tt5hPr9RIfCBOJ1ORKNRzM3NYW5uDl6vVzANVMo6ANJTzx1ELZ4xnosTn33+BOIgGnCv\n18M777wDr9cLXT+nEHv8+LFU/6n3ZfxdFV6DpmlyHuIysnGIDE6cgI1GA5lMBplMRtqpjUU+ZvEI\nFnk5nc6+3c34DFiVp+IgsCmJHAVc0L1eT1qBjfdFa4KAMV6vV7AfCHjDdnjyL5I0haA6fJZq8ZCZ\nwmUp8fz8PKLRKOLxOPx+PzweD4DntSm/93u/J7R/jx49mnhBmsVEOA+5CXo8HqGmYxFdMBiE1+uV\nlnTeg7FWYRK5tEqBopqwtBQ44ba2tqRdlOSaat33qMUzKGrNbr5UKoXl5WVMTU1hc3MT2WxWujNJ\nZgqcKwlaEaq2NxN+5ujoCJVKRZqEut2uIOecnZ3hxo0bcu+rq6sTdRSaZQWoGLxeL2KxmGABhkIh\nBAIBuN1udLtd6dDb398XLAIzv5Xn4e6rYhkQro6txrxn4jN4PB5h16JcuXJFOk/b7bZgXhrPx7El\npFogEJAmMioLtSXa5XJJo5nf75feAlpeKqrzoLEkwjeVH2HceB3hcBjz8/PQNA1Pnz7Fzs5OXzv9\nOGLmEtntduFI5bx4+vQptre3hWOUJd201IDniuqi7tylVwqqsL6dkymbzUofvd/vl88ZS0LHiUyr\nYrVaEY1Gcf/+fdy4cQNWqxV/9Vd/JdYACVKCwaBw9hGsc5gpyt1SragjjDzfIxRcJBKBw+FAvV4X\ncNlJui+B55BqBG2hclDJQugGBQIBnJ2dIRQKCRUeS2zVXdyYIuSCISAscQTpf/N8aqluNBoVyDIq\nDKIx1Wo1ZDIZaSOmmPnYbKOPRqPwer0oFApi2bC5SNfPCViTySQ8Hg96vR5arZZYR+yqHNS9eHZ2\nhkqlIqhRxK+kpeF0OrG0tCT4odPT030s5ZOI0RpjL4TH40G73UatVsPGxgby+Tyi0SiuX78uCpld\novz+y8g3SinwIVM7ZjIZIRhVgU/pz41aQIN8W6fTibm5OczPzyMSiSCTyWBnZwetVkvg1wmqQXIO\n44Ifdk7VxFN3c/rg5GtotVoCGfYyASwqn06ng0aj0UfVpmI/np6ein8OQMBEqFC4G1MxqO5JIBDA\n1NSU8FCmUikhSHW73QDOW+HJqMWuRirVXq8n7eiMywwCv9W0cxCSQCAAl8uFYDAojWr1el1wGYkq\nDZyD2EQiEdRqtT6YdzVYOmjsiM1RLpcFr5NAKlNTU7hy5QreeOMNYWgiS9M4KdlBwnHt9Xpot9s4\nOTnBxsYG9vb2cHR0hFAoBACyManPhMp3HJxQM/lGKQWLxSIdjKRuW1pags1mk52GO7bZgh/1cBhg\nTCQSuH37NpaXl9Fut7G9vS3Qbh6PB/F4HLOzs7Db7QJ+yl2e1sIgf9LMpeH1MR4xPT0Nm82GUqmE\nR48e9bXDGsU46Yz3agw68f16vS48jG63W9B72LZr3EH5XfU66MbRSlhaWhIYMp/PJxyH5NEggnS9\nXpedllygLpcLpVIJFotFgmZmMRn6+SQE9ng8QodH6j5modxuN05OThAOhxEKhcTiqtfrci+0lAaN\nLwFn/H4/yuWyWHJ0ZfP5vIyDGosqlUoXAjtRNydaQzabTZDDj46OBC+Syp3Bb3WMXsZa+EYoBS5y\nDhQRaRwOB/x+P6rVKvb29oR30czMHvZQ1Gi5x+PB7Ows7t27B4fDIfwAVAjT09O4ffs2FhcXX6Bg\nY7CNBCuT3J96DYuLizg7O0M2m8WTJ08mwjI0mqCc/Jy4xLJUg5sqDgVBP/m+Gs02jiNxJohreXR0\nhKWlJSGDITt0oVCQ38vlMprNJo6OjpBKpeB0OhEIBATItV6v93VRqkKMQ15DLBZDKBSSrANRjQnD\nRncoFovBZrOhUqlgb28PlUpF8A5otQwSuhsnJyeiEGipEr3Z4/GICwmcuxRUhsPGb9hcoKXA2Ilq\nAZOentmjRqPRp8Bp1V20LfwboRQoKtwUTTSajSRLHYZsM0yocGw2G+bn5xGLxdDtdpHNZtHpdBAK\nhRAOh7GysiKcAoVCAbVara+HXXUhLmI2cges1+v4m7/5mz5wTjMZFEBV/8eJppKPMrvByUwqOWIb\nMtahac9Rq8wWKXELSFTCYOXx8TFKpRLK5bIAzxJu/vj4WKLqNHGJiJ3P54em9Hgv3CkBiPnMGApT\nhV6vF8lkUmDRy+WywKKzPXkchctAMq0K/litVoTDYfHnySHBOACzAbTUhj0zs/skeU+z2RRQV9Ul\nIyK1ih7F87yMu/mNUgqqCcwJXCwWUSqVpFbATAa9b4z2MpLM1FKlUhEffGFhAdPT03j33XeFT4Dn\n5OIAMNBSGUc0TRMW488//xz5fP7C7b1maVbuHl6vt69Fl2xQFosFjUZD+CUZYCTSjzFCTr+VioVE\nOoS/Pzw8xO7uLiqViqQX6WoRCi4SicBisUjGQQWwUU1gNaYBnNdy+Hw+hEIhgfLnAmXWIZFIYHFx\nEZqmCdmPyqPJwOkov5vPUw2cer1eLC4uYmFhAclkUuYK06sq6QzToMZnM0rOzs5QrVb7MBb8fj9S\nqRQCgYCgdfN/xqzD16YUNE2bBfAXABIAdAB/ruv6v9Q0LQzg/wKwAGAHwN/Xdb2qnT/Jfwng3wfQ\nAfAPdV3/9EJX138dAM4nMH1WQmr5fD7Mz8/DYrEI0aaRmQcwL4el9mehiNfrFTiy4+NjmbiRSETg\nt0ulEtbX17G9vY1CoSCmHRXEpA9DTbMtLCyg2Wzigw8+ENz/SYWLFXgeDNR1He12G263W3aws7Mz\n3L59Gw8ePEAgEEA2m4XD4ZBiH5rXDASaCXfQZrOJfD6PdrsthLIWi0UKvQgtFg6HEQ6HcffuXSwu\nLsJms2F3dxfb29t4/PgxCoXCQB5EQvAzmEefmmnJN998E1arVbILoVAI0WgUvV5PoNnIo0mXaVyQ\nXWYCGIBeXl7GysoKZmZm4PF4JAjY6/UwPz+PYDAolkmv1xPULs7RUXOEbkuhUBDGMrfbjWvXruGt\nt97CycmJcIRwQzLGRi5qrY5jKZwC+Ke6rn+qaZoPwCeapv0MwD8E8P/puv4vNE37ZwD+GYD/CsC/\nB2D52c93AfyrZ68XFjV4YrfbZWLncjnB2wfOK/L4M2nhCBcDy0cLhQIcDgd0XUcsFpO6BAK87uzs\nYH9/X1h+eZyLCJUTST8+++wzZLPZPor1UQFFs3sCIAVCAMSv5/8DgQCWl5fh9XrR6XSEAIdKhSYy\nd1Z1t6Mws8HK0pOTEwEt5XV3u134/X4x7ROJBObm5iSTQ+BaVlIOuy+a8sRZBCDpTxLpMtXo8/lw\nenqKer0unJJcqHR5hvnd6pjbbDaEw2FMTU3h+vXruHnzppADkSD48PBQUrrBYBCLi4uS8UmlUiiV\nSnj8+PHgiYD+cnq1UMvlciEcDiOZTCIUCgmJDZ+vukb4c1Gsj5FKQdf1HIDcs9+bmqY9ATAN4I8A\n/O6zj/3vAP4W50rhjwD8hX4+mu9rmhbUNC317DgXEnWggsEggsEg7HY7CoUC4vE4jo6OEAgEBG67\nXq/37djDFpCaHuSkzOfzqNfrmJmZQSgUQqlUgtfrRTgcRqPRQLFYxObmJnK5nOD8qZV4F71HRpo/\n+ugjgXRXo9G8XjW6bPRX1ftSi324i9BK8Pl8QnADnGcj9vf3sbOzg2KxKOxSdCXUmgf1mmmmMo1Y\nr9dlFz45ORH8S5XFe3l5GXa7XRT706dPkcvlBGV5WL6d59vf3wcAqWTUdR3JZBI2m03ciZs3b6Je\nryOdTmNnZwf5fF6CjO12W57dqB2VCttut2Nubk4K2ggt1263xYLluJMpigHdL774Auvr68hms5J5\nMZ5DtVxVXkin04np6WmEw2HhuGBQWA0SG+fFRTepiWIKmqYtAHgA4AMACWWh53HuXgDnCmNf+Vr6\n2XsXUgrUhFarVfLSuq4jnU4jm82iUqng2rVrcLvdCIVC2N/fl0msRmOHDRCj6PSFj4+PEQqFcHJy\nIuxKc3NzEnQrFotCKqqeQ/XjJjHduIOGw2E4HA7ZZbmg6Jfys5RR98WJzJ2TKVer1YpUKoXFxUVY\nrVZUq1U8evQIT548wc7ODmq1Gnq95+Q6rLYcdj/sAVGVBtOaXBiapuH69etIJBKwWCyCiLyxsSHW\nhapYB90bMwyZTAbNZhOFQgFOpxMbGxuyaEKhEEKhECqVClZXV7G7u4tcLidWDbMywwh2eL+MD7AA\nihR/XLx+vx8rKyvynPisqCTq9TquXr2KR48evRCXMZ6LCogFSXR3PB6PpIypgBmAVCkGeIyLxrWA\nCZSCpmleAP83gP9S1/WGIQikaxPiLGqa9qcA/nTU53hj7BXQNE0g1plTVzUlNajaVjpKY+q6LgqA\nr51ORxqVaIEwh87JqFojatpUve4RYyCLPxQKIRKJSDUh/XGW0xoRno3nG3R85rTp/tjtdiQSCdy7\ndw8LCwvIZrN4+vQpfvWrXyGTyfQRvqr8AWaFOGqzGRmXGIjzeDzybKgQIpEIkskkgPMS9U8++QQb\nGxsoFot9XJzqmJo9q7OzMxQKBVFyvE+HwyFsXrQYNzc3sb+/38eXMKyfw0yomFl7wdQkA8wul0tY\nxw8PD+V9Xhch6Fn8NiqbpF4PU6sAJIsTDAbRbDalAlR1McfdCIfJWEpB0zQbzhXC/6Hr+v/z7O0C\n3QJN01IADp69nwEwq3x95tl7faLr+p8D+PNnxx+5gqgRGdRisIaUcvRdVYXw7Ngj748TjblranvG\nLvx+P3RdF4KWarUqiwTAC+caVyFw8TgcDszNzSEejyMUCuHw8BDRaBSZTEZSpTwfd1314Q8StUOR\nPqnb7catW7eE8erHP/4xPvvsM+zt7Ym1RGuEv3PhmxUTqWPYbDalaYfXzLqSYDCIBw8ewO12Y2dn\nR0huqtWqFDZRIahuySBpNBqiLPnq9XrluXEnPTg4QK1WkwpKjol6T6N2VS5K0gXu7OwgHo+LomWs\ni/TwJycnkqas1+s4PDzE2tqa8JMME3X+8doYPOV18n54LKfTKYoHuDjfA2Wc7IMG4H8B8ETX9f9B\n+de/BfCfAPgXz17/Unn/n2ia9q9xHmCsv0w8gZODA1Wr1RCNRhEOh3Hnzh3cvHlTCpgajYZMbKMP\nPmqhcoKwQIamr8VikYBSvV6XtJka/DMqg3F8VDVoOj09LSnPqakpnJ6e4osvvpCAGieyel/qdQ8S\nmsesKNQ0DfPz89JURvOdHAw8lsoZME5GhWPHSkF2QJKZ2e/34/r165ibm0O5XMaTJ0+wubkpjUnG\nNvNRu5zRSlJ3SVYBsv2caUg18GpUZqOeF+NFBwcH2NnZga7rODg4EPo9WhLFYlE2DXaMapommYdK\npSIBwmHC52axWODz+aSRjffKOAY5OXntVODA11+n8D0A/xGArzRN+/zZe/8c58rg32ia9o8A7AL4\n+8/+92OcpyM3cJ6S/E8vdGWKcBdn7QBbmRcWFuByuVAsFrG3t4fd3V2pwjPKuAOkNv5YrVYsLCxg\nZWVFNPTJyUlfYY+ZDDqX6gIwWu7z+RCPxzEzM4Pl5WUEAgFsbW0hnU6jWCyKYlB3ThUfYtR98Xo9\nHg/Ozs6kDqHZbCKbzSKfz7/AmM1X9RxmloLxXpk35yRmY9fMzAwSiQROTk6ws7ODra0t7O/vS5uz\nsbBnEotLdS+Jc7CwsACfz4dcLtdHbKsGXFVFMM4Ydjod1Ot1bGxsIJvNIh6PIxwOSwbl+PgY+Xwe\n5XJZui/VYrFarYZSqTQWWa8a72C8wGazwev1Sqry6OhI3GcVh0J1IS5qMYyTffglgEFq+/dNPq8D\n+McXupohcnZ2hmaziXQ6DZfLhVu3bqFcLgs92O7urqSd1Ik8ScDPaJXQ7Gbhzfb2NnK53As1EJOc\nixOewaS5uTm89dZbCAaDCAQC6PV6+OSTT7C2ttbnZ6sTmi7EOOdiOpKpPxbYdDodPH361DRjoio8\nY9OW8XO6rkvjFMeB183WXrvdjna7jUajgc8//xzZbFbo+WjKq008dJPGtfDUDIvH45GofKVSAQAx\nxRkYpJvI8uFRwtgIXRGn04m9vb2+mAF9f/ZFABB3hudrt9tjKzqmvhlbajabcLlcsNlsSKfTqNVq\nfaA/tNBUiryLyjeODEb1I9XJOClN+7DjM/jncrkQjUYxNTUlWYdSqdTXY6F+b5yxVBezajHw+9zZ\nXwWfBLMXLPhROxQJysGdaNC1D9u11T4Em80mPrbf75cWaoK6MObwxRdfCFEvAClu4qRm0NIYr1Gv\nRx1r9XnZ7XZJWdtsNmSzWXEfuPvyuKzWfBWM2oPGTcW1GNYkN+oYVD6apknnJ+e8mcU4ZB5++xmi\nJjEzL3JsBi2ZFuVu8DLpnkHnUl+Blw8WAc8zNmo0XLWERrkgo8ZXTY9qmiYZGmZQWKtPRedwOLC9\nvS1WgjqO3F3VGMawazMqV96r+sxUxmfVVVDBSF7FOA+SVz0/jbGQC8i3nyHq61Zoxrr4r+t84/q2\nkwrrL4D+HVn9/7jXNkxo/lN50iqgL86GJyoomvxq5kDNrkwSV1AtCjWFaoyJqIr3ZX3uceVVP89f\n1wb+jVYKX6dcBgvqZYW77st8f5gYFxcrCX8dMk5KVpVvw/P8dclr2rjX8lpeS5+8Vgq/RjGmMNUo\n/7AU56hjmn3votVsF5Fh53+Z+xp2PONxR43lsOv4dY7Vy8qv41pfuw8TiDEgSL91XN/ULG2pxhOM\nxx1VwKO+Dvr/RUQ9/yS1Aur3hx17UNGX+rvZedXPq2lIY1DS7Lvqe4OU2CRjNkopGUupJ5FhChF4\njqLN7INaqXnRc6ryWimMKcYdSn0Aw7gDhh3P+FnjMYYd6+vMvBjPP8mCGaT0jMcftWuP8z01JTrO\n9ZiNq1rMNOo4ZsdgcNXj8cDn8wnASqvVEoQnbhyTjKGqAJiKZNaELf6apkkTmpoiV/s7LiLfeqUw\n7oQetDtzNyLeArEhCULKMl0VxcfMcjDuKuNe0zjvv2rFYGaqD5rYZuNm3NHV91Q4M/5t3OXMzmU8\nFouiNE3rA4RheTFTnizuYWZCpXYzZiZGjYdxbNg96Xa7pQCt3W5LSTMAaeNnufmo86j4Fxxb3pda\nn0NFwQIptoGfnT3ntfzWYTQaH4TaEUfzCXie3+bn1MoyRt9pag2iclPLj9UHQ4DMq1ev4r333kMs\nFhM2nkKhIMQcmUwGnU4H7XYbmqYJnJgqZguH+XWHwwGv14tIJAK32w2XyyWLgvgCKvae1WpFpVIR\npUQE63HGlPdG5KJIJCI9GA6HQxYpdx+PxyO4hkbYO1UhGHdwLhbC25F0xu/3y3Nk52C9Xken05GC\nokwmg3Q6PRBbwW63491330UwGMStW7cwNTUFp9MpUPKEqedx6/U6Tk5OsLq6itXVVWQyGRQKBVlI\no8ToerDzNJlM4p133sG9e/ek/4YNU41GQ2o0Tk5OpHpzUDZIrbUgzL+u632Q8URfIoyA1+uV1vdu\ntytl8cR1vGgdxqVUCurupKL/EK+ftfWspydCsTrB2u12H1KQSkhiPJdaG8/dQ6XsWnjWrMTFSXxD\nXhPLZVWzzQw2XLUQuFuybZrgHdFoFPPz82KBsCNUhXwj/2G1WkWn05GFbHYudWejYiX03NTUFP7w\nD/9QevaJZ0DkKtYbUAGyV4HK1Uw5UOkQ9j0SiWB2dhY+nw/hcBi6rguUHkuh4/G4nIutxzSPjTEX\n7pYulwuLi4uYmZlBLBaTyk0iQB0eHqLT6QiBkN1ux/379xEIBPDll19KKTaVwiTWGzeM5eVl3Llz\nBwsLC8jlciiXy9jY2MDh4SFcLhfi8TgsFovAzg9boJyHbHpjc5dqqRK4mCxlZKzyer3Cc8F5Y+SB\nmEQunVIw20050bgbkCsgHA7LYLN3wOl0olqtChDHoAVKMTNRNU0T+PipqSmEQiEhGgH6B5pmMHcB\nM6fYxAsAABXnSURBVO2sKjn1PQJ0zM3N4Tvf+Q7u3r2LaDQqWH7ENSSMOrEeOAEGMREZFxMVkN1u\nFxq1+fl5vPHGG3jnnXfE/FRbl8nXSRi2qakpQTsadi4A0qk4OzuLpaUlIYgBznEU8vm8LFx2VJKj\ngWQwg3oSOL5HR0eyA9NtI3x8qVSSHZULyu/3Q9M0TE9P4/DwUPoHJhVNO0fIun79Ov7gD/4A8/Pz\ncLvd+NnPfoa9vT2USiV5NjwnIQIHKR11DI3NWmovCPsqaPXa7XaEw2F0u11xV1iw9jJZikupFMyq\n0Oi/xeNxJBIJ+Hw+IUIlRh93QPYpjIo4D7sGknokk0nE43FsbGzg4OAAfr+/D2qL2ltVBqr1Mej4\nPMfMzAzeeustfPe73xWknrW1NWxvb8NisaDZbMLv9yMYDMpu0ev1ZDGY+fnG++ZY0uycm5vDm2++\niXv37qHT6eDg4AC5XA65XE7cl0gkIl15vEeS0BpFVabcSSORiLS4h8NhHBwcYGtrC48fP5ZJzQ7C\nSCQiVsoglCc1TkG3ivgGANDpdLC1tSVAOTxGKpXCzMwMvF6vuDQej0eYsczGbNhzI3vXe++9h/v3\n78PhcOCrr77Cxx9/LFYqLS8S0XInJz6mmRjdS+OmAzzvFuZGSX6JbrcLp9MpMQUGYC9iJQCXUCmo\nEX11hyXCDZtuyuUy1tfXpeut1+uJT55Op+VYwHOEoHGF5/T7/cJlQJiy09NTcRssFssLxLbqfQw6\nNndtktgmk0nY7XZUq1U8ffoUf/mXf4lmsylKYGZmRiDRdf0c3v74+HjsZh5aCuQMuHr1KmKxGMrl\nMr744gvs7u5KcMrr9eLq1asAzolj6vU6Go0GSqXS0Cg9J7WKgMQFkcvl8OWXX2J9fR2lUqnvmRIv\nQIXI530NymJwDLvdLmq1GsrlskDzdTodafQioWwoFEK324XL5QIA2UCM8ahRioF9HW+99RZ++MMf\nIhqNYnd3F1988QW2t7f7FDRBfu12O5LJJE5PT02xGQeNI11VtmEzUEkl7ff7EY/H5ZxUqmqPy7hI\n1Ua5dEoB6I/wUiMSxz+VSqFaraJQKAi8FQNiHo/nBZIPVTFMMkA2m03o7um+eL1e0f40dbkDmAXE\nBt0PA0YLCwu4du0apqencXx8jM8++wzvv/8+dnd3ZdHQejg9PYXb7X6BAcmYelInt7pz0wednp6G\n3+9HqVTC2dkZPvnkEyGc8Xq9wqTNMSQeJVt1B1lfagCYu2QwGES328WjR4+wvb2NUqkkcR5+lvep\n63ofFsYwS4EmeafTETLaUqkkiERcSABE6RwdHUmDFAOMdrt9rBZ0Xq/D4cDNmzfxJ3/yJ5ibm0O9\nXsdHH32Ev/7rvxalynEDznkoYrGYxE+2traGolcZnyF/1L4VXdeFMpEt6ZVKRZQClQmf+zit4Ua5\ndErBqCnZ+ebz+bC0tCQak1yILpcL09PTiMfj0oVHLkIuGJq/4woHVNd1HB0dCYAmacrY4MPFop7L\nzGQzC/gx0JdMJmG1WrG3t4e1tTXhPaBpzRw46dbL5bLprqCey3gv3BnJgXnlyhU0m02BQuv1en2A\nL+FwGDabDaurq8jlckin033YDmbjRbHb7QgEAjJWmUwG5XK5T3HyvtjOTQAYXT/HHODYD3KLOAc4\n4ev1el+enunja9euYW5uDlartc90VyPzZkFaM7FarUgmk/jjP/5j3Lx5E71eD++//z5+9KMfIZ1O\n9yliZgroQvl8PqTTaTgcjhcUq5lCUhWC2qXLcZmdnUUkEhGr6uDgQGDf6Lo6HI6xs1Iv3OvE3/g1\nC3e7cDgsGp+TmIxOTHu1222k02nhFOTA0teaRMj/wOxGNBqVuAbZjIy7E025YQ+CloLKJUG+BT5U\nYkIykKQGOxlMY5R5GEQ5FyuzN36/X6j2eM0k1iFr9NzcHGw2G/b391EoFLC5uYlSqSQLaZiZTZ/7\nypUrgm9JbgbyIqopPb/fLy6Rpmli/rOz0iyIyd+NwC66rgsDM7EVrl692odpwHvv9c7RnlnTMEoY\neL1//z7eeecd2Gw2rK2t4Sc/+QnW1tYEnFZ1C8PhsFARkP5t1LnM3F0Gvfn9s7MzcYNoKVWrVSFA\n4lgYM2qTyKVTCsZUGn0jAOIaBAIBMfuCwSDi8TgAIJvN9gFc8hiT4h9w9zg+PhYwkmg0KgNeqVQE\nTZcm6TBloF4L3SGCkdDqODk5QSAQwMrKCsrlspjzkUhEIszEiGSKclChlDqWako3EAgI4rCmnZPB\n3Lt3D6enp/D5fPL5SqWCSqWCra0twRc0q5DjTqZaALwv4Bxc9fDwEE6nU0heaf1RoTPDsbOzIxmJ\nQdV46qJSU9QE9KVFR5fy4OAATqcTHo9HgF3///auLratsww/b5y4duIkduw4jt2ma9Lsp50mNk1o\nF1PvBmM3hbtdsQskbkCCCy6GdrNbkOACCSGBmDQQYjfA2A1SgW1CmkbpaNc2aZsmTeP81I6dOH/O\n3xzn48J+3n0+tR2na2cHnUeK7Jw457zn83fe7/373ofZA1LnOedbNbC9+0svvaSu1/vvv49Lly7p\nWLIFu9frRTgcVu5RABoYrjVH7Lluf29MH9suq4ggGAxqk9hcLleRIrav8aAZiJZTCrb7QM24tbWF\nqakpiIi27+7p6cHe3h5isRg6Oztx/fp1XLp0SQs57PPwvNXg9MGp7UkVx/x9V1cX9vdLzUlZ5CMi\nDXFH8hr8H/qJmUxG+wqyRyPTkdlsFh6PRyPnqVQK4+PjmJ6e1oBnrevamQBmK/iQkDeyv78fvb29\n8Hq9yOVyWFxchIgo98Pdu3e1eMgZn6n2fdG8LRQKqkh6e3u1wzZdIKaTyZuQSqUwOTmpRVgHdZ1i\nuvP5559HMBjE9PS0uhJsw0aez2QyqWnqs2fPIhAI6ILC+ZNMJqumjAmPx4NTp07h5ZdfxpNPPomV\nlRVcvHgR7777rs6F7u5uJBIJFItFtQKfeuoptcKuXbtWQQJbbQw5fiKiyiAQCODkyZOIRqMaV2MA\nM5lMIplMKkeIHTRlTOWRMUQ1A05TcXd3FxsbG5icnFSTzOPxIJFIVPRPZEDH7vd3UFrGVkDUzmwl\nFolEtDqORLOhUAj7+/u62ju7A9e7JzvYWSgUtPZBRJTfsLu7WyPlpB9jdJk5fDsPXe9B5f3ZLE80\nzVnYY6cFl5aWsLS0hMXFRU15OpWrc+z4yvHjgykiGlTk9bu6utDb26s/DPYxRuC0EKpdk2nFRCKB\n/f19ZZpi2zXWrbC5LvlAl5eXEQwG1W0pFotaEcj9CbXmB1OYXO2npqa0gIhKjkE/kvrEYjHEYjGs\nra1heXkZqVTqQLeSVp3f71dGMsZdmFlra2vD1NSU8ozancftNLlNJXfk3QfCNv1FRBmLNzY29EF9\n4okn4Pf7MT8/r01cq1GLN+ILc7Xr6elBf38/jh8/jkQigXA4jO3tbaysrGBoaAg+nw+hUEjrz52K\nx44SE05rZX+/1JG3r69PG23ShywUClhaWoLP58OJEyfQ09Oj5vz6+npFGzPbwql2b1RyVDA0cbkf\ngGzQ4XBYKdxYu1+LAq+a9UVZmLlob2/H7u6uln3z+owH0dJir0ibQ7LWtezvieXSOzs7WhLOWAQL\nvPb29pQPhKXGtCCZ0mPrtnqggqHsbAzMTA0VDVBiwh4cHMTQ0BD6+vogIpifn8ft27cbJpVlmpqK\ngZZOT08PvF4v8vm8zgMqfM4/KggGYA9i9aqFllUK9s3YXXZsPzYcDqNQKCCZTFaY1NX+rx6oEAKB\nAAYHBzEyMoKzZ89qxeTMzAxyuRxisZj6sqyzt6PC9rWcboktE1NvNp+hXXabz+dx+vRpLafe2trC\n3NxcBTHqQe4Q/VsWYZGjgCsaTfXR0VH09/djYWEBq6urOuGcbehquWG2m0J2Jrscl5V4TCGSHZxZ\nJcZlaEXVs0qMMfD7/Xj88cfV/WCNA+NOZKIuFouIx+OqAOyekaFQCMvLyxUrbL05wjEnS3U8Hsfx\n48c1U8JakkQigTNnzuiCMTY2punYRh5QOw0ej8dVAQaDQV0YJycndY8DFXGhUNAKTgBa8/KgaFml\nYMP5cHPDiN/vRzqdxuzsbAV3AXEYLcmim4GBAZw+fVpXIprUrBTr6+tT/gegssy5VsTXfs8JSzZi\nrgisA1heXobX68Vjjz2mltHMzIxyBlDxNVK27fV6VcmFQiF0dHRgZ2cHa2trupqz0zKJSkgwYp+v\n0XH0+Xzo7u7WQB9Tnh6PRynTqRxERMudGUeotzmJi8He3h6i0SgGBweVNm14eBgdHR3o7e1V9+vE\niRMYGBio4NAk0zUAXfHZLr+W/03rYGZmBs8++yzC4TCefvpp+P1+JJNJ3Lt3D6FQCOfOnUM4HNa0\n482bN3H58mWMjY0hk8nUVeQE3QEGhtmVulAoaGZtZmYGmUxGFzLWeNBK29nZqdgs+CDdqltaKVRb\naTkQoVAIu7u7WhTTSNygHmiSU1vzdXZ2Fm1tbejv79eNO4yq2/62LWu9GAMbjObzeU2dbW9va0nz\n1tYWotGockBks1lkMhl9cGptfHIeA0qTLBwOI5FIoL+/X7kEmMkYGhpCV1cX8vk85ubmlI+Bq+dh\nir3sMaDPTkuA8RgqwPb2dqyurmJxcVF3MFajPHO6DrwnZih8Ph9GR0c10MdAHMllfT6fbpLjhimP\nx4OlpSXMzc0hk8k0pPRIAjM+Po5nnnkGgUAAo6OjCIVCOHnyJCKRiMY4Njc3cfXqVYyPj+PGjRtY\nWFhQi6kWONY2oTFjM7RC79y5o4QynAfcQUllSZZwWqL/d1unnaCJymjv0NCQcjvWo4A/TKCFK+b2\n9rb6n/F4HF1dXYjH4/D7/VhZWcG9e/ewsLBQ8TlbORwUeORKT2YhanlGmEdGRhCNRtW/T6VSatY7\nz1/t/mwFRR81Eonog1csFvVYLpfDzZs3cfHiRaRSqYoKuGo+fb2xpL/OVHEwGMTy8rJSnvG7o0Uy\nPT2NbDaLfD6v57eDl9WUHXcdZrNZ3QPz2WefqdtCF4n8CIzOb2xsIJ1OK71gNptFOp1uaG7s7u5i\ndnYWH374IYwxOHPmDDY3N9HZ2YlgMKhZKWZSLl++jOnpaaytrVX0bzgIxWJRi5ECgQCi0Sg8Ho/G\nk7LZrG5c4yLGGE2hUFBLDMAD1eYQR0opsNR0eHgYQ0NDSKfT95m7zv9pFMYYpeK6c+cOACCRSCAU\nCiESieDYsWPIZDIYHx/HlStXtLeAs1ag2gpbbYLbSoHVhIFAALFYDMPDw+jq6sLq6iru3r2rRT12\nzMRuQ1YLvIZdO8DKzHw+j1AohImJCXz88cdIJpP31VxUW6mrjRsAdYnI6cBIeU9Pj+7q5E7G9fV1\nzM7OanWm3f+iXhxof38f29vbyGQyuHLlCmKxmAYMd3Z2NM7ABSSdTiuVWzqd1qK2nZ0d3SnJ89Yb\nR9aS3Lp1C9vb2/joo48Qj8f1Htva2rC+vq7WFq9Tb9NatTE0pkSEs7m5iYWFBezu7mrB3srKSsWm\nMbsHCF9pHRzUu+EgHAmlwBWEK83AwADa2towNzdXUazEzxIcrEasBdYOrKysYGpqSgc4Ho+jra0N\nk5OTShtnZwLsL7Ra5sF5H/b12H+hvb0dwWAQIyMjmiXI5XK6R5+Kj7nnw3BRkHl5YGBAV1HuFJyf\nn8eFCxcwOzt7X+bGGSitdl/2cU5oZjRSqZQ2cAmHw9jc3MTa2hrm5+eRy+WwurqqZi4Vvp1qrWX5\nsQ7iwoULCAaDutuR/TPolzPuw01rvDePx6OZinoWphMsrb916xZ8Ph8mJibQ2dmp3+Pm5mbF3gNn\nZuYg2J+hErD7WhSLRb1HO/3IkngyTzNYfVBhWz20LEOUbUay+IVBs2g0io6ODnzwwQdIpVI1q+AO\nm6O1r8lX+z0H+bAVks5r2ClQ5t252SoSicDv92vgb21tTYNxTn/7IBnYR4Bl4KSNy2azukqTW/JB\nJ5B9X+xPCKCi14M9XnbPwsOOox1X4PdxmECofQ4btkL/IqhXO9IInDUvtTI+jS46VXD0aePsScCi\nE9a3G2OwuLiI9fV11dCP8l4e1qRxmnxcJfkQ0SLi3nlntuEwE495eF6DvQzZz4DnfRgKodoxp6xO\ny6LWuWpZKzzXF334nPI+LKXwMODc7vygCu+LKIWWdh/sL4tBPa6YNP248jzqL/Rhnd9pjXDVtFvH\n2TvpbOXhVCo8Ty3ZnGZstaDoYWWv9j+1XDfnSndQDUK9AGq1azwIDoqNNBsHFYzVwsNUai1tKbhw\n4eKhoiFLwWWIcuHCRQVaxX1YArBZfj1KiMCV+VHjqMkLtK7MJxv5UEu4DwAgIp80Ytq0ElyZHz2O\nmrzA0ZTZhus+uHDhogKuUnDhwkUFWkkp/LrZAjwAXJkfPY6avMDRlFnRMjEFFy5ctAZayVJw4cJF\nC6DpSkFEXhaRCRGZEpHXmy1PLYjIjIhcF5FPReST8rE+Efm7iEyWX0NNlvEtEcmIyJh1rKqMUsIv\nyuN+TUSeayGZ3xSRhfJYfyoir1h/+3FZ5gkR+XqTZD4hIh+IyA0RGReRH5SPt/RYNwy7Fv3L/gHg\nAXAHwDAAL4CrAM40U6Y6ss4AiDiO/RTA6+X3rwP4SZNlPAfgOQBjB8kI4BUAfwMgAF4AcLGFZH4T\nwI+qfPZMeY4cA3CqPHc8TZB5EMBz5ffdAG6XZWvpsW70p9mWwlcBTBljpo0xnwF4B8D5Jst0GJwH\n8Hb5/dsAvtlEWWCM+ReAnONwLRnPA/idKeHfAIIiMvjlSPo5ashcC+cBvGOM2TXG3AUwhdIc+lJh\njEkZYy6X328AuAkggRYf60bRbKWQAGDzm8+Xj7UiDIALIvJfEflu+diAMSZVfp8GMNAc0eqiloyt\nPvbfL5vab1luWcvJLCKPAXgWwEUc3bGuQLOVwlHCi8aY5wB8A8D3ROSc/UdTshNbOpVzFGQs41cA\nRgB8BUAKwM+aK051iEgAwJ8A/NAYs27/7QiN9X1otlJYAHDC+v14+VjLwRizUH7NAPgLSmbrIs3A\n8mumeRLWRC0ZW3bsjTGLxpiiMWYfwG/wuYvQMjKLSAdKCuEPxpg/lw8fubGuhmYrhUsARkXklIh4\nAbwK4L0my3QfRKRLRLr5HsDXAIyhJOtr5Y+9BuCvzZGwLmrJ+B6Ab5cj4y8AWLNM36bC4W9/C6Wx\nBkoyvyoix0TkFIBRAP9pgnwC4LcAbhpjfm796ciNdVU0O9KJUmT2NkqR5DeaLU8NGYdRinpfBTBO\nOQGEAfwTwCSAfwDoa7Kcf0TJ3C6g5Ld+p5aMKEXCf1ke9+sAnm8hmX9flukaSg/UoPX5N8oyTwD4\nRpNkfhEl1+AagE/LP6+0+lg3+uNWNLpw4aICzXYfXLhw0WJwlYILFy4q4CoFFy5cVMBVCi5cuKiA\nqxRcuHBRAVcpuHDhogKuUnDhwkUFXKXgwoWLCvwPBQpz1kOXwhAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# z_sample for generate imgs from prior\n", + "z_sample = 0.5 * torch.randn(64, z_dim).to(device)\n", + "\n", + "# fixed _x for watching reconstruction improvement\n", + "_x, _ = iter(test_loader).next()\n", + "_x = _x.to(device)\n", + "\n", + "for epoch in range(1, epochs + 1):\n", + " train_loss = train(epoch)\n", + " test_loss = test(epoch)\n", + " \n", + " recon = plot_reconstrunction(_x[:8])\n", + " sample = plot_image_from_latent(z_sample)\n", + " \n", + " print('Epoch: {}'.format(epoch))\n", + " print('Reconstruction')\n", + " imshow(torchvision.utils.make_grid(recon))\n", + " print('generate from prior z:')\n", + " imshow(torchvision.utils.make_grid(sample))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/English/01-DistributionAPITutorial.ipynb b/tutorial/English/01-DistributionAPITutorial.ipynb new file mode 100644 index 00000000..f16b3d1c --- /dev/null +++ b/tutorial/English/01-DistributionAPITutorial.ipynb @@ -0,0 +1,743 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Define probability distribution by using Distribution API\n", + "\n", + "\n", + "Distribution API document: https://docs.pixyz.io/en/latest/distributions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "from torch import nn\n", + "from torch.nn import functional as F\n", + "import numpy as np\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Define probability distribution without Deep Neural Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.1 Define a simple probability distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To define a Gaussian distribution, we need to\n", + "1. import `pixyz.distributions.Normal` class\n", + "2. set mean (loc) & variance(scale)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal\n", + "\n", + "x_dim = 50\n", + "p1_nor_x = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.), var=['x'], features_shape=[x_dim], name='p_{1}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define a variable name in `var` (in this example, variable name is x), and specify the number of dimensions in `features_shape`(in this example, the number of dimensions 50(x_dim)). \n", + "\n", + "We can check defined probability distribution's information." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal\n", + "p_{1}(x)\n" + ] + } + ], + "source": [ + "print(p1_nor_x.distribution_name) \n", + "print(p1_nor_x.prob_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In `distribution_name`, we can check the name of distribution.\n", + "\n", + "In `prob_text`, we can check the probability distribution in text and random variable shows `var` defined above(x).\n", + "\n", + "By printing p1_nor_x,we can overview the features of the distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{1}(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{1}, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (loc): torch.Size([1, 50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + } + ], + "source": [ + "print(p1_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check the defined probability distribution in LaTeX format. \n", + "Note: We use external library SymPy(https://www.sympy.org/en/index.html) for outputting LaTeX format. The order of the terms in the formula can be changed(but not affecting the result) due to the SymPy." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$p_{1}(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print_latex(p1_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can sample from the defined probability distribution by `.sample()`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'x': tensor([[-1.5256, -0.7502, -0.6540, -1.6095, -0.1002, -0.6092, -0.9798, -1.6091,\n", + " -0.7121, 0.3037, -0.7773, -0.2515, -0.2223, 1.6871, 0.2284, 0.4676,\n", + " -0.6970, -1.1608, 0.6995, 0.1991, 0.8657, 0.2444, -0.6629, 0.8073,\n", + " 1.1017, -0.1759, -2.2456, -1.4465, 0.0612, -0.6177, -0.7981, -0.1316,\n", + " 1.8793, -0.0721, 0.0663, -0.4370, 0.7626, 0.4415, 1.1651, 2.0154,\n", + " 0.2152, -0.5242, -0.1860, -0.6446, 1.5392, -0.8696, -3.3312, -0.7479,\n", + " 1.1173, 0.2981]])}\n", + "--------------------------------------------------------------------------\n", + "tensor([[-1.5256, -0.7502, -0.6540, -1.6095, -0.1002, -0.6092, -0.9798, -1.6091,\n", + " -0.7121, 0.3037, -0.7773, -0.2515, -0.2223, 1.6871, 0.2284, 0.4676,\n", + " -0.6970, -1.1608, 0.6995, 0.1991, 0.8657, 0.2444, -0.6629, 0.8073,\n", + " 1.1017, -0.1759, -2.2456, -1.4465, 0.0612, -0.6177, -0.7981, -0.1316,\n", + " 1.8793, -0.0721, 0.0663, -0.4370, 0.7626, 0.4415, 1.1651, 2.0154,\n", + " 0.2152, -0.5242, -0.1860, -0.6446, 1.5392, -0.8696, -3.3312, -0.7479,\n", + " 1.1173, 0.2981]])\n" + ] + } + ], + "source": [ + "p1_nor_x_samples = p1_nor_x.sample()\n", + "print(p1_nor_x_samples)\n", + "print('--------------------------------------------------------------------------')\n", + "print(p1_nor_x_samples[\"x\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Output is dict type.\n", + "\n", + "We can check specific variable's sampling output by specifying the variable name in output dict.\n", + "\n", + "Sampling result is a PyTorch Tensor." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.2 Define conditional probability distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we define a conditional probability distribution using an example of a Gaussian distribution.\n", + "\n", + "In Gaussian distribution, parameters are mean($\\mu$) and variance($\\sigma^2$). In this example, we define a Gaussian distribution conditioned by $\\mu$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$p(x|\\mu_{var}) = \\cal N(x; \\mu=\\mu_{var}, \\sigma^2=1)$\n", + "\n", + "We set conditional variables to `cond_var`. \n", + "In this example, we set mu_var to a Gaussian distribution's mean, so in the distribution argument, we set \n", + "- cond_var=['mu_var'] \n", + "- loc='mu_var' " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 50\n", + "p1_nor_x__mu = Normal(loc='mu_var', scale=torch.tensor(1.), var=['x'], cond_var=['mu_var'], features_shape=[x_dim])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|\\mu_{var})\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=['mu_var'], input_var=['mu_var'], features_shape=torch.Size([50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p1_nor_x__mu)\n", + "print_latex(p1_nor_x__mu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We successfully define a Gaussian distribution whose mean conditioned by $\\mu_{var}$. \n", + "Let's try sampling x setting $\\mu_{var}=0$. \n", + "We set variable in sample method argument dict. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mu_var': 0,\n", + " 'x': tensor([[-0.5962, -1.0055, -0.2106, -0.0075, 1.6734, 0.0103, 0.9837, 0.8793,\n", + " -0.9962, -0.8313, -0.4610, -0.5601, 0.3956, -0.9823, 1.3264, 0.8547,\n", + " -0.6540, 0.7317, -1.4344, -0.5008, 0.1716, -0.1600, -0.5047, -1.4746,\n", + " -1.0412, 0.7323, -1.0483, -0.4709, 0.2911, 1.9907, -0.9247, -0.9301,\n", + " 0.8165, -0.9135, 0.2053, 0.3051, 0.5357, -0.4312, 0.1573, 1.2540,\n", + " 1.3275, -0.4954, -1.9804, 1.7986, 0.1018, 0.3400, -0.6447, -0.2870,\n", + " 3.3212, -0.4021]])}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p1_nor_x__mu.sample({\"mu_var\": 0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we assume $\\mu_{var}$ itsself is conditioned by some probability distribution. \n", + "We assume $\\mu_{var}$ follows Bernoulli distribution. \n", + "$p(\\mu_{var}) = \\cal B(\\mu_{var};p=0.3)$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true, + "scrolled": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Bernoulli\n", + "p2_ber_mu = Bernoulli(probs=torch.tensor(0.3), var=['mu_var'], features_shape=[x_dim])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(\\mu_{var})\n", + "Network architecture:\n", + " Bernoulli(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['mu_var'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (probs): torch.Size([1, 50])\n", + " )\n", + "{'mu_var': tensor([[0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0.,\n", + " 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]])}\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p2_ber_mu)\n", + "print(p2_ber_mu.sample())\n", + "print_latex(p2_ber_mu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In Pixyz Distribution API, joint distribution can be defined by multiplying distributions. \n", + "Let's define the joint distribution $p(x, \\mu_{var})$ multiplying $p(\\mu_{var})$ and $p(x|\\mu_{var})$. \n", + "$p(x, \\mu_{var}) = p(x|\\mu_{var}) p(\\mu_{var})$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})\n", + "Network architecture:\n", + " Bernoulli(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['mu_var'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (probs): torch.Size([1, 50])\n", + " )\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=['mu_var'], input_var=['mu_var'], features_shape=torch.Size([50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint_mu_x = p1_nor_x__mu * p2_ber_mu\n", + "print(p_joint_mu_x) \n", + "print_latex(p_joint_mu_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Sampling from joint distributions also can be done using `.sample()`. \n", + "All variables and values are output in dict type." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mu_var': tensor([[1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1.,\n", + " 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.,\n", + " 0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 1.]]),\n", + " 'x': tensor([[ 3.6415, -0.9624, 0.7924, -1.3889, 1.0127, -0.8734, 1.7997, 1.2824,\n", + " 1.6604, 0.2717, 0.1913, 0.1267, 0.5707, 0.8652, 0.3437, 0.3718,\n", + " 0.1444, 1.7772, -2.3381, 0.1709, 1.1661, 1.4787, 0.2676, 0.7561,\n", + " -0.5873, -2.0619, 0.4305, 0.3377, -0.3438, -0.6172, 2.2530, -0.0514,\n", + " -1.0257, 0.5213, -2.3065, 1.6037, 0.1794, 0.1447, 0.6411, 0.4793,\n", + " 0.7617, -0.3542, -0.2693, 2.3120, -0.8920, -0.7529, -0.0573, 2.2000,\n", + " 0.9912, 0.9414]])}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint_mu_x.sample()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Define probability distribution with Deep Neural Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we master how to define probability distributions with deep neural networks.\n", + "\n", + "For example, a Gaussian distribution's mean $\\mu$ and variance $\\sigma^2$ can be parameterized by $\\theta$ like this way: \n", + "$\\mu=f(x;\\theta)$ \n", + "$\\sigma^2=g(x;\\theta)$ \n", + "$f(x;\\theta)$ and $g(x;\\theta)$ stands for deep neural networks.\n", + "\n", + "${\\cal N}(\\mu=f(x;\\theta),\\sigma^2=g(x;\\theta))$ \n", + "\n", + "Let's define\n", + "$p(a) = {\\cal N}(a; \\mu=f(x;\\theta),\\sigma^2=g(x;\\theta))$.\n", + "\n", + "In Pixyz, we can define this kind of probability distribution by inheriting `pixyz.distributions` class." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal\n", + "a_dim = 20\n", + "\n", + "class ProbNorAgivX(Normal):\n", + " \"\"\"\n", + " Probability distrituion Normal A given X\n", + " p(a) = {\\cal N}(a; \\mu=f(x;\\theta),\\sigma^2=g(x;\\theta)\n", + " loc and scale are parameterized by theta given x\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(ProbNorAgivX, self).__init__(cond_var=['x'], var=['a'])\n", + " \n", + " self.fc1 = nn.Linear(x_dim, 10)\n", + " self.fc_loc = nn.Linear(10, a_dim)\n", + " self.fc_scale = nn.Linear(10, a_dim)\n", + " \n", + " def forward(self, x):\n", + " h1 = F.relu(self.fc1(x))\n", + " return {'loc': self.fc_loc(h1), 'scale': F.softplus(self.fc_scale(h1))}\n", + "p_nor_a__x = ProbNorAgivX()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, clarify that the parameters of the Gaussian distribution are defiend by the deep neural networks by inheriting the Gaussian distribution. \n", + "\n", + "\n", + "Next, describe the neural network architecture in constructor just like when we are writing PyTorch.\n", + "\n", + "\n", + "The only difference is that we set `var` and `cond_var` to `super()` args.\n", + "\n", + "We set the output variable name to `var`. And we set the NN's input variable name to `cond_var`. We regard this input variable as conditioning variable of this Gaussian distribution. \n", + "\n", + "In forward method, there are two caveats.\n", + "\n", + "* `forward()` args's variable name and variable number shold be the same as those set in `cond_var`. For example, if we set `cond_var=[\"x\", \"y\"]`, we must set `forward(self, x, y)`\n", + "* return output should be parameters of the distribution as dict type. In this Gaussian distribution example, we set parameters `loc` and `scale` in dict type.\n", + "\n", + "Finally, make an instance of defined probability distribution.\n", + "\n", + "Let's check the distribution features by `print()`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(a|x)\n", + "Network architecture:\n", + " ProbNorAgivX(\n", + " name=p, distribution_name=Normal,\n", + " var=['a'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=50, out_features=10, bias=True)\n", + " (fc_loc): Linear(in_features=10, out_features=20, bias=True)\n", + " (fc_scale): Linear(in_features=10, out_features=20, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(a|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p_nor_a__x)\n", + "print_latex(p_nor_a__x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This distribution is conditioned by x like we set `cond_var` when defining constructor." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do sampling by `.sample()` but there is one point to be care about.\n", + "\n", + "This is conditional probability distribution, so we explicitly input conditional variable when sampling.\n", + "\n", + "We prepare `x_samples` and set `x_samples` to conditional variable `x`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_samples = torch.Tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085,\n", + " -0.2155, 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196,\n", + " -0.5484, -0.3472, 0.4730, -0.4286, 0.5514, -1.5474, 0.7575,\n", + " -0.4068, -0.1277, 0.2804, 1.7460, 1.8550, -0.7064, 2.5571,\n", + " 0.7705, -1.0739, -0.2015, -0.5603, -0.6240, -0.9773, -0.1637,\n", + " -0.3582, -0.0594, -2.4919, 0.2423, 0.2883, -0.1095, 0.3126,\n", + " -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880, -1.1435,\n", + " -0.6512]])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'x': tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", + " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", + " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", + " 1.7460, 1.8550, -0.7064, 2.5571, 0.7705, -1.0739, -0.2015, -0.5603,\n", + " -0.6240, -0.9773, -0.1637, -0.3582, -0.0594, -2.4919, 0.2423, 0.2883,\n", + " -0.1095, 0.3126, -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880,\n", + " -1.1435, -0.6512]]), 'a': tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", + " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", + " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", + " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", + "tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", + " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", + " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", + " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", + "tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", + " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", + " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", + " 1.7460, 1.8550, -0.7064, 2.5571, 0.7705, -1.0739, -0.2015, -0.5603,\n", + " -0.6240, -0.9773, -0.1637, -0.3582, -0.0594, -2.4919, 0.2423, 0.2883,\n", + " -0.1095, 0.3126, -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880,\n", + " -1.1435, -0.6512]])\n" + ] + } + ], + "source": [ + "p_nor_a__x_samples = p_nor_a__x.sample({'x': x_samples})\n", + "print(p_nor_a__x_samples)\n", + "print(p_nor_a__x_samples['a'])\n", + "print(p_nor_a__x_samples['x'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Output contains samples of a and x.\n", + "\n", + "a is samples by `.sample()` from the distribution and x is feeded `x_samples`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Next Tutorial\n", + "02-LossAPITutorial.ipynb" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/English/02-LossAPITutorial.ipynb b/tutorial/English/02-LossAPITutorial.ipynb new file mode 100644 index 00000000..809a248f --- /dev/null +++ b/tutorial/English/02-LossAPITutorial.ipynb @@ -0,0 +1,877 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## In deep generative models, model design means defining objective functions\n", + "- Any deep generative models explicitly set the objective function to optimize\n", + " - Autoregressive models・Flow models: Kullback-Leibler divergence(log likelihood)\n", + " - VAE: Evidence lower bound\n", + " - GAN: Jensen-Shannon divergence(GAN also needs update of objective function itsself(=adversarial learning))\n", + "- Regularization terms of inference or random variable representation is incorporated in the objective function\n", + "\n", + " \n", + " - In deep generative models, model design means defining objective functions\n", + " - Unlike traditional generative models, deep generative models don't inference by sampling\n", + "- A framework that receives probability distributions and defines the objective functions\n", + " - LossAPI \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Receive probability distribution and define the objective function\n", + "- Loss API document: https://pixyz.readthedocs.io/en/latest/losses.html#\n", + "\n", + "We take probability distributions defined in Distribution API and define the objective function. \n", + "In order to define the objective function, it needs these elements. \n", + "1. Calculate likelihood\n", + "1. Calculate the distance between probability distribution\n", + "1. Calculate the expected value\n", + "1. Calculation considering data distribution(mean, sum) \n", + "\n", + "In VAE loss, each elements corresponds as follows\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate the loss\n", + "Loss API needs input variable(`input_var`). The value of loss is calculated not until the input variable feeds into the loss.\n", + "```python\n", + "p = DistributionAPI()\n", + "# define the objective function receiving distribution\n", + "loss = LossAPI(p)\n", + "# the value of loss is calculated when input_var is feeded\n", + "loss_value = loss.eval({'input_var': input_data})\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "from torch import nn\n", + "from torch.nn import functional as F\n", + "import numpy as np\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Pixyz module\n", + "from pixyz.distributions import Normal\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate likelihood\n", + "When the observation $x_1$, ...., $x_N$ is obtained, we calculate the likelihood of the probability distribution p, which we assume x follows. \n", + "Here, we assume x follows a Gaussian distribution with mean=0, variance = 1. \n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([5])\n", + " (loc): torch.Size([1, 5])\n", + " (scale): torch.Size([1, 5])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# define probability distribution p\n", + "x_dim = 5\n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print(p_nor_x)\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([100, 5])\n" + ] + } + ], + "source": [ + "# observe x\n", + "observed_x_num = 100\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "print(observed_x.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Log likelihood is calculated as follows: \n", + "$L=\\sum_{i=1}^{100} \\log p\\left(x_{i}\\right)$ \n", + "We can calculate log likelihood easily by using `LogProb()`. \n", + "To define log likelihood, We set the probability distribution defined in Pixyz distribution to `LogProb()`'s argument. \n", + "The value is calculated when observed data feeded into `LogProb.eval()`. \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#probability-density-function" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\log p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import LogProb\n", + "# set the probability distribution to LogProb()'s arg\n", + "log_likelihood_x = LogProb(p_nor_x)\n", + "print_latex(log_likelihood_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([ -7.5539, -6.8545, -6.4024, -5.8851, -6.1517, -8.3702, -6.7028,\n", + " -5.0395, -7.4346, -7.1497, -5.7594, -7.3006, -11.9857, -5.8238,\n", + " -6.7561, -5.7640, -6.2382, -4.9060, -6.1076, -8.2535, -7.8250,\n", + " -7.1956, -7.6949, -5.2324, -11.5860, -8.1068, -7.1763, -8.3332,\n", + " -11.4631, -6.6297, -6.1200, -12.2358, -5.3402, -7.1465, -7.5106,\n", + " -7.0829, -6.6300, -6.1832, -7.2049, -10.8676, -6.8674, -5.8339,\n", + " -9.1939, -7.5965, -8.7743, -7.3492, -5.2578, -10.3097, -6.5646,\n", + " -4.8807, -5.9738, -6.2394, -10.3945, -9.1760, -9.2957, -5.5627,\n", + " -7.1047, -6.4066, -6.8100, -6.0878, -6.8835, -7.9132, -5.0738,\n", + " -8.8378, -6.2286, -5.8401, -5.9691, -5.6857, -7.6903, -6.4982,\n", + " -7.1259, -8.7953, -10.5572, -5.9161, -7.0649, -6.1292, -6.0871,\n", + " -7.2513, -7.2517, -7.1378, -6.4228, -5.5728, -5.6155, -5.1962,\n", + " -8.3940, -7.8178, -9.8129, -6.1119, -5.0492, -8.9898, -6.9675,\n", + " -8.0218, -13.9816, -6.8575, -5.1304, -5.5069, -5.0561, -5.1264,\n", + " -4.8489, -5.4876])\n", + "observed_x_num: 100\n" + ] + } + ], + "source": [ + "# The likelihood for each observation is calculated\n", + "print(log_likelihood_x.eval({'x': observed_x}))\n", + "# observed_x_num = 100\n", + "print('observed_x_num: ', len(log_likelihood_x.eval({'x': observed_x})))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`log_likelihood_x.eval({'x': observed_x})`'s output has the calculated result of \n", + "$\\log p(x_{1})$, $\\log p(x_{2})$, ...., $\\log p(x_{100})$ \n", + "\n", + "log_likelihood_x.eval({'x': observed_x})[i] = $\\log p(x_{i})$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, calculate \n", + "$L=\\sum_{i=1}^{100} \\log p\\left(x_{i}\\right)$" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log likelihood result: tensor(-715.5875)\n" + ] + } + ], + "source": [ + "# sum\n", + "print('log likelihood result:', log_likelihood_x.eval({'x': observed_x}).sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown above, we can easily calculate log likelihood by using pixyz.losses `LogProb()`. \n", + "The same calculation can be performed by defined probability distribution method `p.log_prob().eval()` " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LogProb()\n", + "tensor(-715.5875)\n", + ".log_prob()\n", + "tensor(-715.5875)\n" + ] + } + ], + "source": [ + "print('LogProb()')\n", + "print(LogProb(p_nor_x).eval({'x': observed_x}).sum())\n", + "print('.log_prob()')\n", + "print(p_nor_x.log_prob().eval({'x': observed_x}).sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more Loss API related to probability density function: \n", + "https://docs.pixyz.io/en/latest/losses.html#probability-density-function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate the distance between probability distributions\n", + "In the learning of generative models, we consider $p_{\\theta}(x)$ that is closed to the true distribution(data distribution) $p_{data}(x)$. \n", + "To find the appropriate parameter $\\theta$, we measure the distance between distributions.\n", + "\n", + "In VAE models we calculate Kullback-Leibler divergence, and in GAN models we calculate Jensen-Shannon divergence. \n", + "We can easily calculte the distance between distributions by Loss API \n", + "Pixyz document: \n", + "https://docs.pixyz.io/en/latest/losses.html#statistical-distance \n", + "https://pixyz.readthedocs.io/en/latest/losses.html#adversarial-statistical-distance\n", + "\n", + "Here, we calculate the Kullback-Leibler divergence between a Gaussian distribution with mean=0, variance=1 and a Gaussian distribution with mean=5, variance=0.1 \n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$ \n", + "$q(x) = \\cal N(\\mu=5, \\sigma^2=0.1)$ \n", + "$KL(q(x) || p(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# define probability distribution\n", + "x_dim = 10\n", + "# p \n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$q(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# q\n", + "q_nor_x = Normal(var=['x'], loc=torch.tensor(5.), scale=torch.tensor(0.1), features_shape=[x_dim], name='q')\n", + "print_latex(q_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To calculate Kullback-Leibler divergence, we use pixyz.losses `KullbackLeibler`. \n", + "We set the probability distribution defined in Pixyz distribution to `KullbackLeibler()`'s argument. \n", + "The value is calculated by `.eval()` method \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#kullbackleibler " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(x)||p(x) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import KullbackLeibler\n", + "\n", + "kl_q_p = KullbackLeibler(q_nor_x, p_nor_x)\n", + "print_latex(kl_q_p)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([143.0759])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculte the value\n", + "kl_q_p.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more Loss API related to statistical distance: \n", + "https://docs.pixyz.io/en/latest/losses.html#statistical-distance \n", + "https://docs.pixyz.io/en/latest/losses.html#adversarial-statistical-distance " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculate the expected value\n", + "Expected value is a weighted average of all values of a random variable with a probability weight.\n", + "In Pixyz, we calculate expected values of the variables which we can't feed as `input_var` like latent variable(Because it does't exist explicitly in the observation). \n", + "We can easily calculte the expected value of the random variables by Loss API. \n", + "Pixyz document: \n", + "https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we consider these two probability distributions \n", + "$q(z|x) = \\cal N(\\mu=x, \\sigma^2=1)$ \n", + "$p(x|z) = \\cal N(\\mu=z, \\sigma^2=1)$ \n", + "and calculate following expected value \n", + "$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# define probability distributions\n", + "from pixyz.distributions import Normal\n", + "\n", + "q_nor_z__x = Normal(loc=\"x\", scale=torch.tensor(1.), var=[\"z\"], cond_var=[\"x\"],\n", + " features_shape=[10], name='q') # q(z|x)\n", + "p_nor_x__z = Normal(loc=\"z\", scale=torch.tensor(1.), var=[\"x\"], cond_var=[\"z\"],\n", + " features_shape=[10]) # p(x|z)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\log p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Caltulate the Log likelihood of p(x|z)\n", + "from pixyz.losses import LogProb\n", + "\n", + "p_log_likelihood = LogProb(p_nor_x__z)\n", + "print_latex(p_log_likelihood)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To calculate expected values, we use pixyz.losses `Expectation`. \n", + "`Expectation()` has argument `p` and `f`. \n", + "We set the function of which we want to calculate expected values to argument `f`, and we set probability distributions which `f` function's random variable follows to argument `p`. \n", + "The value is calculated by `.eval()` method. \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import Expectation as E\n", + "\n", + "E_q_logprob_p = E(q_nor_z__x, LogProb(p_nor_x__z))\n", + "print_latex(E_q_logprob_p)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([-10.7006, -11.9861])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_x = torch.randn(2, 10)\n", + "E_q_logprob_p.eval({'x': sample_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more details about Expectatoin API: \n", + "https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculation considering data distribution(mean, sum) \n", + "In theory, it is necessary to take the expected value of x, but since the data distribution is not actually given, we need to do calculations such as average and sum in the ovserved x batch direction. \n", + "We can easily calculte average and sum by Loss API. \n", + "Here, we calculate likelihood of training data observed_x and calculate its mean. \n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$ \n", + "$\\frac{1}{N} \\sum_{i=1}^N\\left[\\log p\\left(x^{(i)}\\right)\\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([100, 5])\n" + ] + } + ], + "source": [ + "# observe x\n", + "observed_x_num = 100\n", + "x_dim = 5\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "print(observed_x.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([5])\n", + " (loc): torch.Size([1, 5])\n", + " (scale): torch.Size([1, 5])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# define probability distribution\n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print(p_nor_x)\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can calculate sum or mean by `Loss.mean()` or `Loss.sum()`." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(\\log p(x) \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import LogProb\n", + "# calculate mean\n", + "mean_log_likelihood_x = LogProb(p_nor_x).mean() # .mean()\n", + "print_latex(mean_log_likelihood_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(-7.1973)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_log_likelihood_x.eval({'x': observed_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combine Loss\n", + "We can do arithmetic operations between losses. \n", + "As an example, we define the following Loss by combining losses. \n", + "$\\frac{1}{N} \\sum_{i=1}^{N}\\left[\\mathbb{E}_{q\\left(z | x^{(i)}\\right)}\\left[\\log p\\left(x^{(i)} | z\\right)\\right]-K L\\left(q\\left(z | x^{(i)}\\right) \\| p(z)\\right)\\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# define probability distributions\n", + "from pixyz.distributions import Normal\n", + "\n", + "# p(x|z)\n", + "p_nor_x__z = Normal(loc=\"z\", scale=torch.tensor(1.), var=[\"x\"], cond_var=[\"z\"],\n", + " features_shape=[10])\n", + "\n", + "# p(z)\n", + "p_nor_z = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.), var=[\"z\"],\n", + " features_shape=[10])\n", + "\n", + "# q(z|x)\n", + "q_nor_z__x = Normal(loc=\"x\", scale=torch.tensor(1.), var=[\"z\"], cond_var=[\"x\"],\n", + " features_shape=[10], name='q')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# define Loss\n", + "from pixyz.losses import LogProb\n", + "from pixyz.losses import Expectation as E\n", + "from pixyz.losses import KullbackLeibler\n", + "\n", + "# Log likelihood \n", + "logprob_p_x__z = LogProb(p_nor_x__z)# input_var: x, z\n", + "\n", + "# Expecration\n", + "E_q_z__x_logprob_p__z = E(q_nor_z__x, logprob_p_x__z)# input_car: x(z is not needed because of Expectation)\n", + "\n", + "# KL divergence\n", + "KL_q_z__x_p_z = KullbackLeibler(q_nor_z__x, p_nor_z)\n", + "\n", + "# Subtraction between losses\n", + "total_loss = E_q_z__x_logprob_p__z - KL_q_z__x_p_z# input_var: x(E_q_z__x_logprob_p__z needs x as input_var)\n", + "\n", + "# mean of loss\n", + "total_loss = total_loss.mean()\n", + "\n", + "# check the loss\n", + "print_latex(total_loss)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(-18.9965)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate the loss value\n", + "# observe x\n", + "observed_x_num = 100\n", + "x_dim = 10\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "\n", + "# calculate the loss given observed x\n", + "total_loss.eval({'x': observed_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown above, we can define loss flexibly wth arithemtic operations between the Pixyz Loss API. \n", + "We can convert formulas to codes easily and intuitively with Pixyz Loss API." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Loss API(ELBO)\n", + "Pixyz Loss API has `ELBO` loss class. \n", + "\n", + "Evidence Lower Bound ELBO: https://docs.pixyz.io/en/latest/losses.html#lower-bound" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Next Tutorial\n", + "ModelAPITutorial.ipynb" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/tutorial/English/03-ModelAPITutorial.ipynb b/tutorial/English/03-ModelAPITutorial.ipynb new file mode 100644 index 00000000..f3b9bf5e --- /dev/null +++ b/tutorial/English/03-ModelAPITutorial.ipynb @@ -0,0 +1,544 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deep generative models learn by defining objective function and using gradient descent method\n", + "- Unlike traditional generative models, deep generative models don't learn by sampling\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A framework in which objective function and optimization algorithm can be set independently(Model API)\n", + "- Model API document: https://docs.pixyz.io/en/v0.0.4/models.html \n", + "\n", + "Here, we train the model with defined probability distributions and loss function by using Model API." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "import torchvision\n", + "from torchvision import datasets, transforms\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"\n", + "\n", + "batch_size = 256\n", + "seed = 1\n", + "torch.manual_seed(seed)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# MNIST dataset\n", + "root = '../data'\n", + "transform = transforms.Compose([transforms.ToTensor(),\n", + " transforms.Lambda(lambd=lambda x: x.view(-1))])\n", + "kwargs = {'batch_size': batch_size, 'num_workers': 1, 'pin_memory': True}\n", + "\n", + "train_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=True, transform=transform, download=True),\n", + " shuffle=True, **kwargs)\n", + "test_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=False, transform=transform),\n", + " shuffle=False, **kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define probability distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "\n", + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "gen_ber_x__z = Generator().to(device)\n", + "infer_nor_z__x = Inference().to(device)\n", + "\n", + "prior_nor_z = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import LogProb\n", + "from pixyz.losses import StochasticReconstructionLoss\n", + "from pixyz.losses import Expectation as E\n", + "from pixyz.losses import KullbackLeibler\n", + "from pixyz.utils import print_latex\n", + "\n", + "# log likelihood\n", + "logprob_gen_x__z = LogProb(gen_ber_x__z)\n", + "\n", + "# Expectation\n", + "E_infer_z__x_logprob_gen_x__z = E(infer_nor_z__x, logprob_gen_x__z)\n", + "\n", + "# KL divergence\n", + "KL_infer_nor_z__x_prior_nor_z = KullbackLeibler(infer_nor_z__x, prior_nor_z)\n", + "\n", + "# Subtraction between losses\n", + "total_loss = KL_infer_nor_z__x_prior_nor_z - E_infer_z__x_logprob_gen_x__z\n", + "\n", + "# mean of loss\n", + "total_loss = total_loss.mean()\n", + "\n", + "\n", + "# check the loss\n", + "print_latex(total_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model API: Set probability distributions and loss, and optimization algorithm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use pixyz.models Model. \n", + "Main arguments are `loss`, `distributions`, `optimizer`, `optimzer_params`. We set each arguments as follows. \n", + "- loss: Set defined loss function defined by Loss API\n", + "- distributions: Set defined probability distributions which have parameters supposed to be learned defined by Distribution API \n", + "- optimizer, optimizer_params: Set optimization algorithms and parameters of the algorithm \n", + "\n", + "For more details about Model: https://docs.pixyz.io/en/v0.0.4/_modules/pixyz/models/model.html#Model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.models import Model\n", + "from torch import optim\n", + "\n", + "optimizer = optim.Adam\n", + "optimizer_params = {'lr': 1e-3}\n", + "\n", + "vae_model = Model(loss=total_loss, \n", + " distributions=[gen_ber_x__z, infer_nor_z__x],\n", + " optimizer=optimizer,\n", + " optimizer_params=optimizer_params\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have defined Model. \n", + "As shown above, we can set objective function and optimization algorithm independently. \n", + "Next, we train the model using `train()` method. \n", + "Model Class `train()` processes are following. \n", + "source code: https://docs.pixyz.io/en/v0.0.4/_modules/pixyz/models/model.html#Model.train\n", + "1. Receive observed data x(.train({\"x\": x})) \n", + "2. Calculate loss \n", + "3. 1 step update of parameters \n", + "4. Return the loss value " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "def train(self, train_x={}, **kwargs):\n", + " self.distributions.train()\n", + "\n", + " self.optimizer.zero_grad()\n", + " loss = self.loss_cls.estimate(train_x, **kwargs)\n", + "\n", + " # backprop\n", + " loss.backward()\n", + "\n", + " # update params\n", + " self.optimizer.step()\n", + "\n", + " return loss\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0, Loss 199.60440063476562 \n", + "Epoch 1, Loss 147.97647094726562 \n", + "Epoch 2, Loss 128.66696166992188 \n" + ] + } + ], + "source": [ + "epoch_loss = []\n", + "for epoch in range(3):\n", + " train_loss = 0\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = vae_model.train({\"x\": x})\n", + " train_loss += loss\n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch {}, Loss {} '.format(epoch, train_loss))\n", + " epoch_loss.append(train_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use more {abstract} Model API\n", + "We can define models more easily by using more {abstract} Model API. \n", + "We need to set: \n", + "- define probability distributions \n", + "- (define additional loss functions)\n", + "- select the optimization algorithm\n", + "\n", + "Here, we use VAE model as an example. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.losses import KullbackLeibler\n", + "# more {abstract} Model API VAE\n", + "from pixyz.models import VAE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define probability distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "p = Generator().to(device)\n", + "q = Inference().to(device)\n", + "\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add regularization terms to the loss function" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kl = KullbackLeibler(q, prior)\n", + "print_latex(kl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### VAE Model: Set additional loss function and select the optimazation algorithm " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = VAE(encoder=q, decoder=p, regularizer=kl, \n", + " optimizer=optim.Adam, optimizer_params={\"lr\":1e-3})\n", + "print_latex(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def train(epoch):\n", + " train_loss = 0\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = model.train({\"x\": x})\n", + " train_loss += loss\n", + " \n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch: {} Train loss: {:.4f}'.format(epoch, train_loss))\n", + " return train_loss" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 Train loss: 201.2876\n", + "Epoch: 2 Train loss: 147.1453\n", + "Epoch: 3 Train loss: 128.1311\n" + ] + } + ], + "source": [ + "epochs = 3\n", + "train_losses = []\n", + "for epoch in range(1, epochs + 1):\n", + " train_loss = train(epoch)\n", + " train_losses.append(train_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more {abstract} Model\n", + "- Pre-implementation models: https://docs.pixyz.io/en/v0.0.4/models.html#pre-implementation-models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pixyz implementations\n", + "There are more complexed models written in pixyz in the following links. \n", + "- Pixyz examples: https://github.com/masa-su/pixyz/tree/master/examples\n", + "- Pixyzoo: https://github.com/masa-su/pixyzoo\n", + "\n", + "Pixyz implementation work flow is the same for all models \n", + "1. Define probability distributions using `Distribution API` \n", + "1. Define the loss function based on the defined probability distributions using `Loss API`\n", + "1. Set probability distributions and loss, and optimization algorithm using `Model API`, and train" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Japanese/00-PixyzOverview.ipynb b/tutorial/Japanese/00-PixyzOverview.ipynb new file mode 100644 index 00000000..0f2fe132 --- /dev/null +++ b/tutorial/Japanese/00-PixyzOverview.ipynb @@ -0,0 +1,1373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 深層生成モデルの特徴を考慮したAPI\n", + "- 生成モデルを構成するDNNは確率分布によって隠蔽される\n", + " - DNNの定義と確率分布の操作を分離できる枠組み(Distribution API)\n", + "- モデルの種類や確率変数の正則化は目的関数(誤差関数)として記述される\n", + " - 確率分布を受け取って目的関数を定義できる枠組み(Loss API)\n", + "- 深層生成モデルの学習方法は目的関数を定義して勾配降下法で学習\n", + " - 目的関数と最適化アルゴリズムが独立に設定できる枠組み(Model API)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "from torchvision import datasets, transforms\n", + "from tensorboardX import SummaryWriter\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## VAEの実装を通してそれぞれのAPIの関係を習得する" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Distribution API\n", + "- DNNの定義と確率分布の操作を分離できる枠組み(Distribution API)\n", + "- https://pixyz.readthedocs.io/en/latest/distributions.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "定義する確率分布は以下の通り\n", + "\n", + "Prior: $p(z) = N(z; 0, 1)$\n", + "\n", + "Generator: $p_{\\theta}(x|z) = B(x; \\lambda = g(z))$\n", + "\n", + "Inference: $q_{\\phi}(z|x) = N(z; µ = f_{\\mu}(x), \\sigma^2 = f_{\\sigma^2}(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### priorの確率分布を定義する\n", + "\n", + "priorは平均0, 分散1のガウス分布である\n", + "\n", + "$p(z) = N(z; 0, 1)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# prior\n", + "z_dim = 64\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)\n", + "print(prior)\n", + "print_latex(prior)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### generatorの確率分布を定義する\n", + "Generatorは$\\theta$によってパラメータが決まるベルヌーイ分布\n", + "\n", + "$p_{\\theta}(x|z) = B(x; \\lambda = g(z))$\n", + "\n", + "pixyz.Distributionクラスを継承してDNNによる確率分布を定義する" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|z)\n", + "Network architecture:\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_dim = 784\n", + "# generative model p(x|z) \n", + "# inherit pixyz.Distribution Bernoulli class\n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + "p = Generator().to(device)\n", + "print(p)\n", + "print_latex(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Inferenceの確率分布を定義する\n", + "\n", + "Inferenceは$\\mu$と$\\sigma$がパラメータ$\\phi$により決まるガウス分布\n", + "\n", + "$q_{\\phi}(z|x) = N(z; µ = f_{\\mu}(x), \\sigma^2 = f_{\\sigma^2}(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " q(z|x)\n", + "Network architecture:\n", + " Inference(\n", + " name=q, distribution_name=Normal,\n", + " var=['z'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=784, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc31): Linear(in_features=512, out_features=64, bias=True)\n", + " (fc32): Linear(in_features=512, out_features=64, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$q(z|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inference model q(z|x)\n", + "# inherit pixyz.Distribution Normal class\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + "q = Inference().to(device)\n", + "print(q)\n", + "print_latex(q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 確率分布からのサンプリング\n", + "- 定義したDistributionクラスは,DNNの構造や分布に依存せず,同じAPI( .sample() )でサンプリングが可能\n", + "- Pixyzではサンプルは辞書形式で扱われる(keyが変数名, valueが実際のサンプル)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$z\\sim p(z)$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'z': tensor([[-0.6079, -0.7846, 1.2765, -0.3821, -0.9420, 0.0777, 1.5994, 2.2155,\n", + " 0.1996, 0.9858, -2.0728, 1.2941, 1.2161, -0.4586, -0.0948, -0.0760,\n", + " 1.4566, 1.2481, -0.8031, 0.9527, -0.7847, -0.8508, -1.3487, -0.5012,\n", + " -1.4542, -0.3763, 1.3999, -0.4546, -0.4076, 0.1047, 0.5448, 0.1752,\n", + " -0.8120, 1.0687, 0.0830, 1.2167, -1.1726, -0.1918, -0.4043, -1.0663,\n", + " 0.0234, 0.5099, 1.6090, 0.6881, 2.1337, -1.0029, -0.5225, -1.5429,\n", + " -0.4918, -1.0038, -1.8796, 1.0947, 0.2360, -1.1022, 1.0402, -0.4413,\n", + " -0.3261, 0.7704, 0.1552, -0.3254, -1.0160, -0.0348, 0.1891, 0.7731]])}\n", + "dict_keys(['z'])\n", + "torch.Size([1, 64])\n" + ] + } + ], + "source": [ + "# z ~ p(z)\n", + "prior_samples = prior.sample(batch_n=1)\n", + "print(prior_samples)\n", + "print(prior_samples.keys())\n", + "print(prior_samples['z'].shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 同時分布の定義\n", + "- Distribution APIでは分布同士の掛け算で同時分布を表現できる\n", + " - 掛け算の結果も同様にサンプリング可能" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$p_{\\theta}(x, z) = p_{\\theta}(x|z)p(z)$" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x,z) = p(x|z)p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x,z) = p(x|z)p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint = p * prior\n", + "print(p_joint)\n", + "print_latex(p_joint)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 同時分布からのサンプリング" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$x, z \\sim p_{\\theta}(x, z) $" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'z': tensor([[ 2.2384, -1.0707, -0.4891, -0.1355, 0.4479, -0.0879, 0.1832, -0.3299,\n", + " -0.8800, -0.2940, -0.0861, 1.1714, 0.0833, -0.7101, 0.1362, -0.4973,\n", + " 1.3692, -0.5415, 0.8587, -1.9445, -1.3895, 1.6289, -1.3554, -1.2403,\n", + " 0.0165, 1.9608, -0.1071, 1.0146, 0.1568, -0.2603, 0.4761, 0.9154,\n", + " -1.2763, -2.5424, 0.6092, 1.0490, 0.1421, 0.9194, 2.5584, 1.4599,\n", + " 0.4122, 0.6989, 3.1160, -1.8118, 0.8004, 0.2597, 0.6849, -0.5289,\n", + " 1.8026, 1.8868, -0.1989, -2.4792, -0.4740, -0.2468, -0.0199, 0.4975,\n", + " -1.2804, 2.2369, -0.5309, -0.6830, -0.2585, 1.2927, 0.4489, 0.3921]]), 'x': tensor([[1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0., 0.,\n", + " 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,\n", + " 0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0.,\n", + " 0., 0., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 1.,\n", + " 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0.,\n", + " 0., 1., 1., 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 1., 0., 1., 1.,\n", + " 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 0., 0., 1.,\n", + " 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 0.,\n", + " 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0.,\n", + " 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.,\n", + " 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 1.,\n", + " 1., 1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1.,\n", + " 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0.,\n", + " 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", + " 0., 1., 1., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0.,\n", + " 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1.,\n", + " 0., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 0., 1.,\n", + " 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1.,\n", + " 1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1., 0.,\n", + " 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1.,\n", + " 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0.,\n", + " 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", + " 1., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 1.,\n", + " 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1.,\n", + " 1., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0.,\n", + " 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 1.,\n", + " 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0.,\n", + " 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0.,\n", + " 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 1.,\n", + " 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,\n", + " 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0.,\n", + " 0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", + " 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 1., 1., 0., 0.,\n", + " 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 1., 1.,\n", + " 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 1., 1., 1., 1.,\n", + " 1., 1., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1., 0., 1.,\n", + " 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0.,\n", + " 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0.,\n", + " 0., 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0., 0., 1., 0.,\n", + " 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0.,\n", + " 1., 0., 0., 1., 0., 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0.,\n", + " 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.,\n", + " 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 1., 0.,\n", + " 0., 0., 1., 1., 1., 1., 0., 1., 0., 1.]])}\n", + "dict_keys(['z', 'x'])\n", + "torch.Size([1, 784])\n", + "torch.Size([1, 64])\n" + ] + } + ], + "source": [ + "p_joint_samples = p_joint.sample(batch_n=1)\n", + "print(p_joint_samples)\n", + "print(p_joint_samples.keys())\n", + "print(p_joint_samples['x'].shape)\n", + "print(p_joint_samples['z'].shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### より詳細なDistribution API Turorial\n", + "- 01-DistributionAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Loss API\n", + "- 確率分布を受け取って目的関数を定義できる枠組み\n", + " - pixyz.Lossは,Distributionを受け取ってLossを定義する\n", + " - Lossクラス同士は演算が可能なため,任意のLossを設計することができる\n", + " - -> 論文の式を簡単に実装に落とし込める\n", + "- Lossの値は,データを与えると評価できる\n", + " - 各Lossはシンボルとして扱われる(式を定義し,あたいはデータを入れるまで評価されない)\n", + " - データやDNNに依存せずに,明示的に確率モデルを設計できる->Define-and-run的" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "VAEのLossは以下の通り\n", + "$$\n", + "\\mathcal { L } _ { \\mathrm { VAE } } ( \\theta , \\phi ) = \\mathbb { E } _ { p_{data}( x ) } \\left [D _ { \\mathrm { KL } } \\left[ q _ \\phi ( z | x ) \\| p ( z ) \\right] - \\mathbb { E } _ { q _ { \\phi } ( z | x ) } \\left[\\log p _ { \\theta } ( x | z ) \\right]\\right]\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lossをpixyz.distributionとpixyz.lossで定義する" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$D _ { \\mathrm { KL } } \\left[ q _ \\phi ( z | x ) \\| p ( z ) \\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import KullbackLeibler\n", + "kl = KullbackLeibler(q, prior)\n", + "print_latex(kl)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$$- \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import StochasticReconstructionLoss\n", + "reconst = StochasticReconstructionLoss(q, p)\n", + "print_latex(reconst)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lossクラス同士の演算" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vae_loss = (kl + reconst).mean()\n", + "print_latex(vae_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### データを与え,Lossを評価する\n", + "- .eval()でLossの計算が行われる" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(551.3825, grad_fn=)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Todo: 何をevalの時渡すのか\n", + "dummy_x = torch.randn([4, 784])\n", + "vae_loss.eval({\"x\": dummy_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### より詳細なLoss API Turorial\n", + "- 02-LossAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Model API\n", + "- 目的関数と最適化アルゴリズムが独立に設定できる枠組み\n", + "- Lossと最適化アルゴリズムを設定し,データを入れて訓練" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distributions (for training): \n", + " p(x|z), q(z|x) \n", + "Loss function: \n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", + "Optimizer: \n", + " Adam (\n", + " Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " eps: 1e-08\n", + " lr: 0.001\n", + " weight_decay: 0\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.models import Model\n", + "model = Model(loss=vae_loss, distributions=[p, q],\n", + " optimizer=optim.Adam, optimizer_params={\"lr\": 1e-3})\n", + "print(model)\n", + "print_latex(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dummy_x = torch.randn([10, 784])\n", + "def train_dummy(epoch):\n", + " global dummy_x\n", + " dummy_x = dummy_x.to(device)\n", + " loss = model.train({\"x\": dummy_x})\n", + " print('Epoch: {} Train Loss: {:4f}'.format(epoch, loss))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 0 Train Loss: 551.311035\n", + "Epoch: 1 Train Loss: 530.207153\n", + "Epoch: 2 Train Loss: 495.100922\n", + "Epoch: 3 Train Loss: 439.676208\n", + "Epoch: 4 Train Loss: 335.509460\n", + "Epoch: 5 Train Loss: 177.766815\n", + "Epoch: 6 Train Loss: 58.066925\n", + "Epoch: 7 Train Loss: -124.772110\n", + "Epoch: 8 Train Loss: -366.819397\n", + "Epoch: 9 Train Loss: -660.886353\n" + ] + } + ], + "source": [ + "for epoch in range(10):\n", + " train_dummy(epoch)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### より詳細なModel API Turorial\n", + "- 03-ModelAPITutorial.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MNISTデータセットを用いてPixyz版VAEを学習する" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 必要なモジュールのインストールなど" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "import torchvision\n", + "from torchvision import datasets, transforms\n", + "from tensorboardX import SummaryWriter\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "batch_size = 256\n", + "epochs = 3\n", + "seed = 1\n", + "torch.manual_seed(seed)\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### MNISTデータセットの準備" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "root = '../data'\n", + "transform = transforms.Compose([transforms.ToTensor(),\n", + " transforms.Lambda(lambd=lambda x: x.view(-1))])\n", + "kwargs = {'batch_size': batch_size, 'num_workers': 1, 'pin_memory': True}\n", + "\n", + "train_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=True, transform=transform, download=True),\n", + " shuffle=True, **kwargs)\n", + "test_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=False, transform=transform),\n", + " shuffle=False, **kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Pixyzモジュールのインストール" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.losses import KullbackLeibler, Expectation as E\n", + "from pixyz.models import Model\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 確率分布の定義" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "p = Generator().to(device)\n", + "q = Inference().to(device)\n", + "\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{prior}(z)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{prior}, distribution_name=Normal,\n", + " var=['z'], cond_var=[], input_var=[], features_shape=torch.Size([64])\n", + " (loc): torch.Size([1, 64])\n", + " (scale): torch.Size([1, 64])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p_{prior}(z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(prior)\n", + "print_latex(prior)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|z)\n", + "Network architecture:\n", + " Generator(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['x'], cond_var=['z'], input_var=['z'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=64, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc3): Linear(in_features=512, out_features=784, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p)\n", + "print_latex(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " q(z|x)\n", + "Network architecture:\n", + " Inference(\n", + " name=q, distribution_name=Normal,\n", + " var=['z'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=784, out_features=512, bias=True)\n", + " (fc2): Linear(in_features=512, out_features=512, bias=True)\n", + " (fc31): Linear(in_features=512, out_features=64, bias=True)\n", + " (fc32): Linear(in_features=512, out_features=64, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$q(z|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(q)\n", + "print_latex(q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lossの定義" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kl = KullbackLeibler(q, prior)\n", + "reconst = StochasticReconstructionLoss(q, p)\n", + "vae_loss = (kl + reconst).mean()\n", + "print_latex(vae_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 最適化アルゴリズムとモデルの設定" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distributions (for training): \n", + " p(x|z), q(z|x) \n", + "Loss function: \n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", + "Optimizer: \n", + " Adam (\n", + " Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " eps: 1e-08\n", + " lr: 0.001\n", + " weight_decay: 0\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = Model(loss=vae_loss, distributions=[p, q],\n", + " optimizer=optim.Adam, optimizer_params={\"lr\": 1e-3})\n", + "print(model)\n", + "print_latex(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def train(epoch):\n", + " train_loss = 0\n", + " #for x, _ in tqdm(train_loader):\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = model.train({\"x\": x})\n", + " train_loss += loss\n", + " \n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch: {} Train loss: {:.4f}'.format(epoch, train_loss))\n", + " return train_loss\n", + "\n", + "def test(epoch):\n", + " test_loss = 0\n", + " #for x, _ in tqdm(test_loader):\n", + " for x, _ in test_loader:\n", + " x = x.to(device)\n", + " loss = model.test({\"x\": x})\n", + " test_loss += loss\n", + "\n", + " test_loss = test_loss * test_loader.batch_size / len(test_loader.dataset)\n", + " print('Test loss: {:.4f}'.format(test_loss))\n", + " return test_loss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 再構成" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_reconstrunction(x):\n", + " with torch.no_grad():\n", + " z = q.sample({\"x\": x}, return_all=False)\n", + " recon_batch = p.sample_mean(z).view(-1, 1, 28, 28)\n", + " \n", + " comparison = torch.cat([x.view(-1, 1, 28, 28), recon_batch]).cpu()\n", + " return comparison" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 潜在変数空間からの生成" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_image_from_latent(z_sample):\n", + " with torch.no_grad():\n", + " sample = p.sample_mean({\"z\": z_sample}).view(-1, 1, 28, 28).cpu()\n", + " return sample" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# functions to show an image\n", + "def imshow(img):\n", + " npimg = img.numpy()\n", + " plt.imshow(np.transpose(npimg, (1, 2, 0)))\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 Train loss: 199.5469\n", + "Test loss: 166.5198\n", + "Epoch: 1\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4m9WV/79XkiVLtiXvsR1vibOT\nnSQwSZMAoRCWBChhK+2PKX1gmEKGGX60BNpSupDOMFO6MASe9NewZHggKVmgTNgKZDotgZAQQxI7\nm504drzEq2RLsmRJ9/fH63tyX9nGsq3Fce7ned7HlvS+eo/ue++555577rmMcw6FQqFQnP8YEi2A\nQqFQKKKDUugKhUIxRlAKXaFQKMYISqErFArFGEEpdIVCoRgjKIWuUCgUY4QRKXTG2ErG2FHG2AnG\n2LpoCaVQKBSKocOGG4fOGDMCOAbg6wDqAHwG4A7OeUX0xFMoFApFpIzEQl8E4ATnvJpz7gfwGoAb\noiOWQqFQKIaKaQTXjgdQK72uA3DJV13AGFPLUhUKhWLotHDOcwY7aSQKPSIYY/cCuDfW91EoFIox\nTE0kJ41EoZ8BUCS9Lux9TwfnfCOAjYCy0BUKhSKWjMSH/hmAyYyxCYwxM4DbAbwZHbEUCoVCMVSG\nbaFzzgOMsQcAvAvACGAT5/xw1CRTKBQKxZAYdtjisG6mXC4KhUIxHPZzzhcMdpJaKapQKBRjhJhH\nuVyIPPzwwwAAq9WK2bNnY82aNfTZc889hz179gAANm/enBD5FArFGIVzHrcDAB/rx5YtW3gwGPzK\n49ixY/zYsWO8uLg44fJ+1TFlyhQeCoV4KBTia9euTbg8KSkpfMOGDXzDhg08GAzyvXv38r179/KS\nkpKEy6YOdcT42BeJjlUuF4VCoRgjKJdLlNiyZQsA6NwrAHDkyBG8++67AICJEydi1apVKCsrAwB8\n61vfwvr16+Mr6BCYN28eQqEQAODMmT5LDOJOQUEB7rnnHgBAKBTCxRdfDAC4/vrr8eyzzyZSNMyf\nPx/bt29HaWlpROdfddVVAIDKykrU1tYOcnb8WLVqFd544w2sXbsWAPD8888jGAzG5d65ubkAgK1b\nt+Ljjz8GAGzcuBGnTp2K+DscDgeWLVsGAHjnnXfQ09MTdTlHM0qhR4EFCxbgpptuoteHD2vRm6tX\nr0ZLSwu6uroAAGazGZ988gnmzJkDAMjMzIy/sENg7ty5cLvdAIDt27cnVJacnBy8+OKLCZXhq7j6\n6qthsVgiPn/16tUAgLvvvhu33357rMSKmKysLADAhg0bAADPPPMMAGDTpk3wer0xv39GRga1G4fD\ngaamJgAYsjLfv38/cnK0FfILFizA8ePHoy6rjN1uxy9/+UvMnDkTAHDllVcmtBMZtQp9zZo1ZI3V\n19eju7sbAPDKK6+gsbERJ06cSKR4OvLz88EYA6Ap86uvvhoA0NDQoDvv4YcfxowZM+j1f//3f8dP\nyCEya9YsrF27Fi+//HJC5finf/onAMCNN96IRYsW9XvOsmXLYDAY8MUXXwAA/vKXv8RNPpNJa0LX\nXnvtkK7bt28fAOChhx5CSkoKdZyJQli148ePBwC8+uqrAEDtLpZkZ2djy5YtZOBs2LCBRghD4Uc/\n+hEmTJiAf/iHfwCAmCrzO++8EwDw5JNPoqjo3IJ5u92O1tbWmN13MJQPXaFQKMYIo3ZhUXV19YD+\nyM7OThqeRUJdXR0A4KmnniLLKNqUlJSQbG1tbf2e88UXX9DQDNCGZx999FFM5Bkpa9aswdatW3H5\n5ZcDAP7nf/4nIXII/63w5csYDAbdZzU1Wv6i2267Dfv374+LfF//+tcBAG+//TaeeuopPPbYYxFd\n99BDDwHQ6mR+fj6am5tjJuNgWCwW/PWvfwUAmpe47rrrAGi/K9ZcddVVuvvk5eUNqTwuuugiAMDB\ngwexY8cO/P3f/z0ArS3GgsLCQhw4cACA5qqSdeiWLVvwwAMPAMCAemCYRLSwaNS6XO655x7yNVdU\nVJCrYt68ebjssstw6aWXAgBqa2t1Qx4ACAQCAIDm5mbk5+fT+6dPn46ZQhfKpD++//3vAwCmTJkC\nAPj00091f0cjP/jBD1BTUxOz8oqEXbt2kdLuDzG07erqQklJCSZMmAAA2Lt3L4xGY8zlmzVrFrkm\nqqqqhjTBLXzoo4HZs2eTIge09hMPRS4mQW+++WYAwHe/+10AGLIy//Of/0yvd+zYETNFLnj44YcH\nnP+67bbbsHLlSgCaO+aZZ56B3++PqTwyyuWiUCgUY4XzcWFRRkYGv+KKK/gVV1zB7XY7X7Fihe5Y\nsmQJX7JkCc/JyeEtLS20OOZ73/te3BcEXH/99dzr9XKv18uDwSBvaGjgy5cv58uXL0/0QoV+j9LS\nUl5aWspDoRA/cuRIQmQQ5VNVVUWLsXp6enTHM888w1etWsVXrVrFly1bxp944gnd5//4j/8Yczlf\ne+01erYLFy6M+LrMzEwuCAaDPCcnJ6HPfP369dRGQqEQf+utt+Jy382bN/PNmzdzzjnft28fT0lJ\n4SkpKUP6jvvuu4/k3rRpU8xlLikp4U6nk+pleXk5f/fdd/tdQNjQ0MDz8vKide+IFhaNWpfLV9He\n3o4PP/yQXn/wwQf9nnfzzTcjIyMDBw8eBAC89tprcZFPZsGCBTCbzfR6y5YtCfNHR8Ly5cvp/0T4\ndUtLS+k5ZWdn6z6rqanBtm3bAAA//elP4fF4dJ/de6+2j0pOTg6eeuopJCcnAwD+8z//M+qhZGvW\nrMG1115L0VafffZZxNf+8Ic/JL//7t270dHREVXZhoqIcAEAv9+PH/3oR3G5r/A9h0Ih1NfXR+ya\nsFqtNFfxve99j77n7rvvjo2gEnPnzkVaWhr+93//F4DWXpKTk/HNb34TAPDoo4/SOpO8vDy88cYb\nuOaaawBE3afeL+elQh8M4ZvbsGEDDAYDfvaznwGIT4HK7Ny5kxaQAMDLL78ct8YyXGbNmkX/P/XU\nU3G/f1JSUh9FDmiTsrfffjtaWlr6va6mpga//OUvAQBPP/00bDYbyf/mm2+iqqoqqnLecsstsNls\neO655yK+Rkzy33nnnTTZ++STTyYsbnnx4sW6vwDgdrtRXl4ed1muu+46vPfeewCAjo6OAct1+fLl\nujk0AHj99dfjIiOgTSBzzvHrX/+a3uvu7samTZsAaB39xIkT6TOPx6N86AqFQqEYOmPSQr///vsB\naEPv9vZ2HD16NK73F5E1ixcvhsViIavyF7/4Ba0aHY383d/9Hb7zne8AAA4cOID3338/wRKdW4Bz\n9913D2idC958U9sw684778TChQtjIo/D4QAAshDFyspIEC6h7OxsVFZWAoDOdRhv+iujoYw4Rspv\nf/tbAMAVV1yB/Px8cv0wxgaMAmKM6cIEq6urIw4VjQZ33HEHgHNhnTt37tR9vmCBPrLwk08+iWub\nH3MKfcmSJVi3bh29vvHGG3Ho0KG4yiD8vGI59X/9138BQNSH/dFmxYoVFI71zjvvxGWVYH/IoYqX\nXHJJxNeJ1boGg0H3HT/96U/xrW99KyqyieX948ePH/KcjPCtAoh7newPWfkIP/7zzz8ft/uLtQKz\nZs3C3LlzKdzv+9//Ps3fvPTSS7prNm/eTCuCAeDjjz+Oa7t69dVXsXr1auoMp02bhlmzZlHqj4yM\nDCrLjIwM3HPPPZQmu6KiIubyKZeLQqFQjBXOx7DFrzqefPJJCmN6//33eVJSUlxCsMSxevVq3t3d\nzbu7u3kwGOQffPABT01N5ampqXGVYzjHH//4Ryq7m266KSEy/Md//Icu/HAo165du5avXbuW9/T0\n6EIdy8rKoiaf1WrlVquV79u3j3/xxRc8MzOTZ2ZmDnpdbm6uLqTt/vvv5/fff3/CnvXXvvY1HggE\neCAQ4KFQiJ88eZKfPHky4XVwsGPixIk8FArxzz//nH/++edxD/nMzMzkbW1t9BxDoZDuub777rt8\n0qRJfNKkSfzIkSM8GAzy559/nj///PMjvXd0whYZY0UAXgYwrveLN3LOf8sYywSwBUApgFMAbuWc\ntw/2fbHEarVi5cqVNKv8k5/8JG4RBMK98thjjyEpKYneLy8vH9V+c0ALrwKApUuX0nzDjh07EiLL\nqlWrhnxNTk4OZsyY0ceXKobt0awDIvNgVVUVbr75Zkqw9vTTT/c5V6R5KCsrQ0lJic73G8+UG/2R\nlZWlc0uNhvmSSHj88cfBOccjjzwCIP6htW1tbbj11lspskbMqYjslI888gi5Krdv345169ZRsr6y\nsrLYu4cisKrzAczv/T8NwDEAMwA8BWBd7/vrAPxboi30xx9/nIdCIb5r1y6+a9euuPbc69ev5+vX\nr9f11tu2bTsvLPN169bxdevW8VAoxF944QX+wgsvJEyWo0ePDtlC/81vftNn4VFVVRVfunQpX7p0\naUzknD59Ot+6dSt3u93c7XaTtSsfjY2NvLGxkTc0NPCenh7dZ8LST1Q5b968mUZjbW1tfOHChUNa\nHBXv45ZbbuG33HILD4VC3Ol08vnz5/P58+cnTJ4rr7ySX3nllXzTpk386aef7ncUbrVa+Y4dO0gf\nvPTSSyO5Z3R2LOKcN3DOP+/9vxNAJYDxAG4AIGYsXgJw42DfpVAoFIrYMaQoF8ZYKYB5AD4FMI5z\nLhJ+N0JzyfR3zb0A7h2+iIMjQoh+/OMfw+Vy4ec//3ksb9cvInuezAMPPDDq3S3AuUyRgLYK93xh\n165dAICpU6f2+ayyspJW88WCyspK3HrrrZg3bx4AfQSLQF7w8tJLL1EObQBx2TRiIAoLCyn8DtCy\nkQ5lpWsiEKstAeCtt97C559/nkBpQAnB5MRg4Xi9XmzZsoVCMC+//HKKIovVIseIFTpjLBXANgD/\nzDl3iRAxAOCc84FS43LONwLY2Psd/Z4zErKysvC73/0OAGA0GrFr1y7s2bMn2rcZFpmZmf36b51O\nJwDNtyv87cIXl5GRAQD4l3/5F901wWCQ/IbykvdoIPut33rrrah+91BhjOl8u3JD/v3vf6/Lnhme\nPlfm+uuvj6GU5xBpVMXfgaiurta9FityRVqKeLJ48WJdGb/xxhtxl2GoiHrg8Xjwq1/9KsHSRM7W\nrVtJod92222UWlesXo82EYUtMsaSoCnzVzjnYi+yJsZYfu/n+QDOxkRChUKhUEREJFEuDMAfAFRy\nzuWp/DcB3AXgX3v/xrWbF/mu33nnHcqDXVVVhR//+MfxFOMr+fLLL/t9/49//CMAbYu6ceM0T9Vt\nt9026Pc1NjYC0PJ/RIulS5eSDKOB5557TpdDRowYhBXenzUe/l48F8dECmMM8qg2EZa5QERkiZW3\nYsXmaOW+++6jOnr27NmEu1uGQigUovp8ww034Cc/+QkALVHgsWPHon6/SFwuSwB8G8BBxpjI2vMY\nNEW+lTH2XQA1AG6NunRfgfBZyon5H3rooYStxhT+3BtuuGHQc2+55ZZ+3w8EAjrlJJayi+XvYleZ\naHLjjTdS53jgwIGEZ4Lcvn07bQgiNvsdjObmZlRWVtLS+vC9XEcDUqRXwhEJ406fPg3gnAtwtHLf\nffdR2Ykw0bS0NACai1L8jtGKSHb2+OOP49///d8BAOvXr8e3v/3tqM+lDKrQOed/BcAG+HhFVKWJ\nkJKSEsrMBpzbESiR/t9vfOMbALSdfuQ4dODcFlnhVvimTZt0u5pv376dcnzEA5vNptvc+PXXX6cs\ngImipqYGt99+OwCts3nwwQcHvebJJ5/Es88+G2vRRoRI5QvEZ+Pl/hD1ctKkSTo5ErlL/VAJBoO4\n8847aY7p8OHDuOuuuxIsVWS8/PLLtIH1N77xDfzsZz8bcBQ/XNTSf4VCoRgrnI9L/+Xl/aFQiC9Y\nsIAvWLAg4YsfzrcjKSmJf/zxx3znzp18586d3GazJVym8GPlypV85cqVfPv27bynp4dv27aNb9u2\njV999dX0WXFxccLlHOxobGzkLS0tvKWlhT/44IMJkcFoNHKj0cg3bdrEQ6EQf/HFF/mLL76Y8LIZ\n7CgvL++z1H7jxo1848aNvKioKOHyDeUoLi7mxcXFPBQK8VdeeWUo10a0sOi8U+hLly7lLpdLKXR1\nnFfHn/70J9o2MdGyFBQU8D/84Q8JzycT6bF06VL+4Ycf8g8//JA/8cQTfNy4cdxsNnOz2Zxw2YZ7\nvPfee7yrq4vPmDGDz5gxI5JrxqZCf/TRR3XK/Pjx43zatGl82rRpCX9I6lCHOtQRyWG32/nJkyf5\n6tWr+erVqyO5JjpL/xUKhUJxfnDebnAhktyvWLEi7nuFKhQKxUhwuVy0fiaasHjGxsZi6b9CoVBc\nAOznnC8Y7CTlclEoFIoxglLoCoVCMUZQCl2hUCjGCEqhKxQKxRhBKXSFQqEYIyiFrlAoFGOE8zYO\nXcAYGzVpSQfCZNKKmTGmy2Yop8o9H35HojEYDJS10GKxwOfzAdDKMRgM6nKmx7ssRa5zsRNQUlIS\nZTFMhDznO6I8RR558WxHWzmKHbZEvWSMUb0UbV3IHA/ZlYWuUCgUY4Tz3kIfbT22wWAgK81oNMJk\nMsFisQDQem+TyUQbR/v9fp2VLv+W/nbmuRCRLTWTyQSr1QpA2+AgEAgA0PJ5d3V1kUUUDAbBOf/K\nXY5iIZ/8NxAIjLq6eb4QPlodTZuDAPp9bxljMBqNMJvNALS6Ju+HIOpovDjvFbq8rRcQfwUvHmhq\naioAIDU1lbb4ys/Px5QpUzBt2jQAQEFBAdrb23H2rLb96v79+2m3lZqaGrjdbt2mA/H6LaJyJicn\n02bVVqsV3d3d8Pv9JI/YXSUUCsW0osrKUeymZLFYkJGRQZsrL1myhGRzuVyoqqqijZg7OjrQ2dlJ\nZRkIBGKycUd43ZM7c/nz8KH3aEHIZzQa6f+kpCRYLBZkZ2cDADo7O8E5R2trK4D4KCjOeZ8OMvzz\nSBHXj7TsZXkMBgO9Tk5ORmpqqs4V2N7eDgDo6urSGRbD/Q1DYdQqdLmXDt+PETjnlxZ/Aa2QZMto\noL/h/w8HWdGkp6ejoKAAADB58mTMmTMHgLZTUVlZGSl7k8kEv9+P5uZmAEB2djYp9M8++wzl5eWk\nhOTfG6uHLypnSkoKAK0Dmjx5MgBtay+v14uOjg4A2l6O9fX1ALQty2Ll85eftdFopIaSm5uLxYsX\n45JLLgGg7bojFLrT6URJSQny8/MBaFvQnThxAnV1dfQ9olxHYu3JsokRg7DGTCYT1QlAU+5y5zyQ\nHz0UCvVp8LFW/OJ3iLZjNptp5FNaWoqioiKqzy0tLSgvL4fb7QYAeL3eqHSO4WUpK0nOua5jNBgM\ndM/+ykq+bqA2Ppz6Ks+LiGcrRonp6ekAtG0S7XY7MjMzAWgd3okTJwBonaHb7SZDKBgM6vzr0dRH\nAuVDVygUijFCxBY6Y8wIYB+AM5zz6xljEwC8BiALwH4A3+ac+0cijOiVxdBV7hWFjyopKQl2u516\nyNLSUrImGhsb4fF4cPToUQCadcE5J5+1bFmI3lz0wkPxs8qugKSkJNhsNtjtdgDAxIkTMXv2bADA\nhAkTkJqaSueKTaDFPSdMmED3raqqQlJSkm40EW1LLXwYazAYYLVayc1SUlJCo4vJkyeDMYba2loA\n2gbVwkIf7PujZm0YDFSuc+bMwbJly2h/1qSkJHqeKSkpOisuJSUFTqcTjY2NALS5ClG3hmNdynMi\n4llarVZYLBbajT4vL0/3rN1uN5WXy+UCY0znvhJl1NXVpZtLCQaDUR39hEeLAOf2FhVzO1lZWSgs\nLAQArFmzBqWlpSRrZWUlqqur+3UlCTmHIqs8shb/WywWatfiMzGqDQQC5P4DQG5AEUEUCARIVrfb\nrSvb8FHRUOQM1z9iU2qz2YyCggIaDU6dOhXZ2dk0wvF6vTTira+vh8vlIheM2+2m/4UrRvZCDFXG\n/hiKy+VBAJUA7L2v/w3ArznnrzHGngfwXQDPDVcQxhhVNKPRiGnTplElGjdunC7VZHZ2Nj3gmTNn\nUkXo6elBc3Mzpk+fDgA4ePAgnE4nbcTc2tpKFUFW5kOFc06KQUzIiWGV2+3GmTNnAABNTU0wGo3k\nd/T5fPD7/SguLqbv8ng8AACHw6FTGNH0VQ40tDUajQgGg3Qvj8dDZZmeno6srCy0tLQAOKeU5DII\nJ9pKKDk5GTNnzgQAzJ49G1lZWfT8WlpadI2jra2NhrNWqxVms5kUltvtHpGbRQ5FzMjIAKA9rzlz\n5tD8iLiXmB/p6Oig35Geng6z2UxK22azoampCYDW6FtaWkgpRUuZC7lFm5IVeigUgsFgoPvI5Txz\n5kwUFBRQZ1hYWAiz2axzJ4XfJ1J5jUYjKTuz2YypU6cC0Np3bm4uufuEvx7Q6qTRaCTXn9/vR0pK\nCrmAurq66LPa2lo0NDTo2vhwZBVlJ567XJfy8vIwffp0jB8/HoBW14LBIDo7OwFodU2UVVZWFqxW\nKz2DpqYmqrP9EY3nHpFCZ4wVArgOwJMAHmJazbgCwDd7T3kJwBMYgUI3m830sIX1U1ZWBkCzZPPy\n8uhczjlyc3PpM9FQurq6YLFYqPCTk5NRVVVFldNsNut2OA/31Q0Fcc9AIAC320052U+fPk0jAp/P\nh56eHqpwJpMJDoeDzi0oKKDv8fv9CAaDMZm8EwirQPxm8VoowkAgQOWck5OD5uZmUujd3d26Scb+\niJaVIRpEaWkpjXbEXIR4lidPnoTL5QKg+So9Hg9ZdaFQCJmZmfTa4/HQMxmOLHJ9EqPB4uJiLF68\nmIyH+vp6NDc3k2Jubm6mcrLb7SgqKqJydjgcZOGJyWbZRxytjlGekBOdtyAYDOqUtDAyHA4HDAYD\njdrq6urg8/noWrkjEK8jGd0aDAakpqYiJyeH7iPad1FRES6++GLYbDYAmvEg5pk8Hg+6u7tJN4g5\nKyG7y+WiOmE0GuH1enUTuOEWcCT0N18nvsdut6OwsJBGF21tbQiFQtTGW1pa6DmnpKTAZDKRkQSc\n6/DFSCLao/BItdlvAPwAgHhyWQA6OOeiZdcBGN/fhYyxexlj+xhj+0YkqUKhUCi+kkEtdMbY9QDO\ncs73M8YuG+oNOOcbAWzs/a5+u6Nwn7nBYCCfOaBZLcKH1draivT0dHJVnDhxgoY0gUAAPT091COW\nlJTg7Nmz1LuL3jFMvqH+JN11wi8uvtvhcFBv7XK5dK6KjIwM3fCxp6eHZPd6vSNyA0UiazjCXyss\nCtnPm5aWhs7OTp3bIh4ha4wxel6XXXYZFi5cCEBzWxgMBvJLHzlyhEYPIppAhNrl5+frwkeF6wsY\n+lyJ7Aq0Wq0UzXDppZdi5syZdE+fz4eKigqav6mvr6eyS0lJQW5uLiZNmgRAK1vhlpsyZQpaW1tp\ntBEthPUnux9kC112wVgsFvKh2+12MMboOqfTifb2dqoj4fNOkbYfEUkjLP/k5GQapcyaNQs5OTlk\noXs8HrrfyZMn0d7eTmWZn5+P3NxcmkPLyMigkdjp06dhsVgGdA0Opa3L5wYCAYq2yszMREpKCj2v\n9vZ21NbWwul0UpnIrjar1YqSkhIAwL59+8jXLlxG0SYSl8sSAKsZY9cCSIbmQ/8tgHTGmKnXSi8E\ncGYkgoRCIfJDM8bQ3NyMoqIiAFrhivA+u92Oo0ePoqGhQfsBJhMN46ZMmYJAIECVwe/3w+VykSLq\nrwKOdNGJeIDie1taWqgxMMaQnJysm6ybPHky+d/a2tqoYQt/f6xD1uRhePgkaVpaGrkQcnNzdcNX\np9NJyn4gGaMR62symcifu2TJEpoE7ezsxKFDh3Dy5EkAWkcu5D579iwCgYBustdisZBCT0tLo7ol\nT55GIo/BYKDhdVZWFs3lFBUVweFwUEOuqKjAvn37cOTIEQBa3RNGSV5eHoLBICmF9PR0XX0Rk7ry\nfaPpdgH6LnSSjaZJkyZRfL/FYkEwGMSXX34JANi9ezfq6uoGbEORlqXoCETdKygooOeTkpKCUChE\nda2+vh779+8HoE3KejwecrGmpaWhu7ubnonVaqWO3Waz6dwj4SGNkRIuq9FopOtTUlJ0cwqtra2o\nra2lc5OSkshtmZubi+LiYp2xJ0+wx8K9OqjLhXP+KOe8kHNeCuB2AB9yzu8E8BGANb2n3QXgjahL\np1AoFIqIGcnCokcAvMYY+wWAAwD+MNwvEsmVRO/l8XjQ3NyMv/3tbwA0a0JY4e3t7Th8+DANedLT\n03WB+8nJyTQM7urqgsvlop5fDuaPpiUsT27IS3/FEF24EGbPno2cnBzd8FWEBba3t+uGa7Ek3FIT\nQ91JkybR6MFisaC5uZk243a5XDGdsAU0yzQzMxPXXHMNAM0KFuXh9/vR2tqKw4cPA9DqiPgd4n9h\nLdvtdpSUlNBzqKysHJbLRYxmxO+2Wq3kzktOTkZPTw/Jc+jQIVRWVlK9DAaD9NyDwSDcbrfOChfW\nus1mo2E4MLQRxFAIX2RjNBrJbbF8+XJyJRkMBlRUVOD1118HABw7dqxPiorhICZ/hau0ra2NFn5Z\nrVaMHz+e3Gl79uyhEUJTU5NulFRVVYWsrCySl3NO7ovOzk7dBPNIknrJ53u9XrpfRkYGjhw5QgEC\nbW1t4JzTa5vNNuCz9Xg8ukR9sWBICp1zvhvA7t7/qwEsipYgcrSFGHKKBlFZWUlhXsnJyfB4PBQm\nJGa9Ac2HdvHFF5OCB4BTp071yfERC8T3mkwm8g3OmzcPdrudXtvtdtjtdopyqaioIPdMMBjUZRCM\ntesFONewRaW75JJLqCxDoRDq6+tp1ZuosLHEZDJhypQpmDhxIgBtiCrKp62tDVVVVVQ+IqIB0Pyz\nnHMKKczJyUFJSQl17J988gkpe/E3EsL90C6XixR6RkYGOjo6aD7kyJEjujkGOWRQVu6AVmdl37Yc\nSQPEPjujcAUuWqQ138suu4zu39raip07d2LPnj0Azi39HymhUAg9PT1U9w0GAxkPYv5BuE5qa2up\nXAOBAEwmE5WX2+2m6DFAM+hEKKDT6YxaZyi7JjnnVD7t7e1ISUkh/SOenVDiOTk5FDEk6qN49kaj\nUWfsibocTUbN0v/wVLI+n4+6PVYCAAATsUlEQVQelNVq1YWAyRMqmZmZ1Hvm5eXBZrORJbR3714w\nxkgZxSpJE+9NOQBolqSweDMzM5GcnEzWIeccDQ0NVFlTU1Pp3NLSUgoRA2Kby0UepSQlJdGkTWlp\nKVkQTqcTn376KTXAeCS4Ej580am4XC6yvo4cOaILVeSck7UnQsPEnMuSJUuoUwC0yXExBzPUMFX5\nd8uKORAIoK2tjUZ/QknKi2VEgx43bhwcDgd1BikpKbqO22636xq9bNzEAsYYsrKycPnllwPQ/Nmi\n/p44cQJvv/02hXlGsw76/X76vqSkJAo3zM7ORjAYJIvd4/GQArVarbDZbDTxWVBQALvdTp83NTWR\nEnc6neju7taFKo7Ehy6uEQvwAK2DMxqN5CcXuW9E0EZRURF9lpaWhtTUVHqW48ePp/rS3d2Nzs7O\nPosdR4pa+q9QKBRjhFFjoYcjR700NjZSD8g5p6EaoFnsIhRK9JbC2uGcw+v1kvURy2GssOTkhRaN\njY0IBoO65c5NTU0UXeD3+2l0IcIdhfUurzCNJaFQiMovLy+PZDt79iwOHTqkW4gVC+Q0Cjk5OUhP\nTyerpauri6y4ffv24ezZs7rwMCGbyHYnrPLS0lIa+QDaakd5lDQU5ORZJpOJ6qTH46Fl6YAWepeR\nkUHnZmdnk1WZlJSE8ePH00Iar9dL8nm9Xvh8PqqzYg5msIiikWA2m7Fw4UJcddVVADQ3pvBf7969\nW2f1RpOenh6ymL1eL43+qqqqdJEkaWlp1N5NJhOys7Np1Gaz2ZCXl0dW8NGjR8n90dHRoZuLC4VC\nw5o7AfqmshbtsqioCOnp6fS8TCYTCgsL6VlnZ2fTvTIyMmCz2agdZ2Vl6VxrSUlJUd+4Y1QqdDnU\nCtAatlCKTU1N8Pv99MDb29tp9d7UqVNRUlJCQ3FxbTwUujzME6GIx48fJ7cGoPknU1NT6bdMnjyZ\nQre6u7uRkZFBcwVyrpJYu16EQg+FQuSeevfdd9HY2BiXSVo5Z4bD4SCl6ff7cezYMQBaWZ49e1aX\nw0NOTzthwgTyY4qJXnFuVlbWsFcEA6DvaW9vR2VlJQDNpeJwOGiy3ul0Ii8vj9w+cv4RALqVqwaD\nAVVVVfSd8m+RO7hYYbFYcM0111CnEgwG8dlnnwEAtm/fHlP3mqjTPp8PNTU1ADS/eFpaGrmoAJBh\nkZ2dDc45dXB2ux0mk0mnCIU7zeVywe/369ws4XlnhoNsXAaDQZ2LzGazwWazUYfj9/tJ3wgXnXBf\nyak9zGYzZV8VKJeLQqFQKIhRaaEDfYc8clRLMBikXA92u52sdWEJC4tKbHQQ691/5NWEHo+HhpJO\np1M3ZPf5fOjo6KDePTk5mYZg4ncIi0/OIherqIdwa7C9vZ0sqOPHj8Pj8UTFwhlMBlF2YkJbyNTU\n1ITjx48D0HKcy5Nq4QuJRM5x4Fw9EBOop06d0i1aGyqiTDo7O1FeXg5Ae5aTJk2iBS8OhwOpqam6\niTR5YtFms5HF7vF4aCTm8Xjgdrt1u9zEakJcWL0i57koi9bWVnzwwQcAtDKLZXuR24LA7/fDbrfT\nezabjX6/y+WCyWTSrU61WCw0WV5fX08WugivlBfORSNMORQK0ahfZMeUR1uBQIBcVh6Ph9yCZWVl\nMBqNpKvkBVEiSd5IsoD2x6hV6MC5hxAKhXTKTYQyidciSmPGjBkIBoO0/LqioqLfDS+iiViVKBRz\ndnY2uVGCwSD5SOXzxcMzGo00zLRarcjLyyNfXUdHhy4ZVqz86Q6Hg8KskpOT6f4itjvWLhdZgff0\n9KCzs5OU3ZkzZ6gMLBaLTqHLjUEsrxYrTC0WCzjn5H8/fvz4iCKdxDVer5dWKBsMBrjdblo52tPT\ng4yMDGq8LS0tOn86Y4w6lebmZvqNbrcbjDFSGLEKrTUYDGT43HHHHcjOziYFf/z4cXITymUcC+Q2\nLW/2IL9OTU2ldtHV1QWr1UqpCcaNGweLxULld/jwYQp3DE94NVIjRNYbwkg8ffo0ioqKSB8ZjUa4\nXC4y4jjnug2j5Y1EnE4nGRnynJu4Lhod6ahW6AL5ocjL6gF9BjybzYYzZ85Qj93R0RETRSiHQ5nN\nZqSmppKllpmZSRM2wWCQfP7AuRSrYiI0JyeHsgmKBi0vf5b3LYwFJpMJRUVFZG3U1tZSo+rq6orb\nbvXypGP4dnGiIR88eBBer1dXFsKqnTlzJhYtWoQpU6YA0DrAuro6HDhwAABQXV1NCn0kllAwGCTr\nKxAIoLW1lba9y8jIQGZmpm77MdFRZWZmwul00lyF2+0mC7O9vR09PT1U7m63W+dXHSmivEwmE3U+\n8+fP18l64MABWiAlh/3FElmB9fT0IBgM0u+WFyDZ7Xbdwp2uri5dnHpDQ4OuYxD5icLvMRLkCXin\n04m9e/dSioycnBzU1dVRhyinhxC520U7ljtL0YkNtBPTcFE+dIVCoRgjnBcWOnDOShdWj/BDy0l+\nvF4vmpubyfIQmRAF0fQDy7PVZWVlJMOECRN0Qz7gXO8rFh2J8Lqrr76aQtlqampw5swZ6s1lV1Gs\ndrFJTU3VDffr6uooFYFIeBWPZGHiHt3d3TTvIOQTfuiysjKcOXNGNywXI7OlS5di4cKFFGlQUVGB\nAwcO0GrH5ubmqEQMyQvIOjs74fP5yHL0+/1oa2vTZafsL783oNVTYaGLCA7hjvH5fFGx1sQoUtTT\n4uJiWkiUk5ODnp4emp/405/+RG0mXqMyoO88mdzG5ZW0cg7/9vZ2uN1uSnglR5UA50Z54jujUZay\ny0XUUWGRd3Z26jKqdnZ20ihObKwirpVXuIpRSbTdweeNQpcn55KSkshNUFhYSMpdbHQgFJTws0Zr\nwqG/0LK0tDRMmjQJF198MQBNwYtGbjabddvTpaWlYdy4cbTLzfTp03XbgAEghSrLLCZeovUbhOxi\n2b8oS3nbNqfTCbPZrEujECvkxiCvtpTTKHg8HuTn5+vWHIjUusXFxbBareSuqq6uxkcffURzKdGM\npZd9wD09PbpNvVNSUnQhsuJ3BINBdHR06FbAyvMo8jxLtBQqYwxms5nKa/LkyVixYgXJ1tLSQpkh\nT548OSw3T7SMDHkiWX4t3pOzG4ql//KcgyhnMdcUyw7J5/PBYDDoNn6R55oyMzPpOYvQVXm5v7wN\nodymoyWzcrkoFArFGOG8sNBlq1JkvJs7dy4AYNGiRWSFeL1e3Qay4rpor8YKnxS12+2U6Ag4tyBq\n7ty5NDECaG4iOVQxJSWFoiZOnDiB3bt3U75vsRIxmnIL2UV5FRcXY/r06WSh+/1+cmNkZ2fD6/Xq\nNl6I1hZzMvKiEeEGEFE3paWldK/09HRkZ2froonE/4wxOJ1OHDx4EIDmQjhw4ACNLmIVhidPlonM\nfiJyREQ6ANpkuMlk0m1WLofYdnZ20vdEbXLMYEBWVhauuOIKAMBVV11FycpsNhv8fj+5geQRTDwW\nkg2EuLe8AEdEvIhytVgsMBgMVGfEYjSg76RoNJ+7PDKTJ8e9Xi/sdju511JSUqg92Ww2mM1mmjj3\n+Xy6oINoTdrKjGqFLj9g0Xhzc3Nx0UUXYfny5QA0pSk+O3HihG54Jscqh3/ncJSS7O+S07rW1NSQ\nv3bx4sUUxSJm6OXlzvX19TRMr66uphTBH330Eaqrq3V7lcqVKBowxmC1WmlIWFhYiEmTJmHevHkA\nNJeHWAnpcDjQ3Nysi7SJhWLk/NxOOl6vF3V1dfj0008BaL9bdDDTpk3Tudp8Ph/F/jY1NaGhoQFv\nv/02AGD//v20A1SskZ+RvLONHDvtdrvhcrlIKYnXgOYTjpbrQjY0bDYbsrOzaSPmiRMnkkIXHY+8\nolowFJdPtA0keV5KuCkLCgqQk5NDKRZsNhu8Xi91iIO192gRvh5DtAXRgYSvhQHOxZ2Lcj59+rQu\ndUUs6ueoVujy7h6iodjtdkyZMoV65Y6ODiqYpqYmlJeX65baivSkQPRifOW4+I6ODlRUVOgar8g1\nk5eXh9TUVIpRPXv2LL788kuywt1uNy1tF0vAZaUZ7UnQpKQkJCUlUYhlWVkZSktLSb6DBw/ScuyW\nlhbU19dHPawqHFmhd3V1obq6miYMm5qaaCf44uJiZGVlUWfY0dFB5VhVVYWOjg6S3efzxWwhVH/y\nA+fSDQjFk5qaqsuHLi8Ukxfv5OXl0e8ARu6XlsMU5YyPaWlpOj95c3MzhXV6PJ6ojxCGIquY6xLK\nMC0tjVIoOBwOOBwOkr2xsVGnuOX25XA44Ha7dRPg0Zg/C9/STv5OkXdG3jJT1NGWlhY0NTXR83U6\nnWR8+ny+mIRUKx+6QqFQjBFGrYUurwSUE8OnpqbCbrfrlmOfOnVKd43ozYWvUvhS5RC5kSJ610Ag\ngJqaGsrl/Le//Y1m3e12uy77ovDxiyGY3++PeQIu+buDwSC6urpoNxi32409e/aQC6axsZH8qmKl\najwyPgr5/H4//H4/Wei1tbW01F7kxBbnilQQ4n95QUw8rcxwl4uoe11dXWS1ORwOBINBcrPIuwWd\nPn1at9R/JLLLroDOzk7U1NTg6aefBgDs2LGDFl6dOnWKkp2Jc+NZZuEYjUbaKB7Q/NByJJbP56P2\nn5ubq1tO73K5KBJKZFuU3SHRQG6b4jvFc25vb9dlx5T3NA5f+SzPSfl8vqjqIwGLV8wpADDGIr6Z\nPMwxGAzkcsnNzcWyZcvoc4/HQ8PcUCiEw4cP08P2eDzo6uqihxAP5XQ+IfJJyHMD8awPYwnhAxZK\nSd4UIScnByaTidwfqampFB565swZuN1uGqZH280myyNnp4z1doKDIbfvcJeLw+Egt6WYnBdlV1hY\niNbWVl0cv+wmlFNmxKMui9QVopyTk5MpH5OcrgTQOhzZuBxiJ7qfc75gsJMistAZY+kA/h+AmQA4\ngLsBHAWwBUApgFMAbuWctw9Fwq+Cc65LeSpbPocOHaIHKufz9vl86OzspOu6u7vJf6noSyKtsrGG\n8K32twONSEMspwUQdTJaC4n6kwdA1K3VaCG3bzEpKpeJiPPu6OiA0WjUpd2V5wLq6+vpXDm5XLwQ\ni5fkzlJemyBGGPK5sSRSH/pvAbzDOZ8GYA6ASgDrAHzAOZ8M4IPe1wqFQqFIEIO6XBhjDgDlACZy\n6WTG2FEAl3HOGxhj+QB2c86nDvJdIx4Diexl/YUQCj+cvPGyQhEvZPdVuMsQ6Gs1K/rHZDKR+yU8\nK6HVatUl64rHSuahEh46GSXXT9RcLhMANAN4gTE2B8B+AA8CGMc5b+g9pxHAuOFKOhTk3AgKxWhC\nbrj9TaQpIuOr0kWPRgUeTiLnoSJxuZgAzAfwHOd8HgA3wtwrvZZ7v7+CMXYvY2wfY2zfSIVVKBQK\nxcBEotDrANRxzj/tff06NAXf1OtqQe/fs/1dzDnfyDlfEMlwQaFQKBTDZ1CXC+e8kTFWyxibyjk/\nCmAFgIre4y4A/9r7940I7tcCzcJvGb7IY5JsqDIJR5VJX1SZ9OVCKZOSSE6KKA6dMTYXWtiiGUA1\ngO9As+63AigGUAMtbLEtgu/ap6x1PapM+qLKpC+qTPqiykRPRHHonPNyAP0V2oroiqNQKBSK4aJy\nuSgUCsUYIREKfWMC7jnaUWXSF1UmfVFl0hdVJhJxzeWiUCgUitihXC4KhUIxRoibQmeMrWSMHWWM\nnWCMXbB5XxhjpxhjBxlj5WKxFWMskzH2PmPseO/fjETLGWsYY5sYY2cZY4ek9/otB6bxu9668yVj\nbH7iJI8dA5TJE4yxM731pZwxdq302aO9ZXKUMXZ1YqSOLYyxIsbYR4yxCsbYYcbYg73vX9B1ZSDi\notAZY0YAzwK4BsAMAHcwxmbE496jlMs553OlcKsLMdHZiwBWhr03UDlcA2By73EvgOfiJGO8eRF9\nywQAft1bX+ZyzncBQG/7uR3ARb3XbOhtZ2ONAID/yzmfAeBSAPf3/vYLva70S7ws9EUATnDOqznn\nfgCvAbghTvc+H7gBwEu9/78E4MYEyhIXOOd/ARC+bmGgcrgBwMtc4xMA6WKV8lhigDIZiBsAvMY5\n93HOTwI4Aa2djSk45w2c8897/++Elul1PC7wujIQ8VLo4wHUSq/ret+7EOEA3mOM7WeM3dv7XkIS\nnY1CBiqHC73+PNDrPtgkueMuuDJhjJUCmAfgU6i60i9qUjT+fI1zPh/a0PB+xtgy+cOvSnR2IaHK\ngXgOQBmAuQAaAPwqseIkBsZYKoBtAP6Zc+6SP1N15RzxUuhnABRJrwt737vg4Jyf6f17FsAOaMPk\niBKdXQAMVA4XbP3hnDdxzoOc8xCA3+OcW+WCKRPGWBI0Zf4K53x779uqrvRDvBT6ZwAmM8YmMMbM\n0CZz3ozTvUcNjLEUxlia+B/AVQAOQSuLu3pPizTR2VhkoHJ4E8D/6Y1guBSAUxpuj2nC/L83Qasv\ngFYmtzPGLIyxCdAmAffGW75Yw7TdIv4AoJJz/rT0kaor/SE2Bo71AeBaAMcAVAH4YbzuO5oOABMB\nfNF7HBblACAL2kz9cQB/BpCZaFnjUBavQnMh9EDzc353oHIAwKBFSVUBOAhgQaLlj2OZbO79zV9C\nU1b50vk/7C2TowCuSbT8MSqTr0Fzp3wJbee08l5dckHXlYEOtVJUoVAoxghqUlShUCjGCEqhKxQK\nxRhBKXSFQqEYIyiFrlAoFGMEpdAVCoVijKAUukKhUIwRlEJXKBSKMYJS6AqFQjFG+P8nx+FQZZ/x\nxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZVl63/e/b57HGDMru7sINLkx\nYS4IyQsvZAg2bMMAd4TlhSlDADf2Xtx5y60BA4a5ECwtbEsbQVoYHiBA8MoAYS8IusHqbrGqOjMy\nM+LFm4d48/Ui6vfF927d+96LyCp2dDkOkIjIiBf33HPOd77h/01BGIZ6GS/jZbwMRurX/QIv42W8\njOc1XpjCy3gZL2NnvDCFl/EyXsbOeGEKL+NlvIyd8cIUXsbLeBk744UpvIyX8TJ2xvfGFIIg+A+D\nIPgiCIJfBkHwJ9/XPC/jZbyM73YE30ecQhAEaUk/l/TvS3on6c8l/b0wDH/2nU/2Ml7Gy/hOx/el\nKfwtSb8Mw/CvwzBcSvqfJf3B9zTXy3gZL+M7HJnv6bmvJb11/38n6W8nfTgIgpewypfxMr7/cRuG\n4emhD31fTOHgCILgjyX98a9r/pfxMv5/OL4+5kPfF1O4kvTG/f+zb35mIwzDP5P0Z9K3NYUgCBSG\noX2N/sw9Q0l/x+/jfvbrGn493/c80u5a/b4x4t4l7h2T9pD/J/1NdK5j1h+da7vdHpxr37sfM/i7\nXwdtxJ1L3Gei9yDud0njsev6vpjCn0v6aRAEn+ueGfynkv6zxzzAE4H/Gf+in9lut4kMJI6hHPsO\nce8RJaBjN33f5+LW+alzJa2Xn6dSKaVSqZ15Dl24fc+M7n8qldqZy69ts9nYmXF+fn3R9zjEVKLz\n+O+ja4t79mPHd31e0WdH6Te6f+zhp84VN74XphCG4ToIgv9K0v8mKS3pH4Vh+P8e87dxxMcmZDIZ\n26BSqaRqtaq7uzul02mt12tJ95KFf3d3d1osFo96dzY/k8kolUopnU4rl8vp9PRUk8lE2+1W6/Va\n6/VaYRjawSwWC3uHYwfr4vKkUikVCgW1Wi0tl0s7+CAIlE6ntVwutV6vNR6PtVwunzRXJpNRJpNR\nOp1WsVhUo9HQZDLRZrOxNbB/qVRKi8VCm81m73M5L86MvfP7l8vlVC6X1e12bQ+3260xhEwmo/V6\nbetK0jyitMHepdNpmzubzapcLms2mymVStlFzWQytp+z2UyLxeJRF4k1ptNp+5rP51WtVu1svHBi\nH9nXY+Zibel0WqlUStls1r4Wi0U1m00NBgMtl0ujvTAMjakuFgstl8tPYhDfi0vy0S/hzAdPZIVC\nwYgLQpakQqGgSqWis7MzuyxczOVyqWw2q+l0qslkoru7O41Go29x1cj8yufzymQyyufzqlQqqlar\nymQyajQaKhaLev36tSSp0+loOBxqNptpNptpPp/r7u5O0+lUm81G0+nUDihprmw2q1wup3Q6rWw2\nq3w+rzAMValU1G639du//duqVCqazWZ2wXq9nrbbrd6/f69ut6tOp2PripsDSQ1RwXQymczOHhaL\nRS0WCy0WC93d3Wm9Xmuz2SiVSmm73dq+zefzHYJnHi+9K5WKMYF0Om1nlslkVCwWtd1uNZ1ONZ/P\njahhCJvNRpvNRplMxt7DS92ohlIqlZTL5YwJQBu5XE6FQkH5fF71et0uZj6f13K5tEt6c3Oj1Wql\n29tbrVYrScmSNp/Pq1AoqFgsqlwuq1ar2ZoajYbK5bJyuZzG47Gm06nRw2w202QyMaYLjUTPyo9K\npaJyuaxSqaR6va5isahUKqV2u61KpaJsNqvVaqV+v29zTKdTrVYrLRYLTadTrddrzWYzE1JuXf93\nGIa/n0ic34xfG9AYNzxDyGazdtipVMoIoFAoqFqt6uTkRK1WS8ViUavVygh4uVxqMBjYBe/3+wrD\nUJPJZIdbe2LmuZVKxQ6jWq2qXq/r/Pxc9XpdJycnms/nKpfLtvm9Xk/X19dar9cqlUqaTqfK5/Na\nLBaJjAHpgtQuFArKZrOqVCpqNBq6vLzUmzdvlMvltNlslE6ntVqtVCgU1O12VSwWVa/XNZvNFIah\nxuPxDqH5PfQXxkts1tput5VOp7XZbHR3d7cj1ZbLpSaTiSRpNptpu91qtVrtaENRra5Wq6lUKqlU\nKtm6OAcYVL/ft/3xl3Q6nUqSlsul0um0ptPpjjYUNU8qlYo9M5fL2VfO7vz8XO12W+Px2LSF+Xyu\njx8/KgxDnZycaDwea7VaaTQa7dW8EAzFYlHtdluNRkO1Wk2np6eqVqtqt9uazWYaDoeaz+eaTCbq\ndrv68OGDVquVVquVlsulSqWSZrNZ4nlJUrPZVL1eV6VS0enpqZrNpprNpqrVqtFIp9MxpjCZTNTr\n9dTtdtXv9yVJ8/nczumx2qv0zJiCH6VSyRgChAWXfvXqlVqtltrttpbLpfL5vLbbrXFHVOT1eq1q\ntaogCEy9Y3ipUC6XValUjKhQ0169eqXz83NVq1UtFgulUik1m01NJhOTpMPhUNlsVsvl0iReOp1O\nZAr5fF75fN4+J91L7Xq9rtevX6vdbqter5u0zmazmkwmqlQqGg6HCoJAq9XKJAgSPm4Ui0VjPEjs\ndrutk5MTnZ6eql6vq1Ao6O7uTqvVyjSf1WqlbrerfD5vF6dQKJjqHSdRM5mMLi4uVC6X1Wq1VCqV\ndHp6agwJpo12s16vNZ/PNZ/P1e12lU6nNZ/PJckYhr+ofs50Oq1SqaQwDJXNZlWr1VStVtVoNOzC\n1mo1FQoFXVxcaLPZmMmFOblcLlUoFFQqlezSxo10Oq1KpaJ8Pm/S+uzsTGdnZyY4stmsZrOZSfn1\neq16va5ut7tjtnkTJrquMAyVy+VM82i1Wmo0Grq4uDAaxGzJ5/NqNpsql8t2rtDBYrGwPfdm9WPG\ns2MKHlQJw9AkTrVaNUZQq9XUarXs4mezWW23W1UqFTtg7Eku7775wAY4sFKppHK5rGKxqNlsptVq\npcFgoPl8bhcWyYsk9pjGvrmQjLlcTpJM8ymVSsrn8yoWi3ZxIPzVamVMAqaQz+c1mUwSPQgeP4A5\nnJ2dqd1u6+LiQmdnZyoUChoOh7bHMA+kK3gNe+hBPD8ymYxOT09VLpf12WefGUMtl8tarVZmLqzX\n6x0TBibEeYGjSPdmANqQH+BJy+VSrVZL2WxWFxcXZvIhPNgvSXah7u7udHFxofV6rX6/b0wu6cyC\nIFAul9N8Ple1WpV0L8kxRabTqabTqVKplGazmVqtlpm90+nU1omGtc9URxteLpdqNptmmtTrdUky\nbebu7k53d3eq1WqmMYVhqGKxqFwuZ3jNp8ACz44pSLLLDrAYhqFxbMwKwD5sXVRVGAEMBZUqyfZG\niqHKepBtMBgonU4b8WL75/N5SfeEy+XDptzHhFKplDEPJAdqO2AR5sB6vTapls/nDbvgokyn071o\nfC6X28EVkKi/9Vu/pUajoUKhIElm4xeLRUmyz2JmTCYTk6Jx6+KSchkbjYYqlYrZ9ewd5gDSGa2s\n3+9rMBhoMBhoPB4bxjCbzWLXlc/ndzAAmCaYEnvF+Z2fn5uACILA6AYJi9YWN6ANzKnxeKxer6dM\nJmP4AM+E8WLmFotFm4t3TafTiUw8k8mYibbZbOy85/O5Op2OgiDQcDi0d2XufD5vdAgTWy6XB4Xh\nvvGsmAJEzAiCwOz4bDZrtmqpVFIqlTKAhc/UajWtViu7LHd3dweR2DAMjQFNp1PlcjnTNricd3d3\n9kzs9EKhYKqadG+7QaypVCqW0DxSvFgsdpgYEsm76xaLher1uhHXcrk0G/Xu7i7WhcgeQqBoUc1m\nU2dnZ3r9+rWy2awxmNFoZOAijKJcLisMQ11dXe1oKnHrwYsBUXuinU6n6vf7Go1GGo/HWiwWury8\nlHQvvdfrtTE3/kHI7GV0XWhpPB/zB4wBJrvZbHRycqLhcKhisWgmpn9HGG/S5WF/F4uFBoOBSqWS\nCRlv7oRhqNevX2uxWKharSqVSun29tb2gfPcx8T5OfSGGdLv9zWfzzUejw2AbTabGo1GqtVqNgfr\ng1l4zfK5xCk8aUR9vaj02+1WuVzOuGI2m1UQBOYuKxaLpt6tVivzOnBoXLa4uZjPq/+g516Sp1Ip\nlctl1et1k0bz+dzATbSVKDHHzQVRekbDJQalL5fLhj+gWrMuPBxxxBznysV9e3FxoXw+b5pWv9/X\n9fW1eXna7baazaaBs9VqVR8+fDDNLU6VZx6+h0kDUvb7fd3e3trlf/36tdnNnA97vVgstFqtzGSJ\nzsXattut/W0qldJ8PjcNKpvN2jM5Exg44NxwONRoNNJsNjOGv++8kLxcvkKhYMIjlUoZ3nBxcaFS\nqaROp2PAJsAtYHjcXJ4hov3CqNEYvFszCAK1Wi0Do/E88Luo5+ax41kxBenBD73dbk0ioOZ7EM/H\nClSrVUPQca+t12tNJhNTW6Mag/ete+kNp57NZuYbXq/XBiJ5AoYZYFYgUaNSNTqXJDMZMCOKxaJO\nTk5UKBQ0n8+Vy+VMI1oulxoOh6a9QGzsQ9yAaYATNJtNtVot07Devn2r9+/fa7FYmDcik8loMpns\neH28DzzqkuR38/ncvCNcUukeM8BNx4UolUrmqlwsFppMJjuXgH2MOy8/kPJBEKhWqxnTqFarZlsT\nr7DdbnV7e6vhcKibmxstFguNRqMdsyZ6Xn5AWzD06XSqdDqtWq1mWizALc/s9/u2Bug06r2Jmw98\nBbwCEzIIAgOXAXLT6bQ6nY7RXalUUq/XM9PhqdjCs2IKXB4uFVLXS1E8BbgdIWAf5TUej43DgznE\nqW8QtVfZwSYgMIgNV5sHN/mc1yySOLT/OfNy8UDPz8/PlclkNBwOjeBubm7s4g2HQzMjILiotsAc\nSKblcqlyuayLiwuLiWB/IDSYLgFGq9VKvV7PANd+v78TfejXId0HzKAdpFIpVSoVdTodZbNZM0tA\n1zlL3g8Twp8RzHbfeYEj4JKWZO5ImAKmJqr8YDBQt9s1/74P1kqiR94LGgM/wAsGdnJ5eWn2PNIe\n85Jn7DsvT4c+TgQabzQaKpVK5lErFoumwazX6x0NOiqAHjueFVNAtfLIMaoam4qUxjuADxwtgcsN\nPsBlTdok/zMuuSRDf9lgGASHB9KNhGs2mwcDl7w/Ohrx12g0DExtNpumuUgydygXBgJlz+LWBdKf\nz+fVaDQkyUwQmN/5+blevXqldDqtVquls7Mzu3BI8JOTE3W73b1+fI+5BEGg9+/fq1arWXxHPp83\nF2Gz2TQzy2s/XHCY+Hw+T1wXqD6MnyjPk5MT0+qIBRkOh+r3+/r48aNJ4MFgYLQUVef98B4XzyBS\nqZQuLi7UbDZNQ2BN7BsMaTKZ7MSuJJ0XNI8JtNlsNJvNDCsjeAoGvlqtlMlkLKYB2iD2ZDabPZkx\nPCumwAJYuJfG2HTr9dqCm/g86nY2m90Jy42zTeMGF5/P41biggMqwflLpZJFAoLUgwvsuzyAZbx/\nLpezqEIPbiIpuRiAmWAsvOe+uAFJBkouFguTjABSaF6DwcDcWSDxMAHWi4njzyi6JlRr1N9KpSLp\nnhHBQHO5nNnXYAfe7kaLiMOA/Fl5HIZ9IDDKmw4IBL+vHs/xYc/7Lg/0BxNB8yEKlngV3JNRbwDv\ndCjknr3ExU2sAeC5j8EJw9C8PKPRyPauWq2aFvXU8ayYgpd+ED8XDtea9ABmsQGg6XByj5ZzIEkI\nuqQd9xQRh961CdH2+32l02mdnJxIkhEG8QW485IOBWYgybQcmBk/H41GkmRaB0xhtVrZWiCWOLeT\nl9gw0clkog8fPpjamcvldqT/bDZTo9GwOQFRMb88M0saqL1cPswDPBpcfsCxIHjIP/Dv7Nd26LzA\nXPz+oIGkUinzingp713aYFRJ7jsuNrTHOeNSDYJAd3d3hpvwzmirxWJR4/FYhULBzJR94fYwFNZH\niDo4DXQFTrTdbg1bKBQKxqwGg4GB4U8Zz65wKxvGJfUBIHBLSQa4IZmi/lsPUh7SFnyAD/55zBOI\nDteddK/CQuwcEgd66PKAhuOnZ52EOuNtIM4A0wGiRXtCsicN3mG5XFrgy8ePH3V7e6tOp2MmFjkV\nzMOlRlNA7fVaXHSwv1yIxWJh+SEAdJh3rGU8HhsQTJg4mJG3i+PWxSXA3ELrgaH4C0wYM/iKP3OC\ntvYNn3fDnMRlcCFR3YfDoXldEGQwEJhxEm1w+REyhULBMB8YIGAl+RXQIzReLpeVyWQsivcYLTlu\nPCtNQdp10XBZkQjdblcnJyc76qxXoyWZqwlVjcuUxJ09KEOAT7FYNCZDhOFgMNhRSYvFoklWCGwf\n0Mi7FgoFZTIZtVotC80F0JNksRUg1djG2PqYTzC9fcMnyVxfX1tkZqvVspBjzAmvIo9GI4svAE3f\np5KizcBciB4EDPZmAUCnJJPWzE8UoxQfbMYeAvo2m02l02mVy2Wz4SuVioGw2PjeXw8mgJ2P0Ikz\nIYIgMK2RGBkiGhuNhq3l7du3hvTjtu71eqZ1skbeK2kuGBsRvNAEe0PIu08AI/NUuk+mQqv1+Ndj\nTYlnxRS86056kEC453xIMfYgUo3gI0/EuA33Da+yevQ3GnvgczBOTk7s3QhxJcjkUBSZJ+p6vb7j\nXvLSGoYoSd1uV4PBwHzREBiXOGkPQfcnk8kOXkKoLIAtcxIPAROczWYW3r3PxocAvWZD5CF4BiYc\nUYu8B3jAdrs1jW8fMMza0OYwifAIYJL5M8StiwkJluHjSpLmkh60M0LSYYA+1wAXNi5lhAXr8Ge1\nby40BuZjrT7UHbokCxTNCNOJs/9BAI0MTxTgCqiD/J6Ng4ve3d3p9vbWLovPld8nvaVdbQI1MZVK\nmWRm03kHngcDgeg5+H1zeQI7OTkxzQRJCnrOO4GeA0R6wt7n/uQrgB4agwdvcad5TWc8Hltocq/X\ns33cBzR6VyG/964+Lgl2rq8V0Gw27fOYGofchB5zajabKpVK5tYFR0GqFgqFnbyKTCZjOBSg9CGN\ni3kxcbD3fXIXTJz1kzcDLsMa99EG+4jwKRaLxhgkmdaYSqVUr9fNNOHZvV5PYRhaYuAPIsxZ2mUI\nHo1l0wlIIbyVjR8Oh6Z64zcHlCOL8BDCjEoG8XCI6XRajUbDAkfCMLTY9w8fPlhgjI913zcPh14q\nlYwx+Oi75XKpXq+n2Wym29tb3dzcWJgrBIakjXu+38soA+PSZTIZlctlk7bk4H/48EGj0cjqAGA2\nHLo4PvvPe4/YDzQ8wFl+Vi6XjRERg7Hv8njPQ7VaVbPZtDR6gNxUKqXRaKTRaGQBUgDRPqfEB1ol\nzYV2ygVE0yNCE/ok2hEhwbx4JfCC7BtRLxuh/bgfW62WxuOxYS94PmazmTqdjt69e2cA8qd4IJ4d\nU2AA1Eiyg8aE4KLCDBaLhW5vb9Xr9dTr9eyyICHZoDh1CsYjPUTJ9ft9u7jRXAsOfDgc6u3bt3r3\n7p3Nd4igJRkRBUFggBHqLvZ9p9NRp9PRZDLR1dWVhsPhjvkA2n4orwNzwc+Jagn4VSqVdgBbwL/B\nYLCj0h5DZB409VGRXH7csGhUXEoftcc+Jg1APc7Shx7jy/cMcDweWyKTBz65UPw/aVAHwQsnLmmp\nVLLgLC4nc9zc3KjT6ezUqdh3XjBrtDuyMD2AiGcC8Lfb7WqxWOjDhw+6urqyNPdDGNCh8ayYgj9o\nNIAwDC3h6fr62nIPttut3r17ZxKUbD584EjIqPobHaDwaB3j8Vjv3r2zGgfSPZgD2otEpQaBL95y\nqLzXZrOxyk3dblfNZlN/9Vd/pUqlYvZhGN4nIkVBPh8Vx7OSTAcuPio9di8eHAi51+up3++bWQY2\nMpvNTPpB0Pv2EE8Q9Rl4Him+3k0H48WtjJkCHjQcDr8VTu0HrmEYKVmE1WpVZ2dn5v24vb3VX/7l\nXxqTYw0eszhkOnDRYYrL5VIfPnwwcyUI7iNdcUni6fDuXIDhQ+o84dMAwN1uV7/4xS8MuITRwlxg\nDOBDaEXSg3B66niW5dgkGVgFOhyNW+AySw8hvahePqTUJ5FI8SYE4A7Dg3X+d1GvB/NCbPuI2c+F\n+ot5w7N5f/9cj3f4ZycRmNeGkG4+8CZqiuVyOVO9kdDz+VyDwcBCkD2ziz7f/7xWq5lGgvkAw8Ms\nOj09Ne9DNpvV7e2tzTcej3eqBvnz8mZREASWMMZzkKSSLMLR56J4k5TBRd1HGzwfcDG6rzCXaJ6I\npwd+vg9gZLAG/67QIHPg2uRnmBt8jTIgN+9vZjk2BhIKWxvCBCuISw31mY7RS+oZQ3RwqaMhrRy4\npB0XoI8b8BL8GAbr1URMIEk7uQz7kP5jwCNP5DwPm5535R2Ipyf2wuMyAHFJphdzsfbpdGrZqj7B\nKZoDwL4iUbvd7qMKqYZhaJ4LNAbccNjuMFy/X15oHMPAGV6wQFs+RV/STug5P4sy9mMGDIy5kv7e\nu9KZy++5/9xjBf+z0hRYQPRSeKmNZJV2QUncTnEbeEhTiM4V/eo1B37mi2c8dfjn+UP20pELdOw8\nUaAxOof32vBzEmlI5ImbL44xxDEv5kHikUTGuYDQB0Gg29vbbzGCqEYSpylE50M4cDGjzBXme4gR\nPIY24miUr4/JTty3rijNsW/eHX4omzTys6M0hWfFFF7Gy3gZ3+s4iik8uzDnl/EyXsavdzwrTOFv\neiSpbtGxz5b2KnX0eb8OLezYNX3KiK43zm6NmoJJ5kfSHsUBg3/T49h1HfN3x/zuuYzfKKYQRaD9\n91EC+tSN98/HZuVnHmT8ri5h0tr8fJ/y7ChO4b08fh7mOhbUjM6xby7m4zM+2CnqBXjK+SXZ+Z/C\nXKLricOX+BqHg/j9/C6Y3N+E4PmNYAoeJANQol1XtKqxB+aIJUh6phTfhsy7nHzYM3UAfRIPIGe0\ncu8xzMIDYayPpBu8LCDK3pvi6wIcM/B0BMFDeDDuwrOzM/OPk0zji9DijeA5cWuIag5+LvaQjk0k\nPHl3G0g+BUoeQ+ieubGHPgdBUqy34VDcQJxW4wE+/hEC7+kQzwd0QOzMY4dnqmTh+ijRqNsxDJOL\n7D5mPFumACoOUXm/MLH6p6enO5fPx7PP53MLJCEJJ6pJeI6P3z6dTtv3m83GUnPz+bwFSZHb7rMz\naUpDBNu+4TPz+D/+ZyICyRPwiT2g6NRVSOr74PfQr4u1EadQr9d1enpq4dNUJiI/gVqE0n0ps0PE\nRqw+sRA+Q5LyctVq1RKs8vm81T7o9/vWsIWWbvvWxh5Ku5ocDC+dTlu9Dc/UkN6s6xgmRGarL+wS\nhqHFR2QyGWtMRF4K+RVEiobhQzevQ+vCQwTth2FoNE8iGPSczWbtnCaTieXhjEajJ2sRz5YpcLgc\nON+zMfV6XZ999pkdLuG6RIQNh0OrzxcEgcbj8U5QjGcm9I/kAtXr9Z2uUfRIJB+ALEUYDynIk8lk\np7pQ0ro8949KnGq1qtPTU0kPNSQIB95sHtq7kba9jwlRGwJJzd5Vq1Wbp16vG7MLw3An1NmnUler\nVYve9HvotSLKrBOaS72DSqWik5MTtdttK2GHRtdsNtXr9RQEgaUBNxoNa6KaNJjHuyJ94hrZjDAX\ntAWkNmcYBMG3sluj2g/r8kFfmUzGaIZwZzppEctAeDqahKTYQrF++AI/uHWZq1KpGHOF7okDoQI3\nGaCVSuVgecCk8WyZAtxZeijcSr48XaIuLi5Mg4DY6J60Xq81GAysgUy0K7Qn5nq9boyAGgck2dTr\ndfM9kxVHi7Xlcqlf/epXymazVm8BYk8ClPiM9FAuDu5PO7ezszPrzuTDg8fjsTVE5flJsRlBcF9H\nkqhF0ovpTXhycmJrnkwmptrXajVNp1N9+PDBOhKRb0KSmN9Dvy6vacG4OSc0EzQELuZkMrE9m0wm\n1u9gX1JPEARW5IYoV9LRG42G1YGEDmAI1KjsdDpaLpdWYIX5ouuC4dBfgSY6XE5qIxJlS4Qloccw\npel0ak1oSfWPG+yNJDMVaLJD39R2u61isWjVt4fDofXUIGycEnAEoT12PEum4MEoqhR56UajTVKM\nIRCk9Hg8NhU2l8tZjr8f3hZFRaPwyevXr/WjH/3IPkdeBD0cYRxUY6KeA+pidC4/ZxSzoHHo5eWl\nTk9PraIzZdkoM4ZtT269D7lNmitqixJHD2HRDwEmw54RKeij6bzKHbemUqmk7XarWq2mbDarVqul\nZrNpRUfJFYBh+lJj5AwEQXAwyIiLg2aRzWZ1cnKiZrOp8/NzK4KLICDAJ5O57zpFsRmyCcGEktbF\nxT87O7N+n5Tt42w4y3a7bWn7dHOK1vXwgGR0Pt+MhwrOZETSiRomAZMhUrVcLmswGEh6KAKbRBuH\nxrNjChCnDymW7iVCvV43uxsCQoIBCKJCYXdTaTiaIIKmgBRE0rVaLZ2cnJitRqLVYDDY6ftQKpUU\nBIGp1lQaIpQ2bnCpyFLEzqeRbbvdtnp+ZMP5Sk9ee/KVq+P2kMIlmDE8E4KTZIk8Xrr43AjMB59M\nFJ1HkhUr4SIyn29o4vMkOFeYEpeHc/Fp69Hh7XpvDn322WemLaCC8y4kttEGD6FBvkx0D/26CKEm\nuzOVuq/9SDETaBBzBUYShqF6vd5ODc59NTDYH/YY7QaMid/d3d3ZejyGwjNYD+/+lPHsmAIDyUS5\nbP7vEV68C3BZDpMsS8AzH2brR9StRJ0BDoFqSt1u16ovBcFD85FsNmsFWPl77OW4uTyD48BrtZpe\nv35t2k+xWNTPf/5zswdpfY4Kyjw+fThuLuageAtViZDo5JYMBgO7HCSg8beYJ6ydZzNn1AW53T50\nbrq7u1O1WrUsQ8wE1k99CjJeKWjj057jPAAeP/B1IbC5MRmoCcE8jUbDWsj5pCHvhmV4EJp3oEAN\nJiS5Gpg7NLWFcTMXTM+nRcedG/sLXuT7OnDWpNkjLMA2AL0xaaGRp7qynxVT8JcJzoi7DyKlpkIq\nldJwOLRsuUajYbY36j6FO/yFjrrPUF+91wH8AdDSJy2hHnsCYfMxXw6tEWmYz+f15s0btVot66JN\n+nIYhtZejSIfvsgqYFbSHiLrz0RwAAAgAElEQVSRfAVlCLZcLu9IaMAy+k34eHqI2f/zc3lGDBF7\nLASXHJ+n1iEdwieTiQaDgYG4vlFN0mC/oQMYHqYPqekwOJgpWAZM1fexjO6h30eYjBcepNJjanls\nCxdvp9Oxtm8wRcyO6EDQodGBByyXS2Nk0GatVrPanuAjaHwkmbE3TxnPiilEI8U8QgyhhWFoFW4g\nci4qxTSotIP7MErofj7MDSrlTCYTIy66IVMCvVQqSbpnJFRExn0Ht066rMy13W53XJBoONlsVrPZ\nzGpEoBL67s/sDfhCXD0AL8W9G5N29z6DFFCWXpMUTl2v15a45LMq4xheND5kPp+bZoYGAtNZrVbW\n7CadTps0p9YhadrUXIg7L/ZvtVpZY1lK/BcKBXU6HfV6Pd3e3urk5GTHVJtMJoahUFwlCkBH50Ij\n9VrgZrMxwcDlwxMRhqEmk4lub281Ho81GAw0HA53sIU47Q76QOLjLaKnA2AnmlI+n7ciQ9TFgAFB\n70+JjZCeGVOQdtN9IWpcM95DAIhEjT4uKCXMfCMUnhudB6wBDu2bgcKAPEgGqOkrJ1FsFEkRNxfD\np8KGYaiTkxMDLbPZrBVVke67MtfrdbPteVekmK+5ELeHqKySTAvypg/MAi8FjJU4iOVyqWazqZub\nG9MW4tRsv67o2nHvcjkBIolVwLShQAhVmKI1EPzwjJDq27hAMV3ootVoNNRoNAxfQpvx5sO+jFBv\nZm02970aYUSYfh7rKpfLBj53u131+31LQfdCI25dnin42gwUrUGLpfNWLpfTzc2NhsOhbm9vd+pF\nck4/qDgFJIy3ITEj4Mh0+AVYubm50WAwsAo4RM5FAS6GVwUXi4X5mgl4okhnrVbbCSjhcqbTafOx\nS7LD2ycNkDCpVMoQc8wDvAO/8zu/Y5IHF95kMrGGpdvtfQOQ4XC499BRNyWZyu7B1M1mo7OzM2M6\nNFKB8TQaDd3d3andbu8EACXNxd74wCwff0GhFUws1GskMWCkP5ukPcQcJDaFTtww18vLS4VhqHa7\nrVarpcVioU6no9FoZO67TCYT65VioB3BIDwuUi6X1W63DeAE00CNf/v2rZUHpKCMp8O4dUUZKxec\nBsD1el2vXr0yITgYDPT27Vu9ffvWYh+iPUKeOj6JKQRB8JWksaSNpHUYhr8fBEFL0j+V9BNJX0n6\nwzAM+499djSklMuEveSZhT9c79/mb+OkjgeTfBUkwCnUOKrcICmwwXEboqJVKhUrjf7N3ux1q0n3\nhIDLCYmDFMdsgBgBTmE4uKKOmYf1+hZmxC5AeN61SPlzXLpcoH1zgZPwdx5x965MX6CVOAUkKFF7\nd3d3RtxJmhCS3GNG3oNC7wTvYer1esb0Je1oS/sYrC+gwrzj8Vjtdlt3d3cmNBAIeCWgQ+912sfw\neL53J3tciLMA/IZufXQtf/cpjOG70BT+vTAMb93//0TSvwrD8E+DIPiTb/7/Dx/7UJ93QCw7TVO4\npIBKuAyxUSEmNA3p281F/IVB8hN+e3d3Z/bhaDSyd8HLMZ1ODbTCtsOVh4aTdCj+klCnkPUiRcEX\nWMPt7a3Z2zAGH9GXRGC8N1IcBogG4eMvJO3EQ3iknIjIpEAYnus7IcHs8vm8wjA0Cc07+VqNmF6e\nIe6L4We93kSSHkKWqSaF9tHr9azuZVytxmOYAkKJi0mosd8TanwOBgPbO87BC6kkMJp38ftBjA6a\ny2Kx0Gg0srqMPrSaOXzuxXOJaPwDSX/nm+//saR/rUcyBbg7Pmm6EUsy6Yi6lE6nzdOAaul93F7D\n2DcfjCYa307RVg7LMwSIComLDZpEaPwMEwRVk4g1iIzAFTQXSr774rSYWEkDhgERYueenp4axoB6\ni4rvI/9wwUkPkZdxKL1nvrhn6dDtTS7WTL4DCD2mhDcVwWuS9pBBEd33798bIwFv8rkPhBvDFHzQ\n0r499IwUZoUAwevg3wczD+AULQEtjQu6jwkhNNh74k3woEB33qSD9qBZ5npq8dZPZQqhpP89uK+c\n9N+HYfhnks7DMPzwze8/Sjp/yoM5EDr+cOgcpvQQwINqjX2JlAGlBsTZR2SLxcKIiIg032vQ23eb\nzcZ6PnrAD5/8Pu7MRUCqpNNp/fKXvzR7cTQaWdQkZkMq9dDHAObHoe9T56PAJpF8mFSz2Uyj0Ui1\nWm1HDQak5eImAXIMPAy+5TwmFngDFbMrlYp5hLzGJ8lMh0MAGXEUXAyqOyM1yVVYr9fW/g73J/Y3\n+3dM9CTrQ2OF2RJAtd1uzQuASxUzAhA0qaOXnwsGCmPw0aXMT4Hbm5sby4fxdOBD0X9dQOO/G4bh\nVRAEZ5L+jyAI/sr/MgzDMEgotRYEwR9L+uOE3+2ougBfRJVx0VF16YngcxIkmTfBJ4+4d9uR6N52\nQzICmnGhfG1DpBFaQqfTMemQJAn4OaotcRY+u02SpYQj1d6/f2/9C1jfPncTxMi7E/rdbDZtblyA\nXhVH+8JcAcBLSrrya8TEIHmn1WqZycfl82HVaHdgDNjK0XePG6j/mG3EBhDdiOuTXBEAaCR4NIJy\n3z6yNrRXGhHBLDAVb25u1Ov1dlLQJVkwlddK9jEGTCjwHUww3nmz2Zg24hkcf+81maeOT2IKYRhe\nffP1JgiCfy7pb0m6DoLgMgzDD0EQXEq6SfjbP5P0Z9L+Go1hGFryhySz4TEJSLeNNjDxB8GlTxo+\njsFjGEhUUHMiGOlrwOUlrdjbqkkAGZ9B+tIRmUzNWq2m1Wpl5c4nk4nevXtnGYrHRKr5ub1Zg//c\nM0Pi+JEwBOl4VxoSfZ8Xx7eiq9frdmbEEPBePu2cDs1RwC8pfNuvz0ci+nD22Wxmkvn9+/fm5qWl\nmv93yHUX/XmtVrM2f7gjoRtSlQEcS6WSaS6c9aGz8+8GzUn3WM9kMjFcB1og3kLa7UHpn/OU8eQa\njUEQlIMgqPK9pP9A0l9K+peS/uibj/2RpH/x1DkkGbBTqVQsEg9i22w2FslFUxhfKIRNicMTosg8\nh0WSC4dSLBatCSwZhmgxSN1Op2Op2fvUUT+83xw026u3BE59+PDBehjQE4HnH5rLay2oy1x8AD4S\nn1B5fVMcWuF5Zpc0h8eBSN5pNBoKw9BiEwhNxjzDFenNvlQqdbBRL4weKQ2uQ/Qfe7NYLKzHKAFI\naE7eA7RvgPCTkn1ycqIf/ehHZuIR9IXWSJwB2anssy+OkjTQSDCXa7WaYU2YZ5w5Zqz0kHnrvRtP\nDVySPk1TOJf0z795iYyk/zEMw/81CII/l/TPgiD4B5K+lvSHT3k44BduKsAoNhqOSWfk4XBo7ibc\nZ36D9kkDPgvX5/BokkJmmg+wWa/Xur6+1tXVlV0kr5YmmRCeo3uuDrBXKpV0dXVlktP3kfRup7iY\n/ei6vPeBfcCl61VjvAOTyUTdbtd8+jyfde3bQzQKmAw/x3TziVzj8diCewgA82Av0u8YQA4Q0OdR\n8A7T6VSj0chMMTQUn3x0jNZFnAceFdKY0bKgl+l0utP5nHB0STvg4765ME18rgraK4w3DMOd6EwY\nq8fbngoySp/AFMIw/GtJ/3bMz7uS/u6T30gyu2y7vc/2ovvx3d2dxuOx4Qq/+MUvLNMPlcofNMR6\nyHTAY8H3ZD6enZ0Zmu3dld425d1gUh7UjNkb4/S8EyogEXmEVSO10R78M3nPQ+vyqLQki/is1Wom\niQBkAT+n06mGw+FOabRDxTrW67WZJXhV3r9/b3UNULPn87m+/vprc6n56EWf57IP1ORMffEYJGQq\nlbJs1X6/r263q/F4bPN5wDSqTcaNzWaj8XhsJutsNrNgId9Vq9/v65e//KUBt2h/CIhjTQefp0Is\nAnuDJjocDi1hDsbgBRnC4qmmg/SM+z6A7PrcAP5P4hC2vA/e8JcOaZAwp6QHiYqXgZ9DZPjfCa7h\n3fBsIH355y9vkg2OluDnIEkIex4CJyWZ77kUh9bl3xMVmPnQSLwv3AcQAcp5DCAK0jKXd0tSqQoE\n3adig/tEz0vaLYQbld5J9AnGg2ruMRk0H9/pCoaDnX+sqRcEgTFRTALwEpiC11BhbpyPxxSOiRmg\nBb30oC1TOwEzGQbLHkYF4Z55fvObweAKwtZC6kXdcdGvnlvuQ3qjc/GPv/XBQWAbYbib7+/Le/m4\n9n2qr7e/ISKeTeBJ1B/P10MSx/+dZzqeUP1l9rkcXBykXDTmg8H/o2g6mZ8+14Bz80zHn4v/fVIe\nQtI6fa9RmB2XhII07CnPJvfhmD1kbvACaGC9XhsICFbh0/OhAzQG9v2Yu+bXhevVB7vhXYjSt89m\n3TN+85nCN7+zrz6KT9KOtEF1PRZ1jVPv+Tlz+cvjXUpI832S5th38O7XaIwD75hUcu0x6/Lr8XUp\n+D8DabdvDf5C71uTjwSNngvn5TWe6O+POUs/n8dKvH0NM/gUN53HYJjLCxBPJ34Pk9Z17JzQhn+W\nF5CHzMjI+GEwhZfxMl7GdzZe2sa9jJfxMh4/nmXq9A9teLPDeyc8KBmnVnp36SGNLmpexP1NdM4k\nIHTf331Xf3NoPOXvnjrXy9gdPwim8DdJDJ8yVxS1j4KCgHA+ScfHI3iw8Nh3jfuZZ0RRphRN6Ipj\nYknMK+qhiD7fzxmHx8R5OB67Vh/Y5Jnfpzx733yH1vV90KU/1+/j+b9xTCEKlkUBHb9hn+Kv9USG\nW8/7gv2ckvb61uOejRcDl6AkcxWenJyY+85HYxKU5WMIomv2z48yHQ9a4TLE3endg/5CESATXW90\nxDE8wE3choTrcnnYXxhhkrdj3x76OSTtuHd93IhPDmNdjzkzvzaf2kw/C1/Bi8H/KfzzVI2Jf74x\nkfe4+ViFQ9Ggx4xnzRR8+m/UE0A4rfRQHxAXXzqdthBa8hqOmQsJ7V2REDRlu/FxwyTIwSBG4VDz\nDbLmiLcgSo5ItlarpbOzM3Ph0fKOegS+0CnhyvuIjag7fPr410ulkjKZjOr1upWzx/2Fi5XIPJqo\nHLpElCP3NSNw5zI3FYo4Jx9hSGQjc+0bvkQ+IchheN+7w/dIoGIVvn2YAyHcx3RRInbARxqmUvcV\nok9PT60fCcFEhHHzr9frablcWjDSvuG9a97b5vt2fP755xaqTewFgX0EapGt+ZTxbJmCdzFFpY6P\nDcenWyqVTBL0ej3zWyMFk0qkReeSHtxO+KdLpZLOz+8zwEnR9eGlk8nEMgBhSHFuqCAIjMCIU6DT\n0OnpqfL5vD777DOLd59MJrq4uNByuVSn07GoPNxeZFh6Se7nIviFC8nlIaGnVCpZYg/Pgxl1u11r\nIefLpsXNxfcE9TAXocdoQGS5+nBtMjgHg4HVzQjDbzcHjs7Fc0lSK5fLlrDUaDR0eXlpeR7kQRD9\n+vHjR9VqNdOCosFgUVMIpk2HsnK5bF22Li4urMIT6eLU3ICZU/AX7WUfY4iaIwhAuntdXl7q5ORE\n6/Xawv8J5yZwjFSAxzbrZTxbpkDQkiQL5ICoy+WyisWiXr9+rUwmY92iSH6RHtKm4fBIhkNzcYFQ\nQel09Pnnn9tFWy7vm6De3d3p/fv3JlUhDAJkGF7VYy5K1ZfLZTUaDbXbbV1cXFjX6cFgYGnAXO5f\n/epXFg5N05hooo0nAl+X0ffgpKQ8WgIpyEh5iqrSOq5arUrSt9R7P5dfE8ymUqmoUChYSDB1MDGX\nCCn/+PGjstmsdVWil0KS2QKzgWnD5M7OzvSjH/1I9XrdLieNeu7u7lQqlfTu3TtVKhUzzQg6Soor\nYF3QH5oePR35WRiGVq4vDEOrMi09dGwic5LcjrgRxXiCILBmyp9//rnevHmzU/KOHhGpVMoyKWHQ\nT43NeLZMQXoIMfUlyIlSoxhopVLR+fm5cU3sVmoPeJMgaaCmITXb7bZKpZLVBLi4uFCj0ZB0LzVW\nq5W16SJ3wXdB8kky0Xl8sIsv1AFxrVYrvX//XpIssYfqO7VazToTMUdcgI+3Q4MgMCZK67NWq7XT\nciydTluB2lKpZCnNlP7yNnTS/hGKS6emV69eqVKpSHowIShOQ5eq+Xxupee/+uora7ASBWGjc3HZ\n0HpOT0/1+vVrtVot0w5JM4ah5vN5jUYjNZtNq+rEu+3TIAkvhpH4jk3r9X2/UkLeT05O7GzJaA2C\nwDSSQ2YKggnagCGdnp7qRz/6kU5PT1Wr1SxZjr0Cu0AjprRA0h4eGs+SKfgKNRxAKpVSvV43iYwa\njTSCS1OF2ZsPSR2ipIcsQa9ywxiwgVHhPOhWLBY1mUx2SpUheeK4s7/ISEHCZguFgqVL+3Bcypr5\nTs1IdEyVpNqTzIXKjmRtNBo7mownfGoBlstlzWYzq5HZ6/VsrjgGhOTnd7wjOQ9oUuA+nB3Vl3u9\nnjXZBZOJOy8PKIJJcM40l+GCkrPBPqDBwICZy4Oe0bkwdXwR1tFopEqlYrVBJVmDW2jXt61Dhfch\n33HDA72EMYOb1et1NRoNVatVFYtF9fv3dZCXy6VVN+dvwbx8huZjx7NkCtIDcjuZTOzC+8w2kl2k\nB/OiUCjoyy+/NICMGP6kiyrturBQ6yA4QlkBptj0ZrMp6aGACRWgqAcQPQzvCcDFuFgsrNYjEm08\nHhtoyrNRQ3FX8nnwBS5e3FysBeLkcvJzbHpqR6BVUDSWd4h6OqKMwUslWtSR+IS3YTqdmuTzSUMg\n+D6r0NdtjHNbwlSWy6UajYZarZYxToA3n6mYSt2X1EdzRNuELuIkqjeRoEOYOBgS6eK+dgIl5SnV\n5/NVvLCLG/yOz1Kr8/z8XGdnZ4Yl0PilXq/vFLDxXaU+ZTxrpgASTkpxNps1jk0iDyBTtVrV+/fv\nrXgml4cKP0k+fogM4sEUoPBnKpWyVObLy0vrEn17e6vNZqObmxu7dJJ23HsMf2l8SjNqNZIEhgLD\n8Hn8INsQPd2cokTtVW8YEJoJHYV8Byc0iVKppHq9bnsEyAhDQKr6EZ0LBjSdTnV7e6tGo2HZg2S2\nrtdrMwcBhSlKy5yov9G5/JlRBBaBgNZAPQPSkAE9+RnaHlhK3Iibi8EaAZxpB0AfD9Kc8XZwSTHT\n9qn0HkiV7jWQs7MzvXr1yoBTGh1Vq1W7A9Avlb4x/35Q5gMXFenrqxeD3K/Xa7NHM5mMBoOBrq+v\n9fbtW3W7XSuu4cukxQ2fwbfdbs21NRwOzRThECSZ2jmbzXRzc7PTj4GLfkxaM1mBAJtILiSPJJNA\nEBX/h3GgUewLJqJoCeaPz2RkLkBBtI5er6fhcKjFYqF+v79TFzIuMMdrP91u1xgRzI96CjTihdlf\nXV1ZizdcrABxUW+R14AwI3w9BlynfG61WpkZmUqlDItBM8JD5IPD4uZifZhvPEOSdaDClUzzV18R\njAsLMz9UWxONDHMZ0LZYLGo0Gqnf75tWXC6XFYahtTVYrx96XEbB08eMZ8kUpF0AyBfhIPimWq0a\nEEhJtH/zb/6NPnz4YADgsfUMfao0DAdbHzURO5TuTKPRSL1eT9Pp1NTdfYwHLQDzAE8EczQaDVNn\nYQDNZtMAJySQt0v3ETTvggbE3uEapK9FtCw7hEUZdt+30qeG+/k4G5rn0F7N2/Ae8OOShmGojx8/\nqtfrGciIezBOzeas/MXEFQ0YiElJHQ7Ohuf6tGcPNu6jP4+V8Pe4BwFxOSuKx0TrM0aDp+Lm84N9\nRFPI5/O6uroyLObk5ETlctmqckGjfs6njmfJFPyBoPbjZwZt/t3f/V393u/9nsbjsd6+fau/+Iu/\n0BdffKFOp2NVmI7x0fqDQlVE/W2328rlcvrxj3+s8/NzI4rb21u9fft2p8a/lExkXmrjQQE4gtmA\nyKMO+y5Yd3d3qtfrVrKtXq/vdMNOWpMPfMEG3263ajab1pbu9PTUPjeZTHRzc2Ol0ijiiiaTNHyk\nZxAEGo/HtlbMu5OTE2tsQrGQ6+trC8ai8GlUSifRBi5Ozsx7Y8BaGHhXUqmU+v2+bm5uVKlULFhq\n31z+DHlWoVDQ2dmZXr9+bZ3BgyCwYisAgMS+oJkk4SR+eO2t3W7bc1arld68eaPXr18bXcBIvUa4\nzyw6djxLpiB92x5iM7fbrfmmCfDpdrtG8NGS14xjgzgAbIhAw3yYTCamwvm5UAfjAMa4QdwALlYY\nApLcR2CCnZTLZUOcpftGu1dXV6bd7PNAoPGAUZTLZUO1aZTqYwII+OGCwaRQn5P2kYvq/eubzX0H\nL/YNDwj7RG1L1svvDl0e/168M19970bWBkNA8wGLONbm9kFEnB1aHYwcbAT3LJ4pPEus7VimIN2b\nqqenpzsVmDzYjHeN8/N7/ynj2TIF6dtx9EQxYusDnPX7favt7+1p/vbYw/BFOVD3qDdIHwGkHGHH\nUTvw0BxeM6hWqxYth1sQN1q0wxDzcBFyuZwBaNHB52EIhPxiJhDsxd7AEOjD4M0pGAtmSFIAGPNR\nZZtn4GEZjUYWy4Cp4cuXQciEj+8jbN6LuA40K19HM5/P6+7uzjSTUqlkF47ybJTx30cbzEVreCpT\nVyoVM5OWy6V+9atfWTVp9pVQdhiH9O32hdEBIyFyEkZK7MN2uzU632w21nEaN6SPy9kXg7FvPNt6\nClxoJAJSM5PJqN1uS5KF/oLKA7ZA0ABSx1xWT4TY1R4vuLu7U6FQ0Gw2M7MBENSbOnFBIx4gQ0Kj\nSuMy5QJJD5fTaz0Adh6ERNpFvQ98RRMBrIJJeFsZdReGR7n17XZr6i+YgH9+3PpgWBCyD+ZCk8pk\nMubh8QlfXquJPjduPo+F8K7QClKcZ3GhCcH2zH8f8/GM1ffGhCEAzvrK12AO7IWPi/Brixs+Oa5Y\nLGowGFjxXoLkKJALZgaADIYB8/ZJU48dz5YpSNq52CDYZBGi1g8GA6va64FF/s5rAMfOKckuPAQt\nybwbzIVXBCbEiPMG8GwkPF6TUqm0g5x7dJqisdiJUdfqPtwEgiZuHglNR2ck8mAwMKbA87mwMKoo\n4BY3l2cgnBcBNKxBkvWzYF7vMeDS7CNoz6R8otXHjx8twctnnRLiTXi4z7vwDWiS5kKLI9+BsHdC\nuheL+zb3lHTnb2A2zO/dkUmMyGslvNOHDx9M8NDKIAgC84AB2vZ6PcMt9oHex4xnbT5IDxvlXTNI\nza+++kpffvmlrq+vd6oOe9sW0+GYwd9BxNj4BNwAYnotwtv1+ySPt0u9f90TDQzGSzQYHRcMs8WH\ncMe57mCKPqmM1ntcCOk+lBnTixgDvBowqWhwVNza/P5xYYlH8O9Bk1ekGmeMF8k/JynSEJMHOxpG\ngY3PpSQcnTwIArFms5l1jNqHX3BmaArkjsBwR6ORuZUlGdblY13AVrw6nzSX/7fZbFQsFnfa9kE7\naA7Q5M3NjQmWJPPuMePZMgV/UPjVURknk4kqlYo1SgGc47AgaOlxhUm8XUxgFEQ4HA7tInpgh/fk\n0OMIOYpi8371et1cg5vNxmxiVGJJ5rf3vSWwKf06kwbvSUoxDAmpRt8CAoYIb6Y/I0S8by5+xz7A\nDEga8q5Yzsm7XsPwoecB0m4faMt+SbKkMhLNorEYaFsIDc4SLeUQoOk9OGBAMHSClAikymazhpV4\nsxez8hgbn70kMc1nwqJBrFb3zX9vbm70xRdfGENnTz4VbHy2TEF64NTZbFatVkunp6dmk3NYbJYP\n/OHSchDHumiYCxdauVxWu93W5eWl+v2+aRGe4USJKkm6+d8zD9yfd8b2RQOAGKbTqfr9vq6uroyg\nYSL7mBBSkDgH6gH4SwphE4HH5UEj8czpkKmClkMjHdx1BJzRNRtzCPNJeshq5b0PnZOP1gRM9eYS\nocjgQHSi6vV61pnqGMnKWTAHGgNRg5iEPMtjAMSzgA3ty470Gh5MBPN1MBiYlpxKpfThwwf1+319\n9dVX6nQ6OyHVjB+k+eALaGDPXV5e6uzszOoocMF8Si+RdJKMaRxyFYIbMFelUtHFxYUuLi50fn6u\nYrFokgwTgiw43kHSDqYRNyBi1H80D58TgLREbSQys9PpqN/v22Efio7zUs7nGgCYwjCIo6d/JN8T\ne8Hf7ZuL+cATuEDsHXY5KndU6wGog8Eeaq/GesAIiN9AmgfBfeowxU1ms5m63a7evXtnfSXRfg7F\nsyyXS9XrdZPQMGm6jbO/g8FAYRha0NfHjx81GAx2Ijr3MVbowwsQ3KhoGJzN27dvNRwO9fHjRzsz\naN4zzKeOZ8sU4JbY9tPpVFdXVyqXyyYtv/jiC93e3mo2m5ndFQ1GOnZzPMiDr/7Vq1fWQu1nP/uZ\n9Vnk4D0D8ipt0liv17q6utLHjx9VKpX05ZdfmqvQewao/YDEwS/tE4VIWkrCTHBdoVYul0t9/PjR\nSnrBIK6urkxqonn4f5LskiYR9GazsWhGzBEuy9nZmUqlkhU4+eKLL4wZTKdTe340NDppEMh2fX2t\n0Wik0WhkhXBOTk5MY1ytVur3+8aAWZtvH3fITNlsNhZUNR6P1e/39Ytf/MLiO2C8hIPTBQuGzVow\nGQ/RBwwHWhoMBlaPAsB2PB7r/fv3xuzAsryX6qleB8az7vtA9B8qIe6gXC6n4XCo6+triymPgm18\nPXZ9BIgAWuXzeb169cqKdDAXki6qhew7DO+ZQMX1QBoSncvNc/hMFK8AaEsyW3xMgy+RRmSjT6KJ\n9lj0DIb989J0HygHqIhNn06nzW0XhqFub29N4pFGzdlxQY8JTee8eEcPdKL18fwotsQ5wRSOoQ+8\nHP68PE6wXq93JDTn5r8/lhZ9KL8XjASQATBGtYE4+o8ZP4xmMF6K4pcFJ0CljQIsxx52dPh+gcRF\nAL7xvOich1RCadfFBgPwqj3vDeGAWnsQk+GJOco8+N7vBTYvz/DZmEl5E/zeX6K4EWUQmA7ejYq3\nCByEkF0PAGOPew3v0PCM1IOcfl8AMaOMLqk4zb65OJPofuzDl7y34TH0yFxRRpx0xl4IHhg/DKYQ\n+dzOhnk7dF+03RPeR1cbie0AACAASURBVJJ26in4udASHkNUSfP4f9LuxfRM7tCF2Sdd/fORPjwr\nKmmjKrUnvH1IvZ/Lz4Nr1V8etB80Bj+Xf84x+xt1h/p39b97LCNImss/M254jeS7GH6+6LsnuW33\njB8eU3gZL+NlfNJ4aRv3Ml7Gy3j8eJbeh32q43f1u2OCO6L22mMDQp6DFvZDGXFqdNSsSbK19/0d\nI2paxD0r7vz3zRV9hv+buPUdQ7vHmlWfMp4lU9i3wdJub0YPNCU9I+7/SSNqk/pgEp4RRZM/9ZD8\n2qI2a3Rt3yVBxF2075rgoucXB8Y95ln+a/RnUbrweFD0vPZd9ENz+jmin/FAZBxziNuD6Dslze/x\nGkaSB+JTxrNkCgy/Cd7dhIuyVqtZJxzcgx7R9xFrjwEFg+AhO9Mn1OAXJkLNu53whjyGk3PQgHGp\nVMpKsePrZ13e40DU4VP2k3/p9H1TnXa7be+Om9K7vI51EUbnYS+lh+rOFHT1yVJ+jfwsSZJK35a6\nuHd9b5BisahGo2HBSz5GAPchsR8ebE0SJEl0SCh8rVazZDKeGY3zOIY2/O98CjQMjorUhKJL367q\nRX2FT2EQz5YpBMFDeizFQShxXSwWrasSQTGDwUCz2cxaqa3Xaw2HQ0myWo375iKJBgLAy4GLEtce\nl4bPElmJT54kmX1z8TxCnL3btVar6fz8XJ9//rmV2iIghoQe8jvI+9g3fHq1d60RxNRsNu2C0A8B\nt6UvvnJMtyFckURo+i5YtMNrt9tWj4LKxAQX9fv9ndwOP6ISl/qFhG5DKz6mhTR3isFyYcl5oPht\n0iViPtysMFK8UqVSyUrOSdJ4PDb68LUdYPa+Zmh0Hn5Gwpr07RZyJJVdXl7auZdKpZ3IXgLWer3e\nk13zB5lCEAT/SNJ/IukmDMN/65uftST9U0k/kfSVpD8Mw7Af3K/gv5H0H0uaSfr7YRj+P8e+jFe3\nKG9NdmS9Xtf5+bmazaYRGcU/SF2dTCbq9Xq6ublRp9OxZBJauiW5LH26ry+FRqYfEXP+Gbi5CAAK\ngvtyZmgUSXMRvASzId++Uqmo3W7bWslVQAuaz+e6vb2195vNZlbkI4kJwXg8g2NdlUpFJycnury8\n1HK5tEIdFBylEjFRhhD4PiLj8lDnAOb96tUrnZ+f66c//amKxaK63a5VXbq9vdVXX31lUZ5oYlEN\nJWrW0cOxVqup2WxaOjN9QAqFgm5ubnR7e2sMj2K7SHX6hFAoJW4uSfZM+ktkMhkraXdxcWEdyAgP\nJ9pwMBiYwIFJxPXk9BqJL6rDuXkNiNRt6IdzZl6iK6lC9RSN8hhN4X+Q9N9K+ifuZ38i6V+FYfin\nQRD8yTf//4eS/iNJP/3m39+W9N998/Wo4W0+uD/hqycnJ3r9+rXa7bZarZbC8D7Wvtfr6fT01DYI\nCUpsOqG3+2oqkEzDhaG8O004qNgLp0eKrtdrq3w8n88tUy+anOIHxEUyUCaTsUKcJycn1omKMu7Y\nxWg9BC8REo1kSloX0sXPWa/XLa/jzZs36na7lgTV6XQsRBgTJgxDKwiTRGTkjnhJWi6X9dlnn+m3\nfuu3rDsVn1kul1YrgISpfr9vjGxfxF42m9Xp6am1v4MmKHHH+cxmM6tOdXt7a23bfIgz5ktS0pxP\n26eseqvVsjNDcPjQ8el0quFwaGo9fR59Bero8GYd/4cea7WaTk5OVK1WjQESdQvj6vf76na7ur29\nVbPZtMza74UphGH4fwZB8JPIj/9A0t/55vt/LOlf654p/IGkfxLen+D/FQRBIwiCyzAMPzzmpbgI\nlFaHmLHdO52OqXyU2iK7MQxD6/3H5iflB0gPLdnJUMQebTQaJg04cCIdwzC0Pga8JxltPDNueAlE\nOHCj0VC9Xle73TYiImmKQ8eU4mL4CM6k4QkMZtVsNlWv1/XZZ5+ZmcLl9fgG+R5cGFKtYXhJc61W\nK2POlUrFitNiY1PBuVqtWnYjlZC73e6OTZ6kzqfTaes2Tir4ycmJ6vW6JRCh4VBRGuk7GAwsUcqH\nVUcjCDmjVCplhVOhsVevXllKOAzMp09jZqbTaY1GIwtZJm8ljjbYe8wQ6Ji2iGdnZ9bQ1vdTDcPQ\nmvKyfgrn+KIujx1PxRTO3UX/KOn8m+9fS3rrPvfum58dzRQ4DF8GjUSQSqWiq6srU9vDMLSqOGTJ\n+U3nOWSpxc3lqxJR5rxWq+knP/mJSbAwDC2Tj3lgIrQdh6Cl5OhCX2iUTEVJRuTb7X23Z0+c1DXk\nbyBwTJYkxuALk/oyZc1m08AxSZa9J8m0K88kvF28z0zxSUbsBeulMzfqc71eN20KtX42m+2YOnF2\nNxoPKL8nehrJgCstFoudzldkunozKqnupN+3MAx3itZOp1O1220z23yPijAMDXyk87QHuvftIXOB\nI6CBtNttMysxYyihR+g/9NFsNq2P6qdE+H4y0BiGYRg8ISIxCII/lvTHSb9HpUOF5TKSPTibzczE\noAALaidE4+sqJLzDDnq9Xq9NNWy328bZ5/O5hsPhTmw/5b3IcSe9mMsRJWwIzaf9+hoQ8/lc+Xze\n1FveJ5VKWf4+BMpc+8qWcVGp+Eu/h2azaaXDwzC0ngtBEJh9Pp1Ov7Um9jRuIFkBQtGkuJDsIQyI\nJCzfQq5QKFhJefYvbg5fxJQswn6/r1wuZ02AyIx8/fq1mVo0mOU9/b84UBNQVpIxL5KiSHmHKdzd\n3VlBHprM8p6YmT5pKmmwRmpNoKlgQmAWUBl7Pp/r/Pzczmc2m+0UkHmqB+KpEY3XQRBcStI3X2++\n+fmVpDfuc59987NvjTAM/ywMw98PXdilJwTcY6vVyopIDAYDs8kgOtRUpBspwEgin93mn++/hwA8\n+k/B09VqtdOsJAjuswGjNQm9LzxJgjMnkme73ZrKCPDltZvT01NdXFzsEJjHK+Iuj9tf20P2Ew8O\nlZ28mYC2td1ud9K4UbMPzYUZxbuHYbhTxox6hp5Z9Pt9ffz4Ud1u1+xf3je6fx6JZy5KyVGjk2Iq\no9FIkqzYKq5Q/vkiv1Fa8P9n/ZgieEkwXX1BVcyzWq1mDYRgflzSOMkdncvvMx4tqn9TvRwTyReo\n6Xa7Gg6HGg6HVjPCe9MeM57KFP6lpD/65vs/kvQv3M//8+B+/DuSho/FExhIRVRLmAOEBfjSbrdN\n7YdLetUSLh2H+PpDx1WFTUh/SIpZ4FGAqKV7QoUj+5oA+8Ad3sN7MpDM4CBUK6JVHTUE0A64PPsA\nTX+hfdckmMV0OlW327W6iMRjIO2R+OxdEkAmfTt4BxME0BEXIWoxdQ3evXtnVZA8eBvnSuO8WNdo\nNLLCM/P5XKPRyLwj4ECXl5eGxeDepQcDa0kCT9knSeadoSaDL9obBIGB4Y1Gw7Q631nL72HU/ek9\nDz4V22NYpVJJqVTKGuiQbSrJCtbQwMh74p6qLRzjkvyfdA8qngRB8E7Sfy3pTyX9syAI/oGkryX9\n4Tcf/1907478pe5dkv/FY17G29JIOVR/KjnX63Wru18oFKyfJCqdL33tAau4zYERwKHT6fsW9GgN\nvmgman69Xrd6AVwUahZ4rCNuLh9owt8B9FUqFdM2crmcIfWYRPRT8GDkPkzBmzBIbV8p2BePLZfL\najQapvZKMkwAIk0C/1gbaj9eCAgXsHa73er09NR6MqCOo9KzP/7yx9EGajgFTZrNpjE2+iVwHrjt\n0F7QENDyYA5JKeSYF74LE0wYrRJGjQYGvVAq35tdPtgtyhigP86VGAxiIaBVH3RGS4DhcKj379+b\nW/RTGIJ0nPfh7yX86u/GfDaU9F8+6U3c8JKeTV2t7jsFt9ttNRoNawrDpUmn02q1WtpsNrY5uNH2\nAS6+5x/gGzYkdjZlw6kVWS6XDWiC+3OI+wKXYAqSdsqU4e8GmQfxxhXJ3PSxPGZd3l6mhgEqN8VQ\nPvvsMwNM6WQ0GAwsfsJf8EO2MAMz5+7uTp1OR/l83qQbF5k9LhaL+ulPf2qt6jwYuO+8pIcYjOFw\naMBvpVIxnIkCq+v1eqcgbqVSMbSe9nZJeAn7C3MkOAicgtgIX2sSWgXjQsDMZjPbn7i5vODhbyWZ\nSUT5+mazaTTjtYPr62vd3t6aefNUz4P0jCMafXindL+ZlUrFJDE2Hggsks8j9uVy2YJyvO0WHUh4\n+h/QbAaACs6OOyifz+/YsMc24EACsS6IiYhNAqUABwEyfegqkpyGJ8cOGJ2vVIXXg/WByoPJRLWN\nfZoJZ+Y1u+l0qi+//NJUXKQ86j1Aq6+wxWXYh8t4TQI13Ut1QEWwHugB4YH7GqAwOl8cxgCwCKPh\nPIIgsM5MXPZMJmOMCK2SknWcf5I2iSbgwXGAYq/1eZcqJhRmIkF9Tx3Pmimg7oK+wkmpyZhKpdTr\n9axQKJKNv0NFjyvZ5oe3vQnBxTTBvsZc2G63OwVH0RZ8ifkklNkzA9ZVKBQs+Ip3B1Tlb+hZABH6\nMGnsz6Th1W4Kf+K773a7Zg6l02ljRL4VHWs6pC1wXuAtkgwlHwwGhhNw6cknYV6P1XibP254xuq7\nMWEG9no9STKpCyDIWjAtfJetJAbEP8Bef37+3GEYRJ96jAB3MBpb0lw+AMy7KHkucSC1Ws0iFgkT\nhyGwb/uYz6HxLJmCd0Ei8VHvsY1xbeGewg5DGqBic3hJm8QFJoovl8vp5uZGmUxm5/mz2czclJvN\nxpgH7eMgjqSEHtbl+0ogZbjoYRhaeOxisdgJmqJKEZ/DnozrJRmdE9fiaDRSv983acO7FItFbTYb\nC3HGzeYLxe5TR7k0XFDMHy4dATbL5dK8HEQBTiYT+6wkq2YdN4d39XmvEpoil4/3pqYmayUHASFR\nrVYtijLOzvcJXcztwUP6mZKrAdYBjUgys8z3/YxqJf57GLbvyTkajcy0lWSaJDEeaKu+2xYM6CmM\n4dkyBRJACLTBRwuWsN1u1ev1zGbj4AgPLpfLBmbtC3H2aDLNYzFP2u222YO1Wm3H3cklIyELSbwv\nqxD1z2dibjYbdbtdO3SafNTrdevYLMmYz3q9NtfhoYSXKJFPp1NdX18bdrHZbCzOwxdQheB8dOEh\nwsKuB4OhdyVnhST1mYWNRsO8SuAtEPW+AUMkV4WLxx5ylpw7uEm327X/12o1dbvdvfEX0kOCEowL\nxg1gCrDHWRL5iPkF4IrpkASgesFAch4Mod1uW55GNpvVYDBQv9/XcDi0uAU8dEHw0GfyewMa/6ZH\n1Ob2QTjU9PcuoWg2I4fn3Ul8H7dJSBz8ykQn8iyCjLhUPjkIXGGxWJh03ae2QaT4rjELptOper2e\nSU5csR7VhxGhtSCR9u0jw/vo8bVzOX1XIwBCGsQArh1KP2cuknYo657JZAw7IBKvVqup3W7rxz/+\nsaVsE4xGgFaSvc3eQg8wVzQH724kQpIQb0k78Rc8M442/FwMD3bzPN6XM/F4jA9CwzN2iNmB62BW\nApqSf4FmN5lM1O/3TSiRCIUG4wXhD8J88NIUxkBQCNoD2V+VSkXpdNqaw3gigaClByQ+aT4OHMIi\niy6TyRiKLT1UcgZ7YB649DESlffhPWFEoOE+/BYThkYj4BeHXK1+bX5P2ZPFYrGTEo7JM5lMdi7m\nY4BM1kN3rcvLS3NRopFst1tdXl5a9isenNXqvpuSP6dD+8i5oS3ghia+AmmLqzCfz+v09NSCf9Be\nDtWL8CCrL+S72TykR5M+T9Soj0jEpYtGuo9G0DbweoGTESxHzsPbt2+NEXQ6HcO6vOvzmD1MGs+O\nKUi7UV4eVEPdJHsS6UcHav6GSDmI7ti2cVwOvvrAFnzbHDDNP4hUQ5ruwxSi6DYaz2q10vX1tWEI\nMBpyK/A7I1HBIY6NbffuXVTgVCpl3bu50ABX/r14530Xh2cHQWBnc3FxYSbKmzdvzAzDnCAfYjKZ\n6Pr6WoPBwFTupKQrviKpuaSEucMkMB2pF4G5AS0QyYlJFjcX6/ZeMJ/3ghuaoCvvkva2PZon53XI\ne4MZkc/ndXZ2Zl4p1oFLdDAY6ObmZifN3Mex/OC8Dx51BWzhUqAxSPeHNxqNNJlM7PL0ej19/fXX\nBpQlHbwfaCVcfAgNAgQhh8vzbIAegCFfzSdpeBUSzQROz6VB2gHQjcdjffz40TpHQWCHiAzTCmQf\nMBA1GlWbgBsKn7A+9tkDZ0ljuVzuuFLn87mlNqNtrVYrff3119ZW7ec//7l+8YtfqNPp2BwQd9yA\nYW+3W9MMOTN89x6wxAuF2dXv9/XhwwdjCGSjJtn5nLf3FOH6rtVqO+5DUpUxgwi/RkPwwinJvGTP\ng+Ch6E+5XFar1drppD0YDKwnpi8qBB2jnfygNAUIdDqdajweq9frmTRoNptmF3qAD3819j0HAOK7\nzx0JgUkPGMPd3Z3lCGAjYrMi4SAKyrRxufatC+JnPgiIgCKeh5RGSwBn4LAPMR+vlcDoKP5Rr9ft\neTCaxWKhq6srDQYDI2L+HWKqMO13797p+vpaX3/9tf78z/9cp6enOjs7U6VSMWn21VdfaTAYWLs/\nPAG88z5MgfMiLBo3KOG/XJ5qtWq9P7/66isDBmezmd6/f2/S1u9n3EWFUYMVDAYDY9Lz+dyYBBcV\nMwiXNWcHQ9inRW42G/PEANBCx7i+x+Oxbm5u9LOf/exbPSQxSb22+9TxbPs+cOAs1PuMPXbgMQRs\nSw4ayZPkF/ZzERqLZM1kMmaPggpTiw8CB/kFNIxWJkoCG3GdeUALEMlHIXLxvZ9a0k647YF9tbl8\n4E61WlWj0TDTIZPJmIsVwBUGd8jmjq4t7h28z96bhoCoUcmc9GzP6Ii45N18LACBSpSawzNFWTvi\nCzxY670Q0XfE3cl7oHnh6sSk9fks5M7AVH2cx764CPJeSJ32TA6AkepNCJcoze3xSv1mNoNhwzwx\nScm9Ev1nvP3rw3yjf8f3fnikmrl8W3hCgbfb+0afBMTQgTouOGofgQNeemDV27Hed+6lwD5Gl7C3\nOwAZqrbPZAQMxExC3d4H0CbNxdd9a4+OfRpC9O/4DIzbMxYfiARYB31474t32Xl6SGIKmCk+GxaE\nH6ZCdKgkezaSnM/4ueK+Z52EwBNzQQs+mIzXCLxHhn3Ys4+/mUwh4fc7BCftHhgjyiGPte2j83Dg\n1EqAWHxTU1xB/l2OZQrR+aIaj/QgGUnyOnRpjhnsFUyCd4QJ4d34FNWTkbS//vvHMre4n3ngkXND\nK/LaWFyV46Tz8ozFazdeS/XFYPg/38NQ456/j2FG1+oxLdblPQswxCRvQ8xcPxym8DJexsv4TsZL\n27iX8TJexuPHs/Q+xKlYUZXuU595jP0bN7w6ecxnD80VVVGTAKhDfxe1h5+6T8eMY84mukePMRPi\n9uOYPf/UNT9mrk8dfxMa+lP341kyBT+idmj0HyMJrIrahsfaedHnRwEybzMes/FRTMQP702JfpZ5\n4hD66AWKrivpPeLm8aDmY9blPxd9L79n0TDfqB3svz6FmD0wHT27x2BNj5krun8828dZPBYziaPD\nuLn57DEYyWPHs2MKcdKGjfDt1Uqlks7Ozizc2PvVORhcUIy4TYr+DELGO4D7qVwuWzWiaC4AEXpJ\nsQNRcNTPRaAUc1HX0JdD894HHyjzmEP3SVi4RX16eNRjw7uSK5E04hiTB+OYi0hA3GnSbql69vXY\n0Grm9cVv8RDQH+H6+nrHA8CzfbYj8z9mD/HekBH6+vVrmyea+0A8SFLKNCOJDv1ekthFeLV3x/I9\n3qNPYXzPjinEERj56yDKuVzOugM1Go2dZBrCTiHkQ372KOPxOfZIHpBf76/mM0QFEtG4D3X26+KQ\nIWQyCPEMEDjlg6+8XxrfN7/btz7W5TP+IO4gCMzVSv1L1sR7J63Lr817g2AGfM85+BG9/GEYWum0\nfcFSXmj42gi4lMmsDYLAeiOQPcjfcl6s7dBgXQQVwcjphOWL/NK/wntzKpWKxX4cM9g3oid9unwY\nhrY+hIQvJU9UKQl1TxnPiilED9yHsuK3LZVKFnxzcXGhbDar0Whk3X/W6/tmGERElkoli0BMCvjx\nVZuYm0tDAdVXr15ZuG6UM5Oi/eWXX+6EnkbXxQWkgjNx+oToErFJ56HpdGoBTRTn7HQ62m63evfu\nnRFaUm4HkgWi5vKQWFMsFlWv162eAgyHwBuiNrvdriaTiRXGjTuvIAisjBgaCV+5vOwxlxINyNe2\nJLJvX3ejIAhUr9etUAv/KF0P3Xz99deWPUikKyHYMFVfNyJpLgLYYDicU61W09nZmVqtlp3P5eWl\nhTsT3Uja83g83tGU4uY6OTmxi44GWS6XVSgUrEmRLziEJtLpdHRzc6PFYqHRaKRisajhcPikHIhn\nxRQ8Z4PAwjC0JB66N52enur09NTKs8EcyI8IgsAOhqIaBH7EcU+ks4/6KxQKqtfrarVaOj091Y9/\n/GOTFj6Ixee2N5tNI0B/GF77gQHxj36L5+fnuri4sCKq8/lcp6enllNAs9QguM/3oBjqvmKxpC1T\nEMRHyZ2fn6tQKOjs7Mzej5BuTK90Om21LjOZzE7jmOh5pVIp6yXhq2X5YqrsG8yE94aBbzYbI+ik\n8GpMDbo0VSoVtVoty8z0oekw0zAMLRT+9vbW6nCgGe3LtyDFnLMi7+H09FSXl5dqt9sWEZrN3vea\nHI/H1kGK9VHsh+IpcYPYmCAIrEwfCWZ0EEMgVioVSbLMWgQjVcIozPMbzxSkB3UX+9ZX80E7qNVq\nyuVyFlNeLpctdRa7lcP24dJxw0cO0juiXC5be7V6vW6twmAa/F0qlTINBqmzD7n2wBuqbq1WszZu\n1IbcbrdWmtwzKV8roFAoaDAYJJpGXMDtdmsFT0hOarfbyuVyarVapmFhSpDHEYYP/SPBN5JAMBgC\nDC2Xy+nVq1dqNBpmtvA+k8nEagOE4UOlqX6/r+vr653en3GAIxcHZtpoNPTjH//YeizCEObz+U7t\nAzAh8gt8QFhclCVzobpz3hRPPTk52ek14vEmMjY5SzCGfWYsONlqtbIGsqyJugw+DB/6IKy/XC6r\n3+9LejDNktZ1aDwrpgCRQUCE3kIYlUrF1Hpq0rHZqIzYs9ioJE3FHQjPYh5UslKpZA1MPVeezWY7\ndQRhCKivb9/ed8xLMlOQEmTW5XI5Uwl9qzYuvkfsibWv1+uazWZ69+7djsYSXZcPbUbbIu+BYih8\nDmmKmoumgDYDiBZdFxoGl5T3KxaLpl1Rpo5zgqDZDwqJLBYLK5nuvS5x6yIVmoK3tVpNr169Mk2m\n0+mo1+spDEPLnOScqGkIuMo64miD9RNajHlTr9fN7KE2A6X8YCAeFI/zIkXngqGg4fjMYJ6Bxkzu\nBvPwWc4jCcc5djyr4CW/Yd5mR52ixwP2L1WCKB1GWjAbjAlxCHDx9pkksxmRqrVaTdPp1BqoUOcQ\nO917H5IOwks9CqlgE0PkEE6v19NoNNJgMNBoNLLDBmiiwAfFWOLcVt4cgtB8yjQZfmASPi0bkwXm\nFGXOfrAHqM7ZbFaXl5d68+aN9XwAX8Csoj8oGhnl2dkDBELcumB2MPF2u22Zs4vFQre3t3r79q0+\nfvxozA4TA/Xbp8j7hKi4M+P3pCZDh0jq1WplKeeYVpxnLpezPItDeSSe6VAOgAY3JEJB65hyCBGf\na0E1K36+T3NNGs9OU4j6l8k3QCp4VZSyYkgLMta4sN71lbQ5mBgU/6T8d7vd1vn5uTVDHQwG5mZq\nNps7qcyk5sIYPNItfVuNW61WBh6hdnMRcKOyBhiBL+HtcZZ9fm3sct8Nmd6E5FT4TEy8EOAQMAwI\nProuvmev6YvBpeGMer2eOp2O7u7udHZ2tlNxmzWxLhhrHEPwc2azWevHQRl8mEKv19N6vbYeCaSl\n1+t19Xo9M91gqtGcCNbJXNCIJNXrdcNlAEWHw6EkmRfCP9PXDk3SEpiHz8HQPROEiSIc6vW6lRiY\nTCbf6gyF6fQUTOFZaQrSbnce6YFDwwhQBSEcbC3y2j1X9lVuD/luvfngy7vRVZoyXh7zoD7BYrFQ\nr9ezHPcoAXjmgFkDsYET+PfGRqXeHheHebkA/F10rug/no3kAkxEk+I92OP1em1qKwwPj0CcuxUJ\niXYGQ0HTubq60sePH3V9fa0PHz5YYxRUeAgX9yuMKG5dMHiAZfCJfr9vbeTYPy4T2qMk87wgBLw2\nELeHXNj1+r7rd6vV2jk3aM431eGZmFRc8Djw1DN21kerRF/yja7TFMYFjL25uTGGMBqNrCI3FcGf\n4pZ8VpoChxBVV5GqVOFFHV6v14Zy+zz3+Xxu0hCQzKPefj5/EdE6QH3Jy8dzAcNAY5nNZup2uxYn\ngTSPqonMCRhKOmyr1TKMwre+g3mgeqPucsg+mClpXTBTpDwMAbco+wQj4PLAQCgUQrVln40XPS80\nKNZOo5XtdrtTXNQHEHkTELcdjJ6/9etiLo9tFAoFK7uP5iPJNBEkOjgT58rlkmTl2eNoETpk3biN\neS57jDbi6SYIAisJF439iJuLn3NGBFiB2YA90ZUKjwPVxvr9vjH8Q4V2D41nxRSkh4sKgAIBw4Xh\nkJLUbrftkBjT6VTFYlGDwcDsxn3177nsHtWm0g7PRe0mYCoMQ1PVqNbr89mjc3l7EeZFL0xUb1RU\n/3t6CfriK8zh8+nj1uVLwcNUwE18qTLmYp+o8MMzjtlDJPNisdhp/YYpBIaBK4/eD/wt5+b3KmkP\nfRGdUqm0E+dAhCbxJNQ45GJS7g5fvy9/Bu1FaQPGgInqwTwYD5gIpgOmXbvd1nw+t1Z1+4aPE/EM\n32sc5+fnhtvgXkWD3eeafux4dkyBweaCJRC6yiG8evVqx2RAKiJ9IBoPICZtGMg0riAazdze3tql\ngtggBspkffz4Ub1ez9TaJDcQRE0PwkajYaHUNArhPWlN56v7UApsNBpZ4BGX99AeYnL5oCHeg+/p\nk9Dtdq19HpebH+2xTQAAIABJREFUv9kXTIRGdn19bYAetvvr16/tAtMyrlqtqtfr6cOHD/rrv/7r\nHYmNqr9PghN30Ol0dHFxodPTU9XrdZ2dnZkgIT6gXq9Leii9l81m9ebNGwVBoKurq720gbkHhkAB\nYR+E5jErqiSBBeGRARRPYqzMFcUzYK7eBT6ZTKzMHHQDQ/B7t2+ufePZMgVwArQD7wNH3UKFQnJQ\nncZLVC5GtNIOA6InYo3D9ertdDpVu902DYbakb7hB63P9iG+SBjATE8EBCgBoi0WC7NPsbF9YBGa\nxb6DB3PBdo4GX43HY9XrdZPS4AfeC+HLmf1/7b1bqG1pdt/3//Z9r/t1X86pc6qqW8qD8IPcBFsQ\nIwSGOBKBjl+MXyLZiCgPMonBgbTtB+vRCbbAASNoY4EUbCkG21gEh8Q2CSYQyW4LWa22UHel6lSd\nfV33tfb9Ov2w92/sseaZc661d1X1WadYAw5nX9ae3/xu4/ofY+AA88TYAIXOz8/VbrftMkkybzkX\nRZJFV4bDoZkeSFNMhzRiLBCdlPvHD8Ra9Xo9bW1tGYqQ6t7MAY0payzWkH1Cdeds4NcBn4DWyP54\niPXq6momXsFrivzDPEZ7pWbpaDQaEyS+0Mw0a5hFM8UUPHcEUoqUYwG8utdqteyiwSl9IU5s+ElJ\nNqjQHH5/QLmQ2OK06cLJSNSBzeH9kux8OD2SC8x6CMEajZycnIxJJtbFh7TY8LhUia8lDIGoDIk5\n3mYnlEuMH2aB38Y76OJw6riqf3FxoX6/b2qvxyXAlChbhgOXhjrUhOR5/vlJY15eXlovTMBdnA+e\nCaSZc4ATmDPhfRxp59HnvkTRXfuARqNhl57K0BTdBbXIPkVRlBo6ThqL/fJ5D0DtyQ0BtIcA5OzD\nvOiY9dQy7zPFFHyoi8sON7++vtbh4aFevnxpGw+0kwuVz+fHLq137mRJU2w5j91HugBCKRaLJhmQ\nDt1u1zy+PhMvSxLArHCERlFkbdixX/3BwAnqu1HxLyv2zQH0FxMHImg5f2hZM76mCxWUNS/mhrYU\nRZHhKHK5nMGdfcYg0t63PJM0cV6STGqChEQi1+t1RVGk0WikTqdjnn+0Su8wvbq6a/s3aSx8W0Dl\nT09PdXBwoFqtpii6Q2T2ej1tbGzo8vLSbH4kOmvq5522X/iYfL9N/COgQ4+Pj62HKeeF9cfpiZn4\nVBNippgCB9mrxR6PAHKMpinSQ9em1dXVsVZadHHy2YRpY8IYrq+vDQLM5fTmh9dYBoOBbRBcG6ir\nD6lK4/Uk/bzwV6DphPCQlstBhzEwH2xppESWqcJh4LIS5yYiwUVFfSeph+fjK+DrOHnzh4sGM0Uz\nIoqC5kJoE40EQNPCwoIxV+9si88JxywJW69fvx773O3tXVl27Hfffo+CuyTMwSTSLg7vgBbE3E5O\nTsb6MPA5HzLm/ciLYc+zziGaAojTSqWiRqOhZrM5pi3CFLx2h3mCtvTYtHBPM8UUPGfDL8Akfb2C\n0WhkoSvpoU/EcDgcaxfPhvLsrHAQNjCl3XHA+cy4Tqdj6L/Dw0OzZxnTPyttfh6TQIISqiibi/bD\nJSIV9vr62i4S5krWQWNMGBwOUrQS1HzU6pOTE4vzR1E01huTZ2Wtn3f4gg/xZda5+DgwcQjDqFib\nSWMR7+fitVotw0jgKJYeHLZcSC7NycmJZXxO0iKZFxdyMBhIemhuyznx5gO+DnxPzC3LfPBRjaWl\nJTUaDcv6ZA19KB7hg5bsnwETm3Q20mimmIL0Znce6cG7e3l5aeoiWYKAeIjXnpycaDAY2IUFgJTF\nMeN2GSEgYtqFQsEcmqiLXFR8DpJMuqfZwfzcvw9FQZgL4UEOL4hAHHMgKzkQfs3ic0J6I2WQQOfn\n56rX64YoRLJxUbzzDImPZpJGcQ0IRsfe8b445MBAkMDG7+KgpSRCA/HMxztpfaQATWwwGJgG0W63\nLa05S4uMa2JoVIRtiXJwmdESer2eYQcAEXGps+bmU6Xz+bw100EwMS6MA/AXvjAg0Jg6T6WZYwoQ\nmgD/fLtvHGMAbJaWlsxp1e/37cAhGbMSQ9hQrypKd2AiYLSLi4saDoeGmmu32wZa4oJ6NGCaKirJ\nDvFwODRQVhRFlqhE+LHT6ej6+trGhSF4NZVDluaQw0krPeDxGQMpCTO9vr7WaDQyQAyXzDtfsw40\nphEHFrCZ95FIskIjeM8xJ6SHBqtZjMH/nHmfnZ29kWyG9MRjf3l5aYhKH8r1ez5pbpLMv+Odtfig\nAGKNRiMdHh6O5ZNknQ3o6urK0IqcDRjE0tKShTrRhPFxAG2GQJQ+xXSQZowpsMksOOotSTSSDEBy\ne3tr3J5NImEE54tvapJGcH8AIScnJ4YDIER5fn5uLdH29vbG0H6+OEuWysa8UMmHw6G9J+nL5XJZ\n3W5X7XbbmEAU3SVI0b6MeU1SD+O4CT57dnZm3ZHxIcB48FuAnWed05LKPDNCy4IRAU3Hc+5DnJ1O\nx9br5uZGxWLRIORpqD+/jozNPJHCKysrYz4ZmC9SlFZvRGP8uiQRFxnGgQ3v29xjGuB7If/i+PjY\nhBd7kaWV4DtjTtwB0LmLi4uGy+CMwLx9GHwaSP8kmtj3IYTwq5L+S0mtKIr+2P3PfknSfyOpff+x\nvxZF0T+//91flfTzkm4k/XdRFP2fE18ioe8DEofDyeHm5xwyr7ISpfChO8+d/SH2aiGhHyQbh4tY\n8e3trVqtlkmxuH2IaeAlNz9PG4t38em1fM7b1V5a8zwOi38+c/ZjgcRDaoLWBKEJAAu1F5Xb29rY\n6knziu2hgbvAfSwsLBiCkYu5srJiph1AHJg+F9eHYpPWUBpvzMPvGRuTAYASjABAGmaoHyttvxjL\nF4jBacplZW19SJWIA8wkfm6y1tCnlnsmi5bi81fipin3IeVefzHNYEIIPynpWNKvx5jCcRRFfyv2\n2R+T9BuS/oSkZ5L+paT/JIqiTKAATMEvGFKOBYnDen0MPYk8h3fj2PfYpfwc7y0psVwQnxLrTQze\nLy5NPPmx/DvACHzIlPdhXvF3hXy+vX9mElOQHhgD6jsOTux3Pu+1NBx/HLy0ecXNFmC/AKTIN+Cz\nFxcX9j1+CkxDJJ5/vqekeXktiDVkL0MIqtVqFtrFOQt+IavNX9JY7AnrEU8lB+LshVTcN5M0VpxY\nM+aHUxHmAmPyjID38s7uFJqKKUw0H6Io+tchhA8mfe6evinpN6MoupD0SQjhI90xiP9vmj/2k/Fm\nBJsU33R/ETjISWGsJLs7/nUUPaQnI3U804mPBYBkklqdNJ7HOjBW2t8iddIYXFo4zY9FeA5mhAPW\nP5N5ZZWti1OcOXDBkaRocz7N20dNfOu9tGdmzQvUKXPzEF8iHTyH8CO/j1/8x4zlzyNjeadvGjOd\nhm5vbw1h6v00nhF4DTLpbECT1jCNPo9P4S+FEH5W0nck/ZUoivqSnkv6bfeZnfufPZniavPneU7W\n9/GfZTknHztWHLMQpy9yrKx5cSl8DYMvgpIYLJf9qWNNK1m9+v8YBN80foussb5Miu9X2vmYNN+n\n+hWeWk/hVyR9XdKPS9qX9Lcf+4AQwi+EEL4TQvjOE99hTnOa05dAT9IUoig65OsQwt+T9L/ff7sr\n6YX76Hv3P0t6xrclffv+GWMsLS3ENkldfoy6lJbNmPa8JJXTk/+993vMIj1VrZzTF0/xMyO9edbi\nDle0sazz6Omxe/0kphBC2I6iaP/+2z8r6Q/uv/4tSf8whPDLunM0/qikf/OUMe7HkfSmAyhu2/EZ\n7x32DpnHjukdifzM26seScnP4u/yeeiLfJZ/nn/P+Bp6W/WLHDvpPb6MZ8efnzTeND6Yx4wVv7je\nEe3HnYbi/qL4197v5J3kSdET//20jMPTRKYQQvgNST8lqRFC2JH0NyT9VAjhxyVFkl5J+m/vX+J7\nIYR/JOk/SLqW9IvRhMhDwnhvTI4DjFeboh3vvfeeRqORpIdiHXh7wajz87TNYeH84ofw0D0JqOzq\n6upYiMl76XH4+BqKj50zTGhlZUX1et3qC/iYNYzvMXFoL4l4Pg7HUqmkFy9eGHiJtGk/P0KVj51X\nfFxS4XHO+gQrD8h6ytpJD5cG4BR4Fr+GOAFB/D3WGejD4jg2KeyCk9vX1+RnJIc9dix/DhcXF60j\nGu9N5IuQ5+3trTUi8g76x9LEkOQPg5LMB4iwJPF2IJ+VSkXPnz+3Re92u2NhNOrcgQJMMkf4B2Mg\n9uxBMDAGQDJEHYgccABCCDo6Ohoba5L5wJgcMA/2IRri8Qg+PyCtK5R/ttd4fMybgrHValUvXrzQ\nxcWFut2uut3uWDl3wDqTAGBJY/s54Skn1u+zBeNa4KRszPg4XEz2jmzZYrFoEpVkL0kW46c696R1\nhJgPOAJQmlR24myQc+OjU0Dik1ChSdoNzJv5sGfFYlHNZlPSQ5TCp4uTtMX/kBvziwlJ/jDJawlg\n2KktQNXjUqlk3ZS2trYMnru4uKiTkxP1ej0dHh6q0+lYdiDAGK9qeRUsl8up0WiMlVz37cjo9gO0\nmkxFvvdJMpQmSztscH/i5xSSyeVy1uHo5cuXdsDY7MFgoHa7rdFoZPUeOOBJaxhF0VibOABLpVJJ\njUZDm5ub+vDDD7WxsTFWTpyUdI+ag1lMurAkjsFI0Q4KhYI18fElxECFeuYHg52E3Sd3g7VDijab\nTT1//twK8oAMPT09VavV0uHhoXq9nu0XqM60eYUQtL29rVwuZ81Z8vm8NjY2rDlRPp839CRw5729\nPe3v76vVao3te/wcxsci94W1I/+mXq/bP5oC+/J5w+HQKoD1+31DVT4lsjVTTMFzUQ6yrxxEV6PN\nzU1Vq1WL4YMHpzcil4lyXKQ9x7Mm+Z/eARTebDQa1giGIq0cXuLf3W5XFxcXOjg40MLCgobDoQGE\nskJFXBZvDnFpuKRAkNfW1tRsNnV4eGgaEcAbYv/xi+rXEOnJIUMCwVDpWwhQC1QedQhGo5GNBX4j\ni8rlshUwhdFSE7FSqahWq1mi0MHBgbrdruWrxHEbWSnv5FPAxOnF0Gg09Pz5c9VqNZXLZV1cXNg5\nkaRKpWINYAGJYdKkhU5JWCMfgUSlZrOparWq9fV1S7ojIzOEu+rL7fYd4Je6B+A2suaF5sjZ4Mw3\nm001Gg0rtgK8nopWaMfHx8eWwAf47rE0U0xB0phK7+0iCrQWi0VbgH6/b1l30ngJKq+qZaWtwnQk\nWRntly9fql6v23usrq6a7wKVEYgu2Y0hBOslkIW0lGTPXFxctLqCW1tbxlTI8iyVSpbqXCgUNBwO\nTcPBBk9bQ9bDQ2E54CTdkCtCyXUYLKZSHF6dRWSWbm1taWVlxaQ1qeEUDaGyNAlTnU7HqljzzpIM\n7Zk0N3IKqAcBMyengcItURRZWrP3OXg7PIsYiyK+Nzc39t6Xl5fqdDrqdDrmP6BCNAwHZCPmWJaW\nBeO+vb01hkBtUHppAO0ejUaG0owzERjFU/0J0owxBe+cQnKAxaeKD4lR3W7XDiv+BjQGX5HGN9eI\nE0Ut+Dw2IwcZiXV6emqc11dG9huytrZmjCNLPeT9ODBRFBnXX1hYsLZmQFrRcJDiSNJJktszBlTy\ncrmsFy9e2OHq9Xra29uz8X1RGYqNksCVxRyYP1mOSMVCoWC5Ezc3N9rf3zekIyZav98fg2CzDmlr\n6KHlOO8Gg4E1Vz08PDSGS5k9/g773pd+Y32T1o/3oFHxzc2NrRHri3ZDIRnyPnyiFHtNunPSWFxo\nX+cCAeQh3eSHkEKdy+Vsb3yNhTgU/jE0U0zBh1A4XDT1IJtxdXXVbECfBEWyD5cJTzObkHaBWEgv\nFfkZVYiQpmROooZjz8KMvMqbNh7vjFq+vr6uer1uNQBwmqKdhBBUrVY1GAwsPZgDN8lbzxqSUkxF\nbN/PwmegInko3ME7eY960kGDqZBbQLMVUnthCiHctVpfWrrr3Hxzc2Nt8TxuP+tAw6Cur6+ttBx+\noxCCVabGW39+fm4MDgbJGF6LyhqLepIwBNaT/aYwz9XVlSqVimXtkvNAtCAr2uFDpqw/z6XYD74W\nNFQf0aE6GGv9eaIPM9UhymsKXGpJYxza/7u5uTEVCwcNB8r3WkyTBIzjNxCmQxjLMwU2Du+zL4TK\nu0zDnf3h9JEVQpxoN4VCQY1Gw5gblYJ9vD0rNo9EI6LxwQcfqNFoqFwu2wXGcckhurm5sT4JOHip\nHZgW9+aSIcUoi0fNhOFwqG63q+FwaCYGPSR9+TWvQSWN481K6lJgBiA8cPAuLi5ai/r19XUr20/E\nAZXeJ4XF15D9RlvkHPA/ac2+oS5Vs4g4cD4mhQnRIokmEDL2dT0wDa6ursx/xj75qE5ag5tpaaY0\nhSQiTx5aWFgwzsklpkCJz7TzrepZME9eHfYbQnEKH2mAKREmIvyIgwpm4G3ISRLBO9WOjo6sSerl\n5aWazabNTZIV67i+vjaJ4C9Q/PmovpLMNq3X69YXE22AtYVBEma7ubmxsuIHBweJRWg88S5XV1dq\ntVo6Pz9XtVq18u2DwWCsZLn0UEsRpuRj72kFTv3YfB6HLXMuFosqFoumjdBnkjRxKlH5Qrtx34Jn\nfggN353r7OxMa2tr5kDF7kegnJ6eajgc2nqxPlkNiKUHJo42iVMRkw7NlagcUQ/OG9EN6aGuwlNo\nppiCl4AcAK+qr6+va2trawwHQEyayjQ06PAFSXh2fCykACW6KQbi28BToBPcAhcK04aviZDwXmnz\n86orPgqkwe3trTnRaGSDV5xDzCGZBLzBhsVs+PDDD/Xs2TOrYegZE2FEIgeEeqvVqtrttj7++ONM\nWLgH0XAZj4+PjXkXi0VJ0sbGhpaWlpTL5dTpdCyUxkWNR4bS1jD+GWx5cBfMaXNz03wCvtxbnMEl\njefVeS41e0OHqWfPnlktxe3tbUVRZD4hzoY3h9Kcw96pjhaJY5FWcZiWmBTlctmcnlSSwtnK+Xqq\ntjBTTEF6WCDvLfZlveINQjlwl5eXVsGHeLivWcCzIQ4h6iYbf3R0pGKxqKOjI1PNKJlG+IkLQG9J\n1Dk8wDw/jW5vb8fmhOTi4jNHHFPE/6vVqlqt1pj5lLaG0kOI68WLFxYVwHmLWktl7FKppFqtpq2t\nLTMfKF1eLBbV7/cz5+NrQdIA9/r62g6vJDWbTW1ublqR2NPT0zGtJsu+j8/Nfw7py1lBwuZyOSuc\nCuXzeR0dHb1RPzKLMfhoDxcul8tZeByNjmrWXHC0o2nG8k5kok30yMAHhDMTXAb+B8B8/X5/rIDP\nU2nmmAKXiQudy+VUKBRUq9X0/vvvW1swVCccTCxctVrVycmJisWiKpWKAY2yForLCAJyYWFB5XLZ\nNon4so9VU6lpOByaZ5+yaVnhQuYm3R2EwWCg58+fmx9jcfGu6xUHifeg6g4MAsdZFgF62d7eVqVS\nsTb0x8fHyufz2t7etvLtNzc31isTJohNTrQii7xZdHJyona7bXBjAFMccrQSX80asFVWbwTG4XL5\nKAAhUe9o3tvbMy0Q8NFoNDLVG0TgpHn5sXBgckGZz+vXr61uBS0ICfnm83mrNpXFgIiGlctllUol\n1et1bW5umsMXpCs9TdbW1gwoh08LjIhnfI+lmWMKbAKhHZwtADeQ1oSWer3emH3lS2zhwUVCpo3n\nvcPYtxQDxS7m8OZyOVPpAY74ysQwkTTyeRzSQ/gVBoeaOhwObXyckEhcxkFqpdHS0pKq1apdTJqq\n8u5IvqOjIwNMHR8f2xqD/PNhxixfiZ8PjsyTkxPzgwAkyuVypsYTWmXN0LSyGAOfx18CFgGHXqfT\n0fLyss7Pz833hP/E589M8pXE98u3MiQKRUgV5CImBp8HS8F8s8LVCwsLZg77don4y87Ozgw8h0YA\nLD2OT+A9nkIzG33wHZfhkFwGHHvkO4Aow7kYRZFKpdIYxNc/3xOquPSghoJcRHrh5ImiaAwS6zcA\nDzA2YdYcfU6Fl0SAsDymPYRgc/FmA8/I8mbzXnjnwcP7UC7qNQe9Wq3autBgByk2zf6hMZyfn+vk\n5ESdTsfAWL1ezyIOMHCfR+KdhlnzQov0uBG0EhCjRCeOjo7Gwrn4qDyMftJeIVjQEAuFgsrlskWN\ngIhT1BVNC5To+vq6SqXSVGP5OpqsE4yTBsMIr3go0vuJfF/Ux9JMMQWIjWfjwAL4y0rs2MerwRpw\n2HjWJBUqKWbtG8vQ+clzfMwVkGoeUJSFoOSdOPyLi4vq9XrWIBXGg+ZSq9UMmIMK6jWESU65i4sL\nA0PROwLVE2lDeAtoNzZ/t9u18GJa6Tk/J2+DE8YjFwAfwtnZmfr9vmVfeg+5BxJlYQf8pQbliuZE\nt+nDw0PzT3Ghvb8Kh20WsTb8faFQMHgz5uPV1V0jW5jg8vKy7aXHsngAUlq4lbA72owvrAtj9s2F\nfQjdh1phGE8FL80UU/D2IqoektEDhDjobLDvb4CXmWKgHkHmD5p3xvmDzAZw8LyUJBxKzBiOTe4D\nlzlNzfaakEe5LSwsWLMZX0UaE4r3pb5/vHty0ji889XVlYbDoVqt1lhjXMb1yURgBy4vLzUYDLSz\ns6PPPvvM1nrS3vE/n4WREComycv3qowz2WnJa1tcQsr0o1Gh6RUKhbEuW4Qip3VsInDILPXVsLl8\nRIbwm/B3ALuQ3D6y5gmtEKczfgOfaek1SDQYelYOBgNrmTgJ1DaJZs6nII1DdFGFuLTgA0B0MfmT\nkxNrLIqEQs1OknLx8CF2MBoKKiNqIBcUvwbh0MvLS+3t7dkzsy6rvzhoC96HQg4CjqpSqaTl5WW1\nWq0xrcjH0dPGQZUk85F0Ya9CU3PgxYsX1jmq1WrZnD7++GN1u11zkD1m//iHv+T8/FyVSsW0KS4K\n3aLY60lOWmm81oBvlgL2wSdMAbwC44HTlGekXVI/ljcf2H8kMpoO+Ah8GzjDfSu7rJoKXstCu0GT\nQthgPksyhzSmGeff4zeeSjPHFOJhIDQFnCm9Xm/sMuEHwKl1cnKinZ0dyyv3wJMk8ihIsAgrKyuq\nVqvmk/DprISCOOhcOrj4tGXKfbEY8vErlYqpmVxaGpQivZH2XiKnEdLx7OxMu7u7evHihVZWVgxa\nnMvlVK/XbX273a5CCDo4ONB3v/tdffzxx2/07UwjLpjXUtBGUMN9xiumECXhfeXlSVIOSekBZcCm\nseE9A6YhK70dfbu4SWYRGglJcLlczvxHlHVnX/P5vF3k6+trS2cmPDupiC3zX1hY0OnpqWFXaByE\nMEI4+K5o3W7XUqW9j+EpNHNMQXozB4J8AGClUXTXZo3IwOLioqnvh4eHY6XDfapqkroYRQ8FQPgc\njIL232RmIt1oP9/v97W/v29OLY+gTBsLPwLfIz2AyyLxhsOhJJldv7e3p36/b5/P0kh4Nqo7NjbS\nGvPEh++QTEdHR/rkk0/08ccfm+aShdD05J2AXFZwAzCgYrFo3nmcZ2gvrP8kZnd1dWWJQph5mA2A\nfpaWltTpdHRzc6NWq6X9/X3t7++/sYaTUH8XFxemAfj0e84NrecHg4HlJQyHQ7169UqdTsfwIGm9\nJuLz8oV00A59khW1NUij7/V66na7Zn5y7qbdsySaSaYAAIbCKRwY2n7BBLj82FFeYhOewf5OWyDv\n2EKrAEoKcAjbEVDOzc2NedXRGmjSOk1cmE1H+iPZ8MxjH7569cq6KoOH8M/IIu+wBARFERpscEmm\n2lLk5OjoyDJQWZNpkq+kB1XbO8xyuZw2NzetdoNvzBu3kbNqKPh5+bwFfCYwBx/ZaLfbOjw8tLoX\nAItwDk/CRPjPwFwJ01KCTbpLdedi3tzcWJ4HZwnmkzU3BArwenxJPhxOx256i15dXRmD8FWt2LOn\n0kyWY5Me6uDhMLr/3Ji65p16/mvPzT1D8NLbe56ROP73jI9dKt1VaMLmJcbuzQhwBnF/RcJ8x9Rt\n3sfPzTtAMZP8vKaV3H6tkn7n1X0uso/GILmmGQ+NC+84pdHAmEjS9va2jo+PrXclFYIm2dxxwkPP\nGvPuaCC8g89tgCGwHtOuI5gEH4r20QRUfs4e5pbXfNLGitv+voAK88L/JN1pbWi1fo6MyznxZ8+N\n+8W0jfthUEhpG+dVbRY26WL7hfWMIS7d4pfeMwsOtPcxcBjg1r5iks+iBEASZwLTAHDSGJaPVMSd\nUI9Y17Hv07ze/rOeWaCCPuaMsGb8DdB0mM/m5qahKL3K/ViPOXsGA+Bi+nl6wBU/47OPWUfPsP05\n9GPBjPwcYKZZaxjfIw+qipu9vHN8LL5O0+jeaaaQ8rvE/+O/l95sKz7Jq5z2cxiRh/d6bIEkC29l\njfd5LrCf7+dRBZOeF2eU/n9/gONM+CnjEc7jefEsyafG0uNjea0o/g6TokKPHcc/Oz4WkY7HaHNZ\nY/l/nhnx/zRjfeWYwpzmNKcvjKZiCjMFXprTnOb09mkmow8/DEpTp/3Pnqo6Q29TC0uawzQ+hiRb\nNa66JpkfTyX/3LTfx99v0t8m7d2kfU4aa1r6vOfkbT8/Tu80U4gfkC/qmTit4g5Mf3i8feq//qI2\n8PMeVP+MLPuX770TjZ/FbdhJFzhp/LgDE/Keer5/6vziX3vIsKTEeTHmtPNK+lx8bklOxcc6T9OY\nYNxvEnc+PnasLHqnmAKL4tGF4Aa855X/J4XSkqQoBwovuofM+loJ3gsNAu0pKDK/ycyLmL0/aHj0\nmVeW8zHtADMvSVZjAJix9IAB8M+g1mXWu8cJb73vfkVi0enp6Rv7xfwA7/CzLKcyRMQIcJEHToG3\nYM8gyrw/xoHrBYWv4k2lKs4EYWr+RVFkSMNJZ8P/nrH8mKRT+wrR8WiKX8On0jvBFAg/EYeWZGXS\nfH/C+GUgczGN4mqmT5Pla39RqbJEWSzCleTBPyamz7x4tsfkk1zjU7HBD3DAfVuwtHlBHr/vk60A\nGZGTQBJcBbPaAAAgAElEQVSONF4JiEw9np00D88gmYuXoB4o5JkafxfCXfoz65tmFvhwp2cErKHX\neqgpkBQq9oVyp9kn1pBiLmtra6rVaiqVStre3rZuVK1WywBLJORFUWSArawx/FqwjjA8j4sgO9P3\n5vDQctKtn8oYZpYpcNFIm6ZiM7Xxnj17pnw+r1arpXa7bTkCg8FA/X5/rO5BFEVvbIhnBkgx6QHI\nxMUB/Ud2nC/WQX1HpOnBwYHh7NOYkYfixg81cOBms2mFTk5OTrS0tGQVkT2CjYOXZr4AM+Z9qZlA\nuS9KfkVRZOXdJVmeADByKvxQeyEpDs6lZo78I0WZd4HJcdhhPhxwqj9TV9HPy49FXU7qFNJ3giS5\nEILVf2R9OQcwChLGfM5KfA1DCFbtC62gXC5b68JGo6FGo6Hj42P1ej3Ld6ADFoVvEVBpYVjeuVAo\nGE4BeDMp2HTgiqLIqokBfWa9yDw9Ozv7arSN8wQToIwW5amePXtmZcLgjmtra6pWq/roo48kyRpl\nkFrN4qXZXz5NmsO7tramRqNhtQt9QVW4+c3NjUGH44ctjSmUy2XlcjlJsoQaEnroSvX8+XOFEFSr\n1awQyvLystWNoMoTl8mP5ecFQ2U9KQRKXQC6blGhCNjw2dmZ5UKcn58bGhGQVhKFECxhx2sivkQ5\nPTkBiFH45Pz83CDjQNbj1Yj9JQ0hWA5HrVZTPp+3edE5CaaG5sVYZBYCG0az8/OKq/FkV1JSfX19\nXbVazZLm0G5g8lEUWdIU8/PaRprGQKEdtDrWrFar2Txph4f2gXnS7/ctWZDWBpOqR6fRzDIFODu1\n/La2tlSpVCxPwBefoHtPs9kck3g+0cbDVCE2CuZCqfhyuWzSwOfII424zJRLJ+kmrjqnqW8kW8HM\nUOm9z4Aqvr6aTy6XswMddzz5OUnjFaUoEFKtVlUul9VsNs00gMn4kmbUOlxbW7OS9zwzba9IDELr\nos5gs9k0xhDCQ+NY75OhSC61KSVZklPSvBAW9MR89uyZ5SKcn59bVW8YPLUWRqORMSbKqCWtoR+T\n3BCK/CA8Tk5OdHBwYJpQt9u12plcRFKr0USywFNoxpTQW1xcVLPZVKVSUb1et9qLvlkPQmIwGJj/\nB3/Dzc2N3YPH0kwyBS4yCUohBGsN1uv17PdsKDX/yFXwHmCyKNMuqFc30RgwURYXF40hoDZ7u5h6\nBzAAHFtpfgUuHRKZCynJJI13mvE73pHnLiwsjDUWTSLPZHgeDA/GGUV3qehoCTCJxcVFK4ZCs14q\nT8UJDQG1F5PvvffeM0bO+GtraxoMBpYliTRlHWACccntCS0O5lapVPT8+XOVy2W1220z3ehURQFf\nNLBXr17ZGEjwND8JgoTkLca/urqywrRI/evru16S3iziOdJDhCqJMfizx/dketL30zsU8VNQvo+0\nbgQBQvApWoI0o0wBdR91T5KOj491fHxsF4W6gvV63S6IXwjv3Y57n/040t0BQa2jzh8LHkV32Yu+\nVReqvfSArycLMStNm3mFEMy2DCGoXq/r5ORkLPcin8/bwcSZihTk0iRVK/JOJ2+vU1LOO7R8ExZU\n17W1NR0dHdkYMLC0y8P7+aKmpVJJGxsbxlhh2tQzIP2dw35+fm6l6Fi/OLPzzM37YN577z1LbaaG\nBl2s2UMY/dHRkVXd9k7bLIccTlI+s7a2puFwqHK5bHuIn4R38pmYZC76/Ug6hz4BkNRwtK7b21vz\n65DeTgMa+p0gKHz0YdrqUnGaSaYgyaoBLyws6OjoyDoWhxDMiUhBjUqlooWFBUtdlcabebAZfnF8\nKJDxeA7lu/F09/t9HR8fmxOSnpKoaTAMNjRNHfUS0DcKwf6T7nwOODgp1T0ajdTr9czRhwqeVMbb\nzwutBCmPIwoHpn9fyr9HUTTmXyAVl79LmhOMB0dYs9lUvV43xkaK78HBgR141poUdd6Fg51mFuGR\npyU8Zg/FRg4PD6361urqqvXphDEwb3wPWcJCeqjfSZiYELX3VSEk0EhIWff7jSabNRYalG9QxHn0\nvTI4G1SAIiSO/4Jye2nncBLNJFPwajqOp+vra3U6HZNmS0tLevnypRVCwVlF/0JpvFZCmseX/xcW\nFqwICUVH0QoI12E/ItUkWRUfipFeXFxkhoOYC3Y0hwZGsLy8rM3NTfNVjEYjtVotY0w+RTstycfP\nC4cajrbj42M71BStwSFZKBSsUhPzoGZFWpEQDj5dpnBe0qLu+vpa/X5fr1690mAwMDWZHgW+zgCS\nMA0bwdoxr263a/6djz76SAcHB9brwRcrQS1nbqzJ+vr6G81imFOcuVJWDeYgyfxdV1dXqtfrY01h\niPhQSDYNX+LNXMwoIjmsO+ebMoNoEDBvoiwwVOo3PCYV3dNMMwWkKCoYoUkcgo1GQ4VCwWxjHC3Y\nVFK6ysbGX19fj1URZsHpq4gEZ6N8WfGLiwvrT8jYvpFo0gWSHtqXS7LPY7KUy2Wzw8/Pz7Wzs6OD\ngwN1Oh3z/nunVVp4ENXRS3gkMxWbUVcpMeb7bmIKAchhP+LzIjxGVEa6aw8H1uL4+FjtdtsK6dLH\ngFLmhAm9DZ5U/IR5UQAH6b2+vm57QFgOm97Xg8T88CFKfDVJF8drmh4XgVP1+fPnhpWRpM3NTXOa\nsrbUjxwMBpmFamAYMFHpoSsUFabwH93e3qpcLluJQNaKylMwgq9c5SU2xF9cpAjt09AYFhcXraEn\noRi4twe6pI2DTX17e2sdlvFPeAARZkO9XjcpjroH0tEDjJLG9QzK+znQVFZXV61h6dXVlbrdrlqt\nlhXnhCFM2mzmBRoOswdJxfcg5MBgcDBhrD7KEb8gnriQOF+5PFxSVODl5WU1m03VajULU2LywZyh\ntLGorISz1MfmfTFaTAcf9kXrBHzmG/JkMQY+46uGF4tFA6x5nAs4Arpv0bhlUtk3X4HKmyXHx8dq\nNpu2pvV6XbVazfwxtDrwf5PE0B5DE5lCCOGFpF+XtCkpkvTtKIr+TgihJul/k/SBpFeS/lwURf1w\nd+r/jqSfkXQq6S9EUfS7j30xrwJfXl5qOByaRxw1ngN1dnZmwCaAJHDdNLvRj8NhKpfLppl4z269\nXjfJBoOgduLBwYEVHeWgTYMm4/eoeTSzqVQqur6+1uvXr/XRRx/p6OhorAoSDCRNwkkPh5yD5HtM\nEDGhXiIVp/CiLywsWKFYwlqYHllz8Wor0QqiEr5LOJEDwqutVkuffvqpRSV4z6z1g2m1221Tu2Ey\nL1++tA7QhK/L5bL6/b46nY729/fN5l5fX7dQYxZ5dGE+n9eP/MiPqF6v2zkERHZ9fa1isaiNjQ2r\nzo3af3h4aEVws0xLmALNezY2NswBTqEf+kjAuPG/XVxcWHj+85Rkm0ZTuJb0V6Io+t0QQlHSvwsh\n/AtJf0HSv4qi6G+GEL4l6VuS/kdJPy3pR+///UlJv3L//5PIq/6gtKjdiISCY7OgxIu9zZ7GGEII\ndoBwIKKFSA/xfu8QgzkRw0eKe8mcNh4XGpWez7PRIQSNRiMrMIrDk/+lBwyHx74nzQsJiUaFLQ/w\n6fLyUvl8Xu1221Trfr9vBx0chveMpx00mDBOUaQqGpEvdc4lAqF5fHxsPQvQ3OIhUK+tIO1PT08N\nE8HewXxub281Go2sAzY1PTHzYJbsW9q8YAj4SZrNpu0t2iv+LtaJM8ue+uhMVpjQ+zJw+MIooiga\na3q0srJimgiwakljkZAvLSQZRdG+pP37r49CCH8o6bmkb0r6qfuP/Zqk/0d3TOGbkn49ujupvx1C\nqIQQtu+fMzV5ZuBtZA4FLbhB5BEu9L0a/AVNij6wCdjVPCMeqpMeuDhoOSQ8h4oNmKSSMh4MADAU\nvR4A8cDpfW1G5sNz4vBcPy5jcCAJm2JWYHfSMYqCoUCcWUMuRRZKkzHp/kRno62tLTPFAEN9/etf\n1+Lion328PDQ1pM5Z3nN2f/T01OrYHxxcaGtrS3TjHCKEgpFmwT45TtPTzqDHruBxkRXbs4Czl+6\nNdXrdWM8gKg8k0wby5/vm5u7ArD0mcjlclYWv1KpWIieArFU3pY0UbObRI/yKYQQPpD0xyX9jqRN\nd9EPdGdeSHcM47X7s537nz2KKfgLCzwUdWltbc28sHjEkfRsBhcCDSJu03lbERuc5y0uLqrb7arZ\nbNqFAOhCMxZJJuW8cwfpnbJ+kh4SeXyh0ZWVFYMe09uBJi6esTE3vk+6qPFwq3eqEeMGAYhTjIQd\n7F8cWB4Jmqb2ItnBWhBLR4vDn8AlpEz52dmZhsOhaQlEebIqHzMWDsxKpWKhunq9blBkQnqEJqki\n7TUR+l9kmZc+D4ZekuwDzKXX69l5xWTC+Sk9JKTx/mkCw2uAURRZ9AcHN+YV2cFHR0eSZA7uNIzO\nY/0KUzOFEEJB0j+W9JejKBp5jhdFURQeWVIthPALkn4h4/dj0pwFW15eNi7P4QHKymZLGvt9lu2N\nuoc0wTFF7JuQJyYCEQC4NglRhLsmbYQ3AVBLvbNvdXXV1GryKWBIMI8s5uOZKVKHi1YqlSQ99NLA\nFMK5iBfbg2CQupMguqj0PD+Xy5mpt7CwoHK5bIzj/Pzc8Bej0cgSrzykOinKwbzQStB+yuXymI8l\nn8/r9vbWLhQamTfriIZkAXxYc/4Wn0i4xyLg6OT8kDXJeqBxUsreY2iSyDvY4/kLp6en5i8A94EZ\nhhDhd7G7mbpvaTQVUwghLOuOIfyDKIr+yf2PDzELQgjbklr3P9+V9ML9+Xv3P4svwLclffv++Ylv\n7kNBqHAewuk7AHupQOtuDmSabQVXJg59eXlp4UCcjRya29u7Bi0whX6/b44/OLi38yesp/kpqtWq\neeNBbw6HQ4P8olUgsfDSgxDMOmAeGks6OJ/HYQvT4TB5TYi5Y3OnOTf9OuI05WB6HwaX+fj4WN1u\nV4eHhybVgO7GwWdJYxH54d1Qncvlsj0HKY0GCKITbVJ66A6V5bRlv2DIkgyVSTTDJ0qxtpyn4XBo\npifvn0Z+z1gvmAmp8svLy9Z7AiwJQszv2ySkZhZNrNF4H034+5L+MIqiX3a/+i1JP3f/9c9J+mfu\n5z8b7ugnJA0f609wY485uTzWv9lsamNjQxsbG9ra2rIkH0wGnwE3yb7ytjvhRa9GS7KuUNjLOHmQ\nfKjhWZoJcyK8BS7h2bNnFkIDxx5FkYW3cEQS8oTpTIoI8A+tiUuB1oM0wwShpTpaAkAf6QGBmTUv\nfAKYNkjS29tbU5/RDDAf+DyH2HvN434lCOEQ97nwXMw6fEQIEmL+/B4GMmle3p/AenS7XV1fX5vP\nBqEFlPvs7EyfffaZ9bXAwZlFMA7pocgK+BGYjm8Swxn0cHTPGJ5K02gK/5mk/1rSd0MIv3f/s78m\n6W9K+kchhJ+X9KmkP3f/u3+uu3DkR7oLSf7Fp7yY9yUsL9+1HS8Wi5ZGnc/ntb29bSpdp9Mx3Hu/\n3x+TXJMkN5oBiEY6Q3FYLy8v1Wq1TIoOBgNz7niVl0uWRRwgtBzSfRuNhjmUCoWCut2upcYCJmKs\nhYUFU/OTiPdB7eWCsh78PT4JMk7xzg8Gg7HcDHwPUnpOBweaMf0+cnlpc3Z7e2t1ITCRvLmTFtL1\npoU3L70Ww0XF5PHmGqFBjxdBi0wzIYjQ8HvCoDi4c7mcmbA04+31evr000+1u7trWswkU9afD19D\nYXl52coIoO2Bwux2u2PmHnOdFs+SRtNEH/5fSWnu4D+d8PlI0i8+6W0ced8Azj4uRaFQMJUwhKBP\nP/1Up6enev36tbrdrqQHSOyksAwXhTGOj4+1tLRkDrkQHlBqeHux5ZC+3ieRpbZFUWSxbUwCJMzF\nxYXy+bz1qETFJlORTcZc8WnFnrwZw/r5eZ6fn5s2Qs0BPPm+pRsU1xiS5gbz9A1f8boXCgXrxYkD\nEhwEKj2Zm6zdNCq2L1Lj0a++pgNwchgblxmwkwe3pc2LM4TZAxPikgJXJwqA/d/pdIzhwVQnaXaY\nGR41S3YrCFs0jr29PWPgl5eXb6Azn8oQJM123wekBzZWfJGodUD2IJh2pETWBfXqqFfNMFNQ8TkE\neKoxJ7wNx1hewiH1ksb1YUIkK9KIsdBQkGr+wkwzL8wOpI30kEzk4/loI16yInGZu1dLvUSNq/f5\nfH5M0uGJJ7ZP3kW32zUYNPY3YB18Nn4eSeNSqIYIDvNiD0nQuri4MBwKvhOYO47G+PPjhAnr7X38\nGfyt79pEiNdjB6ax8TEXfBm29fV1lUolFQoFM2/J0/HOVpgPGkmKdvzVaAbjGYP/XpIl4fiN8LZV\n1ty8lED9JfTDxeMgIFX8QnMouLxJqmHW+CQlkQTDxfWh07jk9NpCGvnL5B2aHm/hw7t83s8PyYp0\n9eOlMQVJJvVheDA75oG6zTMwtXxafNoaxj3q1GPwl5VxpYd6F55JSDKbH21omvPvz1yaKQrj8Gvv\nHb3T3jPPyHkOjI8Ln8/nzTHscRhoYxljfTWYgvuMpDer/3hu/ZissPiB5mdcJL/JksYujL80cfKe\n42nexY/p4cs8wye5TDuv+CXmf4+49O/o1zBNzfXvFH920ny4oLlcbiwXxZsz1D/g+UljJo3Fu/Bz\n9soXvOF76aFFXXwdk7SQLPJj+r+L/3waM2iacdgnTCW/X4ztS+Ql7VGMvlpMYU5zmtPnpnnbuDnN\naU6Pp5lMnf6qUVzdzPpdkuaW9ndedZ0Udv0yKU2195RmfvjP+88kORr936S9x2NNgvg7pj0v6Z3T\nxpr2HWeV3immkGbDSuOp1l/Uwse96/zvw3OPsUfTLoyPu3uvNkzC/0t65uedl39Oks097bOSng1h\nB8ftbj+PNFvdPy/Lp+H9Jv733sb3+zeJ0i6/f36SryvJWfoYP1MSpa3Fl8Fg3gmmEL8weGSjKBrz\n1vsNI3X0sciu+FiEKPP5vI6Pj+1QxeP2PiElieJMS3oAaPkQVC6Xs45NHj9PFESShWAfOy/WhbkB\nmuL5hCWJiFBePq1ASBKDY17sEU5AStQPh0PzyHvGQCZlFugmSRqzhiQqLS0tqVAoaHNz0/ABPBf0\nI3iUSTkdjBlnApw9xgXI5NOVAcR5Z+BjL7A/7+wXxXC8oPDryHn5PDTzTIFN94cZAuzBAYtLPfo/\nPsZzz0YDIpEeUlHX19ffgO1yaIC4ZqmNnsiJx0NO2IkwG4lPvrCK79HwGIbH+jEv/lFAFSAV4DAO\n2vHxsQaDgWUBTkMefEPIVZLVL8zn82PAJcYKIViatc+dyCKPWQGjsL6+rkajYd22Li8v1W63x0qx\n8zVgrWnNEfAQfM+FpfqSJEvdZ40JHZI895iIlAdoLSwsWBlCGA31LnwYnvWbVOkpc12f/JdfMnFQ\nJY0xBSQPv2eT6O8XwkOhVYArJP2kSXJqGnDIqNhDWzW6D7GxhO7Oz88t048CoXzGX1ivdsLtOTQA\nfcrlstbW1tRsNtVoNGweMAVAWd1uV7e3tzo8PLR4e9oBAPzCAaZuA2Xlnj17pm984xuSHvo78ux2\nu629vT0rn356eprY8sxL0mKxaMyLxiagJ6m4RJozeSxRdJfODWqTGgXx/Yqr7iQhAWCjtmWtVtP7\n779vpdioEUF5u+FwqP39fRWLRfX7/bHej/Gx+JqLzvfMcWlpScViUZubm2o2m5JkTVuAdlO0dXd3\nVx999NFYs5gk4gzzfAQFkHhqbrC/JPMBxuJMkH/xFF/TzDIFOvlEUWSQWcAoXGBUKSrv+MPbbrct\nuYniImmbUSwWTUKTylwqlax5KBV04PrUW6AMGwlYSLp4PQAvHZiLl97FYtE6HZHb4VNnLy4udHZ2\nZpDdwWBgWouvyxcnmI/HXaysrKharer999/Xy5cvVSqVDKI8Go10enqqSqWiwWBgeQtAh1HFkwjN\nA1MBxlOr1QzqLMnSqVG1z87O1Ov1rPAKWa1xc8zPL66N+PTsFy9eqFKpWDl3X2ezVqtZ8RUyHT1U\nOsnE834Dvl9aWlKpVNLm5qYajYaePXumRqNhY6HlXV5eWhm4jY0N7e7uJgLC/LPRqHg38h62t7et\nuAv3A4EH5J3MYITcNOZREs0kU/DqU7VaVbVa1XvvvafFxbtKukg07KxcLmebQimzlZUV7e7uTqzm\n400SVE46DiHtsCGx+dFaqO9HTnvcmebHkB6cUVEUmSSoVCra3NzU9va29a6UNFZ1mOo7IQSTBhzA\nrHlxkX1NATIzYYJg+nk+f8NatNttM5/SDnIIwZ4HA+ByVqtVRVFkzWW5NDBQsllhEAiCrHnBoH06\nMkly5AeQe4CgwMz0SWIeIZo2N/YeYNTq6qpqtZo2NzfHumD5/SADFk1iaWlJOzs7CiFkriMoRt+p\njLqjlNSjLD5IUfJKvMMdQREH+k1LM8kUsA/pAFWr1azb72g0MpuTTd/Y2LAipFR6ljRWOy/N/vbl\n3ZE8SE5flQgmBBQa9RfM+9LSkknBNO8z9jW23+rqqkqlkp4/f27SjZJe2Iz0EOBA4vQ8PDw0ezyJ\nPGyZg+gTblDVqY9I3gbZpajzy8t3vQp57yTy1YiolUj/T6oxkW7OBZNknz05OdFoNBpz2KVdHJgG\nzJ4cCi6lz52ggGzcRocpUQ8hC7rs1xMnJhrJxsaGnj9/rmKxaFm61PlAI6zX67q6utLe3l5mtIhL\nzd9zZmhbCHNinU5OTuzMU6If+Pq0JQPSaOaYAhsP97u+vjYuiYdakknm6+u7Zhj0MKSCECo3ByQt\nOYmxbm9vrdirLzVOlV4w59Ti41Dxt948SdoMz8mROmtra1YTguShKIrU6XRszKurKzUaDUsfRyLz\n+zSJygVnzRgTKYR62m63x3pbUE3al09PU0Nhbvwt60wHI9aBpKfj42MrFkOmK5WKW63WG0wsifx7\n4HRlbSjgS8IQexdCULValfSQP+IL4/ioQXx+kqyA6tLSXfPXDz74wOpgUJSHrMWLiwt97WtfM4nP\nPiGYsjQg9ozCKdJDKjrzIHWaCuMrKyvGkBAkWdrPNDRzTAFis4ggdDodKyyB32BhYUG1Ws0q7SIB\n+T3dmyg9ljaOT2qivgCdouKFU2nE4WsB8DXaS5r54L/O5XJqNpva3Ny0XhILCwvq9XrWQl16OJBo\nR17apUke75TjQOJPwNGIucD7orpStwEHGRV/shgdWonPOETF5937/b75K3DgIolZR2pUJJlF/nuk\nIIwNJ6OvmEwYkjH8pfLRHd497lxkHM4HIdVarabt7W1tbW0Zozk4ONDR0ZEVEiYTE60MDYILm7Zv\n/iL7aIL//Gg0so7o5XJZZ2dnpm0xb/paIPAeSzPHFFgYVNjd3V2zS+HE/K5UKpm0x3Y8OTlRt9vV\nwcGBer2eVQpOcpD5sUII1lTj8vJSBwcH1jBVkl2kQqEgSWq32294zWEiaQ5NNhh1r1qtql6vj7X/\nosAJF5Wio1RhqlQq2t/ft/dPysCDocZBM5SupxPz0tKSOUsxhSigSiyfaEpaMVWejVrvqzr5Opb8\nT9Vlio/iJ5FkDrNJERXmhbaFP4maA1xAX9Eb7UiS1eFk3vE19GFm7wPBdwVDw8v/gx/8QDs7O1Yk\n5+Liwi6sJHU6HQ2HwzEBk0Tep8PewmjQgvGf8E40QvL1NNFaJ9USSaOZYwrSQ+UY7Hk8yahSpBqj\niq6vr1sBjN3dXX388cfqdrtmx2Z5YLEpOYQAonxvRx+VkGSHvNfrjZVjT0vH9dwfTz6NWH0vANQ/\niq4gzai1wIEi6sL7J0keX4cB/wVt9zY3N1WtVnV5ean19XWbH92UUYVRW9M85lwe9grNALOAxqiS\nLMqSz+dVq9Xs0lE0xM8hKw2d0mrY+GiK+GfYT48bgFkgPX05f9YqiRAWaFsbGxtjNSPwx6AVoE2U\nSiXd3NxY+3pMJ5hC2n75uVIvAgcq2JRKpaJGo6Fqtarr62vDYBAq9xWevlLmA6gzLgCqIH0EubDl\nclkbGxvmYDk4OLD4PRVppGy4rnc0UUYb7YFiJH6z8dh78BCX2vtCksbkcBF1YC4+3MdnkDq+YAnM\ngi5PWaqoNI76Q1riL4FZYIYg6bHT8/m8hsPhmNMvPhZqtnduoUmxTktLSyqXy7ZGdIGGiVB/EDBT\nVkTF72UIwTQehIN3VKLG45ilyzV+hlqtZpc2aQ29Y5YoGKYjGhHrxc/QJjm7AMAoc+cZddK8eAef\nMu0ZRKVSUS6X08bGhoXFwXVIsjD2VxbRiCSRZHYTh5fYcLPZtAq+1MX7/ve/r93d3TEJlVUKK37g\nsQd5LqobZgTOMrg+EQoftssaiwgJXmXf8YqSXtSIjKJI1WpVhULBvOlECQjp+TnEx0KighvAK06L\nMXwIVCUipBdFkbrdrkl7KhJnESaLJLuY1J9EQwFbgOZCkVUAWYTZfGOTpHFCCAZSKpfLqtVq2tjY\nsN/zGcwEcCyYhoCqYGBZTCiEoJcvX+prX/ua6vW6jXF4eGg+K9oWVioVaz04HA61t7dn7Q59DcUs\n4tyzfvV63Sp+N5tNra2t6eLiQp1Ox94bf4wPoWbhVybRzDIF6QEKzEZ7mw6pROu4zz77zOx87331\nIJQ0p5wPWcXVOCQY9fi83ewdVaizSZqCl9h8/vz8XMPh0JxlZ2dnZopgF8OIfHFRuhGhRmd5szG3\niAYQEbi5ubG+AZKM+QE+ov052gN7kBUV8Ha4dKcprK+vm7rNoT0/P1ehULAu2kQ+eBcPRkpzblLM\nlK5aNJUl9Im2R9iOiA/Pi6LItBPeLY3QSPD7sHe3t7fq9XqmeeGvQfOk+jeNbzCRJhGaCSYPjll8\nQITZLy8vTZB488sDsR5T8cnTzNZTYHE43FwCr2aen5+P9SEEZcjm+2o8WeQ5LOXVPV7BO+LQDrx9\niEnAgc4ah8uF7ec7SvsQlk+SAu8uacxx5/M9kmhtbU2lUknr6+uqVCpj/RcwjQhTEjIjvo6mBcPD\n/uxxL+wAAAs3SURBVI6Td/r5vhS0aOMCERXyDjEiHT5KMGm/eJdarWYdwlkHEKc8m/fy9SY5W0hv\nnJFJESLmRIk5HLHUR8TRd319rWq1agKFn11dXZmmgORO2y+/hqB1EQz4Qmi1R4SGdeMs+aQwzvNT\naGaZAs4/PKmXl5emMoEYY/M/+eQTdTodK8SJRIO7T6NGIRHZHMwEJHu/37cuyT6rEPJ49Cwbn7/l\n78/OzqycO1oGnaNAB66vrxt0G8QmqmuaWo/6TPcpVHifwYhnG58F/xMaxOxKs4MZh7UmLImD99NP\nPzVfCV2NLi4udHh4aNINBoGjl+zQrPHAa3BRYT6YJTAqfCMUPsVTT/iQiFHWfjEGzsMoirS/v2/r\nv7y8rK2tLWNUrMfu7q51+gIzM0lyw6DQOqPorqS8B2zt7+/r8vLSyscjMBFSHrT2VJpJ88FPDK5K\njJ0egaurq2q323r9+rX1ZPBhGDio59Bp5gNj8nuPkJPupBeXJIS7lmHei7y0tDQWiosThxSVmHAf\n2X0eHu0dmxxI+kt4pjAp4w4NplAoqFQqaWNjw3wjaAzAnUkCAynJYU5KTEoitCpsW7QDmClaFhIW\n1ZY1BbkJQ+D94/NjDeOZrDjmgEnTQIWemYQJMdE4L/F8B79ffjy0t2q1aqA5NNdcLqdqtapisWhM\ntN1uq9vtml8GR2AWee2Es0uUpNfrjfWy6Pf7Go1GWl5etkQozj4o36eGI6UZZQpsCptBjf3b21tT\n066v71q3eSmLE4mN5CBmSVSIS+67BBcKBTsEOBRBttHcEyk6DViEQ0gYzjsyYS7r6+uWBMPPqWtw\nfn6uVqtlc5rWkYQNvrGxoRDCWIiu0WgYlJpmKWA7vL2fFOKK4yBQmVHlaa4DAySCRH8L35MBqe07\nfqeFJTEjWQNf34D8i9XVVVWrVWPihAW5rGQTemEQJ54J3Ht5ednWCx9JoVDQs2fPTDtqt9va2dkx\nTcJrgH6tksbif0wBIgsLCwva2dkxJuAToEajkc2BaAnn7CsVkow76ZB4m5ublkK6tHTXgIOwE4cR\njsoBJfQ1DXGxuZgkE4E1B2eAVuBtPd47qZiGv7zeLMJ3gdmCuosHm85Q3W5Xe3t7arVapo5y8eLr\n5Qk1dHV11ZgM4UGY7dLSkvlk9vb2tLOzYxcHlRc7PWlejI/ZBBNDkh4dHZk/gnVD46IzcxwglcVY\nWWO/BpgvvjUe64eWhdnyySef6PDw0DSatG5UfjyceZVKxWoasOekuZ+dnemTTz7Rzs6O2u22BoOB\nhVwxGydJb84TUQqygXu9ntbW1gxpiqlEVis+Kg96+sppCqhtPg20VCoZnJVwHouB1EUVxavMwZi0\nQKij0kNKKtmEmCpeuvf7faulQFKNl5Rpc/KORt4VlZcYOMwIh2m/39dwONTh4aFardYYtn1SNECS\nXToQoICisMn7/b7Zv7u7u9rf3zckqMfsZ4VZmZdX79kfHKiYE5R1xw/Q7/ctqgPBWNOiOOxDp9Ox\nOeIPWV1dtYtO05nhcKhut6v9/X37GRrepJg+56vf76tUKpmGBVYE7MP3vvc9tVotHR4eGirV41dg\nDFkMCDMLsxGNkCY57MVgMLDoio9AMNY088qimWQKqEFEIMD7s+moumyY9+AjtfwByiKkDJKaC4Dq\nTJINzTyHw6Fl9WErgsxLkqZ+HJ7L5weDgTnocC6CUDs6OlK/39fCwoJev35twC0OVpr/wq8hnabw\nU1xfX6ter6tQKBheYWdnR51Ox1TeXq9nTkCYXVZePp/DU878wVp4GxnEJk4+CqCsrKyY78LPK8l8\nYA1hkDA8NDqEyeXlpfb39y0nwPthYKyMl7ZnPm/j4OBAt7e3evbsmYWl8/m8RqORer2eXr16pVar\nZQydyMC0DIG58Tc4rmknCLAOIUHVKD+WT857qukgaXb7PiwsLJjnHfQiWWqoUa9fvzY7lb+BoSRF\nCNKIMBcIMtRd1GtMBNRotAHUcL8ZKfOzr9F+pPFwHu9AaM5HMfAwc5hJevEOsaRLy4X0Epfn+3Ad\nFMdo8HeTIg/Mz7fD43D7QiggHFkvL63RsuLZn36O8XnFf48PgOd6sBBfM66PAvk5J82Rbl7SQ5q4\nHxMVnrXy4/JZ79fK8gVxDnlnzEuYAkzTJ1d5H0zWfmnKvg8zqSlIsmQQ6UGd9MAN3z/Sq+bxxZt2\nLC46UobxvNNSGoejwt0nOTL9gUaqsuFexeSd4xEJ3gfN5zGgFA9ySroESZEZ3neacfzcfCai19o4\nqB73wWHGxEuqtBRnBH7dPRya9+SZkGeIfN6vc1Yo0o+FR395eXms87eH46dhD5Kcpllryhry914A\neGcixH5+Xufi2HvPqqYQ+/1YKIpFw5EId86CMz/iXewf0o7F5mu839Mynbhk8d/7uXFx+Rmf8Y5J\nT3Hv/2PeI+33j2E4/jlJ8/JgLi/R+ZdUeTgu+ZPGmjQnz+z8zyatU9bv/PM8kjT+zKQ1TPKLTEPx\n8eJrM41ZEqN527g5zWlOYzRvGzenOc3p8TQrPoWOpJP7/98lamj+zl82vWvvK83uO78/zYdmwnyQ\npBDCd6ZRbWaJ5u/85dO79r7Su/nOnubmw5zmNKcxmjOFOc1pTmM0S0zh22/7BZ5A83f+8ulde1/p\n3Xxno5nxKcxpTnOaDZolTWFOc5rTDNBbZwohhP8ihPBHIYSPQgjfetvvk0YhhFchhO+GEH4vhPCd\n+5/VQgj/IoTwg/v/q2/5HX81hNAKIfyB+1niO4Y7+l/u1/33QwjfmKF3/qUQwu79Wv9eCOFn3O/+\n6v07/1EI4c+8pXd+EUL4v0MI/yGE8L0Qwn9///OZXuupycM/f9j/JC1K+v8lfU3SiqR/L+nH3uY7\nZbzrK0mN2M/+Z0nfuv/6W5L+p7f8jj8p6RuS/mDSO0r6GUn/h6Qg6Sck/c4MvfMvSfofEj77Y/dn\nZFXSh/dnZ/EtvPO2pG/cf12U9P37d5vptZ7239vWFP6EpI+iKPo4iqJLSb8p6Ztv+Z0eQ9+U9Gv3\nX/+apP/qLb6Loij615J6sR+nveM3Jf16dEe/LakSQtj+4bzpA6W8cxp9U9JvRlF0EUXRJ5I+0t0Z\n+qFSFEX7URT97v3XR5L+UNJzzfhaT0tvmyk8l/Tafb9z/7NZpEjS/xVC+HchhF+4/9lmFEX7918f\nSNp8O6+WSWnvOOtr/5fuVe1fdWbZzL1zCOEDSX9c0u/o3V3rMXrbTOFdoj8VRdE3JP20pF8MIfyk\n/2V0pyfOdCjnXXjHe/oVSV+X9OOS9iX97bf7OskUQihI+seS/nIURSP/u3dord+gt80UdiW9cN+/\nd/+zmaMoinbv/29J+qe6U1sPUQPv/2+9vTdMpbR3nNm1j6LoMIqimyiKbiX9PT2YCDPzziGEZd0x\nhH8QRdE/uf/xO7fWSfS2mcK/lfSjIYQPQwgrkv68pN96y+/0BoUQ8iGEIl9L+s8l/YHu3vXn7j/2\nc5L+2dt5w0xKe8ffkvSz957xn5A0dKrvW6WYvf1ndbfW0t07//kQwmoI4UNJPyrp37yF9wuS/r6k\nP4yi6Jfdr965tU6kt+3p1J1n9vu68yT/9bf9Pinv+DXdeb3/vaTv8Z6S6pL+laQfSPqXkmpv+T1/\nQ3fq9pXu7NafT3tH3XnC/+79un9X0n86Q+/8v96/0+/r7kJtu8//9ft3/iNJP/2W3vlP6c40+H1J\nv3f/72dmfa2n/TdHNM5pTnMao7dtPsxpTnOaMZozhTnNaU5jNGcKc5rTnMZozhTmNKc5jdGcKcxp\nTnMaozlTmNOc5jRGc6YwpznNaYzmTGFOc5rTGP1HIc9Xq0LJi8UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 2 Train loss: 145.1598\n", + "Test loss: 135.1738\n", + "Epoch: 2\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd8XMW1+L+zu9Ja3eqSmyQbGyMX\njLEJwQ0DAWPAVIOJIbyQByGUx3v8SGJSCCnAe7yEFF6MP86LAxiCTeJGiB/FtJAPxb3gJltylWWr\n97Zlfn9czfiuLNsreYssz/fzuR9pd+/de3buzJmZM+ecEVJKDAaDwXD244i2AAaDwWAIDUahGwwG\nQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoOhj2AUusFgMPQRzkihCyFmCCF2CyH2CiHmhUoog8FgMHQf\n0VM/dCGEEygCvgYcBtYBd0opd4ROPIPBYDAEy5mM0C8B9kopS6SU7cAS4MbQiGUwGAyG7uI6g2sH\nAodsrw8DXznVBUIIE5ZqMBgM3adSSpl5upPORKEHhRDifuD+cN/HYDAY+jAHgjnpTBR6KTDY9npQ\nx3sBSCkXAgvBjNANBoMhnJyJDX0dMFwIUSCEiAXmAG+GRiyDwWAwdJcej9CllF4hxMPAO4ATWCSl\n3B4yyQwGg8HQLXrsttijmxmTi8FgMPSEDVLKCac7yUSKGgwGQx8h7F4u5yKPP/44AHFxcYwdO5bb\nbrtNf/biiy/y2WefAbB48eKoyGcwGPooUsqIHYDs68fSpUulz+c75VFUVCSLiorkkCFDoi7vqY4R\nI0ZIv98v/X6/fOSRR6IuT0JCgpw/f76cP3++9Pl8cu3atXLt2rUyLy8v6rKZwxxhPtYHo2ONycVg\nMBj6CMbkEiKWLl0KEGBeAdi1axfvvPMOAEOHDuWGG25g2LBhANx1110888wzkRW0G1x00UX4/X4A\nSktPCDGIOAMGDOC+++4DwO/3c/HFFwNw/fXX8/vf/z6aojF+/HiWL19Ofn5+UOdfffXVAOzcuZND\nhw6d5uzIccMNN7Bq1SoeeeQRABYsWIDP54vIvbOysgB44403+PTTTwFYuHAh+/fvD/o7UlJSmDp1\nKgBvv/02Ho8n5HL2ZoxCDwETJkzg5ptv1q+3b7e8N2fNmkVlZSWNjY0AxMbG8vnnn3PhhRcCkJaW\nFnlhu8G4ceNoamoCYPny5VGVJTMzk5deeimqMpyKa665BrfbHfT5s2bNAuDee+9lzpw54RIraNLT\n0wGYP38+AC+88AIAixYtoqWlJez3T01N1e0mJSWFY8eOAXRbmW/YsIHMTCtCfsKECezZsyfkstpJ\nTk7m2WefZfTo0QBcddVVUe1Eeq1Cv+222/Ro7MiRI7S2tgLw2muvcfToUfbu3RtN8QLIzc1FCAFY\nyvyaa64BoKysLOC8xx9/nMLCQv3673//e+SE7CZjxozhkUce4ZVXXomqHP/2b/8GwE033cQll1zS\n5TlTp07F4XCwZcsWAP7xj39ETD6Xy2pCM2fO7NZ169evB+Cxxx4jISFBd5zRQo1qBw4cCMDrr78O\noNtdOMnIyGDp0qV6gDN//nw9Q+gOP/rRjygoKODb3/42QFiV+dy5cwF4+umnGTz4eMB8cnIyVVVV\nYbvv6TA2dIPBYOgj9NrAopKSkpPaIxsaGvT0LBgOHz4MwHPPPadHRqEmLy9Py1ZdXd3lOVu2bNFT\nM7CmZx9++GFY5DlTbrvtNt544w2mT58OwMcffxwVOZT9Vtny7TgcjoDPDhyw8hfdcccdbNiwISLy\nfe1rXwPg//7v/3juuef4wQ9+ENR1jz32GGDVydzcXCoqKsIm4+lwu93885//BNDrEtdddx1g/a5w\nc/XVVwfcJycnp1vlMWrUKAC2bdvGihUr+Jd/+RfAaovhYNCgQWzatAmwTFV2Hbp06VIefvhhgJPq\ngR4SVGBRrzW53HfffdrWvGPHDm2quOiii7j88su59NJLATh06FDAlAfA6/UCUFFRQW5urn7/4MGD\nYVPoSpl0xXe/+10ARowYAcAXX3wR8Lc38r3vfY8DBw6ErbyCYfXq1Vppd4Wa2jY2NpKXl0dBQQEA\na9euxel0hl2+MWPGaNNEcXFxtxa4lQ29NzB27FityMFqP5FQ5GoR9NZbbwXgW9/6FkC3lfmaNWv0\n6xUrVoRNkSsef/zxk65/3XHHHcyYMQOwzDEvvPAC7e3tYZXHjjG5GAwGQ1/hbAwsSk1NlVdccYW8\n4oorZHJysrzyyisDjkmTJslJkybJzMxMWVlZqYNjHnzwwYgHBFx//fWypaVFtrS0SJ/PJ8vKyuS0\nadPktGnToh2o0OWRn58v8/Pzpd/vl7t27YqKDKp8iouLdTCWx+MJOF544QV5ww03yBtuuEFOnTpV\nPvXUUwGff+c73wm7nEuWLNHPduLEiUFfl5aWJhU+n09mZmZG9Zk/88wzuo34/X751ltvReS+ixcv\nlosXL5ZSSrl+/XqZkJAgExISuvUdDzzwgJZ70aJFYZc5Ly9P1tXV6Xq5efNm+c4773QZQFhWViZz\ncnJCde+gAot6rcnlVNTU1PDBBx/o1++//36X5916662kpqaybds2AJYsWRIR+exMmDCB2NhY/Xrp\n0qVRs0cHw7Rp0/T/0bDr5ufn6+eUkZER8NmBAwdYtmwZAD/96U9pbm4O+Oz++619VDIzM3nuuefo\n168fAP/zP/8Tcley2267jZkzZ2pvq3Xr1gV97Q9/+ENt9//oo4+ora0NqWzdRXm4ALS3t/OjH/0o\nIvdVtme/38+RI0eCNk3ExcXptYoHH3xQf8+9994bHkFtjBs3jqSkJD755BPAai/9+vXj61//OgBP\nPPGEjjPJyclh1apVXHvttUDIbepdclYq9NOhbHPz58/H4XDws5/9DIhMgdpZuXKlDiABeOWVVyLW\nWHrKmDFj9P/PPfdcxO8fExNzgiIHa1F2zpw5VFZWdnndgQMHePbZZwF4/vnniY+P1/K/+eabFBcX\nh1TO2bNnEx8fz4svvhj0NWqRf+7cuXqx9+mnn46a3/Jll10W8BegqamJzZs3R1yW6667jnfffReA\n2trak5brtGnTAtbQAP76179GREawFpCllPz617/W77W2trJo0SLA6uiHDh2qP2tubjY2dIPBYDB0\nnz45Qn/ooYcAa+pdU1PD7t27I3p/5Vlz2WWX4Xa79ajyF7/4hY4a7Y189atf5Zvf/CYAmzZt4r33\n3ouyRMcDcO69996Tjs4Vb75pbZg1d+5cJk6cGBZ5UlJSAPQIUUVWBoMyCWVkZLBz506AANNhpOmq\njLoz4zhTfvvb3wJwxRVXkJubq00/QoiTegEJIQLcBEtKSoJ2FQ0Fd955J3DcrXPlypUBn0+YEOhZ\n+Pnnn0e0zfc5hT5p0iTmzZunX9900018+eWXEZVB2XlVOPWrr74KEPJpf6i58sortTvW22+/HZEo\nwa6wuyp+5StfCfo6Fa3rcDgCvuOnP/0pd911V0hkU+H9AwcO7PaajLKtAhGvk11hVz7Kjr9gwYKI\n3V/FCowZM4Zx48Zpd7/vfve7ev3m5ZdfDrhm8eLFOiIY4NNPP41ou3r99deZNWuW7gxHjhzJmDFj\ndOqP1NRUXZapqancd999Ok32jh07wi6fMbkYDAZDX+FsdFs81fH0009rN6b33ntPxsTERMQFSx2z\nZs2Sra2tsrW1Vfp8Pvn+++/LxMREmZiYGFE5enL85S9/0WV38803R0WGX/7ylwHuh9259pFHHpGP\nPPKI9Hg8Aa6Ow4YNC5l8cXFxMi4uTq5fv15u2bJFpqWlybS0tNNel5WVFeDS9tBDD8mHHnooas96\n8uTJ0uv1Sq/XK/1+v9y3b5/ct29f1Ovg6Y6hQ4dKv98vN27cKDdu3Bhxl8+0tDRZXV2tn6Pf7w94\nru+8844877zz5HnnnSd37dolfT6fXLBggVywYMGZ3js0botCiMHAK0B2xxcvlFL+VgiRBiwF8oH9\nwO1SyprTfV84iYuLY8aMGXpV+Sc/+UnEPAiUeeUHP/gBMTEx+v3Nmzf3ars5WO5VAFOmTNHrDStW\nrIiKLDfccEO3r8nMzKSwsPAEW6qatoeyDqjMg8XFxdx66606wdrzzz9/wrkqzcOwYcPIy8sLsP1G\nMuVGV6SnpweYpXrDekkwPPnkk0gp+f73vw9E3rW2urqa22+/XXvWqDUVlZ3y+9//vjZVLl++nHnz\n5ulkfcOGDQu/eSiIUXUuML7j/ySgCCgEngPmdbw/D/ivaI/Qn3zySen3++Xq1avl6tWrI9pzP/PM\nM/KZZ54J6K2XLVt2VozM582bJ+fNmyf9fr/805/+JP/0pz9FTZbdu3d3e4T+m9/85oTAo+LiYjll\nyhQ5ZcqUsMh5wQUXyDfeeEM2NTXJpqYmPdq1H0ePHpVHjx6VZWVl0uPxBHymRvrRKufFixfr2Vh1\ndbWcOHFit4KjIn3Mnj1bzp49W/r9fllXVyfHjx8vx48fHzV5rrrqKnnVVVfJRYsWyeeff77LWXhc\nXJxcsWKF1gcvv/zymdwzNDsWSSnLpJQbO/5vAHYCA4EbAbVi8TJw0+m+y2AwGAzho1teLkKIfOAi\n4AsgW0qpEn4fxTLJdHXN/cD9PRfx9CgXoh//+MfU19fz85//PJy36xKVPc/Oww8/3OvNLXA8UyRY\nUbhnC6tXrwbg/PPPP+GznTt36mi+cLBz505uv/12LrroIiDQg0VhD3h5+eWXdQ5tICKbRpyMQYMG\nafc7sLKRdifSNRqoaEuAt956i40bN0ZRGnRCMHtisM60tLSwdOlS7YI5ffp07UUWriDHoBW6ECIR\nWAb8u5SyXrmIAUgp5clS40opFwILO76jy3POhPT0dH73u98B4HQ6Wb16NZ999lmob9Mj0tLSurTf\n1tXVAZZtV9nblS0uNTUVgP/4j/8IuMbn82m7oT3kPRTY7dZvvfVWSL+7uwghAmy79ob8hz/8ISB7\nZuf0uXauv/76MEp5HJVGVf09GSUlJQGvVUSuSksRSS677LKAMl61alXEZeguqh40Nzfzq1/9KsrS\nBM8bb7yhFfodd9yhU+uq6PVQE5TbohAiBkuZvyalVHuRHRNC5HZ8nguUh0VCg8FgMARFMF4uAvgj\nsFNKaV/KfxO4B/jPjr8R7eZVvuu3335b58EuLi7mxz/+cSTFOCVbt27t8v2//OUvgLVFXXa2Zam6\n4447Tvt9R48eBaz8H6FiypQpWobewIsvvhiQQ0bNGNQovKvReOf3IhkcEyxCCOyz2miMzBXKI0tF\n3qqIzd7KAw88oOtoeXl51M0t3cHv9+v6fOONN/KTn/wEsBIFFhUVhfx+wZhcJgF3A9uEECprzw+w\nFPkbQohvAQeA20Mu3SlQNkt7Yv7HHnssatGYyp574403nvbc2bNnd/m+1+sNUE4qlF2Fv6tdZULJ\nTTfdpDvHTZs2RT0T5PLly/WGIGqz39NRUVHBzp07dWh9571cewM2T6+ooxLGHTx4EDhuAuytPPDA\nA7rslJtoUlISYJko1e/orahkZ08++ST//d//DcAzzzzD3XffHfK1lNMqdCnlPwFxko+vDKk0QZKX\nl6czs8HxHYGiaf+95ZZbAGunH7sfOhzfIqvzKHzRokUBu5ovX75c5/iIBPHx8QGbG//1r3/VWQCj\nxYEDB5gzZw5gdTaPPvroaa95+umn+f3vfx9u0c4IlcoXIrPxcleoenneeecFyBHNXeq7i8/nY+7c\nuXqNafv27dxzzz1Rlio4XnnlFb2B9S233MLPfvazk87ie4oJ/TcYDIa+wtkY+m8P7/f7/XLChAly\nwoQJUQ9+ONuOmJgY+emnn8qVK1fKlStXyvj4+KjL1PmYMWOGnDFjhly+fLn0eDxy2bJlctmyZfKa\na67Rnw0ZMiTqcp7uOHr0qKysrJSVlZXy0UcfjYoMTqdTOp1OuWjRIun3++VLL70kX3rppaiXzemO\nzZs3nxBqv3DhQrlw4UI5ePDgqMvXnWPIkCFyyJAh0u/3y9dee6071wYVWHTWKfQpU6bI+vp6o9DN\ncVYdf/vb3/S2idGWZcCAAfKPf/xj1PPJBHtMmTJFfvDBB/KDDz6QTz31lMzOzpaxsbEyNjY26rL1\n9Hj33XdlY2OjLCwslIWFhcFc0zcV+hNPPBGgzPfs2SNHjhwpR44cGfWHZA5zmMMcwRzJycly3759\nctasWXLWrFnBXBOa0H+DwWAwnB2ctRtcqCT3V155ZcT3CjUYDIYzob6+XsfPhBIRSd/YcIT+GwwG\nwznABinlhNOdZEwuBoPB0EcwCt1gMBj6CEahGwwGQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoPhDOmc\nHjlanLV+6L0V+4476gEr19BOUbOGECGEwOU6XpX9fj9+v9+UsyEsdG7jUsqoZylVmBG6wWAw9BHM\nCP0McTgcpKSk6M2CJ0yYwJAhQwAYPnw4TU1N7Nu3D7CiW9euXas3YGhtbcXr9QKYEWUQ2EdGTqeT\n2NhYABITE4mJidGjJJ/PR0tLi948wOfzdbnTkcEQLHZzin0/VrBm3uq9aM/AjULvIWpT56lTp3Lt\ntdcyePBgwNrMQk3/3W43QgiGDx8OQG5uLpmZmXpD4c2bN1NfXx8F6QNRldHhcOB2uwGIjY3F6XTS\n3t4OQFNTU1SmlfaG5HQ69U41GRkZTJ48GYDBgwfT1NSkO8pjx45RXl6uNw9pbW2NiELvtHH6ST93\nOBwBU3ZlIoKut9iLBPY64HA4AjrHc53OzysmJkYPJtxuNz6fT7fjaG8WYhR6D3C73ToPQ1ZWFsnJ\nyeTl5QHQ0NBAWloaYOVrEELohx0fH8+gQYOoqKgAoKioiIaGhij8gkDsNn61s05hYSEpKSkcOHAA\nsGSNZuOOiYkhNzdXl/vUqVMZP368/qypqYlDhw4B8PHHH1NdXa07o3DJbZ8xqE5cbefn8Xi0chZC\n4HQ6dWfpcrn07kFut5vW1lba2toAa1d7r9cb0VGey+UiKysLgAsuuAAppd42rba2NmKdjOrwlF3a\n/r/9tSpP+zVgdYb2Z32mZaiebUxMDHFxcQDk5OTQ2tqqFboQAp/Pp2fazc3NJ3TOdjnC/VyNDd1g\nMBj6CEGP0IUQTmA9UCqlvF4IUQAsAdKBDcDdUsr2MxFG9bZOp/OEnky97s5owd7ThwIlX1JSkpaj\npaWF4uJiPcLyeDzaHLN161aKi4v1qCEpKYnMzEz69+8PWHujVlVV6euihSojp9NJYmIiYI1EBgwY\noH9nSUmJ/o2Rwj4Sy8nJYebMmUyaNAmAoUOHalkTEhJoa2sjISEBgC+//BKHwxHW0ZCSTY204+Li\niI+P1yN1uylNSklcXJyWNy4uTl/X3NwMoEfvLS0tIa+3p/oNAMnJyXzta18D4M4776S5uZkFCxYA\nsGbNmrDeG6x653K5dNnZXQAdDgd+v1+PiF0uFwkJCXrEbJ8BV1RU0NbWFpIZhZIJrDWa5ORkwDJF\n9u/fP2CGEBsbq9fNysrKdPbXhoYGPB6Pbv+RmOl0x+TyKLATSO54/V/Ar6WUS4QQC4BvAS/2WBCX\ni9TUVADS0tKIiYnRDeDYsWNamUgpaW9v16YBh8NBU1OT/szhcOjr4uPjqa+v1w+8ubk5JNPvxsZG\njh07BlgPtKysTDfM+vp6LU9dXR1SSl0ZCgoKSE1NZeDAgfpztSl0a2tr1BdFhRDaXFRYWEh2drb+\nXdHocBwOBzk5OQBce+213H333WRnZwNWI1ONvqmpiZqaGt2Rjh49mk2bNlFZWQmEx+TicDhITk7W\nnXNWVhYJCQnU1NQAlkJQ5jS/3x+wiDts2DBdn1taWigtLdXXRUqZw3Ez0QUXXMB3vvMdwFqPKCsr\n0yaEUGJX1PbOMCUlhfj4eN2p9e/fX//vdrtJSkrSnbXb7SYrK0vXi6amJnbt2gXA2rVr2b9/f8Bi\neE9wOp04HA79vBwOh9Y3SUlJ9OvXT8vT3NzMyJEjdbupqqqiuLgYsPTWwYMHqaurAyKzYBqUQhdC\nDAKuA54GHhPWU7kC+HrHKS8DT9FDhS6EICUlhYsvvhiAiRMnMmTIEF0Q1dXVuoJlZGSQmppKRkYG\ncFxpgzXyaWlp0QtnQgiqqqpYsmQJAJ999pnuPXvysO22ZqW0KysrOXTokN5B3ev1Bny3veImJiaS\nnZ2t7ZW7du0KsLNGS6GrRuZyuXRnM3nyZDIyMvj444+ByCp0Zbvs378/d911FwB33303ubm5emTU\n3t6uZWpoaMDn8+nX6enpjBgxQs9+ysvLezTD6wpVVjExMaSnpzNx4kQAsrOzKS0t1XW2paVFK22f\nz4eUUiuB8vJyCgsLtexer1cPECJVB4QQeuAzd+5cRo4cCVh14PDhw+zduzek8qj1BvX84uPj9f2H\nDx9OSkoKo0ePBqwZg30E7Pf7tZLOzs4mJSWFQYMGafmGDh0KWMr92LFj+twzkdXtdutOJSEhgfj4\neMB6lk6nU9eDtLQ0EhMTtTyjRo3S1zmdTmpqamhsbAQi48kWrA39N8D3ANUa0oFaKaXqxg8DA7u6\nUAhxvxBivRBi/RlJajAYDIZTctoRuhDieqBcSrlBCHF5d28gpVwILOz4ri67JzVCV1Nkl8uFx+PR\n7n5SSt1DDhgwgNTUVD3acTqdekTc1tZGZWWlnh7Fx8fT2tqqvR3a29v58MMPgTPrLe12sba2NqSU\nXa5oq1G3MgVMmTKFyy+/XI/cVq1apWWLJnYb+mWXXQbAiBEjqKmpoaioKOCcSKCe7cyZM/nGN74B\nwJAhQ3A6nXqm5vF4tFfLvn37aG5u1t5DAwYMYNy4cXpktHHjRj1yPlPTlhqZJSQkMGrUKG3Tr66u\nZuPGjVqmmpoaPWMQQtDW1hYwy1R1Ii0tjZKSkojHIwghdJvKz8/Xs8i2tjaWLFnCkSNHgNA+d7vJ\nxe12azNFTk4OF1xwgZ4lxMbG6tnVvn37aGtro7y8HLC8bkaMGMGAAQOA4+7DYM3o7BHDPZ31qshP\nNVNsb28PeHY5OTm6vbe1tWnzG1i6S80YpJQUFRVpmSIRDxGMyWUSMEsIMRPoh2VD/y3QXwjh6hil\nDwJKu3tzu5tSU1MTmZmZAGzfvp3LLrtMu05VVlbqAktPT2fYsGHarJKSkqKVYlFREV6vVy9QjBw5\nkoSEBEaMGAFY02R7AEBPsfsNd/4tUsqA/2NjY/X0+qqrriI3N1e7Atp9u6NtPwfrdw0bNgywpr21\ntbW6YUcKl8vFuHHjAPj2t7+tp7IqcEiZzD7//HM+//xzwFrT8Hq92p6dkJBAeno6Y8eOBaxy3r59\nO2CZxHpqPrL76RcWFjJ9+nS9OLdp0yZ27NjRpUlP2U7VexkZGdq82NbWxrp160JSL7uDlFIr8fz8\nfF1nKyoqWLNmTcjWHextvLOLoeq409PTiY+P12bMvXv3snbtWgBtzlRtvKCggOTkZN2m7de1t7fr\nNR/1G3uCel7KjJqQkKDt6YMHD8bhcOg1j/T0dADdOdn1WGNjI1lZWXqg6vV6wx5vcFqTi5TyCSnl\nICllPjAH+EBKORf4ELit47R7gFVhkdBgMBgMQXEmgUXfB5YIIX4BbAL+2N0vUD2ow+GgtbVVj1yr\nqqqorq7WvVhdXZ1e6IiNjWXUqFEcPXoUsHp+NR1rbm4mNzeXa6+9FrDcAr1er17gqaqqCtsiZFff\n5XQ6SU1N5ZZbbgFg0KBBeDweDh48CFgzj84BFNHE4XAwatQowBoRV1VVUVtbG1EZUlJSuO666wA4\n//zz9YjY5/NRUlLC6tWrAcs1UUWGer1eHdgF1ugnIyNDj56GDh3Ks88+C9CjQC67Z4ZayLvgggsY\nPHiwnkVu27aN6urqk45sVYQhWKN7NeOsqKigpaVFT+kjWQeUPGlpaXoRsqWlhbKyspDJYW/j9tft\n7e26rFpaWnA6nTpFxtatW7XnSkVFBe3t7QGBW9OnT9cecS6XS4+WDx8+HJKgLCllwGjabsZRphg1\nCs/IyMDv92sTUWZmpjb9uVwuCgoK9Ai9oqIioP6FY5TeLYUupfwI+Kjj/xLgklAI4fP5AqZLTU1N\n1NfX66mx1+vVFcLv91NSUqILwx6RB5Yt86qrrtKvy8rKdMMvLS2NaMNxuVxcfPHFXHrppYDVgKSU\n+qE2NjZqe7+aNkaT3Nxc3VCklGzdujUs7msnw+VykZ+fz9VXXw1YXkGq0R86dIhXX32VlStXAlYn\nr8xu2dnZVFZW6ml5eno6hYWF+lqn06lTM5SXl9Pe3h7087ebClwul7bzjh49GpfLFeCidqoGardZ\nDx48WJuHdu3aRX19fYBXRyQ6dyGEtv/by7m4uDgs0cv2dSawFLrqrFtbWykrK9PeakeOHNEDCfWs\n1DNITEwkIyNDe7m1t7ezdetWfV2oomyVZxIQ0AaEEOTk5Oi619zcTEpKiu7o7R16Tk4OOTk5ei3Q\n/j2qjO2ec6GgV4T++/1+2tra9ENrbm4OyL9hT4bTVQpa+yjAHsbs9/upqKjQvX1DQ0P43YZseR/S\n09O55JJL9Guv10txcTH/+Mc/gMBRW6Qacleoci8oKNCKprGxkbfffjui4f7x8fHcfPPN2nXS4/Ho\nhr1o0SIWL16sG31sbKwuu8OHD1NRUaFH5FlZWfTr10+/rqqq0t+5cePGbpezen5JSUk6f8yYMWNo\naWnRHXFMTAwulytgBqhQaynTp08HYNy4cXpUWVlZGbBYpgJpwk1MTIwe+MTGxmp78bvvvhuWhXq/\n3x/QOfr9fj3LTktLC1jbcLlcem0CCIgtKSgoID8/Xz+TmpoaPQOvqanp0imhJ9h1jBpwqv/j4+O1\njjl27BjJycnaxt7U1KQ7qmPHjpGVlaUtCMnJybo9eTwe2traAoKOQtH2Tei/wWAw9BF6xQgdTpyS\nnez/U/W6DoeD1NRUPR3yer1s27aNdevWAcddDMOBPa2rGuVeeumljBw5Uvfu5eXlrFu3Tq8VuFyu\ngORO9t8ZyZG6mu7feuutetR74MABnRUyUvcfOXIkkyZN0jK0trayYcMGAN566y2qq6v1CM8ewOXz\n+aipqdHl7Ha7SUlJ0dGEasZ2jqi7AAAQZElEQVQH1si0u+kjlKkkKytLu6QlJSWRmpqqTTkDBgwg\nLi5Oy+R2uwNcEXNycrjtNsuHIDs7W9tcGxsbA8LVI/XcExMTGTNmDGCVv5Jny5YtYZPB3nZ9Pp92\nJa2traW2tlZ/NmTIkACXwX79+ulyzc7OJiYmRj/PpqYmSkpK9Ln2VLY9nel0NoP4/X59v9jYWO1F\npX6Tfabd2tqqz21oaKCioiLANGj/XSrqXRGKUXqvUuinen2qz1QhxcfHM3v2bL2wV1FRwfr16ykt\ntTwqwxleb8/zkpubC1iLcVJKvQi6fft23nvvPb1I4nQ6tR+tMjkpJWC34SnCJbtyH/vKV76if8f+\n/fsjtiCqpqvTp0/Xi01gNda///3vgGVWUSH0YJWdajgej0dPYcFqGP3799fl1dTUFBBq3x1UpCIc\nX0RU/wshuPzyy/U9Dh8+rGXKzMzUdlKPx8O0adN0vbQr+yNHjtDc3KzNDV0993Dgdrv1wqzf79d1\nVK0JhBsppX4Wx44dw+FwaLOYEEKv5TQ1NeF0OrUJJi0tjeTkZF1GW7du1Wtk6vtCbZf2er2686mq\nqqK9vV0vfLrdbtra2nSHaE9FUFdXR0JCQkDaANW+GhoaaG1tDXChDYXJ1ZhcDAaDoY/Qa0bowdK5\nB7NPd8aOHctNN92kR0lr1qxh3bp1AUmSwoF9IdTpdDJt2jTA8maoqqrSJpY1a9Zw4MABvcBjH6Er\n7xcle0tLS8CmA1LKgARlocLu7ZCfn6/LaMuWLRHJ3+J0OvUCU2pqqh6ZgVUGamTk8/kCTFR27yYp\nJS6XSweUXXzxxfTr10/Lv3//fh0g1ZNFXnWfhIQEbQJKTU0lJiZGBxJlZ2cHuOLZF/bcbjeXXHKJ\nXiwTQuipdnV1NY2NjRE1uagRsN00qRYWVXmHA7UwqlDP58iRI9TV1elRrtvt1h5vPp8Pt9utI0Nz\nc3NJTk7W565du1bPeJXpKtQul1JKLc/evXtxOp26zTidTkpKSvS5jY2NerbjdrtxOp3a9Jeenq6/\nJz09PcCTL1Qzs7NOoXfG4XBoF6Z//dd/JTs7W0cQLlmyhKNHj4bVU0MlHVKNd9iwYdrk4nK5WLt2\nLVu2bAHg6NGj9OvXTzdsKaX+f9CgQQH+9na7qtfrpaam5oRNp0NBTEwM999/P2AlN1MdyieffBKx\njQ1UR5Wenk5ra6vu8FpbW3VZJiUl0dDQoBW6vQHExMQwYMAAbrzxRuD4Jg32Rqg8Dbpbdj6fT8u3\na9cu7ZOckJBAQ0ODLqODBw9SVVWln2d1dbV+lsOHD6e9vV2bi5qbm3Unf/jw4bCu7XSFEII5c+bo\ncm5ra9OmrXB34na7tLqXMpkpjyF76mOn06m9YMCKLXE6nXo3qnXr1mnTYLjMVXYvl9LSUpKTk/nk\nk08AS2kfPnxYdzB+v1/XO+UNo0xbMTEx2vzSr1+/k3pFnQlnvUJ3u93MmDEDgK9+9au0tbXx5z//\nGbB8l8Ptdqd2M1GKZ/To0domXV9fj8/n0zMIlWFOPUS3262vU7Zj9dmRI0e07LW1tQHBJ6FUtAMH\nDtQZA9W9IHK2VPsuM2VlZcTExOiGHhcXp8P3t2/fHvA829radEM5//zzmT17tv4dKSkpeL1e1q+3\n8sGtXLlSN7ie+NWre9bV1ekUAnv27CE1NTXAX1rljlH3sWfkq6ur07+rqalJl69yW4ykQo+Pj+e6\n667TnWN9fT27d+8GIpt6QJWrECJg1yb1Hhx3HFCyJiYm0tjYqGdKx44dC3v6DPvaVmNjI9u3bw+Y\nydTV1eln7/V69ZqQ3+/XqYHBqpf2vC52n/nOrtg9xdjQDQaDoY9w1o7QVY9dWFjIQw89BFg94N/+\n9jcduBPO6aMaQcTGxpKfn69dwCZMmKDdFsvLy5k0aZJ2dWtpaaGyslJPdWtra/WGDXl5eWRkZGiT\nx6effqqDaI4ePUpcXFxA4qFQ/YYrr7xSjyD8fj/btm0D0HbJcGM3jezZs4e6ujptmkhKStJRttnZ\n2ezZs0ebMRITE7XNPC8vj+zsbD0zamxs5JNPPuH5558HrKRtoQiW8Xg8ulzUxib2kPbOMyc1Gqup\nqaG+vl7b8cvLy9mxYwdg1YlIjYpVnZ08eTKDBw8OSK2hPMGiwam8UlS5qmhLla9deZI0NzeHvfzs\nyfhUEJhKU6ACwexBUfY1l4KCAt3eY2JitD29vLw8IJjqnLahOxwO7Qf64IMParPFoUOHeOmll7Qi\njFRDcbvdnH/++YDlQ6vsZAMHDqS9vZ38/HzAclWy24Grqqp0dkO1C4ryqc3IyAhYyPN6vSGP4HM6\nnQwbNkxXwOrqal580dqjJJJpfZWS/vDDDxkxYgQzZ84ErHUF9WwHDBjApZdeqpW/y+UK2EjA5XLp\nafCWLVt4/fXX9W5QobRRd+WjrOi8ubHqmGJiYigtLdWNefv27drtLZIbQqvyuueee4iLi9PKZN26\ndQFb5vUmHA4HSUlJeuG8srKS/fv36w1BgLCsLZ2MznlelL1fmVXtO60NGjSI7OxsnRnS7/drk93+\n/ftpb28P+TqVMbkYDAZDH+GsG6GryL2bb74ZgAsvvFCP8N555x127twZkYRS9qxxyvUMLK8Few5v\n+wazamFMuVG6XC69EKRc4tRK/5YtW3TSocbGRurr60M+AlGLN4cPHwYiGx1qR41SysvLWbZsmTZf\npaSkaA8mFeGpvInsmw6oPUU/+ugjAJYvX87atWu1+SpS2JNIOZ1OPVNLTk6mubmZTz/9FLC8ZewJ\nsCKVjEu5/o0dOzYgGd6f//znqGf67Ix9I4yhQ4fqmVpdXR2HDh3SuXCigX1B1+/343A4tLzx8fHa\nejB69GgmTpyoy72qqkrrKrWBdKjdVc86ha42DlamCq/Xq6fWr776qt6YOVJ4vV6OHDnCihUrAMs0\ncOGFFwKWC6Pa8FqdW1RUpE0ptbW1ehpeVVVFZWWlttHW1NRoVzu7jS6UCCFYt26dNq9s2rRJe4NE\no4F7PB6Kior45S9/CcDtt9/OJZdYCT2zsrICEldVVVVpe//mzZspLi7myy+/BAKzakYK+y71EOiH\n7vP52Ldvnz7H3rBD5a52OhwOh17bOXToEImJibrz/vLLL3udQlflmJycrF0VwYr+LikpCYgKjqbs\nysZvT0Oh1qTcbjepqananHXw4MEAn/lwmNvOGoVu77GzsrJ0L3jkyBHWrFkDEHaf865QG9gqN7TO\no1yVMheOuz/Z81mohTOPxxOwnV6oczx0hcfjYceOHToQoqKiImK+512hFki/+OILAHbv3q1nN3l5\neaSmpmpFXVpaGrCQV1NTE5bAq2CRUmpbPlj11L47TV1dnQ4iU+6sYI3k/X5/2DsgIYTuYKqqqjh4\n8CAbN27U8vQ2VDmmp6fTv3//gEAsh8NxQsi8nWg9f7DalJr5JCQkUFRUpJ97TU2NrhNqJh5q+7+x\noRsMBkMf4awYoQshtD1y7NixTJs2TY/QN23apN0UI20zVdhtavbIwt6Ox+Nhz549AdnpIj3D6Qo1\n+qqoqNDeIMpNrKu9W6M97VbY64HdK6muro7W1la9VlFbW6s/67xBS7iwu9otWLAAIQR79uwBCLk7\n7JnicDh0e8/OziY2NlabqLxeLxUVFV0GIUWzDtjXc5QHzqpVqxg4cKD2eqmvr9fmYft+D6GkVyt0\nu11SbcI6duxYJk+eHBC2rBRAb2jUZxNKAfUGJX46omkKChZ7x2LPpNfc3Kx95MFq9PY6G4l66/f7\n9dpNpDf+DhZ7dKgasOXl5XHeeedpG3plZSVerzdgh6dot3v7M/R4PDq/T1tbG62trRQUFACWOVaZ\nt5Q/e1Rs6EKI/sD/AqMBCdwL7AaWAvnAfuB2KWVYlp779esXEERSWloakFdYLTqqh2wwRAv7+og9\ntN1uI+8tM4rejFJ8RUVFxMfHay+yvXv3ah9uiFy64WBRu6/B8a0z1W+x73AVrviDYG3ovwXellKO\nBC4EdgLzgPellMOB9zteGwwGgyFKiNP1EkKIFGAzMFTaThZC7AYul1KWCSFygY+klOef5rt61CUJ\nIfSq98CBA5k2bZoe/WzYsEH3iKWlpWeN/dpgMHSN2hsYrFgJu4dOQ0PDCZG/vWmE3pnOe8ueARuk\nlBNOe78gFPo4YCGwA2t0vgF4FCiVUvbvOEcANer1Kb6r95a8wWAw9F6CUujBmFxcwHjgRSnlRUAT\nncwrHSP3LpW1EOJ+IcR6IcT6IO5lMBgMhh4SjEI/DByWUn7R8fqvWAr+WIephY6/5V1dLKVcKKWc\nEEzvYjAYDIaec1ovFynlUSHEISHE+VLK3cCVWOaXHcA9wH92/F0VxP0qsUb4kcnNevaQgSmTzpgy\nORFTJidyrpRJXjAnndaGDtqO/r9ALFACfBNrdP8GMAQ4gOW2WB3Ed603o/VATJmciCmTEzFlciKm\nTAIJyg9dSrkZ6KrQrgytOAaDwWDoKSaXi8FgMPQRoqHQF0bhnr0dUyYnYsrkREyZnIgpExtB2dAN\nBoPB0PsxJheDwWDoI0RMoQshZgghdgsh9gohztm8L0KI/UKIbUKIzSrYSgiRJoR4Twixp+NvarTl\nDDdCiEVCiHIhxJe297osB2Hxu466s1UIMT56koePk5TJU0KI0o76slkIMdP22RMdZbJbCHFNdKQO\nL0KIwUKID4UQO4QQ24UQj3a8f07XlZMREYUuhHACvweuBQqBO4UQhZG4dy9lupRynM3d6lxMdPYS\nMKPTeycrh2uB4R3H/cCLEZIx0rzEiWUC8OuO+jJOSrkaoKP9zAFGdVwzv6Od9TW8wP+TUhYClwIP\ndfz2c72udEmkRuiXAHullCVSynZgCXBjhO59NnAj8HLH/y8DN0VRloggpfwH0Dlu4WTlcCPwirT4\nHOivopT7Eicpk5NxI7BEStkmpdwH7MVqZ30KKWWZlHJjx/8NWJleB3KO15WTESmFPhA4ZHt9uOO9\ncxEJvCuE2CCEuL/jvWwpZVnH/0eB7OiIFnVOVg7nev15uMN8sMhmjjvnykQIkQ9cBHyBqStdYhZF\nI89kKeV4rKnhQ0KIqfYPT5Xo7FzClIPmRWAYMA4oA34VXXGigxAiEVgG/LuUMmBXa1NXjhMphV4K\nDLa9HtTx3jmHlLK04285sAJrmhxUorNzgJOVwzlbf6SUx6SUPimlH/gDx80q50yZCCFisJT5a1LK\n5R1vm7rSBZFS6OuA4UKIAiFELNZizpsRunevQQiRIIRIUv8DVwNfYpXFPR2nBZvorC9ysnJ4E/hG\nhwfDpUCdbbrdp+lk/70Zq76AVSZzhBBuIUQB1iLg2kjLF2469lr4I7BTSvm87SNTV7pCbXAa7gOY\nCRQBxcAPI3Xf3nQAQ4EtHcd2VQ5AOtZK/R5gDZAWbVkjUBavY5kQPFh2zm+drBwAgeUlVQxsAyZE\nW/4Ilsnijt+8FUtZ5drO/2FHmewGro22/GEqk8lY5pStWDunbe7QJed0XTnZYSJFDQaDoY9gFkUN\nBoOhj2AUusFgMPQRjEI3GAyGPoJR6AaDwdBHMArdYDAY+ghGoRsMBkMfwSh0g8Fg6CMYhW4wGAx9\nhP8PPLhbsZMXvNYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZOt1JvbdmOc5IiMys7Ky5vER\nFNlkg6QgtdSyZRsGtBPc3rSNBrhx71s7A15pa8CAYS4a7l7Y3Q0IQvdCkGU0RYkU2xDHR76qeq+G\nnDNjnufxepH1nTpx60ZkZFYVmcXOAyQyM4b73/v/5z//Od+ZDNM0cUVXdEVXRHL8um/giq7oii4X\nXQmFK7qiK5qjK6FwRVd0RXN0JRSu6IquaI6uhMIVXdEVzdGVULiiK7qiOfpgQsEwjP/KMIwvDMN4\naRjGn3yoca7oiq7o/ZLxIeIUDMNwAngO4L8AcATgRwD+iWmaT9/7YFd0RVf0XulDaQpfB/DSNM0d\n0zRHAP4NgD/6QGNd0RVd0Xsk1we67gaAQ/X/EYB/uOjDhmFchVVe0RV9eKqYppk+60MfSiicSYZh\nfBvAt39d41/RFf1nSPurfOhDCYVjANfU/5uvXxMyTfM7AL4DvNEUDMOQHyvWYffaIjJNUz5vGMbc\ne7PZTK7H37PZTP63+4712vr7Z93HFV3RKrSMv628qT931vcuwoMfSij8CMAdwzBu4FQY/HcA/vuz\nvsSH15tUCwqn0wmv1ysP6na7YZomXC4XZrMZZrMZJpMJptMpRqMRTNOUz+prAnhrYklOp1O+x0m1\nEzK8HwqV6XT6LvO1dD4AwOFwYDabXVjQ8FoOhwMOxymUZJqmXJf/k/jcFxnvrPnUY+k5/tB00U3y\nqx5L89iiA05fX88x6V2e84MIBdM0J4Zh/HMA/w8AJ4B/aZrmk1W/ryfF4XDIb4/HIwLC4XDA7XbD\n4/HA7/djOp3C5XJhNBphNBphMBjANE20221Mp9O3Tna7k54bnKT/1szMz2lm5z1Np9MztY1VSV+H\nf3NDn0cIWQWsaZpzGpPD4YDL5ZJnnkwmts+wCqPxetb5sgoZ6+9fBV3GsaxCUa+R9UCz8gN/W3lB\nX+MiwumDYQqmaf4FgL+44Hfh8XjmXtMP6ff7EQ6H4fV64fF45Kff78PtdiMYDKLT6WA4HOL4+Bjt\ndhuDweCtTc4Jdjqd8pr1FOXYHo8HLpcLDocDXq8XLpdL7nE6naLVamE8HsM0TQwGg6Wb1noSOBwO\n0YKCwSCuX7+OaDSKSCSCcDiMyWSCyWQCp9OJk5MTVKtVHB8fo9VqYTQaLRxHb04yCu87HA5jY2MD\n8Xgc0WgUgUAA/X4f7XYbk8kEo9EI9Xod9Xod+XxehN0y8nq9c4KLz+Tz+RAOh9Hr9dDtdkWbA4DJ\nZCKaFl87j/agmd76jPF4HD6fD8FgEJPJBJ1OB6PRCL1eD71eT7RLzReL5lGPpQWp1+uF1+tFMplE\nMBiEx+PBYDBAu91Gp9NBq9Wa4z3rWNZ79/v98Pv9CIVCCAaDiMfjyGQyWF9fRzqdFl5rNBooFouo\n1+vodrvodrsYDofodrsYDAYYj8cX1l5/bUDjIuImIVM4nU44HA74fD54PB74fD7EYjGk02k4nU64\n3W5MJhM4HA5EIhGMRiP4/X7MZjP4/X4Mh0MAp4vBv4G3NQVeixoIF4uLFA6H4fP5MJ1OEQgE4PF4\nMB6PMR6PMRgM4HK5RBBppreS9dSmoAkGg4hEIshkMnj8+DE2NjaQzWbhdDoxHo+xu7uLZrMpz+hy\nuRAMBmGaJsbj8cK55FgUZsFgEGtra8hms7h79y5yuRzS6TQGgwEGgwHq9TqazSbq9TqcTiecTidq\ntRr6/f7SU4eaXDgcRigUQjQahc/nE+Hm8/kwHA7RbrfRbrfRarXQbDbRarXQ7/cxHA5Fg1nldFtk\nXrrdbvh8PgQCAXzta19DOp1GKBRCvV7Hq1evkM/nMRwO4Xa7MR6P4XQ6l64Xx+DBQWHAcYLBIEKh\nEB49eoRoNIpQKIRyuYxXr17h4OBg7v74fS0YrGZAOp1GOp3G1tYW7t69i/X1daytrSGVSiEajcI0\nTfT7fZTLZRwcHODg4ACff/45arUa6vW6zN94PH5rrFXp0gkFfdKQKBi8Xi/8fr9Mvt/vR7fbRTgc\nxnQ6xWQygcfjEQbt9/tyUvV6PVvpqbUAp9MpGz4QCIhGkEwmEYlE4Pf7EQwG4XA4EAgEYBgGarUa\narUaisUidnZ2RECR2RaRNkOcTiem06loGrFYDH6/H4lEAg6HA61WCz6fD41GA91uF41GQ0wiMrfd\nPFr/d7vdiMViuH37Nh49eoQbN27I/DqdTsRiMYTDYWE6r9cLt9uNL7744i3txnptn8+Hzc1NRKNR\nbG9vIxaLIR6Pw+/3y9x2u100m02YpolarYb9/X0RajRZ9Nzw71X4hc9ALYH38+Uvfxmz2Qy7u7so\nlUqoVqtwu91zhwXNvmXX1xqIz+eDz+cTwRwKhRAKhXD37l0Eg0EEg0EUi0URJBors+MDktvtRjQa\nRSwWw9bWFh4+fIhUKoVEIgGXy4XJZIJ+v49OpwO/34/t7W0AEL5ut9twOBzCR5fOfLgoaVWeD8PT\n2+v1IhqNyqna7XYxGo0wHA4xm83g8/lEfacK1ev1ZANZNwo1EjK/1+tFOBwWBshkMvD7/djY2EAk\nEsF4PEYgEEAgEEAmk8F0OkWn00Gj0YDf78fJyQmGwyF6vd5CTEGf3mRInpBUozudjgg2p9MpauHx\n8TGOjo7QbDYxm80wGo1sBY9VpQZOGS6dTuPevXv45JNP8PDhQwQCAXz22WdwuVyoVCpwuVzY3NxE\nJBKBy+VCt9udYzB9/3osnsxUda9fvy7aApm51+vJXHs8Hni9XozHYzFZBoPB3BotY2Q7AUXB4HK5\nxFyJx+Oi/YVCIbjdbuENzpsVR1o0lpUfKShM08RoNMJ0OkUoFEI6ncZ4PEYwGJwzT5ZtUC00KJzX\n1tZkzFqthkqlgkKhgHw+LxoFtbG1tTUcHR2JhvCu2MmlEwqGYby1ifl3IBBAKBRCPB5HIBBAo9FA\np9PBdDqdMzN46vJHn8pWMk0Tk8lETlKOGQgE4HA4EI/HEYvFAAChUAixWExsVKrv7XZ77pTt9/tn\n2nOaSWivO51O+Hw+jEYjOBwOtNtteDwedDod5PN5NBoNUb2n06kw5llE8+TmzZv47d/+bTx48AAe\njwfVahXPnz9HpVLBeDyG2+1Gt9vFxsYGotEoHj9+jJ/85Cei+nMttMBxuVyyXn6/H/F4XNRWl8uF\nVqsl2MRwOEQoFEIikUAoFEKj0RAhwROO97vM02L1HHEOtY1PLc/n86HT6aDZbKJcLqPf74tQoFmw\nbBPpExeAeLaIY81mMzEfuUkJ1pL/rG5w6/1r4rqWy2UMh0OUSiWUy2UUi0Xs7++j2+0iEong+vXr\nuHHjBoLBoOwNh8MhGM27eD8unVCwTpjepLFYDLdu3RLwrVaroVqtwjRNhMNhRCIROTG0FF/EYHxt\nNBrJidxsNuH1egEAmUxGJHUwGES/35cTOhQKyWbmIlAQUECdZc9pZtPelEAggMlkgsFggE6ng1qt\nhna7PScE+XOWSgqcagmZTAbf/OY38ejRI6RSKZTLZTx58gQ/+MEPRDMJhUIy15ubmxiNRrh///4c\nxmJ1e/F0I7jWbDYxnU6RTCYFEDs5ORHz7fr164hEIohGozJPXKOLeGwWneCcm2aziWKxiN3dXRGo\nes4WzaH1GQGIIBmPx3LPAET4aB7q9/vodrtneqL04TCZTNBqtXB4eIjpdIpEIoHBYIB+vy/3PxwO\n4fV6MRgM0Ov14PV6he/ohreu03npUgkFO/DI5XIhEAggnU5je3sb4XAY0WgUjUYDtVoNg8EAwWBQ\n7DyCjO12G+PxWCbNip5b1cLhcCgaBu3bUqmEbreLTCaDwWCAeDwOAKJRcOFPTk5wfHyMfr8vJ8Sq\npEGmSCSC7e1tpFIpeY58Po9Op4NyuSynrTYZzlJ9ed2vf/3rePDgAdbX11Eul/Hs2TP8/d//PfL5\nPGazmeAqw+EQgUAAfr8fkUgE9Xod8Xgc9Xr9reeyukhrtRpGoxGi0ShGoxHG4zHK5TJarRYAyNzG\n43FEIhEYhoFGo/GW4NYeoLPmTrtYuTm41hTk1BL4DNptvMqJyutrtyoBR94rza7RaIRarSb8oE2H\nRWtEms1mIrSGwyFGo5GYV9Qeo9Go7IVsNguPx4NWq4VOpyOC96JYAulSCQVgXjsgmhyNRpHNZpFK\npZBMJtHv93F0dIThcDgHFBIk7Ha7smBWRiFppuApxZOA6li/30csFsNwOEQ4HJ67z9FohG63i8PD\nQ+TzedRqNTQaDdmw540j8Hg82NzcxI0bN3Dnzh3U63VZ6JOTExQKBXEXrmqjEhBdX1/H48eP5fQ/\nPDzEX/3VX+Gzzz4TYJRzQiR+Op3C6/UilUrBNE8DxOyEnQZKy+WyCAPtEYhGo4KzJJNJ0YR4omoV\n+7ykNxxNQI/Hg2QyiUQigdlsJrY4hYIO1lpVKOhxKPiplQaDQWxsbMDtdmNvbw/Pnj3DycnJuccy\nTVOwF5oCoVBIzFiv14t0Oo1PPvkEqVQKPp8PzWZTPDrk8VXduYvoUgkFLYXJVAT/MpkM4vG4AGDt\ndltASZfLhVAohEgkIqoVBQrtTeBtd5BWtTih2h1Ke5d4AYA5/KLb7SKfz+Pw8BDdbhedTgcAlnod\n7MjtdiMQCGBrawtf+tKX5D4LhQKKxSIajYbgFNqvftbiu91uhMNhfOUrX8G9e/fg8XjQbrfxs5/9\nDLu7u8LYmhh7QdWXrjeNpOt50z8MGKNQSKfT4koOBAKYTqfi2q1UKqjX6+j3+289g1bZVyHNMw6H\nA7lcDg8fPkQwGMTu7q6As3R78jv696rj8PPEUcLhMK5fv454PI5Wq4Vnz57h5cuX6HQ6CyNFrdfU\npPEwmnThcBi5XA4bGxtYX19HMBgUE7nf78Pn84kw14fcb4ymQKCF7sd79+7h9u3buHHjBsLhMAqF\nAhqNBuLxOD755BP4fD5EIhGJWxiNRkgkEjK5jNQD7FVtK/ij1eHhcIjhcIh+vy/BJE6nE+VyGYVC\nAS9fvpQTqNPpiNmx6mLwJA0Gg9jc3EQ8HsdkMkG1WhXtgPdN82aVUGeeStvb23j8+DH+8A//ENls\nFtPpFD/60Y/w8uVL0SKIlgOnwUdOpxOtVguVSgXr6+soFApzJ791Dvk/555Cy+l0SsyCBiHX1tbQ\n6XTwy1/+EsfHxxJzwWtRICxzE9rNI7WEQCCAx48f41vf+hYODw/x05/+FM+ePUO1Wn0vyDzHo3vy\n5s2b+J3f+R2Uy2X8/Oc/x5/92Z/h+Ph4zsVKOsujonEpar4MMrtx4wai0agA0HSJEnzPZDKoVCoS\nT8Jr/kbEKQAQ5DqRSCCZTCIUCsHr9WI2m8Hr9UqMgsvlEtRXxypo04Auy0VIPSUu8Aao4kSORiM0\nGg04nU7E43EMBgN4vV602+25KLJFkZKrMKDT6YTH40EwGESr1cKLFy+Qz+dRqVTg8/mQy+XQarVQ\nLBbFbWeHvtuRw+FANptFNBqdC9bx+/1wu91wu92Ix+PyHF6vF5FIRFyGg8FgDrFf9jw6Yo8uyFqt\nJl6VWCwGn8+HeDwuXhViFzzpdRzJeYSCJpfLJWtQLpfRbrff6dS0I+IJ1GC3t7dRq9VwcHCAwWAg\nn1vkbVhk8vGQIN92u12JSzg4OBDX+Ww2Qy6XQyAQkPuhpkwTSbtcz/vsl1Io0GyIRCIIBoNIJpOy\nWcfjsahLBOTC4bCcdvV6HQAwHA5FhbObGDIOQ3FpFlhNiMlkgkajAZ/PJ1gDI8eoHfBkczqdc4DU\nWc/I7zAgBgCOj4/x5MkTeDwe3L17F16vV1yw9DzY+c7tiG45qpb8vMvlmhOqPGGTySSuXbuGdDqN\nSCSCXq+HUqmEdru9kotQA3dE4RlZmkgkYJqm4D8M+IlEIjBNE51OR+bkPOaDPhUZTOT1ekWQkW8u\n4tmwG4s84/P5kM1mce/ePYRCITx79kyARSuAedbYGlRnbAo9Oq1WS9zSDGlOpVJotVrY2NhAMBiE\n3+9HNptFuVxGtVoVDfeiOM2lFAqUxFSnaFM7nU70+32J96/X6xLkw2gvqt/VahWtVgvdblfUbr04\nWjuwuhfpYqJkDoVCoqoRcKtUKpKTQHWZmsYie1Xb7zp2Ph6PIxwOi0bw4sUL3Lp1S4JxIpHIXAyF\npmUngc4pmE6naDabcj3eQ7FYRDgcRiwWw6NHj4TJh8MhqtUqisWiPOOy8bRdz3kkeq6jQJlXwbB0\nugl19qaOWViF6M6liRIMBgXj0YFKdrRMq7NubAoEv9+PZDKJ+/fv48GDB3C73cjn8yiVSnNCgdfV\ngguwB6F1iDZD66n+0/tQLBbR6XTQ6XQwHo/Rbrdx/fp1idBkvke/30er1bqwhnTphAIFATf/dDqV\nyMXxeCyumtFohEwmg3T6tJCMaZqo1+s4OjpCPp9HuVwWF9kyW5zMRAyDdjGj9BhByYCY0WgkEXhc\n8GXx7NZnAyCYidfrRSwWE49KvV7HwcGBgExEmMvlsgSn2F1z0cI3Gg2USiU0m01xcQIQrwLzGxKJ\nBB48eIAvf/nLSCaTGI/HaDabODg4wMnJyZzpsKoGBGBOYDJX5PDwEIPBAMPhUDxEPCWpcWlAcJWx\neHInEgmJBDw5OZEkNWIWVgGgN+sq9j6fIxwO4+7du3j48CG8Xi9KpRIODg7EnqcJo4FGapHLxvB6\nvchkMgiHw3MaAzd5r9eTiFlGm3o8HtH+EokEKpWKCJTfGKEAnE7QYDBArVbD0dGRnOJer1fsrMlk\nIuAZ7XsuTrlcFrR5NBrNMSpJ4w7pdBqxWExstHa7DZfLhXQ6jUQigclkItGKzWYT1Wr1retrG26R\nPUzGpz2dzWYRCAQkYrDVamE4HCKTyeDhw4e4ffs2xuMxPv/8c/T7fbn+WWYDmb3ZbKJSqQiwOBwO\nxZNAEyyXy+HatWt4+PAh1tfXEQ6HZQ6Pjo5QqVQkKGYZk1k9EfoeqcXl83kxLRwOB3q9HgaDAQKB\nwFzK9rINpO9BhzZTS2ASHDMhmZWp5+UipE3NWCyGXC6HaDSKTqeD/f191Go1cZFTc9Fhzvz+ouei\n5hiPx5FKpSQj0jRNiTgdjUYSTp5Op5HNZsWdTWxGR7qeJYgW0aUUCqZpSuouw5apatLlZZomfD6f\nmAftdhv5fF5AM+Y+WN1nJC4efecbGxuCkvf7ffj9fsRisbkci1KphMPDQxSLRRmH98NrLkN8uVB0\nFcZiMcRiMaRSKclvmE6nePz4MR48eIBYLIZ8Po9msyk+b+spt0iVB4DBYIDnz5+LQFtfX5fYCzIT\ncxUIXA2HQ+Tzebx69Qp7e3uSwHTWevE3mZJMzo00Go0ETCVWQ5CYbkmGTJ+Vtcjn53eYYkzNCjjV\nABuNhsRHEC+yS4hb5TTlWKFQCBsbG7h+/bq4x6vVKhqNhqjwvB4PDZ3PY/dcvD+aWNFoFIlEQty4\nTC4j/6+trUlkKEHhTqcj7xPsXMVTZUeXSihohudm40nV7/cRDocxHA5F3Weo53A4RKVSkSxCjSNQ\nGNip3jQT3G431tfXxVTgqajVv52dHXz++ediljCykKq+BvMWCQVqCrQZg8Eg1tfXkUqlJBLQNE38\n/u//PgCg0+ngBz/4AZ48eSKBS3oDLjv5aIY1m008efJkLvJOxwvwVBoMBjg8PEShUMDTp0/x7Nkz\nqQWwislg9cXrjEVmqno8nrkcCppufr9fTA2e6quccBQ+9KJEIhHZKIwj0Qlzi2hV00Gnn1NLoQZH\nITccDudOaJ3HsUjDIwBLDS4SiSAUCiGbzQqGRYFCTY+aiGmaqFarODw8lBoOZ/HhWXSphIJmcp4m\nLIpBacv6An6/X1yDTByhQLADxhadPLPZDJFIBIPBANevX0csFkMoFBLsoF6vo1ar4ac//SkODg4k\n4kxHFjIq8Cy7m8/HhJpgMIh0Oo21tTUApwlXBDP39vbw9OlT/N3f/R0qlYoEE2k6a7MyWadareLV\nq1cSSxAMBuUECgQCknDDXJK9vT2p38Aoz1WeC5gPUaZgZ4EYCglqef1+H7VaTQrj6DDxZdoWf2vP\nCT04TEriBmEuhg6D1vO3bA6154J4ArMtqQVQK+UJzWuy0A7/X4Zr8TOz2QylUgnhcBhra2vi9qT2\nwD1QLBYlnJq1G4rFouwBBtFdREsA8GGawZz7Jl4XbiVDWTEAehh4qrO2ATUA2qa9Xk8ASTKVNQrQ\nmrHmcDjwe7/3e7h37x5yuRwMw0A0GsVgMMDnn3+OJ0+eoFQq4fj4+C3tQ93/nBtzWURZKBQSVdTn\n84lbjtl1hmFIhOS7hABzfL2JyNhUgwlk0WwYj8dS9EQHYq0CMpJh9Vh+vx+BQEDU3XQ6jUwmg1Kp\nJHUoarWamEcUQmcBjTrxiaZYLpfDrVu3kEql4PF4cHR0hO9+97uSOn/hU/O1Fww4jfaMRqNYX19H\nPB4XrxU9RoPB4K08jlUwIH6OKevkJ2pR9EoQq6KrcjabzWV9ah5fIIB+YprmPzjrmS+lUADeBKGQ\nqCYyPZpMqE9rCgQrjqAZwuolAIDt7W1sbm6K7/no6AimaWJ/f19UaJbUWnZa0uQ4y81lVfutLix9\nn+97faxuWf5ooWanVa3C1FaNgad4IBBAIpGQSFMm8FCQE0fghlolaEnzCoVdIBAQ1Z3xJatsyFXH\n0t4OhtATZKYgu8hYWoBr4arfXxSev4gWvPdxCwWeBlp91TkR2ieuJ41BSLSptY+ar/FvAOLViMfj\ncm2qsMQNyKiL5sqqMn9sZBVSnFO+fp5AIqt2ojcRtTvGdwCYU7G1SXbRsbRwPm8Oyqpj6ddJF9VE\nFo11ke9psmoqr+njFgpWQUAftn5IZueRqTSDEAW3MpkVa9Dj6JLt+j09hvX+rKS/dxnm9iKk7/+8\nTGrVRKwAL1VgLUj1Gr3LnFkxqQ9JF928H+Ka1vUiXdR8uFRAo520vWhF2rO+a2VCXU14FbqA6vbR\nkNWT8C7fXXSCvsu6rjL2h6YPMdZFr/ku62VHH6wV/RVd0RV9nHSpNIVfJWlVbZHKZTUx7N6zu+bH\nbj6sStZ5OytiUCPxq5hf/N/uGlf04eijEQo6iIRExJy9H3SRifNEc2nhoMEqjS/o+yDj2sUmXFQg\n2AmpZV6J8xDvkwE4dHUFAoE5b4OOqmRC07Jn0fe7DISzzp+uocmALmvS2iLBYSck3sdn3oU0LmXF\nnt7HOHb3T0yGWNsyU+28dOmFgt6grAHA8NlgMCg5+PRUEHWme0sXs9RkBxrqTQ68cXdamX8RKm89\nCc/DEFZGWvT983o6eL8ej0f6PrA3AStju1wuKbza6/WkSQtDxZe5Y63C7CyhaH0uXfGKAp9FXVZx\ngy4bi7TqvZyHtOAG3u7RCcyHGZ93w+rDx8p3iwQwP/OuXrBLKxR0gIouu8aAm3A4LBFy9FHrcGN2\nOjIMY2ELLU4m05J5egYCAanlEIvFJMOPMfy9Xk9qKTB4qlKpoFarzQWRnJe4qCxCy/BgZhoGg0E5\nvYvF4lyhTjti6Kzb7ZYQWkZRZjIZbG1tIZvNSmXsRqOBw8NDyQRkkRIK12WCQTOkdR2pVTFtm1Ws\nWMmKORHNZnOua5Rd9SKOtwrjWzcSeQd4A4KuEhJstwn5PCwAlE6nJdOWtTwMw0CpVJJQ/FUC0XRM\nBIUCo0F1Zi2Dp3T5wZ2dHam5wOzgi9ClFQqcFC0YrH5vhrcytZmbhG3IgDdx+NaFty40Y9pzuZxU\nK2KFJyaoAEC1WkW328VsNpP8dhZsZUgtx131Ofl87EmYy+Ukvl4XSgmFQhIoE41GcXx8jFKptLBD\nFDcOeyKEQiERoCyNRuHLxjKGYaDX64nWwI1jp8Lq16hlLQr0Ybgu259RY+H9+f1+0WZo/i2LDdGb\nXddh0LyiqzAxKlZ/j9WNzhLk1hObzxQMBpHJZIRvKBTK5bIU4dHfMU1zqRC3PpMei0WHWFAllUpJ\nXQzm/jCojyYZcDEvz6UUCovsUebfk4FY/EQnh7ArFGPuF6Ux64X2eDyIRCKSd8DrsrAK6zUOBgMp\n4trtduH1eqUIibXDkbXGwqLnJPP6fD4kk0msr69L7UnWTGSlXm6WarU6V1bN7kSlUNBZi8zzYHam\n3+9HsVjEyckJAEh0IetZ6DyEZZGaVlVXd2qidsL4/Uwmg42NDdH0OBYrDfV6PQCQtn+LeIO8oGsZ\nas2IQpTFd5n3wUazjKikabTqenFMFt/h+jkcDinuy6I/mg+1ibXswLAKU/JBJBKRcv3k/bW1NSmt\nbw2Lfxd84VIKBeBtu4yRisQUKBj4GZoWlP46OQVYbIfxb14jkUiICm+aptQZrNVq8Hq9qNfr0kfS\nNE3RJLrd7kpJUdZ7YDhwLBbDxsYGHj16hFwuh0ajgWq1CsMwJKOx0+nIXDDpRRem1dfls/Pz3NRU\nP5mA9Pz5c3lG3j+b4fAEXRZybcVhtJpO7SeRSCCXy0lPROaxBAIBwSyo0QGn5lyv13tLoFvxJZ/P\nJ1W+4/E4EomEgKh8bq4RtaRut4ter4cvvvgChUIBtVrNVgs6a92ohbBLFGtoMuGLB4WOij3rmpxj\njSnpZ/V6vXA4HGg2m5L+zr6VrOX4LmYD6dIJBTsUnuovmZppuEwOYcw7C5Pq71nVKZJ14ln8BICY\nIAQsDeO0lDZVUDJ2IBCQDE6eSLpw56Ln0sRcjkwmgy996UvY2tpCPp/Hzs6OqJ+RSAS3bt2CaZrS\ndYnp5ItUbKvrj3O3vr6ObDaLRCIhjXGbzaakHzMcmc9JbWuZpmAHkvJEjcViyGQy0riE9jULyrAi\nFNu2U5jYrRnvg4KU2YSZTAa3b99GMpmUNOzpdIpCoYDBYAC/3y8p4r1eD8fHx0gmk2g2m8JHq4CV\nmi+Ju7BaV71el2I8AMRc0F4xrUna8YaeXx5SDodDQGHgtAAQgLnmRR6PR6qR6dZ7FwUbL51QWObO\noY1NVZG5DQQYdZIUP88EmWW9ljMSAAAgAElEQVSaAsuM93o9tFothEKhOWyCwBeltt/vnzNjeE9k\nhLOeSxMblzx+/Bg3b95EJBLBn//5n0tpdbbCY7o4G6h0Op0ze1ZaTSSWr8tms/B6vVIcZDKZSMlw\n3aBVd+rmfFkTc+wKv+j5p7lCwX1wcIBYLAbTPHUl0zSjQNfl86xrpsfRpexu3LiBXC6HZDIpmkC5\nXMYvf/lLmKYp5hLBTbZb067rVTwRGvhjmjsPlEajIfxBs0gLm2UapN17/JvClaYczR2aWePxWDTj\nRet0Xrp0QsFucaz2KrtGlctl+Hw+pNNpuFwuFAoFQed5LTvmshI/Q2bjwjJvncxP6W11c7IyciwW\nmwMbz3pOfuf27dv45JNPkEgkkM/nsbu7O6eKhsNh0ZBYaowqt10lIevftIFTqRRSqZRgItyArENA\nnIE1KlgHkKCfdSyrC866XlYbv9lsiuaVSCQQDAal8nC9Xkej0ZA0YOvpbfUk0PxIpVLI5XLweDxS\njq9YLGJnZweVSkUKr/AZWfCU5dpWwRKsz0YQkBprpVKRFHQCxCyhZic0Vx2HP6y/QTwkGo3i/v37\n2NzcRK/Xw9OnT6VsAL9z3ufSdOmEgpaaWp3iJiLIwveY485Nq5umkCgcrKRBQZ6QbHPfbDbnsi3p\nOuOEaxCOrjaqvqucOtw0bAMWi8XQ6XTw5MkT8dN7PB4kEgncvHkTiUQCR0dHUsDTau8vejZuJpbC\n56nd6XRQKpUQDAYRDofFrHA6neh0OqI58STnPNitFcfQjExhQJNMe02y2az05Tw5OcHBwYEUCGEt\nQqv7TjM755jPwnJkhUIBe3t72NnZQblcBgAZb21tDZPJRHpqcNMSBFx1AxG0pTeF6jorPIdCobnm\nQNZkr1W0EeBNTQTdxo8H3rVr13Dt2jVEo1HpY6qLyfA+f2OEAvB2EBB/yNSJREJOuXA4jGAwKA1l\nucCclFVchARycrkcUqmUtGX3+/0AAJ/PJ14NmigaZZ9Op9je3sZnn3221ITQtiNVUC5uKBTC8+fP\nUSwWBTSNRqPI5XKIx+MCLvI0XRRQpIWpvk+e2ixEyw7GkUgEmUxGnp3zzIAmtpOn23IR2XkkCI7x\ntGPzl7W1NamvyW5bNIuoAS1LezZNU6oS0UvBEuiFQkGqVPn9fuRyOTx69AgbGxvS5m93dxfFYlEC\ntM67eWiGsHoy7f1kMilrwsNJz81FomzpjqS2x87r2WwWw+EQe3t7UnFbHxKLYjxWoUspFEjav0zb\n8c6dO4JOf+Mb35DCrgSuCMzQFqa0XWSf0u5Np9O4du0aQqGQlLniqcWSZhowop8/Go0ilUrB6XQK\nrrFIU9AgXDQaxZ07d/DgwQMEg0G8fPkS9Xodm5ub2NzcFO0jnU7DNE08efIEBwcHEiexrLyX1oA4\n1ubmJm7evAngtMpzrVZDKBTC7/7u7yIYDMLtdgM4ZVy/3y/A3RdffCHl4KghLRqPJzljSFhlyuE4\n7VQVDoelTd3z58/x6aef4vnz52i1WnNYwiINiM/rdJ62fG+32ygUClJ2jY1SMpkMhsMhHj16hG99\n61vIZDLodDr48Y9/jKdPn8p3NI+syo80XSlcNzc3ce3aNVlz4jR2HafPs0mpGfPQc7vdyOVyiMVi\nePDgAY6OjvCDH/wAP/nJT4Q3LzqWld5JKBiGsQegDWAKYGKa5j8wDCMB4N8C2AawB+CPTdOsX+Da\ncz78SCSCzc1NpNNpjEYjaUHm8/nE9nc6T9uTscgpgTJeZ5Gtz82XSCTQbrelOOtgMBAgjl4F5g+w\nZh4LsDJqcJH3QT8XowvZG5C2ORvkckHX19fhdrulQSpPNh2FZ2en8nUCs0SvWcKe95pIJKQxKu1s\ndm5iYxGegrp4jR3DUUOiJ4brxpqJ9G4AkP4cenNqQaa7f9tpIPxss9kUNzFjIvj8sVgMX/3qV6UN\nwO7uLp48eYJyuWwbYbhq/AC1SuBNB65oNCpYU7fbnXPLWitJLRvHqknS9c7I2ng8jq2tLQQCAelt\nokvX6YKx5IGLCIf3oSn8nmmaFfX/nwD4j6Zp/qlhGH/y+v9/cd6LWgWCDo8lhpDJZKSZ52QykWrB\nfr9f7GJOMG1aTZywUCiEGzduSDdkRvTx9OH16T4kwGStKHSWHac1HwYeMRpNh2hfu3ZNqkGxzTjD\ntjWgdBaDEfwKhULSb5NgG/3cHHcwGKDf74tXhyHdeiPQHWYl3dSF88PoO6q/2iTodDool8tzQKYW\ncGeddjyB2b6PeA/rGFKgsT08a22+evVKqoMzhmDZOPpedEAR4yyIx9ANGQgEcHh4KDgTr23ncrQb\nR4PpDGv2+/3SvfvatWvY3NxEt9uVsHSaysCbTti838tkPvwRgH/0+u9/BeB7OKdQ4OSQGRkjz+AN\nus9KpRJGoxGazaacilxwTYtOcC4A7elYLIZisThXqZcmBPAmR4L5Fgyv5qLTll2FydhrkQ1B6Vqi\ne/STTz6B1+vFixcvpJ06S8tbE7XsiExMDITI9WQykbDcbreLk5MTGXc2m8HtdiOZTMoJpOdhmQCa\nzWYSq8HfDLqixuDxeNBqteSU0ziQ3jRk6EWeKGqBs9lMmtWGw2G591AoJH1Gi8Uifv7zn+P73/8+\nTk5OZK51qb5lm9Xq+aJmxzgJh8OBarWKRCKBXq8n+IYOWNKA7Fnh1Lw+cSBGtTL83jRPm8Ps7e2J\nGWn10nAOf125DyaAvzJOy6n9H6ZpfgfAmmma+dfvFwCsnfuiiiGYpMSS7qzWO5lMpMtvrVaTaC7a\nplpS2tX912o3VeRYLIZsNovj4+O5BabG4ff7BQDMZDLiJjQMA7u7uxKOvIw0FtDpdHByciIBMEw+\nWltbk4CUWq0214Fo1Xb32janGsoNxWhN3YiUp2smkxHXZ6PRQKVSkVDkZQzNE5pgMOM2+DOZTKRX\nZqVSEbNBr4cGmM8iCmryAs1DmkCbm5solUr40Y9+hB/+8Ic4OjqSnBUtVFdxF2rPFw8YalZOp1PU\neCbHWRv66jU5iyh8eADSTc7O4fV6Hb/4xS/m3O+8d5pwZwmfs+hdhcJvm6Z5bBhGBsD/axjG5/pN\n0zTN1wLjLTIM49sAvr3owrTFWECVwUTcrNVqVUwHlrvWCS4MPNLgoOXe5k7tUCgEn88nHZs4jmEY\nwmhk+O3tbYTDYaRSKQQCAWlv12w2AZztDprNZpKWrN1wrVZrrh1etVoVdx2FnZXRrKepfk7OR7fb\nRaVSwcnJCTY2NgBAMu7i8Th6vZ4AaGzOWq/Xsb+/j+PjY1FTOW9WIpagey9Eo1Ex+5jJBwAHBwfY\n39+XpiX6nnW8CAWJ3VgUbnpDdzod8WwkEgmEQiG8ePECf/u3f4vDw0Nxry4SBqu4CvW9AadmULfb\nFf4jBkUsy+77Z42l3yOGQwyDbfz29/dRrVZlDrT5oDGJX4tL0jTN49e/S4Zh/DmArwMoGoaRM00z\nbxhGDkBpwXe/A+A7ALBIcNB1RjWq2WyiVCqhXq9L9yO61igdqfKyaQsnyi7IRyPGJycnyGQyiEaj\nuHXrltiODBS6ceMG3G430um0xEqwjPjOzo70vASWnwi8l9nstGa/2+0WfzlBK7Yapw1slxikr2f9\nn89FRi0UCnNhx+yDyHoK0+lU8BoK2YODA7x48UI0hUXx+8QlSMweZB6C2+2WgKRms4kXL16gVqvJ\nd/n8VoBsmcZlGG96d9J9THBxY2MDmUwGk8kE3/ve97C/vz8XIWmNG7CbQytZtQuaIMwZmc1mqNVq\ncojRC6VNo1XG4Vi6WBBNiXa7jX6/L5mx1EzoqqS5p7WEX7n5YBhGEIDDNM3267//SwD/C4D/AOCf\nAvjT17///UWuz8lkFyE9+eyNWK/XxX7jhAwGA0kc0nUU7HIfAEj02cHBAbLZLNbX17G+vi4mCz+X\nyWREGwFO+zR2u10cHR3h+PhYsIHXc3OmlGZexXQ6FdXQ5XJhc3MTwWAQR0dHKJfLsilXVatJFAwU\nnpw/0zRRKBSwvb0Nt9stmlWr1RLXYLVaxRdffIFyuSw9Eu3G16etTtphtCHnj0zd7XalMa8u8W7F\nSFZ9Vj4TMxY3Nzdx//59wUQKhYIAs8vWZBXPAwPj6AJvNpviLmbtCYbJWyMZ7eZs2VjkXZ1F6vF4\n0Gg0pF8kQ591jojWUDk3F6F30RTWAPz5a5XIBeD/Mk3zLw3D+BGAf2cYxj8DsA/gj897YW1b8rRj\n96BAIIB6vQ7DMOayIanS0fY9K5JMAzKtVguFQgFPnjyRFvculws3b97EYDCQkzCfz4s3YDY7TWGu\nVquo1+totVpy7bMYTGsudBlubGxgbW0N2WwWg8EAxWJxTk08j2DQqupsNpPQXoKNqVQKL1++lN6V\n/DxPwGazKYlSOqR7UQq61hQCgYB4HNgwhZukWq3OBQzZaSD6RF80f/pvpk6vra1ha2sLGxsbCAaD\nyOfzcmhoF66eG97/MgBVv8/oTgZZDQYDJBIJzGYz6fBN8NQaCr+qMNCmLrWORqMxh2XwsCPfa6HN\n5zxPoNRb93LRL75PsjMfrItPNYrIr1XN0uqnFdw5a5Myd4HIr652RNcSVXiNXOsMOL0oWoW3kq5E\nRHAvl8thY2NDGPr58+d4+fIlTk5OBJA77zotGt+KpBPU0hWJtBqszR2+r6+l5zCZTCIej0toMbMS\nm82maD37+/tzJ6nWNqzzuOi5uEb8fePGDTx+/Bi3b9+W0OPPPvsMf/mXfyknt14XHbNyVoakdbMS\nO6H3gVGvlUpFvFYX0eyAN633uC66AhjzROjO1etj5bklY398fR80aabW2ACAtzbJeSSy9fqmaYo2\nwIlttVpvnVbWMRZtOutJZPc+AIllp9+cjULpatVq9kUE96J7tGMa2qfccFZ0fhGT6TEYVFUul8Vr\nwngRJlfpfP9lqrWeQ7v7p0eF0aisbcBIwnK5jJcvXy7MP9A1IM+aW6u2yfGpMQBvMI5VXMXLiF4z\n7Z3ScSzMgXgfYy2jSysUdP4CSZ/KyzYe8Lbqd9bn7Py9dqciSb9HgaKjyBbdn5XJJpOJmCA8jezs\n7IvSMuFF0kCcPv01YGl3Pb1xCZwyR4RCRmtU1nRiu/s8y77X481mpynL3DBerxf9fl/iP+xObf1c\nFyFt+mlz6n1uTq312iWhLeKLd3muuetcVvPB8j6A5Sc0P3cRNdtKduPoe9A2NF9b9v+yca12JF97\nn+uyqttNf1bTKvOt1Wv9OgWmBnytQsVuvLPumcg7r8/6ixSqxEd0GLNV+7zMZDVbLqIN29DH10vy\niq7oij4orSQUrtrGXdEVXdEcXVpM4TeJtJ1+liq+qgn0HlXKj4KspobdPK0K/lrNwlXxp/9c6Eoo\nnJOsdvR5GMnKjATj6Caj7a09IfqzrA2xSqHRdyGO/15AqzME4XnsfDusQeMxGrnne/ysLnMPfBiQ\nUAseDT6/L+Kzkh/09d+nULsSCiuQ9aS3xlCc94QH5uMVmMhimqakzLJ0OL0wLP9GkNPaT+B9ktXb\nAFx84yz7nh0jnyVE7P7m/NtV2dIbSOdScP4vGuRjdy/6OnYA57uslR5PN0biWMtidc5LH6VQ4EQz\niIRx+6yn4HA4JHPS6qdedk3tVWCQSiQSkXh6wzDEzcXqRdr/vkokGcOZWVMhEAggnU5jc3MT4XAY\n165dkxZkTOxqNpsS9szoy0KhIMEy73Ia8bl1JWefzychyp1OR6L0LiqErCeoPvGoJXFTc/Mu04bo\n5WBwmS69zxT66XT6VrcphkQDp2HqzJE5KzhM14ugAKLwZjh3NpuVilOM0yAPMvlLp2ufh3QwUywW\nwze/+U2pJN7r9XBycoJCoYBKpYJWqyUxMBcVDB+FULD6zsnEkUhEyqLlcjnMZjPU63VUq1UpskLV\ncVnZLataxmQotgVLpVJ48OABQqGQlH5jYg9jJ3TloUUxDxQ6uu3d1tYW4vE4UqmUhDlns1n4fD7J\nr3C5XKhWq4hGo5IgRmF3VryG3Tzyb62VsAuRzmxkhmWpVEKj0ZA8iVXWiHPJH+0y1HMAnNbAZH4C\nhQ8T3axzqL/LTcncEUY5sv4GS+KzNwLrbkwmE0mj5ia3FuCx8gYjQPWBxHnz+XzY3NxEIpFAJBJB\nrVaTDNhOpyP8xzlfVTBwLGaw3r17F/fv38dXvvIV4QHWm7Sao0w0u4hguPRCwcpkZAin0ylNTe7f\nv494PC6lyfP5/NLS53ZjAG9X0mXOAIuDslYkW46xlRwDdFbxK1NlJU2nU9kwDocD7XZ7rsgGpf7a\n2hq63a6ciDz9KIhW3aycP7fbjUgkguvXr8MwDKTTaUSjUSlTziCkk5MT1Ov1uU1hp/LrGAUKVfbH\n0BuIrc+4Ufv9vpQyYwMe5mno007HPTgcDqnizOrbLI3GkGCeyrlcTupGsPkra0r0ej0JGltUlITz\np80BmnZs7Mqs2e3tbRiGIcV2LqIVWMfl9TOZDB4/foxvfetbCAQC8Pl8yOfz0v+j0+nMtf3jNX6j\nhILdA1FlZHqujg3nb/ZM4ImzymlqZwtSMDBP/+TkBM1mE51OB7VaTVRqBsqsYp7oKEViBew/wI5F\nzWYTu7u7CIVCUjaesfosvHFWmKsV+9CnNuduY2MD9+/fx82bN6X+ot/vRyQSkRObDUd2dnYkWtBa\nJ0ALbZ7efr9fKmaxRybrPrKgy2QygdfrlSYwbOLC8G4dvUrSVYmYMhyPx0WrC4fDMresFs2eCRQI\nDodDwpw13rBozcgfulaBrvvJwCm2q9PdrZjApM2u8+JPrDt669Yt3LlzBz6fT+pRsF4Gi8vo9gbn\n0SCtdGmFwiLXEqv7RCKRuYXqdrs4Pj6WDDbdPUmrrWeNxc2mGYcM6/f7JSNS24ncnHZagnUczewU\nDIxvDwQCcqqVSiWkUqm5jENW/mFhUztTRT+PFgw0uQKBANbX1/HVr34V9+7dQyQSEXyCacbMEiWx\nDJ3dBuKzcCMwL4FjsYs2+1qwPgXxIAobml80abjh7Mbiqc5CIhzTNE1pGzcYDNButxEIBOQz3NCc\nM92XYhG/kSc02k/tTPe+XFtbQywWm+M/XZqNAk0DomcRtZJoNIoHDx5gc3MThmHg5z//uRQqnk6n\nktBnFxZ9Ebq0QoFkVRuZs89qPq1WC5VKRRqC6Fbx+hqrSGarq1F/hyZLr9eTFGBrco9mmkXX5nV1\nGzBqGqxwxBoGrVYL6XQakUgEiURCVEndUn3VWnxkZJ/Ph1u3buHGjRvIZrPY3d3Fzs4OhsOhnLy6\nL4PVDbpI6Om5Y2FYVkJiq7bJZIK9vT2YpimdotPpNADMVZ4iDrDoOagp9ft9tFotJJPJueY8FDzE\nRNhHw+v1SpUpCmhqQ4sODS0Y+Dl9CFD7Yiv6YrEoVbhYR1IfSucBhdkb5O7du3jw4AHC4bAUv3G5\nXMjlcjBNU/AYYlbvoiUAH4FQ0MQFYboqgLnejqPRaM4ToJl4VduKn+WJxC5NiUQCyWRSQEyi13an\n8qL75ud4cvH7BC8dDoecMFrlJ9LMU0YX19Dl0c+aO1Y95nw1m018+umnaDQa8Pv9kvZMoK5Wq6Fe\nr6/Uoo7Px56XuvFpo9GAaZrY29tDtVqd68HJ067RaMxVz7YzU/ibgkdrJxSshmGIGTKbzaSBLfAm\nC7HT6cz1GD3Lq6KFADCfrEdshgVXWPZO18Gwm69ViIJsa2sLyWQSTqcTpVIJ/X4fGxsb8Pl8cDqd\n0p1cJ+SdVRJwGX1UQoFSmaWuCO7kcjnUajW0Wi3JjtNC4SKACyeUdRvv3Lkj0p/IuF3e/FkCSPvU\ntXmjuzuzHyHtZmpGLLnOzcANtYqmYBinNQ9Yv5AaVq/Xg2EYCIVC2Nrawu3bt+FwOLCzs4NXr15h\nZ2cHpVLJNsNRawecM5oBBMMo3A4PDwWAIyBIsI/FXGu1mlRqXpZNqcejGUFQluYX55mmFj0djPXQ\nguQ82pb+m27CW7duwe/3S9s6VmHS4LMdRrLKmrE2BT0ppVIJyWQS29vbiEQi0gSJgpv3dlF3JPCR\nCAU+INu/k8G3t7exubmJUCiESqWCarUqKpt1gs4zSVxwh+O0Z+DGxgai0aiUE1u1ZZvd61rt54Yn\nek77kPn6rHV4/fp1+Hw+KQxLwbhKgRD+pumVSqWkT+R4PJb+mLdu3cLdu3eRTCbx6tUrvHjxQk52\nXc1q2ZzxBAUgABv/Z0MY1qGkp4Ol3huNhngg7Kpv6+dkDUTyAzEglnlnjw/eA92uBBuphejKy6sS\nhQjXIZvNYmtrC+PxGLu7u3j58qV4T6w8eF6h4HA4xE3tdDqlulcikcD6+rqYK7rj9PsQDB+FUNDu\nSNqT29vb+IM/+APU63Xs7Ozgb/7mb/Dq1Sv0+/2FwNt5x2N3nnQ6jXQ6jWfPnqHRaEiwjR2dtUmJ\nCcTjcWxubkrHH/arpE2cSCSQTqexvb2NdDqNTqeDYDAoG9qq0i4jmkHUNjqdDtxuN7a2tvDJJ59I\nJet2u43vfve7+Ou//msUCgUBzZaVlbeenixF1m63UalUJH5ge3sbDx48QKFQEJfo3t4evvjiC1Sr\n1TkTZREuQ62AgB0F42g0Qr1eF5cmNz4/z4KuwKkgYJCPrii9KpE3CNh+/etfx6NHj/DixQt8//vf\nF8/AIpNkVcFAUy+TyaDdbuPZs2fodru4fv06PvnkE5imiefPn0tJQgLD5zWX7eijEArAGxeh9rOz\n8Qu1hIsGaywiBpq0220cHh6iWq0iEAggHo/LZuGpo8ddtPCGYUgJr42NDSQSCQl+4UYYDAZSej2R\nSCAQCAhewtOeQTpaFV5EuuQazSpWmur3+4hEIqIF7e7u4mc/+xny+fxcezrr8y0ah9oCIwUbjQYA\nIB6PwzRNiSGIx+PodDrSnZnFcFfV6sgDDodDkH6v1yut76ihUKgzpoGeJMMwxPzTxXbP2sQ0XehZ\nicfjYgaxjLwWWna0ilDgdxmty74gyWRSvDb1eh3pdBqVSgWRSATVanUueEnjC+elj0IoaHcY0XAi\nrv1+H/l8Xmrvk1Y9Re3G4m+ecqwMbJomIpGI9IGwCxZZRi6XC6lUCslkEtlsVlrhUdi1222MRiOk\nUimEQiGk02kpu65dTsQVloUec86IS3A+6KZjFGE2m0W/30ej0cDTp0+xv78vTW3Oe+LoICAGfgEQ\nj0I2m8XDhw/FDcrAm2UVmezGYNASg584L2xhb5qmgJipVAqRSETiQCgcF+Ej1rH039rbkE6ncfPm\nTanyXS6X59bGGl5/lltcE6+h40b8fj9SqZTMJ3uA0qNE16rVTL0IXXqhoCeTqDMbs5TLZRwdHeHo\n6Giuyo51gXUQyqpjMgiFANazZ88keIguNtqoegz+bTeWx+PBtWvXkEgkkM1mEQgE0O124Xa7Ua1W\nxd1GlZc2Mq/NKEqiztbMP+szaN84Nys1hEQigVgsJq3mnz59Kh2mF4X8LiMdK0CAjw18OG9cu/F4\njFKphFqtNleif5U14tqwqatpmhKkxM0OnG4cdmwm7hAKhZDP5wVcpYayaM34mlUgRKNR5HI53Lhx\nA5FIBKVSSex9amY6poPf588yk4VrzchValjRaFRyKhjC3O/3hQfpyXofWZkfjVDgZLKhSTqdRrFY\nfKunnhURB1bXGjR2wQCc2WwmSUgMc7Ym41iFziKwkfkaLEXO7tnlclkAL7akS6fTCAQCcLlcYm9T\nYyC6fhYDUNWlcOH1GC25sbGBer2Og4MDPHv2TMyG82Iyeo10UI8OiyaoyhLyR0dHF9JIKOjYtq9U\nKmE2O+0pacV6ksmkdPXy+XyCk/DzqyR48XrkB7/fj0wmg/X1daRSKWnQQtOBmqU1KYlRqQzpXuUZ\niaENBgOEw2EUCgWUSiWEw2HE43EBVRlpqs2vi2rKwEcgFID5SWI4qcPhQKFQwMnJyVumw3kEgtVm\n1B1/6elot9til3s8njkEmottNV3snoFMQ+Td6/ViNptJ1ymqvcxHME1T+kxUq1W0220p+a5DbRcF\n+hAQYyt6eh+2t7dx584dpNNp7O3t4Xvf+x4+/fTTuU1qN2eLNCC+psvFcwPwf4Y+N5tNPHv2TNyP\ni+ZtmY3PWAg+D+M6qHXRJcrndrlcKJfLKBQKKBaLUvWZz8rQcbv50yYBw+optBn8VCqVJC6D0Zge\nj0e+T+GzSis3vaHZ3evOnTuoVqsoFos4PDzE7du3Rdup1WpzmZ7LDqZV6aMRCgxSojpoGAbq9Toa\njYa4Y3RMgnVyVrVX6XvmJvL7/eh2u1JKPJlMolarScix9fvLxjJNc65HZSwWQzAYlNDiyWQiobet\nVktahbHRCDs20ftwlpuQpzbxiXg8jmw2i1wuh3g8jtFohL//+7/HL37xC+kixeewnt5nMZl+dp6q\nXDOebD6fDycnJ2/1xrR7hkWClWO1223BFjKZjJhzNGNCoRAymQym06nkqxDHYOl08s2yOdR8xbbw\nyWRS1o0Nc5gURzc2zTSrWbWKaUawlpW+9/f3EY/H50rxA6feGK0l29WTuAh9FEKBjEbENxqNwuv1\notFonBnRdx4cQat6TCGOxWLSiZlJScyx0DH1eqxFpymxg0ajgXq9LkFJzMHnCXtyciKdmZvNJvr9\nPtrttvikGVO/Sqw754zg5vr6uuSNnJyc4Ic//CHq9bqtX33VOaTZRRCQSVFMayZ+kUwm8eMf/xi1\nWm0uN2VV4qmuW6ZxHG50un1jsRicTicajYacsvV6XQKoVql9obEECjmaXjrehLEeVPXpFrerYL2K\nzW+apgicVquFly9fYmtrC6FQCLdu3UI8HodhGNjb2xOPC02V9+F9u5RCwQrwkNnIWJFIRFqgnReo\nWjSW/puLSEApGAzC7Xaj3W7j+PhYQp3JYKtuILZ3f/r0qQTphMNhdDod8UIMh0O8ePECJycn0nGb\nLj5qGdoNuoix6T0h0ysxEO8AACAASURBVOZyOdy8eVNAv0KhgM8++wz5fH6lFmfL3Fs6boARoLqz\nEV13nU4H+/v70ndzmaazTLBSU2g2m3JI0CNFN6Xb7cbTp08l4IzzR1vfWqnIjjRgyDgACiRiLwT8\nGo2GRBfStawDo8ijqwKBdB0fHx9L9y2anbPZDKVSSQ4YFlZ5HwIBuKRCQdvswJt+iIPBQIKVZrMZ\nisWiTPxFUVd90lNto81ZKpWkpfp0OkW9Xke9XhfJfNZJQ+KGarVaeP78OQzDwH/6T/9pzrOiVT/r\nBrVT5e1e10TVmFmY7OFomiaOj4/x05/+FE+ePJFT7aznWPY+7W4yrcvlwvb2NpLJJJLJJGazGSqV\nCnZ3d+eCjOxwoLPupdVqIRgMSkJauVxGKpWac9cyRqJarYqbku9bazMuA+UYM+JwOMTD0el08OLF\ni7k09n6/L3Eyy3hx1U1LLWM4HEoexYsXLwTc7PV6qNVqAtYuCy67CF3avg9Wlw5tY51uSzzhQzyD\nDgThPXDiVxUGJM1wPHGsSLGVyKiL7Hrre3bXYJ9Kp9OJ7e1thMNhAMCLFy9weHiIVqtlGwF6ETIM\nA9lsFoZhIJVKIZPJ4MaNG5LNWqlU8OzZMxweHtrGCVjBYbvr679DoRBM05RALl1pyBqzYMUuFo21\naFzmc/B/zRdcvw/Fh9qEYdAWx1zWgm8BffzNYOz8xNQgaMP9qu5/mfq8yndJZLBFMRVnXYfC0rqh\n7E4nh8OBRCIhdjZVXwYNWU/rdyXa1l6vF9FoVMDa4XAoXpRms2nLyOcRCgCkUIvmDasgtRai4fva\nC0CNatG4wPwBtYg+Bj7Eb4JQWPBZ+fsy3PsqZD3lNK2q9mnPih0TL7qGBgEXYSfvi7jhGFDF4jCG\n8abgrS40u2wtl2lJ+rn4XbtnJG6gPwe8MRmtY15E+/tYePA1fdxdpxfRR7YIAFbbvKtc4yJgqkbB\nPzRReyOdVaNw2XOctWGtoN2yZ1zV5Xke+hj5cFW6aht3RVd0RXP00WkK74usAKL1PTug77zXXoSu\n26nyq45lp1br/xlQZXdd/m2HS/DvZXUY+Z5VA3iXeVpm9izCHawm1KI4FTvz47xYxir0jnb+pRvr\noxMK2nZchsCfx/1jtdW1312Pq+1TEt1cZ4U52zEjf3Qmo/ZwEBAjoGZVmfnZRfOgX9fRgLokvBXM\nZRSk9q/r5180h9ZnO+t9vsZov7Pmj69r5J/3xdetws56H3yGdwWMNU6jn4c4hjbzLmLyLRrXbmwA\nbwnrdxUaH4VQsNusZA6CSYvSpledIA1c8X+NXuvsN36OgJVelEUbx07wMIGHv7kZzyrhrk9zu89Y\nmUhrLgT9rIg8P6vReH2vq3gpVj119dha6+BcLtu41g1v1Wz0vVqFpvZ6aOD2PECv9TkBvDWenSC4\nCD/aaUFaKNCTRV71er3ynO/Sc+LSCgVGxzGPnN2Uvva1r0mWWrFYxP7+Po6OjvD06VOcnJxIJWTr\nCWu3GHyPJ7L1tKX/mz+smhQKheB0OhGPx+H3+yVk9/PPP5dw21Wi5IA3xWMYv8BxKCyA+b6TTH4h\nmm8nEHl9awKOLqOuPQA64QzAXEIPA7oYbWnHbGRc3fSFIch0TTKJjVGZo9EIw+FQ6m2apimuUmtR\nXOs4ACRIyqptMQmLqdvMSNSRr8xT0MJymTDX2gjXg/0z2HiGApdzB0ACm1iMlnyxzGSyakI6QY+1\nIba2tiTKVjfPabfb0iGNQWIX0RrOFAqGYfxLAP8tgJJpmo9fv5YA8G8BbAPYA/DHpmnWjdOn+V8B\n/DcAegD+B9M0f3ruuwJk8wUCAaytreHOnTu4f/8+tre3kUqlEI1G59JiW62WVLUF5pu6LHiut1Q+\nMoBeCIaYspIPI/disRgASNUiwzgNvT06OoJpmhLuSrKquBQ0zCJkBSZmTrIaEzc2w2l5Td3oRqvj\n+vSgAKBwYSFVazFTt9stpcsoGLjBuYlYbbrT6bw1h8B8vgh7YwYCASQSCYTDYYTDYdkU1WpVyrgz\nBJm9HxiExMpaeiyS7gTFH/Y+YC4EG7GwyG6325XWdzpWRJujy7QTzg3XKJVKST8LCkwmyTE0fTgc\nolqtCn9yHRd5SqwmAYUc+43mcjlks1kpFOvxeFAsFqWOpmGcFh2KRqOS8HWR2hiraAr/J4D/DcC/\nVq/9CYD/aJrmnxqG8Sev//8XAP5rAHde//xDAP/769/nJjIvw1MjkYhE5JGxyuWy5A1sbm5iZ2cH\n5XJ5qepNWmR3cuN6vV7JLmRqs2EY0oxG9y10uVzo9/vCoBQSds9EJtQZn8lkUhaZzUx42jqdTimu\nUSqV5HS1qrN8Hob6Uoj5fD4RDtzoAOb+Z6IX7Xuv1wsA8Pv9Et5N4aS1BT2/FArBYBDJZBLpdFoK\nxTBXgCdnMplEJpORXoulUgmFQkH6Z2qTzaoFMQ07m81KD85oNCoJa8x9MAxDMijZD4TmA7NMrQeC\nnWbC9dKaDwXCtWvXEI1GYRinKcwUuiwxzyZCvB8dJXsWDsP/qTnygKR2QO2KB8tgMBDhyvUhn5xX\nWzhTKJim+beGYWxbXv4jAP/o9d//CsD3cCoU/gjAvzZP7+L/MwwjZhhGzjTN/Lnu6nRcDIdDsZP2\n9/fh8XjQ6XRwdHSE0WiEUqkEwzCkwWgul0OxWJybmEW0CJgi07GScjablRRcqr31el2awJJR2WaN\njGln1xOLoIBhufVYLIZoNCqqd6fTgWmacgLy/tj3EHhTY8KqjvKEATCnxrPQClPDWUFIq8as/xcI\nBACcRigOh0Ps7OxgPB6jUqnYziPviXPHQjD5fB7dbldOSZoEiURCkqQ8Hg/q9ToAyLotw1KoUfH7\nsVgMoVAIhnGaNFcul+V52BGaFayZhEZziPeuTQkrf2jzKhgMIpVK4fr167h58yZSqZQITQozpnOb\npikFaXVVpEWHBXle/09+DAQC8Hg8Utz36dOn0lIwHo9jOp2K6UAh9C7RqhfFFNbURi8AWHv99waA\nQ/W5o9evnVsoEPAaj8coFosAgFAoJBV4GbfPxqher1fayZHJVpGQVuCJJyiLkWxubkodAPaPBCCl\nvnQKLjepnXTW77H4CYu20BwJBoOSVkwzJRKJSEhvPp+XueHmt0PuWdyDreVZz4B1Bpi5SG2HG3E0\nGomwmM1mCAQC0oDE5/O91THZCtaxCW+pVEKpVJL6kjyRWSg2FAqJNsLmqGx5z0xHuznUBWW46WlL\nu93uuTLxo9EI6XRaWu+xvwTNIwoOake6UI0VR7CmTjMxiQ1z9vf3kc/npUM5DwoKf2omZ/GhFg76\n8zSreK1KpYJutzs3v3wG4ltWbOI89M5Ao2mapnGOMGWSYRjfBvDtRe+T+Xq9nqjCpVJJatIxd552\nP+1Vno6L1DTLvev7EbsxmUzizp07uHfvHpLJJFqtFnZ2dqQyEXEGqt266CptOStphNp6utLG5QYp\nl8tiG+dyOemZoIuwOBwO21oSdqg18x6Ydp7NZqXhK1PAWSOSG9jlciEejwsoxxOWWpF1/mazmQCF\ntVpNNhG1DtrSbCPHOaCqzfbty2pEEANgizm93loT4Kai5kK7mtqnFYux8sgiLIhmSzqdFn5kjwxq\nC8BpIhoFGwXCssQl7a2w3hOFHwHN0WiEQqEgpnQikZir7sSs4XepbH5RoVCkWWAYRg5A6fXrxwCu\nqc9tvn7tLTJN8zsAvgPY5z7wAWkD6tbvbEtG1Z4nppbuWgXj9axkVdO8Xi/W1tZw69YtfPLJJ1Lt\nhtWC2BiVtjZrB7DYC4FBOwbQmgJVdQAyBmv3ET1eW1vD9evXsbW1JR2F2cvS+oxW80ELBr/f/1Z9\nRmoHZDDd8CUej0urMgpBpl1bPQK8B25klgjjycZ1ogkTCoVw//593L17F263GwcHBygWiyiVStJt\nms9jFQz69B6NRoKw82BgWTzgTft2qv0Oh0M6etMLAcynzds9lx5XN8yloDk4OMDe3h4KhYJ8x+12\nS40MzotO67Ym8VkPLqtg4DPT1CLgGw6HkUgkBIcBIJ4bXu9XbT78BwD/FMCfvv7979Xr/9wwjH+D\nU4CxeRE8AXizSJSCPAFYzScWi2FtbU2ahrIHAtXcVQNVCMaQiXO5nBRWnU6nUtSUhTl1iTGqs9QQ\ntGptHZenHIWdrj6se2HSvRSPx7G+vi7l4NgST5/m/G2dN9q29KKwNwH7L3CcVquFV69eyelJtDse\nj6Narc6lqLM7lXWzaibWpgIAwUhYZ+HmzZv40pe+BJ/Ph0qlgmKxiOPj4zktgfdvfTYKCgZesdEM\nBR/XnWAfK1oNh0M0m00pjKPdghpotOM/LTBo8hFwZa+RdruN2WyGSCQiwCdNFBY/Wab9LNMeKGiI\nmVH7ymQyiEaj8Pv9MAwDrVYLxWJRTGtWBL9oOvcqLsn/G6egYsowjCMA/zNOhcG/MwzjnwHYB/DH\nrz/+Fzh1R77EqUvyfzz3HSmyosK0g2OxGFKp1Nwm5OvJZBJHR0dzteuWmREUCD6fT1qA3bx5U6r/\n7u/vS/lu4E2cgd/vnwMYCQjqCEBdOEVLf+IAvFYsFhMtaDqdihcjEonA7/ejWq2iWq0KQy/roqRV\nUWYp+nw+BINBDAYD+Hw+FItFAchoy89mMyQSCQE3WRsSgJSEWyQQ+LdmZGpDsVgM165dw40bN3Dz\n5k1EIhExM1g4R6vXiyoU6ecCIEKY4K1G9jl3NHny+by4PvX1FtVotD6L+Rrl1++z7wg1IJacY/1Q\nNgrWjW9X4UfNlzwEOY/aw5JIJODxeNDtdqX4DwFG3SX8IrSK9+GfLHjrH9t81gTwP13oThaPL5Jf\nI6vFYnGup2IoFEIymRT30HQ6lUAmO3yBjMdNmU6n8Y1vfAO/9Vu/hXQ6jVqthr29PfT7fWQyGWxu\nbmI8HsPpdIpLkkxtGMZcibFFdirvgdoBT+9wOCw9IOjn54m6s7ODnZ0d1Ot1cWGOx2O0Wi10u13b\n+dJ4C082Nt6lqjkajeZcjwCkUhKDjCqVimyowWBga6da8QvgTbQmEXPiCp1OB59++ikCgQD6/b5o\nMcQ8eG+LNg43LwUuBSu1NV1GPZPJwHztAdjd3UWhUHirB6jGdewEHjUEfobxHsPhEH6/Hzdv3sSN\nGzfmvD2hUAjNZlPm284TZafWW80Yto1jnVCu0507d8SU7Xa7qNVqODw8RL1eF0Fpx3/noUsb0Uji\nJNLdNxgMkM/nJZAmHo+LS4+Se2trC91ud66ZqJXJ+D8ZK5lM4saNG+LNGAwGSCQS6Ha7Arw1m034\nfD6JmdCaCoNlyNjWZ9B/WyMjCR5ev34d0+kU9+7dQyaTkeIkjIEgWt7r9SQq0ZqLwTF4MvH9Xq8n\nYCJVcAoPl8slTUsTiQR6vZ5oEJxH2vtaA7KOp5+VvvR2u42DgwNUq1U8e/YMiUQC26+rQIXDYYl2\n7Ha7c2XKFwHFdsKdAkI/E01J7WKmAGe+io63sLsu54pzOB6P0e1250r0AxDXNIUgA4lYI1Pz8TIA\n3Ao+ezwe8T6xGxgxG5oVrBNqh6H92rwPH4qsICAAMQnowqKLLBqNSrm2ra0tAEA+nxc/8Vk1HAOB\nAMLhsGx++nj9fj9isZg0ZKVAYJQePQ4EB6kKL1J9+TyseKzDimkLh8NhXLt2DeFwWDoP0T/PiDjO\njW6/bh2Pz0Kvha52TG2LjW79fj8ePnyIaDSKYDAoqih7TOiqxHbrZBiGqLaa4elaHY/HqFar0j4u\nkUiITcwir/V6XaJJ7exv60nKcXUeCiNBCQiyJ2ehUEAgEBDzgcLU4/GIMLEjCga6LXu9Hur1uvTf\npPZA7xHBXLfbjUgkgmKxOGfuWXnB+nxcK0ZOUlPgIUSQ1OFwIJvNotVqCfBtzdt5F23hUgoFLV0Z\nbszGH1TVWOE4m83KZNGPHAqFEI1GEY/H0W63RQ20S5oyDEOAwm63i0qlImh1q9VCpVIRYIvRbA6H\nQ07PYrEo5cO1+WAnpcnEfK/X66HVakmDG4Jj9DKUSiU0Gg00Gg3RGGgnc56WnaRE5XUnZgDiERiN\nRvB4PMjlcsjlcjBNU0qGF4tFMVHsVG5NFJgA5tRX2t4cezKZIBQKScgxn5vz5fF45NnsTm6+rjUk\nriEFK6NQeV0C0ASHKTD1b/KTHY3HYwmgY9gyNy/H6HQ6ovVoHtO2/SoYAgU5tUiatcwBajabOD4+\nRjKZRCKREKGkMRmdzfsbJRT4cDz9o9GoeBoCgQCm0ylSqRTq9To8Hg8SiYQ0ZWW4bTwex97entic\ni1Qp+tebzSYajQaOj49FRWf/BUby0QXE0GPa3IeHh6I16GASu7GohfAELpfL0huRpwHt0ZcvX+Lk\n5EQAQW4saiSLIje5USgo6ULr9/sA3tQ3JPPdvXsXPp9PBFC5XBYXHgO2rDa2XisKBZZa1yAvAInd\noL0PQBJ6eL9U07W6bvdcWpgzPoHuZB2DYRgGKpWKdG7y+/0SCqwBO4akL1ozChaaDtqE83q9sobb\nr3NyaOYxapLrrYPc7Ejn3JB/k8mkBJgVCgXx2BBjoNmiK3dbwe1VQE0rXUqhALw5GdxutyC7t2/f\nRjAYFMYZjUYS4EN1sdvtYjAYoNlsChILLI4tNwxDAoY+//xzaT02m82kx0Or1cLm5qbY/gAk+Ymn\nud6gy2xhhqTSrmcyUrvdxr1799DtdpHP51EoFPCLX/xCXGkE+ph/QLLbpDwtGFdB9JpAXL/fl2rI\nN2/ehMvlQqfTwcnJCfL5PI6OjiRkVveZ0LEAmgKBAAKBALLZrMw5NRu9BsFgUEKEs9ksTk5OZAxr\nshB9+ot4g+o214QeKbpfmRzHQrH8YdwGg+K41nbrxbFY2p2CYTQaSfBQt9tFt9tFIpFAtVqFx+OZ\n8yRpXuA17cwwnSjn9/tFKIRCIUlIOzo6EpOMmosO2LJe+yICAbjkQoEL4nK5kMvlkEqlsLm5KQvL\nSU8kEnO+fwaUaNV3mX+dodQ6sYlhuTzd6G5iEFGj0RAwzi5GYdFicFPTrPH5fGJH5vN5mKaJw8ND\n7OzsyP9sF6a1BLrvlp0+tIGZNMNrMA/C6/WK+VUul1EsFlGpVNBqteY8PSQ7N5cGvTY2NkQrIwLf\n6/UkGi8Wi+Hhw4fY3NwU84+ouVbf7eo3aDCT88gAMp1YxjWiR4jCgDET1LDIPzonYxEfMpKQm5bR\nlFxLHlAEfwkec2xtTi0DGMmPDPYiwEjciHyoTV62OdB8sMh7sypdSqGggRI2Z2HKq9vtxtramqjA\nFAwE+3Z3d/HFF1/ISbVKi25uMCbTkNkYRuvz+aQLNAN/mAvByDW9KHZMbSVKdwqrer2OWCyG4+Nj\nNBoNadNONygFAM0hnUFq9zw8TTqdDoLBoNi8VLfZTo54ye7uLo6Pj0XQWeMH+FzW8WazmfTj0D0q\n2Quz2WzCME5Ddbe3t5FOp9HtdvHixQu8fPkSxWJRBKQG46wMrV11OuWZgKEGm4FTDZNCgdoIn4e8\nQ83LTiOx4kLkM4KKxCrocaDtz1NdzxOFxTLBQ2yA12cyYCgUQr/f///Ze9fYSNPsPOz5qljFYt3v\nLBbvze7ZmZ7Z1exKsCwkMgQFSLJCgE3+GP4Ty4ER5YeExIADRPaf6KcTxA4cBBCwRoRIgBPFgB1Y\nCBwltpGFECjSajy7mt6e6R6ym3ey7vciq0hWfflBPoen3v6+qiK7Z5s94gGIIotV3+X93ve85zzn\nnOcgmUxK6vvc3BxarRa2t7dRqVQEs9HK4LbZjMAdVQoUmpTVahVbW1vyAFlQwyYjrVZLOuY8ffoU\nx8fHApKZgBKFg6ezDGkezs7OinnKGgGPxyOZd8xm0wkj2oebtFB5TbRufD6f9IuMRqOo1WpirvLa\nqEQ02q7JPbSJys+xjLjX6yGdTiOTyYjJTGykWCxia2sLBwcHks6sW57pHdppoukFXK1WkclksLy8\nLDslnwF3vS+++ALlclnK3LWlZVmW3LPbuXSyEqs6mUima17Ozs7E1GeKvK57IE7AUPekMCHPzzlJ\nXgUq1/n5ecFuLMsSjMkct3EWpE7TJ5jJwifiIDMzMygWizg+Psbu7i6azaZkMpo5Mre1FN6Zvg86\nBEWTlfFcvUD0DzA+BARgZJIB1+FBnY8QDAbF9G61WvJjJouYCshJEZmhI4Jg4XAYkUhE8ts5aTnJ\ngNGCIGIM5nk0WxN3bloKi4uLiEQi8Hq94sf/8Ic/FCCT79E60N2sqCScfH3LsrCwsIDvfOc7ACCL\nxe/34+TkRJJsqtWqdJzm8bR5rRfmOCXO8myGdxkiJDOR3+9Hr9dDtVpFrVaTmgea4lQKdDdNxWrO\nOS3MHwgEAkilUlhaWkIymcTCwgKGwyFarRYODw9RLpdRLpel4Sw3gXHzkanMDGuGQqER644WCq0D\nWghOm57Leb6ezWBcvi+/T3s/+juarYgLl9mS3I202c4JpU02nnvcrqBzLnSEhZOcyS66nkIvGG0a\nMvnGjN9rsllGZBjOJVMVffhut4vPP/9cemNy0moLgWOjU4qdzG2PxyPgJXc5hkO1q6N3s5vMPX2f\nTEzi+zMzMyPKm+4bsRGzoSzDf7ymcf63nif8nYuUWamRSERC1Z1OR6I4rG3R4zrpHnW6NseV485r\n5PjfIpX5L45SuI2YFZXa7NcPRz8kjfByceqqRDPSoSchMKoI9MLTuQucsCZoBFzXXdCKoOhrI5oO\nQFB5Xie5FEjiQjo07qAmfsBjMc+f1+Pmr7rFxk2lPc1n3P6vzWs9hjqsyTE1lYG+Tt6rfkbjFIP+\nn35uTOmmQjezJYFr6rxp1poeQxPX0GPgNkYTznGvFCac85Xf+bCd0oedqs60MuH3+L7Tg+P7elKZ\nD15PCP1Z/T/AvSyWgJWetMQPSPNGHkRGW2j18Bp5XTrmra/TLTdCi8Y4nN43/2diIk7Hd1uYGkPR\nx3JKJDN9btNtcROn+aKvw+3539a/N3Gi2xzDQe6Vwr3cy72MyFRK4b5t3L3cy72MyJ0KSepIgGl+\nO5mP01g52mQHrklCCMjpAhzThHV6NSvdTPNYf19n5/F9fR6n67sJUOp0XyZirk1ZJ5/fNJ+dfjfv\n0SmxyO04JhZw0/u7rbzO981yZ6cx0Mc38zfcxsHped1FuVNKgcKFB4z6bNqHBEZTQ/k/ppma0QE3\n391En53y7rWPqq9Dg10a+NPXbx7HvC8Cj6wD4GcYk9aThyCW9pWdJr7T/xjG5fl0eMz0XYneO1V7\njrsv8zimonPCGfQGcFMlws/qRjBc0Hz+lmWNYCCTQtVu59HnYhWjvn6NKxF7MkOub0qccKY3efw7\npxTMyaUnDQddAzp8SExiYXiKE6JcLo9w/zmdSy8GE113W3Q6m5ATkYvN7Xv6vLRUiF6bSLiOWTPG\nzfsFpkO0TZSc7+kQmZvVQsti2sl3E1BM/8+Jm2Hahcux4zMnuzEAIaDRCt3czZ2uh//T18Hz8Lkx\nuY2f4fhqoNOcG7Ztj81TmEZ4TpZK85p0Ity4UvBp5c4pBY24M0bOBcQdmKEn5u8z/z0cDiMajcLj\nuWQOajQakq7rlt+uFYKeNE4Tha96oXGRDodDKf1lQonb97VC4Hm5g3MxspBJv6+r9ZgD4LYL6evU\nf+uKRzdXQv/wu5PyL27qHjhdK8XJfTQ/T6uA2Zls1MJiJ61o+VyZMKV7IrgpfV6HZVnyHFjGT0Yl\nKiRaDSxH58Zllo07pYlPGhf9TLgBRiIRyRxNJBI4PT3Fy5cvUSgU0Gg0RpTSbeROKQVzELRpzzpz\nJhQxtZTsuqlUaoQGncQiTKfd29t7peUZMNqJWCsjLli/3y/55kw3Zb8GNiPhdW1vb2NnZwelUkl4\nD/W5tOXDCc00aibf6NdWqyWWwtnZmbD6zMzM4OXLl6hUKkKeYt4XAImdM/mK90orimNMJcXvmu6P\nZj92akPG++F4OvnT/L9WiDqvQFuBTPvWzMTmPKFluLS0hI2NDSFU4YJg7wnyHjCzst/vj1R/OvVk\nMBUUz8eiq0gkIj0eWIfDjYidoUh2S67LXq+HUqkkCmJa0a5qIpFANpvFL//yLyOVSsHv9+Pzzz/H\n1tYWOp2OUPDzurVLexO5U0pBL0zTrGVxEmnKI5GIpPGyIEfzB7BeIBKJoNFoCBW2BhV1noCetKxS\nY7efVCqF999/XxQBC4rIoERKb+C6uYmuMDR3HuC6bdvs7KywD3HCcRInEglZoFws8XgcvV5PGKFY\nAmzW0Xs8lzTgZHhiX0j2emCKuFZSNEep0JiNyLHRSUxa+H9WIfJvnpNK3bIsoV8jmQxLf3W2qG3b\nUnzm5F7wWuPxuHTZIoOUbdvSUEdnOtLasm1b/kfl6GQxcS5QeZF7IhaLYXV1FZlMBvPz84hGo+j1\nesKClMlkJBfE6/VKpahZ7j7NTm66ch6PR3g00+k0dnd3heSHdTnaReEmcFO5U0qBD1znoptmMOsE\nyEpDwhMWMnHxezweIcGgia8ntLlT6t2HuwLbm7G5LQt8BoOBcAzGYjHEYjHMzMygXC7L72aNg/Y3\nuSDp8iQSCSEIubi4kBRZLngek7sgs/WciFQ5edgkh30Wo9EogEtfO5VKwbZtxONxib5QGZIDgbvc\nxcWFpApzJ9KZm3ono9Imz8FweEmPxszKSCQikzoajUpHo2KxKNybZ2dnQvBiKiDtZtBlYN0BQd9K\npSJl4PT9AYhiYIkzFZybJWImcHk8HqTTaSwvLyOXyyGfz8Pv96PdbqNSqaBWq4mrwZ6apH/TVZK3\nda84D1KpFBqNBg4ODnB4eIhSqSTPR7utToD5tHKnlAIHTaP8FO3TpVIpLCwsCOGnLpFmPwYuIh7X\nSTubD4l+m+4jubKygoWFBYRCISlUqtVqaLfbyOfziMfjAnDG43FRZCa9l6mAqBiYNx8OhwX4Y1dm\nXT/A0lkeezAY/c4btAAAIABJREFUiHtgTjQSirKxC8u+W62WuFt0UdLpNACM7DDNZhPb29tC9BoI\nBKSa0XQfOOE1CEf2IfJZLiwsIJvNIpVKIZfLCTciezIkk0lsbm4ik8lI8RL/Z46h3jVpqQGXBC77\n+/tCfMMW8Nq9Y9tBMjA5hR55Ho/HI+NPS4H0calUCsPhJWPX8fExSqUSDg4OxNrjHOJYVKtVqeS8\nDdhoWZel58vLy1hdXcXBwYEwcmmWKw3Iv07E404pBcAdcabpvri4KD+dTge7u7uSu8/cfhKhsCiG\n4M+481DLU+nE43GsXdX/R6NRVCoV7O/vo1AooN/vixmcy+UAXPrb9IPZKclJ9O5K14GT5/T0VLgN\nSP1F2jI2SeWiZJWk23komtSTuzZ7bhKooqLRLc7IN9hsNjEcXjY7KZfLrqi9rgHgfSUSCXzwwQfI\nZDJ49OiRdIxqNpsjfnKn00EqlZIJTlIT0/zVSp5VhKQuI98lTWlaix6PRyonaR21223Mzc25mtb6\nfUYXaHnF43GxSorFIvb29lAoFMRlYaEUe3bYto1wOIxarSbjdFOTnhwi+Xwe2WwWP/jBD4RZ6uTk\nZOq6imnlTikFp12POxCbveRyOSwsLCAej8viIRGJZVno9/vCYUcqLg2u6XPp32nyMoKxsbEhLegH\ngwGeP3+OUqkkoS6a8B6PRwg8Xr58KVaL6aroHY6IdTKZFBeF5C31el0QZDYoJbhJRigCkMRRzPGi\nxUOglguEvxOD0RRvBKjoMvj9fgHjTk9PhXfAVAQ8J4ARE5kALbkb6X6Qf3IwuGx6A0CYryqVyoir\n4gYAejwecY3IunRyciI9KnjdBAABiHUEXFoVLD932r21BUEFzg0nGo3Kszo+Pka5XEahUAAAcV9Z\nnk5+RR6TnBI3ET7/Bw8e4OOPP0a/35fn3+/3BZTVloEOs99G7pRS0OabBpTYemxtbQ0rKytIpVI4\nPT2VztNc1ASzOKm4a5P3wAw58hx8gOx9QIp1PsRyuSxkLuxlSSCy1WrBsi55Hqk4zFixjvlzcnCS\nkuq83+8LVySvjbsOSV2ZpEUlR1dLT2jGw8ku1Gg0ZCcdDofSqZl8lp1OR9wSj8cj3aiOjo5GSEqo\nLMwxHA6HI7kTfGYej0dcHp/PJ5T79XpdgGJaJy9fvpRnyXZ2mq/RSYjHZLNZeDwe4ebU+QLBYBDZ\nbBb5fB6pVAoABF9pt9sCCLqR7ZrhZ62ECfKyxwOZrQh4cnxIq2biStMK3bB4PA6PxyP0awSQddcr\nLV8b98EEFrnj0URcXl5GPp8XYJHkFYxVU1NzImvQjrumKZzERJdJ1BGLxTAYDIR8hGafx+ORiARD\nhLVaDd1uV+LEmufAFBKN0kqgIrNtW3pZkByW+RcENXXJtGVZI6FFPYa0jtjurtFoiPIjwFepVOD1\nXnbL5nn8fr/stOz7YNu2uGDmDqQnHhWhtiZIOkoL6vj4eIQ9i64EqctJL39ycuK4UKlcmaxGwJRh\nWQKLOomNrhLPF4lEUKvVsLCwgJmZmRHqOXMemvPDxIpIBHt+fi6WBM8NXLchMEO80+7idGkZ/aJS\nIF7BddJut+Xzb8KNuFNKgaJzBfhQV1dXkUgkMDMzI30QCPLR5yOARTOZpqrZuwAY1db0s+fn54WI\nRO960WhUwEu2W6Mp32g0UCgURCFQUWnRi4esRLFYDLlcDtFoVKjXCTYyfBYIBJDP55HP58XcJ+cg\nd1KncJp2lxheJHre7XYRDodlcpPxmUxFpLgz3RK3dF0ucroftHhyuRxKpZJEbKiYaPmx5d7+/r70\nydRsQuOEwB9feX/s4H1+fj7SaIZt6XjtqVRKcgd0xqHbXOTmRFeSXcAYFaIlF41GBUDmDk4rQ4dq\np124DOGurKyINWpZljCLM5xLy2xc8t1N5E4pBa2dg8EgotEo1tbWsLS0hPn5eXi9XpTLZQFZVldX\n0e12hXHH5/MJas3YMfn53MJbXq8XiUQCS0tLSKfT8Pv9ODw8xHA4RCaTgc/nQyaTQb/fl7qKRCIB\nACgWiygUCiiVSqhUKiP59ubOQL89FAoJXyJNTiLdS0tLyOfzEvsOBoMjxCgXFxcjjVnd7otZfK1W\nS3xcXju5LekyZbNZcR+CwSCq1aq0WKPPz93b6b60yzcYDIQ1ant7G7VaTfAL4FL5Pn78GNlsFo1G\nA7u7u3jx4sUIzqB5J03ROQ/EgBi7n5mZkZAhLZ9KpSLksbQUaWEQM5mbm5Od1jwXsQviTFx0vB/O\nSSoeRlRo0Q2Hl13G2C2cZK/TWAqWdUk1t7GxgY8//liu5Wd+5meQTCZlc7CsS9Jiundvwlq4U0qB\nZhsBv0wmg2w2i1wuJ23TiBHQ32ZY7+LiQjpFM8WZLMFcKE7IOY/DtGKGsjyeyy5RpGFjW7f33ntP\neiSenp6iXq+jVquJqa7DQqZonIBs0ToOTtcinU5LbwFaDJwA5+fnwlLM+3IaQ7IWc9x0mi0pwwFI\nApjX68XR0dHIrsZMSuZWuEVw6LJwYdCSYdiO9xwMBrG0tIRAIICjoyNRprpPwqS6By4upnsTQwmH\nw+j1eshkMmJpsAmrdkkjkYhYPWR+dlNA3OU1zRzDrdp6CIVCI4lwjE7Yti1hVX5+mkXLa6UCY64J\nFbnP50MkEpF0boZl9ffNZ3QTuVNKgTfDmHI8HheAhZONHYuIitNvJDV5u91GuVwewRKcFqq2Snw+\nn+TN0yTjwgoEAuh0Osjn85ifn0csFpNYerlcxvHxsSgInZbtlGXIe9PUXdVqFR6PR/zai4sL1Go1\nzM7Oot/vS5EPlRRBOIZZne7LvF8qH4KTVKo0O5klSvyA9Ow8Fncgtx2OLgsAUQZ6Z6afPT8/Lw1s\nDw8Psbm5KRgMvz+JMxGAoP+FQgHhcBgnJycSYqQiajabODo6QqfTkXZytm0LMHh+fi70/ONcB44z\nE7Ns25ZsVr7P8+r7YF6ImeruxOrlJASkg8EgQqEQEomENIThc2y32yOtDpxcydvInVIKFE6mWCwm\naaMMn/GHZiSTlQaDgWSXMalD+97mRNMTXGdJcoFyAtDkI5JNs/zo6AjFYlFQaC4GnY1pnsu2bYmI\nMBYPQBQRw50zMzNiHemmH41GQxYsq+IAd34DujMkn+WkJQbAHX52dhb1eh3NZlNCgqYZ7Jazr++N\n2ZYcBx2FSSaTWFlZgdfrxcuXL/Hs2TNhxNYLcxrUfDgcyvOlC0BMg3Og1Wphd3cXXq8X6XRaIi+M\nvrA7Fa0Np3Oaz1CnhVPJEg/inA0EApIZqj/HZ68VqJsQTGW4u1qtIhAIoFarYXt7G+FwGMlkEn6/\nH41GQ8bQvO7buhJ3Tilw8BnLZyESdypq7sFgIK3Qut0ums0mdnd3sbe3J5ONuzfNXw3EUGMznJRO\npxGLxST1l5OOoR/6lP1+H/v7+9JenT6+7ing5Dfy+hkGbDQasnBmZ2dRLBYFSWefTO4ojMGzhRwt\nBeDVZBhaKVRoTKihYmNkg4spHo9jMBjgxYsXEndnIxqem5aKUx4Jz8kxJdAGXKPzqVQKa2treP/9\n99Hv9/GjH/0IxWJx5PnwODo/wClEyIXGFm1nZ2eIx+NYXFwUnIW4E/NX2FKQbiI3GG3dmaLH8OTk\nRAqO2JSXrhstV+ZAaDCSkSvdLp6p1uOEG57Gadgro9PpIBqNCn7G2go9hq8rd0opcEKzmIkpqWzx\nTYSZOQlsilooFHBwcCDoOUOSGrQyzURz8lH79no9zM/Pi3YGgHg8Lllph4eH2NnZkXNpy4UP3tx5\nNK7BzsUEuIiiAxA0nJOdVsjZ2ZmEPdmsVS9ErRT0zs3zac6JUqkkO+fMzAx6vR4ODw9Rq9UkK48L\nhqCpNo2dTFTznFSA7AO6traGb33rW8hms/jDP/xD7O3tjexu5tjp99zmCfGiWq2GeDwuz4uuAf1v\npnXn83nMzc2NFKsRnBtndg+HQ8mt0PgM3Tqmofd6PWn4SsU1GAwkr6DVak1lBVGorDqdDorFItLp\ntLT5Y54Oe1pw3L+27gN3G2roSqUiIaVgMCi9Hn0+H2q1GkqlEra3t6XbEIFIWhMasXYLSdJMOzs7\nk6pLug20FBqNBra3t/Hy5UscHBxIQo/u4sQF5JTKqsE7tplnsxnGurWVwYnPsCc7XvFYnAimf2qa\njoPBQHZEItjNZlNqEJgnwAlGC4tg3bRsT/p9muqsBdjY2EA6nUa/38dPfvKTkbwHvVAmTWJzsdKN\nomJmYxjusCxLJ0iqszTZz9MNU9DKjh3GqbzpxzOEzOgNcOm+UAkwbVvzOExbHclrbLVaePHiBbze\ny87kiUQCtVoNx8fHePbsmXSiuk01pJvcOaUAXAM8pVJJwmlM3vF6vTJxDw8Psbu7i0ajIX49m5ro\nJB/Lsl5JKNKWAouccrmcoLkrKysjZdDPnj3Dzs4Ojo6OpLUa/W4uOL463Y9WCqzpZ3SAxU38m1WK\nrMKjOaqTYWjeuvVB5ELQC48AI03c2dlZdDodFAoFVKtVaSqrU591GrDbhNbpzkTZmTlIK4uKlT04\naXmYVs40yLxWiLrFHRd9MBiU6w2FQvI7k7H4XJ06bJnXwfnR7XZRr9fFekylUiORBt2azuv1jrT+\n0xT60yoF1tKUy2UJwa6srAAAXrx4gS+//FLcV61g34TcOaVAQIbVdyynZetvKoXhcCgNNun36npy\nJ3PeybwiWl0oFJBOpyXrjbsN8x62trYk0qCVj3YNuNO7kWjwMwQZGT8ndkIF0Wg0RFH5fD6JdjB7\nc1zGpI6qaMXHHZ/KgJYUQUzu3rpnJX1gKmPT1NbKjs+GVh3vJ5lMCq/A/v6+PCsTLddhw3EKyOn5\nMcqkFSf5DMilYds2crmcpG5r12icm8INhU1zWSTW6XTQ7XZHqh9psfAaCCDrTWPaxUuFzxwH274M\nb4ZCIezs7Ajg7MTy9boyse+DZVm/A+A/AFCybfujq/d+C8B/CqB89bG/a9v2v7j6398B8DcBDAD8\n57Zt/18TL+Kq74PecYLBoEwSnfKsQRruEuaOqBcDJy7f03kB/N/S0pJQXJm1+VQ6u7u7MpnNWDrP\no8/FyaTvC8AIySzdGibD6O5O2jelouT3uKB5L1z0PBevgeYzsyTn5uaQzWalNBwAjo6OUKvVpFku\nd0biEPShzZ6WxvODx+NBNpsFAClc+/DDD/H48WMByp48eYIf/OAHohicxpDH1ziFy5xxxYj0NRG0\npsXJcaXiZXaiFq1Q9ZzUYKGOEOjz6eemQ7q2bb+SIn0TcQJgb2EZTNX3YRpL4X8G8D8C+D3j/f/e\ntu3/Tr9hWdZjAH8NwIcA8gD+lWVZ79m2PdUI6InAicmJqs1vfsZJGZg/bskwevGw1LZUKmFzc1Ou\nhb64mRdgTkZOIh2OdNpRuXg1yQd9R6eHbl4/fdpJOymPQYuLE1QDXqVSCZZlST6H3nH0gtChT3Mc\n9b1SSdm2LS7OYDDA3t4eTk5OhCHIjDboMdTv3XTCO32P7olWnjyPZsZyGj99DE0sA8DRFXXagHRj\nWJMR6abyGorgxjJRKdi2/UeWZa1NebzvAfh927b7ALYty9oC8JcA/H/TfFnfsCa7BK4f8Ljdiq9a\nY+sHpY+vfyc2wPiyuQNrxeNkHZjnMLP/zPOb92UqEio/81waF3C7Lz0eFxcXaLfbYkoTH2m324Ka\n0/zWx6Wp65Yg5SbValUwkc8++wybm5tSzNbpdCTUSSVlLj79XCbhC9NgD/q4uuhpUtakKRrQdZtD\n+nduEtxQ9Iahz39X5XUwhd+wLOuvA/gEwN+2bbsOYBHAn6jPHFy9N5W8icGiBTFJ9E7L351ISced\nx21SmeefdD03NSXHfd7p3IzkvI443av5HvPxea56vY6jo6Opj3eT/08S/f03Ob4/je+/bbktkdtv\nA9gA8DGAYwB//6YHsCzr1yzL+sSyrE9ueQ33ci/38hXIrSwF27aL/N2yrH8E4P+4+vMQwLL66NLV\ne07H+D6A718d46t3lAwxTWXTH6QbQItAhwGBaxNff17jFABuTbF9L86ix9rpd1Oc8A+n383P/jSF\nbolTbouTi+j0OfPzptzUAr+VUrAsa8G27eOrP/8jAD+5+v0PAPwvlmX9A1wCjY8A/PA251DneiWi\noP+nPwNcE4lO06nJabE7YQQABCfQ52S0gD7jmwKDTKzCzXe9qehIjj6ePoe+7ze9UCbhBJNEg8n8\nXaP/mjWZn9ffNbEmp2Pe5F7M350Uz7QL0lRuGuw1Iw7mc2S0zGneT4MFmTJRKViW9b8C+CUAacuy\nDgD81wB+ybKsjwHYAHYA/GdXF/LUsqx/AuBzABcAfn3ayMOY849MAg1QORFkaOUAYCSEaB4XuEaX\nNUBJy0FTqJuDrP1GjTbzfzd9GHpi6RJbrXD0Qr2J9tdot9vOqK0ct5Tw2y7or0LJcB4wIgO8GinQ\n0ZRxwPRNr4vzToclSd3H+WMqn3H5EHp89D3pDQcYVWD8G4AkL7Hi1ePxuLZKnEYm5in8NMTJfeCg\ns2ad/AOani2VSkm9vi6AOj09FRYkRjHMScEHykHX1oKZaWdeF1/NB6Qfpm07Zxs63aOeDEz4YY08\nd4FOpyMJRm6lsk7HZ3o3j89zckwDgcBIGjMzQxmK/CoshtcRjjezLVkHo0PXvF+nJrq3iWjoMWOy\nEglqyOvJFHTSBJJVmuQ4binO2tLhffFvp4xPnXvB301LQadVG9bKG8tT+KmLZVkjg89mKdFoFEtL\nS8jlclhbW5M6BaLeu7u7ePLkCQ4ODjAzM4NKpSLZeGamoSYT0X4dGX1I6smJYNu2pMxyp7AsS3gI\nNSsUs93c7o2vzABkG7wHDx5gfX0dv/ALvyC5/eVyGc+ePcPTp08dmXXGKQfem8/nE0q7XC6Hb37z\nm3j48CHW19clualarWJ7ext7e3t4+vQp9vf3hbnIiWLO7d7Miau7aLFsnBOVE5g/wKvhW6exm5mZ\nwerqKtLptDBZBQIBzM/PC/9ApVLB8fGx0LCzKlPnY+idd9wmwHLoYDAovTQePHiAVCqF9957D3Nz\nc0in06hUKjg6OsLTp08l6qKft3Zf3J6XnpOaci4UCgntWzabxcXFBYLBIHw+n4wnU54bjcYIGe5N\n5U4qBeA6NswKNHbeOTk5EQ79er0uXIecDLplHNOhdeWek+9M/kWWF0ejUaTTaUQiEVE8WiHw+vTf\npDpjnvw0CSp8mKzDp+LTDT5o+bBegszU01gJVF5kslpfX8e3v/1tPHz4EOl0GsFgUKoN+X8m+7Ac\nnQ1bJwmtEq0ISK5COjMSxZ6fn0vBEHkHzWfjdHyOdzgcxqNHj5DL5aR3BanrSNybz+dHunfR6uHi\n1/iQPr4pBPY4DxuNBqLRKA4PD9HtdtHtdpFOp1EsFkc4IpnqbKbejxs/3h93f84J8j+mUikh+zUt\naOByDhYKhRG8hUD6TeTOKQVtjtM3ZxkxNWmr1RK+gWw2i/Pzc6mZZ/quXljAqz44B4wuCnezhYUF\n6WhEZcO+AizJBiDl3JxcZExir0nt65riBICRGmxmZgafffaZUMlzDKgg3TASp3PooqalpSWsrKzg\n/fffF7KYcrmMzc1NqbmIRCJYWlqC3+9HuVyW1OdpnhktA1KWkZ0onU7L+TOZDF6+fIler4dIJIJy\nufwKQcg4YZWnpm3PZrOYn5/HcDhELBbD6ekpAoEAzs/PkU6nJa2cC5U1Evo5THIptIXG8SdzU6vV\nQrlcRj6fl1JsTWCjXVc3ZacjCpyPZNemFUJqwpmZGamZoTVBF5FNY7jR8Hg3lTulFEyFQI1HboTZ\n2Vk0Gg3JzuPOShOc1YY0qcyeh2aWIbP6qBSSySQWFxfx8OFD4cYDrhmLSZpBE5S+/9zcnFgzmmDE\nSfTEMJFyErTu7Ozg7OwM6XRayqrpO5sdpiftPqx52NjYwLe+9S3pzFwoFPDs2TM8efJEeC7X19eR\nSqUQDofxjW98Q4hC6vX62JRg/nAcScG2uLiIeDwufTkBCH0+6fGDweArSWNuwKauDaEVwAKlRCIh\nHZ+5EMPhsPSQLBQKyGQyotx1VuW4KIFZ6Gbb9giIx1RmLlIdqnaKcDjdF8+jNxKv1yus3+FwGKlU\nCqFQCN1uF9VqFRcXF8IynsvlJHsSgFALMEP3pnKnlIK5YIDRHoftdlsYkQGIFiUPPk1RanYzXViL\nNtfocyeTSczPz2NxcVFarFWrVbRaLbx8+VL4BAHITsXGH6zP1/Rvk+5Vm3hsusrKvuFwKGQrmjhW\nH3eSC8HJmc1msbGxgdXVVVmMm5ub+NGPfoRnz55hOLxkrj49PcXGxoYoxl6vh0KhgKOjo4mgKc1j\nLkgqBpLq1ut1oanX3aNYsanHxO3eWNhFYh1WuEYikZHOUFSiDx48EGVF1mxGdgi6Aph4b3osqRw4\nP1hsRSo/lr1rRTNuLujPmXOCrQTIMk7X+ejoSKxUdqwKBoOCn+n8mK8kJPnTFL3zmdWCHCy2ESfY\ns7y8jFgsJjRXpVJJKN7HVdtpcJF4RSaTEbZhlvsWi0WUy2V8+eWXYjqylp6LlX0MSVSiQ5njhBOC\neEYsFpMJS7JRWiFOzEfTWArsHfH+++9L85Tnz5/j2bNnwrhEIJbt3Tyey4Y38/PzQgE/qUTXtq/5\nLNmdejAYSMcsPkOCxR6PRzgH+X0dhnW6F/rHvV4Pu7u7ODo6QigUElo+7YqsrKzg5OREODwZHeL/\neX2TgEZeG4X3ws9Ho1HMz89jfn4efr9fukA7tdlzel6motdhTioer9crDXoODg6Ess/kq9DkxbzW\n28idUgrmgOliIQDycNlo9tGjR5ifnxfOgXK5jMPDQ6FA5zGcjk9zjT4wy4m5k5yfn6NarQqiTKpw\nIr40TXu9npybRCXA9PnvnGBspXZ+fo7l5WVpYmvGvieNmRayYi8vL0tnqF6vNxIu44RKJpOy252d\nneH09BR+vx8PHz7EH//xH0tDHSfRO65lWeJCaFKcVquFYDCITCYjfTOm8bn1fVJhnJ+fY3NzE5FI\nRCjXuICIIZBQpd/vi7VFrkTupuOU0Lhr4DWTDWlxcVGIVUhpZ4LBk+5NA8P8YciYxVyNRkPwGIZC\nE4kEzs/PZfMikznL06exgky5U0rBSfRgEjSLRqN4//33EY1GAVy6FTSr2EdA76xmKrM+tuYhIFqu\nuxVdXFxIzwJO3mAwiFQqBZ/PJ2FDovUMuU0L8FDRhMNhWaAEUEnOyWuaZF6bx2VORy6Xk3wEYgSa\nBVk3XwUgWIvX68X8/PxIM1vzvBpV1+N5cnKCbDYr/+MOSHOYHJdkPZ4k+jzEd87OzsStikajI23b\nPB6P0NSTUUrvwtpSuMnC4bO1bRuzs7PI5/PSp6PT6QhtvBnd4DMxFavGG3iPnOesUuU9UFGwQRGb\n2jQaDRSLRRwdHcnvDCOPS4t2kzuvFCg6iywej0uIsNPpoFKp4PDwUBBzHfPmRDIfCB/cxcWFhHa4\nCP1+P7rdLmZmZiRJKhwOS8+AVCoFj8cj5lq5XEapVBppZDvNROd1aV/U4/Egk8mIUqEfrePc0wgn\n1+zsrOwmFxcXYn5yckejUdi2LTyEc3NzODs7w/r6ujTdZehyXDNT/Tt3YYJd3W4XXq8X8XgcmUxG\n2KVqtdorINw40T66LuvWpeAXFxdIJpOCa5BZirs3LRiGXnk88z7cROdKkF9zZmZGmudOy8Podmwq\nc80tORwOpesVwWcCt61WC4eHhyiVSigWiyOh63FZlOPkTioFM37MxBH6xplMBgCwtbWFer2O4XAo\npiGjD2aSii5uAq7jz9TIrVYL+/v76Pf7qNVqAiaRRXdhYQGdTkc6YHs8HnEb2DqOFODmPUy6V5q8\nx8fH8Pl86HQ6ki9BzCKZTI5gJfr7bkAqLRCa781mU+jpGdIlXkHS1r29PbHCvvnNb+L8/FyYi93O\npfGA4fCSn+Ho6AiBQACZTAZerxeZTEZ+yD2oEXseR7sJblYJz8NXuiFsDEMAbn5+XkBbtuizbXtE\nyXETuEnoNRKJ4PHjx1hdXRU8q1AojOAyZq4JxWw1oN9n/5FUKoVEIiHNkKh8EokE0um0KMJSqYS9\nvT0cHBxISwImzenI203lTioFLmDujmTpTaVSmJ+fRzqdxmAwQLFYRKvVwvLysrgI8Xgc3W5XogCa\nwNQUTiq6Gt1uV9ijuSsTyWZ4kmFIy7LEVSEdvT7mNA9DR0ioxMgvaNs2UqkU6vW6TBI2n7nJg9Yp\nwNqt4nXTNNW/0yzX5uyk3U/v+CR32d/fR7vdlqQwEtNSUVGB6sU+bqz0ebTo5CJaJ6lUSrg2GarM\n5/MyZ+h2jMv70CAknxWVwuLiIpaXlzE7O4t2u41ut4tkMimfJ8syn6tTnY75nBglYeYiuTuJNzE5\niyS13W5XSIQ55/WmN02Sm5Pclk/hKxWdscVYbTabxQcffICVlRUkEgkMh0OhviZSy/bubPpBUFDT\nYlF0lIMAHH1PtmZjcgpDkgTbNL7A3ZtKiDIJU9CTjBmU5E9kg1v69QRC9Xf1j9vxmY3ILDt2ucpm\ns8J4zA5D3Fmi0ShmZ2cFYzF35knCz5J4lgzYlUoFxWJRQmfEBHTPjHGKQVsQXGS6WpBRpEgkgocP\nH2JlZUXS1AHIwmIIma37ND270xjSzWI4MxAIYHFxEaurq1haWsLc3Jz04GRWK58lXQuei1iH0zkA\nCPsXgVp2KCeASoCU1izp+UlYy+iPnhvvfPIShbs0zc9EIoGPPvpIzLVOp4NyuQzbtiUKQBowLmTN\nNqT9S40xcJIxlZjmdCAQkAIrpseenZ3hG9/4hrA703ejluZimAZJ1wohFApJOisXcaVSQSQSwenp\nqaQ98zrMPAW3CW3btigrmsbEFxYXF1EsFsXcHA6HMgHz+TzW19fx4MEDzM7OSoHPtOzKHG+a9Dqx\np9Vq4eRCF/zzAAAgAElEQVTkRFrP85hOboLbuGmLhFmUxFwY3WBaOucRu2gTwGO9CrGAcbs4z8W0\n40wmg5WVFSSTSXlerVZL6ORDoZDU4hQKhZE5pPk5zXMA19GiZDIpVgHxLs5TuoKNRkMyTmnlMXKk\nXZavBabAhw1AwJX3338fy8vLyGazEqLx+/1YX19HNpvFwsICwuEwSqWSZNBxUQHXmXB6gOhaAJdI\neTQaxenpqSTTBAIBMTsZuuOOenFxgZOTEwHtqBjod08DnFmWJd2nQ6EQTk5O5KGyAId+JvskOAGo\nbmLbtjTk5Th4vV4sLi4KUMfuz1wwq6urePz4MZaXl5FOp9HtdlEoFKSl3aS8CPPatJVhWZb0qyyX\ny69kFvLzHJtxFgNfuRB0n4lEIiGYE/koCQozg/Li4gKNRkPcRDcAV4PTHo9H/HwufsuyZC7OzMwg\nn88jGo3Koo3H4yM9Lpx2bR2pYiIdoynMluX4lMuX5OkMkxPc1hWRfKWiuwnFIOVOKgXmI9AtYCw6\nl8sJumtZFubn5xEIBCR5xe/3yyCcnZ05Is0U/YBoVbAAKBQKyQ5CxJrgIoE+AlWcbPr6gfF5Cnqx\ncGIyCYVWB3P66RPrfgnmsdzk/PwclUoFz58/x9raGj788EPE43Gsr68jnU7j8ePH2NvbQ7fbhc/n\nQz6fRz6fl3bupVIJL168GOlVeBvRO9fx8bFYPjStNXg6zkrgq6lsAoGAFMRxMRGg7Xa7spMTVGY0\nhGAgd1c30eeOx+PIZrPw+/0Ih8MC/AFANpuVhcjqRs5n3VXcTQjS8v5ISX9xcSH4QbValc2IESVy\nSDDiwHPcJAqm5c4pBSoDmpwAZKFSI/PhU0sOh0Mp9a3X6xIJIJjGB2+eRyeM0O/u9XqSNq1r1RcW\nFiTXvtFooFKpSGqtpjfXkQ5T9A5IEJNU7xcXl/0JV1ZWsLa2JhbEkydPUCqVUC6XR5TPNDs304Cf\nP3+OVCqFeDw+UlGYyWSwuLgoiP3MzAxisRj6/T52d3fxySef4LPPPnsjtHJMaqIJzEVK038aK4TH\n4aupXDk3mFPR7/eFur/VagkoB2BkAblFVrS1R5wEuFZc4XBYxoys2Uyeq9frqFarI6zY3NFNoXLj\nXGMvTwKlnGPtdlusn2azOVKMRzyBLuxtw5HAHVUKAMQ0I2B1fHwM27YRjUYRDAYxNzeHUqmEer2O\nTqeDvb09NBoNQby5G3HBOlkKZpSAfqbP55OQIABJLKJ/WC6XUSwWRzLHdEHLtBqaEQ+a01R+3M2q\n1Sp2dnawvb2NUqk0Qoaix8pJOMnPz89Rr9fx6aefSirshx9+iIWFBQQCAUQiEVEwLL3d3t7G8+fP\n8eMf/xhffvnlVDiJm5hmPnEdLigq/0kukRlK1gqdFgC7edMFJG7CNnHstEUCGbqHbladmVTE2oOt\nrS2pPQiHwzg7O5NSam5Mm5ubMg+1eT/JEqIi48Jm5Ihl2I1GQyxHbp66NZ22oG6bL3HnlAIAdDod\nMZ2KxSLOzs5Qr9elrnxubg7D4VD6SDKTrNPpjDSX5atTA04z5Mn3mGHHYiu2PWMeAZuxFgoFNBoN\nsQw4QXWjF1PM6MdweEmMsbe3h4uLC1SrVTFBDw8P0Wq1pF2d2bZ9Wv+eIOrBwQEajQZ+/OMfY2Nj\nAx9++CFWV1eRTCZl7Bj3Pjw8lLRZzWh0W6GVQDM/EolIhEXjPeOUnQYZdcia+Ei320UkEkGlUgFw\n3TeE6c00v23blpDv3NwcKpWK673pLFjWXHDzOTw8RCKRkAhNoVDAxcUFKpWKVJdy7tEScbISeHyG\nVBn9mp2dlQ2K1Y6FQkFqG6hcTWWjr/m2tQ93lo6NmhiYboeahFiboqvk6JoEAgGJEZNkhQ1F2V6t\n2+1KhtzJyclI1yaNdwDTVd/p66Ro4GkaAtrbijbFnaIakxbqNMJQYTwex9raGtbX19FsNrG7u4ti\nsThS6jxuZ9PXZ4baiD0xXZuvXGTkwaDlRN+du+ybUHqUmx5Hj/3MzAwymcxIxMHr9QomwogX78Gs\nrtTH0tmfalzfXTo2AK/sHjcVE9E2hSYrzWbbvswSq9frsuPPzc3J5zTKq3MS9MJyQtKnFTMyol+/\nKnFa8Pr6Ocluu+PwOAwVl0olybzTrFg3ec7mOHHcGRGq1+sCOpsZhRrv0UlLr6twX+f7OvJBy4K8\no9zttRIYhxfoufg613ZnLYWvWsi8rAeS7xF042TVO7/WwPy8Zg/WC+k2FWp3QUzF8LqT3vzRmYzT\nAmLmdZjWjd4pnQBDza3BZzhNuvhXLSYorVm7tNI2r9vJOtBCwF5bFJjSUvgLqxTu5V7+AspUSuFO\npjnfy73cy9uTO4sp3MvriZsZ/SYtQ6ccAx061GKCl9q8Nc1f7dJNkyOhIxM3ic68Kfm6neudVgpO\niSxvatDoh2pMAbie7CY3w1f9oG56X26JOLpM2fy//gzBuEnn1DgKF7qZQ6CTfsyxZG2E9n2nBTd5\nXtLXMe+BkQw39i39c9OkKRY1sVKWuQFO3cRuGrlxwk2AVzt86bCsxhneFHD6zikFJ4TV/Ntp57jJ\nsSmc8Ho3M5FyDfi8TrRkktwKRVbjMO44ZsRE5/vz/seVF/OVk5XHYg6BzvbU39HXyIlPshSnazUt\nAd0hihmoTPwxE9bMBeoGSroJQ6u6iC0SiUgkpVarvZJc5ja+buJ0baay5bXwf6bC4HFeJ3J155WC\nkxLghGBZrBbdG4GLedLDcENvTdGluiZpi27RNe3OoyMVprmtd83XyRngcc34tXkd/Kwu79VRlHEZ\neeSs0H0w9O45TpFyLPX1cdK7JZzxnNp9YaWgmXKu71Pf702sO3YpW15elr4YAKTorlqt4ssvv5RU\naoasbxNWN0ufdfYmnw9bGtDSYko3E6XMKMtN5c4qBW2G0jz0+/1IpVJYX1/HxsYGMpmMVN11Oh0c\nHR3h8PBQuP+Y1cbJMu1i1edkqXEqlZJsRb/fPxIvbrfbaLVaKBQKMjHcwpFUZnNzc8JbwB2InZWS\nySRisRhs+zJTrlAooFarjTAE6wXi9PDNxc6/NcU5y6WZ7EOOSOZtsIsTayNMIg+trHRDEp3hqVPA\ntQXCXV7fP81/Zuy5lWzzGZGDkvwWpHdnvJ+fI5U8r5sLiF2cxll5MzMz+Lmf+znk83ksLCzg4cOH\n8Hg8mJ+fF+V5cnKCzz//HFtbW9ja2sLu7q5wNd5EkZuhW3IqxONxzM/PY2NjQxilmHl7cHCAg4MD\ntFottNttNBoNmfdUUDeVO6sUtHACRCIRIcrw+XyiGXO5HKrVKkqlEgCMaExgfLzdyQLx+XyIRCLI\nZDLSB4Gp0LwWJpnwPOQ95A7mpoSY86+LdzgBWOyysrIiDz+VSgldmhOo52Tl6HHT18wFoglscrkc\n4vE4crkc/H6/7Hz6fKzSM3kHNNmJZVlCd8YdnAU+/D/5BJjyTGuL6bzEH2j+mz0M+IxIjhIKhaQz\n2MzMjBCQkKCWTE8c5/Pzc+kdQmuEYKeT8B74eSqfUCgkSohKbW1tDZlMBjMzM6jX6yN8ljfZjCgs\nByfB0IMHD5DJZJBMJuHxeCQ9ndWhnIvahaAVcVPX804rBRMM4qRmhtzu7q5MRpZKc0cyM9YmKQT+\nzSYm6XRaLJL5+Xns7+8Lyw0VRjwex/HxsWhkJuW4sd1oKwTACEMzc/S5kDKZDHK5nHA7aBNbH8/N\nzdEKg/fF84fDYcTjcaTTaWxsbGBubg6xWEy4AEhY0+/3EQwGhZuSKcEUKhrt15P9iGPO9mUkPbEs\nSypAAQhgNzs7K5WtbNBrKmwqba0UcrkcwuGw1JHQfWQPDXIbspkKOR1Y/KbHyAkL8Hg8YoF4PB5U\nKhUMh0NUq1UAEOs1Ho/D7/djdXUVL168QLVaFYU2yYU1MQTOEW6EuVxO0u9Z9cmaC2IpTNmmpfQ6\n+NadVQpaGTC1mL8PBgMhTGUqsu7FyAHR/pgbAGSGxKh4MpkMHj16hIcPH8K2LxuoNBoNDAYDZLNZ\neL1eLCwsCNkGy5onTQAWZ9FUJrcjr9O2Lwt15ufnpc2Zxit0NpuOEjiNn44MABCXgT0z8/m8TGZS\n3Nm2jVgsJuSm7XZbmpiauyqvlYzYoVBohPVIv0frSy9EjjUXM3kH9/f3hdFICy0Lgn25XA6JREKO\nTXbtXq8nlt3c3BwWFhaEu/PFixc4PT2VoigqLT2GepHqdPZCoYDBYIB6vS4Nb3hvDx48QDweR6FQ\nECXHOWG6WyZgas4ZPgf9vJi2XalUsL+/j0QigVgsJkxhtKrotrptTNPInVUKwCgazl2GviEblpBg\nlByLTgiwG6hkAlHciRKJBFZWVrC4uIjBYICjoyM8e/YM3W5XeiUsLCyM+MOcQOPMNYJvrLjjebWZ\nb9uX5eGLi4tot9vY2dmRSlHTJXEze033gmAhd1kuXPL/nZ+fo1wui5XC45LjkD0TTPdBjx3dETZm\nIQsSuxiR2p27bavVEvOe7hRdF6/XO7bTNZURKy5JgUZFy2PRciH/BtvLsYUdu2E5HV8DyGSgajQa\n8hm2veP4cIGSMYvKzwTKnUBXt+enu3fPzc2NNDyybVvOz4az+lxO+R/Typ1VCuMWNRdiOBxGIpFA\nNpuVluq6HwBl2tATfdtcLodkMik717Nnz6RMmhTc5CMgmy81OwBHJh+NyDuZxdps1N2F9/f3Bbyc\nNnbvNI56J6TZ7/Fctm6zLEuYpfQ1VioVIVjVnIoUDYix4zHN3EQiIUAtLQSWh5OtiiZ8NBodYbBi\nT07zXriACZCSXt3j8Uh/SfJodLtdJBIJ5HI5aS03GAykIzWxHzOKpMeQ1ha5M9hs5vz8HIlEQhRP\nPp8X60jnMGgmcb1Qnc6lnxUtYh3p4vc6nY70Po3FYrJR0HWgNTkOK5kkd1YpUPjAyAsAQMC3jY0N\nMZ0I0nGy6e+PEzNUFQ6HpZt1r9cTN4W+/cLCAj766COsra2h0+mgWq2i2+2OMCI7PQz9wJ0sFL3A\n2E6c5DL6nibdzzhTlfTk7FM5GAzQarWkZyX9/OPjY2EQ0p2yTDp0Tl4yJVvWJUVeMBgULkSWLZdK\nJWmcQyuAHY4IENLnp5I1Izh0MQAIwzF9aaLvJO49OTmR8mMuWDIwcbFTiZOsxBxD/t5qtcQ8bzab\nwtdJK5W065rdizu7XpxOm5MJFuv/U2nynmmJplIp4YNsNpsSJdItBoHbJ9XdeaVAoZZnSI/hSDbf\nIMOyfjCTzDQKHwrNZTItDQYDCXEGg0Gk02k8ePAAH374Iebm5lAsFqUtuNnHYFrrRIvH40EkEkEs\nFkOtVsPz589RrVYdQaNpIyoarPX5fBJp4G7GayYtvm3baDab0taNbhqfgRl90MePx+Oya52ensLr\nvewQTV7GRqOBUqkkFhdxILoNDCWbzYHN+6ZFQ6yDSrPf7wvHJT9LBXhxcSEhTh5fRyGchOeny9ft\ndqWTGBVLOp1GJpMRjoZ2uy1MzCRddcuudBONiTGiw/6l6XRaAFQAEukgNyndVyrw28zDd0IpaGsB\nuC5tnp+fx2AwkBh+r9d7JY4/bkBMhJ5kIETaydQcCoWwsbGBhYUF/OzP/qyg9OVyWbS0CQTeRkMP\nh0NB71++fCkt4N3Cm+OwC20CAxCzlj48/XsSkQaDQaEl39/fF/IT7vZuuxxj/blcTs4BXE5OtoWj\n66Xvg/0uuMi5C/J8TolLHGNiEPTfuaOypwT7b8ZiMXmWw+FQQEguqJmZGXGfxonmt6D1Ydu2dGyK\nx+Oo1+uSL0C+T+ah8Jo4BuOyDU0A0nSpUqmUsEmTB5INlRmSNF2Wm8pEpWBZ1jKA3wMwD8AG8H3b\ntv+hZVlJAP8bgDUAOwD+qm3bdetyhP8hgF8BcALgb9i2/emNr8wQbU6SK3Fubk64DXO5nDQ2IbCm\nd5txCoK7KDW89vPff/99aedOrv9Wq4XPPvsMT58+FQpxJ9992vvS0QHbtrG/v4/t7e2R/ALTHXBy\nD8x7Aq5pw4PBoIQNT05OJF/igw8+QDqdRr/fx9OnT7G5uSk9CRn756vTObiI2a6MpnS5XBZzln05\n+J1kMonl5WVkMhlRrgwzM+xrmtUcK+7wBOAIbK6srAgucX5+jkAggOXlZczPz8PrvewITQxqZmYG\nlUpFUpPHKQUzrBuJRPDee+9hcXERGxsbSCaTGAwG2NnZweHhoTTWpTvh9XqlATEZmJvN5itWrI6S\n8Zycw+zxyZyFSCQiXI1sJGtZo3wgxBVuk+48jaVwAeBv27b9qWVZEQD/xrKsfwngbwD417Zt/z3L\nsn4TwG8C+K8AfBfAo6ufnwfw21evtxYdmmQ+gmVZ4kelUimcnZ0hlUoJOaf5sMft3Iwi0KSmRmdj\n1kQigaWlJYnfv3jxQqwEknNqJXRTK4GTghOPZi75Cwk2cafVqPa4MaP1w1g2sZfBYCBUcisrK8Jh\nWC6XUavVRvpbcLK6mfIAxGz2+/0j3bUIDHKnpkJYv6KYp4I9OTlBo9GQVuuAOy5j27bkc2jrg02B\nyCkZDAaxvLws/TsYuaLyIb0ZLQ6T7ZtjyFduGkyGevTokSg7XgdD2exSRkuKx+/1enjx4sXY56Wz\nPclQrestCG7zWvjDNaGjWbd1YycqBdu2jwEcX/3etizrCwCLAL4H4JeuPva7AH6AS6XwPQC/Z19e\nyZ9YlhW3LGvh6jg3FnOwdFrr1taWNDD1er1IpVKScqzjv6Yp7ST0GdmlmCSxjDez4Wy328Xe3h62\nt7dRqVTEJDVDkdM+DG2V+P1+JJNJIRN1ayZr7ipOu4FGrsn5Rx/65OREwCrgcgGStLVUKkkKLbMK\n9fnchOSvtOI6nY7UQoRCIWm+8vDhQ6TTadm92bGbmEOtVhv7rGz7khqvUqlIYhXzKjRDNMeFwGW1\nWkWtVkOn05EuXOwi7paSznvmGIZCIWQyGayvr0u4lQovGo2O1CXk83lxLROJBOr1OnZ2dgS3cZoH\nPBfPx2Q8dpkmGzc3L52kpu9hmuc1Tm6EKViWtQbg2wD+FMC8WugFXLoXwKXC2FdfO7h678ZKwdSc\nTFe1bRvlchm7u7uo1WrY2NgYmfxM19V+1bidVVcBdrtdFItF2VWJMIdCISSTSRweHuL4+BjFYlGs\nEp1FNs5a0O/r66GJH4lEkEwmR0BLM3Sm6xgYsXBLXqKZzQkVDAZhWZb03UwkEuj3+zJha7XaCC4D\nXO/y41wUgn2lUmkE/OP5NPgXj8fFvWMYsVKpoFKpiPtHt8PNOiHV+czMDDqdDg4PD6VBC5u00o1g\nJyq2qyMFO3GOcS3xdBIRXY9oNIpkMik7NmtYNKM0Iy+Mku3t7SGdTuPw8HBkszLvi8+UtTEEf0lh\nz/oT27bFQmGynn4W+vU2MrVSsCwrDOCfAvhbtm23DNPctm5IqWZZ1q8B+LWpLvIqf4APvd1uS8fn\nQCCAs7MzsSCYvOLxXHfdnWRq0zXh7sbBbrVaoog2NjZQr9ext7eHYrE4UnCllcqkc/Ez+oegWD6f\nx9LSErLZrIB0wDXqr2Pq056H5jHDf6z24253fHyMzz77DE+ePEG5XB4JrQLXCpPXaoZ7uVtdXFzg\n+PgYkUhkpIKVk5nhRL/fL1GIYrGI7e1tYclm4ZXbTqcXE5OJQqEQvF4vqtWq1JPEYjHE43FUq1XJ\niuz1eigWi6IU6GZwdzYVgz4X5wNBWbJ/M4xLwDIWi0n3KS5c5kS0Wi0BYsdZQRxTXXNBxc+oENP6\nWX9hPq9p3WY3mUopWJblw6VC+Me2bf+zq7eLdAssy1oAULp6/xDAsvr60tV7I2Lb9vcBfP/q+I5X\nrhcAQ0G6ko51CslkEsFgUIA5PZH1cdxE4xU6ky6VSknYiY1SCoXCSEjLCUuY9kFwJw8EAsjlcnj0\n6BEWFhakIQhBU96Trjjk7uHWS4DXwTi+z+cTtDydTkul52effYYf/vCHOD4+Hqkq1QVllHG7j23b\nqNVqGA6HsnPS0vJ4PJKW3Gw2BT9gsxYi9mbZ87iMTfb4oCJn70a6B8wtYNYrqwapzLlpjIvu8FzD\n4VDyYHhOFiKdn5/Lbs6x1uFRRnJ2d3clm9LpeXH+6A2GCmQ4HKLZbErlZbPZlPoSRl5Y7wNcEwnf\nRiEA00UfLAD/E4AvbNv+B+pffwDgVwH8vavXf67e/w3Lsn4flwBj86Z4gmleMdzChxOJRJBKpaS/\n5NLSkiDXemID1xN50gBxIbCdOHcrVqpxUdJnJpijFcI05+ArFRgjJ+vr63jvvfeQy+VQLBYlBKXD\ncxo4GtevwEk5MQWXMfuzszPUajU8efJEog0mJ4R5T5NMUu70rHcgwBaJRCSpiR3Dq9WqIOi6rRoX\nBUFWN2FegC6Ao3XB17m5OWmuAlznG+jqwXGKRy/WTqeDYrEoDWCYOUmrjgqabekvLi5QKpXQ6/Ww\nvb0tXcVY6+J0Lr7S7SFHRLvdlkzRSCSCcDgsUQzmkeh5Qgvoq8QU/i0A/zGAJ5Zl/fjqvb+LS2Xw\nTyzL+psAdgH81av//QtchiO3cBmS/E9udWVKqIHp77JddyKRkP6E9E3Zvw+4mabUC8m2bckXYJUk\nfW/d/ccNXHQ7L3cTDQAyJ58Zan6/X3oRNhoNOYc+Fx/6uDoLKh2tUFk6fHZ2Jgvy8PBQym55/045\nAm7jaSYBUeFQcdIv5rUcHx+jXC5L0o3u1j2pnNkJNKZC0LRuACSiwYU1NzcnCT7BYHAE53BbPLwO\n3lO1WsXm5iZKpRKy2awUlNG8L5VKsnNrzIPuLkOvbqLNfuIyzWZTcAtiZszcZKiT+BmV+evkygDT\nRR/+XwBuDuy/4/B5G8Cv3+pqxggn8vHxMYLBINbX1+Hz+aTd+v7+PjY3N6U4RLseN9GYDCOdnp4K\nqMcCG/aO5A7OCQxMZ5FQIeh6ARb20DwEgL29PVm8uhDKNBPHnYvXw1ReRgeGw6GAmV9++aVYJE5g\norZsxk0yphtzZ+33+6II+ENXRsfXWXVK4Wc9Ho9rC3WniBIXLpOE2u02LMsaSbqiBUMQ0LIs6aY9\nznWgMMza7/dRLBZRKBTw53/+57JQ9RwjvwHdPIZEmX/hdi5t3TJLV5dRkzui3W6jUCigXq8LDkRL\nic/htinOAN6tvg9mgQiTNYBrboLbDAYXtgb+iCJzJyAyrxvXuu2o40SnyPLczDLkddDvfZ0HC0BC\nqgAE5GOIVYcOx/nU5s6sXRYqHI4Z05aJk7DvZywWEwW+vb0toUuPxyOvLGGmucyxMHdWXg/BPI4h\n4/QkrWEmIRcLx5dxfyp+Xbp+60VkgL5mRSmf9aREIs4//TtDk7wv1mAwXdttnrjcy9e/GYyZt/46\nD9UsXOGD1eivyVNo+p3Tnt/c7fiqrY7XMf8oROPNzE7uqrQ6plUITsen2PZl2i+jPwTiWJXIe65W\nq1J1yXukK8VKP4Zjx/nFGnPQz0tHRHhsXivDfbZti4V0m4y/SaJDxryPaZ+nmdWoj2fOtXHRmb+w\nSuFNi9OD0CCQfrBm2Od1dxrzeG/quXByao5EnmscQ88khQCMNum1bXuk/p+Zp3qXY4IYU6K5mxLv\noIuhx8Ft0ZocFObz4j04hXNvUpx0G3EKF9/keZrf13NLz0Xzc1PMw3ulcC/3ci8jct827l7u5V5u\nLu9E6fS7LiaKP+4zN7XczHwM/f6btgKdjulmwpq/6/9P+q6JCwDOboJ5DtPMNutGzHOY1/BVuRO3\nFSe34SbP9bZz4J1SCuaE0O9reVM+uQYyNdDDc2h0eZrzOT1UE2w0j6/f1+eZACiNnUDjxtAEXU1g\n1e08TsdxGi99fv7fzNcfd938nAbzTAYlHdmh8HMmnnCbeaJBRKf71UDgTSJITliCE4s3AMn7sG1b\nqO6cuERuoxjeCaXghKq6TVC3793kXPp4OgTmdlyCWJMmgFPEge+Zk9RJebh9f9z5pn1fj6sJSLol\nE5nXYC4Kc7c2FYh5Lg08TnpuJnhoWdYrWZ7m9ejyaFNhTRInxafPwwImhkbJWsXw9ThyFX2NwDUA\nC1wXxOnoCueiaS0xGsT07WnvzZQ7rRTMBzFpV9Q7g15Ek8xCc5fkd/g3O/UwiUTHupkwoxvQjMuQ\n46u+FyfTXy9IfW16IU2yFm4z6fUObP7fXKx6t3dbNOb73LHNWL4O+TpVfupjMf0cuO64xVdGPxjH\nt217JNmMNRBOeSbTjg3HgNW7Pp8PKysriMVikqvB2oeDgwMhVXFTdubmo3MqGOLlvfFvKoFQKDRS\na8Gak5taKVrurFJwWqicTKwxZ468bdvCLkSGIBKB6r/dWmjpJByfzyfFV5lMBgsLC1hbW8P6+rrk\nzDNdd3t7G6enp6hUKmg2m2i321Kf4XYucyejkmGDFKY6B4NBmSDcEXVZdaFQkHRhprk6jZ/TWOoU\n60wmI2Qh7GHQ7/eln0On00Gj0UC5XEa5XB45l9s5WOhFQpJYLCbNc1KpFABIfQC/d3p6KoVMn3/+\nuSSLUTSm4PP5hAZtZWUFjx49Qjwel9oA8hj6fD7UajVUKhWcnZ3h2bNnwrh0dHSEZrMpC3YaC4+7\nNBdjPB7H48ePsbGxgQ8++EBSp9mbgXU6pGYvFAqOTN96HnKO+/1+WJYllG7MftVZsOl0WupJPB6P\nlJGfnp6iVqtJEtzXwn3QphAz/khyMRgMpF8BE1FITw5ASnDJeANAtKtTrYA5sTmp2TEpm81KAQpT\nZS3LQqPRkIYptBK4E+kd0O3+9OJhgdfy8rJUMbLakIuUlY62fckuzAQkptCOG0u+UpmyyGtpaQk/\n//M/j9nZ2ZHFSoqvfr+PcrmM/f1LeozT01NHqndtLegJzC5Ua2trwkWgFTz5B7ngWdkYDoeFKIdj\nqHEEAEIjH41GkU6nhTMiEolImTLHMJPJoN1u44MPPsDOzo7QtZE1GoAofDcx/fRQKIS1tTU8fPgQ\nmQhpUOwAABVMSURBVExG3j85OZHsTo4H5+EknMdpfnCOUznQKiCh62AwkO5X3W5X3BTNu/HOKwVt\nGXCCsX6dyoDcCRyUubk5IQ49OjpCsViU8t1xHHymf8v3aHlw5wSAnZ0dXFxcCNUWd3cWaukahXHu\ngDYT5+bmEI1Gkc/n8ejRI6yurgq1nO5fweugAqI5yUnDxWXelza3eb3sH7m4uIhvfvOb+Oijj+R8\nlmUJPTu/T9YgUrg7gWEcP07kcDiMWCyG5eVlLCwsSO+Fs7MzYXZm7wIqer04NX2bOYY6O5BMVax9\n8Hq9OD4+loIhMirznmKxGFKpFBqNhlRp8ljTulgejwfRaBQLCwv4xje+IfOO3JYXFxcjHZ20S+RW\nX2KOqwZeycegd3zWRhDLoDXHzeJ10+PvnFIw/W36nrQU2LfPsix5CGyKwaIRFkVRIdBKcBLTR+eA\nalP79PQUOzs7I74fS3R5bJqFOnNQn0Onr2oXiF2019bWhAeSLEi2fUk9Rmo4XpuujZjE9KyV0Ozs\nrDRIefjwIdbX16X4iP0V5+bmpHkLFTALfqiEnc6lJzbvTXdRYleoL774QnbwaDQqjW29Xq/07TDv\nwem+WBnJMWKxGglSu92utAJIp9Nyb0y9ZiGTG4jqJDTnU6mUKPFEIoFCoYCf/OQnwk9JMhY2w2EG\n57idW5d8W5YlSo7jqa0N4NqCptXCWg+WyLMD1tei6zS1NgeJJrnX6xWzd3Z2Fr1eT8qkyThM66HV\nao2gvU6EITwXX7kL6WqzSCQihCdk9qlUKlIB6PP5xF3gcSZVG1Ip0PJZW1uTH6/Xi3q9jk8//VQm\nktfrRT6fF+yh3W7j4uJCMIxxJq8+P8k/Q6EQVldXZYd7/vw5CoWCFAalUik8ePBASGtarZYwGLEM\nedxipZXH1nThcFhK2nd3d7G7uytWy3A4RCwWk2fe7XbRbDbR7XYdn5feQXu9nrQKDAQC4jIeHx/L\ntbIWw7Is6SZFrs1IJDLCMD3tGKZSKTx+/Bjf/va3kcvlUK/XUSgU8OTJEwwGAzlmIpFAIpGQ++I9\nmWOn56Ce+3pekYVJW9HskuX3+0WZ6uiLk1U3rdw5pWCaUdospX9Fjr5Wq4VAICCa2e/3o1QqwbIs\nIVPlwJo7qjZ7zUiALq0NhUJC8KmrJ23bFspu8vyZD9g8l3aJAoEAFhcXsbq6ivX1dSE3ffnyJfb3\n96VvQCKRED+SHYHIXkTQ0elcWmhtkdCFVPa9Xg9ffPEFarUaPJ7LRjQsEaZbsrOzg0KhgGq1+ko5\ns9O5LMsSs53gV6VSQalUwtHRkfAsELmnhUeeRoYNnXALji0V+MnJCZrNpuz4BA9pshOvmZmZEX+b\nlgXxIZrmkxaQx3PZin5lZQUff/wxVldXAQCNRgOffPKJlEpzR2c/UvJv1Ot1R9Zoc/FqxcDnenFx\nIcDtxcWF9CGJRqMCdLNHicaepnWLTLlzSkFbCNy5h8OhmLLkamSrcvL75/N5WTAmASknkZZJGpth\nLKLYbJhK9mgSgXK31grM6dhUCFwQRI/J5HNycoJyuSyt7TUzMKMSLDkmLbpTkxZzl9DuCtmquIOx\nxwJ3OM0NwEVcrVYlymKG8fS5dLiVCjQQCIilxXJoRlni8ThisRj8fr9wNGo2aLcJrXEF+tbkReS4\nDYdD6TFK5QRA2KXOz88RiURQrVblmYxzIbgpZTIZPH78GGtra/D5fNja2sIf/dEf4fDwUOYtAAlN\nxmIxWJaFaDQ6QvVuitN80fNJd+zu9/vIZDLS0Ibkt81mU6gESTd3G9cBuINKgaJ9Yk46hp2azabs\nAkTrA4EAisUiSqXSK92nx+UOOMlweE3rTebjTqeDTCYz0juAzDe6z+KkCcZFE4/HBTDl94maRyIR\n+SxNXcu6ZEUmrTwJP+iDjkO0PR7PCFjLcC4AQcnZXi0UCoklUigUcHR0NMIANc594AQmA7a2jEhp\nxwWpzXdSoRMLcGqma57bsq65Bsh2FI/HhSCWfREAjPRjJH0+o0huC9V8ZpFIBAsLC1hdXUUmk0Gj\n0cCLFy+kIzitBD6vfD4v77HZ7rhx03/z/ujKsr8pAMnDsG1beo3qTQK47jR2W7DxTioFvWvrVE6a\nhMPhJZlpLpfD8vIygsEg+v0+jo+PXyENGccX4HZujS/QNyUoR8yCjT1NSnSnhWPiJJw83J0ZvbBt\nW3YB+u+cDOyJQKWgaeXd7oHC+De7RHU6HVlUa2trgsKTcox+cqlUkk5P0yhV+rpcDCcnJwgGg5IL\nkUql5NxcJK1WC2dnZ6JgqdDdjg9cR1NI5sJSbZ30MxwOxRKgNcaNhWPHXhj62E7nJOntd77zHTx6\n9Ai9Xk9yHcgyRQwmHo+LQqClNO6ezHvT1hcVLMlyqMzY3+Tw8FByR0y8QueA3FTunFJw8o8HgwEq\nlQqOjo4ERJybm0MikcCDBw/g9Xrx7NkzfPHFF0LxxZAQQ4VuYu4+NLUjkcgIp78mK+EOrd0THsdc\nkDwurQ8AwkoNYKS7FFuccUJzxzs/P5cu0NwVGO4ad1+8F15bpVKRvIdIJIKlpSXpYVCv1+Hz+XBw\ncICdnR0JHTI0aoYI9fMicMpMO8uyhEiF6Hg2m0UsFkO1WgVwuXv3ej3s7u6Ka6IZnZ3OwzGcnZ3F\n8vIyVldXheKNDXt4LO7epHrv9/uScxIKhXB4eCjKZNzi8fl8WF5exne/+1384i/+IhYWFlCr1bC5\nuYlGo4FEIoHV1VUZh3Q6LbRpvJdarYZGozHRIiFxDDNoY7EY1tbWkE6npfFwKBQSjKZarYpC4Nhr\nq9jMSp1W7pxSoNCP83g8Qr1eKBSkGzQAPHz4ELFYDM1mE9vb28LmrF0HHmvcefT5zBwAEo/yc9xp\n2DWZSDfwajjVFL2AOJmZg0Bzj+dijgABQVpN5+fnEpnQ1omTcNdk92Mi9trlyWazGA6HWFxcFIp2\nYg0cS72LuQkXK0FY+u5+v1/yILiDszt1IBCQzk06AWyceL2XXcKWl5cFBGaqOeP1tGy400YiEVko\ndCN0PgbgXCFJ9yKbzUqiFLELhlWJjzCqkclksLa2JuHCVqs1MZOR96XnH10GZoSm02mxdhhxoWum\na0BoVfP6vzYZjRS9+zKFlJmEHJTT01McHx+jVCoJIajTju02MDp5xOPxSHydoBxj3Pv7+1hYWBhJ\n4eWDByA7vLZunM7N6AYnVrlcRiQSEd/4/PwcrVZLMg4Zfh0Oh2g0GhLa0sd38vOp5JgVSQXn8/kE\nba9UKggEApifn0cymRSlSr/eBFDdxpL+L10H9lkg0xIBPu6sADA3Nyft6rmIdc2DE4ZA94T+fSgU\nQq1WE4o3KpZ2uw0AyOVykkdC10Jfp6aTc9s4uMFwgdXrddkEOLa9Xk9Sr/P5vCic/f19bG1toVwu\no9PpuIKn2tXlZkM6O4KWbHTEUDTp9HkdjOLofIZplKyT3FmloH1w3iA7THMHoGm2ubmJarUqi8fc\nQacZGMbx6QOzUWi/30e1WsXx8TFCoZAAZDSXZ2dnZaGak9jpvEx08ng8aDQa8lmSqDK68NFHH6Hf\n78Pr9QoIRyTfbbHq8+oaBybSsJ7CsizpGbC6uoqFhQUMh8MRhmWzoMbpXFoIirKrM60tKpmTk5OR\nxiw8pu4SbtLDOaHyBC1J8e/3+0fa91H50ZSnD57JZOTZXVxcTN0UmGOp6fLZgIY5AsPhEB999BFW\nV1exuroqjXa3trbw5ZdfolKpCHO0k5jWajgclroGurBcA/v7+ygWiyO5DFT6BHI9Ho90wLqN3Fml\nAFwDdKbvTpAIuEw/3t7efkUh8PsUtwGi0uGDp3VAE5dRBl22St9WRxyoxDS+oEVbEJxYNH99Pp90\nfa7X6wIucgdlNyXiKXoyO40ZxefzIZVKYWFhAel0Gr1eD8FgEGdnZ5KiHY/HAUDChuz8rCM3kxQd\n759KkhENVioSmOXf7PZsJis5PWd9X4zseDweZLNZCVFzIdj2ZUp4r9fD/Pw8crmcmODs2ExXtFar\nSe2D5lkwnxl350KhgHw+L6npLCJrNpuIRqNYWVnBysqKNIp59uwZNjc3BQdzi95ohcD/E0Bloh4x\nEra7r1Qq8h3LssQSIn7GMOvXClPgoHGiaPpzWgqRSASnp6fY3d0doenWcWy9aNx8Rv1/+vTBYFBq\nLhqNhsS9uZAGg4GYb9q81Od3E8bWO52O7Gh86Ezx5WRg5p5uI8ed1Wm89H3xh7t3MpmUz52cnKDX\n6yGdTmNjYwO9Xm+k+7PTTq1dOfNcfJ91/ARUOTbMH2AEiX45W7xxl6cScron4DqcSwyBSmBpaQl+\nvx8rKyvS4YtNduhvE5u6uLhAsVhEuVxGrVZ7Rfk4jWu5XMbm5qbkxBBHWFlZkVwT4hbNZhO7u7t4\n+vSpJFONY43mtfFcpJ2Px+MCnrJPJ1PFOZ6cp3ymBE3Npsc3lTupFLQ25UShucYQTSKRQLvdll3G\nXCjT4Alac1Oz6uzFi4sL6ZLMRBjbtiXJiCa9DmO6KQWeg+dj3bvuRchsSfaUpJVweHgopbAaUAKc\nwU2ei+XkkUgEi4uLEv7s9/uCcPv9fhSLRWxubuLly5eS+TducZrjqkt+6RJEIhGx5ugaBAIB6ctJ\nhc4Ih/m83HZUIvSFQkG6dLOG5PT0VHpo0NfvdrvSNq7RaODo6AilUklSryctGuJZW1tbAC6V+urq\nKrrdrtSFRKNR9Ho97O/vo1Qq4fnz5/jiiy9G+o5OGkfe33A4RLvdRr1eF6uOkRw+f26QdMOYvs2I\njgalbyN3Vino3+lrcRefn5+X0IzuRegG5ACTgUbguoMTzUtiCJFIBB6PR7Ilt7a2JG+ACkkrhEm+\no87hByCl2rlcTuLcVBy7u7sol8tyn9xxtMvidi4i/36/H/F4HIlEAsPhUKyNSCSCo6Mj/Nmf/Rk+\n/fRTsRTotkzyt83nxEgAQ5C2fckBkclkRqoGCQ63Wi3JCNU4g1awTiBtv9/H/v4+hsOhkJswBZ39\nIwaDAba2tnB2diY9HBnSZVs+WpiTFi1xJeYiFItFZLNZeQbdbhe1Wm0kmYjnNJu1uAGN2socDodo\ntVoIBoMjIV72Se31euLyMDql554m+xn3/NzkTioFrTkZFdDmMJttbm9vy3e4OPQiH6ckKPTBKMzV\nZ4w5lUohEAigVqvJDsOWXYwRm5bNuHPq4intA2YyGQGpwuEwyuWyxKOZNafHwcnvNu+Lk6ler6NU\nKonJSXagdruNTz/9VNrQN5tNURjmM9Bj7HQugoo61z8ajSIWiyGfz8Pn86HT6WBra0sWEHMudORh\nnIVn27YkDv3oRz/C0dERtre3EYlEpAqSxyEOw/oQhirpQuiEHyfLhOfjGLO7VaVSQTgcloInov37\n+/vSk5PRgZuY75pRiTkb9Xpdsnd9Pp+kgLNpjmVdd9PiffMZ3YRZypQ72/eBvhIAyQDM5XJYWVlB\nIpHA+fk5nj59imq1OqKRTbBv2siDBtP4nl6EwHWY8aY163qiEx/RhVFExlnJR3CrUqmI8jGLkcx7\nc7oWhsZmZmYkRTuXy0nbuG63i5cvX8pEG2d1OB3ftBR0RIahQ2IANGdPTk5kt9cT18R3zNwI/RwY\nWdEujtt4jAN9tUXC895EzPvX573NuuKc4O8a2Aaus3PdrOJJGBre9WYw9Ou5izDDi8k+tm1L8ZAu\noNG+9rQL1w0gNHdKtwc+yUTTD0trda2AdEYgTUAdaTB3btNCcDq/rkSkgqMC5P1q18vt2qdxH4Br\nhmG9eM3P8LrHYUBOSkFbWObzmvYZ89VM9tHj8dMWc3wZWjRFW6Ru90sFoj9jHP/dVgoULiLbtoXm\ni38TqNN53q+jqR2u640cyynspK0ZvQvqXcvJJTLBzHETRS9O0xKa5O443bsb+Of2Pb2QKW672zgT\n3hwD81omWYTm+Dqda1qr8qsWc24Ar7Jpa0WmvzfF3P96KIV7uZd7eWNy3zbuXu7lXm4udyX6UAHQ\nvXp9lySN+2v+quVdu17g7l7z6jQfuhPuAwBYlvXJNKbNXZL7a/7q5V27XuDdvGYt9+7DvdzLvYzI\nvVK4l3u5lxG5S0rh+2/7Am4h99f81cu7dr3Au3nNIncGU7iXe7mXuyF3yVK4l3u5lzsgb10pWJb1\n71uW9dyyrC3Lsn7zbV+Pm1iWtWNZ1hPLsn5sWdYnV+8lLcv6l5ZlbV69Jt7yNf6OZVkly7J+ot5z\nvEbrUv6Hq3H/zLKs79yha/4ty7IOr8b6x5Zl/Yr639+5uubnlmX9e2/pmpcty/p/LMv63LKsp5Zl\n/RdX79/psZ5azBzwn+YPAC+AFwAeAPAD+HMAj9/mNY251h0AaeO9/xbAb179/psA/pu3fI1/BcB3\nAPxk0jUC+BUA/ycAC8BfBvCnd+iafwvAf+nw2cdXc2QWwPrV3PG+hWteAPCdq98jAL68urY7PdbT\n/rxtS+EvAdiybfulbdtnAH4fwPfe8jXdRL4H4Hevfv9dAP/hW7wW2Lb9RwBqxttu1/g9AL9nX8qf\nAIhblrXw07nSa3G5Zjf5HoDft227b9v2NoAtXM6hn6rYtn1s2/anV7+3AXwBYBF3fKynlbetFBYB\n7Ku/D67eu4tiA/i/Lcv6N5Zl/drVe/O2bR9f/V4AMP92Lm2suF3jXR/737gytX9HuWV37poty1oD\n8G0Af4p3d6xH5G0rhXdJ/m3btr8D4LsAft2yrL+i/2lf2ol3OpTzLlzjlfw2gA0AHwM4BvD33+7l\nOItlWWEA/xTA37Jtu6X/9w6N9SvytpXCIYBl9ffS1Xt3TmzbPrx6LQH433FpthZpBl69lt7eFbqK\n2zXe2bG3bbto2/bAtu0hgH+EaxfhzlyzZVk+XCqEf2zb9j+7evudG2snedtK4c8APLIsa92yLD+A\nvwbgD97yNb0ilmWFLMuK8HcA/y6An+DyWn/16mO/CuCfv50rHCtu1/gHAP76FTL+lwE0//927Rg1\ngSCKw/g3VXpTWSbgDVLmAtqls/cYewc7SyuLXCK5QKrEIKIexWJTvBF2ggt2s8L3g6l2iz8P9jHv\nsZ2rb1X/5u03otYQmecppYeU0hMwAb4q5EvAGti3bbvsPLq7Wl9Ve9NJbGaPxCa5qZ2nJ+MzsfX+\nAXaXnMAj8AmcgA9gVDnnO3HdPhNz66IvI7EJX+W6/wIvA8q8yZm2xAc17rzf5MwHYFop8ysxGmyB\n73xmQ6/1rcc/GiUVao8PkgbGpiCpYFOQVLApSCrYFCQVbAqSCjYFSQWbgqTCH+B/MAgb87q1AAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 3 Train loss: 128.1274\n", + "Test loss: 124.5251\n", + "Epoch: 3\n", + "Reconstruction\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl8VFWW+L+3KpWVJFTCFoIQdgRF\nwCgoi+IGDbKoqHTT3U7To2OLjDP+7BbbdusWu4eZ1u52BIZucWEcBFkdm0FtcG1UZAkqhjUQtiyE\nELInlar7++PlXqpCYiqk6lUI9/v5vE9SVe/Vu3Xfveeee+455wopJQaDwWC48HFEugAGg8FgCA1G\noBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E1ol0IUQE4UQe4UQB4QQ80JVKIPB\nYDC0HHG+fuhCCCewD7gZOAZ8CXxfSvlt6IpnMBgMhmBpjYZ+NXBASpkjpawF3gSmhaZYBoPBYGgp\nUa24Nh046vf6GDDyuy4QQpiwVIPBYGg5RVLKzs2d1BqBHhRCiPuA+8J9H4PBYGjH5AZzUmsE+nHg\nEr/XPerfC0BKuQRYAkZDNxgMhnDSGhv6l0B/IURvIUQ0MBN4OzTFMhgMBkNLOW8NXUpZJ4R4EHgX\ncAJLpZS7Q1Yyg8FgMLSI83ZbPK+bGZOLwWAwnA/bpZSZzZ1kIkUNBoOhnRB2L5eLkUceeQSAuLg4\nhg4dyowZM/RnixYt4rPPPgNg2bJlESmfwWBop0gpbTsA2d6PFStWSK/X+53Hvn375L59+2TPnj0j\nXt7vOgYMGCB9Pp/0+Xxy7ty5ES9PQkKCXLhwoVy4cKH0er1y69atcuvWrbJXr14RL5s5zBHmY1sw\nMtaYXAwGg6GdYEwuIWLFihUAAeYVgD179vDuu+8C0KdPH6ZMmULfvn0B+OEPf8hzzz1nb0FbwPDh\nw/H5fAAcP35OiIHtdO/enXvvvRcAn8/HlVdeCcCtt97KSy+9FMmiMWLECNasWUNGRkZQ599yyy0A\nZGdnc/To0WbOto8pU6awfv165s6dC8DixYvxer223LtLly4ArFy5ki1btgCwZMkSDh8+HPR3JCcn\nM27cOAA2btyIx+MJeTnbMkagh4DMzExuu+02/Xr3bst7c+rUqRQVFVFeXg5AdHQ0n3/+OVdccQUA\nKSkp9he2BQwbNoyKigoA1qxZE9GydO7cmVdffTWiZfguJkyYQExMTNDnT506FYDZs2czc+bMcBUr\naFJTUwFYuHAhAC+++CIAS5cupaqqKuz3d7vdut8kJydTUFAA0GJhvn37djp3tiLkMzMz2b9/f8jL\n6k9SUhK//e1vueyyywC46aabIjqItFmBPmPGDK2NnThxgurqagDeeOMN8vPzOXDgQCSLF0BaWhpC\nCMAS5hMmTAAgLy8v4LxHHnmEwYMH69d//etf7StkC7n88suZO3cur7/+ekTL8c///M8ATJ8+nauv\nvrrRc8aNG4fD4WDXrl0AfPzxx7aVLyrK6kKTJk1q0XXbtm0D4OGHHyYhIUEPnJFCabXp6ekALF++\nHED3u3DSqVMnVqxYoRWchQsX6hlCS/jVr35F7969+ad/+ieAsArzWbNmATB//nwuueRswHxSUhKn\nTp0K232bw9jQDQaDoZ3QZgOLcnJymrRHlpWV6elZMBw7dgyABQsWaM0o1PTq1UuXrbi4uNFzdu3a\npadmYE3PPvjgg7CUp7XMmDGDlStXMn78eAA++uijiJRD2W+VLd8fh8MR8FlurpW/6O6772b79u22\nlO/mm28G4P/+7/9YsGABv/zlL4O67uGHHwasNpmWlsbJkyfDVsbmiImJ4dNPPwXQ6xKTJ08GrN8V\nbm655ZaA+3Tr1q1F9TFkyBAAvv76a9auXcs//MM/AFZfDAc9evRg586dgGWq8pehK1as4MEHHwRo\nUg6cJ0EFFrVZk8u9996rbc3ffvutNlUMHz6c66+/nlGjRgFw9OjRgCkPQF1dHQAnT54kLS1Nv3/k\nyJGwCXQlTBrj5z//OQADBgwA4Isvvgj42xb5xS9+QW5ubtjqKxg2bNighXZjqKlteXk5vXr1onfv\n3gBs3boVp9MZ9vJdfvnl2jRx8ODBFi1wKxt6W2Do0KFakIPVf+wQ5GoR9I477gDgpz/9KUCLhfnf\n/vY3/Xrt2rVhE+SKRx55pMn1r7vvvpuJEycCljnmxRdfpLa2Nqzl8ceYXAwGg6G9cCEGFrndbnnD\nDTfIG264QSYlJckbb7wx4Bg9erQcPXq07Ny5sywqKtLBMQ888IDtAQG33nqrrKqqklVVVdLr9cq8\nvDx53XXXyeuuuy7SgQqNHhkZGTIjI0P6fD65Z8+eiJRB1c/Bgwd1MJbH4wk4XnzxRTllyhQ5ZcoU\nOW7cOPn0008HfP6zn/0s7OV888039bO96qqrgr4uJSVFKrxer+zcuXNEn/lzzz2n+4jP55PvvPOO\nLfddtmyZXLZsmZRSym3btsmEhASZkJDQou+4//77dbmXLl0a9jL36tVLnjlzRrfLrKws+e677zYa\nQJiXlye7desWqnsHFVjUZk0u38Xp06fZvHmzfr1p06ZGz7vjjjtwu918/fXXALz55pu2lM+fzMxM\noqOj9esVK1ZEzB4dDNddd53+PxJ23YyMDP2cOnXqFPBZbm4uq1evBuCZZ56hsrIy4LP77rP2Uenc\nuTMLFiwgNjYWgP/8z/8MuSvZjBkzmDRpkva2+vLLL4O+9vHHH9d2/w8//JCSkpKQlq2lKA8XgNra\nWn71q1/Zcl9le/b5fJw4cSJo00RcXJxeq3jggQf098yePTs8BfVj2LBhJCYm8sknnwBWf4mNjeUH\nP/gBAI899piOM+nWrRvr16/ne9/7HhBym3qjXJACvTmUbW7hwoU4HA5+/etfA/ZUqD/r1q3TASQA\nr7/+um2d5Xy5/PLL9f8LFiyw/f4ul+scQQ7WouzMmTMpKipq9Lrc3Fx++9vfAvD8888THx+vy//2\n229z8ODBkJbzzjvvJD4+nkWLFgV9jVrknzVrll7snT9/fsT8lq+99tqAvwAVFRVkZWXZXpbJkyfz\n3nvvAVBSUtJkvV533XUBa2gAq1atsqWMYC0gSyl54YUX9HvV1dUsXboUsAb6Pn366M8qKyuNDd1g\nMBgMLaddauhz5swBrKn36dOn2bt3r633V5411157LTExMVqrfPbZZ3XUaFvkmmuu4Sc/+QkAO3fu\n5P33349wic4G4MyePbtJ7Vzx9tvWhlmzZs3iqquuCkt5kpOTAbSGqCIrg0GZhDp16kR2djZAgOnQ\nbhqro5bMOFrLH//4RwBuuOEG0tLStOlHCNGkF5AQIsBNMCcnJ2hX0VDw/e9/Hzjr1rlu3bqAzzMz\nAz0LP//8c1v7fLsT6KNHj2bevHn69fTp0/nmm29sLYOy86pw6v/+7/8GCPm0P9TceOON2h1r48aN\ntkQJNoa/q+LIkSODvk5F6zocjoDveOaZZ/jhD38YkrKp8P709PQWr8ko2ypge5tsDH/ho+z4ixcv\ntu3+Klbg8ssvZ9iwYdrd7+c//7lev3nttdcCrlm2bJmOCAbYsmWLrf1q+fLlTJ06VQ+GgwYN4vLL\nL9epP9xut65Lt9vNvffeq9Nkf/vtt2EvnzG5GAwGQ3vhQnRb/K5j/vz52o3p/fffly6XyxYXLHVM\nnTpVVldXy+rqaun1euWmTZtkhw4dZIcOHWwtx/kcb731lq672267LSJl+I//+I8A98OWXDt37lw5\nd+5c6fF4Alwd+/btG7LyxcXFybi4OLlt2za5a9cumZKSIlNSUpq9rkuXLgEubXPmzJFz5syJ2LMe\nM2aMrKurk3V1ddLn88lDhw7JQ4cORbwNNnf06dNH+nw+uWPHDrljxw7bXT5TUlJkcXGxfo4+ny/g\nub777ruyX79+sl+/fnLPnj3S6/XKxYsXy8WLF7f23qFxWxRCXAK8DnSt/+IlUso/CiFSgBVABnAY\nuEtKebq57wsncXFxTJw4Ua8qP/XUU7Z5ECjzyi9/+UtcLpd+Pysrq03bzcFyrwIYO3asXm9Yu3Zt\nRMoyZcqUFl/TuXNnBg8efI4tVU3bQ9kGVObBgwcPcscdd+gEa88///w556o0D3379qVXr14Btl87\nU240RmpqaoBZqi2slwTDk08+iZSSRx99FLDftba4uJi77rpLe9aoNRWVnfLRRx/Vpso1a9Ywb948\nnayvb9++4TcPBaFVpwEj6v9PBPYBg4EFwLz69+cB/xZpDf3JJ5+UPp9PbtiwQW7YsMHWkfu5556T\nzz33XMBovXr16gtCM583b56cN2+e9Pl88pVXXpGvvPJKxMqyd+/eFmvof/jDH84JPDp48KAcO3as\nHDt2bFjKeemll8qVK1fKiooKWVFRobVd/yM/P1/m5+fLvLw86fF4Aj5Tmn6k6nnZsmV6NlZcXCyv\nuuqqFgVH2X3ceeed8s4775Q+n0+eOXNGjhgxQo4YMSJi5bnpppvkTTfdJJcuXSqff/75RmfhcXFx\ncu3atVoevPbaa625Z2h2LJJS5kkpd9T/XwZkA+nANECtWLwGTG/uuwwGg8EQPlrk5SKEyACGA18A\nXaWUKuF3PpZJprFr7gPuO/8iNo9yIXriiScoLS3lN7/5TThv1ygqe54/Dz74YJs3t8DZTJFgReFe\nKGzYsAGAgQMHnvNZdna2juYLB9nZ2dx1110MHz4cCPRgUfgHvLz22ms6hzZgy6YRTdGjRw/tfgdW\nNtKWRLpGAhVtCfDOO++wY8eOCJYGnRDMPzFYQ6qqqlixYoV2wRw/frz2IgtXkGPQAl0I0QFYDfyL\nlLJUuYgBSCllU6lxpZRLgCX139HoOa0hNTWVP/3pTwA4nU42bNjAZ599FurbnBcpKSmN2m/PnDkD\nWLZdZW9Xtji32w3Av/7rvwZc4/V6td3QP+Q9FPjbrd95552QfndLEUIE2Hb9O/Kf//zngOyZDdPn\n+nPrrbeGsZRnUWlU1d+myMnJCXitInJVWgo7ufbaawPqeP369baXoaWodlBZWcnvf//7CJcmeFau\nXKkF+t13361T66ro9VATlNuiEMKFJczfkFKqvcgKhBBp9Z+nAYVhKaHBYDAYgiIYLxcBvAxkSyn9\nl/LfBu4Bflf/19ZhXuW73rhxo86DffDgQZ544gk7i/GdfPXVV42+/9ZbbwHWFnVdu1qWqrvvvrvZ\n78vPzwes/B+hYuzYsboMbYFFixYF5JBRMwalhTemjTd8z87gmGARQuA/q42EZq5QHlkq8lZFbLZV\n7r//ft1GCwsLI25uaQk+n0+352nTpvHUU08BVqLAffv2hfx+wZhcRgM/Ar4WQqisPb/EEuQrhRA/\nBXKBu0Jeuu9A2Sz9E/M//PDDEYvGVPbcadOmNXvunXfe2ej7dXV1AcJJhbKr8He1q0womT59uh4c\nd+7cGfFMkGvWrNEbgqjNfpvj5MmTZGdn69D6hnu5tgX8PL0ijkoYd+TIEeCsCbCtcv/99+u6U26i\niYmJgGWiVL+jraKSnT355JP8+7//OwDPPfccP/rRj0K+ltKsQJdSfgqIJj6+MaSlCZJevXrpzGxw\ndkegSNp/b7/9dsDa6cffDx3ObpHVUAtfunRpwK7ma9as0Tk+7CA+Pj5gc+NVq1bpLICRIjc3l5kz\nZwLWYPPQQw81e838+fN56aWXwl20VqFS+YI9Gy83hmqX/fr1CyhHJHepbyler5dZs2bpNabdu3dz\nzz33RLhUwfH666/rDaxvv/12fv3rXzc5iz9fTOi/wWAwtBcuxNB///B+n88nMzMzZWZmZsSDHy60\nw+VyyS1btsh169bJdevWyfj4+IiXqeExceJEOXHiRLlmzRrp8Xjk6tWr5erVq+WECRP0Zz179ox4\nOZs78vPzZVFRkSwqKpIPPfRQRMrgdDql0+mUS5culT6fT7766qvy1VdfjXjdNHdkZWWdE2q/ZMkS\nuWTJEnnJJZdEvHwtOXr27Cl79uwpfT6ffOONN1pybVCBRRecQB87dqwsLS01At0cF9Txv//7v3rb\nxEiXpXv37vLll1+OeD6ZYI+xY8fKzZs3y82bN8unn35adu3aVUZHR8vo6OiIl+18j/fee0+Wl5fL\nwYMHy8GDBwdzTfsU6I899liAMN+/f78cNGiQHDRoUMQfkjnMYQ5zBHMkJSXJQ4cOyalTp8qpU6cG\nc01oQv8NBoPBcGFwwW5woZLc33jjjbbvFWowGAytobS0VMfPhBJhp29sOEL/DQaD4SJgu5Qys7mT\njMnFYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E4xADzMqD7Z/LmyD\nwdB+aEt92wh0g8FgaCdcsJGibQWHw4HL5SImJgaAnj170q1bNwDGjRtHbGwsHTp0AKwdhz755BO9\nCUdhYSE1NTUAbWbzg7aO0oaklAH/GwyRQAjRptqfiRQ9DxwOBwMGDACszTaGDBnChAkTALjsssu0\nAHc4HAEPvLKyktzcXL3z0OLFizlw4ADQ+NZqkSQ6OpqMjAwGDRoEwEcffURpaSlgrwBVQtvhcNCh\nQwe6dOkCQE1NDUlJSQCUl5dTUFCgB8dI1GXDza19Pl9APQkh9M5QLpeLqChLl1KbTPhvLBKp8gN0\n6tSJ/v3763ZZVFTU5tpmQxoO8qFqn42ZUhwOBw6Hg+joaODsc66trdWvw0RQkaJGQz8PYmJitEYu\npeTKK6+kR48eAERFRenOClajUA9ZSonL5dICv66urk3Z3+DsXq1du3Zl9uzZXHrppYC1HdyyZcsA\ndOO1A1U/HTp0YNy4cYwePRqA7t27U1dXB1hbqG3evFlv1Xfy5En9WThxuVx06tQJgJSUFOLi4qis\nrASguLiYsrIyfW7Xrl21oImJidE7GJWVlXHq1Cm9a1BNTY3tAtThcOh9Rh999FFuueUWXfbZs2ez\nb9++sA/iUVFRpKSkAJZQ9N9FyePxBLz2HxxjYmK0cPV4PNTW1upnX1dX16oduPwHaHUPNRtXn6m+\nXlJSAlh9Q9WVEvZ2KkDGhm4wGAzthKA1dCGEE9gGHJdS3iqE6A28CaQC24EfSSlDprr5T2H9tdiG\nU1k4O5I2ptmEa3QsKCgArClqTk4OCQkJgJVFTWnvR48eZe/evXpanZKSQkxMDBUVFYC1we2xY8cA\nIr6Xp0L9jsGDB3PllVfq10p7shu1D+awYcOYPn06Y8eOBawZg9LaPB4PvXr10rOkVatWcerUqbBr\nuk6nU2vaQ4YMIT4+Xs9evv32W63V1dbW4vF46NixIwAdO3YkOTkZsNruN998w6lTpwC02cgOVL/p\n2LEjN9xwAwCjR4+mW7duWgNWmzGHA3WPuLg4+vbtyxVXXAFYm3yrZ3fy5Em8Xq/Wumtra0lOTtbt\nIjExUfedmpoaiouLOXnyJAAVFRUB2nJLUOZSsLRwNatOSkoiOTlZP1u3243D4dB9fs+ePRQWFgKW\nKdDj8QTM0MNNS0wuDwHZQFL9638DXpBSvimEWAz8FFjUmsL4T2Pi4uK45JJLAKvS1EKjx+PB6XTq\nKeLw4cN1J5JSUlJSwokTJwBL6O7bt0+/Li0tDUmlqoYDsG3bNnJzc7VtNz4+nvz8fMBaBPV4PPph\njxgxgpkzZ5KRkQHA+PHj2bNnD2CvGeO7UJ1j7NixdOrUSQuYLVu22L6ZcFRUFH369AFg7ty5jBw5\nUg8sUVFRuqxer5cRI0ZogXnkyBE+++wzPQ0Oh2AXQhATE6MHkREjRnD06FG94H38+HHOnDmjy+dy\nufQaRGxsLP379wcsk0FhYaEW6JEY2IUQDBs2DIBu3boRHR1NeXk5YP2OcAgif7PJJZdcwlVXXaXX\npQYPHkxubi5g9aeioiJOnz4NWGYUp9Op10/69OmjhW1paSm5ubnaXKR+g7pfsL/D6XRqWzlYA44a\ngN1uN507d9YDeVJSEkOHDtXn9uzZU6+R5efnU1RUZOsgHZRAF0L0ACYD84GHhTV03QD8oP6U14Cn\nCZFA79ixI927d9daw7XXXqsfYExMDFJKLdDj4+P19dXV1ZSXl2u7VlFREV9++SUffvghYC3shUIo\n+dv4vF4vlZWVWtMWQmhtQgkS9UCLi4txOp2kp6cDVmNUjbqtoDSfSy+9FLfbrWciu3fvts0WqDSj\njh07MmvWLOBsG/CfjalBUAlXNVBOnDiRsrIyvvjiCyA8Wq8QArfbzW233QZARkYGu3bt0nn6y8vL\nAwYSn8+nhXVpaSm9evUCrDaQnJzM3r179ffaXc91dXVaE09MTEQIwcqVKwG0thlqlHcYQN++fRk5\ncqR+flVVVQFKWUFBgRbOqk5Vv3c4HFqZSkpK4vjx4+fdx1V9+Hy+APu5w+HQ8icjI4O0tDRdjtjY\nWGJiYujcuTNgzXDVOsqBAweorKy0d9YV5Hl/AH4BqBaaCpRIKdXK0zEgvbELhRD3CSG2CSG2taqk\nBoPBYPhOmtXQhRC3AoVSyu1CiOtbegMp5RJgSf13Nal6CCGIi4sDLC0xJSVFexD4fD6tKVZVVdGh\nQwdycnKAsyM4WPbs8vJy0tLSAMjMzGTkyJEcOXIEgC+++CJkZgOlRXm9Xnw+X5NeFf5Ty379+jF0\n6FA9RSwvL9f29baC0kRGjx5NXFwcn332GYA2F9iB0pT69+/P1KlTAbQ5RWnlBQUFVFVVAZanSGpq\nqtaMBgwYwKRJk8jLywMgJycn5KYMl8vFpZdeqmdbn376KX/729/0dL+hli2lDDARqd1qevfuzY4d\nO7S2aidKy/R4PGRmWh5xSsPcuHGjLmso8bdLK/NZdHQ06enp+hnn5uayc+dOAPbu3UtlZaWuT4fD\ngdfr1SaY1NRUvc5TXl5OeXm5bhf+623NzXr8Z0ZOpxMppe63UVFRup927NgRIYRuh06nk7KysoB1\nsquvvhqwtPfs7Gyt7dthTgvG5DIamCqEmATEYtnQ/wh0FEJE1WvpPYDjrSmIlFJPTUpKSjh+/Djv\nvfceAG+99ZZufCUlJZw8eVK/9hekaiFD2V1/97vf0adPH92IwuUi2LCx+N8nKipKd97Zs2eTlpam\np4+7du1qM4uhYJV72rRpgNVwa2pqeOONNwB7faPVoDJ79mwtMB0OBzU1NRQVFQHw+eefk5WVBVhC\naMCAAXrKnpGRQceOHbVwXbRokRYArTVn+JuDxowZw9GjRwHYtGkTp06d+s7vV5/16dNHKx1gteFI\nBJipe6Wmpmr7tRCC4uJi7YceLqKiorTCNmTIEGJjY7VQzMnJ0WtLDU1Xyg1Qra8NGTJE96EdO3Zw\n8OBBrbS1tC79/dkdDoe+r9Pp1INPXFwcpaWlWtiXlZWRkJCg7xUXF6fXzPr27Ut6erpeH2nMoSPU\nNGtykVI+JqXsIaXMAGYCm6WUs4APgBn1p90DrA9bKQ0Gg8HQLK0JLHoUeFMI8SywE3i5tYVR05i6\nujqOHTumTSX+zvn+bkCN4XA4tNYeHx9PXl4eu3fvBtBTMbtQCzZPPPEEYLneuVwuvv32W8AyAbWl\nsOHo6Gh+9rOfAZYGVVJSwieffGJrGaKiopg+fToAU6ZM0dNpj8dDXl4e69dbesOWLVt03QkhKCoq\nwu12A1bQUZ8+fZg0aRIA69ev1x4vra1vZRrJzMwkIyNDezQdPXq02VmM0up69OihtcGqqiq2bt0a\nEQ1dmQImTZqkzYBSSv7nf/4n7At5Ho9H37Nbt24BAXn+C5sNZ9VRUVHahRWs2Y5a/M7KyqKkpET3\nf3+50dxic8PPvF5vgMxRlJWVkZ6ermfZ5eXl5OXl6ZmkuhYsJ4j4+Hj9O8+cORP2GXmLBLqU8kPg\nw/r/c4CrQ18ka2pSVVXV6AMIxhamTBzx8fF89tln2oPAjuhBVQawbGhTpkzhqquuAiwPHa/Xq6eT\nZWVlbSpStEuXLtoNDyxfav9oRztITU1lxgxr4peQkKA705kzZ1i5ciVvvvkmYHUWNbWNjY0lNjZW\n+/fHxsaSkJCgTTfXX3+9bgOtMR0JIXTnTE1NJS4uTnuBBLMW4u/jr+zFH330EQUFBREJr1f194//\n+I9auFdVVemI4HDgbwtXg2N+fj5XX321Xqfx+XzacwUsLyV1bqdOnZg2bRrXXHMNYKXTUP3p6NGj\nAcLXX1YEM1D6m1z8cwX5fD7tghodHY3T6dTmIuXlps6Njo7WJpbKykoSEhK0B5H/WkC4nnebDf0/\n3x8cGxvL8OHDAavRfPrpp00uVIUDIYQOOujXrx+jR4/WjVHZJ5VLVkpKih7p/R+23SjN8eabb9bu\nYF6vl5dfftlWQRMdHc3w4cO1Ldzr9epnt3z5cv7yl7/ohU5A+wJHRUXx9ddfM3HiRMCyYwohtNCM\njY0NSd06nU4taK655hqcTqcOYomJiaG2tjYgiMRfO4yOjmbo0KGA5eOvrsvNzT3HTmwHDodDKz6D\nBw/W7x85coRDhw6F/f5SygDf8qNHj2oNvV+/fnTv3l2fd+LECT1jyMzMZMyYMVqAnjhxQqd88Hg8\nAamq/e3graG6ujpA65ZS6nbgdrvp27evPtffbVopl6q/+2voasYQ6uduQv8NBoOhndBmNfTzwel0\nctlllzF58mQAjh07RlZWli2O/WrK6nK5tJfN7bffzqhRowJsaDt27NBRpgMHDtSudoWFhVRXV0dE\nS1earv/Uu6CggI8//tiW+/sn4Lrxxhu1Lby2tpbDhw8DloZeUFAQYINUdRcVFUVeXh7Hj1uOVsrt\nTH1va6Md1fc4nU6tjbndbqSUDBw4ELACsY4fP65NLx6PR892hBAMGDCABx54ALC8eNS0vKysjLq6\nOtufu8vl4qGHHgKs2YXqI6+88ootnlf+GQqzs7Pp0KGDTgQ3atSogERd6jmD1VZTUlK01vv3v/9d\nr48AARp6S7XfxlxNwerbav0tLy+PHj16aNOky+UiMTFRm3rKysr0rLtfv34UFhbqGafP59Prgqqv\nN2bvbw3tQqD7C4Tbb79dh+n++c9/DlvockOU2cLtdusp7OjRo6mpqdE+8ytXruTDDz/UHSYjI0OX\n1efzUVRUpAWCnR1cNc5+/foPEYswAAAOyElEQVTpsi1fvjzAvBFO1CDSvXt30tPT9euysjL+/ve/\nA3Do0KFzBJ/6v7a2ltjYWB09rKIy1cB5+PDhkAl0Nfip9BOXXXYZYAnFY8eOabfKXr16aTtrfn4+\naWlp9OzZE7Bs6crcUFBQEJCR0y5SU1P1orHP59Nmlv/6r/+y5f7K8QHODsyqDjIyMvSg7vP5SE5O\nDoi+rqqqYt++fQB8+OGHAXlwQtlv/NuX6pelpaUUFBToyNDOnTtTUlKiBX5FRYUeqOLi4nA4HFoe\nVFZW6sGnrq4uIHoYCEk7MCYXg8FgaCe0Cw1dacfDhw/n5ptv1ol9PvroI1s8W/yjQbt06cKoUaMA\na3qYm5vLH/7wB8CKJpRSam+HsrIyPS1PTk4O8CjxX2BThCtJkkrMFB0drTXMVatW2eYVpDRypQEr\nDae8vJzPP/8c4BxzlL9JReXzHjlyJHA2cZea3rZWQ/df3FQa1uHDh0lJSdHPqHPnzkRHR+tskP5u\nb+Xl5cTFxelnXVNTo8teUVFhe9IzIQTjx48PiL7dsmULgG1eTVJKrZl7PB6++OIL7V7cqVMnPZsZ\nNGgQ8fHxun+NGDECIYReCD1x4oTWjhtrr63Z1UpdU1dXp597TU0NJSUl2uvF7XYTExOj3Vc7dOig\n67WoqCggkZf/zmYqM6f/zCMUs7R2IdDV9GzOnDl06tSJV199FQhfpriGCCECsr8pG7rP5+Oll17S\ntuja2toA4V9UVKRdmpKSkujfv79+qGVlZXpgUtOycAhYp9Opo0NdLhdfffUVgE4yZQfqGXXo0CGg\no+fk5Gjh7nK5AjJS+tdjSkoKjz/+uBYCdXV1FBUV8dZbbwE0G8EZbPk8Ho/OpvjJJ59QXFysn01C\nQgLR0dH6dU5OjjYplJWVMXPmTL2WUltbqwfOsrKykJsKmiMqKoof//jH2hvr5MmTPPnkk7bdX6Hq\nSpkblekkLy9Pr53s3LmT5ORk7fo7fPhwysvL9cBTVlYWkG3Vn1DVqZRSD7p1dXVUVVWxfft2wDIT\nVlZWapOM2+3WClu3bt1ITk4OUFj8lRCXy3Xe9v6muOAFusPh0O5qI0eOpKysjHXr1gH25E5Qwlwt\nfEyePFm7NO3Zs4dDhw4FuCr5Z3Hz92seNGgQgwYN0gNDcXExf/3rXwFrYCotLf3OvO/nS5cuXRg3\nbhxg+SCr3C2RyDFTV1dHbGys7jyJiYm6LhMTEwOyXKoFcICnn36a0aNHawFVWFjI2rVreffdd4HQ\npSauq6vTmlh1dTX79+/XHTI5OZnU1FQtxE+cOKGFTmJiIpMnTw7I17J161bAEl52zYQU6enpZGZm\n6vvu2rUrbFkVm6KhW6d/m/Z6vbrPVFVVIYTQ6bPdbjdVVVV6QLRjh6eG7oX+uWQ8Hk9AMGN1dbV+\nznV1dQE5amJiYnS+qvLyciorKwNkVCgGIGNDNxgMhnbCBa+hu91unTO7rq6ORYsWafc1O1B5sceP\nHw9Y4f3KTuZ2uxkzZoy2nRYWFurNl8HSMrt27QpY4dfDhw/XQQlfffWV1gaPHDkSYGIIlUYihGDG\njBl6llBZWck777wDRCZJVEFBAdXV1QGmFJW5zuVysWXLFu0Sds011zBnzhwAhg4disvl0tr79u3b\nWbJkSci1Tp/Pp2cu+fn5FBYWam1M5elX7n8N98A8ePCg1ipPnDihPZ/Ky8ttd1mcNWtWwFrFSy+9\nFNGNoBv+fn/vD9W/lFnV5XKxe/du3cftcrFsWEZVd6dPnw6YdVdUVGibeUZGRkDW2OLiYq3Z+7ta\nqnuEggtWoKtKvOeee3TmuuPHj7Nq1SpbMxgqv1flxpSYmKgF+tChQ+ndu7denKuoqCAlJUUL7bKy\nMl32bt26kZKSohdbEhISAhao/NOvhoqEhAS9iQhYCfl37NgR0nsEg/pdp06dYtu2bdrM0r17d8aM\nGQNYPvsDBw7UJqnx48frunM6ndTW1uqcHk8++SRHjhwJu5Dy+XxagKspd0M3NLDq+dSpU+zfvx+w\n7OvqOjs3P1CC5vrrr0cIoRWGjz76yLYyBIt/KP2QIUN0rhSPx0NOTo5eZ4lUdLV/Wl7/BXohhO7f\nycnJuN1u7ZocGxurByaHwxGWDaSNycVgMBjaCRekhi6EoF+/foAVjalGxHXr1ulprV1IKamurtaL\nYUeOHNGBBPHx8SQlJWnvC7A8DPzdtZQJQUrJoUOHdATcxo0bdfBETU0NHo8nZKO5/wYS/fr10+aB\njz/+2FaNsSGVlZWsXbuWQYMGAVbOcbWg1K1bNwYMGKC1zJiYmICo1o0bN/Liiy8CsH//ftv3aPV6\nveckWvOPHo6Pj9cJwrKzs3XQlp2zSZVLpnfv3ni9Xr33ZSSfeWP4a7lpaWkMHDhQz9pU9LAyWdi5\nZV9T+N/f4XBojbxHjx4B+/J27dqVb775BjibuynUyfkuSIGekpLCb37zG8Dy0lBCcN26dbZ7DCiX\nq+XLlwPW3pvKDXDixIkkJibqMkVFRVFeXq6nuqdOndKdPCsriwMHDgSkDFY7MdXW1oa00Sq776hR\no0hOTtYDzOrVqyO64YbX6+XQoUO6Lk+fPq1NQsrfVw0+Ho9HRzfOnz+fHTt26ME8Ur+hYQf1zxAY\nFRWlTWhHjhyxvYwxMTE6MtTtduPxeNi0aRNg7+YlwSCE0O68119/PRkZGQEulqWlpbr+Ii3MG+Lf\nBoqLizl8+LD2bImKigrYFSkcKR8uOIGemJjIM888w5VXXglYQvGFF14A0L6rdlNbW6sX4DZt2qQ1\nn2effZbU1FStqSUlJREVFRUQ9q00SZX6NdS5HRpD2fHUQq4K6Dh27FjEO0hNTQ0ffPABYGna77//\nPgDXXXddQPbFrKwssrOzgbOLqW1JMKmd48FyvcvNzdX5Serq6gK2YrNDuHfs2JEJEyYAll26tLRU\nzyrbUr2BJdCVltu1a9eA3Yx2797NyZMn29ROXxC4JaXq36WlpZw+fVrPLgoKCrQDgtpKz2RbNBgM\nBkOjXDAaupq+Tpw4kfHjx2vXtsLCQr0DUCS1S/9VbxWKXFVVpc0rbQmlQSxYsID09HQd9q0i9SKN\nsjnm5OToWZdK4+C/0bJ/nbcVGtvAoLi4mL179+r1gGPHjgXkAreD8vJyVq5cCVia4+bNm3VUcFtE\nzVwPHz6M0+nUNvU9e/Zw+PDhiOzwFAz+rquHDh3C6XRq06n/ZvLK3NKa1ASNIeysECHEed3M6XTS\nv39/AB588EFuvvlm7Rr45Zdf8tRTTwHWw25r00eDQbm2KiUkHFPtYFD3B3s2LD5fHA6HtqGrLJVK\nKB45ckSnHG6LCCECYhM6duyoTZxqUALYu3cvNTU1Lfkd26WUmc2dFJSGLoToCPwFuAyQwGxgL7AC\nyAAOA3dJKU8HW7qWoDxJwNLesrKy9Ot9+/a1qW3cDIaGqPWQSCsbbc3u3BQ+ny8gV0tOTk7AImik\n6/G78I8Xqa6uprS0VM/Y4+PjtQOC/2wzlARrQ/8jsFFKOQi4AsgG5gGbpJT9gU31rw0Gg8EQIZo1\nuQghkoEsoI/0O1kIsRe4XkqZJ4RIAz6UUg5s5rtaPcdT/sf+G0GE2g5lMBgMrcXhcARYD1o5uwiZ\nyaU3cBJ4RQhxBbAdeAjoKqVUW9rkA13Pt6QtobEgCCPIDQZDWyMSpqFgTC5RwAhgkZRyOFBBA/NK\nvebeqFQVQtwnhNgmhNjW2sIaDAaDoWmCEejHgGNSyi/qX6/CEvAF9aYW6v82mtpOSrlESpkZzHTB\nYDAYDOdPsyYXKWW+EOKoEGKglHIvcCPwbf1xD/C7+r/rg7hfEZaGb2/ClbZPJ0ydNMTUybmYOjmX\ni6VOegVzUlB+6EKIYVhui9FADvATLO1+JdATyMVyWywO4ru2GW09EFMn52Lq5FxMnZyLqZNAgvJD\nl1JmAY1V2o2hLY7BYDAYzheTy8VgMBjaCZEQ6EsicM+2jqmTczF1ci6mTs7F1IkftuZyMRgMBkP4\nMCYXg8FgaCfYJtCFEBOFEHuFEAeEEBdt3hchxGEhxNdCiCwVbCWESBFCvC+E2F//1x3pcoYbIcRS\nIUShEOIbv/carQdh8af6tvOVEGJE5EoePpqok6eFEMfr20uWEGKS32eP1dfJXiHEhMiUOrwIIS4R\nQnwghPhWCLFbCPFQ/fsXdVtpClsEuhDCCbwEfA8YDHxfCDHYjnu3UcZLKYf5uVtdjInOXgUmNniv\nqXr4HtC//rgPWGRTGe3mVc6tE4AX6tvLMCnlBoD6/jMTGFJ/zcL6ftbeqAP+n5RyMDAKmFP/2y/2\nttIodmnoVwMHpJQ5Uspa4E1gmk33vhCYBrxW//9rwPQIlsUWpJQfAw3jFpqqh2nA69Lic6CjilJu\nTzRRJ00xDXhTSlkjpTwEHMDqZ+0KKWWelHJH/f9lWJle07nI20pT2CXQ04Gjfq+P1b93MSKB94QQ\n24UQ99W/F5FEZ22QpurhYm8/D9abD5b6meMuujoRQmQAw4EvMG2lUcyiqP2MkVKOwJoazhFCjPP/\n8LsSnV1MmHrQLAL6AsOAPOD3kS1OZBBCdABWA/8ipSz1/8y0lbPYJdCPA5f4ve5R/95Fh5TyeP3f\nQmAt1jQ5qERnFwFN1cNF236klAVSSq+U0gf8mbNmlYumToQQLixh/oaUck3926atNIJdAv1LoL8Q\norcQIhprMedtm+7dZhBCJAghEtX/wC3AN1h1cU/9acEmOmuPNFUPbwM/rvdgGAWc8Ztut2sa2H9v\nw2ovYNXJTCFEjBCiN9Yi4Fa7yxduhLVDxMtAtpTyeb+PTFtpDLXfYbgPYBKwDzgIPG7XfdvSAfQB\ndtUfu1U9AKlYK/X7gb8BKZEuqw11sRzLhODBsnP+tKl6AASWl9RB4GsgM9Llt7FOltX/5q+whFWa\n3/mP19fJXuB7kS5/mOpkDJY55SusndOy6mXJRd1WmjpMpKjBYDC0E8yiqMFgMLQTjEA3GAyGdoIR\n6AaDwdBOMALdYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ3w/wFzeSrf0VINXgAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generate from prior z:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVmMnOl1JXj+2Pd9yYzIfWFyqYUl\nlqSSSmVbKmjkEWzI8IMxbT/0DBrQy/R7+22AefLrAAMMRg/t6YY809220HBbGGtsSzKlskolVZFV\nXKq4ZDL3zMjY9z3in4fkufwiGBEZkUxKpJQXIHJh5L98y/3uPffeczVd13Eu53Iu50Ix/Lof4FzO\n5VxeLDlXCudyLufSI+dK4VzO5Vx65FwpnMu5nEuPnCuFczmXc+mRc6VwLudyLj3y3JSCpmm/r2na\nfU3T1jVN+/PndZ9zOZdzOVvRnkeegqZpRgAPAHwdwB6AXwL4V7quf3rmNzuXczmXM5XnZSl8AcC6\nruuPdF1vAvhPAL71nO51LudyLmcopud03TiAXeXnPQBfHPZhTdPO0yrP5Vyev6R1XQ+f9KHnpRRO\nFE3Tvg3g27+u+5/LufwWyvY4H3peSmEfwKzy88zj34nouv4dAN8BnlgKmqZB/ariHf2/G/SZQaJp\nWs9nzms9zuVllv71/DzkeSmFXwJY1TRtEcfK4H8A8Kfj/rGu67LpjUYjgCeDYTQaoWkaDAZDz/cm\nkwkWiwWNRgOtVgu1Wg0A0Ol05G9/FQP6vOQsnn2Q0h103bO4zyDlPeheL/Oc/DrkVzFWz0Up6Lre\n1jTt3wL4/wAYAfx7Xdfvjvv3XEjc+ADQ7XZhMBhkcalKwmq1wmg0wul0wu/3o1arodlsotvtIp/P\no9FoQNf1l27xqZv4WZ7dYDjGk3kNjqHBYJD/MxgM0DQN3W4X3W4XnU7nVPfsf2ZVwQ+63ss2J78K\n+XUryucSkpz4IR67D9z0AGC1WgFAFikXsaZpMJvNsFgsMJvNsNvt8n273YbFYoGu6+h2u2i1Wmg0\nGsjn86jVami32+h2u6d5vp7NQ2VlMpnQarWg6zra7bY870kKSLVcNE2DyWSC2WyG1WqFz+fDwsIC\nXC4XAoEALBYLNE3D1tYWkskkCoUCSqUSdF1HsVhEs9kceh+OF+9pMpng8XjgcrkQDAYRj8fRarXk\nOQqFAorFIqrVKtLpNFqtFtrtNhqNxljjZrPZxDIzGo0wGo0wm80wmUxwOBwAgGaz2XPdVqv1lAIa\n1zUcNK4AZG4CgQAcDge63S4KhQIqlQparZbMEcfopHfrt3zU9+M7RiIRLC0todVqIZPJ4PDwEIVC\nQQ6ncZ/d4/HAbDbDZrPB7/cjEonA4/HIOvf5fMhms6hWq8jn88hkMvK13W7LGue/PvlI1/U3T3qW\nXxvQOEjUiep0OgAgL8aNaTab4XK5ZKBsNpsoAV3XUa/XoWkaWq0WHA4HWq0W7HY7ms2mXLNfVMuD\n33PzW61WmM1mBINBsUbMZjPMZjN0XUetVkMqlUK1WkWhUBhLIfTfFwDMZjOcTie8Xi/m5uYQCoWw\nsrKCTqfT807lchlWqxX5fB7A8QYY9l60rgDAZDLBZrMhEAggHo9jYWEBc3NzaDQaqFaraDQaCAaD\nKJVKKBQKoiRqtRrq9fqJc8fNYbfb4Xa74fV64Xa7YTab4fF44Ha74Xa7USwWUSqVkM1mcXR0hGQy\niXq9Lkr1NIpAPTDoSjqdTnz+85/H3NwcyuUytra28NlnnyGbzfZYTMD4ioGHgc1mk4PIbDYjEAjg\nlVdewZUrV9But5FKpfD+++/jwYMHI5V2v3DTOxwOXLhwAdFoFAsLC4jFYgiFQvB4PLBYLEilUqjV\nakin00gkEvj444+xubkpv6/X6z1u86TyQikFitFohK7r8mLcoPxnMplgtVoRi8XQbDZht9vlJLBY\nLOh2u3A4HOh0OjCbzajX6zCbzWIWj7ovJ54T5Pf7sbq6is997nNoNpuwWCxoNpuYmpqCxWJBPp/H\nvXv3cPPmTdy6dQvtdhu6rg9daINAz263i3q9DqPRiGKxKIql0+mg0+kgn8+j2WzKqVMul9Fut080\n8bkouGFcLhempqZw9epVLC0twev1YmdnB9VqVT5jsVgQj8fhcDiQTCaxt7eHYrF44nyZTCZRBNFo\nFPF4HH6/Hx6PBzabDVarFSaTCdVqFa1WC5ubm2g2m6hWqzJmnO/+5z9JVGvIYDDAYrHA6XTi6tWr\niMViSKVSSKVSsFgsMJlMPetAdW9Ouod6SPh8PlG0drsdmqah0WggFovBaDQiEolgd3cXlUplItfV\nbDYjGo0iFAphbW1NFLjJZEKtVkOtVoPD4YDT6YTD4RAcrdFoyBo5Ccc5SV4opcCB52JXX4omGydh\nenoa0WgU1WoVnU4HJpMJRqMRtVoNZrMZBoMB7XYbrVZLAMlB91OtA+D4RKWZPT09jYWFBSwvL2Nl\nZQXlchm6rsNsNmNhYQFWqxUGgwEzMzMwm8148OCBLPBxJkI9sbrdLhqNBorFIrLZLIxGI3K5nFgF\n29vb2N/fRy6XQ61WQ6fT6TGDR10fOD6FpqenceXKFbzyyiuIxWIolUrY3d1FOp1Gp9NBsVhEPB6H\nwWDAhQsXMDU1hU6ng8PDw5FWFl0Ebv5oNCqnG5+Bi9ZiscBisSAWiyGdTiOTycBkMqHdbp8KEOZY\nU6nxn9PpxPT0NOx2O8xmM1qt1lOuw6BxGjWOVCZ0G+v1OsrlMiwWi7y3y+VCt9uF3W7vcd/GfY9W\nq4VKpSIWqcvlQiqVQqVSQTKZRKvVgsViEdfSZDL1WM6q1TzOuw2SF0opABi6obj4PB4PVldXcfny\nZXg8Huzv76NcLot1QbCsXC6Lr14ul2E2m1GtVp+6l/oVgEy61WrtGfStrS1ks1nY7XYsLS3BYrHA\n7XbDbrejXq9jaWlJFNMQf27k+3IiLRYL2u02XC6XWAPVahV7e3vI5/NyshJnOWkDUZn6/X588Ytf\nxNe//nVEIhG0221sbGzgo48+Eren3W6jXC4jFoshEolgfn4epVIJd+7ckWjOoGtzs3Q6HbEITCYT\nDAYD0uk0KpWKuCJzc3NYXFyExWLBxsaGXEfdPMSWJsF/1ENEjVjRQszn8yiVSjJ2/RjGOIqBz1Sv\n12WOW62WPDPXgNPpRKfTESxm3I3Z7XZRqVRQr9ext7cHm82GWq2GZDKJUqmE/f191Ot1+P1+LC0t\nCfZkNpsF36CF+ixg5QulFPoXuar9eXpfvnwZX/nKVzA7O4udnR2ZJE3TBEMgeNbpdNBqtWAwGGTy\nRkm/ye5yuZBIJFCpVNDpdJDL5bC8vIxQKIR2uw2HwyGLsFKpyALgop7ktAOe+OVut1s2WDqdxs7O\nDjKZDCqVilgi6t+dNKZOpxOXL1/G7/zO72B+fl425HvvvYeHDx8KWErT2mq1YmVlBXa7Ha+//jr+\n/u//fqBS6Ld0CHQlk0lYLBZsbW2hWq0ilUqhVCqh1WrB7/fLmHGu1Xca92Ttfw51vPksPNEPDg5w\neHgouNJpNwuftdvtiitHxVWtVuFyueB2u8XMr9VqEys2Hmjb29s9bhVB4Ha7LZufrgyfh1E3Xuu0\n8kIpBaAXOOJCNZvNCIVCuHbtGt555x28+uqrsFgs+Oijj1Aul3sGgidVrVYTbKDRaKBerw8dqH6z\ntdlswmAwIJFIIJvNwuFwiJ/ocrng8/lgtVpFAe3s7OCTTz5BrVY7deiTodVQKISpqSkEAgGUy2U8\nfPgQDx8+7DnlBj37sPeyWCxYWVnBV7/6VayursLtduPw8BDXr1/H+++/L5EMKlF1QcdiMbRaLSwv\nL+PmzZtD78371+t1AfK46UulEnK5nACmLpcLLpdL/qZcLosr1L8GRuE//aLOHzeX1+vF5uYmNjY2\nkMvlepTPaYXPqSoiXddht9sRi8VgsViQSCTw6NEjNJvNE++nzh/XXqVSgdlsRiqV6rEIiSN87nOf\nwyuvvAK/3w9d18UK4lieFkugvHBKAUAPkmyz2eB2u/Hqq6/ia1/7Gq5cuQKz2Yz9/X1sbGwIUt5u\nt+F0OsUqMBqNcnLRnBw2SOqkqL5dtVqV0//ChQuYnp7G5cuXEQwGYTAYkM1msb+/jx/84Ae4ffu2\nWCOTKgaenE6nE/Pz81hYWBB0eXNzE9lsduCCPmniDQYDHA4H3njjDVy7dg0+nw/NZhMfffQR/vZv\n/xZHR0dPbXQqBvqn09PTcLlcsNlsT7lf6tjxhFMTybxeL6xWK5xOJxqNBgwGAwKBAOx2O7a3t8VH\nHhSSnPSEVUFVk8mEaDQqh8P6+vrIsOqkFh03qnrvixcvYnl5GXt7e/j444+xt7c3llLrB555IFUq\nFQBAJBIRZRCNRjE7O4vPf/7zcDqdqFar2NzcxN7eHnK5XA9oC5w+3+GFUgrcTAz3aZoGu92O2dlZ\nvPXWW1hZWYHFYkGhUMD6+jpyuZyAV3a7XdDuSqWCcrmMbreLXC7XE9Ycdl+KOtl8Bq/XizfeeAMr\nKyuIRCIS4tza2sIPf/hDvP/++8hmsz2I9iTChezz+XDhwgU4nU6Uy2UcHByg0WgMBS9Puo/VakU8\nHsfrr7+OSCQCTdPw4MEDfO9730MikRBwj8+gntDValUsn/n5eXz88ccjxw0A2u22uFFOpxOBQEDC\nd7TUHA6HLOaDg4OBp+kkmAxFjVJ5PB7Mzs6iVqvh4cOHYqkMkknnimuCwmjV5z73ObTbbdy5cwc/\n/elPR1qmo66tumIM8S4uLmJ1dRXxeBzT09MIBoNoNpsoFotIp9MAIFGdZ3k3ygunFPjVbDZjamoK\nr732Gq5evYrLly+j2+3io48+woMHD5BKpRCJROB2uxEMBuH1etFoNOD1epFOp1EqlVCv13Hjxg0B\nhIYttP4wmMFggN1uF1BzeXkZb731loBn6+vr+Pjjj/HjH/9Y/ObTug0MoTGUBwAbGxsol8vwer2Y\nn59HuVyWZKJJ7uH3+/GNb3wDb7zxBux2O9bX1/GXf/mXWF9fFwvK5XIJWEiz3+v1ol6vI5fLwefz\n4fDwcOg9VAyFyqvb7eLo6Ejeye12w2q1wuv1IhQK4fDwELdu3UKxWBQcheFIbt5JsAX1sx6PB1ev\nXsWXv/xl3L59G7du3ZID4ixEzVdgbsni4iLm5+dx48YNfPe73x1ogU0iPCCmp6exvLyMtbU1LCws\nYHp6GlarFZVKRRT23NwczGazYAqMJP3GYApcFAaDAU6nE5FIRMxXhn+Iztrtdtm4Pp9P3AxGCxwO\nB3Z3d9Fut3vSeQfds18pmEwmuN1uzM/P4+LFi5iZmYHJZEIymUQ+n0cikcCNGzeQSCROdSL0399o\nNApoubOzI5vT7XZjeXlZ7jsOWKoKE2vsdjtarRZ2d3dRKBREIRiNRng8HhgMBgECGftmiKtWq6HV\nao2VhKOecrVaDQcHB6jVaggEAvB6vZidne1xQ6xWqyiSfnxiElH/jiCc3W7H0dGRWC5nKVQKDocD\n8/Pz+OM//mMAwC9/+Uvk8/lTvYMKqNP1pcWWSqVgs9mQyWSgaRpSqZSMqcfjAQBEo1F4vV7J2mw0\nGqfODH2hlIL68PRJCezVajUUi0UcHByI4ohEIhKOYXJOvV5HKBQSt4GLmX/Tv0CoMHjicUEx7EPQ\nr1AoIJPJIJvNYnt7G6lU6imFMKkP15+J1+12kclkkEqlsLy8jFgshkqlAq/X22OCT3J9Anz1el1O\nGOBJBqXVakWj0UCn05H3XlxcxPLyMpxOp8THR923fzPruo5Go4FcLod6vY5arQaXy4VCoSB+r8/n\nQy6XE0WiuhEnJZmNEoJ+TIw6SdGcds7sdjtmZmbwzW9+E1/60pfEamRm5qT34tpjGJyJbIlEAs1m\nE4eHh8jlcjg8PITdbsf8/DxeeeUViRLNzc1hb28PpVKpp/bnNPJCKQWgtxiKZn+5XEapVEIymUSl\nUpGIRKlUgs/nk79jCKhcLmN3dxfr6+tiTo0yR00mk2hpq9UKv9+PWCyGqakpGAwG5HI5qa1gEg6R\nXt6bEz4qLq0uCtUHZt0D89mLxSLC4bCg0Hy+/pDtSQu61WpJXrzX65XsT4/HI1gMLSlaZl/4whdw\n6dIlzM/PI5/PI5vNolgsjmWlqCdTt9tFrVbr+V273Ua9XhfzmEqcY6+6MLzGuMJxsNlscDgcAmyO\no1wmyZykleB2u/HFL34Rv/u7vwuTyYSbN2+iUCgMvKaacTnoPurhYLVaJX2/0+mIG9xoNLC7u4tS\nqQS/349GowGHwwGfzyfp5KFQCH6/H7lc7lShXcoLpRT4Ikzi4MnCSsdms4lGoyELiJmLXAjM/Ds6\nOpKwEDMeh/lZdBUMBgNcLhecTid8Pp9sSqfTiVwuh3g8Dl0/rq04ODiQTaImTY06JdR35CYgQBoK\nhWC321EsFmVCafFww1oslp6CMRUIHbagK5UKNjY2sLq6ik6nI0AmMz81TZOIQTgcxle+8hWJ7nCM\n19fXUSqVRm5QdfGr4WT1nY1GI8rlsuQLMB8jn88LpsG/J3YyySnOU9br9ULTNCQSCYk4jNog/cDh\nKOHnLBYLFhYWcPXqVQDAL37xC9y5cweNRkM+x+v2X3uUYnA6nYjFYvB6vfD5fDIWuVwO6XRaXDnW\nNjDkznR+ppSbzeae532p3QfgyaDRbP30009Rq9UkbZmKQdd1BAIBiTiUSiUkEgmsr69jd3dXTtyT\nYsVGoxFLS0vw+/0AAK/XK+mlAMQ/YwoyJ0dVAPQBxzFVgSfFScFgEG63G1NTU6jX66hWqwI6Li4u\nIhaLiZXDzTYJiFSr1bC7u4sHDx6Im8VM0Hw+j4cPH2JqagqRSASXLl3CtWvX4Pf7Ua/XcXh4iK2t\nLdy9e1dArZOEG0GtWeGYNBoNGI1GZLNZAMfuHJOJWNlKV29SfIHjwxRqq9UKh8OBSqUiZvSz4D68\nBwCxEgKBABqNBj755BN8/PHHyGQyPVGuQdbBqJCoruuSis6iOCbmsd6G6dPBYBBra2vyGVq4rVYL\npVKpRymdxoV4oZSCOnHNZlOSN6rVqmhBxt51XUckEoHNZkOj0cDR0RHu3buHg4MDyf7iiTPq1DEY\nDHjllVewtraGVqsFn88noFu73UYmk4HZbMbW1hZKpRLu378v8XV1EwBPZ2QOej/VJ43FYojH43C7\n3ZJ56fV6sbi4iDfffBPhcBgbGxti7UwKxDWbTWxsbMBgMKDZbGJ5eRlerxerq6uoVqvwer0IBoNY\nWlqCz+eTTM1SqYSNjQ1cv34d+/v7Ey0stTKTY8LaAyL21WpV4vFMCW42mz2FcOMKrRACzMSXaG3x\nADlpXsYRRmsikQhWV1dRLpeRz+cFS+B9CHZyPOgKjbIS+NwsxJuZmRFlEAwGEY1GkclkAECwBK/X\nCwCiDBi1UkHG08gLpRRUYRJNJpNBo9EQsKrb7cLv98Pr9Qr4mE6nsb6+LvUB9PfVjcTTvF+Yp7+0\ntIRIJAJd11EoFLC7u4tsNguDwYBMJoNPPvkEiUQC5XJZXAd1szC2PmqBcaFwc1gsFoTDYUxPT6PR\naEjl5fz8PJxOJ7a2tvDee+/h7t27KJVKE4NvxFfW19flvd566y3k83mEw2FEo1EEg0F4PB60220c\nHh5KduaNGzck6jFJHYdq1ajmLd0lpuVyA9CCsVqtMnZMOhtHVCXLEzwQCMBkMiGbzT4T4NZ/H4vF\ngmAwiJmZGTgcDhgMBuTzeYno8Pn57uppfZK1YDKZxKKy2+3odDrweDwwGo2YnZ2VjW4ymaRQrdPp\nIJ1OY2NjAz/96U8Fc1CzLk8jL6xSAJ4oBp4kDocDZrNZzPn9/X20220UCgU8ePBAsAe1Gq7/NO+X\nZrMpSTeBQEDi9FarFXfu3EE2m8XOzk5PVpxqnvEe3PAn+cG6rotSYepytVpFIBBAKBSC1WpFt9uV\nJJj79++L1XOaCj+CVffv30e5XMbm5iZ8Pp/803Ud+/v7KBaLyGQy2N7eRj6fx+HhoZw6J8kw8JPj\nzlJmr9eLcDiMWq0m7kT/eHI+JlWAjKZcvHgR09PTyOVyPQDps7oPBITdbjemp6cF4yHmxVRtFRfr\n/zrKUiGofnBwAKfTiVAohGazKdE3WsomkwmNRkNqYu7evYtbt25ha2tLUrkJ3v7GRB+AXp+SC4Q+\nPf3xRCKBg4MDAfgqlUpP7Tr905Mq7ur1OtLpND799FNYLBZBxNfX1/GjH/0In3zyCbLZ7Ino+zgT\nwLAoT+VUKoX79+/3VGQylDdOafQ4wjEslUq4d+9ej28MPDnV+iMo3KDjPoMKavHzdBGYl09Skna7\nLSQr+XxeQqbELiZVCFTITqcThUIBt2/fRjqdxtHR0anZtvqFB9T+/j6uX78u0RNyJqj36bdyxhk/\nHjjr6+t49OgRfvSjH0kpusvlklwTHiKFQkFCybSI+/Gm066dF4qOTQVngKfTj1VAyWq1wmq1SiUk\nB0wdGF5HZaEZ9L7hcBgXL14UtP/hw4dIJpOiDF6EMXqeMmzcJ43fq0g+/WSLxQKHw4F4PI75+XnB\nig4PDyXRRlWA/cVR4wgrBpnQxjyHVCp15nNHvIAhcyrRs3JR+PUka/OUMhYd2wulFAZlHaommaoY\nGIqkEuDmJdClKgRVSQyaPJK3cKI7nc5YzEbnMlo4VwQCGS5TowLA0xWOpxlz3gd4EiaehArtt0Re\nPqXQf2L1f1WFIZx+M1s1g1Us4aTTrz8H4FyeTYah3+rvVcviLMZ+kryG31J5eYlbJ4nDn5WcdX78\nb7uMG/47y018rhDORp5bK/pzOZdzeTnlXCmcyzPLIDdv1O8muea5/OrlhXIfThIVZFS/OhwO6R1A\nJPi07sBp8sVfdF9WbWTDRC42HFHBPjWkRiZs/t9JMk4EQ01u4s+DsJyTslBfRBmUzfo8n11NIT/r\ncXrhlYI62OQAIHcCGY+Z6cVOUCwYGRS7HSXcPCoAxp8HfUb9/2GffxGEhWPMk9C042o81uSrtQfV\nalUSfzjuo3Im+hfkqBN+kMIdxc34oo3jIFEjYur7PQ+MalAU7nnc54VVCrQEBhWZqMVH5A9k7Lha\nrUpNObPmTlIMzHtglhp7BfA0bbfbkkjCUBpPU6aVlstlSa9+Fs2t1tSzZJrXZKMP5mqwhmDYvSwW\nizx/t9uVYis2hVlcXMQ777wDi8WCXC6Hhw8f4tatW7KomVTEEB8weKOqi3UQuSu/8t1sNpsod6b3\n0jKhcuK9n1X68ybU741G46lYs/gupLsLh8OYmZmRMn9mF/aHXoGTFd2gtcP7kTJgZmYGq6urCIfD\nAI7Jb1OpFDY2NpDJZJ45pP7CKgXg6VOE5qbNZpMWaCyXLZfLqNfrktrKzTLOoHADdrtdBAIBoerm\nCcp7sbjGarXCZrMhn88LXwH5HYDTnXAs9AoGg7h48aKk1ZZKJWH4Zdms1WpFsViE1WpFJpMZmG3J\n8WLWG6nkSB0fjUaxsrIiGyOVSgk9GlOqOYajTm5aSf3lzwBk47HugYlMbI3GLL1msyljRzIYZkOO\notDjvclHQSuISlQ9ULihaOn5fD60223ppTDJPLFWIxwOY3l5GbOzswCe1L+QUEblvRzXzO9PvFNz\nPJxOJzweD2ZmZrC4uCi9MovFIjqdDnZ2dmCxWHp4LE4jL6xSUAeHA0pt6XA45GRnByOWODOHnNcY\nRzNzobBXH31tNXuNdNoul0vuRR4HfmZ3d3eiBaA+g9lsht/vx+XLl/Gnf/qnks6ay+Wwvb2NcrmM\narUqBWAGg+Gp+v1+UfPx+ZXZhfF4HHa7HQcHB3j48KGkVzebTVit1p7F3O8eDDrJ1HJpdROyUMlu\nt0tX8KmpKXi9Xuj6cS/OcrmMbDaLTCYjrc+oUEaZx7TmgsEgfD6fMEmxKS97c3AeWYfBpjfpdFoO\nmklSyul++f1+WTscO7XLuVp/07+exxEqBLfbDb/fL7UXlUoFBwcHQjvIblRU6Ex9Pq28sEqBovrr\nTJvlSc2TkyYazbdBtOGjrk/CCp5OXNRs7OH1euH3++H3+4V9KZlMSmn39PS0nNzkH5zEWmAJ8ZUr\nV/D7v//7CAaDePToEY6OjnB0dIR6vQ6fzwev1yvU3kdHRyMzADluaoYn2XnYcs9sNuPu3bvY2dkR\nF4NmMSnBTkrzVjcuP9fPIsSqVt6Tbc7YLi6bzaLRaEg+v81mE7dlWM0JFRAtj9nZWSEooQJKpVJC\nIuNwOODxeOD1emE0GnHz5k3k8/mh3J2jRLVMyPJ09+5dAJBx7C/KU8dnEmE6P11alvO3222EQiEE\ng0HpfVKv12Xtq+M06X1feKVA4clFM0rTNFSrVWkZxy5NKodCPwA4TKjVeeLR3221WvB4PLBarcKx\nQHq2XC6HZDKJRqMBn88nrcLHJSRR38tkMmF+fh7vvvsuLl26hJs3b+JHP/qRMDiTAyEajQrjFCtH\nR92rHyAlt9/q6ioWFxeFqerw8FD6M7BVGQlWucGHYQlc+P3jzFPO4/EgEAggGo3CZrOhVCoJYStP\ncJvNhkqlIs11aZ6PqtCkdUa2orW1NenpqWma9HuoVqtCgBsKhTAzM4NEIiHWhNpqbdz5omKLx+PS\nbSuZTAoBi4p5DbKqJgG+2Q/E7XYLXsYDSMVLSqWSVN2e5l6qvDRKgcKJNJvNQs5KJTHIVBs3KsBF\nTGGpLxmNU6mUuA65XA77+/vSDp6nokqDNYkp6nQ68frrr2N5eRmNRgN/9Vd/hd3dXQEHdV2XOnqz\n2YxHjx4JmHSS0lPDuDwpZ2Zm4Ha7kclkkEgkBHOgW+b1elGtVuF0OqXQjNfqB80G3V99d7vdLr4v\ny3rD4bAoqWq1imw2KyFlgsWqWzfonXha22w2RCIRBINBaJom/JyPHj3CnTt3RMF7vV5cu3YNbrcb\nhUJB6iJOomsbdG9d12XN5fP5nsavJJQ5qyIpAOIqkiUbOMZE5ubmpLXh4eHhQGzkN14p8NRqtVqC\nWpOohCd4P1Cjfj9Ka3NzejweRKNRrK6uCghGjgNaJmz4yQlqtVpC8KE2hTlJuLgXFxfxpS99Cbqu\n47PPPsOjR49Qr9dlU/AUD4XIOUsIAAAgAElEQVRCPd2vxlU+dLvC4TCWlpYQDofFbCebELsPkbiD\nCoDKZ5DP3b+ZVAXEUzMYDIrPq/Jr0h8ndT8VAynaGOEZJtzoFy9exMrKSk8/iY2NDRwcHKBUKsFk\nMiEWi8Hv9wswXavVUCgUpMXdpMLojc/nE3o+k8kEr9crTGCD3NfTgH9UfipDtcPhwJtvvolLly6h\n1WohkUgIp4N6r9OGLF8apUDXQWXwAY4nyO/3CxkoP6smyphMpqEVc5wociksLi5icXFRiFo3Nzdh\nNBqFuIInGkM+NOMY7+eiG0cIYH7961+H3+9HMpnEz372MzGbGcJbXl4WwtW9vT3pEj2MTapfWdD3\njUQiuHLlCkKhEHZ2dlCpVDA7O4uZmRkx70lrls/nxQwul8sAIKj2sAQd1XIgkajL5ZIxIlFtLBaT\nhLO9vT3s7e2JUqDVQuUwas5mZmYwNzcn3a/29vbw6NEj7OzsCLO32WzG8vIyXn31VXg8HmSzWWxs\nbAhYOw5uogqVnd/vl43KeQ+Hw091mu4HaSfdpLSKTSaTuLYrKyv4whe+gGAwiFu3bkljHVURsbnu\naeSlSXOm7xkMBqVzMdHkcDgsCoHWBIlDgJPNXKvVCp/Ph7W1NSwuLiIajcopFgqFEAqFpFGtGuO2\nWq3SIToej0tjjnEWGEOOc3NziEajKJfLuHfvHnZ3dwVVt1qtiMViuHTpEtxuN0qlEg4PD8X8HdYf\nsX8hms1mOBwOzM3NIRAISGSjWq1icXERKysrmJubk1M9EAggHo8jEonA7/fLwuw354e9JxUAIzO0\n7oDjpiWxWAx2u11Q9P39fWl7RhOZncOHidPpRDweFzq5TqeDZDIpwCJ98cXFRfzRH/0Rrl27Bl3X\nhcSE+Qk81ccRWkFUdLRW1XAh8CTq86xJbTwISSLMcb1y5Qrm5uZQrVbx4YcfYnt7WyIelGdppvtC\nWwrcgBaLBZFIBCsrK1hbW4PFYsH29jZCoRAuXLiAeDyOarWKUCgEp9OJZrMpSDaByEENRjhhTqcT\n7777LhYWFqDreo/5yQgHOzepKcMzMzMIhUJYWFjA4uIibt++3ROBGCb0p6PRKN588024XC48evQI\nBwcHmJqaQiwWg6ZpCIVCWFtbQyAQwN7eHt5//338/Oc/f4oTcND1KSQCvXDhAmZnZ1Eul1EsFrG9\nvQ2/34+VlRVxiyqVCqrVqgB2ZPzZ2NgQYHAQkNWfIESLgBgNIwQmkwmrq6vQdR03btzA9evXhVdT\n9fENBsPIU07XdYTDYYTDYei6ju3tbVQqFczNzWFlZUWo8t9++21885vfhMPhQDqdxoMHD3D//n2Z\n20KhMLHvr+vHTONsBsTuZIFAQA4mtiYol8syXqdRCAyPVyoVcZfm5ubwzjvvIJVK4bvf/S6uX78+\n0DKdNCFLlWdSCpqmbQEoAegAaOu6/qamaQEA/xnAAoAtAH+i63ruNNdX8xLY13FxcRGtVguVSkV6\n+LErM0/rZDKJo6MjiXsTre8XmuBTU1NwOBxwu924d+8ebt26Jam+9Xpd+lCoQKbL5UK1WpVYMcNu\ndDN4/SHjJmY6T1GLxYLFxUXU63U4HA7UajVZ+I1GA/fv38edO3d62o0PE24suh98PvYhJBBmsVhw\ncHCAg4MDFItFIXT1+/1yAhMPGIRfqC4a34uKgc9gs9kAHOMugUBA+mbcuXNHTnaV2n2cECHRduZv\nMF2b85/P57G6uopr167JptrY2MC//Mu/iAI5Ld2druvCy8ioFUOi5AtVcyVOEwFQx4FWmtvthsfj\nwZUrV+B2u/Hhhx/i008/7XF9VAbp094bOBtL4au6rqeVn/8cwA91Xf8LTdP+/PHP/27Si3JxUSGw\n27PX60Wr1ZLGmzSpNU2TxcwUXQBy4pDnsV+MRiMCgYB0KV5fX8fR0VFPfwdd13uAPYawiCtEo1E4\nHA4BQIHRCsFoNEpSj8lkQqFQEIDK7/cLUj81NQWn04k7d+5IS/p+M3GUqHRoXq9X+kSq8fkHDx5g\nd3dXCFMZ2o3FYmi1WmItqCHe/vtzPBjBYXo4lTexilqtBovFgq2tLRwcHIiCAiD9C8YNIVcqFezv\n78up3Gg04HQ6ZZ4InpZKJdy+fRv/+I//iPX1dSSTSeFbPK2JTStD0zSJTgUCAbRaLQGlh7mu42xU\nKgW73Q6j0Sj9QS5evChr/uc//7koJpWHlIfBs8jzcB++BeD3Hn//HwD8M06pFMjQy+7S3W5XYugs\nhmITGG4uotlcKAT+hvmNBoMBCwsLiEQi0nSmVCr1tIDv7+ugFmb5fD4B1WixnDTprCWgmZxOp2Xj\nEURcW1tDOBxGOp3Gw4cP8dlnn/W0qhtn/IAndHRqAhizCff397G3tycukgpSEfQDMDa7shou5rix\nCIvdt3K5HB48eIB0Oi04grqJmHl40uapVCrY29uTzlqbm5sIBoOIRCIIh8OIRCLodru4e/cuvv/9\n7+OXv/ylsB1TwU2iFFQ0v16vI5/PS/4A+3AyWlUsFnvmapKcGXWNESzUNA0LCwuYnZ2FxWLB7du3\nsbm52ROpOa2rMEieVSnoAP5BO6ZT+z91Xf8OgKiu6+xdngAQPfXFH5v3jD9TAfj9fjidTqyvr+P+\n/fvY398X/42Twf4C7A0xzEfVdR0zMzNiXk9NTcHj8UgvQloEzBXg6RCPxwWci0ajEqYcB/Gln8nG\nocFgEOl0WjCQr3zlKwiFQjCZTDg8PMRHH30khS7jTr6aTcfFSTSejWPb7bZ0FrLZbPB4PAiHw9A0\nTXptMNQ1KHqjLnImAakFTxaLRe5pMplQrVbx6aefSgSFkRz+PZ9RzYsY9r60bBimczqdUpzGnhb3\n7t3D3/3d3+H69evSA0J99kn9bvVveH9muO7t7cFkMomFyejHsEjNKOFpz76bDJebTCbs7Ozg+vXr\nyOVyApKqNR78+utMc/6Kruv7mqZFAPyjpmn31P/UdV1/rDCeEk3Tvg3g28MuTE3O7K1ut4vt7W2p\nfnS73fj444+lG2+n05E29VarFQCk4/KoBrPEB9iSfWZmBvF4XJQKTU0yBTNG7fV6pQltp9PBgwcP\nkEqlTjzl1EVVqVTQaDSQzWYlU41NbwAgkUjgn//5n7GzszORQuC7ctNks1ns7u4iGo3C7/fL+zJv\ngai/w+GAzWaDrutS7EXW5UFFUao7wWgKATGmhpMKnSfsgwcPcHR0JNabeg21kGlU+I6mssoATbeB\nGY5msxk/+clPcP36daTT6aesgtOcrPwbpjGzATBdrkKhgMPDQ1Sr1ZFhyZPuzffjHGracYXs7u4u\ncrkcHj169BQuwjkfVEQ4qTyTUtB1ff/x16Smaf8VwBcAHGmaNq3r+qGmadMAkkP+9jsAvgMAgxSH\nrutSy9DpdHo6J2ezWcRiMWxsbMhkMMGGpxyz40Z1COKgbW9vY21tDS6XCxcvXoSmachms9A0TaIJ\n4XBYqtUYm2a+/meffYbt7W3pOnzSRPA0ZFdogo2lUgl2ux0OhwPlchnvvfcebt++fSouSj4Dn/He\nvXuSBDU7OyuNb3w+n/R4ZDiQCUzr6+vSNm7UyaOeUCzsYmOb6elp2cB7e3ui2MdZzKPGsT+b02Qy\nYXp6WiJC9XodP/zhD5HNZp+qQThNEpH6LHzWWq0Gs9ks7dto/YxqKTCOQuhXtuzv2Wq1cHh42JPO\nTHdDjQT116JMKqdWCpqmOQEYdF0vPf7+vwPwvwL4bwD+NYC/ePz1b097DyoGXdd7EpPYbjuTyUjd\nvYrAclDUzLJRA/Tpp58iFAphZWUFFosFs7OzkhDl9XrlFASOq+FMJhN2d3eRTqelXXsymZQIxbhg\nEnsdMvGJFYztdhuffvopPvjgAxwdHU2c8KKeULSWjo6OcOvWLTQaDVy6dAkXLlyAx+ORGD8VAxvz\nplIpHBwcSPGNet1h9wIg4+TxeBAMBuFwOKBpmlgdxWKxx69XsQReZ5zFzA3D0F0wGMTq6iouX74M\nh8Mh+Q/ELDjm6vgPe6dRomJK7HwViUQk4YoKXFWUp7VKCBATJCZvgnrQqe0MVCvrWTCGZ7EUogD+\n6+MHMgH4v3Vd/4Gmab8E8F80Tfs3ALYB/Mkz3KPHrGw0GpJezEal3PhEbDkYauccXmeQdLtdPHz4\nEK1WC5ubm5II1e120Wg0kEgkRDFkMhmk02lpYksrplKpPAUsnSS0FgwGA9xuN6LRKFwuF6anp1Gr\n1XD//v2h+eyTjh87aO3s7Ei0Zm9vD9PT0wiHw6IEmC7b7XaRzWYFsOUCHGUt9J9wjLDY7XaUSiVU\nq1Xs7e0NTbhSr6N+PUk0TYPb7cbS0hJee+01TE9PQ9M07OzsSILSqPtMsoFo1vOwYtUpQe9kMjkQ\nSzhtWNJkMkmNBTMv1V6m/JxqKahK9bSK4YXq+zDmZ0/s0TAJiMRcCDU2rJq26kDz5/4iGtUHHFcY\nw5+amsLs7CwWFhYQj8dRq9Xw3nvv4eDgoAdMmlRGLUS+q4pyq+PKTU03rN/87r8HT06fz4dgMIjp\n6WnMz89jampKUpmZl8D6FHVT9pvz48wdgU2v14s33ngDb775JmZmZmAymfDJJ5/gJz/5Ce7duzdw\n7AaZ2pMIn5numNfrhaZpyGQyqNVqPdWrp9lfBBrtdruUzAeDQaRSKeTzeaTT6acs4P75HnLfl68Z\nzK9L1OSccZXJswoXFlOQSSlnNpuRz+dRrVbPrA/iSc+hfqVi5IZRwbVRf0/+CafTiUAgAKfTCafT\nKeQpuVxOCp5GKSvg5FNcNeF9Ph8WFhZw6dIlmM1mFItFPHr0SPI6hs3nad0HVbh5mZPRb52eVtS5\nUN1mYjPPkMJ8rhR+VfKsPtyg0/J5K4NRz8KvqmU07LPqBiaXAIlwAAhuQqT8JKtn3LFk3QHZnQKB\nAHRdR7FYlPyH0xYETSpnoWBOurYqz3Cfc6Xwq5LnuSh+HaK+z0luiPp/dENUq4vA77h4i2raj/p8\nf9ae+vlfl0J9CeTlaxv3sspvijKgjOGbDvy/UfwHk977pDE93/jPT16a0ulzOZdz+dXIuVJ4QaTf\nlx/2/8N+/m0RNQTXP2bDxo6fOema53Is5+7DhNIPrp3WdVCTTuhDq8knlP57PWsM+mWX/vi/GkYd\npjjVxLZ+1+hlw4P6o0WUs3SnzpXCGMINy0WlpuZOkmSj/q3arUg9qVg8xOur1G/qxKub4bdB1PFT\nlSilf8MDT2/6QXkWp81V4N8Put/zmhOGQNWwMYAzj7K8tEqBySMulwvhcBhGoxGlUgn5fF7yxFlf\nftLmURFzNX+AFX/T09NYXFyE2WwWhqLt7W1Js2Zs+qR7aZomTEjkhiA9+fT0NFwuF7xer/RDKBQK\n2NrawsOHD7G7u4u9vT2pbqSSOIuyWVUxMf6v5myYTKaeBidnKarCJY2aylVBUTc4OSeZeMZcD3Jm\nMPGKeQMqu7I6xyzT5vWHjSPDn8wb4P11XReGKXYUYwMfNoVR5+e0mY3sxTE1NYXLly/jnXfeQaFQ\nkNT1zc1NFAqFnuY/fKfTyEulFFQ2GqPRiEgkgunpaaytrQk78b1795BKpaRgZlwKb3Xi1M5QJBlZ\nWlqSYqiHDx8ikUg8ZcoOY7xRFQ7bt7Gz0cLCAoLBoLAHBYNBGAwGtNttoVjXNE16Vaot3dTnHlf6\n/W+Vb5KbjNclczSb5FQqlZHXHXYSA71zx+vzfnwGdnPqdDrI5/NCGMtrUchfaTKZpOqTJC/q5mYn\nL6Y7q6xT/TKKb4Pl+ySLcTqd8jsqpMXFRYRCIeRyOezs7PRkg/a7fpMI10w4HMaXvvQlvPXWW5if\nn8fBwYGQ1pCzQi3EehaM5KVRCqp25wn++uuvw+12IxwOS+GPzWabGDhSFYJaYabrx0zGrIVgJSNp\nxFSTfpzQHZ+JDEecPG7Ier2O3d1dSZVlkY3ZbMbKygoajYYstv7rjhP/5+bjpnK73Zibm4Ou6/B4\nPJI9x8rKUqkk9OtqVeKgew3y9VXFYzKZhCDX5/NJ4hHJcEn7xo1sNpt7+Bb6larFYkEgEJBNqp7I\namNek8mEYrEoDFCqpaX2tFCthv73YsEYa1XYvarb7QqbVSwWQzgcFoo7NXX8Wa0ri8WC+fl5vPHG\nG3jttddQKpWkpUGxWBw4D89iPb40SgF44lORVJSDzgw2Vqn154WPO0D9PqGu66KNWYJbKBRkkanV\nfuo1BgkVjq7r0kSVzFGlUgmadlzwlUqlkE6ne5rRuN1u1Ot1TE1NSc+CSU4e1TIg3x/LjC9fvgyL\nxSJWAYvOqtUqMpmM0KZxE42jfHi6Eh8hQ9XCwgJWVlaErYhsWRxzg8GARCKBbreLmzdvDryu6mo0\nGg0EAgExr1k0xB4MJF2ZmpqS99E0TUrE+f1Jqcm6rj/V+4IkPFQYLBcnz+dZMCJRoXq9XiwvL0vb\nvZ2dHayvr0vz4bNyIykvlVKgf+t0OuFyuYRchYtErTXv187j+nP8DP+eJwRPbnZE5mQMuuage/Fn\nnvxsRlqr1ZDJZLC/v49isSiViuwMHYvFsLq6CpfLhVAohGQy2dMybBLlQBN9enoaFy9exOLiIrxe\nr/TEJAsTW9YTL1E347i8CvT1PR4P4vE4Ll26JCQvVAj0+1U+B7oZPp8P29vbQ+eI1aOZTAZ+v1/I\nYXjfZDIJTTtOvQaOGbvz+bwoQLaXo6VyEqELP0MKNNUdqlQqCIVCiMViyGQywlrVDw6fxtdnd+vL\nly9jZmYGlUoFH3/8sdxn0uuNIy+VUuBiI1tuJpOBwWBAIBCQkuph3XkmFRVo40nh8XigaVoPt+Cw\nvx3n2pqmCRV9pVIRLoNisQiLxYJmswmbzYZyuYxgMIhcLgebzSYLetKQGnklg8GgKIStrS1kMhnp\n3ESmJCo94hvcsCcpV7VIyOv1YmlpCa+++ipmZmakOSqVa6VSgclkEldsZ2cHVqsVyWRSLAhV+jEi\nUqGVy2WxNMiVWSqVEIlERIlVKhUx5dkvkx2o+fth79VvcaohTjJzhcNheL1ebG9v4+DgYCS5z7jC\n9R6PxzE/Pw+DwYDNzU08evQIFoulJ0p1lorhpVEKHCA23eCmsdvt4j+qJv2zCDebWsJKDkeVB3LY\nc/Ia6u/UBaWCmfShi8WiuBIMMbGTcKfTQbVaFaS7v8bgpHHj2NlsNkSjUSwtLQk/xN27d6VxbiQS\nQbVahd/vFz4JNQrQb5Wo91fHiyXFFy9exGuvvYZQKASj0YjNzU3s7+/3dMByOBwoFotSdlyr1aRR\nTf8py81LRcWoAN/PYrGIJcfxpTVAnk6LxSLYEwHUcdZMvwWpujxkBK9Wq7hx4wYODw+HpnxPEoHQ\ntGNW6jfeeAM+n0+6nXc6HbhcrpH9P54lAvHSKAXg2JRimXGtVoPD4cDs7CycTicODg56GIhVeRYk\nlj5dJBKRXhLPSnzCZ1JP4EajIacLQ5cEVCkk7+RnCHaddCLxs+yd4XK5UCqVsLu7KydyJBKBx+PB\n4uIiOp0Ocrmc8F+qNOyqDFpwtBLi8TjefPNNhEIhaJom1G4kgiW5bjqdlgY1ZNCiz99/fb63yu1I\n0NHr9cp1XS6XXJ8ANHAM2FEY1Zm0vVo/7sQomNVqxfb2Nj744IOR5eGTbFKj0YjZ2VnMz8/DarUi\nnU4LcbFKiqt2Q1MtyN/4kCQBRqfTKZNNk81isQjINMiUOu3gqHkF3W4XmUxG2qUPk3GQeYbl6JeS\nVVm1INhUlIh9KBTC3t4egCcEI+OajQQY4/E4wuGwkKi2222YzWb4fD4sLi7i1Vdfhcvlwo0bN3D3\n7l3kcjlhLe73j4e9Oy2SqakpAYNJmUfTnUSrBE2JrQDHG5/sRYPGkKFSu90u64H5IXQracmp4Ug2\ntAWO+zYwvEoehElEzXWg9VUsFvHhhx8Kee+wvxtXqLDm5+cRCARQqVSQSCTERSaoOcxyPG0IFHiJ\nlIKmHZObZjIZWK1WBINB/N7v/R6sVityuRxSqdSpCE6H3YsKIRKJYGlpCbOzs7h9+7achACGkqAM\ni9kDx92S2Z8yEolICJUhSvI8Wq1WzM7O4sKFC1hYWICmaeJa0Jc8yYXgSUoLq91u4+joSLCF6elp\nvPbaa1hcXMSVK1fQbrfx3nvv4f79+9jZ2ZE+Cc1mcyQYB/SeoK1WC6lUCg8ePBAr65VXXsHly5dx\n79496dmQTCaRTqefsvCGKXaCkpp2zNpss9lQrVbRbDZRKpWk3wTdEM6Vx+PB9PQ0VldXUSqVcPfu\nXYkAnQZ/4ny5XC584QtfwLe+9S189tlnuHHjxkAL5zRChVOtVrG7uytjajab8fbbb8PhcGB/fx8O\nhwPBYBCffvqpWGHPohCAl0gpUPObTCaUSiVYrVZ0Oh04HA5sbm4KRZUqqttw2omnmUYGZ7vd3hMX\nn2QCSB/GkCAp0RnH533IiMxu0B6PR8JrJPFkBGMcU5HXTSQSwj5Md2VmZgYLCwvCVXnz5k2sr6+L\nQpgEuwDQwwdpNBoRi8UkV4A0+kajEbVaDeVyuSfvYpz78O+Z9UnsgdaiGpJm4hXdBhV3Ip5wGlOb\nypadxRYXF/EP//APkjMw7HqT+vlUsKVSCQBkXayurqJcLst7tVot3L9/v8eFUK8xqbw0SgE4fvla\nrYZsNiub02w248GDB6Ilz1LYx9JsNiORSKDVakmjGPr/6klzEnZhMplgt9sRDAbFJWG7uFqtJiBZ\nMBjE3NwcZmZm4PP5ZBFzkxLQI3o+bAGqsf1ms4lyuYydnR24XC5YLBb4/X688sorcDqd2N3dxfXr\n13Hjxg1pnMKNdVIoEuhNQ2a/jvX1dRQKBaTTaUSjUTidTvh8PjnJ1RTxk0QdW3blJlDLHIp+5mY1\nW5INcJjPwpyLSfEmjqvdbkcsFsOrr76KQCAg/R5U16LfbRy3XkWd43q9jmw2C6/XK/iMx+OReQF6\nW+6NM1cnyUujFGg+crEy5HVwcIDPPvvsqTxz/s2gQplxhXF2UoZzkzgcDmGS5gKg8OdhgCcz+mw2\nm/Qh7Ha7knPR7XYlP8HtdgsISaXB9Ger1Sr3H4ZjcNHwWdg/kUk/rL1IJBL4/ve/jw8++ACJRKIH\nSO0Pw40SPgtrF+i38/culwuzs7PSsVnFgPr94WFCbMnj8aBWq4k1QJBRfXc27/F4PAJi7u/vS7et\nQV2vTno/FbR97bXXMD8/j2QyKUlX3KzqO3AemBk7zn25udPptBwUDEWrqe71eh2Hh4cClp6F6/JS\nKQVuPqfTieXlZbRaLdy4cUMQ8kEDMmmsWA3hOZ1OOBwOARlzuZyYqf0M0P0hx0GihjcDgQDsdruE\nmFqtFpxOp7SH9/l8MBgMkqVZKBRQq9Xg9XqlgQxz3YdhGP2ItIqYz87O4hvf+AbK5TJ++tOf4oc/\n/CGSyeRTXYzHBTR5L25ago4EDhkGBCDdsFQrZ1wznkp5amqqpykKcx6AJ3MeCAQQi8UQj8fh8/kk\nQYzgJw8adYxGvR/Hw+12Y3FxERcuXECj0cDm5ibK5bLk0KjJTuqJzuc/SfgsbBhUq9XEEmLildvt\nFms1lUqJlfKseALwEikFCotgFhcXsbGxgbt3747k9z+NUCmYzWZBybnomDRCs5yTPI4ZTPCSjVKs\nVitsNpswILtcLqFJ52IoFAqoVCrC7syFoWbUjSrmoanNRe10OnHhwgX84R/+IV599VX84Ac/wF//\n9V/j8PDwqXfgphlnbGlFMblKHUeOUSgUQrfbxcHBgUQI+u836vqq4mGvTboPzEfghmI9wvLyMux2\nO3K5HCqVCjKZjFS60jIbJ1OTc83IysLCgoCamUxGwGFGVtQO2lRSTI0eZyxpCdD9qlarcDgcAjYC\nEHyNkZ2zUAjAS6QU1EUdCoXg8Xjw4x//WCoiz0opcCGzgq9er4uZGo1GoevHnaFVcLC/f+SoZ6FW\nZ+WbwWDA/Py8/L3X65VEm4ODA0nkASAt8giSnWQF8aRyOp3SmCUajeJrX/salpaWoGka/uZv/gb7\n+/sDk23GrTClcMyYM6BpmpQUx+NxTE9PI5FIIJVKjVVHoUq/T85OXfF4HDabTRq7ckP6fD5cuXIF\nRqMR9Xod6XQau7u70hGaLgdP9HEsBYYfI5EIIpGIzGUmk4HFYpG/Z1csXdfF3aUiH8dypVIAgHK5\njKOjI+zs7EiKOHEuUgVQzqqs/aVQClwQnJTl5WV4PB6pVjxrK4H3YjiPOIDL5UIikejJgmMe/Ekn\nHjcX483hcBiBQEDy9lltV6/XsbGxgYODA6mD4MKlxcDGtMDohcDFxfZmMzMzeOONN6S/44cffoiN\njY2hyTunQcttNhtsNhtcLpeg5YFAQOLtv/jFL0QpTCKqadztdpHP5zEzMwObzSaJXswhYcFcq9VC\nIpFAJpORRCyGDNV/w8KtaiIQrQTWcvBQYI8O/lMzQKlsmKQ2DsX9oPdNp9PY29uTbN5oNCody5PJ\n5IldtyaVl0IpcGIcDgcikQjm5uagaccdeSY9cU4SThxNS+IK0WhUugqrbef7q+GGKQQVfLt//75k\n2sXjcRgMBkxNTUHXj7s9v/fee0gkEiiVSrKIWMHInAGeQKPMe26gTqcDu92O2dlZ6Wh969Yt/PjH\nPx4Jep1mXIklkAAnGAxKaLVUKuHRo0dPdWUeR7hBCbzmcjmJ0bOXJBPAaCExdl8qlXqaEPdv2mHP\noWIxajSn2WyiWq2KFZlOp5FOp59qMKzya3CdThIZoKWRy+WkYIxl9oeHh9jY2JCxPIv8BHnvs9xQ\np36IMfo+EFyZm5vD9PQ0Go0G3n///TPXko+fR9wIZhUydMhy1X5WoJOuxwWtnr6qf3nSAlWLkfo5\nH4YJIzTT09O4evUqlpeX0W63cefOHfziF78YmaM/iXC8HA6H5GBcu3YN0WgUU1NTMJlMktzzwQcf\nnEqRc9zIBUFMgW4RlUcFZS0AACAASURBVBsVb7VaRblc7jm5qTDUMQRGg5xqLgOzNWl5Mf+CuQT9\n3BqTWlqj3p3At9/vRzQaRavVkuSvCayQ36y+DwwhbW9v4+joSFqQnbVCAJ5sNsazgaeLmia9HgAB\ntfjzJBtSVRrj+vmMp5MmjLH0u3fvIp1On9nYqe/HecrlcoIhkFbu4ODgmSpYOSedTkcqZBlxUPkO\nVNdulAId5znUMeJ60DRNemIO+twk1x9HiEmw+1UymZTnOUsLgfLSWAqPP/dUttaL8PyTyLOeHsPC\nj4OuR98aOOYnoN9NHsuzHjsi7jabDTMzM4hEIlKsxvqGZDJ5qvuq70gfXy0MUyMIdB/UYjF1rain\n//M4VJ63TJqBqch527gXUc7CpJxkUTC2robHmONw1nNPpa3G9MkhSIvrtMzD/VZSfx6GeliwRoJu\nQv+Yq+7CKNfhN1B+s9yH3xQ5i8U3yTXGKa0+K1FPY57ajJKcxbUHfR0m41R0Dvr+XM47RJ3LuZxL\nn/zWWwqDzHnVVFX92EGf6b+WauL2f56/67+u+tmT3ItRf8vfDbqXal4Pevb+9xz07vTFX0Y//FzG\nl996pdDvp1LUlFr1d6rPDDyp/e/3T/sjBP0bmSXA3GDqfQZtWDWc1l+P0L/J1bi6+v04uQHq5h+k\nSF40U/tXiQf0K8pBUaD+OTmrZ+ufi/7+GWpI8lnv+VIqhX7gDDibWPCgk7B/M6sgGidGDYUNy0Hv\nX1D9SoApt+o79T+DKmrK7ygLZtjnRkn/mPYXfb1oMsqiO8t7qHKS1fisCmGYJUrqfBXEZU2MaiE+\nS/7JC6sU2IqLSUtra2u4evUqPv/5z8Pn88HtdiOVSuHu3bv46KOP8LOf/QyJRGIkP54q/UlEVAaD\nEG4VSSeLEdmf6vU6PB4PdP1JWW65XB5Yxs0klH70X1UyLLoies4J50lA4JCFUEyj7b8Pr6taCyaT\nqSdsd9LY8KvauGYUfwMzClmyHA6HJU+/2+3C5XIJQSs5GZvNJiqVSg8gehL1m6ZpEmpVU9JZwMb3\nI4HLsH6c/etgmKi5JcyNINcGqeXZ4IekOUx0I/UdMyFPKrziqc/vWZhns9kQiUQQDofx+uuvIxAI\nCMnMzs4O9vf3USqVkMlk0O12Je36NNwKJyoFTdP+PYA/AJDUdf2Vx78LAPjPABYAbAH4E13Xc9rx\nCP9vAL4JoArgf9R1/cbETwUIIaXZbMbc3BxWV1dx7do14RlkJlun00E2m8Vnn302cdpzf2iqf0OR\neYn8BXa7HQ6HQ6oZNe2YFqzRaAh5iFruOkhURmK2ayO3QiAQgNPplA3Menmm9VYqFaEZUxe/eqr0\nL2CWMXNMgSdJU6pl0q8Q+f+M/5+EJbDwyuPxYG5uDsFgEH6/X8qWOV8HBwdoNBrSoyORSODw8BDZ\nbFbSuPsLzAatDWY0kguS1Zkkwq1Wq8hms6hUKkIMO6wnyChRFSQzKFl/wP6frNa0Wq1C/18qlZDL\n5ZBMJqWm5aRxVPMm1AOJPKF+vx/z8/OYmZlBIBBAq9XC0dGRPFOhUJCuW6xOfS5KAcD/BeB/B/Af\nld/9OYAf6rr+F5qm/fnjn/8dgP8ewOrjf18E8H88/jqxMLZttVpRq9WEk4+KgIupUChIbcL+/r6U\nkZ4kg3y/fheByT+sn6dioDntdrtFOei6Dp/PJ01IBpXj8sRViVndbjdisRhCoZBsHjZKsVqtaDab\nODo6wtHREfb396HrunQ3UvGC/nx+o9EoKdpUDCS85TOolaDkPmTdAklda7Ua8vm8MD+x6lAVPoPZ\nbEYgEEAwGMT09LRwGbCYi0rT6XQiHo+j0+lgYWEBd+/exaNHj3r4HIblD/DkZE1FPB5HKBQSajKW\nR3PjVqtV7O/vi5XDZzjJ7eLv1LmjdRCJRLC6uoqlpSXJGGVSVqfTQbFYFBLZdrvd03dUxXr67zXI\nsuQ7ezwe+P1+OBwOpNNpqdBUi61oIbCuRsUbJpETlYKu6z/RNG2h79ffAvB7j7//DwD+GcdK4VsA\n/qN+/HY/1zTNp2natK7rhxM91fF9pWTZYDCI5i2VStB1XYqSuHljsRi2trZQLBbH5jboB4M4Edws\nPL1XV1dx+fJl6LqOUqmEVCoFTTtuCsNKR1opg+rlVVCKm8doNMLtdiMej2NhYQGzs7Nwu90wGo1I\npVJSt9DpdGST0lqgOQqgB4vg9al86IY4HA6Ew2EAEPMWeNKol9YFu17z+Vivf/v2bRwdHQklXf+7\ncexarRby+TwikYh8z8a4tVoNJpMJiUQCHo8HU1NTiEQi0smbp+pJbgMrSv1+P4DjMmV2gK7ValKB\naTKZhIgnEokAgLgT3LzqWhsEGqqi67psztnZWayurkobv6OjIzx69EjcSo55Pp+XzTpqTY6yilRe\nUDJX37p1S9Yp2bvYf5TUfeOwbw+T02IKUWWjJwBEH38fB7CrfG7v8e8mVgpqP4S9vT3EYjHs7+8j\nl8uhUChgZ2cHuq7j0qVL0twzHo9jb29vYheCws1L33Bubg7Xrl3D2toarFYrtra2UC6XkUqlxFwm\nqSb9/HK5PFAxcKNSSLYyNzeHhYUFcYnIIsXT0Ol0wmKxYHt7+ymfnqf7IFBJVWxutxs2m03cE2Ij\nZrNZ/HlSoIdCIei6LlRwlUpFSD5I+T5o/MiwxGdJpVLwer0oFApCGML/Zwp0MBgEAGErAvDUZu0f\nQzaFLZVKMBqNgiNVq1XhVKjX69A0DYuLi/Lue3t72NzcHDhOo4DhfveBh8Ts7Cza7Ta2trZw+/Zt\nJBIJ8fm9Xq9YZrQYR0UjRikLrkWv1wur1Sr9PVUlTko/lZaOz34axfDMQKOu67p2ijRlTdO+DeDb\nI64rL1oqlbC5uYlu95jNuFqtolgsCnDmdruFN2Acuiv1Ho+fRb7StJ+ZmcHbb7+Nt956SwhdHj58\niMPDQ5TLZelRWCwWYbfbxR+mtu6faNX35+lM0FEt6snn88hkMojFYvB6vfD7/WIZqO3R+FV9fn7P\nn7khPB4PwuEw/H6/sDxRIXBxEeBsNptipoZCIZRKJXEx6HIMEwKiyWQSuVwOQG9vi06nI41Yl5eX\nEQ6HpU1euVzuqccYhei3223h0shms9A0TdrQcVMYDAZcvnwZ8/PzyOfzskkmYXtSx5Sbk/wQzWYT\nOzs7uHHjBjY2NoRUl24hSVeILanvNclG1XUdDocDTqcTnU5H1gdL+okdkHdDdRlOsn6GyWmVwhHd\nAk3TpgEkH/9+H8Cs8rmZx797SnRd/w6A7wCjax9o6rF5CVHseDyOqakprK2tweVyIZvNCuPNML9t\nkKif58TH43G8++67ePvttxEIBLC/v48PP/xQqgy50B0Oh6DK9HWJBwzzT2myk4gkFArB4XDAbrfj\n6OgI6XQa+Xweq6urgjNsb29Lp2kVMxgUwlQjDlw4LpcLVqtVFhg3LiMAKt260+kUIhueQPl8Xghf\nhy1ozhO/kvdBpa0zm824du0a/uAP/gBra2toNBr45JNPpPJ10Lj1vxep/qlI+Dzkq6DFZjAYkE6n\nBQNiz85B+BGff9Da4L1JjT8/Py+RjwcPHmB7e1sOKCoGn88nwGk/2/e4FixFLQ8nSS3dEzaDoavA\nyJt6cEx6P+D0SuG/AfjXAP7i8de/VX7/bzVN+084BhgLp8ETKHwpml8ulwuxWAydTkdM0FAohHq9\nLpRlNptNQl0niaoQ6J9NTU3h7bffxle/+lUEg0Hs7e3hJz/5CdbX1yUWbDabhe2HYTi1l8AgUcum\nWQ9AU9nhcKBer6NUKiGdTkvXJtKSk8CDJymjCGazeSA/ZafTgcVikU1OSneChEdHR8hms2Jx8flb\nrRZcLhf8fr/wAzabTaRSqR5Ow2FzxXvzPam4zGazUMH92Z/9GZaWllAul/HgwQPcvHkT9+7dOzEy\noK6DVqslSLsavlPfX9OOiWgajQYKhYJwK/RXTY6Tg0E8we/3w+v1IhAIiDKgVUjf32azCYZQLpd7\nSFAYGRhXGHkgSSsPnkAgIK4gDyFiTbzXpO3wVBknJPn/4BhUDGmatgfgf8GxMvgvmqb9GwDbAP7k\n8cf/XxyHI9dxHJL8n071VIpwslSe/ng8Lj0fdP0JZyKpt8vl8li4AhcF486hUAivv/46vv71ryMa\njSKdTuODDz7A7du3Rcnw1OApzIXZ7XbltBhGmMKTvh/oA4B8Pi/+N6nZaH7u7e3J5icI2H/a9W/K\nbrcrLD1McKlUKkgmk3Lyc9OwWxK7V9FdIA07AcOTEmJUP1btt+D1ejEzMyNdosrlMra3t3Hv3j3c\nv39fiEpUwHfYtdX35Aan+0UlxHAvIwGZTEYiKIPculHrRI2stNttUa6NRkMUQbPZlFYAxGKoVNX3\nOg0vJRUJoxnEF8LhsADBdJ1UJrBRXdFPknGiD/9qyH+9O+CzOoD/+VRPMvz+koiSSCQkRNhutyV5\niEzI8/PzuHr1Kr73ve/h/v37Pd2HBl1XdQNWVlbw5S9/Ge+++y7i8TiSyST+6Z/+CR999BGazSYu\nX74sCsBisSAUCmFmZkYWH3n0BvWzVDcwN4zNZhPi11wuB4PBAJfLJe5QNBqFwWDAo0ePUKvVcOHC\nBUHTO52OcBTQreh/N46bw+EQTEalAQeegJ+6fkwYGwwGsby8jEgkgnK5jM3NTem+NWosKaobZrVa\nEQgEEI1Gsba2hqWlJSwsLMi8HB0doVgswmKx9Gz2k07sfpeJCpBku7TivF4v4vG4KLVSqfRUctAo\nend1faiJZZlMBjs7O2i325ifn0csFhP6emI4/VR9k1aqqmNIhVetVqFpmrQxBI7Dr0dHR5IXQ9Kh\ncaIpo+SFzWik8ORhaKtcLmN/fx/dbhe7u7uIRqPSr9Dlcknr7kwmg2QyKX4eMDw11eVyYWpqCleu\nXJEuPK1WS1qMe71eYVluNpviZng8HjHVdnd3BckfhWQTrOPPNNutVisikQiazSa8Xi/sdrskvDAK\nUalUYDQaUa1WUSgUUCwWn3JX+q0ftlFjOJMLjX9H/5vh0enpaWE2SiQSwg2obsL+/It+wJPKgS4W\n+yEyasPWd8FgEF6vt6dB6kl+dz9QpypAPofVapXkou3tbQAQZaHWCPSzWQ1SDFScxDIODg7EbPf5\nfGi1WpJfUqvVxHpV3RrVghoVaVC/pyJyuVyw2+1iJRI4LpfLojhUq+lZlAHlhVcKwBN/Mp/PC8Nx\nrVaTBbe6ugqbzSaTs7y8jE8++UT4FAE8tZB5XQ62z+eT/gg0/XRdlxRmh8OBXC6HarWKcDgMt9st\nAB6bpQ7qUsX7qIuOmZI0QwGI1cAuSoFAAEdHR6L9uTBognLTq8Ai8GTTqCE+LmgCgExCYg8Lm82G\n2dlZzM3NweVyCQDJiAqvy8XeLyqRi5pRyd6KzFEoFotwOp1YW1vDhQv/P3tvFhtZlp6JfTcy9n1f\nuJOZZO5ZmVVd1VL1dEktoQXZMCBYEAbzYnuMgeWHGRiG5sHjebEf58ELBjAwgAwbtgDD4wFsQAN3\nqxs9ltSNBrr2NTfuW6yMfSUZJOP6gfn9eeLmjY2Z1c0q5Q8QQQYj7nLuOf/51+9bQTQaFYXHkuBh\ngb9R79O3j8ViuHnzZp/lwMyKWgk6irPDGLRrtVpShenz+YTYR+X6ZB2F3++X+TSOqAqRi93v98Pv\n9yMQCAhyFhUDC9vU52E810WCjMAlVwrq7sEfVjrS9Ox0OsKgw8VAUzifz0sgzTih1YXKqjDW5He7\nXezs7KBcLkvOO5vN4vDwED6fry+iTwbldDo9tokNQCL+jUYDh4eHgkZME5Rmbz6fx97enviNXDjN\nZlNMSjOh62C1WuVzVCqMS5yensLv92NmZgZXr14VfstarYb9/f0XIvaAuaVAa8PpdPaR0p6enopF\nQ/N2ZmYGjUZDFiSLfbjDTuJ3q+lXKkrGL1isRUXNoDAACdiy2Iz8koPGUQ0QVyoVHB0dYW5uTuor\ncrkcGo2GUP2x4lRNkY+TCVAVAhUBlQ7rRzqdTl9xGqnpOZ+5Ri5SyUi59EpBNTeTySRmZ2dlAtJ0\nD4VCUh7MQWMQcNDgqJOJMN21Wg25XE4WLCvtGN0livDi4iI8Ho+QdBAIdVBwR93Jab5SsW1tbSEa\njeLg4EAi9A8ePECtVpNg3NbWljS6qAVLrLM3Ox8LbRwOh/BO8hoYJXc4HLh27Rpu3LiBVCol2Y/t\n7W0Ui0WpRDSm8YxCliuyWasWCRuCODYkZo3FYrIQyWLFgjVjPGbQ3ACepypp8UQiEcRiMYnzcI7w\nh2PIc7Fke9gioqXKrAf5HtxuN1qtFtLpNLrdLuLxuJj8VCZqNeM4AU0GZ2OxGGKxGFKpFNxuN05O\nTtBqtVCr1RAMBgFA3EtamypupepOTJwGnejTvwHhAp+dncW9e/fE3wbOB8XtdmNmZkY0KYtg+MNd\nbdhDbzabyOVy+Pjjj3Ht2jXYbDZREuVyGc1mU6oPV1ZWpIAqnU7jyZMnEk8Y1HyiWiWsuahUKlL9\nmE6nYbPZMD8/j1AohOPjY5TLZayurmJ3dxf5fF52PAaeeCz+bjwXxy6ZTEonH8umdV0Xd+nWrVtI\nJpM4PT0VLgF2ezLNpZrXZhPMarUiHo9jenpavtNsNkWp0D92Op24desWHjx4gGQyibW1NRwfH0uV\norEnYZxFpNaX0NxWLRYqNe1ZYREbzbgr81jDFAKtF2YBgHMLJ5PJoFarIZPJIBKJ4ODgAMlkso8S\nT72fcRaoWl4/PT2NcDgsBMMM+PKZlEqlFwra1JSrUcGOK5daKfAmrVYrEomEdEuGQiF4vV5Uq1Vh\nWGLTzcnJCfb398XcH/Qg1MXT7XaRzWbFLPf5fMLCxB1oYWFBzs1qto2NDWSz2YEBRoq6w6rlqNwp\nGbTqdrvweDyoVCpIp9PY3d2VSDaPwx1ukP+tRufr9TpmZ2eRSCTgcDgkTsAFwjoPANje3saXX36J\ndDotbhMLxoYFAOm3z8zMYHFxEcViEX6/H7lcDvv7+xJnYMbmhz/8obgQ1WoVhUKhzwQetoCMBUfA\n8+5MWgms76DVyGOyyIcFQMzjs3R6mKhFUcwWOZ1OVCoVqeWgC8WGJJXncpQY5wfw3PrS9fOK01wu\nJ2373W5Xzk3XkNbPOG7KKLnUSgE4DwJxF6Z5PTMzA5vNhkQiIZ1hlUoFW1tbePz4MT744ANhBFKj\n04OELkSxWJRz0jez2+1SQckgXKlUwqNHj5DJZKS2wKihjfELVdTPcrey2+1SHKPrulgox8fH0t1o\nBmEO9C8gVdnVajVks1mkUimEQiE0m03pcaD/vba2hnq9Lk1PLLihMuC9DYvQs1oymUzi5s2bQsar\naRr8fj96vR4SiQTm5+cRCASQz+fx+PFjfPjhh9jY2EC1Wh2ric3owlDZkPQ1FotJnQW7CVmJqZra\nFzGvjXGVZrPZR/TKylSLxYJardZXTKSWsQ86tvp6dnaGer0OTdPEKk4mkzg5OcHx8bFwPxQKBVF8\nnLNqzOdbGWjkYm42m3j48CEikQii0Sii0ag8kEqlgtXVVWxtbWF9fR0bGxvY3t4WRWI04SjGXZY+\nGwAJTDGqzmYfVjUS1II+vZqyGzbJjItX3cXIWRmNRgVHQQ2kqbs18RRURWF2jmaziWw2C4vFgkQi\ngWg02sdcXalUsLOzg93dXeRyOWksUkuH6bMPiieomaF6vY65uTmhiSP1nd1uRzgcxtnZGR4+fIj1\n9XUpEeYYqsp0mDmvfkYFIGHjF4vK2CBFMhoqBZZD0y1QMxKjhAry+PhYYjssP15YWEAkEpG5QGXE\nOTzKJVJjTizjJsHwzMyMWAOapiGTyYhFR2vE6DrwWBeRbxTvg+pD8pULy9hdN6pSTT0eJxmPycAX\nJxuj9awMJJU5J5Ox/HeY2WsM2lEhhMNhXL9+HYuLi7BYLEIyWywWJZDEBcGgnVmhlJqrv3r1KkKh\nECKRCPx+P4LBoFT4sXR6b2+vL3PD3YaijuugBUtG7uXlZVgsFsGYsNlsAjiyv78vHa4qZsKgMRsk\ndFeosNxut7gM09PTiEQislA2NzelR4LPitWGvIZJK//UGgKPxyMu2NLSEjweD3q9Hra2tlAoFFAu\nl/syOKNcTGOchClIdSypNDjnBnWVDjjPazKYEeccGFHng+EEpDnKsmAV2MIog8xso2Lg72pzVCQS\nQTKZhN1uRz6fl5SqipRE14EWinpe43mSySTm5uYkvXV0dIR6vS4BVKY5VTfLeO1UEMOKl3g+9oGo\nVpDqfryqucZnoy4ev98vCpzPjaA7KgwaLRIAA6Hlxjk/LRUS6QYCgb7Saqa2VbdolPIZNBf5yudj\ntAgmkNdKYcQ5+5SCcRzUKj3mnGmRGBcRP6cG/4zHNDufcWdg2sxut/eZtqprwu8PmtAqbgNhy1QE\nJgapWDegRteNC1cFpjW6PpOM8dch6niquzd/NE2THdW4m6pR+Ze5PjUtqvbAAM97KlQlOcl9fU3y\nmiFqmBgDc0YtbZw0qu9GMZYYqxPVLCBnjA/wd+B5VoKxBLPrUxfuoCi9+nuv15PCIVY/qru2epxB\n12e8L+M5hsnXveGYRe1HYTBeRLkNEjUwOOicxo1i3GP+JuXvrFJQZZwHYZa2GhU0GvT+pA9+2OeN\n/1MnJ+MOk55n0vv6TYiZIrxoYO1VyCTP6LLLa9q41/JaXkufXCpLYVDwb1hA8KK7rlngb9C51c8b\nzfZhpiE/y6CY2bUPcjmM/zO7HtW1MMK2mx13mHsz6P7V6+Vnvmk736SixpOMcSGgvxaF8YxBRUqD\nnvNv0qoZJZdKKQDmEVhjuab6GQaYuDiIfMyKwUEL3iwIaPa/Qe8ZfXCzBW32fX6WFXBGPAC1AYfR\nbE46NR+tojibXdug845a1MZAnDFQ9jUHwiYSYxCYxUyapglepjFuMmnAj2OsAriwMlKN9agBXnXh\nqwrkVYpRcb3K4186pUDhzZopBLOoMwEsSd7CeoODgwOBajMef9A5xxXjZwfh4hmDipqmSfGVqhjU\nnYT3w048tTyaE1LX9YHpQbPfx703Y83Fq4rWv2phNSPTg6xbICp2o9GQsVNTo6PEOGZUNuoiH2bl\nqZWnPIaqUCYJPBqFzYBsmjo9PZXmtXEar8aRS6kU1FSP0Xw3/p/98pwMyWRScOtYu6+SY5jJRSe8\nmlLkxBxUYqpG9Fn2qioE1kOote/M+7Pc+vT0VPLugxSCcYzUa3mZXf5lgEC/DmHqkYrB6XQK4E61\nWsXh4aGgVQPPa0KA8QKq6udpfbAVutvtSj0Ey7lJqMMCI7p0ZinKiwoVSyAQwNtvv41bt26hWCxi\nZ2cHn3/+uWA6qKnRi8ilVAqAefUfrQLuCGyASaVSAkZBM45IxA8fPoTL5cLe3p4pGvEgv9GY+ybe\nIbHyWDDj8Xikq+3JkycolUoolUovsCjxPrj4OclIZhIKhaRGwel0ihLgBFOx/a1Wq/Tws2LOTFTe\nSvX+1ApO9T1ep3F8+MqJPokJfhFR07SD/h8Oh2G1WnH9+nXMzs4iFosJQxdRq3RdlzHudrsolUpo\nt9t9bsWwVndabF6vF5qmSVt2IpEQoB0iKpfLZYGZa7fbKBaLKJfL6HQ6Ui9BFKxxmqTMromb3p/9\n2Z9hYWEBBwcHaLfbAjWnuoffGjwFVQGYLV4K0YHn5+cxPz+PcDgslX5EvwWAfD4vQCgApG1WPZe6\nk6g/6k7k9Xpx7do1QfIlcCvbdFOplICXfPjhh32IQ+q5aPafnZ0JRiNxCMLhsJTsnpyc4OjoCC6X\n6wUwV5vNhmazCbfbLQAyg4BPWCJLE5vvc6z4Hs1OuixURpzAaq5dxSBQnw0notoroQZY+R5LxtmC\nTHQnY5UovztoAXW7XWlCisfjgh1htVpRKpWEKYzHZFUq/x6WquWcUKHYWEodj8exsLCARCIhGB6s\nL/H5fHA4HCgWi+Ie2u12IfhRx3BSxcANaWlpCcFgEJlMBqurq/jiiy+EXFYte34Zi+5SKQVOHLWC\nzug2cEGGQiE8ePBAFhFr6gnWwXZa7shm5wL6lYOKbUjwT/JIvvvuuwiFQn09B1QIyWRSOC+Jb6ju\n3lQIav29ruuC4BSNRpFIJATXIJ1OCx9Dp9ORuAKVFM1ZNfionosLinBrhHn3+/04OTkRMBS6LVR8\nXq9XxpCIVtyNdF1HPp83VQjAc/Qljh1RjclIRci7u3fvCigtUaSz2SxyuZwgOxuDxGbC/9FC1DQN\nhUIBm5ubSKfTokw1TUOr1RIFqcYHhjVCqUFeSjKZxNLSEubn52XjIa8jkcDOzs5kfOPxODTtvLKy\nVqvJdV9kwVosFvj9fty9exePHj3CxsYGNjY2UCwWUa1WJybOHSaXSikA5v6eGlgkBt+1a9cQi8UE\njYYsQM1mEwsLC/JA6aezEWaQqLubw+EQhl+iKJMo9eTkROjJrFYrpqampIyYiD/stTe7N0aq6YbE\n43EsLi4KulSj0UCxWESlUpFWWVoV5IdQG3o4edX74C5FXD8yRNHVcblcsnsSa4G9A+QrODo6wu7u\nLnw+H8rlMjRNkw5R47jxWdEKICt3OBxGMpkUszsQCOD69evSMXl8fIxisYirV6/iF7/4RR/Uu9Vq\nRb1eHzpXVLJZh8OBtbU17O/vo9ls9kGiMRZA3A2C24yDykWF7vF4EAwGBTWq0+mIEmI3YzAYFJeS\nWAi9Xk9IkAcxkY8jTqcTd+7cQSqVwk9/+lOsra1JVyutnlcV77l0SmGQUMMnEgksLS0JoMfe3p5A\np1ksFszPz6PZbAopJ1NTDBqZCZUBd7lQKIREIoG3334bCwsLCIVCqFarqFQqqNVqEtlOJBKCqguc\n4xeYZTtUa4dxCtKyRSIRuN1uOJ1OHB4eYmtrCxsbGwLKSQzBQCAgqM+kyVODYcax4s7CyRwKhQRs\nlvELkuMGg0F4yUC/IAAAIABJREFUvV6cnp5KM082m8Xs7KyQ/NJaGZS1UbtL3W43pqenkUgkcP/+\nfSQSCfh8PthsNsRisb4cfzKZRLPZRCqVwt7eHhwOh7hfZvEeVQGR4VrXdezt7WFnZ0cU9snJiezc\nnAsEzGGmQu10VcWYxiQoMJUsSWU3Njbw8OFDVKtViftwrnm9Xly5cgXtdhvhcFjwKYxKfBzRNA2h\nUAhvvfUWfD6fWFRqjOdbnZI0ZhtUH9/n82Fubk4mwvb2NtLptOAghEIhtFotpFIpAM/7FRjtV0UN\nrtGXttls8Pv9iEQiePfdd3Hnzh1YrVa02218+eWX6HQ6QgFOH7Fer8tOsL6+LnRhZkLF5vP5kEgk\nsPCsBz8QCOD09BSbm5vY2trq42Gky8Br5m4ej8cFhEUVuikMVrK5ipYTFUOr1UKpVEIkEpEeCUbt\nSWJaKpWESIUBs2HpYZvNJl2DPp8PKysrwr1AqHgiFZGzkghJhL+jJWQW0FTnBmncIpEInE6nBPYY\nSKTSYft7LBaThrBoNCp4nLlc7gWT3tgMR8j4eDwuqFwHBwfY2tpCpVJBo9GA0+mUueT3+8USZBaE\njNSj3BYzsdlsuHHjhmyE3ADp8r5quXRKQRU14BcIBHDz5k0sLS0hEAjg6OgI+/v7qFQq6PV6Erji\nQ2TrKt8bhHmgPnji4t28eRO3b9+G0+lEvV6XBcLotapMiMJTKBSwtraGfD4vaVCjqFiF8XhczFFN\nO0eL3t3dRbFY7CMpoVXBOIpq9hLz35gj52IlRmIoFBJTPBqNCmO32+3Gzs4OvF6vRLFzuZxQy7Xb\nbaFcI7q0Wbs2JyhJUWj++/1+oZhvNpvyfZfLBa/Xi1QqBV3XsbGxgXQ6Lc1bZrESo6i4kLTyGOWn\n5UcUZILtdjod2Gw2FItFdLtdRCIRlEqlsSgGvV6vBCqPj48FJo+bCQPBVA6apokbQUXucDiGInCb\niaZpCAQCWFpagq7r2N/fl7gXXTozXI2XST9fSqWgBstsNpuQtSwvL2N6elpQfhgAY9rI7/cLxDZ9\nOZr66mIxCgNhPp9P4gherxeHh4eoVquo1WqyODn4PF+328Xu7i6Oj49ll6epaLbTeTwe+Hw+IZkh\nrXqhUEC1WpU0GuMFLpdLshJOpxPHx8eC/MN7MqtJIIM1kYEIQ5bP59FqtSRtVyqVxM2iNUBXqdls\nwmKxiPUzLK+vZiuYUahWqyiVSnIs7qiqz53P57G7uyspY+A5e/UwCYfDmJqakoAlx4KbiMViQSgU\nQiwWw8zMDILBoFiEHL/T01M4HI4XYOWNwWePxyNoVxwjwrD3ej0pmGNtCeM/rBegglMzEOPKlStX\nBLTYarVifX1d4ih2u104UIyYFd+a7APQD2BBhqZEIoF79+5hbm5OdqR6vS7wW9TQHo9HTDRCkTF4\nNajyj8EoWgkMiPV6PYF3d7lcuH79ukSZW62W1Be0Wi0xQ3O5nKmVwAUOnMOrx+Nx+P1+Qf6t1+so\nl8ti3nNS0xSnm8H0FzH8zFp21eAj+SPPzs4k9VkoFARqTkVwIpuUyn3BNCGPNWgM1Uo/siS1Wi0h\njm00GgJoCkAQppnXL5fLAt6qUp8Nmh8Wi0Vg1H0+n0DIc3Pggp2fn0cymRQKAKYHPR4PAMjcMS5U\njqFaz0Glw7FxOBxIpVIIh8OoVCoyBxm3oGIHIBibF3EdXC4XFhcXcXJygmKxCKvVioWFBczNzYkb\nQWSpi9Q/mMmlVApUBouLi1hcXEQqlUIqlYLH4xHz2uv14vbt25J+ZNoNOE8TMc3FxWOWClLNzJmZ\nGYTDYTSbTXz66afiqwLnJnez2ZSsxMzMDJxOJ7rdLr788ksx+9VSU+NEY5CQVk8wGMTh4aGwPweD\nQfh8PmiaJkxXZIsmlV21WkW325UFNCiazfgBAVSZa9c0TYpuAoGABNB8Ph90XUe1WkU6nRY+RHXM\nzFLEQH9tCXfSbreLTz/9VCjhPB4Pjo6OYLfbcf/+fVy7dg3dbheff/45PvnkE3FZuJuO2uVYPxAI\nBCQ2MTs7i+9+97s4PDyUTFAkEkG9XkehUICu6+LnM/tCSHizTBFTwFzQ7XYb29vbfSX0kUgE3W4X\nc3NzEgPh3KULa7PZcHh4KIt2kqIiq9WKxcVF/PZv/zYSiQQymQx+53d+RxR4p9NBJpOBzWbDl19+\nOTGB7cDzvvQRvgax2+2IRCKIRCKYn59HKpWC0+kUpGEAEmjiwuaDoB/NTAHwPJpsNOm5u9Ef9Hq9\nwgBUKpUQCAQkj392dk4GEo1GEQqFhFGKvI7NZnPg/dDnZjaBO3Cn0+nLetBSIM24GrzjJCZ7Mmnv\nB0HCnZ6eit+p7nwk5AUg6NhutxvtdhuNRkPcBForaq5+UPZBVRw0lwkWQ/Pc6/XCZrPh2rVr8Hq9\n2N/fRy6XE0XHRTXKvOazpJtD+LpQKNS3i1ssFuFkYHaARDR85ixLN55TnSfq2AGQOA4tGjJbsT4m\nEonA6/WKMlazQ+pxRokaTPV4PDg7OxP8SYLhEoZ/lHU1qVw6pcAb8/l8iMfjSCQSQqPG6DJrAVhw\n43K5YLFYUCwWkc1mJSrMoM6oB0GfnZPh6OhIfEen0wmLxYJYLIbZ2Vkkk0lcuXJFIvR7e3uo1+tC\nOkJRJ5ZaQsxAIRubaLIDzxt81IlH4lKL5ZxToNls9nWBUtEYz6ueWy1/BZ5H10k8QpObpDaM2ag1\nD+MsWPVe+TtN2sPDQ0xNTWFpaQmdTgd7e3t4+vSpZCWMYzVMaNWsra3B4XDA5XKJgvV4PH1cDNwc\nQqGQKF5mqyqVytAgI5WrCg3Pfhv1+TDgyO8wW0SriVaH+oxGCS1m3l80GpXyaV0/p487OjpCsVhE\nOp2e2C0ZJpdOKXDA/H6/5LcBSE653W7LDun3+yUfXCgUUCqVsLOzg1wuJw/EDEZNPQ9w7uMuLCwI\nrwNNvmazKR2Y09PTWFxcFL80l8thY2NDsPeNCMVm59N1XY7LICkzEiyVVSvpuChZ3UdkZ0KWs7pw\nmC/JSDVBTX0+n1RJlstlrKyswOVyodlsShVlpVKR0nC1gtM4bsOEC4EFWH6/X3gtdnd38dVXX8mi\nNFpvo4TjuL29LbUDdCHV8uWtrS0cHh5KTYjL5ZLgMF2KRqMxNIDKSkhaPU6nE1euXEGr1YLdbpdN\niudhoRStWgLsMlMwTkWjGsc4PT1FtVqVNOrm5iYsFgtcLhdarZZA2L+qeAJwCZUChZOK2p8TgZOU\nOP+apmFvbw/ZbBarq6uCgMzJOMis4g5rsVgwMzODubk5CTrt7Owgn89LZJksxj6fD41GQzgeDw4O\n0Gq1XkDtNRO6ELVaDaVSCTabDaFQCMD5ou50OvB4PDg4OOgrPab5fXJyIiY+rRiKMfug+vgqMzXT\nhazGZCETcN4nQpOeCoLXNow/QxU1b85JzVbf6elp/OAHP0Cn08Evf/lLbG1tCVnKpEIfn2nMcDgM\nn8+HWCyGUCiETqfTZ+lFo1FRSlxozWYT5XLZ1H3gfdBNoQLm/GMQmM+Fi50WHutH6F6SS4PuxKgU\nqDrOrVYLxWIRXq9XArIul0vqWrLZ7NjKZly5lEqh1+sJww5TjiqM98HBAaLRqOTAHz9+jN3d3Re0\ns6oQjG6EOhGOj48xOzsruWir1QqfzyfsTDdu3EAoFMLh4SFWV1fx4YcfYm1tTUzfUQqBgT6LxYJ6\nvS6EpCx6Ylyh0+n0Ra8JF04a9WaziUqlIpFsTgSzDAQAIX7hxD85OUG1WkU8HofVakUsFoOun7NR\nFYvFPqZpKgPVHRk3963ycjDL8t5772FlZQVfffUVPvnkE2nguYjouo52u43Dw0NhwWLRGTM7JM89\nOzuTxjWa/AwKMz417J56vR7K5bK4q6yZCQQC4kr0ej1xY5lhYD0De3LIcD3qfKqcnZ0hl8shnU5L\nUxyrbR8/fox0Ov2C2/oq5NIqhWq1imKxKFRu9DvpKzYaDeE+zGQyUtqqKgF18ZhVfnGxMkBlt9sx\nMzMj6To28cTjcWxvb2N9fR2//OUvsbGxIZOSwTejAjIK32MREADhjoxEIjg6OoLf7xcFwcXOz9Os\npwXE61cbrczGkRgM9XodkUhE+jRYhtzrnVOpr6+vC4GpEbFKfR0lqtsTCAQwPT2N73znO7hz5w48\nHg9+9KMfIZ/Pj2x4GiUqbgDnBusVqtWqNLL1ej3huSD4SrVaFXbyUQG6Xq8n9SrpdBoAhIFKtT74\nzKho2u22EMByXNTXUUJF3Ol08MUXX8But+PatWvw+/0ol8t49OiRWAmvWi6dUuBiqNVqePLkCSwW\nC0qlkqTJqOk7nQ6ePHkitQTcyeiTqybVqDQQyWJZfRYMBrGwsCAls+l0Gh9//DEePnyI7e1tif4b\nC0aA0YhOvV6vbwcBzoNwat6dk4H19Kenp4KvoFZqqqlGdfzok/L/BAXh91hRGY1G0Wq1UC6XpWeD\nLheVnRqhH2cRs9GKNHh37tzB9773PczNzUlvh0pN97LC6ySgDlOqNptN+ERPTk7g8/kQiUQAQIJ0\nrJ0YFP8BIBtEvV7va/lmB6Tb7ZbvsdKRz0+lLuS4jlM9CTwPch4dHeHg4ABra2uSrt7Y2MDTp0+F\nR5Kff1Vy6ZQCcH6D9Xod+XwemqYhHo9L1Jh+NU1pNQJPE5k7t9qCPWjQmP9/+vQpgsEgYrEYAEhk\nt1KpoFAo4G//9m/7KMCMQUXVSjBTFOpnuVCpvJxOJ2q1GoLBIEqlkvizrLjjK81Vmt7MYpgpJWP6\ni+diwIzuSy6Xw1dffYWDgwNhv1ItK7Wke9CENi4iktAsLi7i9u3b0jj2+PFj5PP5VxoU45jqui6u\nEjsk6/W6BHK5Y4fDYWiaJu7DIOVEK4ybVLfbRa1Wk5Qgg8WsZOR5eUw1yN1sNscq3Ta7BrZdr6+v\nCz4Ig9uvCn7NKCMZojRN+18B/AcADnRdv/Psvf8WwH8GoPjsY/9c1/UfP/vffw3gHwE4A/Bf6Lr+\n05EX8YwhSt3xCHfFnZ+7smrujRvJVcXMxA8EAkgkEpidnZXJxAfPHd0IAjrJuTi5aMnws+ouz/9x\nd1aPpyo7HlONFVDRGL/DCju1jHtqagrxeFyU39bWllhcnNCqkqVZrCoEszFQayoCgQDeeecd/NZv\n/Rbu3buH4+NjbG5u4he/+AV+/OMfv9Le/1HC8WCFrNvtFleDVoRRjA1R6ubCcWEQnNkptdycY0ZL\nj2M6CvFp3Pt5CSXwyhii/jcA/xOAvzC8/z/quv7fqW9omnYLwD8AcBvAFIB/p2naiq7rE28NXPwq\nRRtgjlT8stLpdCTyzoetTpxx0WzUyL+ZSUpFwDiAccJxoqhgLOrC5yRU8//GOgWei2N35coVHB0d\nSZ1DPp8XXAT2R6iszKqbw/OPkwPnMyJVOmM9dIM2NjYE8+JV72yjrgt4nrZttVrQNG1kWbDxOfLZ\n8Dvqd1WEKfV5sK6BSnvStO6w+/k6ZaRS0HX9F5qmLYx5vD8C8K91XT8GsK1p2gaAdwD8apKL4gIZ\ntPMafzfKpIPOSa/uxnyAVE7DjmlWEWd2jWoEX13IasWj+hlj0RMns4rmbFacxffVlCSVEOs9zs7O\nZJEaAU7VyWzM2Awbd/7v8PAQT548wfb2tmApZjKZsTI1X5dQSaqKeFwxm4eDrFX1+Gpa9uvYzL4u\neZmYwj/RNO0/BvAxgH+q63oVwDSA95XPpJ+9N5aog/Uy5uU4g258SOPkjsf9n/HvSX3oV3HvfDWD\ntx9HzK551LiqyhUAms2mZI9+02Icl2H3Mun4f5MW/DhyUYSGfwXgKoD7AHIA/vtJD6Bp2p9qmvax\npmkfX/AaXstreS1fg1zIUtB1vcDfNU37nwH8v8/+zACYVT468+w9s2P8OYA/f3aMX7t6VRl+zIqa\nVDNe/dv4u/oZ1aQHMJYv/lr+botxHg2aT8b3JpFJP38hS0HTtJTy538I4OGz3/8tgH+gaZpD07RF\nAMsAPrzIOS4qahR4lNBnNgbq+D6DQ2rmw1iboPqPr+XXK2rGRv35TV0L4z4sQJvkWtTNR/0+fxgA\nZ0aISN3MfjAI/SrGYKSloGna/wngdwFENU1LA/hvAPyupmn3AegAdgD8589u6JGmaf8GwGMApwD+\n8UUyD2Nck+lOPUlk21hPoEaPx+3UM/7Oh2NWTz+JqN99FT4qA11mGZGX2YEui/wmrp1zUCXwYb+O\nyuKlZhwGzSvj9atzW/2dSkH9MfalqNbvRcdkZJ3Cr0MGuQ/GnDCbawhCwoo8XdcFQJUNLCrYidmC\noGYF+lub+TpqXIwPxxixZxpqzPuX7zOXDjwvOBrU6TmOcNx4HlpGnMgq+Qvz9qqVdFlF3SFZdQjA\n1Jp7WVGfD/C885TAsTdu3EA4HMbs7CxarRY2NjawtraGnZ2dvjoFs/E0KgCzMmjjHOOaUC1dNXVP\n69WYzscrrFP4jYjL5QIAQbjx+XyYnZ3F3bt3MTMzg1QqhWAwKJ/f2trCl19+iV/96lfY3d1Fo9EY\nmotW0XDVRhVi/Hk8HoEsV01BKhpOSGI5xONx1Ot1AXgd1M6qWgH8fjAYxPXr1/G9730Py8vLiMVi\nKJVKWF1dxc9//nM8efJEQE8nmeicvBaLBdFoFNeuXcOdO3fwne98B1NTU0gmk+j1elKSu7q6iv39\nfXzwwQdyTjOqvXFENaPZ8cmFTPQicmi0Wq2+StFRYrPZ8P3vf18Qs5xOJxqNRh+8WqlUwqeffop8\nPi8o0Re9D+Mz0zRN4O2Wl5dx9epVfP/734eu69ja2pLuS3XhGmMDg87lcDig689Rorxer3Bler1e\nKcUnAhd7Y9iNyXFl9S8wubV5aZUCgSs4admqSgxBts9euXJFyEbI1pTNZmVwBokxWMhdmpBpKk8C\n+SYIqcZyYE07r30PBAIAIDBkLHc1O7/RXKemDwaDCAQCArpC3D1SkV3EHeEiI9flgwcP8Oabb+LG\njRsCHsMuO7/fj+vXr8Pn88HlckHXdTx+/FgUwyTCnYwdn6FQCNFoVCw8WnMEclXRg0YJOy/v3LmD\n69evIx6PC1gqFxQbyLxeL95//32x2i6CY6guKLWyls+4UCjA6/VidXVV4AJJE8cu33GUneriEZo/\nHA4L3wTZxEhjQJQxXT+HpaOVrL6aBdLHkUurFNTgHnAOg9VsNrG7uyuMRZFIBNeuXZN++kQigXA4\nDK/XK52Ig4QaX8VtIL4/SUSnpqZEMRCTkYQfnCChUEjq6YvFIpaWlpDJZEZ2w6n+H9GCd3d3EQ6H\n8dVXXwnAC+HDaeZfJPJstVqxtLSEGzdu4ObNm7IQ8/k8CoWCTDqfz4elpSWBf3M6nfjwww8nVgrA\nuWIgTFoymUQsFsP09DTy+bwAvqjlzuPcF8dqeXkZb775JsLhMKLRqHAxHB8f97U5f+9734PX68XP\nf/5zrK+vC5/GpP622WeJxlSpVBAKhQSYhmjb7HcY51xqwx4/SxZ1NnIRU5MKrt1uS9s2W8XZ8s6m\ntGEI3MPk0ioFVcMSS6DT6eDg4EBKdUkdR8CQeDwuFsKowaDrwFfW7EejUdy8eRPz8/N9PAvEbiAm\ngdVqFdJRQn2xQYbBxnHvkU1Ph4eHePTokXT6ES04Eokgl8tNvDjpDnFnfeONN+ByudBoNLC6uoqP\nPvoIe3t78Pl8mJmZweLiIpaXlwUCz+VyIZfLoVKpTDS5aCn4/X7Mz89jbm4OiURCCF8IaKOWfI8j\nNMeJwOX3+6Wzk6XVrVYLVqsVoVBI4N/YPNdqtV7onbloio8/BE0hFoau6wKEM4ny4Tzk+GmaJnid\n7GEhczY3HSpzxjcajQZ8Pp8wk08ytqpcaqXAB0atnMlkxIyiyU/aM7fbLTBsDO4ME7Uc1el0wu/3\nY3p6GqlUCktLS3KecrmMcrmMp0+folwuSztrMBhEJBKBx+MRkpB6vf4CYcooIYhHNBoVshDS3hHA\ndXd3dyjt3TBxuVxYWVnBvXv3hMtic3MTP/3pT/HZZ5+hVqvBZrMhmUyiVCoJs3E8Hke73cb09DS+\n+uqric1umvOxWEzYrLLZLI6OjuBwODA/P49qtWpKaDNIaDlWKhVsbm4KH0ej0UAul0OhUBCeDJ/P\nhx/84AcAzolcpqen5flxTl00Q8RrJdsXgVo1TZPu2klcFfXe2WXKlCOVILt1c7mcUAy0220Eg0GZ\nO7zvs7MzZDIZ4VGd+NlN9Olfs6ganfEE7txerxdvv/027ty5I2zJpPJifb8xzWP8m/682+0W8/bu\n3bsIhUIy6Ht7e8jlcnjy5IkoJ4/Hg2g0il6vJwFJ0q7lcrmJ0HB6vZ4waRMJ+OjoCLdu3RJeiIti\n+hMd+ubNm8KMXSqV8Ktf/QqfffYZDg4OpM242+3C6/Xi6tWrspBJEjsJ/yF3OQaIp6amAJzD7m9t\nbQmr0/z8fB+FutlxzNJ0bGFeXV0VtidiI7TbbVEKkUgEi4uL8Hq9iEQiSKVSAo6j1phQJtnR1WAz\neTOnpqZwfHwsvCCDumoH3Rd/JwQ9eSoACBZjtVpFuVwW9Gt201IBE3dDJcT5VrkPqhg71DRNw9zc\nHB48eIB4PA5dP6fT+uyzz5DL5cbCrOMxqZk9Ho9wP/j9fokRFItF5PN5oTNjRJiMykThyWazyGaz\nEugZt7OQpnYkEhHo9VAoBL/fj16vh2w2e2HoMk3T4PV6hemZrE27u7vi89LiIlhtJpNBMplEMpmE\npmlYWFgQtqNxLSAqIwYu9/f3sbOzg0ajgatXrwp4arlcNs06mO3gahS/1Wrh448/Fro7xiao6DlW\nmUwGU1NTOD09FUg2gtUYW80nXTw8VywWw9LSEiwWiwCiDHJfB1kmxvoCWgnE0GDwknD4VEgEomVg\nmEpJZRC7yLz5RigFCgc1EAjg/v37CAaDOD09RT6fx+PHj/H06VNBKjI+lEEam9H5QCCAUCgkyDrE\niNQ0TWDQgeecFIuLiwiHw+h0OqhUKqjX69jY2BCIrElgt4DniEU+n0+aiDgRarXahR6u3W7H9PS0\n8AZ0u13htSAwCFOupJGn9XN0dCR8kExrjisE200kEmL6ksuSJu7R0ZHA6Jn59oMWKU1/gpxQGZCI\nV0VKqlQqwgdC9ClahyoU20UUAoOe8/Pzgk5FRKdBytPsPMZaGs5xBh8J1gJArp8wgcy22e12CXTS\nUrloChb4BikFug02mw1TU1OYnj5vviQDUCaTkayAUSObBZM4uNTMpEoHIEE/u92O2dlZsSAYDHK5\nXBLBPz4+xsHBgcC903QcVxhIPTg4kCwG03YUAs5M6gNzURMctt1uI5fLCSu0x+MREhtya5ABmteS\nSCQuFGRkxqZer0sQjjubw+HA7u4ucrmcfEd9HXU+FbCEc4IL9fT0VBYUqduazaYgWKsEsOrmMW7A\nkeex2+3C9OXz+QTOjuPO5zXuMSlOp1MyD5zPDJwSkpDuEIPhzKownkUavUlbxCmXUikYy29Z5ReP\nx/HGG2+IlfD++++jXq+j1+shGo3i6tWrqFar2NnZeWEXMOI0skTUZrNJRiGTyaDdbkulH92Ds7Mz\nLC8vI51Oo9PpCJLR0dER1tbWsLe3J3DvNNnGfRjMeROynPDvkUgEwWAQDx48QCKRwKNHj/DZZ59J\n7nsccblc4ndyghE7MRaLCYbgycmJQNxduXIFoVAIXq9XuBICgYDAmY3z7JhuPDk5kYVTKBTgdrtx\n584dXLlyBZnMeZ+cx+MR1wzA0DSeuquyToTvqxWOXq8XMzMz+MEPfoBisYhmsynMUJFIRHxzQtAB\n4zWvcS4GAgG8++67eO+99wQZ++DgQJQorZ9SqdQ3BwfVDfD6mfGxWq2y0/NZWa1WnJycwO124+7d\nuwgGg+h0OiiXy6jVasjlcmg0Gn0o6N8qS0FdUDQLfT4fkskkotEorly5glqtho8//hhutxsLCwtw\nOByIx+OIx+M4ODiQYhUeyzhAfDinp6eS8iT34tHRkVgRanDz9PRUUIoBSJEMadxVP24Sc5umJ2sg\nLBaL5OCZc8/n80LKOq5SYKpODYoRmpw7CoFgycFYrVYlB85deNzMh1rq3Wq1sLW1heXlZXS7XbHE\nyHhVLpelHF0tSQcm8++NJeKcJ2+++SYcDgd8Pp88Cy5gh8Mh7NMszhp1Tp6DGZWVlRU5Xi6XQ7FY\nlIK3WCyGRqOBWq3WF6A1VkfyPeB58RLRtrmxcGwYFwmHw1haWpIxLBQKogiYhmTtzaRjSbnUSoGT\nkoVJV69exdTUFGw2G7a2trC5uYnr169LTnx2dhbb29vC9cjdiqaiuhtwEjKjQEhutR+Ai8Vms0nU\nmsSzVAalUklQpo0QXaMi9qrZTABQBk0Z6AsGg1KgonbOjZvCOzw8RC6Xw+zsrPSNhMNh5PN5CfSp\nvQ80r2mG67ouNGnjytnZGVqtFj744APs7u4ilUrJs7h3757wNbTbbYkLqJmmUfdkHEMqBELKX79+\nHTdu3JBMDq0/KgSmrGluD4Kc4zhzzFmivbKygjt37kgalzwenU4HXq9XgpqM2zD4yYWqjqWqDFUF\nR1eWtRXcJKampqBpGmq1msScWNJ/fHwsblq73TZVQuPIpVQKwHMzlFWLt27dws2bN+FwOLC3t4dM\nJgOfz4dUKiUMw3a7HYuLiwIzxuAWH8ggOG+1BVXXdTidTnQ6HaFp48JIJBIv5I7L5bKQ2qr0auP6\nkgwuzszMwOfzIZ1Oo91uI5vNYn5+HjMzMwAgfuMkD5kThei/rNdn+Ww2m4XNZsPx8bE0SSWTScnA\nBAKBoSxbZtLr9YT302I5J3nd2dmB3W4XyjjWYqjo0ZMKFw9dBloFTA+6XC4pjuI9ksuDxMEHBwcS\n1DVTtOqCvXLlClwul7iw4XAYvV5PELHZL0PS40wmIxkkNrUBL/I+qM+TMReVKpEKj+ldPrfNzU1s\nbW2JRULHHCp9AAAgAElEQVQlznt+GV6NS6sUWD/A1NaDBw8QiUTENE2lUlhYWMC1a9ewsLAAj8eD\nbrcrLkStVpMeCTOcPJr4uv6cY4HuAYOJrIJTi0QYS8jn85J+YtRZbZMdtXjVHYFsVKxe466taZr0\nehBeHOhXOMOsBl4bg58OhwMejwcLCwvSa0A275OTE8zOzuLq1au4desWZmZmBBp93JQoMwPqTkgX\nhkG/RqMh5DQXVQjq+KkNbPTJmeNnfwJ3cRV3s1KpQNM0yRQNy3YwaMi4FlOFJJ2NRqOwWCyYnZ2F\n3+/H1taWEMXoui7n4oI1Hp/PUA1is5Gs1+shHo8jmUyKBfbRRx9J8Ravm8/XiMj9raho5MOmsLCI\nxUUkwKAbMTs7K3Rd3BG4ENRc9CDEY+DcRGOXHYlCGa0mbyXTlYeHh9IN2Ww2pcNPNTXHCfKoZbIA\nkEgkJH+fSCRw8+ZNxGIxHB4eit84KTT6yckJ9vf3sba2htu3b2NhYQHBYBA3btzA7OwsVlZWsL29\nLWMQCASkR4IFWaQmu6hQUahWlOprX6TM2Ciso2DUnm3hTOdRATI7QFZqlkSPYllSg9XsXmSQOh6P\nY2VlBT6fT+YNr4HVmsa5MUh6vZ7MpUAgIO4cM0FHR0fY29vDw4cPUSwW5djsDG02m31xiG9NoNG4\nsHT9OR2YrutiopHm7fT0FK1WC4VCAevr6/j888+xuroqhR7jEGb0ej00Gg1Eo1Hp3GP6ikQ0sVgM\nPp9Pyk0rlQqq1arApxtNzXF3VtXfnJ2dRSqVwq1bt5BKpeBwOPD48WPs7OxIJRvwIrDMsOPXajU8\nfPgQgUAAf+/v/T28+eabCAaDCIVCSKVSuHnzpuT1NU2TMlnWfnz00UdCNvsyomaRqNgnSdsNEip7\nFvGw3JcBYl0/58oksRBZvxqNxgtw+WbXrI4z40y0IGdmZoR/tNPpSEXr+vo60uk0yuWy8Jqq83mQ\nkAGMDXA+n096GSqVCg4ODpDJZERR08Xm/KGCUy2wb02gkTdydHSEcrmMnZ0duN1uSS3RzC6VSigW\ni3j69Ck2NzexsbGBXC4nrat8EDQTVTF74LVaTeoRmJpj1JdlzwySkbqOXXE8D7Ma4wYCyU5cq9WE\nINVqtUp14fr6OlZXV6VNdlLpdrvIZDL4xS9+IXR3d+/eRSqVknJgNtA0m01Uq1W0Wi08ffoUH3/8\nMdbX1yequxgknOQqIAjHaxLFoGYoqGhoajP2wyBisVjE9vY28vm8kAWzg5H1GIw1DBPOo06ng93d\nXWl6YyqcxMMPHz5EoVCQxi8WEamVhWabBTctpsZtNht0XZdUp91ux8HBgQQ1GXxkVoxKjelVlVbw\nInKplcLp6SlKpRI++ugj7O/vIxqNIpFIIJVK4fj4GE+ePBE6cnWB0mTlcYY13HBgWRBzeHiI4+Nj\naVX1+XwSLKpWqwKiwt2CD5QPhp1848rp6SkODg7wwQcfwG634/bt24jH45JdefToEfb39yViPsrq\nMRvH4+Nj5HI5/OQnP8Gnn36KlZUVfPe738Xs7CxmZ2fRbDZRq9Wwv7+Pg4MDNJtN7O/vY319HeVy\n+aXNe+B5Xcj+/n4fliFfx1WkxlgNsxpM5ZK8lqXnTPcCEKuAVPTGeWIUYwzq8PAQ+XwejUYDW1tb\n+OCDDyRNvLm5Kf05tCi42QzLrqjVjAxINhoNsZAZuyB2A+c5cF4kxR4ItU9imAIaRy41HNvXKWrA\nhyAd7Iz0+/3wer1iitJfY4cac/vqDqpCsT27pwujOavuyEUf7CSiLjQ1HfyqiFs07bwTNRaLYWZm\nBsViEdlsVvr/Jz2H8XpZy8I0IHsHqOS5W7ObFXheG/KbRtxW05G0pph6ZrqUbrAJvNoLx6E7pcZs\nlDk0Fhzb31mloPL98YHQbVD5F6ntGeihz6Zqf7VoRzWFXzWR6jdZmPL0+/3i179KglTVFVGtP+Nz\n4rV8XeSsk4qa+dA0TTp++T6zOaNqOdSMl3EzUT7/WikME8JhPzt/H04j3+Okof+mckoalQmAF+IK\nr5XCc1HH+utajMMqIlWloXZU/qbF6A6xaImiuoy8bmNK2viqWquGsf5mA7d+3TLpgjV+/rU1MJm8\nTDR80nMM+p/6/8uwGQIvXsek9IXDxvWi93hR2rjX8lpey7dU/s5aCq/lXF6mTkDFFATMI+tm7oLR\nRVOvwWgOj2OJmd3DqyiK+rsq3wqlYJxUr2oyGP09o18M9MNzXdZJaFycxusfVpI96p4GKQLGVEaN\ni6oYjO+Nc1/GwrFRn7+oC2FWU6GO6df57NUgIkWFhAcmY0cbJd9opWCMuAKv1lccJ39tDPpcVsUw\naCdWFYX6OVWMWBSqqMczWyTj+vl8NQZ8B4lZcNh4r2bnMzvOOM+MTXOqMCh4dnYmpeCvckMyHssI\ntGOWYRn03UnkG6cU1LQSy5HZ88/iJSOxyKtMeZkhIKkTe5KOQuPxjcd7FWLs+TDb2fm+cUdSlYWZ\nYtD1/lLll92teBymFM2ON8jlGPe8ZtbeKHE6nUgkEggEApLKJrIT+2yKxWJfmvWiYlSyAPrS5A6H\nQ+Y7SXRUCMJXYTFfWqVgXHgcGJfLhWQyieXlZbz99ts4Pj5Gq9VCLpfD3t4eNjc3JQ+udosNm7DG\nCcbuRbfbjampKWm6YhEMMRpYssta/q2trT46LzMhFZ3NZoPf75fcPcE2ASASiUi6c3t7G+Vy2RSh\n2njtZufiOBI2nLsbKeX4PwBS6NPpdF4A/TS6HOoz0nVd0INV1Cm1HmCQ4jAW79D1sFgsppF4HotA\nJF6vV6DfVKYpFcrM4XDIBqJpmvRFHB4eolKpDK0UtVqt+P3f/31cuXIF9+/fl54UAuDwfn/2s5/h\nww8/FFatixRFqS6KCi7EjuDl5WWhM2i1WiiVSnj48KHMEVU5cBy/VcCtxonH34mmTCjv4+NjuN1u\n2Gw2qeE3Tt5hPr9RIfCBOJ1ORKNRzM3NYW5uDl6vVzANVMo6ANJTzx1ELZ4xnosTn33+BOIgGnCv\n18M777wDr9cLXT+nEHv8+LFU/6n3ZfxdFV6DpmlyHuIysnGIDE6cgI1GA5lMBplMRtqpjUU+ZvEI\nFnk5nc6+3c34DFiVp+IgsCmJHAVc0L1eT1qBjfdFa4KAMV6vV7AfCHjDdnjyL5I0haA6fJZq8ZCZ\nwmUp8fz8PKLRKOLxOPx+PzweD4DntSm/93u/J7R/jx49mnhBmsVEOA+5CXo8HqGmYxFdMBiE1+uV\nlnTeg7FWYRK5tEqBopqwtBQ44ba2tqRdlOSaat33qMUzKGrNbr5UKoXl5WVMTU1hc3MT2WxWujNJ\nZgqcKwlaEaq2NxN+5ujoCJVKRZqEut2uIOecnZ3hxo0bcu+rq6sTdRSaZQWoGLxeL2KxmGABhkIh\nBAIBuN1udLtd6dDb398XLAIzv5Xn4e6rYhkQro6txrxn4jN4PB5h16JcuXJFOk/b7bZgXhrPx7El\npFogEJAmMioLtSXa5XJJo5nf75feAlpeKqrzoLEkwjeVH2HceB3hcBjz8/PQNA1Pnz7Fzs5OXzv9\nOGLmEtntduFI5bx4+vQptre3hWOUJd201IDniuqi7tylVwqqsL6dkymbzUofvd/vl88ZS0LHiUyr\nYrVaEY1Gcf/+fdy4cQNWqxV/9Vd/JdYACVKCwaBw9hGsc5gpyt1SragjjDzfIxRcJBKBw+FAvV4X\ncNlJui+B55BqBG2hclDJQugGBQIBnJ2dIRQKCRUeS2zVXdyYIuSCISAscQTpf/N8aqluNBoVyDIq\nDKIx1Wo1ZDIZaSOmmPnYbKOPRqPwer0oFApi2bC5SNfPCViTySQ8Hg96vR5arZZYR+yqHNS9eHZ2\nhkqlIqhRxK+kpeF0OrG0tCT4odPT030s5ZOI0RpjL4TH40G73UatVsPGxgby+Tyi0SiuX78uCpld\novz+y8g3SinwIVM7ZjIZIRhVgU/pz41aQIN8W6fTibm5OczPzyMSiSCTyWBnZwetVkvg1wmqQXIO\n44Ifdk7VxFN3c/rg5GtotVoCGfYyASwqn06ng0aj0UfVpmI/np6ein8OQMBEqFC4G1MxqO5JIBDA\n1NSU8FCmUikhSHW73QDOW+HJqMWuRirVXq8n7eiMywwCv9W0cxCSQCAAl8uFYDAojWr1el1wGYkq\nDZyD2EQiEdRqtT6YdzVYOmjsiM1RLpcFr5NAKlNTU7hy5QreeOMNYWgiS9M4KdlBwnHt9Xpot9s4\nOTnBxsYG9vb2cHR0hFAoBACyManPhMp3HJxQM/lGKQWLxSIdjKRuW1pags1mk52GO7bZgh/1cBhg\nTCQSuH37NpaXl9Fut7G9vS3Qbh6PB/F4HLOzs7Db7QJ+yl2e1sIgf9LMpeH1MR4xPT0Nm82GUqmE\nR48e9bXDGsU46Yz3agw68f16vS48jG63W9B72LZr3EH5XfU66MbRSlhaWhIYMp/PJxyH5NEggnS9\nXpedllygLpcLpVIJFotFgmZmMRn6+SQE9ng8QodH6j5modxuN05OThAOhxEKhcTiqtfrci+0lAaN\nLwFn/H4/yuWyWHJ0ZfP5vIyDGosqlUoXAjtRNydaQzabTZDDj46OBC+Syp3Bb3WMXsZa+EYoBS5y\nDhQRaRwOB/x+P6rVKvb29oR30czMHvZQ1Gi5x+PB7Ows7t27B4fDIfwAVAjT09O4ffs2FhcXX6Bg\nY7CNBCuT3J96DYuLizg7O0M2m8WTJ08mwjI0mqCc/Jy4xLJUg5sqDgVBP/m+Gs02jiNxJohreXR0\nhKWlJSGDITt0oVCQ38vlMprNJo6OjpBKpeB0OhEIBATItV6v93VRqkKMQ15DLBZDKBSSrANRjQnD\nRncoFovBZrOhUqlgb28PlUpF8A5otQwSuhsnJyeiEGipEr3Z4/GICwmcuxRUhsPGb9hcoKXA2Ilq\nAZOentmjRqPRp8Bp1V20LfwboRQoKtwUTTSajSRLHYZsM0yocGw2G+bn5xGLxdDtdpHNZtHpdBAK\nhRAOh7GysiKcAoVCAbVara+HXXUhLmI2cges1+v4m7/5mz5wTjMZFEBV/8eJppKPMrvByUwqOWIb\nMtahac9Rq8wWKXELSFTCYOXx8TFKpRLK5bIAzxJu/vj4WKLqNHGJiJ3P54em9Hgv3CkBiPnMGApT\nhV6vF8lkUmDRy+WywKKzPXkchctAMq0K/litVoTDYfHnySHBOACzAbTUhj0zs/skeU+z2RRQV9Ul\nIyK1ih7F87yMu/mNUgqqCcwJXCwWUSqVpFbATAa9b4z2MpLM1FKlUhEffGFhAdPT03j33XeFT4Dn\n5OIAMNBSGUc0TRMW488//xz5fP7C7b1maVbuHl6vt69Fl2xQFosFjUZD+CUZYCTSjzFCTr+VioVE\nOoS/Pzw8xO7uLiqViqQX6WoRCi4SicBisUjGQQWwUU1gNaYBnNdy+Hw+hEIhgfLnAmXWIZFIYHFx\nEZqmCdmPyqPJwOkov5vPUw2cer1eLC4uYmFhAclkUuYK06sq6QzToMZnM0rOzs5QrVb7MBb8fj9S\nqRQCgYCgdfN/xqzD16YUNE2bBfAXABIAdAB/ruv6v9Q0LQzg/wKwAGAHwN/Xdb2qnT/Jfwng3wfQ\nAfAPdV3/9EJX138dAM4nMH1WQmr5fD7Mz8/DYrEI0aaRmQcwL4el9mehiNfrFTiy4+NjmbiRSETg\nt0ulEtbX17G9vY1CoSCmHRXEpA9DTbMtLCyg2Wzigw8+ENz/SYWLFXgeDNR1He12G263W3aws7Mz\n3L59Gw8ePEAgEEA2m4XD4ZBiH5rXDASaCXfQZrOJfD6PdrsthLIWi0UKvQgtFg6HEQ6HcffuXSwu\nLsJms2F3dxfb29t4/PgxCoXCQB5EQvAzmEefmmnJN998E1arVbILoVAI0WgUvV5PoNnIo0mXaVyQ\nXWYCGIBeXl7GysoKZmZm4PF4JAjY6/UwPz+PYDAolkmv1xPULs7RUXOEbkuhUBDGMrfbjWvXruGt\nt97CycmJcIRwQzLGRi5qrY5jKZwC+Ke6rn+qaZoPwCeapv0MwD8E8P/puv4vNE37ZwD+GYD/CsC/\nB2D52c93AfyrZ68XFjV4YrfbZWLncjnB2wfOK/L4M2nhCBcDy0cLhQIcDgd0XUcsFpO6BAK87uzs\nYH9/X1h+eZyLCJUTST8+++wzZLPZPor1UQFFs3sCIAVCAMSv5/8DgQCWl5fh9XrR6XSEAIdKhSYy\nd1Z1t6Mws8HK0pOTEwEt5XV3u134/X4x7ROJBObm5iSTQ+BaVlIOuy+a8sRZBCDpTxLpMtXo8/lw\nenqKer0unJJcqHR5hvnd6pjbbDaEw2FMTU3h+vXruHnzppADkSD48PBQUrrBYBCLi4uS8UmlUiiV\nSnj8+PHgiYD+cnq1UMvlciEcDiOZTCIUCgmJDZ+vukb4c1Gsj5FKQdf1HIDcs9+bmqY9ATAN4I8A\n/O6zj/3vAP4W50rhjwD8hX4+mu9rmhbUNC317DgXEnWggsEggsEg7HY7CoUC4vE4jo6OEAgEBG67\nXq/37djDFpCaHuSkzOfzqNfrmJmZQSgUQqlUgtfrRTgcRqPRQLFYxObmJnK5nOD8qZV4F71HRpo/\n+ugjgXRXo9G8XjW6bPRX1ftSi324i9BK8Pl8QnADnGcj9vf3sbOzg2KxKOxSdCXUmgf1mmmmMo1Y\nr9dlFz45ORH8S5XFe3l5GXa7XRT706dPkcvlBGV5WL6d59vf3wcAqWTUdR3JZBI2m03ciZs3b6Je\nryOdTmNnZwf5fF6CjO12W57dqB2VCttut2Nubk4K2ggt1263xYLluJMpigHdL774Auvr68hms5J5\nMZ5DtVxVXkin04np6WmEw2HhuGBQWA0SG+fFRTepiWIKmqYtAHgA4AMACWWh53HuXgDnCmNf+Vr6\n2XsXUgrUhFarVfLSuq4jnU4jm82iUqng2rVrcLvdCIVC2N/fl0msRmOHDRCj6PSFj4+PEQqFcHJy\nIuxKc3NzEnQrFotCKqqeQ/XjJjHduIOGw2E4HA7ZZbmg6Jfys5RR98WJzJ2TKVer1YpUKoXFxUVY\nrVZUq1U8evQIT548wc7ODmq1Gnq95+Q6rLYcdj/sAVGVBtOaXBiapuH69etIJBKwWCyCiLyxsSHW\nhapYB90bMwyZTAbNZhOFQgFOpxMbGxuyaEKhEEKhECqVClZXV7G7u4tcLidWDbMywwh2eL+MD7AA\nihR/XLx+vx8rKyvynPisqCTq9TquXr2KR48evRCXMZ6LCogFSXR3PB6PpIypgBmAVCkGeIyLxrWA\nCZSCpmleAP83gP9S1/WGIQikaxPiLGqa9qcA/nTU53hj7BXQNE0g1plTVzUlNajaVjpKY+q6LgqA\nr51ORxqVaIEwh87JqFojatpUve4RYyCLPxQKIRKJSDUh/XGW0xoRno3nG3R85rTp/tjtdiQSCdy7\ndw8LCwvIZrN4+vQpfvWrXyGTyfQRvqr8AWaFOGqzGRmXGIjzeDzybKgQIpEIkskkgPMS9U8++QQb\nGxsoFot9XJzqmJo9q7OzMxQKBVFyvE+HwyFsXrQYNzc3sb+/38eXMKyfw0yomFl7wdQkA8wul0tY\nxw8PD+V9Xhch6Fn8NiqbpF4PU6sAJIsTDAbRbDalAlR1McfdCIfJWEpB0zQbzhXC/6Hr+v/z7O0C\n3QJN01IADp69nwEwq3x95tl7faLr+p8D+PNnxx+5gqgRGdRisIaUcvRdVYXw7Ngj748TjblranvG\nLvx+P3RdF4KWarUqiwTAC+caVyFw8TgcDszNzSEejyMUCuHw8BDRaBSZTEZSpTwfd1314Q8StUOR\nPqnb7catW7eE8erHP/4xPvvsM+zt7Ym1RGuEv3PhmxUTqWPYbDalaYfXzLqSYDCIBw8ewO12Y2dn\nR0huqtWqFDZRIahuySBpNBqiLPnq9XrluXEnPTg4QK1WkwpKjol6T6N2VS5K0gXu7OwgHo+LomWs\ni/TwJycnkqas1+s4PDzE2tqa8JMME3X+8doYPOV18n54LKfTKYoHuDjfA2Wc7IMG4H8B8ETX9f9B\n+de/BfCfAPgXz17/Unn/n2ia9q9xHmCsv0w8gZODA1Wr1RCNRhEOh3Hnzh3cvHlTCpgajYZMbKMP\nPmqhcoKwQIamr8VikYBSvV6XtJka/DMqg3F8VDVoOj09LSnPqakpnJ6e4osvvpCAGieyel/qdQ8S\nmsesKNQ0DfPz89JURvOdHAw8lsoZME5GhWPHSkF2QJKZ2e/34/r165ibm0O5XMaTJ0+wubkpjUnG\nNvNRu5zRSlJ3SVYBsv2caUg18GpUZqOeF+NFBwcH2NnZga7rODg4EPo9WhLFYlE2DXaMapommYdK\npSIBwmHC52axWODz+aSRjffKOAY5OXntVODA11+n8D0A/xGArzRN+/zZe/8c58rg32ia9o8A7AL4\n+8/+92OcpyM3cJ6S/E8vdGWKcBdn7QBbmRcWFuByuVAsFrG3t4fd3V2pwjPKuAOkNv5YrVYsLCxg\nZWVFNPTJyUlfYY+ZDDqX6gIwWu7z+RCPxzEzM4Pl5WUEAgFsbW0hnU6jWCyKYlB3ThUfYtR98Xo9\nHg/Ozs6kDqHZbCKbzSKfz7/AmM1X9RxmloLxXpk35yRmY9fMzAwSiQROTk6ws7ODra0t7O/vS5uz\nsbBnEotLdS+Jc7CwsACfz4dcLtdHbKsGXFVFMM4Ydjod1Ot1bGxsIJvNIh6PIxwOSwbl+PgY+Xwe\n5XJZui/VYrFarYZSqTQWWa8a72C8wGazwev1Sqry6OhI3GcVh0J1IS5qMYyTffglgEFq+/dNPq8D\n+McXupohcnZ2hmaziXQ6DZfLhVu3bqFcLgs92O7urqSd1Ik8ScDPaJXQ7Gbhzfb2NnK53As1EJOc\nixOewaS5uTm89dZbCAaDCAQC6PV6+OSTT7C2ttbnZ6sTmi7EOOdiOpKpPxbYdDodPH361DRjoio8\nY9OW8XO6rkvjFMeB183WXrvdjna7jUajgc8//xzZbFbo+WjKq008dJPGtfDUDIvH45GofKVSAQAx\nxRkYpJvI8uFRwtgIXRGn04m9vb2+mAF9f/ZFABB3hudrt9tjKzqmvhlbajabcLlcsNlsSKfTqNVq\nfaA/tNBUiryLyjeODEb1I9XJOClN+7DjM/jncrkQjUYxNTUlWYdSqdTXY6F+b5yxVBezajHw+9zZ\nXwWfBLMXLPhROxQJysGdaNC1D9u11T4Em80mPrbf75cWaoK6MObwxRdfCFEvAClu4qRm0NIYr1Gv\nRx1r9XnZ7XZJWdtsNmSzWXEfuPvyuKzWfBWM2oPGTcW1GNYkN+oYVD6apknnJ+e8mcU4ZB5++xmi\nJjEzL3JsBi2ZFuVu8DLpnkHnUl+Blw8WAc8zNmo0XLWERrkgo8ZXTY9qmiYZGmZQWKtPRedwOLC9\nvS1WgjqO3F3VGMawazMqV96r+sxUxmfVVVDBSF7FOA+SVz0/jbGQC8i3nyHq61Zoxrr4r+t84/q2\nkwrrL4D+HVn9/7jXNkxo/lN50iqgL86GJyoomvxq5kDNrkwSV1AtCjWFaoyJqIr3ZX3uceVVP89f\n1wb+jVYKX6dcBgvqZYW77st8f5gYFxcrCX8dMk5KVpVvw/P8dclr2rjX8lpeS5+8Vgq/RjGmMNUo\n/7AU56hjmn3votVsF5Fh53+Z+xp2PONxR43lsOv4dY7Vy8qv41pfuw8TiDEgSL91XN/ULG2pxhOM\nxx1VwKO+Dvr/RUQ9/yS1Aur3hx17UNGX+rvZedXPq2lIY1DS7Lvqe4OU2CRjNkopGUupJ5FhChF4\njqLN7INaqXnRc6ryWimMKcYdSn0Aw7gDhh3P+FnjMYYd6+vMvBjPP8mCGaT0jMcftWuP8z01JTrO\n9ZiNq1rMNOo4ZsdgcNXj8cDn8wnASqvVEoQnbhyTjKGqAJiKZNaELf6apkkTmpoiV/s7LiLfeqUw\n7oQetDtzNyLeArEhCULKMl0VxcfMcjDuKuNe0zjvv2rFYGaqD5rYZuNm3NHV91Q4M/5t3OXMzmU8\nFouiNE3rA4RheTFTnizuYWZCpXYzZiZGjYdxbNg96Xa7pQCt3W5LSTMAaeNnufmo86j4Fxxb3pda\nn0NFwQIptoGfnT3ntfzWYTQaH4TaEUfzCXie3+bn1MoyRt9pag2iclPLj9UHQ4DMq1ev4r333kMs\nFhM2nkKhIMQcmUwGnU4H7XYbmqYJnJgqZguH+XWHwwGv14tIJAK32w2XyyWLgvgCKvae1WpFpVIR\npUQE63HGlPdG5KJIJCI9GA6HQxYpdx+PxyO4hkbYO1UhGHdwLhbC25F0xu/3y3Nk52C9Xken05GC\nokwmg3Q6PRBbwW63491330UwGMStW7cwNTUFp9MpUPKEqedx6/U6Tk5OsLq6itXVVWQyGRQKBVlI\no8ToerDzNJlM4p133sG9e/ek/4YNU41GQ2o0Tk5OpHpzUDZIrbUgzL+u632Q8URfIoyA1+uV1vdu\ntytl8cR1vGgdxqVUCurupKL/EK+ftfWspydCsTrB2u12H1KQSkhiPJdaG8/dQ6XsWnjWrMTFSXxD\nXhPLZVWzzQw2XLUQuFuybZrgHdFoFPPz82KBsCNUhXwj/2G1WkWn05GFbHYudWejYiX03NTUFP7w\nD/9QevaJZ0DkKtYbUAGyV4HK1Uw5UOkQ9j0SiWB2dhY+nw/hcBi6rguUHkuh4/G4nIutxzSPjTEX\n7pYulwuLi4uYmZlBLBaTyk0iQB0eHqLT6QiBkN1ux/379xEIBPDll19KKTaVwiTWGzeM5eVl3Llz\nBwsLC8jlciiXy9jY2MDh4SFcLhfi8TgsFovAzg9boJyHbHpjc5dqqRK4mCxlZKzyer3Cc8F5Y+SB\nmEQunVIw20050bgbkCsgHA7LYLN3wOl0olqtChDHoAVKMTNRNU0T+PipqSmEQiEhGgH6B5pmMHcB\nM6fYxAsAABXnSURBVO2sKjn1PQJ0zM3N4Tvf+Q7u3r2LaDQqWH7ENSSMOrEeOAEGMREZFxMVkN1u\nFxq1+fl5vPHGG3jnnXfE/FRbl8nXSRi2qakpQTsadi4A0qk4OzuLpaUlIYgBznEU8vm8LFx2VJKj\ngWQwg3oSOL5HR0eyA9NtI3x8qVSSHZULyu/3Q9M0TE9P4/DwUPoHJhVNO0fIun79Ov7gD/4A8/Pz\ncLvd+NnPfoa9vT2USiV5NjwnIQIHKR11DI3NWmovCPsqaPXa7XaEw2F0u11xV1iw9jJZikupFMyq\n0Oi/xeNxJBIJ+Hw+IUIlRh93QPYpjIo4D7sGknokk0nE43FsbGzg4OAAfr+/D2qL2ltVBqr1Mej4\nPMfMzAzeeustfPe73xWknrW1NWxvb8NisaDZbMLv9yMYDMpu0ev1ZDGY+fnG++ZY0uycm5vDm2++\niXv37qHT6eDg4AC5XA65XE7cl0gkIl15vEeS0BpFVabcSSORiLS4h8NhHBwcYGtrC48fP5ZJzQ7C\nSCQiVsoglCc1TkG3ivgGANDpdLC1tSVAOTxGKpXCzMwMvF6vuDQej0eYsczGbNhzI3vXe++9h/v3\n78PhcOCrr77Cxx9/LFYqLS8S0XInJz6mmRjdS+OmAzzvFuZGSX6JbrcLp9MpMQUGYC9iJQCXUCmo\nEX11hyXCDZtuyuUy1tfXpeut1+uJT55Op+VYwHOEoHGF5/T7/cJlQJiy09NTcRssFssLxLbqfQw6\nNndtktgmk0nY7XZUq1U8ffoUf/mXf4lmsylKYGZmRiDRdf0c3v74+HjsZh5aCuQMuHr1KmKxGMrl\nMr744gvs7u5KcMrr9eLq1asAzolj6vU6Go0GSqXS0Cg9J7WKgMQFkcvl8OWXX2J9fR2lUqnvmRIv\nQIXI530NymJwDLvdLmq1GsrlskDzdTodafQioWwoFEK324XL5QIA2UCM8ahRioF9HW+99RZ++MMf\nIhqNYnd3F1988QW2t7f7FDRBfu12O5LJJE5PT02xGQeNI11VtmEzUEkl7ff7EY/H5ZxUqmqPy7hI\n1Ua5dEoB6I/wUiMSxz+VSqFaraJQKAi8FQNiHo/nBZIPVTFMMkA2m03o7um+eL1e0f40dbkDmAXE\nBt0PA0YLCwu4du0apqencXx8jM8++wzvv/8+dnd3ZdHQejg9PYXb7X6BAcmYelInt7pz0wednp6G\n3+9HqVTC2dkZPvnkEyGc8Xq9wqTNMSQeJVt1B1lfagCYu2QwGES328WjR4+wvb2NUqkkcR5+lvep\n63ofFsYwS4EmeafTETLaUqkkiERcSABE6RwdHUmDFAOMdrt9rBZ0Xq/D4cDNmzfxJ3/yJ5ibm0O9\nXsdHH32Ev/7rvxalynEDznkoYrGYxE+2traGolcZnyF/1L4VXdeFMpEt6ZVKRZQClQmf+zit4Ua5\ndErBqCnZ+ebz+bC0tCQak1yILpcL09PTiMfj0oVHLkIuGJq/4woHVNd1HB0dCYAmacrY4MPFop7L\nzGQzC/gx0JdMJmG1WrG3t4e1tTXhPaBpzRw46dbL5bLprqCey3gv3BnJgXnlyhU0m02BQuv1en2A\nL+FwGDabDaurq8jlckin033YDmbjRbHb7QgEAjJWmUwG5XK5T3HyvtjOTQAYXT/HHODYD3KLOAc4\n4ev1el+enunja9euYW5uDlartc90VyPzZkFaM7FarUgmk/jjP/5j3Lx5E71eD++//z5+9KMfIZ1O\n9yliZgroQvl8PqTTaTgcjhcUq5lCUhWC2qXLcZmdnUUkEhGr6uDgQGDf6Lo6HI6xs1Iv3OvE3/g1\nC3e7cDgsGp+TmIxOTHu1222k02nhFOTA0teaRMj/wOxGNBqVuAbZjIy7E025YQ+CloLKJUG+BT5U\nYkIykKQGOxlMY5R5GEQ5FyuzN36/X6j2eM0k1iFr9NzcHGw2G/b391EoFLC5uYlSqSQLaZiZTZ/7\nypUrgm9JbgbyIqopPb/fLy6Rpmli/rOz0iyIyd+NwC66rgsDM7EVrl692odpwHvv9c7RnlnTMEoY\neL1//z7eeecd2Gw2rK2t4Sc/+QnW1tYEnFZ1C8PhsFARkP5t1LnM3F0Gvfn9s7MzcYNoKVWrVSFA\n4lgYM2qTyKVTCsZUGn0jAOIaBAIBMfuCwSDi8TgAIJvN9gFc8hiT4h9w9zg+PhYwkmg0KgNeqVQE\nTZcm6TBloF4L3SGCkdDqODk5QSAQwMrKCsrlspjzkUhEIszEiGSKclChlDqWako3EAgI4rCmnZPB\n3Lt3D6enp/D5fPL5SqWCSqWCra0twRc0q5DjTqZaALwv4Bxc9fDwEE6nU0heaf1RoTPDsbOzIxmJ\nQdV46qJSU9QE9KVFR5fy4OAATqcTHo9HgF3///auLratsww/b5y4duIkduw4jt2ma9Lsp50mNk1o\nF1PvBmM3hbtdsQskbkCCCy6GdrNbkOACCSGBmDQQYjfA2A1SgW1CmkbpaNc2aZsmTeP81I6dOH/O\n3xzn48J+3n0+tR2na2cHnUeK7Jw457zn83fe7/373ofZA1LnOedbNbC9+0svvaSu1/vvv49Lly7p\nWLIFu9frRTgcVu5RABoYrjVH7Lluf29MH9suq4ggGAxqk9hcLleRIrav8aAZiJZTCrb7QM24tbWF\nqakpiIi27+7p6cHe3h5isRg6Oztx/fp1XLp0SQs57PPwvNXg9MGp7UkVx/x9V1cX9vdLzUlZ5CMi\nDXFH8hr8H/qJmUxG+wqyRyPTkdlsFh6PRyPnqVQK4+PjmJ6e1oBnrevamQBmK/iQkDeyv78fvb29\n8Hq9yOVyWFxchIgo98Pdu3e1eMgZn6n2fdG8LRQKqkh6e3u1wzZdIKaTyZuQSqUwOTmpRVgHdZ1i\nuvP5559HMBjE9PS0uhJsw0aez2QyqWnqs2fPIhAI6ILC+ZNMJqumjAmPx4NTp07h5ZdfxpNPPomV\nlRVcvHgR7777rs6F7u5uJBIJFItFtQKfeuoptcKuXbtWQQJbbQw5fiKiyiAQCODkyZOIRqMaV2MA\nM5lMIplMKkeIHTRlTOWRMUQ1A05TcXd3FxsbG5icnFSTzOPxIJFIVPRPZEDH7vd3UFrGVkDUzmwl\nFolEtDqORLOhUAj7+/u62ju7A9e7JzvYWSgUtPZBRJTfsLu7WyPlpB9jdJk5fDsPXe9B5f3ZLE80\nzVnYY6cFl5aWsLS0hMXFRU15OpWrc+z4yvHjgykiGlTk9bu6utDb26s/DPYxRuC0EKpdk2nFRCKB\n/f19ZZpi2zXWrbC5LvlAl5eXEQwG1W0pFotaEcj9CbXmB1OYXO2npqa0gIhKjkE/kvrEYjHEYjGs\nra1heXkZqVTqQLeSVp3f71dGMsZdmFlra2vD1NSU8ozancftNLlNJXfk3QfCNv1FRBmLNzY29EF9\n4okn4Pf7MT8/r01cq1GLN+ILc7Xr6elBf38/jh8/jkQigXA4jO3tbaysrGBoaAg+nw+hUEjrz52K\nx44SE05rZX+/1JG3r69PG23ShywUClhaWoLP58OJEyfQ09Oj5vz6+npFGzPbwql2b1RyVDA0cbkf\ngGzQ4XBYKdxYu1+LAq+a9UVZmLlob2/H7u6uln3z+owH0dJir0ibQ7LWtezvieXSOzs7WhLOWAQL\nvPb29pQPhKXGtCCZ0mPrtnqggqHsbAzMTA0VDVBiwh4cHMTQ0BD6+vogIpifn8ft27cbJpVlmpqK\ngZZOT08PvF4v8vm8zgMqfM4/KggGYA9i9aqFllUK9s3YXXZsPzYcDqNQKCCZTFaY1NX+rx6oEAKB\nAAYHBzEyMoKzZ89qxeTMzAxyuRxisZj6sqyzt6PC9rWcboktE1NvNp+hXXabz+dx+vRpLafe2trC\n3NxcBTHqQe4Q/VsWYZGjgCsaTfXR0VH09/djYWEBq6urOuGcbehquWG2m0J2Jrscl5V4TCGSHZxZ\nJcZlaEXVs0qMMfD7/Xj88cfV/WCNA+NOZKIuFouIx+OqAOyekaFQCMvLyxUrbL05wjEnS3U8Hsfx\n48c1U8JakkQigTNnzuiCMTY2punYRh5QOw0ej8dVAQaDQV0YJycndY8DFXGhUNAKTgBa8/KgaFml\nYMP5cHPDiN/vRzqdxuzsbAV3AXEYLcmim4GBAZw+fVpXIprUrBTr6+tT/gegssy5VsTXfs8JSzZi\nrgisA1heXobX68Vjjz2mltHMzIxyBlDxNVK27fV6VcmFQiF0dHRgZ2cHa2trupqz0zKJSkgwYp+v\n0XH0+Xzo7u7WQB9Tnh6PRynTqRxERMudGUeotzmJi8He3h6i0SgGBweVNm14eBgdHR3o7e1V9+vE\niRMYGBio4NAk0zUAXfHZLr+W/03rYGZmBs8++yzC4TCefvpp+P1+JJNJ3Lt3D6FQCOfOnUM4HNa0\n482bN3H58mWMjY0hk8nUVeQE3QEGhtmVulAoaGZtZmYGmUxGFzLWeNBK29nZqdgs+CDdqltaKVRb\naTkQoVAIu7u7WhTTSNygHmiSU1vzdXZ2Fm1tbejv79eNO4yq2/62LWu9GAMbjObzeU2dbW9va0nz\n1tYWotGockBks1lkMhl9cGptfHIeA0qTLBwOI5FIoL+/X7kEmMkYGhpCV1cX8vk85ubmlI+Bq+dh\nir3sMaDPTkuA8RgqwPb2dqyurmJxcVF3MFajPHO6DrwnZih8Ph9GR0c10MdAHMllfT6fbpLjhimP\nx4OlpSXMzc0hk8k0pPRIAjM+Po5nnnkGgUAAo6OjCIVCOHnyJCKRiMY4Njc3cfXqVYyPj+PGjRtY\nWFhQi6kWONY2oTFjM7RC79y5o4QynAfcQUllSZZwWqL/d1unnaCJymjv0NCQcjvWo4A/TKCFK+b2\n9rb6n/F4HF1dXYjH4/D7/VhZWcG9e/ewsLBQ8TlbORwUeORKT2YhanlGmEdGRhCNRtW/T6VSatY7\nz1/t/mwFRR81Eonog1csFvVYLpfDzZs3cfHiRaRSqYoKuGo+fb2xpL/OVHEwGMTy8rJSnvG7o0Uy\nPT2NbDaLfD6v57eDl9WUHXcdZrNZ3QPz2WefqdtCF4n8CIzOb2xsIJ1OK71gNptFOp1uaG7s7u5i\ndnYWH374IYwxOHPmDDY3N9HZ2YlgMKhZKWZSLl++jOnpaaytrVX0bzgIxWJRi5ECgQCi0Sg8Ho/G\nk7LZrG5c4yLGGE2hUFBLDMAD1eYQR0opsNR0eHgYQ0NDSKfT95m7zv9pFMYYpeK6c+cOACCRSCAU\nCiESieDYsWPIZDIYHx/HlStXtLeAs1ag2gpbbYLbSoHVhIFAALFYDMPDw+jq6sLq6iru3r2rRT12\nzMRuQ1YLvIZdO8DKzHw+j1AohImJCXz88cdIJpP31VxUW6mrjRsAdYnI6cBIeU9Pj+7q5E7G9fV1\nzM7OanWm3f+iXhxof38f29vbyGQyuHLlCmKxmAYMd3Z2NM7ABSSdTiuVWzqd1qK2nZ0d3SnJ89Yb\nR9aS3Lp1C9vb2/joo48Qj8f1Htva2rC+vq7WFq9Tb9NatTE0pkSEs7m5iYWFBezu7mrB3srKSsWm\nMbsHCF9pHRzUu+EgHAmlwBWEK83AwADa2towNzdXUazEzxIcrEasBdYOrKysYGpqSgc4Ho+jra0N\nk5OTShtnZwLsL7Ra5sF5H/b12H+hvb0dwWAQIyMjmiXI5XK6R5+Kj7nnw3BRkHl5YGBAV1HuFJyf\nn8eFCxcwOzt7X+bGGSitdl/2cU5oZjRSqZQ2cAmHw9jc3MTa2hrm5+eRy+WwurqqZi4Vvp1qrWX5\nsQ7iwoULCAaDutuR/TPolzPuw01rvDePx6OZinoWphMsrb916xZ8Ph8mJibQ2dmp3+Pm5mbF3gNn\nZuYg2J+hErD7WhSLRb1HO/3IkngyTzNYfVBhWz20LEOUbUay+IVBs2g0io6ODnzwwQdIpVI1q+AO\nm6O1r8lX+z0H+bAVks5r2ClQ5t252SoSicDv92vgb21tTYNxTn/7IBnYR4Bl4KSNy2azukqTW/JB\nJ5B9X+xPCKCi14M9XnbPwsOOox1X4PdxmECofQ4btkL/IqhXO9IInDUvtTI+jS46VXD0aePsScCi\nE9a3G2OwuLiI9fV11dCP8l4e1qRxmnxcJfkQ0SLi3nlntuEwE495eF6DvQzZz4DnfRgKodoxp6xO\ny6LWuWpZKzzXF334nPI+LKXwMODc7vygCu+LKIWWdh/sL4tBPa6YNP248jzqL/Rhnd9pjXDVtFvH\n2TvpbOXhVCo8Ty3ZnGZstaDoYWWv9j+1XDfnSndQDUK9AGq1azwIDoqNNBsHFYzVwsNUai1tKbhw\n4eKhoiFLwWWIcuHCRQVaxX1YArBZfj1KiMCV+VHjqMkLtK7MJxv5UEu4DwAgIp80Ytq0ElyZHz2O\nmrzA0ZTZhus+uHDhogKuUnDhwkUFWkkp/LrZAjwAXJkfPY6avMDRlFnRMjEFFy5ctAZayVJw4cJF\nC6DpSkFEXhaRCRGZEpHXmy1PLYjIjIhcF5FPReST8rE+Efm7iEyWX0NNlvEtEcmIyJh1rKqMUsIv\nyuN+TUSeayGZ3xSRhfJYfyoir1h/+3FZ5gkR+XqTZD4hIh+IyA0RGReRH5SPt/RYNwy7Fv3L/gHg\nAXAHwDAAL4CrAM40U6Y6ss4AiDiO/RTA6+X3rwP4SZNlPAfgOQBjB8kI4BUAfwMgAF4AcLGFZH4T\nwI+qfPZMeY4cA3CqPHc8TZB5EMBz5ffdAG6XZWvpsW70p9mWwlcBTBljpo0xnwF4B8D5Jst0GJwH\n8Hb5/dsAvtlEWWCM+ReAnONwLRnPA/idKeHfAIIiMvjlSPo5ashcC+cBvGOM2TXG3AUwhdIc+lJh\njEkZYy6X328AuAkggRYf60bRbKWQAGDzm8+Xj7UiDIALIvJfEflu+diAMSZVfp8GMNAc0eqiloyt\nPvbfL5vab1luWcvJLCKPAXgWwEUc3bGuQLOVwlHCi8aY5wB8A8D3ROSc/UdTshNbOpVzFGQs41cA\nRgB8BUAKwM+aK051iEgAwJ8A/NAYs27/7QiN9X1otlJYAHDC+v14+VjLwRizUH7NAPgLSmbrIs3A\n8mumeRLWRC0ZW3bsjTGLxpiiMWYfwG/wuYvQMjKLSAdKCuEPxpg/lw8fubGuhmYrhUsARkXklIh4\nAbwK4L0my3QfRKRLRLr5HsDXAIyhJOtr5Y+9BuCvzZGwLmrJ+B6Ab5cj4y8AWLNM36bC4W9/C6Wx\nBkoyvyoix0TkFIBRAP9pgnwC4LcAbhpjfm796ciNdVU0O9KJUmT2NkqR5DeaLU8NGYdRinpfBTBO\nOQGEAfwTwCSAfwDoa7Kcf0TJ3C6g5Ld+p5aMKEXCf1ke9+sAnm8hmX9flukaSg/UoPX5N8oyTwD4\nRpNkfhEl1+AagE/LP6+0+lg3+uNWNLpw4aICzXYfXLhw0WJwlYILFy4q4CoFFy5cVMBVCi5cuKiA\nqxRcuHBRAVcpuHDhogKuUnDhwkUFXKXgwoWLCvwPBQpz1kOXwhAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# z_sample for generate imgs from prior\n", + "z_sample = 0.5 * torch.randn(64, z_dim).to(device)\n", + "\n", + "# fixed _x for watching reconstruction improvement\n", + "_x, _ = iter(test_loader).next()\n", + "_x = _x.to(device)\n", + "\n", + "for epoch in range(1, epochs + 1):\n", + " train_loss = train(epoch)\n", + " test_loss = test(epoch)\n", + " \n", + " recon = plot_reconstrunction(_x[:8])\n", + " sample = plot_image_from_latent(z_sample)\n", + " \n", + " print('Epoch: {}'.format(epoch))\n", + " print('Reconstruction')\n", + " imshow(torchvision.utils.make_grid(recon))\n", + " print('generate from prior z:')\n", + " imshow(torchvision.utils.make_grid(sample))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Japanese/01-DistributionAPITutorial.ipynb b/tutorial/Japanese/01-DistributionAPITutorial.ipynb new file mode 100644 index 00000000..2d354130 --- /dev/null +++ b/tutorial/Japanese/01-DistributionAPITutorial.ipynb @@ -0,0 +1,739 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pixyzの確率分布の記述方法\n", + "\n", + "ここではまず,Pixyzにおける確率モデルの実装方法について説明します. \n", + "Distribution API document: https://docs.pixyz.io/en/latest/distributions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "from torch import nn\n", + "from torch.nn import functional as F\n", + "import numpy as np\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. 深層ニューラルネットワークを用いない確率分布の定義" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.1 シンプルな確率分布の定義" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ガウス分布を作るためには,`Normal`をインポートして,平均(loc)と標準偏差(scale)を定義します." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal\n", + "\n", + "x_dim = 50\n", + "p1_nor_x = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.), var=['x'], features_shape=[x_dim], name='p_{1}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "なお``var``には,変数の名前を設定します.ここでは`\"x\"`を設定しています.\n", + "\n", + "また,features_shapeでは次元数を指定します.ここではfeatures_shapeが50となっていますから,50次元のサンプルを生成する形になります.\n", + "\n", + "上記で定義したp1の情報は次のようにみることができます." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal\n", + "p_{1}(x)\n" + ] + } + ], + "source": [ + "print(p1_nor_x.distribution_name) \n", + "print(p1_nor_x.prob_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "distribution_nameでは,確率分布の名前を確認できます.\n", + "\n", + "prob_textでは,確率分布の形をテキストで出力できます.ここでテキストに書かれている確率変数は,上記のvarで指定したものです.\n", + "\n", + "また,p1を丸ごとprintすると,以下のように表示されます." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p_{1}(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p_{1}, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (loc): torch.Size([1, 50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + } + ], + "source": [ + "print(p1_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "print_latexを利用するとLaTex表記で定義した確率分布が表示されます \n", + "注: 数式のtex形式への出力に外部ライブラリのsympy使用しており,sympyの影響で数式の結果に支障を与えないが,数式の順序が入れ替わることがある \n", + "print_latex(A +B)の出力が \n", + "B+Aになることがあったりする" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$p_{1}(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print_latex(p1_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に,定義した分布からサンプリングしてみましょう. サンプリングは,`sample()`によって実行します." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'x': tensor([[-1.5256, -0.7502, -0.6540, -1.6095, -0.1002, -0.6092, -0.9798, -1.6091,\n", + " -0.7121, 0.3037, -0.7773, -0.2515, -0.2223, 1.6871, 0.2284, 0.4676,\n", + " -0.6970, -1.1608, 0.6995, 0.1991, 0.8657, 0.2444, -0.6629, 0.8073,\n", + " 1.1017, -0.1759, -2.2456, -1.4465, 0.0612, -0.6177, -0.7981, -0.1316,\n", + " 1.8793, -0.0721, 0.0663, -0.4370, 0.7626, 0.4415, 1.1651, 2.0154,\n", + " 0.2152, -0.5242, -0.1860, -0.6446, 1.5392, -0.8696, -3.3312, -0.7479,\n", + " 1.1173, 0.2981]])}\n", + "--------------------------------------------------------------------------\n", + "tensor([[-1.5256, -0.7502, -0.6540, -1.6095, -0.1002, -0.6092, -0.9798, -1.6091,\n", + " -0.7121, 0.3037, -0.7773, -0.2515, -0.2223, 1.6871, 0.2284, 0.4676,\n", + " -0.6970, -1.1608, 0.6995, 0.1991, 0.8657, 0.2444, -0.6629, 0.8073,\n", + " 1.1017, -0.1759, -2.2456, -1.4465, 0.0612, -0.6177, -0.7981, -0.1316,\n", + " 1.8793, -0.0721, 0.0663, -0.4370, 0.7626, 0.4415, 1.1651, 2.0154,\n", + " 0.2152, -0.5242, -0.1860, -0.6446, 1.5392, -0.8696, -3.3312, -0.7479,\n", + " 1.1173, 0.2981]])\n" + ] + } + ], + "source": [ + "p1_nor_x_samples = p1_nor_x.sample()\n", + "print(p1_nor_x_samples)\n", + "print('--------------------------------------------------------------------------')\n", + "print(p1_nor_x_samples[\"x\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "出力はdict形式になっています.\n", + "\n", + "サンプリング結果を確認したい変数について指定することで,中身を確認できます(ただし,この例では変数は\"x\"のみです).\n", + "\n", + "なお,サンプリング結果は,PyTorchのtensor形式になっています." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.2 条件付確率分布の定義" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に条件付確率分布の定義の仕方を正規分布の例で見ていきます\n", + "\n", + "正規分布ではパラメータは平均$\\mu$と分散$\\sigma^2$がありますが,今回は平均が条件付けられた正規分布を取り上げたいと思います" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$p(x|\\mu_{var}) = \\cal N(x; \\mu=\\mu_{var}, \\sigma^2=1)$\n", + "\n", + "分布の条件付き変数の設定はcond_varで行います \n", + "ここではmu_varという変数を正規分布の平均に設定したいため \n", + "cond_var=['mu_var'] \n", + "loc='mu_var' \n", + "とします" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 50\n", + "p1_nor_x__mu = Normal(loc='mu_var', scale=torch.tensor(1.), var=['x'], cond_var=['mu_var'], features_shape=[x_dim])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x|\\mu_{var})\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=['mu_var'], input_var=['mu_var'], features_shape=torch.Size([50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x|\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p1_nor_x__mu)\n", + "print_latex(p1_nor_x__mu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "これで平均が$\\mu_{var}$で条件付けされる正規分布が定義できました \n", + "試しに$\\mu_{var}=0$としてxをサンプリングしてみます \n", + "sampleメソッドにdict形式で変数を指定します" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mu_var': 0,\n", + " 'x': tensor([[-0.5962, -1.0055, -0.2106, -0.0075, 1.6734, 0.0103, 0.9837, 0.8793,\n", + " -0.9962, -0.8313, -0.4610, -0.5601, 0.3956, -0.9823, 1.3264, 0.8547,\n", + " -0.6540, 0.7317, -1.4344, -0.5008, 0.1716, -0.1600, -0.5047, -1.4746,\n", + " -1.0412, 0.7323, -1.0483, -0.4709, 0.2911, 1.9907, -0.9247, -0.9301,\n", + " 0.8165, -0.9135, 0.2053, 0.3051, 0.5357, -0.4312, 0.1573, 1.2540,\n", + " 1.3275, -0.4954, -1.9804, 1.7986, 0.1018, 0.3400, -0.6447, -0.2870,\n", + " 3.3212, -0.4021]])}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p1_nor_x__mu.sample({\"mu_var\": 0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に$\\mu_{var}$自体も何らかの確率分布に従う変数とし,その確率分布を定めます \n", + "ここでは仮にベルヌーイ分布とします \n", + "$p(\\mu_{var}) = \\cal B(\\mu_{var};p=0.3)$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true, + "scrolled": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Bernoulli\n", + "p2_ber_mu = Bernoulli(probs=torch.tensor(0.3), var=['mu_var'], features_shape=[x_dim])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(\\mu_{var})\n", + "Network architecture:\n", + " Bernoulli(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['mu_var'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (probs): torch.Size([1, 50])\n", + " )\n", + "{'mu_var': tensor([[0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0.,\n", + " 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]])}\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p2_ber_mu)\n", + "print(p2_ber_mu.sample())\n", + "print_latex(p2_ber_mu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pixyzでは分布の積は,掛け算で表すことができます \n", + "定義した$p(\\mu_{var})$と$p(x|\\mu_{var})$を掛け合わせて同時分布$p(x, \\mu_{var})$を定義します \n", + "$p(x, \\mu_{var}) = p(x|\\mu_{var}) p(\\mu_{var})$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})\n", + "Network architecture:\n", + " Bernoulli(\n", + " name=p, distribution_name=Bernoulli,\n", + " var=['mu_var'], cond_var=[], input_var=[], features_shape=torch.Size([50])\n", + " (probs): torch.Size([1, 50])\n", + " )\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=['mu_var'], input_var=['mu_var'], features_shape=torch.Size([50])\n", + " (scale): torch.Size([1, 50])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint_mu_x = p1_nor_x__mu * p2_ber_mu\n", + "print(p_joint_mu_x) \n", + "print_latex(p_joint_mu_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "同時分布でも今までと同様にsampleメソッドでサンプリングを行うことができます \n", + "全ての変数とその値がdict形式で出力されます" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mu_var': tensor([[1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1.,\n", + " 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.,\n", + " 0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 1.]]),\n", + " 'x': tensor([[ 3.6415, -0.9624, 0.7924, -1.3889, 1.0127, -0.8734, 1.7997, 1.2824,\n", + " 1.6604, 0.2717, 0.1913, 0.1267, 0.5707, 0.8652, 0.3437, 0.3718,\n", + " 0.1444, 1.7772, -2.3381, 0.1709, 1.1661, 1.4787, 0.2676, 0.7561,\n", + " -0.5873, -2.0619, 0.4305, 0.3377, -0.3438, -0.6172, 2.2530, -0.0514,\n", + " -1.0257, 0.5213, -2.3065, 1.6037, 0.1794, 0.1447, 0.6411, 0.4793,\n", + " 0.7617, -0.3542, -0.2693, 2.3120, -0.8920, -0.7529, -0.0573, 2.2000,\n", + " 0.9912, 0.9414]])}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_joint_mu_x.sample()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. 深層ニューラルネットワークと組み合わせた確率分布の設定" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に, 確率分布のパラメータを深層ニューラルネットワークで定義します.\n", + "\n", + "例えば,ガウス分布の平均$\\mu$と分散$\\sigma^2$は, パラメータ$\\theta$を持つ深層ニューラルネットワークによって,$\\mu=f(x;\\theta)$および$\\sigma^2=g(x;\\theta)$と定義できます.\n", + "\n", + "したがって,ガウス分布は${\\cal N}(\\mu=f(x;\\theta),\\sigma^2=g(x;\\theta))$となります.\n", + "\n", + "$p(a) = {\\cal N}(a; \\mu=f(x;\\theta),\\sigma^2=g(x;\\theta))$を定義してみましょう\n", + "\n", + "Pixyzでは,次のようなクラスを記述することで,これを実現できます." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "a_dim = 20\n", + "\n", + "class ProbNorAgivX(Normal):\n", + " \"\"\"\n", + " Probability distrituion Normal A given X\n", + " p(a) = {\\cal N}(a; \\mu=f(x;\\theta),\\sigma^2=g(x;\\theta)\n", + " loc and scale are parameterized by theta given x\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(ProbNorAgivX, self).__init__(cond_var=['x'], var=['a'])\n", + " \n", + " self.fc1 = nn.Linear(x_dim, 10)\n", + " self.fc_loc = nn.Linear(10, a_dim)\n", + " self.fc_scale = nn.Linear(10, a_dim)\n", + " \n", + " def forward(self, x):\n", + " h1 = F.relu(self.fc1(x))\n", + " return {'loc': self.fc_loc(h1), 'scale': F.softplus(self.fc_scale(h1))}\n", + "p_nor_a__x = ProbNorAgivX()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "まず, ガウス分布クラスを継承することで,ガウス分布のパラメータを深層ニューラルネットワークで定義することを明示します.\n", + "\n", + "次に,コンストラクタで,利用するニューラルネットワークを記述します.これは,通常のPyTorchと同じです.\n", + "\n", + "唯一異なる点は,superの引数にvarとcond_varの名前を指定している点です.\n", + "\n", + "varは先程見たように,出力する変数の名前を指定します.一方,cond_varではニューラルネットワークの入力変数の名前を指定します.これは,ここで定義する分布において,条件付けられる変数とみなすことができます.\n", + "\n", + "forwardについても,通常のPyTorchと同じです.ただし,注意点が2つあります.\n", + "\n", + "* 引数の名前と数は,cond_varで設定したものと同じにしてください. 例えば,cond_var=[\"x\", \"y\"]とした場合は,forward(self, x, y)としてください.\n", + "* 戻り値は,それぞれの確率分布のパラメータになります.上記の例ではガウス分布なので,平均と分散を指定しています.\n", + "\n", + "そして最後に,定義した確率分布クラスのインスタンスを作成します.\n", + "\n", + "次に,先程の例と同様,確率分布の情報を見てみましょう." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(a|x)\n", + "Network architecture:\n", + " ProbNorAgivX(\n", + " name=p, distribution_name=Normal,\n", + " var=['a'], cond_var=['x'], input_var=['x'], features_shape=torch.Size([])\n", + " (fc1): Linear(in_features=50, out_features=10, bias=True)\n", + " (fc_loc): Linear(in_features=10, out_features=20, bias=True)\n", + " (fc_scale): Linear(in_features=10, out_features=20, bias=True)\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(a|x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(p_nor_a__x)\n", + "print_latex(p_nor_a__x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "p2の分布は,xで条件付けた形になっています.これらの表記は,superの引数で設定したとおりになっています." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に,先程の例のように,サンプリングしてみましょう.\n", + "\n", + "注意しなければならないのは,先ほどと異なり,条件づけた変数xがあるということです.\n", + "\n", + "x_samplesをxとしてサンプリングしましょう." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_samples = torch.Tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085,\n", + " -0.2155, 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196,\n", + " -0.5484, -0.3472, 0.4730, -0.4286, 0.5514, -1.5474, 0.7575,\n", + " -0.4068, -0.1277, 0.2804, 1.7460, 1.8550, -0.7064, 2.5571,\n", + " 0.7705, -1.0739, -0.2015, -0.5603, -0.6240, -0.9773, -0.1637,\n", + " -0.3582, -0.0594, -2.4919, 0.2423, 0.2883, -0.1095, 0.3126,\n", + " -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880, -1.1435,\n", + " -0.6512]])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'x': tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", + " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", + " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", + " 1.7460, 1.8550, -0.7064, 2.5571, 0.7705, -1.0739, -0.2015, -0.5603,\n", + " -0.6240, -0.9773, -0.1637, -0.3582, -0.0594, -2.4919, 0.2423, 0.2883,\n", + " -0.1095, 0.3126, -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880,\n", + " -1.1435, -0.6512]]), 'a': tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", + " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", + " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", + " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", + "tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", + " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", + " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", + " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", + "tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", + " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", + " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", + " 1.7460, 1.8550, -0.7064, 2.5571, 0.7705, -1.0739, -0.2015, -0.5603,\n", + " -0.6240, -0.9773, -0.1637, -0.3582, -0.0594, -2.4919, 0.2423, 0.2883,\n", + " -0.1095, 0.3126, -0.3417, 0.9473, 0.6223, -0.4481, -0.2856, 0.3880,\n", + " -1.1435, -0.6512]])\n" + ] + } + ], + "source": [ + "p_nor_a__x_samples = p_nor_a__x.sample({'x': x_samples})\n", + "print(p_nor_a__x_samples)\n", + "print(p_nor_a__x_samples['a'])\n", + "print(p_nor_a__x_samples['x'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "出力には,aとxの2つのサンプルがあります.\n", + "\n", + "aが今回計算したサンプルで,xについては,引数として与えたサンプルがそのまま入っています." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Next Tutorial\n", + "02-LossAPITutorial.ipynb" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Japanese/02-LossAPITutorial.ipynb b/tutorial/Japanese/02-LossAPITutorial.ipynb new file mode 100644 index 00000000..aa76cbe9 --- /dev/null +++ b/tutorial/Japanese/02-LossAPITutorial.ipynb @@ -0,0 +1,877 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 深層生成モデルではモデルの設計=目的関数の定義\n", + "- 深層生成モデルでは,いずれのモデルも最適化するための目的関数を明示的に設定する\n", + " - 自己回帰モデル・フローベースモデル: Kullback-Leiblerダイバージェンス(対数尤度)\n", + " - VAE: 周辺対数尤度の下界\n", + " - GAN: Jensen-Shannonダイバージェンス(ただし目的関数自身の更新も必要(=敵対的学習))\n", + "- 推論,確率変数の表現の正則化なども,全て目的関数として追加する\n", + "\n", + " \n", + " - 深層生成モデルではモデルの設計=目的関数の定義\n", + " - 従来の生成モデルとは異なり,サンプリングによる推論等は行わない\n", + "- 確率分布を受け取って目的関数を定義できる枠組みが必要\n", + " - LossAPI \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 確率分布を受け取って目的関数を定義する\n", + "- Loss API document: https://pixyz.readthedocs.io/en/latest/losses.html#\n", + "\n", + "ここではDistribution APIで定義した確率分布を受け取り目的関数を定義するまでの流れを確認する \n", + "目的関数を定義する際には以下の項目が必要となる\n", + "1. 尤度計算をする\n", + "1. 確率分布の距離を計算する\n", + "1. 期待値を計算する\n", + "1. データ分布を考慮した計算(mean, sum) \n", + "\n", + "VAEのLossではそれぞれの項目は以下のように対応\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lossの計算\n", + "Loss API はlossの計算を行う際入力に確率変数を必要とします(`input_var`).\n", + "確率変数が与えられて初めてLossのあたいは計算されます. \n", + "\n", + "```python\n", + "p = DistributionAPI()\n", + "# define the objective function receiving distribution\n", + "loss = LossAPI(p)\n", + "# the value of loss is calculated when input_var is feeded\n", + "loss_value = loss.eval({'input_var': input_data})\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from __future__ import print_function\n", + "import torch\n", + "from torch import nn\n", + "from torch.nn import functional as F\n", + "import numpy as np\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Pixyz module\n", + "from pixyz.distributions import Normal\n", + "from pixyz.utils import print_latex" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 尤度計算を行う\n", + "ある観測値$x_1$, ...., $x_N$が得られた際,xが従うと仮定した確率分布pの尤もらしさを計算します \n", + "ここではxは平均0, 分散1の正規分布に従うのではないかと仮定します \n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([5])\n", + " (loc): torch.Size([1, 5])\n", + " (scale): torch.Size([1, 5])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 確率分布pを定義\n", + "x_dim = 5\n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print(p_nor_x)\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([100, 5])\n" + ] + } + ], + "source": [ + "# xを観測\n", + "observed_x_num = 100\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "print(observed_x.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "対数尤度は以下のように計算されます \n", + "$L=\\sum_{i=1}^{100} \\log p\\left(x_{i}\\right)$ \n", + "PixyzではLogProbを使用することで簡単に計算できます \n", + "LogProbの引数にPixyz Distributionで定義した確率分布を格納し \n", + "観測値をLogProb.eval()で渡すことで計算が行われます \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#probability-density-function" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\log p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import LogProb\n", + "# LogProbの引数にPixyz Distributionで定義した確率分布を格納\n", + "log_likelihood_x = LogProb(p_nor_x)\n", + "print_latex(log_likelihood_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([ -7.5539, -6.8545, -6.4024, -5.8851, -6.1517, -8.3702, -6.7028,\n", + " -5.0395, -7.4346, -7.1497, -5.7594, -7.3006, -11.9857, -5.8238,\n", + " -6.7561, -5.7640, -6.2382, -4.9060, -6.1076, -8.2535, -7.8250,\n", + " -7.1956, -7.6949, -5.2324, -11.5860, -8.1068, -7.1763, -8.3332,\n", + " -11.4631, -6.6297, -6.1200, -12.2358, -5.3402, -7.1465, -7.5106,\n", + " -7.0829, -6.6300, -6.1832, -7.2049, -10.8676, -6.8674, -5.8339,\n", + " -9.1939, -7.5965, -8.7743, -7.3492, -5.2578, -10.3097, -6.5646,\n", + " -4.8807, -5.9738, -6.2394, -10.3945, -9.1760, -9.2957, -5.5627,\n", + " -7.1047, -6.4066, -6.8100, -6.0878, -6.8835, -7.9132, -5.0738,\n", + " -8.8378, -6.2286, -5.8401, -5.9691, -5.6857, -7.6903, -6.4982,\n", + " -7.1259, -8.7953, -10.5572, -5.9161, -7.0649, -6.1292, -6.0871,\n", + " -7.2513, -7.2517, -7.1378, -6.4228, -5.5728, -5.6155, -5.1962,\n", + " -8.3940, -7.8178, -9.8129, -6.1119, -5.0492, -8.9898, -6.9675,\n", + " -8.0218, -13.9816, -6.8575, -5.1304, -5.5069, -5.0561, -5.1264,\n", + " -4.8489, -5.4876])\n", + "observed_x_num: 100\n" + ] + } + ], + "source": [ + "# 観測値それぞれに対しての尤度が計算される\n", + "print(log_likelihood_x.eval({'x': observed_x}))\n", + "# observed_x_num = 100\n", + "print('observed_x_num: ', len(log_likelihood_x.eval({'x': observed_x})))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "log_likelihood_x.eval({'x': observed_x})には \n", + "$\\log p(x_{1})$, $\\log p(x_{2})$, ...., $\\log p(x_{100})$ \n", + "の計算結果が格納されている \n", + "log_likelihood_x.eval({'x': observed_x})[i] = $\\log p(x_{i})$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に各要素を合計し\n", + "$L=\\sum_{i=1}^{100} \\log p\\left(x_{i}\\right)$を計算する " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "対数尤度の計算結果: tensor(-715.5875)\n" + ] + } + ], + "source": [ + "# 値を合計し対数尤度を計算する\n", + "print('対数尤度の計算結果:', log_likelihood_x.eval({'x': observed_x}).sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "以上のようにpixyz.lossesのLogProbを用いることで対数尤度が簡単に計算できることを確認しました \n", + "また,定義した確率分布からp.log_prob().eval()でも同様に計算が行えます" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LogProb()\n", + "tensor(-715.5875)\n", + ".log_prob()\n", + "tensor(-715.5875)\n" + ] + } + ], + "source": [ + "print('LogProb()')\n", + "print(LogProb(p_nor_x).eval({'x': observed_x}).sum())\n", + "print('.log_prob()')\n", + "print(p_nor_x.log_prob().eval({'x': observed_x}).sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more Loss API related to probability density function: \n", + "https://docs.pixyz.io/en/latest/losses.html#probability-density-function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 確率分布の距離を計算する\n", + "生成モデルの学習では真の分布(データ分布)$p_{data}(x)$と近いモデル分布(生成モデル)$p_{\\theta}(x)$を考え,適切な$\\theta$を求めるために分布間の距離を測ることがある \n", + "\n", + "VAE系ではKullback-Leiblerダイバージェンス, GAN系ではJensen-Shannonダイバージェンスといったように,確率分布間の距離を計算する \n", + "分布間距離の計算もPixyz Loss APIを用いれば簡単に行うことができる \n", + "Pixyz document: \n", + "https://docs.pixyz.io/en/latest/losses.html#statistical-distance \n", + "https://pixyz.readthedocs.io/en/latest/losses.html#adversarial-statistical-distance\n", + "\n", + "ここでは例として平均0, 分散1の正規分布pと平均5, 分散0.1の正規分布qとのKullback-Leiblerダイバージェンスを計算する \n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$ \n", + "$q(x) = \\cal N(\\mu=5, \\sigma^2=0.1)$ \n", + "$KL(q(x) || p(x))$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 確率分布の定義\n", + "x_dim = 10\n", + "# p \n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$q(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# q\n", + "q_nor_x = Normal(var=['x'], loc=torch.tensor(5.), scale=torch.tensor(0.1), features_shape=[x_dim], name='q')\n", + "print_latex(q_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Kullback-Leiblerダイバージェンスを計算はpixyz.lossesのKullbackLeiblerを用いる \n", + "KullbackLeibler()の引数に距離を測りたい分布を格納し \n", + ".eval()で計算が行われる \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#kullbackleibler " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(x)||p(x) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import KullbackLeibler\n", + "\n", + "kl_q_p = KullbackLeibler(q_nor_x, p_nor_x)\n", + "print_latex(kl_q_p)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([143.0759])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# .eval で計算を行う\n", + "kl_q_p.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more Loss API related to statistical distance: \n", + "https://docs.pixyz.io/en/latest/losses.html#statistical-distance \n", + "https://docs.pixyz.io/en/latest/losses.html#adversarial-statistical-distance " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 期待値を計算する\n", + "何らかの関数について確率分布で重み付けして積分を行うのが期待値計算であるが\n", + "Pixyzでは潜在変数のように, input_varとして与えられない変数がある場合その変数が従う確率分布で潰\n", + "期待値の計算もLoss APIを用いれば簡単に計算できる \n", + "Pixyz document: \n", + "https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ここでは例として \n", + "$q(z|x) = \\cal N(\\mu=x, \\sigma^2=1)$ \n", + "$p(x|z) = \\cal N(\\mu=z, \\sigma^2=1)$ \n", + "といった二つの確率分布q(z|x), p(x|z)を考え \n", + "$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$を計算する" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# 確率分布の定義\n", + "from pixyz.distributions import Normal\n", + "\n", + "q_nor_z__x = Normal(loc=\"x\", scale=torch.tensor(1.), var=[\"z\"], cond_var=[\"x\"],\n", + " features_shape=[10], name='q') # q(z|x)\n", + "p_nor_x__z = Normal(loc=\"z\", scale=torch.tensor(1.), var=[\"x\"], cond_var=[\"z\"],\n", + " features_shape=[10]) # p(x|z)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\log p(x|z)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# p(x|z)の対数尤度をとる\n", + "from pixyz.losses import LogProb\n", + "\n", + "p_log_likelihood = LogProb(p_nor_x__z)\n", + "print_latex(p_log_likelihood)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "期待値の計算はpixyz.lossesのExpectationを用いる \n", + "Expectation()の引数にはp, fがあり \n", + "期待値をとる対象の関数がfで, その関数の確率変数が従う確率分布のpで重み付けを行う \n", + ".eval()で計算が行われる \n", + "Pixyz document: https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import Expectation as E\n", + "\n", + "E_q_logprob_p = E(q_nor_z__x, LogProb(p_nor_x__z))\n", + "print_latex(E_q_logprob_p)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([-10.7006, -11.9861])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_x = torch.randn(2, 10)\n", + "E_q_logprob_p.eval({'x': sample_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more details about Expectatoin API: \n", + "https://docs.pixyz.io/en/latest/losses.html#expected-value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### データ分布を考慮した計算(mean, sum)\n", + "本来ならxについて期待値をとる必要があるが,データ分布は実際に与えられないためbatch方向について平均や合計といった計算を行う \n", + "合計や平均といった計算もLoss APIでは簡単に行うことができる \n", + "ここではobserved_xを訓練データとして尤度計算を行いそのmeanを計算する\n", + "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$ \n", + "$\\frac{1}{N} \\sum_{i=1}^N\\left[\\log p\\left(x^{(i)}\\right)\\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([100, 5])\n" + ] + } + ], + "source": [ + "# xを観測\n", + "observed_x_num = 100\n", + "x_dim = 5\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "print(observed_x.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distribution:\n", + " p(x)\n", + "Network architecture:\n", + " Normal(\n", + " name=p, distribution_name=Normal,\n", + " var=['x'], cond_var=[], input_var=[], features_shape=torch.Size([5])\n", + " (loc): torch.Size([1, 5])\n", + " (scale): torch.Size([1, 5])\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$p(x)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 確率分布pを定義\n", + "p_nor_x = Normal(var=['x'], loc=torch.tensor(0.), scale=torch.tensor(1.), features_shape=[x_dim])\n", + "print(p_nor_x)\n", + "print_latex(p_nor_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "合計や平均といった計算はLoss.mean()やLoss.sum()とすることで容易に行える" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(\\log p(x) \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import LogProb\n", + "# meanを計算する\n", + "mean_log_likelihood_x = LogProb(p_nor_x).mean() # .mean()\n", + "print_latex(mean_log_likelihood_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(-7.1973)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_log_likelihood_x.eval({'x': observed_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lossの組み合わせ\n", + "PixyzではLoss同士の四則演算ができる \n", + "例として以下のLossをLoss同士の組み合わせで表現する \n", + "$\\frac{1}{N} \\sum_{i=1}^{N}\\left[\\mathbb{E}_{q\\left(z | x^{(i)}\\right)}\\left[\\log p\\left(x^{(i)} | z\\right)\\right]-K L\\left(q\\left(z | x^{(i)}\\right) \\| p(z)\\right)\\right]$" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# 確率分布の定義\n", + "from pixyz.distributions import Normal\n", + "\n", + "# p(x|z)\n", + "p_nor_x__z = Normal(loc=\"z\", scale=torch.tensor(1.), var=[\"x\"], cond_var=[\"z\"],\n", + " features_shape=[10])\n", + "\n", + "# p(z)\n", + "p_nor_z = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.), var=[\"z\"],\n", + " features_shape=[10])\n", + "\n", + "# q(z|x)\n", + "q_nor_z__x = Normal(loc=\"x\", scale=torch.tensor(1.), var=[\"z\"], cond_var=[\"x\"],\n", + " features_shape=[10], name='q')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lossの定義\n", + "from pixyz.losses import LogProb\n", + "from pixyz.losses import Expectation as E\n", + "from pixyz.losses import KullbackLeibler\n", + "\n", + "# 対数尤度\n", + "logprob_p_x__z = LogProb(p_nor_x__z)# input_var: x, z\n", + "\n", + "# 期待値E\n", + "E_q_z__x_logprob_p__z = E(q_nor_z__x, logprob_p_x__z)# input_car: x(z is not needed because of Expectation)\n", + "\n", + "# KLダイバージェンス\n", + "KL_q_z__x_p_z = KullbackLeibler(q_nor_z__x, p_nor_z)\n", + "\n", + "# Lossの引き算\n", + "total_loss = E_q_z__x_logprob_p__z - KL_q_z__x_p_z# input_var: x(E_q_z__x_logprob_p__z needs x as input_var)\n", + "\n", + "# Lossのmean\n", + "total_loss = total_loss.mean()\n", + "\n", + "# Lossの確認\n", + "print_latex(total_loss)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(-18.9965)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lossの計算\n", + "# xを観測\n", + "observed_x_num = 100\n", + "x_dim = 10\n", + "observed_x = torch.randn(observed_x_num, x_dim)\n", + "\n", + "# 観測したxのLossを計算\n", + "total_loss.eval({'x': observed_x})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "以上のようにPixyz Loss API同士の四則演算で柔軟にLossが定義でき,数式から実装までが直感的に行えることが確認できた" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Loss API(ELBO)\n", + "Pixyz Loss APIでは以下のようなLossについても実装がある\n", + "\n", + "周辺尤度下界 ELBO: https://docs.pixyz.io/en/latest/losses.html#lower-bound" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Next Tutorial\n", + "ModelAPITutorial.ipynb" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/tutorial/Japanese/03-ModelAPITutorial.ipynb b/tutorial/Japanese/03-ModelAPITutorial.ipynb new file mode 100644 index 00000000..eb15faa3 --- /dev/null +++ b/tutorial/Japanese/03-ModelAPITutorial.ipynb @@ -0,0 +1,554 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 深層生成モデルの学習方法は目的関数を定義して勾配降下法で学習\n", + "- 深層生成モデルでは,既存のようなサンプリング等によっての学習は行わない\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 目的関数と最適化アルゴリズムが独立に設定できる枠組み(Model API)\n", + "- Model API document: https://docs.pixyz.io/en/v0.0.4/models.html \n", + "\n", + "ここでは定義した確率分布と目的関数を受け取り,モデルの学習を行う流れを確認する" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "import torch.utils.data\n", + "from torch import nn, optim\n", + "from torch.nn import functional as F\n", + "import torchvision\n", + "from torchvision import datasets, transforms\n", + "\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"\n", + "\n", + "batch_size = 256\n", + "seed = 1\n", + "torch.manual_seed(seed)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# MNIST datasetの準備\n", + "root = '../data'\n", + "transform = transforms.Compose([transforms.ToTensor(),\n", + " transforms.Lambda(lambd=lambda x: x.view(-1))])\n", + "kwargs = {'batch_size': batch_size, 'num_workers': 1, 'pin_memory': True}\n", + "\n", + "train_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=True, transform=transform, download=True),\n", + " shuffle=True, **kwargs)\n", + "test_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST(root=root, train=False, transform=transform),\n", + " shuffle=False, **kwargs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 確率分布の定義" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "\n", + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "gen_ber_x__z = Generator().to(device)\n", + "infer_nor_z__x = Inference().to(device)\n", + "\n", + "prior_nor_z = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lossの定義" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lossの定義\n", + "from pixyz.losses import LogProb\n", + "from pixyz.losses import StochasticReconstructionLoss\n", + "from pixyz.losses import Expectation as E\n", + "from pixyz.losses import KullbackLeibler\n", + "from pixyz.utils import print_latex\n", + "\n", + "# 対数尤度\n", + "logprob_gen_x__z = LogProb(gen_ber_x__z)\n", + "\n", + "# 期待値E\n", + "E_infer_z__x_logprob_gen_x__z = E(infer_nor_z__x, logprob_gen_x__z)\n", + "\n", + "# KLダイバージェンス\n", + "KL_infer_nor_z__x_prior_nor_z = KullbackLeibler(infer_nor_z__x, prior_nor_z)\n", + "\n", + "# Lossの引き算\n", + "total_loss = KL_infer_nor_z__x_prior_nor_z - E_infer_z__x_logprob_gen_x__z\n", + "\n", + "# Lossのmean\n", + "total_loss = total_loss.mean()\n", + "\n", + "\n", + "# Lossの確認\n", + "print_latex(total_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ModelAPIに確率分布とLossを渡し,最適化アルゴリズムを設定する" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "pixyz.modelsのModelを呼び出して使用\n", + "主な引数はloss, distributions, optimizer, optimzer_paramsで,それぞれには以下のように格納します\n", + "- loss: pixyz.lossesを使用して定義した目的関数のLossを格納\n", + "- distributions: pixyz.distributionを使用して定義した,学習を行う確率分布を格納\n", + "- optimizer, optimizer_params: 最適化アルゴリズム,そのパラメータを格納 \n", + "\n", + "For more details about Model: https://docs.pixyz.io/en/v0.0.4/_modules/pixyz/models/model.html#Model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.models import Model\n", + "from torch import optim\n", + "\n", + "optimizer = optim.Adam\n", + "optimizer_params = {'lr': 1e-3}\n", + "\n", + "vae_model = Model(loss=total_loss, \n", + " distributions=[gen_ber_x__z, infer_nor_z__x],\n", + " optimizer=optimizer,\n", + " optimizer_params=optimizer_params\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "以上でModelの定義が完了した \n", + "目的関数の設定と,最適化アルゴリズムの設定が独立に行えたことを確認できた \n", + "次に実際にtrainメソッドについて確認し実際に学習を行う \n", + "Model Classのtrainメソッドでは以下の処理を行なっている \n", + "source code: https://docs.pixyz.io/en/v0.0.4/_modules/pixyz/models/model.html#Model.train\n", + "1. 観測データであるxを受け取り(.train({\"x\": x}))\n", + "2. Lossを計算し\n", + "3. 1stepパラメーターの更新を行い\n", + "4. Lossを出力 " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "def train(self, train_x={}, **kwargs):\n", + " self.distributions.train()\n", + "\n", + " self.optimizer.zero_grad()\n", + " loss = self.loss_cls.estimate(train_x, **kwargs)\n", + "\n", + " # backprop\n", + " loss.backward()\n", + "\n", + " # update params\n", + " self.optimizer.step()\n", + "\n", + " return loss\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 学習を行う" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0, Loss 199.60440063476562 \n", + "Epoch 1, Loss 147.97647094726562 \n", + "Epoch 2, Loss 128.66696166992188 \n" + ] + } + ], + "source": [ + "epoch_loss = []\n", + "for epoch in range(3):\n", + " train_loss = 0\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = vae_model.train({\"x\": x})\n", + " train_loss += loss\n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch {}, Loss {} '.format(epoch, train_loss))\n", + " epoch_loss.append(train_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "以上で学習を行えることを確認した \n", + "Pixyzでは高度なModelAPIとしてVAE, GAN Modelを用意しており,ただ入力データの変更やDNNのネットワークアーキテクチャーを変更したいだけの場合は高度なModel APIを使用することで簡単に実装することができる" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 高度なModel APIの使用\n", + "高度なModel APIを使用すると,簡単にモデルを定義することができる\n", + "必要となる実装は \n", + "- 確率分布の定義\n", + "- (追加的な目的関数の設定)\n", + "- 最適化アルゴリズムの選択 \n", + "\n", + "である, ここではVAEモデルを例に高度なModel APIを使用して実装する流れを確認する" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pixyz.distributions import Normal, Bernoulli\n", + "from pixyz.losses import KullbackLeibler\n", + "# 高度なModel API VAE\n", + "from pixyz.models import VAE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 確率分布の定義" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x_dim = 784\n", + "z_dim = 64\n", + "\n", + "\n", + "# inference model q(z|x)\n", + "class Inference(Normal):\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + "\n", + " self.fc1 = nn.Linear(x_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc31 = nn.Linear(512, z_dim)\n", + " self.fc32 = nn.Linear(512, z_dim)\n", + "\n", + " def forward(self, x):\n", + " h = F.relu(self.fc1(x))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"loc\": self.fc31(h), \"scale\": F.softplus(self.fc32(h))}\n", + "\n", + " \n", + "# generative model p(x|z) \n", + "class Generator(Bernoulli):\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + "\n", + " self.fc1 = nn.Linear(z_dim, 512)\n", + " self.fc2 = nn.Linear(512, 512)\n", + " self.fc3 = nn.Linear(512, x_dim)\n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " return {\"probs\": torch.sigmoid(self.fc3(h))}\n", + " \n", + "p = Generator().to(device)\n", + "q = Inference().to(device)\n", + "\n", + "prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n", + " var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 目的関数の正則化項の設定" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kl = KullbackLeibler(q, prior)\n", + "print_latex(kl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### VAE modelの使用・最適化アルゴリズムの設定" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = VAE(encoder=q, decoder=p, regularizer=kl, \n", + " optimizer=optim.Adam, optimizer_params={\"lr\":1e-3})\n", + "print_latex(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 学習" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def train(epoch):\n", + " train_loss = 0\n", + " for x, _ in train_loader:\n", + " x = x.to(device)\n", + " loss = model.train({\"x\": x})\n", + " train_loss += loss\n", + " \n", + " train_loss = train_loss * train_loader.batch_size / len(train_loader.dataset)\n", + " print('Epoch: {} Train loss: {:.4f}'.format(epoch, train_loss))\n", + " return train_loss" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 Train loss: 201.2876\n", + "Epoch: 2 Train loss: 147.1453\n", + "Epoch: 3 Train loss: 128.1311\n" + ] + } + ], + "source": [ + "epochs = 3\n", + "train_losses = []\n", + "for epoch in range(1, epochs + 1):\n", + " train_loss = train(epoch)\n", + " train_losses.append(train_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more higher model API\n", + "- Pre-implementation models: https://docs.pixyz.io/en/v0.0.4/models.html#pre-implementation-models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pixyzの実用例\n", + "さらに複雑なモデルの実装例は以下のリンクにある\n", + "- Pixyz examples: https://github.com/masa-su/pixyz/tree/master/examples\n", + "- Pixyzoo: https://github.com/masa-su/pixyzoo\n", + "\n", + "\n", + "1. Distribution APIで柔軟にニューラルネットワークを用いた確率分布を定義\n", + "1. Loss APIではDistribution APIで定義した確率分布をもとに, Lossの設計を行う\n", + "1. Model APIではLoss APIで定義した目的関数と, 学習する確率分布を受け取り,最適化アルゴリズムを設定\n", + "1. Model APIで定義したモデルで学習を行う\n", + "\n", + "という基本的な実装の流れはどのモデルでも変わらない" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 2afa4be4837be1bbb5a4e03c19416dd44fc0ed57 Mon Sep 17 00:00:00 2001 From: kenoharada Date: Tue, 12 Nov 2019 15:42:07 +0900 Subject: [PATCH 2/9] add imgs (cherry picked from commit 702d750164efd9ccd219de7836fce94e79c3959e) --- tutorial/tutorial_figs/.DS_Store | Bin 0 -> 6148 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 tutorial/tutorial_figs/.DS_Store diff --git a/tutorial/tutorial_figs/.DS_Store b/tutorial/tutorial_figs/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0 Date: Tue, 29 Sep 2020 17:55:13 +0900 Subject: [PATCH 3/9] fix errors with v0.2.1 (cherry picked from commit af7eee2db707c74320d5479e863d792a1628a89a) --- tutorial/English/00-PixyzOverview.ipynb | 319 ++++++++--------- .../English/01-DistributionAPITutorial.ipynb | 57 ++-- tutorial/English/02-LossAPITutorial.ipynb | 62 ++-- tutorial/English/03-ModelAPITutorial.ipynb | 49 +-- tutorial/Japanese/00-PixyzOverview.ipynb | 323 +++++++++--------- .../Japanese/01-DistributionAPITutorial.ipynb | 57 ++-- tutorial/Japanese/02-LossAPITutorial.ipynb | 62 ++-- tutorial/Japanese/03-ModelAPITutorial.ipynb | 45 +-- 8 files changed, 417 insertions(+), 557 deletions(-) diff --git a/tutorial/English/00-PixyzOverview.ipynb b/tutorial/English/00-PixyzOverview.ipynb index 22a69569..af603c12 100644 --- a/tutorial/English/00-PixyzOverview.ipynb +++ b/tutorial/English/00-PixyzOverview.ipynb @@ -16,9 +16,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", @@ -76,9 +74,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -119,7 +115,7 @@ { "data": { "text/latex": [ - "$$p_{prior}(z)$$" + "$\\displaystyle p_{prior}(z)$" ], "text/plain": [ "" @@ -154,9 +150,7 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -177,7 +171,7 @@ { "data": { "text/latex": [ - "$$p(x|z)$$" + "$\\displaystyle p(x|z)$" ], "text/plain": [ "" @@ -246,7 +240,7 @@ { "data": { "text/latex": [ - "$$q(z|x)$$" + "$\\displaystyle q(z|x)$" ], "text/plain": [ "" @@ -298,22 +292,21 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'z': tensor([[-0.0793, -0.9152, 0.1006, 2.4046, 1.1672, -0.8844, 0.4509, 0.5644,\n", - " -2.7172, 0.3097, 0.2030, -1.0954, 0.9580, 0.8032, -0.5685, 1.7160,\n", - " -0.1979, 0.3951, 0.2540, 1.8251, -1.3828, 0.7412, -0.5756, 0.6962,\n", - " 1.0955, -1.9348, 0.1558, -0.5434, -0.9098, -1.1355, 0.9925, 0.6114,\n", - " -0.0540, -0.0136, -1.3015, -0.4915, -0.2812, -1.6446, 0.3039, -1.2809,\n", - " -2.1485, -0.9738, -0.8703, 2.3055, -1.2834, -0.2770, -1.4089, 0.4758,\n", - " -0.3055, 0.4635, 0.0540, -0.0313, 0.4885, 1.0413, 1.0236, -0.5271,\n", - " -0.7329, -0.1852, -0.8231, -0.6148, 2.2130, -1.7938, -0.9596, -0.8830]])}\n", + "{'z': tensor([[-0.5438, 0.5853, 0.9415, 1.0591, 1.4031, -0.0520, 0.7588, -1.3387,\n", + " 0.4586, 0.2402, 0.6899, -1.4430, 0.8306, 1.6975, 0.3532, -0.3980,\n", + " -1.5879, 0.8015, -0.7279, 1.2902, 0.6434, -0.4299, -0.0147, -0.7769,\n", + " -0.2355, 0.8801, -0.8768, -0.0911, -0.8140, -0.2988, -0.5511, -0.1526,\n", + " -0.1219, -0.3171, -0.2924, 0.3731, 1.8659, 1.3274, 2.4092, -0.4386,\n", + " 0.4175, -0.9096, 0.4095, 2.1348, 0.2795, 0.4564, -2.5351, 1.5394,\n", + " -1.2816, 0.4562, 0.5690, -0.8027, -0.4947, -0.7010, -1.6218, -0.7865,\n", + " -0.4135, -0.4891, 0.0258, -0.3843, 0.8516, -0.1511, -0.0327, -0.9058]],\n", + " device='cuda:0')}\n", "dict_keys(['z'])\n", "torch.Size([1, 64])\n" ] @@ -346,9 +339,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -375,7 +366,7 @@ { "data": { "text/latex": [ - "$$p(x,z) = p(x|z)p_{prior}(z)$$" + "$\\displaystyle p(x,z) = p(x|z)p_{prior}(z)$" ], "text/plain": [ "" @@ -409,65 +400,64 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'z': tensor([[-0.1223, -0.7952, -1.5082, 0.2743, 1.0154, 1.0190, -0.9267, -1.2706,\n", - " -0.5565, -0.9500, -1.1071, -0.1628, -0.4641, -0.9795, 0.1824, -0.6085,\n", - " 0.5960, 0.4666, 0.2054, 0.0149, 2.3665, 1.7195, 0.4662, -0.0642,\n", - " 0.0346, 1.2188, 1.7331, 1.9351, -0.5736, -0.0196, -1.0657, 2.4684,\n", - " -0.1254, 0.3703, -0.2453, 0.1580, -1.1285, 1.0896, 0.9853, 0.6588,\n", - " -0.6115, 1.5389, -1.0540, -0.2859, 1.0015, -0.8060, 2.3306, -0.1804,\n", - " 1.2932, 0.5674, -0.5561, 1.6523, -1.0349, 0.2626, 0.6601, -0.5224,\n", - " -0.6514, 0.8797, 1.0358, -0.3693, -1.4086, 1.5572, 0.8814, -0.5434]]), 'x': tensor([[0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 1., 0.,\n", - " 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1.,\n", - " 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1.,\n", - " 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,\n", - " 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0.,\n", - " 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.,\n", - " 1., 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1.,\n", - " 1., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1.,\n", - " 1., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0.,\n", - " 1., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 1.,\n", - " 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1.,\n", - " 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0.,\n", - " 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1.,\n", - " 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 0.,\n", - " 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1.,\n", - " 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 0., 1., 0.,\n", - " 1., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0., 0., 1., 0.,\n", - " 1., 0., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 0.,\n", - " 0., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 1., 0., 1.,\n", - " 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 1., 1.,\n", - " 0., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", - " 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0., 0., 0.,\n", - " 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 1., 1.,\n", - " 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0., 0.,\n", - " 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0.,\n", - " 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1.,\n", - " 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 1.,\n", - " 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1.,\n", - " 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1., 1., 1., 1., 0.,\n", - " 1., 0., 1., 1., 0., 0., 1., 1., 1., 0., 0., 1., 0., 1., 1., 0., 1., 1.,\n", - " 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0.,\n", - " 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0.,\n", - " 1., 0., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 1., 0.,\n", - " 1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", - " 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1.,\n", - " 1., 0., 0., 1., 0., 0., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0., 1., 1.,\n", - " 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 0., 0., 1.,\n", - " 1., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0.,\n", - " 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 0.,\n", - " 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.,\n", - " 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1.,\n", - " 1., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0.,\n", - " 1., 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 0., 0.,\n", - " 1., 0., 0., 1., 1., 1., 0., 0., 1., 0.]])}\n", + "{'z': tensor([[ 0.1798, -0.2534, 1.9239, 0.7444, -0.2541, -0.5951, 1.1151, 0.4059,\n", + " 0.5807, -0.8940, -0.7727, 0.1663, -0.0572, 2.3262, 2.4288, 1.1539,\n", + " -1.7565, -0.0071, -0.7027, 0.9958, -0.5287, -1.2675, 0.7315, 0.6763,\n", + " 0.2179, 0.6958, 0.2657, 0.2117, -1.2440, -0.1694, 0.9022, -1.0702,\n", + " -0.3973, 0.7750, -1.2522, 0.2898, 0.3006, 0.7156, -0.0205, -0.2505,\n", + " -1.0893, -1.0576, -1.1959, -0.3639, -0.5362, 0.7473, 0.0541, 2.0923,\n", + " -0.4051, 0.8123, 1.8256, 0.5847, 1.4084, -0.3716, -1.0299, 1.4635,\n", + " -0.0438, -0.0964, 0.4627, -1.2500, -2.2660, -0.3602, 1.6857, -0.4131]],\n", + " device='cuda:0'), 'x': tensor([[1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1., 1., 0., 1.,\n", + " 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.,\n", + " 0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0.,\n", + " 1., 1., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 0., 1., 1.,\n", + " 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 0.,\n", + " 1., 0., 1., 1., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1.,\n", + " 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0.,\n", + " 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 0.,\n", + " 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.,\n", + " 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1., 0.,\n", + " 0., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1.,\n", + " 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 0., 1.,\n", + " 1., 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0.,\n", + " 1., 0., 1., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0.,\n", + " 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0.,\n", + " 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 0.,\n", + " 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1.,\n", + " 1., 1., 0., 1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0., 0.,\n", + " 1., 1., 0., 0., 1., 0., 0., 0., 1., 1., 0., 1., 1., 1., 1., 0., 1., 0.,\n", + " 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0.,\n", + " 1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1.,\n", + " 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0.,\n", + " 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0.,\n", + " 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 0., 1., 0., 0., 1., 1., 1., 0.,\n", + " 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 1., 0., 1., 0., 0., 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 1.,\n", + " 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1.,\n", + " 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 0.,\n", + " 1., 0., 1., 1., 0., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 1., 1., 1.,\n", + " 0., 0., 1., 1., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 0., 0., 1.,\n", + " 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0.,\n", + " 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1.,\n", + " 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1.,\n", + " 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0., 1., 1.,\n", + " 1., 1., 1., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1.,\n", + " 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0.,\n", + " 0., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 1., 0., 1., 1., 0., 0., 0.,\n", + " 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1.,\n", + " 0., 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1., 1., 0., 1.,\n", + " 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 1., 1., 1., 0., 0., 1., 0.,\n", + " 1., 0., 1., 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0.,\n", + " 0., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0.,\n", + " 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1., 1., 1., 0., 1.,\n", + " 1., 0., 0., 1., 0., 0., 1., 0., 1., 1.]], device='cuda:0')}\n", "dict_keys(['z', 'x'])\n", "torch.Size([1, 784])\n", "torch.Size([1, 64])\n" @@ -536,7 +526,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$" ], "text/plain": [ "" @@ -556,14 +546,12 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$$- \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + "$\\displaystyle - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$" ], "text/plain": [ "" @@ -575,8 +563,7 @@ } ], "source": [ - "from pixyz.losses import StochasticReconstructionLoss\n", - "reconst = StochasticReconstructionLoss(q, p)\n", + "reconst = -p.log_prob().expectation(q)\n", "print_latex(reconst)" ] }, @@ -590,14 +577,12 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -629,7 +614,7 @@ { "data": { "text/plain": [ - "tensor(552.4176, grad_fn=)" + "tensor(550.8093, device='cuda:0', grad_fn=)" ] }, "execution_count": 12, @@ -639,7 +624,7 @@ ], "source": [ "# dummy_x for data\n", - "dummy_x = torch.randn([4, 784])\n", + "dummy_x = torch.randn([4, 784]).to(device)\n", "vae_loss.eval({\"x\": dummy_x})" ] }, @@ -663,19 +648,17 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Distributions (for training): \n", - " p(x|z), q(z|x) \n", - "Loss function: \n", - " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", - "Optimizer: \n", + "Distributions (for training):\n", + " p(x|z), q(z|x)\n", + "Loss function:\n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)\n", + "Optimizer:\n", " Adam (\n", " Parameter Group 0\n", " amsgrad: False\n", @@ -689,7 +672,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -711,9 +694,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "dummy_x = torch.randn([10, 784])\n", @@ -727,24 +708,22 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 0 Train Loss: 553.467834\n", - "Epoch: 1 Train Loss: 530.487000\n", - "Epoch: 2 Train Loss: 497.285400\n", - "Epoch: 3 Train Loss: 430.598633\n", - "Epoch: 4 Train Loss: 332.429138\n", - "Epoch: 5 Train Loss: 184.822174\n", - "Epoch: 6 Train Loss: 60.313366\n", - "Epoch: 7 Train Loss: -86.165878\n", - "Epoch: 8 Train Loss: -318.059052\n", - "Epoch: 9 Train Loss: -598.574402\n" + "Epoch: 0 Train Loss: 554.029114\n", + "Epoch: 1 Train Loss: 530.868591\n", + "Epoch: 2 Train Loss: 499.061432\n", + "Epoch: 3 Train Loss: 442.698639\n", + "Epoch: 4 Train Loss: 340.971588\n", + "Epoch: 5 Train Loss: 176.686768\n", + "Epoch: 6 Train Loss: 26.550779\n", + "Epoch: 7 Train Loss: -125.541313\n", + "Epoch: 8 Train Loss: -347.148285\n", + "Epoch: 9 Train Loss: -607.047791\n" ] } ], @@ -778,9 +757,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", @@ -845,9 +822,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -866,9 +841,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 784\n", @@ -935,7 +908,7 @@ { "data": { "text/latex": [ - "$$p_{prior}(z)$$" + "$\\displaystyle p_{prior}(z)$" ], "text/plain": [ "" @@ -975,7 +948,7 @@ { "data": { "text/latex": [ - "$$p(x|z)$$" + "$\\displaystyle p(x|z)$" ], "text/plain": [ "" @@ -1016,7 +989,7 @@ { "data": { "text/latex": [ - "$$q(z|x)$$" + "$\\displaystyle q(z|x)$" ], "text/plain": [ "" @@ -1047,7 +1020,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -1060,7 +1033,7 @@ ], "source": [ "kl = KullbackLeibler(q, prior)\n", - "reconst = StochasticReconstructionLoss(q, p)\n", + "reconst = -p.log_prob().expectation(q)\n", "vae_loss = (kl + reconst).mean()\n", "print_latex(vae_loss)" ] @@ -1081,11 +1054,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "Distributions (for training): \n", - " p(x|z), q(z|x) \n", - "Loss function: \n", - " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", - "Optimizer: \n", + "Distributions (for training):\n", + " p(x|z), q(z|x)\n", + "Loss function:\n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)\n", + "Optimizer:\n", " Adam (\n", " Parameter Group 0\n", " amsgrad: False\n", @@ -1099,7 +1072,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -1120,9 +1093,7 @@ { "cell_type": "code", "execution_count": 25, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def train(epoch):\n", @@ -1160,9 +1131,7 @@ { "cell_type": "code", "execution_count": 26, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def plot_reconstrunction(x):\n", @@ -1184,9 +1153,7 @@ { "cell_type": "code", "execution_count": 27, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def plot_image_from_latent(z_sample):\n", @@ -1198,9 +1165,7 @@ { "cell_type": "code", "execution_count": 28, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# functions to show an image\n", @@ -1219,20 +1184,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 1 Train loss: 199.5469\n", - "Test loss: 166.5198\n", + "Epoch: 1 Train loss: 201.0661\n", + "Test loss: 172.5077\n", "Epoch: 1\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4m9WV/79XkiVLtiXvsR1vibOT\nnSQwSZMAoRCWBChhK+2PKX1gmEKGGX60BNpSupDOMFO6MASe9NewZHggKVmgTNgKZDotgZAQQxI7\nm504drzEq2RLsmRJ9/fH63tyX9nGsq3Fce7ned7HlvS+eo/ue++555577rmMcw6FQqFQnP8YEi2A\nQqFQKKKDUugKhUIxRlAKXaFQKMYISqErFArFGEEpdIVCoRgjKIWuUCgUY4QRKXTG2ErG2FHG2AnG\n2LpoCaVQKBSKocOGG4fOGDMCOAbg6wDqAHwG4A7OeUX0xFMoFApFpIzEQl8E4ATnvJpz7gfwGoAb\noiOWQqFQKIaKaQTXjgdQK72uA3DJV13AGFPLUhUKhWLotHDOcwY7aSQKPSIYY/cCuDfW91EoFIox\nTE0kJ41EoZ8BUCS9Lux9TwfnfCOAjYCy0BUKhSKWjMSH/hmAyYyxCYwxM4DbAbwZHbEUCoVCMVSG\nbaFzzgOMsQcAvAvACGAT5/xw1CRTKBQKxZAYdtjisG6mXC4KhUIxHPZzzhcMdpJaKapQKBRjhJhH\nuVyIPPzwwwAAq9WK2bNnY82aNfTZc889hz179gAANm/enBD5FArFGIVzHrcDAB/rx5YtW3gwGPzK\n49ixY/zYsWO8uLg44fJ+1TFlyhQeCoV4KBTia9euTbg8KSkpfMOGDXzDhg08GAzyvXv38r179/KS\nkpKEy6YOdcT42BeJjlUuF4VCoRgjKJdLlNiyZQsA6NwrAHDkyBG8++67AICJEydi1apVKCsrAwB8\n61vfwvr16+Mr6BCYN28eQqEQAODMmT5LDOJOQUEB7rnnHgBAKBTCxRdfDAC4/vrr8eyzzyZSNMyf\nPx/bt29HaWlpROdfddVVAIDKykrU1tYOcnb8WLVqFd544w2sXbsWAPD8888jGAzG5d65ubkAgK1b\nt+Ljjz8GAGzcuBGnTp2K+DscDgeWLVsGAHjnnXfQ09MTdTlHM0qhR4EFCxbgpptuoteHD2vRm6tX\nr0ZLSwu6uroAAGazGZ988gnmzJkDAMjMzIy/sENg7ty5cLvdAIDt27cnVJacnBy8+OKLCZXhq7j6\n6qthsVgiPn/16tUAgLvvvhu33357rMSKmKysLADAhg0bAADPPPMMAGDTpk3wer0xv39GRga1G4fD\ngaamJgAYsjLfv38/cnK0FfILFizA8ePHoy6rjN1uxy9/+UvMnDkTAHDllVcmtBMZtQp9zZo1ZI3V\n19eju7sbAPDKK6+gsbERJ06cSKR4OvLz88EYA6Ap86uvvhoA0NDQoDvv4YcfxowZM+j1f//3f8dP\nyCEya9YsrF27Fi+//HJC5finf/onAMCNN96IRYsW9XvOsmXLYDAY8MUXXwAA/vKXv8RNPpNJa0LX\nXnvtkK7bt28fAOChhx5CSkoKdZyJQli148ePBwC8+uqrAEDtLpZkZ2djy5YtZOBs2LCBRghD4Uc/\n+hEmTJiAf/iHfwCAmCrzO++8EwDw5JNPoqjo3IJ5u92O1tbWmN13MJQPXaFQKMYIo3ZhUXV19YD+\nyM7OThqeRUJdXR0A4KmnniLLKNqUlJSQbG1tbf2e88UXX9DQDNCGZx999FFM5Bkpa9aswdatW3H5\n5ZcDAP7nf/4nIXII/63w5csYDAbdZzU1Wv6i2267Dfv374+LfF//+tcBAG+//TaeeuopPPbYYxFd\n99BDDwHQ6mR+fj6am5tjJuNgWCwW/PWvfwUAmpe47rrrAGi/K9ZcddVVuvvk5eUNqTwuuugiAMDB\ngwexY8cO/P3f/z0ArS3GgsLCQhw4cACA5qqSdeiWLVvwwAMPAMCAemCYRLSwaNS6XO655x7yNVdU\nVJCrYt68ebjssstw6aWXAgBqa2t1Qx4ACAQCAIDm5mbk5+fT+6dPn46ZQhfKpD++//3vAwCmTJkC\nAPj00091f0cjP/jBD1BTUxOz8oqEXbt2kdLuDzG07erqQklJCSZMmAAA2Lt3L4xGY8zlmzVrFrkm\nqqqqhjTBLXzoo4HZs2eTIge09hMPRS4mQW+++WYAwHe/+10AGLIy//Of/0yvd+zYETNFLnj44YcH\nnP+67bbbsHLlSgCaO+aZZ56B3++PqTwyyuWiUCgUY4XzcWFRRkYGv+KKK/gVV1zB7XY7X7Fihe5Y\nsmQJX7JkCc/JyeEtLS20OOZ73/te3BcEXH/99dzr9XKv18uDwSBvaGjgy5cv58uXL0/0QoV+j9LS\nUl5aWspDoRA/cuRIQmQQ5VNVVUWLsXp6enTHM888w1etWsVXrVrFly1bxp944gnd5//4j/8Yczlf\ne+01erYLFy6M+LrMzEwuCAaDPCcnJ6HPfP369dRGQqEQf+utt+Jy382bN/PNmzdzzjnft28fT0lJ\n4SkpKUP6jvvuu4/k3rRpU8xlLikp4U6nk+pleXk5f/fdd/tdQNjQ0MDz8vKide+IFhaNWpfLV9He\n3o4PP/yQXn/wwQf9nnfzzTcjIyMDBw8eBAC89tprcZFPZsGCBTCbzfR6y5YtCfNHR8Ly5cvp/0T4\ndUtLS+k5ZWdn6z6rqanBtm3bAAA//elP4fF4dJ/de6+2j0pOTg6eeuopJCcnAwD+8z//M+qhZGvW\nrMG1115L0VafffZZxNf+8Ic/JL//7t270dHREVXZhoqIcAEAv9+PH/3oR3G5r/A9h0Ih1NfXR+ya\nsFqtNFfxve99j77n7rvvjo2gEnPnzkVaWhr+93//F4DWXpKTk/HNb34TAPDoo4/SOpO8vDy88cYb\nuOaaawBE3afeL+elQh8M4ZvbsGEDDAYDfvaznwGIT4HK7Ny5kxaQAMDLL78ct8YyXGbNmkX/P/XU\nU3G/f1JSUh9FDmiTsrfffjtaWlr6va6mpga//OUvAQBPP/00bDYbyf/mm2+iqqoqqnLecsstsNls\neO655yK+Rkzy33nnnTTZ++STTyYsbnnx4sW6vwDgdrtRXl4ed1muu+46vPfeewCAjo6OAct1+fLl\nujk0AHj99dfjIiOgTSBzzvHrX/+a3uvu7samTZsAaB39xIkT6TOPx6N86AqFQqEYOmPSQr///vsB\naEPv9vZ2HD16NK73F5E1ixcvhsViIavyF7/4Ba0aHY383d/9Hb7zne8AAA4cOID3338/wRKdW4Bz\n9913D2idC958U9sw684778TChQtjIo/D4QAAshDFyspIEC6h7OxsVFZWAoDOdRhv+iujoYw4Rspv\nf/tbAMAVV1yB/Px8cv0wxgaMAmKM6cIEq6urIw4VjQZ33HEHgHNhnTt37tR9vmCBPrLwk08+iWub\nH3MKfcmSJVi3bh29vvHGG3Ho0KG4yiD8vGI59X/9138BQNSH/dFmxYoVFI71zjvvxGWVYH/IoYqX\nXHJJxNeJ1boGg0H3HT/96U/xrW99KyqyieX948ePH/KcjPCtAoh7newPWfkIP/7zzz8ft/uLtQKz\nZs3C3LlzKdzv+9//Ps3fvPTSS7prNm/eTCuCAeDjjz+Oa7t69dVXsXr1auoMp02bhlmzZlHqj4yM\nDCrLjIwM3HPPPZQmu6KiIubyKZeLQqFQjBXOx7DFrzqefPJJCmN6//33eVJSUlxCsMSxevVq3t3d\nzbu7u3kwGOQffPABT01N5ampqXGVYzjHH//4Ryq7m266KSEy/Md//Icu/HAo165du5avXbuW9/T0\n6EIdy8rKoiaf1WrlVquV79u3j3/xxRc8MzOTZ2ZmDnpdbm6uLqTt/vvv5/fff3/CnvXXvvY1HggE\neCAQ4KFQiJ88eZKfPHky4XVwsGPixIk8FArxzz//nH/++edxD/nMzMzkbW1t9BxDoZDuub777rt8\n0qRJfNKkSfzIkSM8GAzy559/nj///PMjvXd0whYZY0UAXgYwrveLN3LOf8sYywSwBUApgFMAbuWc\ntw/2fbHEarVi5cqVNKv8k5/8JG4RBMK98thjjyEpKYneLy8vH9V+c0ALrwKApUuX0nzDjh07EiLL\nqlWrhnxNTk4OZsyY0ceXKobt0awDIvNgVVUVbr75Zkqw9vTTT/c5V6R5KCsrQ0lJic73G8+UG/2R\nlZWlc0uNhvmSSHj88cfBOccjjzwCIP6htW1tbbj11lspskbMqYjslI888gi5Krdv345169ZRsr6y\nsrLYu4cisKrzAczv/T8NwDEAMwA8BWBd7/vrAPxboi30xx9/nIdCIb5r1y6+a9euuPbc69ev5+vX\nr9f11tu2bTsvLPN169bxdevW8VAoxF944QX+wgsvJEyWo0ePDtlC/81vftNn4VFVVRVfunQpX7p0\naUzknD59Ot+6dSt3u93c7XaTtSsfjY2NvLGxkTc0NPCenh7dZ8LST1Q5b968mUZjbW1tfOHChUNa\nHBXv45ZbbuG33HILD4VC3Ol08vnz5/P58+cnTJ4rr7ySX3nllXzTpk386aef7ncUbrVa+Y4dO0gf\nvPTSSyO5Z3R2LOKcN3DOP+/9vxNAJYDxAG4AIGYsXgJw42DfpVAoFIrYMaQoF8ZYKYB5AD4FMI5z\nLhJ+N0JzyfR3zb0A7h2+iIMjQoh+/OMfw+Vy4ec//3ksb9cvInuezAMPPDDq3S3AuUyRgLYK93xh\n165dAICpU6f2+ayyspJW88WCyspK3HrrrZg3bx4AfQSLQF7w8tJLL1EObQBx2TRiIAoLCyn8DtCy\nkQ5lpWsiEKstAeCtt97C559/nkBpQAnB5MRg4Xi9XmzZsoVCMC+//HKKIovVIseIFTpjLBXANgD/\nzDl3iRAxAOCc84FS43LONwLY2Psd/Z4zErKysvC73/0OAGA0GrFr1y7s2bMn2rcZFpmZmf36b51O\nJwDNtyv87cIXl5GRAQD4l3/5F901wWCQ/IbykvdoIPut33rrrah+91BhjOl8u3JD/v3vf6/Lnhme\nPlfm+uuvj6GU5xBpVMXfgaiurta9FityRVqKeLJ48WJdGb/xxhtxl2GoiHrg8Xjwq1/9KsHSRM7W\nrVtJod92222UWlesXo82EYUtMsaSoCnzVzjnYi+yJsZYfu/n+QDOxkRChUKhUEREJFEuDMAfAFRy\nzuWp/DcB3AXgX3v/xrWbF/mu33nnHcqDXVVVhR//+MfxFOMr+fLLL/t9/49//CMAbYu6ceM0T9Vt\nt9026Pc1NjYC0PJ/RIulS5eSDKOB5557TpdDRowYhBXenzUe/l48F8dECmMM8qg2EZa5QERkiZW3\nYsXmaOW+++6jOnr27NmEu1uGQigUovp8ww034Cc/+QkALVHgsWPHon6/SFwuSwB8G8BBxpjI2vMY\nNEW+lTH2XQA1AG6NunRfgfBZyon5H3rooYStxhT+3BtuuGHQc2+55ZZ+3w8EAjrlJJayi+XvYleZ\naHLjjTdS53jgwIGEZ4Lcvn07bQgiNvsdjObmZlRWVtLS+vC9XEcDUqRXwhEJ406fPg3gnAtwtHLf\nffdR2Ykw0bS0NACai1L8jtGKSHb2+OOP49///d8BAOvXr8e3v/3tqM+lDKrQOed/BcAG+HhFVKWJ\nkJKSEsrMBpzbESiR/t9vfOMbALSdfuQ4dODcFlnhVvimTZt0u5pv376dcnzEA5vNptvc+PXXX6cs\ngImipqYGt99+OwCts3nwwQcHvebJJ5/Es88+G2vRRoRI5QvEZ+Pl/hD1ctKkSTo5ErlL/VAJBoO4\n8847aY7p8OHDuOuuuxIsVWS8/PLLtIH1N77xDfzsZz8bcBQ/XNTSf4VCoRgrnI9L/+Xl/aFQiC9Y\nsIAvWLAg4YsfzrcjKSmJf/zxx3znzp18586d3GazJVym8GPlypV85cqVfPv27bynp4dv27aNb9u2\njV999dX0WXFxccLlHOxobGzkLS0tvKWlhT/44IMJkcFoNHKj0cg3bdrEQ6EQf/HFF/mLL76Y8LIZ\n7CgvL++z1H7jxo1848aNvKioKOHyDeUoLi7mxcXFPBQK8VdeeWUo10a0sOi8U+hLly7lLpdLKXR1\nnFfHn/70J9o2MdGyFBQU8D/84Q8JzycT6bF06VL+4Ycf8g8//JA/8cQTfNy4cdxsNnOz2Zxw2YZ7\nvPfee7yrq4vPmDGDz5gxI5JrxqZCf/TRR3XK/Pjx43zatGl82rRpCX9I6lCHOtQRyWG32/nJkyf5\n6tWr+erVqyO5JjpL/xUKhUJxfnDebnAhktyvWLEi7nuFKhQKxUhwuVy0fiaasHjGxsZi6b9CoVBc\nAOznnC8Y7CTlclEoFIoxglLoCoVCMUZQCl2hUCjGCEqhKxQKxRhBKXSFQqEYIyiFrlAoFGOE8zYO\nXcAYGzVpSQfCZNKKmTGmy2Yop8o9H35HojEYDJS10GKxwOfzAdDKMRgM6nKmx7ssRa5zsRNQUlIS\nZTFMhDznO6I8RR558WxHWzmKHbZEvWSMUb0UbV3IHA/ZlYWuUCgUY4Tz3kIfbT22wWAgK81oNMJk\nMsFisQDQem+TyUQbR/v9fp2VLv+W/nbmuRCRLTWTyQSr1QpA2+AgEAgA0PJ5d3V1kUUUDAbBOf/K\nXY5iIZ/8NxAIjLq6eb4QPlodTZuDAPp9bxljMBqNMJvNALS6Ju+HIOpovDjvFbq8rRcQfwUvHmhq\naioAIDU1lbb4ys/Px5QpUzBt2jQAQEFBAdrb23H2rLb96v79+2m3lZqaGrjdbt2mA/H6LaJyJicn\n02bVVqsV3d3d8Pv9JI/YXSUUCsW0osrKUeymZLFYkJGRQZsrL1myhGRzuVyoqqqijZg7OjrQ2dlJ\nZRkIBGKycUd43ZM7c/nz8KH3aEHIZzQa6f+kpCRYLBZkZ2cDADo7O8E5R2trK4D4KCjOeZ8OMvzz\nSBHXj7TsZXkMBgO9Tk5ORmpqqs4V2N7eDgDo6urSGRbD/Q1DYdQqdLmXDt+PETjnlxZ/Aa2QZMto\noL/h/w8HWdGkp6ejoKAAADB58mTMmTMHgLZTUVlZGSl7k8kEv9+P5uZmAEB2djYp9M8++wzl5eWk\nhOTfG6uHLypnSkoKAK0Dmjx5MgBtay+v14uOjg4A2l6O9fX1ALQty2Ll85eftdFopIaSm5uLxYsX\n45JLLgGg7bojFLrT6URJSQny8/MBaFvQnThxAnV1dfQ9olxHYu3JsokRg7DGTCYT1QlAU+5y5zyQ\nHz0UCvVp8LFW/OJ3iLZjNptp5FNaWoqioiKqzy0tLSgvL4fb7QYAeL3eqHSO4WUpK0nOua5jNBgM\ndM/+ykq+bqA2Ppz6Ks+LiGcrRonp6ekAtG0S7XY7MjMzAWgd3okTJwBonaHb7SZDKBgM6vzr0dRH\nAuVDVygUijFCxBY6Y8wIYB+AM5zz6xljEwC8BiALwH4A3+ac+0cijOiVxdBV7hWFjyopKQl2u516\nyNLSUrImGhsb4fF4cPToUQCadcE5J5+1bFmI3lz0wkPxs8qugKSkJNhsNtjtdgDAxIkTMXv2bADA\nhAkTkJqaSueKTaDFPSdMmED3raqqQlJSkm40EW1LLXwYazAYYLVayc1SUlJCo4vJkyeDMYba2loA\n2gbVwkIf7PujZm0YDFSuc+bMwbJly2h/1qSkJHqeKSkpOisuJSUFTqcTjY2NALS5ClG3hmNdynMi\n4llarVZYLBbajT4vL0/3rN1uN5WXy+UCY0znvhJl1NXVpZtLCQaDUR39hEeLAOf2FhVzO1lZWSgs\nLAQArFmzBqWlpSRrZWUlqqur+3UlCTmHIqs8shb/WywWatfiMzGqDQQC5P4DQG5AEUEUCARIVrfb\nrSvb8FHRUOQM1z9iU2qz2YyCggIaDU6dOhXZ2dk0wvF6vTTira+vh8vlIheM2+2m/4UrRvZCDFXG\n/hiKy+VBAJUA7L2v/w3ArznnrzHGngfwXQDPDVcQxhhVNKPRiGnTplElGjdunC7VZHZ2Nj3gmTNn\nUkXo6elBc3Mzpk+fDgA4ePAgnE4nbcTc2tpKFUFW5kOFc06KQUzIiWGV2+3GmTNnAABNTU0wGo3k\nd/T5fPD7/SguLqbv8ng8AACHw6FTGNH0VQ40tDUajQgGg3Qvj8dDZZmeno6srCy0tLQAOKeU5DII\nJ9pKKDk5GTNnzgQAzJ49G1lZWfT8WlpadI2jra2NhrNWqxVms5kUltvtHpGbRQ5FzMjIAKA9rzlz\n5tD8iLiXmB/p6Oig35Geng6z2UxK22azoampCYDW6FtaWkgpRUuZC7lFm5IVeigUgsFgoPvI5Txz\n5kwUFBRQZ1hYWAiz2axzJ4XfJ1J5jUYjKTuz2YypU6cC0Np3bm4uufuEvx7Q6qTRaCTXn9/vR0pK\nCrmAurq66LPa2lo0NDTo2vhwZBVlJ567XJfy8vIwffp0jB8/HoBW14LBIDo7OwFodU2UVVZWFqxW\nKz2DpqYmqrP9EY3nHpFCZ4wVArgOwJMAHmJazbgCwDd7T3kJwBMYgUI3m830sIX1U1ZWBkCzZPPy\n8uhczjlyc3PpM9FQurq6YLFYqPCTk5NRVVVFldNsNut2OA/31Q0Fcc9AIAC320052U+fPk0jAp/P\nh56eHqpwJpMJDoeDzi0oKKDv8fv9CAaDMZm8EwirQPxm8VoowkAgQOWck5OD5uZmUujd3d26Scb+\niJaVIRpEaWkpjXbEXIR4lidPnoTL5QKg+So9Hg9ZdaFQCJmZmfTa4/HQMxmOLHJ9EqPB4uJiLF68\nmIyH+vp6NDc3k2Jubm6mcrLb7SgqKqJydjgcZOGJyWbZRxytjlGekBOdtyAYDOqUtDAyHA4HDAYD\njdrq6urg8/noWrkjEK8jGd0aDAakpqYiJyeH7iPad1FRES6++GLYbDYAmvEg5pk8Hg+6u7tJN4g5\nKyG7y+WiOmE0GuH1enUTuOEWcCT0N18nvsdut6OwsJBGF21tbQiFQtTGW1pa6DmnpKTAZDKRkQSc\n6/DFSCLao/BItdlvAPwAgHhyWQA6OOeiZdcBGN/fhYyxexlj+xhj+0YkqUKhUCi+kkEtdMbY9QDO\ncs73M8YuG+oNOOcbAWzs/a5+u6Nwn7nBYCCfOaBZLcKH1draivT0dHJVnDhxgoY0gUAAPT091COW\nlJTg7Nmz1LuL3jFMvqH+JN11wi8uvtvhcFBv7XK5dK6KjIwM3fCxp6eHZPd6vSNyA0UiazjCXyss\nCtnPm5aWhs7OTp3bIh4ha4wxel6XXXYZFi5cCEBzWxgMBvJLHzlyhEYPIppAhNrl5+frwkeF6wsY\n+lyJ7Aq0Wq0UzXDppZdi5syZdE+fz4eKigqav6mvr6eyS0lJQW5uLiZNmgRAK1vhlpsyZQpaW1tp\ntBEthPUnux9kC112wVgsFvKh2+12MMboOqfTifb2dqoj4fNOkbYfEUkjLP/k5GQapcyaNQs5OTlk\noXs8HrrfyZMn0d7eTmWZn5+P3NxcmkPLyMigkdjp06dhsVgGdA0Opa3L5wYCAYq2yszMREpKCj2v\n9vZ21NbWwul0UpnIrjar1YqSkhIAwL59+8jXLlxG0SYSl8sSAKsZY9cCSIbmQ/8tgHTGmKnXSi8E\ncGYkgoRCIfJDM8bQ3NyMoqIiAFrhivA+u92Oo0ePoqGhQfsBJhMN46ZMmYJAIECVwe/3w+VykSLq\nrwKOdNGJeIDie1taWqgxMMaQnJysm6ybPHky+d/a2tqoYQt/f6xD1uRhePgkaVpaGrkQcnNzdcNX\np9NJyn4gGaMR62symcifu2TJEpoE7ezsxKFDh3Dy5EkAWkcu5D579iwCgYBustdisZBCT0tLo7ol\nT55GIo/BYKDhdVZWFs3lFBUVweFwUEOuqKjAvn37cOTIEQBa3RNGSV5eHoLBICmF9PR0XX0Rk7ry\nfaPpdgH6LnSSjaZJkyZRfL/FYkEwGMSXX34JANi9ezfq6uoGbEORlqXoCETdKygooOeTkpKCUChE\nda2+vh779+8HoE3KejwecrGmpaWhu7ubnonVaqWO3Waz6dwj4SGNkRIuq9FopOtTUlJ0cwqtra2o\nra2lc5OSkshtmZubi+LiYp2xJ0+wx8K9OqjLhXP+KOe8kHNeCuB2AB9yzu8E8BGANb2n3QXgjahL\np1AoFIqIGcnCokcAvMYY+wWAAwD+MNwvEsmVRO/l8XjQ3NyMv/3tbwA0a0JY4e3t7Th8+DANedLT\n03WB+8nJyTQM7urqgsvlop5fDuaPpiUsT27IS3/FEF24EGbPno2cnBzd8FWEBba3t+uGa7Ek3FIT\nQ91JkybR6MFisaC5uZk243a5XDGdsAU0yzQzMxPXXHMNAM0KFuXh9/vR2tqKw4cPA9DqiPgd4n9h\nLdvtdpSUlNBzqKysHJbLRYxmxO+2Wq3kzktOTkZPTw/Jc+jQIVRWVlK9DAaD9NyDwSDcbrfOChfW\nus1mo2E4MLQRxFAIX2RjNBrJbbF8+XJyJRkMBlRUVOD1118HABw7dqxPiorhICZ/hau0ra2NFn5Z\nrVaMHz+e3Gl79uyhEUJTU5NulFRVVYWsrCySl3NO7ovOzk7dBPNIknrJ53u9XrpfRkYGjhw5QgEC\nbW1t4JzTa5vNNuCz9Xg8ukR9sWBICp1zvhvA7t7/qwEsipYgcrSFGHKKBlFZWUlhXsnJyfB4PBQm\nJGa9Ac2HdvHFF5OCB4BTp071yfERC8T3mkwm8g3OmzcPdrudXtvtdtjtdopyqaioIPdMMBjUZRCM\ntesFONewRaW75JJLqCxDoRDq6+tp1ZuosLHEZDJhypQpmDhxIgBtiCrKp62tDVVVVVQ+IqIB0Pyz\nnHMKKczJyUFJSQl17J988gkpe/E3EsL90C6XixR6RkYGOjo6aD7kyJEjujkGOWRQVu6AVmdl37Yc\nSQPEPjujcAUuWqQ138suu4zu39raip07d2LPnj0Azi39HymhUAg9PT1U9w0GAxkPYv5BuE5qa2up\nXAOBAEwmE5WX2+2m6DFAM+hEKKDT6YxaZyi7JjnnVD7t7e1ISUkh/SOenVDiOTk5FDEk6qN49kaj\nUWfsibocTUbN0v/wVLI+n4+6PVYCAAATsUlEQVQelNVq1YWAyRMqmZmZ1Hvm5eXBZrORJbR3714w\nxkgZxSpJE+9NOQBolqSweDMzM5GcnEzWIeccDQ0NVFlTU1Pp3NLSUgoRA2Kby0UepSQlJdGkTWlp\nKVkQTqcTn376KTXAeCS4Ej580am4XC6yvo4cOaILVeSck7UnQsPEnMuSJUuoUwC0yXExBzPUMFX5\nd8uKORAIoK2tjUZ/QknKi2VEgx43bhwcDgd1BikpKbqO22636xq9bNzEAsYYsrKycPnllwPQ/Nmi\n/p44cQJvv/02hXlGsw76/X76vqSkJAo3zM7ORjAYJIvd4/GQArVarbDZbDTxWVBQALvdTp83NTWR\nEnc6neju7taFKo7Ehy6uEQvwAK2DMxqN5CcXuW9E0EZRURF9lpaWhtTUVHqW48ePp/rS3d2Nzs7O\nPosdR4pa+q9QKBRjhFFjoYcjR700NjZSD8g5p6EaoFnsIhRK9JbC2uGcw+v1kvURy2GssOTkhRaN\njY0IBoO65c5NTU0UXeD3+2l0IcIdhfUurzCNJaFQiMovLy+PZDt79iwOHTqkW4gVC+Q0Cjk5OUhP\nTyerpauri6y4ffv24ezZs7rwMCGbyHYnrPLS0lIa+QDaakd5lDQU5ORZJpOJ6qTH46Fl6YAWepeR\nkUHnZmdnk1WZlJSE8ePH00Iar9dL8nm9Xvh8PqqzYg5msIiikWA2m7Fw4UJcddVVADQ3pvBf7969\nW2f1RpOenh6ymL1eL43+qqqqdJEkaWlp1N5NJhOys7Np1Gaz2ZCXl0dW8NGjR8n90dHRoZuLC4VC\nw5o7AfqmshbtsqioCOnp6fS8TCYTCgsL6VlnZ2fTvTIyMmCz2agdZ2Vl6VxrSUlJUd+4Y1QqdDnU\nCtAatlCKTU1N8Pv99MDb29tp9d7UqVNRUlJCQ3FxbTwUujzME6GIx48fJ7cGoPknU1NT6bdMnjyZ\nQre6u7uRkZFBcwVyrpJYu16EQg+FQuSeevfdd9HY2BiXSVo5Z4bD4SCl6ff7cezYMQBaWZ49e1aX\nw0NOTzthwgTyY4qJXnFuVlbWsFcEA6DvaW9vR2VlJQDNpeJwOGiy3ul0Ii8vj9w+cv4RALqVqwaD\nAVVVVfSd8m+RO7hYYbFYcM0111CnEgwG8dlnnwEAtm/fHlP3mqjTPp8PNTU1ADS/eFpaGrmoAJBh\nkZ2dDc45dXB2ux0mk0mnCIU7zeVywe/369ws4XlnhoNsXAaDQZ2LzGazwWazUYfj9/tJ3wgXnXBf\nyak9zGYzZV8VKJeLQqFQKIhRaaEDfYc8clRLMBikXA92u52sdWEJC4tKbHQQ691/5NWEHo+HhpJO\np1M3ZPf5fOjo6KDePTk5mYZg4ncIi0/OIherqIdwa7C9vZ0sqOPHj8Pj8UTFwhlMBlF2YkJbyNTU\n1ITjx48D0HKcy5Nq4QuJRM5x4Fw9EBOop06d0i1aGyqiTDo7O1FeXg5Ae5aTJk2iBS8OhwOpqam6\niTR5YtFms5HF7vF4aCTm8Xjgdrt1u9zEakJcWL0i57koi9bWVnzwwQcAtDKLZXuR24LA7/fDbrfT\nezabjX6/y+WCyWTSrU61WCw0WV5fX08WugivlBfORSNMORQK0ahfZMeUR1uBQIBcVh6Ph9yCZWVl\nMBqNpKvkBVEiSd5IsoD2x6hV6MC5hxAKhXTKTYQyidciSmPGjBkIBoO0/LqioqLfDS+iiViVKBRz\ndnY2uVGCwSD5SOXzxcMzGo00zLRarcjLyyNfXUdHhy4ZVqz86Q6Hg8KskpOT6f4itjvWLhdZgff0\n9KCzs5OU3ZkzZ6gMLBaLTqHLjUEsrxYrTC0WCzjn5H8/fvz4iCKdxDVer5dWKBsMBrjdblo52tPT\ng4yMDGq8LS0tOn86Y4w6lebmZvqNbrcbjDFSGLEKrTUYDGT43HHHHcjOziYFf/z4cXITymUcC+Q2\nLW/2IL9OTU2ldtHV1QWr1UqpCcaNGweLxULld/jwYQp3DE94NVIjRNYbwkg8ffo0ioqKSB8ZjUa4\nXC4y4jjnug2j5Y1EnE4nGRnynJu4Lhod6ahW6AL5ocjL6gF9BjybzYYzZ85Qj93R0RETRSiHQ5nN\nZqSmppKllpmZSRM2wWCQfP7AuRSrYiI0JyeHsgmKBi0vf5b3LYwFJpMJRUVFZG3U1tZSo+rq6orb\nbvXypGP4dnGiIR88eBBer1dXFsKqnTlzJhYtWoQpU6YA0DrAuro6HDhwAABQXV1NCn0kllAwGCTr\nKxAIoLW1lba9y8jIQGZmpm77MdFRZWZmwul00lyF2+0mC7O9vR09PT1U7m63W+dXHSmivEwmE3U+\n8+fP18l64MABWiAlh/3FElmB9fT0IBgM0u+WFyDZ7Xbdwp2uri5dnHpDQ4OuYxD5icLvMRLkCXin\n04m9e/dSioycnBzU1dVRhyinhxC520U7ljtL0YkNtBPTcFE+dIVCoRgjnBcWOnDOShdWj/BDy0l+\nvF4vmpubyfIQmRAF0fQDy7PVZWVlJMOECRN0Qz7gXO8rFh2J8Lqrr76aQtlqampw5swZ6s1lV1Gs\ndrFJTU3VDffr6uooFYFIeBWPZGHiHt3d3TTvIOQTfuiysjKcOXNGNywXI7OlS5di4cKFFGlQUVGB\nAwcO0GrH5ubmqEQMyQvIOjs74fP5yHL0+/1oa2vTZafsL783oNVTYaGLCA7hjvH5fFGx1sQoUtTT\n4uJiWkiUk5ODnp4emp/405/+RG0mXqMyoO88mdzG5ZW0cg7/9vZ2uN1uSnglR5UA50Z54jujUZay\ny0XUUWGRd3Z26jKqdnZ20ihObKwirpVXuIpRSbTdweeNQpcn55KSkshNUFhYSMpdbHQgFJTws0Zr\nwqG/0LK0tDRMmjQJF198MQBNwYtGbjabddvTpaWlYdy4cbTLzfTp03XbgAEghSrLLCZeovUbhOxi\n2b8oS3nbNqfTCbPZrEujECvkxiCvtpTTKHg8HuTn5+vWHIjUusXFxbBareSuqq6uxkcffURzKdGM\npZd9wD09PbpNvVNSUnQhsuJ3BINBdHR06FbAyvMo8jxLtBQqYwxms5nKa/LkyVixYgXJ1tLSQpkh\nT548OSw3T7SMDHkiWX4t3pOzG4ql//KcgyhnMdcUyw7J5/PBYDDoNn6R55oyMzPpOYvQVXm5v7wN\nodymoyWzcrkoFArFGOG8sNBlq1JkvJs7dy4AYNGiRWSFeL1e3Qay4rpor8YKnxS12+2U6Ag4tyBq\n7ty5NDECaG4iOVQxJSWFoiZOnDiB3bt3U75vsRIxmnIL2UV5FRcXY/r06WSh+/1+cmNkZ2fD6/Xq\nNl6I1hZzMvKiEeEGEFE3paWldK/09HRkZ2froonE/4wxOJ1OHDx4EIDmQjhw4ACNLmIVhidPlonM\nfiJyREQ6ANpkuMlk0m1WLofYdnZ20vdEbXLMYEBWVhauuOIKAMBVV11FycpsNhv8fj+5geQRTDwW\nkg2EuLe8AEdEvIhytVgsMBgMVGfEYjSg76RoNJ+7PDKTJ8e9Xi/sdju511JSUqg92Ww2mM1mmjj3\n+Xy6oINoTdrKjGqFLj9g0Xhzc3Nx0UUXYfny5QA0pSk+O3HihG54Jscqh3/ncJSS7O+S07rW1NSQ\nv3bx4sUUxSJm6OXlzvX19TRMr66uphTBH330Eaqrq3V7lcqVKBowxmC1WmlIWFhYiEmTJmHevHkA\nNJeHWAnpcDjQ3Nysi7SJhWLk/NxOOl6vF3V1dfj0008BaL9bdDDTpk3Tudp8Ph/F/jY1NaGhoQFv\nv/02AGD//v20A1SskZ+RvLONHDvtdrvhcrlIKYnXgOYTjpbrQjY0bDYbsrOzaSPmiRMnkkIXHY+8\nolowFJdPtA0keV5KuCkLCgqQk5NDKRZsNhu8Xi91iIO192gRvh5DtAXRgYSvhQHOxZ2Lcj59+rQu\ndUUs6ueoVujy7h6iodjtdkyZMoV65Y6ODiqYpqYmlJeX65baivSkQPRifOW4+I6ODlRUVOgar8g1\nk5eXh9TUVIpRPXv2LL788kuywt1uNy1tF0vAZaUZ7UnQpKQkJCUlUYhlWVkZSktLSb6DBw/ScuyW\nlhbU19dHPawqHFmhd3V1obq6miYMm5qaaCf44uJiZGVlUWfY0dFB5VhVVYWOjg6S3efzxWwhVH/y\nA+fSDQjFk5qaqsuHLi8Ukxfv5OXl0e8ARu6XlsMU5YyPaWlpOj95c3MzhXV6PJ6ojxCGIquY6xLK\nMC0tjVIoOBwOOBwOkr2xsVGnuOX25XA44Ha7dRPg0Zg/C9/STv5OkXdG3jJT1NGWlhY0NTXR83U6\nnWR8+ny+mIRUKx+6QqFQjBFGrYUurwSUE8OnpqbCbrfrlmOfOnVKd43ozYWvUvhS5RC5kSJ610Ag\ngJqaGsrl/Le//Y1m3e12uy77ovDxiyGY3++PeQIu+buDwSC6urpoNxi32409e/aQC6axsZH8qmKl\najwyPgr5/H4//H4/Wei1tbW01F7kxBbnilQQ4n95QUw8rcxwl4uoe11dXWS1ORwOBINBcrPIuwWd\nPn1at9R/JLLLroDOzk7U1NTg6aefBgDs2LGDFl6dOnWKkp2Jc+NZZuEYjUbaKB7Q/NByJJbP56P2\nn5ubq1tO73K5KBJKZFuU3SHRQG6b4jvFc25vb9dlx5T3NA5f+SzPSfl8vqjqIwGLV8wpADDGIr6Z\nPMwxGAzkcsnNzcWyZcvoc4/HQ8PcUCiEw4cP08P2eDzo6uqihxAP5XQ+IfJJyHMD8awPYwnhAxZK\nSd4UIScnByaTidwfqampFB565swZuN1uGqZH280myyNnp4z1doKDIbfvcJeLw+Egt6WYnBdlV1hY\niNbWVl0cv+wmlFNmxKMui9QVopyTk5MpH5OcrgTQOhzZuBxiJ7qfc75gsJMistAZY+kA/h+AmQA4\ngLsBHAWwBUApgFMAbuWctw9Fwq+Cc65LeSpbPocOHaIHKufz9vl86OzspOu6u7vJf6noSyKtsrGG\n8K32twONSEMspwUQdTJaC4n6kwdA1K3VaCG3bzEpKpeJiPPu6OiA0WjUpd2V5wLq6+vpXDm5XLwQ\ni5fkzlJemyBGGPK5sSRSH/pvAbzDOZ8GYA6ASgDrAHzAOZ8M4IPe1wqFQqFIEIO6XBhjDgDlACZy\n6WTG2FEAl3HOGxhj+QB2c86nDvJdIx4Diexl/YUQCj+cvPGyQhEvZPdVuMsQ6Gs1K/rHZDKR+yU8\nK6HVatUl64rHSuahEh46GSXXT9RcLhMANAN4gTE2B8B+AA8CGMc5b+g9pxHAuOFKOhTk3AgKxWhC\nbrj9TaQpIuOr0kWPRgUeTiLnoSJxuZgAzAfwHOd8HgA3wtwrvZZ7v7+CMXYvY2wfY2zfSIVVKBQK\nxcBEotDrANRxzj/tff06NAXf1OtqQe/fs/1dzDnfyDlfEMlwQaFQKBTDZ1CXC+e8kTFWyxibyjk/\nCmAFgIre4y4A/9r7940I7tcCzcJvGb7IY5JsqDIJR5VJX1SZ9OVCKZOSSE6KKA6dMTYXWtiiGUA1\ngO9As+63AigGUAMtbLEtgu/ap6x1PapM+qLKpC+qTPqiykRPRHHonPNyAP0V2oroiqNQKBSK4aJy\nuSgUCsUYIREKfWMC7jnaUWXSF1UmfVFl0hdVJhJxzeWiUCgUitihXC4KhUIxRoibQmeMrWSMHWWM\nnWCMXbB5XxhjpxhjBxlj5WKxFWMskzH2PmPseO/fjETLGWsYY5sYY2cZY4ek9/otB6bxu9668yVj\nbH7iJI8dA5TJE4yxM731pZwxdq302aO9ZXKUMXZ1YqSOLYyxIsbYR4yxCsbYYcbYg73vX9B1ZSDi\notAZY0YAzwK4BsAMAHcwxmbE496jlMs553OlcKsLMdHZiwBWhr03UDlcA2By73EvgOfiJGO8eRF9\nywQAft1bX+ZyzncBQG/7uR3ARb3XbOhtZ2ONAID/yzmfAeBSAPf3/vYLva70S7ws9EUATnDOqznn\nfgCvAbghTvc+H7gBwEu9/78E4MYEyhIXOOd/ARC+bmGgcrgBwMtc4xMA6WKV8lhigDIZiBsAvMY5\n93HOTwI4Aa2djSk45w2c8897/++Elul1PC7wujIQ8VLo4wHUSq/ret+7EOEA3mOM7WeM3dv7XkIS\nnY1CBiqHC73+PNDrPtgkueMuuDJhjJUCmAfgU6i60i9qUjT+fI1zPh/a0PB+xtgy+cOvSnR2IaHK\ngXgOQBmAuQAaAPwqseIkBsZYKoBtAP6Zc+6SP1N15RzxUuhnABRJrwt737vg4Jyf6f17FsAOaMPk\niBKdXQAMVA4XbP3hnDdxzoOc8xCA3+OcW+WCKRPGWBI0Zf4K53x779uqrvRDvBT6ZwAmM8YmMMbM\n0CZz3ozTvUcNjLEUxlia+B/AVQAOQSuLu3pPizTR2VhkoHJ4E8D/6Y1guBSAUxpuj2nC/L83Qasv\ngFYmtzPGLIyxCdAmAffGW75Yw7TdIv4AoJJz/rT0kaor/SE2Bo71AeBaAMcAVAH4YbzuO5oOABMB\nfNF7HBblACAL2kz9cQB/BpCZaFnjUBavQnMh9EDzc353oHIAwKBFSVUBOAhgQaLlj2OZbO79zV9C\nU1b50vk/7C2TowCuSbT8MSqTr0Fzp3wJbee08l5dckHXlYEOtVJUoVAoxghqUlShUCjGCEqhKxQK\nxRhBKXSFQqEYIyiFrlAoFGMEpdAVCoVijKAUukKhUIwRlEJXKBSKMYJS6AqFQjFG+P8nx+FQZZ/x\nxgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABK4klEQVR4nO29eXCc1Z02+pze9721WJK1WbYs78YYGxtjMBBIyCSTQJJJ8lX4birUTC7MUHcmNwxJTb6aqluV+ZJhJpVMTUFuMjMJyYUkJAWEYTV2DDaLF2y8W5KtXep935f3/iH9DqdbMtbS3ZLw+1R1Sepu9fvr857znN9+mCRJkCFDhgwZyw+KxRZAhgwZMmTMDzKBy5AhQ8YyhUzgMmTIkLFMIRO4DBkyZCxTyAQuQ4YMGcsUMoHLkCFDxjLFggicMXY3Y+wiY6yPMfZopYSSIUOGDBnXBptvHjhjTAngEoA7AYwAOArgLyRJOlc58WTIkCFDxtWwEA18O4A+SZIuS5KUBfA0gM9URiwZMmTIkHEtqBbwv00AhoW/RwDc9FH/wBiTyz5lyJAhY+7wS5LkLn9yIQTOZnhuGkEzxh4E8OACriNDhgwZ1zsGZ3pyIQQ+AqBF+LsZwFj5myRJehLAk4CsgcuQIUNGJbEQH/hRAF2MsXbGmAbAlwA8XxmxZMiQIUPGtTBvDVySpDxj7CEArwBQAvi5JElnKyaZDBkyZMj4SMw7jXBeF5NdKDJkyJAxHxyXJGlb+ZML8YHLuAp0Oh0UCgUYY1AqldBoNFAoJr1VqVQKhUIB+Xwe2Wx2kSWVIUPGcoZM4FXAl7/8ZTidThgMBnR3d2P37t2oq6tDsVjEU089hQsXLuDixYv44x//uNiiypAhYxlDJvAKoqmpCV/96lfx2c9+FhaLBUqlEiaTCQ6HAyqVCpIk4c4778S6detw5swZvPvuuwiFQsjn84st+jQwxtDQ0IAHH3wQK1aswAsvvID9+/cjlUotmkxarRa33347tm7diu3bt2NwcBAHDhzAoUOHEAgEFk0uGTIWCzKBVwgrV67E1q1bcc8992DDhg3Q6/UoFotIpVIIBAIoFovQarVoamqCxWIBYwwdHR04ffr0kiRwhUKBhoYG3HzzzWhtbcXRo0ehVCoXTR7GGAwGA2644Qbcfffd2LFjBwYGBhCLxdDX17eoBK5UKmE0GtHT04OxsTEMDQ1d839sNhuKxSIymQwymUwNpLw29Ho9rFYr1q9fj9HRUfj9fvh8vppdnxSerq4uxGIxRCIRhMNhpNPpOX2G0WiEUqlEOBzGx/3ISLkbYYXw2c9+Fg8//DB2794NnU6HYrGIbDaLgYEBvP7663jxxRfx9ttvI5fLwWKxoK2tDfv27YPZbF5s0WeEQqFAZ2cnjEYjstks/H4/CoXCosnDGIPb7caOHTtw0003QZIktLW1YdOmTdiyZcuiyQUABoMBq1evxr/927/hM5+ZXTeJdevWYc2aNXC7pxXXLRoaGxtxxx134MUXX8QjjzyCXbt21XTTNplMWLduHX74wx/iL//yL7F37164XK45fYbZbMbatWuxceNGqFS10U8ZY1AoFDzOVUvIGvgCoVAo0NPTg1tvvRU33TTZSeDKlSv4wx/+gN/85jfw+/2IxWIoFoswGAx45plnsHr1aiiVSthstkXVaj8KSqUSa9euhU6nw/j4OF5++eVF0xS1Wi3q6urwT//0T9i0aVPJa0tBw7LZbNizZw9MJtOs7+fOnTvR0tKCQqGAb33rW4u6OQKAxWLBHXfcgUceeQQqlQpf/vKXUV9fj5dffrkmslksFjz22GP43Oc+h8bGRkQiEZw4cQJjY9NqA2eESqWC3W7H008/jcbGRgwNDeGv/uqvMDIyglwuVxWZSdt/6KGH0N7ejkwmg0ceeaSmFvWSJfDu7m60t7fD7XYjkUigUCggEAhgcHAQiUQCsVhsSWRxMMbgcDhgMpnAGIPH48GvfvUrHDp0CJcuXUIqlUI+n4fT6cS6devgdDqh0+kQiURw6dKlJWM+i9Dr9WhsbMQtt9yCeDyOixcvzsmMrSQ2bdqEtrY2rF69Ghs3boTVai153W63o7OzEzt37kQgEEAoFKqp2c8Yg9lsxsaNG6HRaGb9f+FwGB0dHWhtbYVWq0UqlVrUzailpQVtbW1obm4GAHi9XkxMTFSdjIgEv/SlL2H79u2wWq14//338dxzz+H9999HsVic1eeQu6+7uxt9fX04efIkwuFw1Taf9vZ2rFq1Cjt27MAnPvEJOBwO+Hw+6HQ6JJPJWcu9UCxJAlcoFLjxxhuxe/dudHV1IRAIIJfLYWBgACdOnIDf78f4+DhisdisPq9YLCKfzyMajSKXy1V8oSgUCgSDQVy5cgXDw8P47W9/i4GBASQSCf4et9uN22+/HQ0NDdDr9fD7/ejv71+SBG40GtHc3Ixt27bh4MGDOHdu8ToE79q1CzfccAPWr1+P5ubmaWaqy+XC+vXrIUkSLl++jN7eXkQikZpt7lqtFk6nEz09PchkMrO+LsVFGhoaoNVqkclkFlULX716Ndra2mAymQAAly5dwvnz56tO4BqNBk6nE1/4whfQ3d2NbDaLAwcO4Pnnn4ff75/VZ6hUKrS2tuLuu++GTqfDqVOn8MYbbyAUClVFZqVSiY0bN2Lv3r24//77UVdXB6VSyWNcw8PDNduQlyyBP/zww+jq6oLFYil5TZIkxONxjIyMIBKJzOrzwuEwBgcH8bOf/Qznz59HMpmsmKyFQgEHDx7EmTNn+O4bDoen7cD19fW45557YDAYwNhMfcCWDsxmM9ra2mAwGHDq1Cm8/fbbiybLN77xDU7QM6GzsxMdHR349Kc/jYmJCfzpT3/C448/jg8++KAmhLh69WrcdNNN2Lx5M5544gmcP39+Vv9nNpvR0NCAjo4O6PV6bmXWGowxaDQafPnLX8b27dv58++99x6OHDlS9evbbDasX78e27dvh8FgwAcffIAf//jHcyLflpYW7Nq1C1/96lfx0ksv4aWXXsJbb71VFXkpuP+1r30Nt912Wwk/OZ1O/MM//AN++MMf4tKlSyUKXLWwJAm8WCziJz/5Cdrb22GxWDA6OorGxka43W6sWLECPT09aGxsRENDA4LBIJxOZ4nvsVgsIpfLIZFIwG63o1gsorOzE4ODgxgdHa0ogRPC4TAUCgWKxeI08r7ttttw1113oaWlBQqFAh6PB2fPnsXZs2cXzTXxUejq6sJ9993HrYTZZFVUGg0NDfjbv/1bNDU1QaFQzEjg8XgcmUwGxWIRbrcbbrcbd955J1atWoW77rpr1hbafKBQKNDa2oqvf/3r2LVrF0ZHR/HMM8/MmsC3bt2Kzs7Oqsk3W2i1WnR0dGDNmjWoq6uDJEkoFou4cOHCrL/LfGE2m9HR0YFbbrkFKpUK//3f/42XX34ZoVBoVpuZSqVCc3MzHn30Udx8880oFAo4fPgwhoaGqraudDodvvjFL2LVqlUwGo0lrxkMBuzbtw+tra344IMP8MYbb+CPf/wjMplM1bTxJUvg7733Hq5cuQK9Xg+Px4O6ujo4HA7U1dXh8uXLaGxshEqlwvDwMNra2qBWq/n/5/N5pFIphEIh/Pmf/zksFgsKhQL0en3VtN+ZTE2FQoH6+nrs3r0bN954IwwGA7LZLHp7e3Hs2LGq+ujmC51Oh8bGRqxduxbpdBqxWAzxeLymMphMJjQ3N2PHjh3Q6/XTXk+lUhgdHeVuKkmS0NXVhba2NrhcLpjNZnR1daGvrw/RaLQqMqpUKtxwww3YsGEDrFYrDh48iL6+PoTD4Y/8P8YY1Go1Ojo6UF9fv+jWmFarxerVq2Gz2aDValEoFDA+Pg6/31/1+7527VrceOONuOGGGxCLxXDq1CkcPXp01m4bcp1s2rQJbrcbV65cwYkTJ+Dz+arig1apVLBardi9ezdcLheKxSLi8TjS6TRMJhOMRiPcbjfMZjPnnDfeeAP5fL5qrqglSeAAcOHCBVy4cGHG16xWK1pbW6HRaHDx4kWsX78eWq2Wv57L5RCLxRAIBLBr1y40NTUhl8thbGysahHpmaBWq3HDDTfg3nvvxebNm6FUKhEIBHD48GG88MILSyIIWw6n04mmpia0tbVxH30tx4wxhubmZqxfvx5NTU28AKpYLPKfHo8HL774Ig4fPszdaDt37sTXvvY1tLa2gjGGO++8E4VCAWfOnKn4JskYg06nw+c+9zm0trZibGwMP/7xjxEIBK55Lco+6urqQn19/az9vNWC0WjkG6UkScjn83j//fdn7Z5cCO6++27cdddd2LFjB06dOoVTp07h9OnTs/pfhUIBo9GIDRs2wO12IxKJ4LXXXsObb75ZtbiSwWDAihUrcOutt8JoNCIej6Ovrw9+vx+rVq1CW1sb94V3dnbCZDLhJz/5CTKZzPVH4B+FaDSKM2fOgDGGQqGA9957r0STkSQJ9fX12LFjB5xOJ8LhME6dOoXnnnvumhpSJaFWq7Fp0ybY7XYolUoUi0W8/PLL2L9/P06dOlUzOeaCTZs2oaOjA5IkIRgM1nyTWbFiBb7xjW/gvvvuQ0NDA3eNSZKE0dFRHD16FG+//TZ+8YtfIB6Po1gsQqlUYnBwELt27YLD4YDZbMbf/d3fYc2aNXjllVfw7LPPVnQBtbW1YefOndi3bx9isRh6e3tx6tSpWW0UbrcbDz30EOx2O8bGxni2RC03SREigReLRUSjUfzgBz9Ab29vTa5PLkev14t4PD6r+6TVarFnzx7ccccd+MpXvgKn04nf//73ePTRR6uaFOByudDd3Q2TyYS+vj689tpr+O53vwuNRoMtW7Zg586deOCBB7BixQrodDo0NzfjiSeewL/+679i//79VXHpLUsClySpxKdUvnD0ej06Ozvx1a9+FQaDASdOnMDrr79eU5fF1q1bsXfvXnzyk5+Ey+VCKBTCuXPn8Pvf/x6XLl1acq4TQmNjI5xOJ3K5HF599VWMj4/X7NrkXrBarXA6nTzjhILQTz75JK5cucID2DSGhUIBExMTOHToENRqNfbs2QOLxYJdu3ZBrVbjwIEDs9KOZ4v6+nps27YNRqMRR48exfvvvz+rzzYajWhqasKePXug1+tx8eJFvPzyy8hms4uSQuh2u7Fq1SqsXr0aGo0GhUIBqVQKfX19NXGb0XdmjGHt2rW4//77sXbtWqRSKRw9enRarIqyo7q6urB582asX78eDocD/f396Ovrq3qbB5VKBa1WC8YYjh8/jnfffRfxeBwKhQKnT59GLpfD3XffDbfbzd9Hrt1qpRUuSwK/FtxuN9asWYNbb70VSqWS+8ZqlbJHRTB/9md/hi1btkChUODy5ct466238M4779TEPJ0rGGPQ6/VobW2F3W5HPB7HkSNHam7iKxQKaDQa7hJLp9MYGRnBO++8g2effRaRSGSatkqZSSdOnEBdXR3PaOjo6EA2m4XJZKrY5q1QKOByudDT0wONRoPz58/P2ux3Op1ob29Hd3c3AGBwcBBHjhxZtM3c5XKhtbUVDQ0NACY3yomJCZ62W21EIhFEo1EUCgU0Nzdj79696OnpQTKZhMlkmqaxWiwWrF69Gps2bUJLSwvcbjey2SxOnz5dE4tBp9PBbrcDmMyT93g8AMAtCI1Gg1wux8lakiTEYjGk02nZhTIX3Hrrrbj99tths9kQjUYxMTGB0dHRml3f4XCgvb0d69atg0ajQTQaxdmzZ/Gzn/0MoVCoZkn+c4FOp8PGjRtxzz33wO124/z583jnnXdqHsAsR39/P55//nk88cQT19xMTp48CZvNhptvvhmbN2/mGnwlA4UGgwFNTU3o6ekBYwyHDx/GwYMHZ/W/W7duxSc+8QnYbDZcvnwZ586dw/vvv18x2eaKFStW8EwYSZJw6dIlPPfcczWbn6+88gpUKhU2b96M+vp6tLa2oq2tDQCwd+/eaVZJ+X3M5XIYHR3FU089haNHj1Zd3vb2dtx+++1gjGHdunUYGhrCG2+8wV/XaDTo6enhgfdisYgzZ87A4/FUTXn8WBG4SqXC+vXrcf/99/O0ou985zt48803MTg445mgVcF3v/td3HLLLbxq8J133sGbb76J4eHhJUnewKTbaceOHairq0M2m8Xg4CBP0as1GGN8sT766KM4fvw4gsHgrP+X+lIoFAq43W5885vfxA9+8ANMTEwsWDa1Wg2z2QybzYZXX32Va2Gzgd1uR319PQBgaGho0QOYK1as4PGORCKB06dP15TAr1y5gl//+tc4fPgwuru7sWbNGvT09ODTn/40r1Q+e/bDQ768Xi+OHTuGJ554Ana7HZlMBidPnsSVK1dq0szsypUr2L9/P+688060trZi7dq1aG9v51bVpk2bYLFYeFGWVqvFZz/7WVy6dAler7cqSuTHjsC7u7vR3NwMrVaLkZERHDt2DCMjIzUJxmm1WqxYsQKbN29GS8vkec9jY2N4++23ceLEiUULVM0GGo0Gra2t0Ol08Pl8uHjxYs1Ne8YYuru7uZkKAMPDw/B6vbP6/8bGRjQ3N8PlcoExBkmS+GZUqbGnFNVoNMrdPWq1+pqfT0Gt9vZ2MMYwOjq6qB0U6+vrsXr1anR1dQEAMpkMgsEgRkdHa+aPz2az8Pl8PGNscHAQFy5cwMjICBKJBMbGxkoUr3g8jvHxcRQKBf7666+/XrNGa36/HxcuXEAmk4HD4cCmTZvwwAMPoL6+Hs3NzWhsbMTExATeffdd2O123Hjjjairq0NPTw8uX74sE/i1oNFosHnzZlitVsRiMZw8eRL9/f018zlbLBZs374d7e3tsFqtyOfzuHDhAvbv34/jx4/XRIb5QqPRoK2tDSqVChMTEzh27FjNtW+FQoFbbrkFTU1NcyIROvlo7dq12LBhA+/nUSwWEQ6H8cc//rFiGQBEdGNjY3zROhyOGS0EpVLJLQKKy5D/e3h4eNE0cIVCgY6ODmzcuBE9PT0AgEQigUgkUvP4DJFxX18f+vr6AAC/+MUvZnyv0WhER0cHgMlWBGfPnsWzzz5bs8yyQCCAixcvwufz8VjLjh07ePplNBrFoUOH8O///u9YtWoVmpqasGbNGmzevBk+nw9vvPFGxdfUNQmcMdYC4BcAGgAUATwpSdKPGGMOAM8AaAMwAOALkiRVp/nALKBSqWA2m7F3715YLBacOXMGjz/+OKLRaE2IyGg0YvXq1Xj44Yd5BkUul8PZs2fh9/uXZM8TgtlsRnNzM2666SYEAgGetbMYBL53715OwLOBwWCA1WpFZ2cnHnjgAWzdupW/lkgkEA6Hkc/nK6ZVZrNZrqnec889+M53voN7770Xv//976e9t62tDXV1dVxDW7NmDX+tPJOq1rDb7dDpdNxVdfToUfT39y+aPLNBW1sbHnnkERgMBrzwwgv45S9/WdNNMJPJYHh4GN/85jfx7W9/mxfnMcZw9OhRvP766/jnf/5nJJNJxONxvPrqq1i1ahW6u7sRj8fR2tqK4eHhigY0Z6OB5wH8rSRJJxhjZgDHGWOvAXgAwH5Jkr7PGHsUwKMAvl0xyeaIVatWYc+ePejs7ITX68WZM2dw7ty5mrV2vOGGG3D77bdjzZo1UKvVGB8fx9mzZ/HMM89UxPdaTXR1dWHHjh2w2Wy4cOECJiYmFs1XT1rrbLF27Vrs2bMHn/rUp9DT0wOj0QhJkhAIBPDaa6/hjTfegM/nq+g86Ovrw+9+9zs4nU40NjZi586dPPgmgjEGlUoFnU4Ht9vN+2ZIkoT33nuvZrnW5VAqldy8LxaLSKfTeOutt3Dx4sVFkWc2WLNmDXbv3o3bb7+dZ3csRjZXLpfDiRMn8J//+Z84efIkNm7ciFQqhddffx0HDx5EIpFAsVjElStX8Nvf/hbbtm3jnQu/8IUv4Mknn6xok61rErgkSeMAxqd+jzHGzgNoAvAZAHun3vZfAA5ikQjcarVi3bp1uPXWW2GxWPD222/j3Llzsw58VQLr1q3D9u3b4XA4AEwGqd5880188MEHS7LfiYj6+np0dHRAq9UiFApVrfy80lizZg22bduG3bt3Y8+ePZz4i8UityTeeuutiucHe71evPfee+js7MSWLVvQ2Ng4rc0tAIyOjiKVSoExxk/gIYyMjCyKC0WhUECn02HTpk1wOp28HPz8+fOz7r29GGhvb0dPTw9WrlzJx66WRXkESZLg9Xpx+PBhjI+PY2JiAolEAu+99x7Onz/P73E4HMaZM2dw6tQp1NXVweVyYefOnfj1r3+NSCRSMQVpTj5wxlgbgC0A3gVQP0XukCRpnDFWd5X/eRDAgwuU8yOxdetWfOpTn8J9992HZDKJl19+uSS9pxbYsWMH9u3bx/8+evQofvrTn1alcValYTab+ckniURiSW04ojZe/vtjjz2G7u5untlBkCQJQ0NDuHDhQlW03Fgshlgshn/8x39Ee3s7GhoasGLFimnvO3jwIAKBANRqNX70ox/htttu40HDbDa7KPnfWq0W9fX1vJNeOp2G1+tFb2/vrIPFiwGKH0iShKNHj+LUqVMYGBhYNHnIZ//qq6/O+Dodp3jw4EGsX78eK1euxJYtW+ByuRAIBCrGC7MmcMaYCcCzAB6RJCk6WzNXkqQnATw59RkVdfoplUpYLBY88sgj2LJlC/L5PP70pz8tCX+eTqeDzWabMTuBzkEsFApQKpXQaDTQ6XQAJn26zc3NuPfee/n7qQfI008/jf7+/opns6xZswY7duwAMLnxLKYpTUE/ml/btm2Dw+GAwWDAY489BqfTyYt83G431Gr1tOOsCoUC/vqv/xojIyNVl3d4eBhjY2MztkagjZDaAIg59e3t7fD7/TUnTYfDgS1btvDjxqLRKF577bWatD5dCNavX49169YhmUziV7/61ZJtRSEin8/jlVde4ZlHO3fuxOc//3m88sorePPNNytyjVkROGNMjUny/pUkSRSt8TDGGqe070YANd++6+rqcN9993Hfp9frxUsvvYTx8fFFPyh4y5Yt+OY3vznjwhgZGYHH40EsFoPRaER9fT1WrlwJYDIbxGazYcOGDSX/UywWMTIyApVKhTNnzlRMzqamJjQ0NPDUvXQ6vWhNtorFIk6ePMm7uQGTZ42GQiGo1WqsXbsWRqORlycTyYvBwFAohPPnz2NiYqLqpdUAZt1pTgykMsYQjUZrIl85aH5RkN3v9+PgwYNL1lJUqVTYsGEDVq5cCbPZjHQ6jb6+vpq6RxeCeDzO3Sg7duzA3r174fV6cfr06Yq4gGaThcIA/AzAeUmSHhdeeh7A1wB8f+rncwuWZg5QqVRYsWIFvv71r6O5uRmhUAi9vb149dVXF8W3mMvlkMlkuGazbds2bNu2bcb3nj17Fr29vQgGg7DZbOjs7MTGjRunvS+dTqNQKHBTm9KRKkXgjDF0dXXxU4LoOyzW5idJEg4fPsyLIxQKBT71qU/x18T3EagZUj6f5yfU79+/f0nn3AOTKWnV7Fd+NWg0GtjtdjDGkEql4PF4cOTIkSVL4Gq1Gnv37uWdKX0+H/c7k7W2VPsKEc6dOweLxYJgMIgbb7wR/f39+NOf/oRIJLLgTKTZaOC7APwPAKcZYyennnsMk8T9G8bY1wEMAbh/QZLMES6XCx0dHVxTPXz4MH76059iYGBgUdKzzp49ixMnTuCWW2655nt7enrQ09MDSZJK/LqFQqGkj8KBAwdKCgBOnz6Ny5cvV0xmhUKB2267DW1tbcjlcrhw4QKOHj2KK1euVOwac0GhUMD+/fuxbds2bNiwgRPNRyGVSiEcDqOvrw+PP/44Tp06hVAotKT8+ASal4uZPuh2u/lp8+FwmFuCS7VCWKfT4S/+4i/Q1NSEQCCAAwcOIJPJQKPRQK/Xw2KxwOPxLMnWzITR0VEcOXIEjz/+OL71rW9h+/bteOihh/DII48glUotaOxnk4XyFoCrraJ9V3m+amCMweVy4YEHHsDdd98NAHj66afx4osv4vjx44u2OH73u9/h3LlzuHjx4rRUOMoDps2GMYZ4PI4333wTgUCAm+HvvvsuPB4P14aCwSBSqRQno0QiUTGzW6FQQK/XY9u2bWhoaEAymcShQ4dqljd/NXi9Xjz77LMYHBzEjTfeiDvuuGPasXoiTp8+jddffx3PP/88BgcHEY/Hl6T2rVareUvhSualzwUKhQImkwkrVqyAQqFAPp9HNptddHfjtSC6yorFIm655RasXr0aq1atgsfjwc9//vOaxDsWgnA4jFdffRX33XcfPwKuubkZw8PDC7J+ll0lpkKhwOrVq/lpKMBkE6OLFy8uamny8PAwEokEDAbDNAJ3u91oamoq0Z4TiQTeeecdBINBTuDHjx+Hz+ermW+UTlRPp9OYmJjA22+/vejBrEwmgwsXLvDyar1ej5UrV8LpdKKurg7hcBiRSAQTExNgjOGdd97Bu+++ixMnTiyq3B8FxhhWrlwJg8HADwFYjMIuxhiKxSI/4iudTvMTjZYDdDodWltbcdddd/GTb5ZyfyER2WwWAwMDOHToEPbu3YtVq1Zh48aNCIfD1xeBq9Vq3HXXXbxnBnVRWwrFMsFgEH/4wx8WW4xZQZIkFAoFRCIRfijBCy+8sCRcD+Pj4xgfH8exY8dw/vx5bN++HXv37sW+fftw4cIFnDhxAi+++CIYY9wnupShUCiwZ88eWK1WDA0N4Re/+MWi5TBTk6itW7ciHA7D5/PVXI65glyLDocD+/btw6233opjx47h0KFDeOqppxa9KdhsUCgUEI1G8S//8i/IZDLo6enB5z//efT29s6pIVo5lhWBu91urF+/Hg888ADcbvdii7OsIUkSkskkvvKVrwAAb+a/1HD06FGcPHkS//Ef/wGNRoN8Po9cLsd9nmRWL2VIkoTTp0/jxIkTePfdd3HkyJFF0cCLxSLOnj2LH/zgB5AkCePj47h06VLN5ZgLEokEvve97+GLX/wi3G43zp49i9/85jfwer08H3+p338RdKD5+++/jzvuuAMvvfQSfD7fvBtdLSsCt1gs6Orqgt1u583Tw+Ewz9aQMXcs9apLci8txc1ltsjn8/j5z3/OLYvFtHJSqRRGRkbw1FNPIZlMLvl0vHw+z0+70ev18Pv96Ovr44ckLCfyBj5Mlf3lL3+J733ve7BarbDb7dcHgRsMBjQ2NvLjn8LhMD744AOEw+El3SxKxvWNYrGIl156abHFADBpacViMRw4cGCxRZkVisUixsbGlnSZ/1zR39+PWCyGz3/+80gmkyVFaHPFsiJwEWNjYzhy5AgefvhhhMPhZbcTy5Ah4/oEnST0iU98YsGfxWoZgV5oKb1er4fNZkNjYyNyuRzi8TiGhoZk94kMGTI+7jguSdK0ysBlReAyZMiQcZ1iRgKfv/NFhgwZMmQsKmQClyFDhoxlCpnAZciQIWOZQiZwGTJkyFimWLZphDJkyLg+MFNHyuXSv6XakAm8ymCM8QcwWZhwrRapi31i+VKGeGJPsVhcEi1aRdC9ps6Dy6HUf7FRflQe3V8aR51Oh2KxiEKhgFwuV7I+xPbL1J65FnNCXNd0eLVSqQQwmectyjXTz0rJJxN4BVF+U4Hpp6yXk474XnqOGk0tFVJaKhDHSvx9qYxT+X2UcW3MdE+JwOmoPHFNKRQKvobKx7h8LQGVvQ/lcooy0UOSJF5Z+VEbd6XmrkzgFYB4I1Uq1bS/aWcWyZkmoTgpxNcBLAqJl2tDS8kaKF/cohZervEshmwiaNzKtcKlBHHuiT/LZa2WRltOgvScUqksuc/iWhHnpCjP1Q6/rpTc5bKWkzcpasVikRP5TNe/mpzzlVEm8AWAbiAdTKzVamEwGPgNViqVMBqNMJlM0Ov1MBgMkCQJqVQKqVQKiUQCarUauVwOyWQSjDEkk0n+GvAhEVTTDBfNQJJfkiRoNBqkUil+AAFtKHSMWa1IqVw+jUbDF3yhUODNrki+8vGqtildLqf4PC3qpQSat2q1GhqNBiaTCYwxqNVqqFQq3leoUCggmUzyY/bEE6MWinLNWqlUljxI+VGr1Xws8/k8751dfnoVfa9ypYM2gPnKXW4JKJVKfpC2SqWCVquFRqMpuXY8Hkcmk+GHZZRv5vS5ojt1vvNEJvB5QqVS8Qmm1WphMplgMBhgNBqh1+uh1Wqh1+vR0NAAhUIBjUbDD0+gRaFQKBCLxZBIJBCPxxEKhUq0cyKlQqFQNS1OnJRmsxkOh4NbESaTCel0GplMBul0GrFYrOSEoGpqluLEJvmsVitaWlrgcDhgNBp5EzN6pFIpLmsymUQ2m+VjVylrZibzudwPSqfd0KYn+kQBlCzkclTD4pnJx0zz0WKxoL6+HgqFgs9Z8jOn02l4vV7eQVHUxOcrozhWNF5qtZqvIzq5SKvV8gdtHplMBpFIBJlMhq8LcVxF14qoaBDmKjdtJnR8m0ajgUajgcVi4Rug0WiEwWDgigQA+P1+xONxxONxTuJkVYsykhJCspLiNBcZlyyBX22C0/O0cAgfFSwof8/V/p6LbCqVit9Qk8kEi8XCf5rNZuh0Ot49sVAoQKVSwWQyIZPJwGAwIJfLQavVIhwOIxaLQavVIplMIp1OcxIQXS8AFqz1zjSmoqaj0+lgs9m4lms2m5HNZpFOp/nmks/nq975USRvtVoNvV4Ps9mMVatWcQI3GAwIBoPIZDLI5XJIJBKIRCJIJpNIJpPweDxgjCGbzVZMayz3d9LYkSYmElAymUSxWEQul+Mbcbkc5dZCJQNcM91rUX69Xg+j0QiLxQKHw8EtRLISc7kcYrEYP7m+/MzJ+fpwxQ2Z1o9Go4FOp4Ner4dOp+MKkUajgVqt5veY1gZZhSKJzxTkpOPrSNa59Eyie6vRaLgVTTI6nU4up16v55se9alnjEGr1UKlUiGdTpeQeC6XmzYXRM6a6xqfNYEzxpQAjgEYlSTpXsaYA8AzANoADAD4giRJoVlf+erXmfYQ/V+0a9FCKTebys1oMk3oBouYLyGKLhOdTger1QqLxcK1GYvFwrUKMrfo9Gz6u1gscpdALBaDWq2Gz+dDPB7nspMmDKDEFJvreH7U87SYdDodNBoNrFYr6urq4Ha7odVqUSwWkUgk+JFx6XS6RHMo/7xKbTC00E0mE9xuN1pbW3HvvffCaDTycYnH43wOeDweflo5LXj6vEwms2D5RM1V3GD1ej1MJhNcLhffuBUKBYLBIN/8yHKhe6hUKrlWTprlTFrjQmQt/7s8LkOKhtFohNFoRHNzMycprVaLaDSKQCCAaDTKx/tqvty5arVEigaDga8hk8nEZXG73bBYLHztipaVzWZDLBbjpEivZ7NZvukQCoUClEolJ/G5rHdSHAwGA1wuF5fXZDKhoaEBDQ0N0Ov1fC3Q+aI+nw8GgwHRaJRr4uROofVDZC+On+hCmcs6n4sG/jcAzgOgE2YfBbBfkqTvM8Yenfr723P4vGkQJ5jT6QQwecNdLhefWGRSkVljtVqn+b30ej13QeRyOQSDQfj9fgwNDSGRSPAbT6Q6lwGja+VyuRLTz2w2w2azwWq1Ip1OIxqNclNPqVRCpVJBp9OVTFa9Xo9IJFJi6gOlOzGZavPtuCiaaiR/eeA0l8txs1Wn08FisaChoQErVqxAIpGAx+PB0NAQP1zhWtH1hWqPNAdI625vb8fq1avR3NwMg8HAyTsYDHLt1+12w2azIZVKIRgMIhKJYGBgoMR3O98NW9S2aXNWqVSoq6tDe3s7GhoaUF9fz2MY8XgcRqORu8rEA0do/GlBRyIRfrC1+J6FuHzKfa1irIaej8VinEjJVWA0GuF0OqFWq7llSPOY3AOitng15WAmkNVKa0aj0aCurg5GoxFarRZNTU0wm80wGAywWCxceyatltYP3W9xE89kMkgkEgiHw1zLJdIun+/Xmp80TiSjXq+Hw+GAy+WCy+WC2+3myo0kSchmswgGg1xOImayvvP5PHeTRqNRfgYmbd4zyTKXNTQrAmeMNQP4FID/B8D/NfX0ZwDsnfr9vwAcxAIIXDRZ6CBb2gXXrl0Lq9XKXQqxWIybeyaTiefcFgoF7ssDPszHHB0dxeDgIDKZDLxeL19Y8zWtiWBJe6KgpEajQSgUQiaT4T4w2mx0Oh3MZjPy+Tz/nqIvkDYTkkkk87kulpnkJZQH2UTNr1AowGAwwOl0crLM5/N80ZFmW+2AKlkmK1euRHd3N9rb29HR0QGbzcbdJR6Ph2vgyWQSiUSCa79kEZnNZiQSiRJtba6gBU0bnKgpkmwul4tbUuV5ynTv6Z6TBRaNRhEKhbivOZlMTjOhKx1jEMk3m81yzTCbzXIiLRaLSCaT3D2RTCb5Pb+aBn4tiH5vUemhMSEriywYtVqNSCSCdDqNdDqNVCpVkolCspI2TwF/+j70HeejnImWlvggl5PZbIbZbOZHEAYCAXi9Xu4aIQ4i2Wh9q1Qq5PN5PmfL0yHn6z6brQb+rwD+bwBm4bl6SZLGpy44zhiru8qgPAjgwWtdQAyiULDKZDLBbrdj+/btsNvtAIB0Os3NFFErJ/8s7dCi/9hisUClUvFFTybMfLRacRGQXy6ZTCIajaJYLJaYcvScTqfjmo5arS7RuGcicJGwZ3L9zEdmkbDLiUEkcdLCGhoakM1mufauVCo5gVcj0AZ8uIAoUNTR0YG1a9eipaUFjY2NMBqNmJiYQCAQwMjICA8EA5OBI7vdDovFAqvVCpPJBKvVilQqhVgsxt0ocyVF0SokjZU0srVr12LlypUwmUzI5/PcuiPSyWazPNBFxE9kHggEuCuF/k/04S4UV4sB0f2n9ULrgNwZ5DIjeUSLtfyz5kLi4kZI2i39bjQaYbfbYTKZ+PogrToejyORSPA1olAo+NqntU7fhwLsZCmK37n895lQ7mYSA61E5JR1QudxejweTuCSJHGfuOiCoc9MpVL888i1Mxu5PgrXJHDG2L0AvJIkHWeM7Z3rBSRJehLAk1OfNaOUdHNp0TmdTrS0tKC9vR1NTU3c1CLtIJ/Pw+fzwePxQK/Xl5i1AGCz2aDX6/muV1dXh2QyCbvdzhe86Medz+DR4DPGEAqFkEwmeRoh+TuLxSL31edyOWQyGb7hqFQqFAoF6HQ6rvGQH4x28nJ//kIWtvi/M2mixWIRGo0GTqcTdrsdRqMRGo0GHo8H6XSaWxPXGq+FyqhSqeByudDZ2Ymbb74ZGzZsgNlshkqlQjQaxeDgIH/EYjG+yKLRKHw+H9xuN1atWgWn0wmlUgmDwQCPxzMt6D0biAuaHjqdDg0NDVi3bh3Wr18Pl8sFYPKEqGg0iomJCQwPD/MgqtlshlarhdVq5QROhE6BOp/PxwlKdAdWkshFy05MBNDpdHC73VwZUqlUyGazSKVSCIfDiEQiJfOwXBmY7TiSG1HMl6ZAv5jFVSwWEQwGEQ6H+fUzmQwPINpsNphMJv5ZlBECgAfbCaLbbDbWlygnbQK0kdF3Jat7bGwMExMTGBkZQSQSQbFY5Jo1ad507ylOkkgkuBVOmVzl63KuVuJsNPBdAP6MMfZJADoAFsbYUwA8jLHGKe27EYB3TlcWIO6QWq0WK1euRFNTE+x2O7RaLRQKBeLxOFKpFKLRKPr6+jA6OopQKIRcLsfNMLvdjpaWFu5e0ev1nEjj8ThPOyN/1UJ8jMCHN5M0J9K8RJDZSJkUdXV1fDGTyyUUCsHn8yEajXLNjTQkkcArgfLvLAYzDQYD93273W74/X4AkwfhTkxMlATirvW5cwURi8FgQFdXF2688UbccMMNcLvdYIwhk8ng8uXL6Ovrw8jICPx+P3dBkDlK7hSPxwODwVCSU1zu95+rXLQgV6xYgdbWVrS3t8PhcPBU0LGxMZw+fZrLlslkeA5zOBxGPB7nc9LtdvPAZSgUgslkQiQSqZplIwb0xQetmxUrVqCzsxNqtRqpVApjY2MlBzCXuyLmI2N5MgLdF9rcisUiD/DR5kHjRhaoQqHgLhJyxZBvnDZFlUoFSZJKrIbZjqto9YrWGsXSyEIeHR3F+Pg4fD4fgsEg4vE4TwQoFAo8s4cyuujeGgwG/vnihli+yc4F1yRwSZL+HsDfT33BvQD+TpKkrzLGfgDgawC+P/XzuTlfvfQ6JUSYSCR4doZOp+O7cSAQwIULFzAxMcF3Z9qJXS4XtFotmpubYbPZoFar+WeFw+GSgMzVynHnIu/V8k7F/FaTycTzbSnIKWYrkHZLG5Q4Ua52oxcK0cdKPymIVVdXB6fTyTe/cDjMybKa/m+SweFwoLW1FV1dXaivr4darUYymUQoFMLAwACGhoZ4tkkikeAErlQquUZOWh1ZROXBrLlAHCsxpcxgMPC4QDgcxsjICEZHR+Hz+RCLxVAoFHicQ6fTcSKkzBVJkrh1JlqDC4l1zAXUY8RsNqOhoQFOp5P7vKkmgQLslSjaKldESAsX858zmQx3R0aj0ZJYFQXyxbUrWkflWTEz+ZWv9R3K1xpZw+QmJRdNKBTifCLmx9McEe+rmNtdLte1/p4NFpIH/n0Av2GMfR3AEID75/tBNFi5XA6RSAT9/f0wmUyIxWKIx+NgjOHy5cvwer0YGxvDyZMn+eBRap7JZEI4HIbNZkNHRwdcLhdUKhVisRh8Ph/Gx8fh9/tLtMhKTEoAJRkkRETk22toaOC7cX19Pex2Ow/UUBQ9Go3y9DcKuImmW7U0MwKZfWTB0NglEgkMDQ2hv78fPp+vagROC1GtVqOlpQXd3d3o7u6G2WxGKpVCKBRCb28vzp8/j76+PgSDQU7cYtaA3+9HPp+HxWLhPlXR7J+r9i2OO2nhlOtNn0Vuk97eXoyNjfHiDYqzEPmQpQZMkid9rhjMoutUA+LmQERjNpvhdruxcuVK2Gw2hMNhpFIp+P1+vmmLKY4LuTaRNZEiZeLQWEmSxBUtr9fLrWVyJVL2WXn+N90HMcdaHMtyRehactKDrpXNZpFMJhGJRHjw1O/3IxgMIhqNIpvNlgQrTSYTgA8rhImjisXitMSJ8kSC+WBOBC5J0kFMZptAkqQAgH3zuuoMKBQKPCUonU7zAphwOIy+vj5Eo1EEg0GMjY0hEonwhcIYQz6fh0Kh4D50MaJOGShDQ0MIBAIlJmElQAtDXJA6nQ4OhwP19fVckzSbzTCZTLxogjGG8fFxRCIRBINB+Hy+knzWuUbQ5wsiJqPRiK6uLp5Rkc/nudY7ODiIdDpdVe2bXBR79+5Fd3c3bDYbGGNIp9MYHx/HmTNn0N/fj0AggFQqBcYYD2BJ0mQmh8VigdFohEKhQHt7OycLl8vFLa/5kDgRBi1Qh8MBt9sNSZIQCATg8Xh4oJQe9L+kXFCdgNlshl6vBwBewEXaMG3elc4+EceZAnI2mw3t7e3o7u5GW1sb9Ho9kskkVCoVBgcHeU1CpVomiHEdCvYD4BYTpdlFo9FpxTdi8JPcUFT0YzQaEYvFOOmSa4U2yblY2qLWTeMlSRLPQqFAJKUNkttRtPYoQ4nuOW1O5cRdvlHPV1FbMpWY4uDlcjmEw2EeqSUtjPIpc7kc19gA8EVis9l4qg/lso6NjXECJxKqFinS55I7ggpQbDYb19zUajWP/sfjcR41J22hGi6TjwL5nd1uN9auXQuz2cyJ8/Tp0xgdHeWBrGpCq9XC5XKhsbGR9+ZIJpMIh8MIBoMIBoNIJBIlwSIxO0CtVnPfY0NDA/erZrNZ2O12+Hw+HjiaC8R7USgUeBANALeeyIIieWhuGgwG2Gw2uN1unlljs9mg0WhKNNty620+JdXXQvk1XC4XWltb0dbWBotlsrQjGo3yDTsWi1013jFXiD5e0kxJ6aK2A+SeIOWFskwo2Cmm8VFGEMXHqH6B4h6in52IfDaWjeg6IcuI5E0mkyVrlxQIWtPkJhWD0/QdaY6S3GKBHt0TkdRr5UKpOGjw8vk8rwDLZrPcJyeaWxQtpoG0Wq1wuVw8gwIAQqEQRkZGMDY2VpLqUy3Zy7VwyqghfynlAFOzKtqMRD9gNTeYmUB5tS6Xi2tiwGREv7e3l1sG1ZSJ7qHT6YTVaoVGo+G+x0gkwgNaZHGJGRuU8kXaj9VqRX19PdfOKQZBaWvzgbiwdTodVywoT5kC4kQ6ALgmRnNA1MJ1Oh3XbssLTkQCqiTE+0dFSE1NTWhqaoLBYOCb5cDAALxeb4lvt1LXn8mNIkkSXwNE3hQ3oPtLWi5lcxB5kyUrbuLlmUNKpbLExTkbOWeSNZlM8s8Si/PI2rfZbJzAaSMpFovcUqD+SOVxDzEjqCpBzFqCtJxsNotQKIR4PM53aNHXRZkdtKNZLBY0NTWhs7MTGzduhMViQTqdxvDwMN555x309/fzEvVaabUUfCVfqFarhd1u51WCZFGQH2++N3ChUCgUcDgcWLlyJVauXAm9Xo9UKoV4PI7e3l5eEl5NUAppS0sLNBoNt07i8Ti8Xi8mJiYwPj4OACXd6WiuSJLE86xJs8zn89zEFvOG5wpxzqhUKu4PFTUpnU7H89QpK6Kurg52u51bie3t7WhsbITT6eTZR6TZlRN4teYCaaJqtRrd3d1YtWoVmpubodPpeE7zmTNnEIlEqqLsiBamQqHgud7RaJRncDDGeOMoImm6f0TSpLCZzZNlKfF4HAC4hS1u7FRYM5cxKm/BQQU45KYBwF05JpMJ9fX1vMra6XSWVNW6XC7o9XoolUpEIhGMj49zBYQyZhZi3S4pAidIkoRIJFLSVlIszBGT+snv5XQ60dbWhrq6OqhUKvh8Ppw9exZXrlxBOByumDk4G9k1Gg0A8LTCZDKJYDCI0dFRXkhEZiQFP8o1h/IIerVkVSgUsNlsqKurg0ajQbFYxPDwMA4cOACfz1f1xlUAuLYSiUQQi8V4Hj/JMjQ0BK/Xi0Qiwc1m0dSmoLDoOrNarXxxkIlOGvxcQQs3Go1ieHgYjDHkcjnuGqM5F4/H+aZBVaPk83U4HFz7zuVyPLA+Pj7OC74o/5g0vWqA/PgNDQ3cnZPL5dDb24vLly/D7/eXbCjV0sIzmQyi0Sh3c1gsFp4PbjKZuLVjMpmg1Wp5HQW5sWhjpuwtKvghwibrfT75/wRSEJRKZUkPIMoio3kn1nWMj4+XKGxi4RJjrCSQTZbmQjbrJUfgtEPT5CcyIy1cND2IzMldQT1TgsEgxsfHMTAwwCPF1QoK0c/yHgpEShRgoZ2cTDEx+EqbU/nnielS1QxqkcySJCGZTMLn8/HWA9W2CsTc22w2i0gkwsmXMhJCoRD3j9LYUDoZLQAyTQFw7TEWi/HANeXWzwc0/5LJJMbHx/m9owVJAVgA3BdLmwy9j3zj9DmUFksberWzUOizVSoVDwLSRkG1FWNjY7zfdrUgbqqUNkitMdRqNSRJ4oQNgK8RMRgoul7ETBbSjoEPW3OITc3mKqe4blOpFHebiFlNALgM5AbKZrM8E4rmJ20GJBtxAPno5xu8XnIEDpTu1ETY9LuYDyrmWTudTrjdbqhUKkxMTKC/vx/9/f28lWelIZKtSIRk9hEhhsNhACjRAskcFP2fov9cNDOrTeJi3irJS1Wu5cRSTUuAgtehUIhnRIRCIXg8Hh5EpUVA5q1o5lJePfChqR4IBDA8PMwzluh/5itfPB7H8PAwzwum4JkYTKVxpEZVot+cyr0p8ygcDvPArFiFV604CPVzsVgs3ErMZDIIhUK4ePEiRkZGSnq9V2MzKSdwCv46HA5OauT/JiVOVMBok6YNmVowl89VMVZCmMscLg9eJ5NJHpAUc9GpWRUFN4nEieiJ3Km6lb4D1ajQfJkvRy1ZAi+PXNNNIbeDeJrIhg0b0NPTg5aWFkQiEfT19eHMmTM4e/ZsxbVI0dVBf4vat9VqRUNDA9xuN+/fQo15qKsa9azW6XS8MhQA19LEnhiillnprASVSoWGhgY0NjbC5XKBMcZzganbGqGa5E0+xqGhoZLqykAgwBsVUeYG3UvSsEwmE+rq6tDS0gK3282r3WKxGPx+P8bHxzE6OjpjOtdcZCTyHRsbQzgchsfjgd/v564Rm83G7xtdiyr0XC4X4vE413qHhobQ19cHj8fDXSaiX78aBK5QKGA2m9Ha2oqbbrqJWwyJRAKjo6Ml1b/i964kRA06k8lwkisWixgYGOBjWSwWuRaeTqe5a0mn06G+vp67U8S0PtrkyQ1I82ohca/yzDiyTqifP40ZrW2SizqpkstHPGyEFBCDwVBSTj8XP72IJUng5aAbQJqomCdqsViwevVq1NfXo1gs4syZM7hw4QKGh4d5qlalQGQtknZ5b3CDwcAnIhUSEUmTS4hyvEV/HQVkaUfWarUlecGVKj4ikDXT1NTEic/v98Pr9cLr9SIQCJRUzVUTtNgymQwv31ar1QgGg7wbHvBhAQzNA51Ox4OWTU1NcDgcPK+aelVMTEwgGo1OK/KYj4xU7k1aYaFQQCAQ4A3YxIpKIh7KZ6dsKgC817a4sYsHAizUL1oOmq9UuNPa2soDqX6/HyMjIwgEAjygSv7cSkN0l4matZiFRdo0uVPEJnUAeH91cpuRZktrXbQcxKZ1c1074nvFdEIqNqQccIohiIV3dBAKxb9EBZQ2GPq9vE3vXLEsCByYPqA0AHa7nR8DFolEcPHiRV60U+lJKGrf5T2DKVpOnfAoaEE3nW4UmV9kztFnUZUfaQ9iOX2lzVn6DjR+VPxCrQpCoRCi0WjJmFfThQKAB7b8fj/fwKhvMrmoKOgDoKR9Alk8NpuNu4EmJia4/1xsLraQ70AbjVjsQYFV0rZpg0+n07xohzoViuY/HVVHC5+C2jO1bl0oKPNEPDGK+gvF43H4fD5ueVU7jVW0rEW3R/lBJ+T+kKTJEnvq8EdkTYQubnblHEHrbr7fSZRVzEghYiY/vNiegwhd9M/T9Ykz6F6LxUbzlXHZELgIMkEo/Q0AfD4fvF4vjh8/zku/ywdloSRUTt5iEx3qQV1fXw+TycQDVhQNz2az0Gq1PJotdimkBUZmbaFQ4KX180nuvxaIvKn4iTSZQCCA8fFxeL1e7tertDY4E8QAr9frRT6f542JaIzJX0hBLbGxFGUf2Ww2TExM4PTp0zh58iQikUjJwRoLHcPyjVU09UnLIqsM+NDUpnL7VCoFtVrNi5HEzCoag/n2Lb8axE6fdGoQEU48HkcgEMDY2BjvqCluItWC+H1JRnIvKpVKXgNCJE5Vj3RQitPp5FYZcQH1TgLAXR6i5btQWUV3CpXYA+DXIPce9ZQRy/7pJ8W+qHgP+PAkn/la2MuSwIk8Kf87Go3C4/Hg0qVLuHLlCs9aAEqDgsDCSFxM86NGQHa7nef3Wq1WWK1WTohkRhuNxhLCpowLasRFJjiZj+TfE7uwVUozIpKhs/0ok4JKwKnoiVK8qpFOVg4iRspCEQseaDzJD6rVannP8paWFn5ij1arxcjICIaHh7lbIBaLVbx1AskrEhAFWCmQSRsyfSfSBCkjKRwOc3nIdVQeiKsEygud6NCEdDrNT9yh9hTiqUHi/9O9X6giIc4hCj6Lr9F6JRnI1UCuRWp3S1pr+eENYtYJra35tqOYKSOo3I1CjdNojRAn0KZDFiMwmZkEoOTgZlrTYpLCfLCsCJzIhw7fpUKJSCQCn8+HiYmJkmT+8klTievTRKFNhNrYkgYo9vulQxCoWou0CZq8tOuSNkFmn3hmnqgBVEp+sUCCJhNBzOQoT2esJmihid3nKN+WzGVy99AJLvX19XA6nVAoFEgmk7zvzejoKCfvalXfkrziwhaLM8iXTH8nk0luTlMXRXLJiKe5VFJWIhGyVsVUPbEZFHVsBEqzT6oVxC7fEESLRhxPIkiyxCjfWgxGi+4LCjSLJ0eJ8bPZ4mpcId5zMUuFlA2xpJ4e4tqi1gBibcJCex4tGwIXyZMq7lwuF69wIt8tkaJYjABgXjfyahD936SJ22w2OBwOGI1GfvIGZZWImTSUNkaLWvSVUWk2+UeBypzIQxDzgKnUmxYFaRJiSTL9j/h7Lfzg5GKgc0NJs121ahUv9KCDZhmb7JkSCAQwMDCAK1euYGRkhLsDqrn5iAu6PBVQHEsA3HVGKWlE2CKBVyNwSfPT7XbzLBiSnSwFIppKBsmvJtNHfX75eAKla420V/F94ulB5IYrPzmqUsqPSOxiQoOYSkqKJfXMEd0pZIGLaYWi6+Rj7QMXJ2NzczPWrVuH9vZ2WCwW3nxHPAFajO5WalKKATS6mXQDiGglSeIBF9IOlEolT3eik6nJzBNlpiyFYrHId2cyvxf6HWjCqdVq3imxvr6+5PzIQqHAzTyDwYBgMFiymKrtRiFT2uPxQJIkfuhFc3MzWlpa+AHWlK5JmnY4HMbJkyfR19eHiYkJ+Hy+qpO3qCCQlkjP0zhThW15cI2OeSOtvFrkTQ217HY7v9fUp4PaHVManJgNI6YyVnr8yrVb0S0pnplJ1gv9LdZYUI44rQ3qLVTe718c04W4fsqzzij7RGwha7PZuBJXV1fHTxeiYwCDwSDv7UMHt1Ri414WBC4G3dxuN5qbm7nWQI2uqCii3HQSU7sWqoWLaU1UUalUKnm7VTqwgfzKFCiiLARy84gLVzzDT3SbiHnLC13cIsnQxCMXkEKh4Of7jYyMoL+/nwe1FuJHnA9ofGmzo1PlyWcvdshTKBR8Yfj9fly+fJm3QBVzmauJcjIymUzc1Cf/J41bKBTih21TO1zKYKJAdqX932JnQ+DDQ38ZYzxY7fV60d/fz0+WmekEnkqg3JUpErdYV0HvI8tLrFQm16S4XshlQg2myL++UM2WZJxJ8xbdO2azeZqlSDEl4gA625PqGqjzojjOH0sXCg0e+cAsFgvcbjc3BwHwXY3MUhHlTYEqkYUAgJMMPUdaFVWFip0FyZQnUgoEAnwh0UQTi3XoMytp/omgDJdQKMRNP8r7HR4exvj4OLcUqlVUcjXQmFH2jdfr5TnUqVSKNzwiuYLBID+Sjg6srtQJMh+FmXykImGKhETfi7r70eZOWma1YgziWMZiMYyPj/P7To3iJiYm4Pf7MTExwS3BSmfBzISZxk+0YsXrE8nRJiemB1Khj/i3mMmzkPTB8gpOUUa6BrluRHeYGEBljHErm7JkqHKUXIULtXSWNIHT7iuSd2trKxoaGnizo2QyCb/fz0tdZ9rRRc27EiROuyqZwqFQiC9IcWEyxngrViJxMWBFG04l/fNXk5kWAsnh8Xhw+fJlfiA0yUq9YxaafjVfULEMnYTi9/u5/5MOKgY+zN6gqlYxh7nSwcCZUK4xi1aX2MJUJB+xTJ3aBZTnfldCbpG8s9ks74tPpj8F3cRjwqrtciK5COUJBjRGRHpUmEPZPZRWK55CTxo4ETm5UcVTreY7prTZiooUzStS0MTAs2gt03uo3Qe1TYjFYrx3PCVbLHTMlyyBi0FL8jFRcKChoYGnQ/X29pZoD7SziZNDjBxXAmIhDplLomko4mobSK20WlEOImQyA4kAZwoe1Vq+clCqZS6XQyKR4Bp5ORZjTOmaNI6ULkgn2pBrjWIJZrOZzxmaz7SoqQS80uRJGwfw4ZxMp9MlLoFq+bmvJRfJRAoFzUtKn6Ue8KQMkRJHMTCRmKn7ZCKRKNkQK1FGT3KW3xvqckjWK7UXpr7gDoeDb9h036kDJSUu0Hdf6NjPisAZYzYA/y+A9QAkAP8HgIsAngHQBmAAwBckSQotSBoBRCjAh+0bAfCDEChoEQgESlqykp9RLEKplokq7tLXeu9Sgii7mGa31OQEqm+dLATl95+0WLL+SAukknFSSsiFQaZ0tYulltoY0toW+wkBpU28KJOELFnK3iBrRfwfGkvxRJ9KrPlyv734vOhOoSZ15CajOAPJTxu8WJdQKStxthr4jwC8LEnSfYwxDQADgMcA7Jck6fuMsUcBPArg2wuWSACRL5kj5Msj85MKeMRqJ9GNUm7WVAPlN3mpLJLZoNba18cRRMz0u+gaAzDNQgNQUuJdyxjDUkK55SRuhKLbCfhwbYmbIbnSaBMU+8hUcl6Xu31II6fXxHx6USZ6XaVScVeWWFpfKbBrfVHGmAXAKQAdkvBmxthFAHslSRpnjDUCOChJ0pprfFZFRlU8WYV8jUTclQgMyJBRCZRnLyw1TXipoJyoy4++K+/8SaCAZi03wZnqI8r/Lq+bqJBFcFySpG3lT85GA+8A4APwH4yxTQCOA/gbAPWSJI0DwBSJ1y1EurmgPE2MNO1qF5rIkDEXiHNRnpdXR/nG9lFjJZLmYihpHyXjTNk1V3tvpTCbJrQqAFsB/LskSVsAJDDpLpkVGGMPMsaOMcaOzVPGWUNeJDJkLH+ImR/lD7Hidamt96vJXE3MhsBHAIxIkvTu1N+/wyShe6ZcJ5j6OT1FAIAkSU9KkrRtJvVfhgwZMmTMH9d0oUiSNMEYG2aMrZEk6SKAfQDOTT2+BuD7Uz+fm8X1/JjU4P3zF/ljCRfkMSmHPCbTIY/JdFwvY9I605PXDGICAGNsMybTCDUALgP4n5jU3n8DYCWAIQD3S5IUnMVnHZO18VLIYzId8phMhzwm03G9j8ms0gglSToJYKZB2ldRaWTIkCFDxqwxv5M0ZciQIUPGomMxCPzJRbjmUoc8JtMhj8l0yGMyHdf1mMzKBy5DhgwZMpYeZBeKDBkyZCxT1IzAGWN3M8YuMsb6pnqnXJdgjA0wxk4zxk5ScRNjzMEYe40x1jv1077YclYbjLGfM8a8jLEzwnNXHQfG2N9PzZ2LjLFPLI7U1cVVxuR/McZGp+bLScbYJ4XXrocxaWGMHWCMnWeMnWWM/c3U89f1XOH4qKqnSj0AKAH0Y7IsX4PJ3io9tbj2UntgsnOjq+y5/w3g0anfHwXwT4stZw3GYQ8mC8LOXGscAPRMzRktgPapuaRc7O9QozH5XwD+bob3Xi9j0ghg69TvZgCXpr77dT1X6FErDXw7gD5Jki5LkpQF8DSAz9To2ssBnwHwX1O//xeAzy6eKLWBJEmHAJTXDVxtHD4D4GlJkjKSJF0B0IfJOfWxwlXG5Gq4XsZkXJKkE1O/xwCcB9CE63yuEGpF4E0AhoW/R6aeux4hAXiVMXacMfbg1HMljcEA1Kwx2BLD1cbhep8/DzHGPphysZCr4LobE8ZYG4AtAN6FPFcA1I7AZ2rTdb2mv+ySJGkrgHsA/J+MsT2LLdAywPU8f/4dQCeAzQDGAfzz1PPX1ZgwxkwAngXwiCRJ0Y966wzPfWzHpVYEPgKgRfi7GcBYja69pCBJ0tjUTy+AP2DSvJtVY7DrAFcbh+t2/kiS5JEkqSBJUhHAT/GhO+C6GRPGmBqT5P0rSZJ+P/W0PFdQOwI/CqCLMdY+daLPlwA8X6NrLxkwxoyMMTP9DuAuAGcwORZfm3rbbBuDfRxxtXF4HsCXGGNaxlg7gC4A7y2CfDUHkdQU/hyT8wW4TsaETTbZ/hmA85IkPS68JM8VoDZZKFPR4U9iMoLcD+A7ix29XYwHJrNwTk09ztI4AHAC2A+gd+qnY7FlrcFY/H+YdAnkMKk1ff2jxgHAd6bmzkUA9yy2/DUck18COA3gA0ySU+N1Nia7MekC+QDAyanHJ6/3uUIPuRJThgwZMpYp5EpMGTJkyFimkAlchgwZMpYpZAKXIUOGjGUKmcBlyJAhY5lCJnAZMmTIWKaQCVyGDBkylilkApchQ4aMZQqZwGXIkCFjmeL/B8r6/xg+ZxUOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1244,32 +1211,36 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZVl63/e/b57HGDMru7sINLkx\nYS4IyQsvZAg2bMMAd4TlhSlDADf2Xtx5y60BA4a5ECwtbEsbQVoYHiBA8MoAYS8IusHqbrGqOjMy\nM+LFm4d48/Ui6vfF927d+96LyCp2dDkOkIjIiBf33HPOd77h/01BGIZ6GS/jZbwMRurX/QIv42W8\njOc1XpjCy3gZL2NnvDCFl/EyXsbOeGEKL+NlvIyd8cIUXsbLeBk744UpvIyX8TJ2xvfGFIIg+A+D\nIPgiCIJfBkHwJ9/XPC/jZbyM73YE30ecQhAEaUk/l/TvS3on6c8l/b0wDH/2nU/2Ml7Gy/hOx/el\nKfwtSb8Mw/CvwzBcSvqfJf3B9zTXy3gZL+M7HJnv6bmvJb11/38n6W8nfTgIgpewypfxMr7/cRuG\n4emhD31fTOHgCILgjyX98a9r/pfxMv5/OL4+5kPfF1O4kvTG/f+zb35mIwzDP5P0Z9K3NYUgCBSG\noX2N/sw9Q0l/x+/jfvbrGn493/c80u5a/b4x4t4l7h2T9pD/J/1NdK5j1h+da7vdHpxr37sfM/i7\nXwdtxJ1L3Gei9yDud0njsev6vpjCn0v6aRAEn+ueGfynkv6zxzzAE4H/Gf+in9lut4kMJI6hHPsO\nce8RJaBjN33f5+LW+alzJa2Xn6dSKaVSqZ15Dl24fc+M7n8qldqZy69ts9nYmXF+fn3R9zjEVKLz\n+O+ja4t79mPHd31e0WdH6Te6f+zhp84VN74XphCG4ToIgv9K0v8mKS3pH4Vh+P8e87dxxMcmZDIZ\n26BSqaRqtaq7uzul02mt12tJ95KFf3d3d1osFo96dzY/k8kolUopnU4rl8vp9PRUk8lE2+1W6/Va\n6/VaYRjawSwWC3uHYwfr4vKkUikVCgW1Wi0tl0s7+CAIlE6ntVwutV6vNR6PtVwunzRXJpNRJpNR\nOp1WsVhUo9HQZDLRZrOxNbB/qVRKi8VCm81m73M5L86MvfP7l8vlVC6X1e12bQ+3260xhEwmo/V6\nbetK0jyitMHepdNpmzubzapcLms2mymVStlFzWQytp+z2UyLxeJRF4k1ptNp+5rP51WtVu1svHBi\nH9nXY+Zibel0WqlUStls1r4Wi0U1m00NBgMtl0ujvTAMjakuFgstl8tPYhDfi0vy0S/hzAdPZIVC\nwYgLQpakQqGgSqWis7MzuyxczOVyqWw2q+l0qslkoru7O41Go29x1cj8yufzymQyyufzqlQqqlar\nymQyajQaKhaLev36tSSp0+loOBxqNptpNptpPp/r7u5O0+lUm81G0+nUDihprmw2q1wup3Q6rWw2\nq3w+rzAMValU1G639du//duqVCqazWZ2wXq9nrbbrd6/f69ut6tOp2PripsDSQ1RwXQymczOHhaL\nRS0WCy0WC93d3Wm9Xmuz2SiVSmm73dq+zefzHYJnHi+9K5WKMYF0Om1nlslkVCwWtd1uNZ1ONZ/P\njahhCJvNRpvNRplMxt7DS92ohlIqlZTL5YwJQBu5XE6FQkH5fF71et0uZj6f13K5tEt6c3Oj1Wql\n29tbrVYrScmSNp/Pq1AoqFgsqlwuq1ar2ZoajYbK5bJyuZzG47Gm06nRw2w202QyMaYLjUTPyo9K\npaJyuaxSqaR6va5isahUKqV2u61KpaJsNqvVaqV+v29zTKdTrVYrLRYLTadTrddrzWYzE1JuXf93\nGIa/n0ic34xfG9AYNzxDyGazdtipVMoIoFAoqFqt6uTkRK1WS8ViUavVygh4uVxqMBjYBe/3+wrD\nUJPJZIdbe2LmuZVKxQ6jWq2qXq/r/Pxc9XpdJycnms/nKpfLtvm9Xk/X19dar9cqlUqaTqfK5/Na\nLBaJjAHpgtQuFArKZrOqVCpqNBq6vLzUmzdvlMvltNlslE6ntVqtVCgU1O12VSwWVa/XNZvNFIah\nxuPxDqH5PfQXxkts1tput5VOp7XZbHR3d7cj1ZbLpSaTiSRpNptpu91qtVrtaENRra5Wq6lUKqlU\nKtm6OAcYVL/ft/3xl3Q6nUqSlsul0um0ptPpjjYUNU8qlYo9M5fL2VfO7vz8XO12W+Px2LSF+Xyu\njx8/KgxDnZycaDwea7VaaTQa7dW8EAzFYlHtdluNRkO1Wk2np6eqVqtqt9uazWYaDoeaz+eaTCbq\ndrv68OGDVquVVquVlsulSqWSZrNZ4nlJUrPZVL1eV6VS0enpqZrNpprNpqrVqtFIp9MxpjCZTNTr\n9dTtdtXv9yVJ8/nczumx2qv0zJiCH6VSyRgChAWXfvXqlVqtltrttpbLpfL5vLbbrXFHVOT1eq1q\ntaogCEy9Y3ipUC6XValUjKhQ0169eqXz83NVq1UtFgulUik1m01NJhOTpMPhUNlsVsvl0iReOp1O\nZAr5fF75fN4+J91L7Xq9rtevX6vdbqter5u0zmazmkwmqlQqGg6HCoJAq9XKJAgSPm4Ui0VjPEjs\ndrutk5MTnZ6eql6vq1Ao6O7uTqvVyjSf1WqlbrerfD5vF6dQKJjqHSdRM5mMLi4uVC6X1Wq1VCqV\ndHp6agwJpo12s16vNZ/PNZ/P1e12lU6nNZ/PJckYhr+ofs50Oq1SqaQwDJXNZlWr1VStVtVoNOzC\n1mo1FQoFXVxcaLPZmMmFOblcLlUoFFQqlezSxo10Oq1KpaJ8Pm/S+uzsTGdnZyY4stmsZrOZSfn1\neq16va5ut7tjtnkTJrquMAyVy+VM82i1Wmo0Grq4uDAaxGzJ5/NqNpsql8t2rtDBYrGwPfdm9WPG\ns2MKHlQJw9AkTrVaNUZQq9XUarXs4mezWW23W1UqFTtg7Eku7775wAY4sFKppHK5rGKxqNlsptVq\npcFgoPl8bhcWyYsk9pjGvrmQjLlcTpJM8ymVSsrn8yoWi3ZxIPzVamVMAqaQz+c1mUwSPQgeP4A5\nnJ2dqd1u6+LiQmdnZyoUChoOh7bHMA+kK3gNe+hBPD8ymYxOT09VLpf12WefGUMtl8tarVZmLqzX\n6x0TBibEeYGjSPdmANqQH+BJy+VSrVZL2WxWFxcXZvIhPNgvSXah7u7udHFxofV6rX6/b0wu6cyC\nIFAul9N8Ple1WpV0L8kxRabTqabTqVKplGazmVqtlpm90+nU1omGtc9URxteLpdqNptmmtTrdUky\nbebu7k53d3eq1WqmMYVhqGKxqFwuZ3jNp8ACz44pSLLLDrAYhqFxbMwKwD5sXVRVGAEMBZUqyfZG\niqHKepBtMBgonU4b8WL75/N5SfeEy+XDptzHhFKplDEPJAdqO2AR5sB6vTapls/nDbvgokyn071o\nfC6X28EVkKi/9Vu/pUajoUKhIElm4xeLRUmyz2JmTCYTk6Jx6+KSchkbjYYqlYrZ9ewd5gDSGa2s\n3+9rMBhoMBhoPB4bxjCbzWLXlc/ndzAAmCaYEnvF+Z2fn5uACILA6AYJi9YWN6ANzKnxeKxer6dM\nJmP4AM+E8WLmFotFm4t3TafTiUw8k8mYibbZbOy85/O5Op2OgiDQcDi0d2XufD5vdAgTWy6XB4Xh\nvvGsmAJEzAiCwOz4bDZrtmqpVFIqlTKAhc/UajWtViu7LHd3dweR2DAMjQFNp1PlcjnTNricd3d3\n9kzs9EKhYKqadG+7QaypVCqW0DxSvFgsdpgYEsm76xaLher1uhHXcrk0G/Xu7i7WhcgeQqBoUc1m\nU2dnZ3r9+rWy2awxmNFoZOAijKJcLisMQ11dXe1oKnHrwYsBUXuinU6n6vf7Go1GGo/HWiwWury8\nlHQvvdfrtTE3/kHI7GV0XWhpPB/zB4wBJrvZbHRycqLhcKhisWgmpn9HGG/S5WF/F4uFBoOBSqWS\nCRlv7oRhqNevX2uxWKharSqVSun29tb2gfPcx8T5OfSGGdLv9zWfzzUejw2AbTabGo1GqtVqNgfr\ng1l4zfK5xCk8aUR9vaj02+1WuVzOuGI2m1UQBOYuKxaLpt6tVivzOnBoXLa4uZjPq/+g516Sp1Ip\nlctl1et1k0bz+dzATbSVKDHHzQVRekbDJQalL5fLhj+gWrMuPBxxxBznysV9e3FxoXw+b5pWv9/X\n9fW1eXna7baazaaBs9VqVR8+fDDNLU6VZx6+h0kDUvb7fd3e3trlf/36tdnNnA97vVgstFqtzGSJ\nzsXattut/W0qldJ8PjcNKpvN2jM5Exg44NxwONRoNNJsNjOGv++8kLxcvkKhYMIjlUoZ3nBxcaFS\nqaROp2PAJsAtYHjcXJ4hov3CqNEYvFszCAK1Wi0Do/E88Luo5+ax41kxBenBD73dbk0ioOZ7EM/H\nClSrVUPQca+t12tNJhNTW6Mag/ete+kNp57NZuYbXq/XBiJ5AoYZYFYgUaNSNTqXJDMZMCOKxaJO\nTk5UKBQ0n8+Vy+VMI1oulxoOh6a9QGzsQ9yAaYATNJtNtVot07Devn2r9+/fa7FYmDcik8loMpns\neH28DzzqkuR38/ncvCNcUukeM8BNx4UolUrmqlwsFppMJjuXgH2MOy8/kPJBEKhWqxnTqFarZlsT\nr7DdbnV7e6vhcKibmxstFguNRqMdsyZ6Xn5AWzD06XSqdDqtWq1mWizALc/s9/u2Bug06r2Jmw98\nBbwCEzIIAgOXAXLT6bQ6nY7RXalUUq/XM9PhqdjCs2IKXB4uFVLXS1E8BbgdIWAf5TUej43DgznE\nqW8QtVfZwSYgMIgNV5sHN/mc1yySOLT/OfNy8UDPz8/PlclkNBwOjeBubm7s4g2HQzMjILiotsAc\nSKblcqlyuayLiwuLiWB/IDSYLgFGq9VKvV7PANd+v78TfejXId0HzKAdpFIpVSoVdTodZbNZM0tA\n1zlL3g8Twp8RzHbfeYEj4JKWZO5ImAKmJqr8YDBQt9s1/74P1kqiR94LGgM/wAsGdnJ5eWn2PNIe\n85Jn7DsvT4c+TgQabzQaKpVK5lErFoumwazX6x0NOiqAHjueFVNAtfLIMaoam4qUxjuADxwtgcsN\nPsBlTdok/zMuuSRDf9lgGASHB9KNhGs2mwcDl7w/Ohrx12g0DExtNpumuUgydygXBgJlz+LWBdKf\nz+fVaDQkyUwQmN/5+blevXqldDqtVquls7Mzu3BI8JOTE3W73b1+fI+5BEGg9+/fq1arWXxHPp83\nF2Gz2TQzy2s/XHCY+Hw+T1wXqD6MnyjPk5MT0+qIBRkOh+r3+/r48aNJ4MFgYLQUVef98B4XzyBS\nqZQuLi7UbDZNQ2BN7BsMaTKZ7MSuJJ0XNI8JtNlsNJvNDCsjeAoGvlqtlMlkLKYB2iD2ZDabPZkx\nPCumwAJYuJfG2HTr9dqCm/g86nY2m90Jy42zTeMGF5/P41biggMqwflLpZJFAoLUgwvsuzyAZbx/\nLpezqEIPbiIpuRiAmWAsvOe+uAFJBkouFguTjABSaF6DwcDcWSDxMAHWi4njzyi6JlRr1N9KpSLp\nnhHBQHO5nNnXYAfe7kaLiMOA/Fl5HIZ9IDDKmw4IBL+vHs/xYc/7Lg/0BxNB8yEKlngV3JNRbwDv\ndCjknr3ExU2sAeC5j8EJw9C8PKPRyPauWq2aFvXU8ayYgpd+ED8XDtea9ABmsQGg6XByj5ZzIEkI\nuqQd9xQRh961CdH2+32l02mdnJxIkhEG8QW485IOBWYgybQcmBk/H41GkmRaB0xhtVrZWiCWOLeT\nl9gw0clkog8fPpjamcvldqT/bDZTo9GwOQFRMb88M0saqL1cPswDPBpcfsCxIHjIP/Dv7Nd26LzA\nXPz+oIGkUinzingp713aYFRJ7jsuNrTHOeNSDYJAd3d3hpvwzmirxWJR4/FYhULBzJR94fYwFNZH\niDo4DXQFTrTdbg1bKBQKxqwGg4GB4U8Zz65wKxvGJfUBIHBLSQa4IZmi/lsPUh7SFnyAD/55zBOI\nDteddK/CQuwcEgd66PKAhuOnZ52EOuNtIM4A0wGiRXtCsicN3mG5XFrgy8ePH3V7e6tOp2MmFjkV\nzMOlRlNA7fVaXHSwv1yIxWJh+SEAdJh3rGU8HhsQTJg4mJG3i+PWxSXA3ELrgaH4C0wYM/iKP3OC\ntvYNn3fDnMRlcCFR3YfDoXldEGQwEJhxEm1w+REyhULBMB8YIGAl+RXQIzReLpeVyWQsivcYLTlu\nPCtNQdp10XBZkQjdblcnJyc76qxXoyWZqwlVjcuUxJ09KEOAT7FYNCZDhOFgMNhRSYvFoklWCGwf\n0Mi7FgoFZTIZtVotC80F0JNksRUg1djG2PqYTzC9fcMnyVxfX1tkZqvVspBjzAmvIo9GI4svAE3f\np5KizcBciB4EDPZmAUCnJJPWzE8UoxQfbMYeAvo2m02l02mVy2Wz4SuVioGw2PjeXw8mgJ2P0Ikz\nIYIgMK2RGBkiGhuNhq3l7du3hvTjtu71eqZ1skbeK2kuGBsRvNAEe0PIu08AI/NUuk+mQqv1+Ndj\nTYlnxRS86056kEC453xIMfYgUo3gI0/EuA33Da+yevQ3GnvgczBOTk7s3QhxJcjkUBSZJ+p6vb7j\nXvLSGoYoSd1uV4PBwHzREBiXOGkPQfcnk8kOXkKoLIAtcxIPAROczWYW3r3PxocAvWZD5CF4BiYc\nUYu8B3jAdrs1jW8fMMza0OYwifAIYJL5M8StiwkJluHjSpLmkh60M0LSYYA+1wAXNi5lhAXr8Ge1\nby40BuZjrT7UHbokCxTNCNOJs/9BAI0MTxTgCqiD/J6Ng4ve3d3p9vbWLovPld8nvaVdbQI1MZVK\nmWRm03kHngcDgeg5+H1zeQI7OTkxzQRJCnrOO4GeA0R6wt7n/uQrgB4agwdvcad5TWc8Hltocq/X\ns33cBzR6VyG/964+Lgl2rq8V0Gw27fOYGofchB5zajabKpVK5tYFR0GqFgqFnbyKTCZjOBSg9CGN\ni3kxcbD3fXIXTJz1kzcDLsMa99EG+4jwKRaLxhgkmdaYSqVUr9fNNOHZvV5PYRhaYuAPIsxZ2mUI\nHo1l0wlIIbyVjR8Oh6Z64zcHlCOL8BDCjEoG8XCI6XRajUbDAkfCMLTY9w8fPlhgjI913zcPh14q\nlYwx+Oi75XKpXq+n2Wym29tb3dzcWJgrBIakjXu+38soA+PSZTIZlctlk7bk4H/48EGj0cjqAGA2\nHLo4PvvPe4/YDzQ8wFl+Vi6XjRERg7Hv8njPQ7VaVbPZtDR6gNxUKqXRaKTRaGQBUgDRPqfEB1ol\nzYV2ygVE0yNCE/ok2hEhwbx4JfCC7BtRLxuh/bgfW62WxuOxYS94PmazmTqdjt69e2cA8qd4IJ4d\nU2AA1Eiyg8aE4KLCDBaLhW5vb9Xr9dTr9eyyICHZoDh1CsYjPUTJ9ft9u7jRXAsOfDgc6u3bt3r3\n7p3Nd4igJRkRBUFggBHqLvZ9p9NRp9PRZDLR1dWVhsPhjvkA2n4orwNzwc+Jagn4VSqVdgBbwL/B\nYLCj0h5DZB409VGRXH7csGhUXEoftcc+Jg1APc7Shx7jy/cMcDweWyKTBz65UPw/aVAHwQsnLmmp\nVLLgLC4nc9zc3KjT6ezUqdh3XjBrtDuyMD2AiGcC8Lfb7WqxWOjDhw+6urqyNPdDGNCh8ayYgj9o\nNIAwDC3h6fr62nIPttut3r17ZxKUbD584EjIqPobHaDwaB3j8Vjv3r2zGgfSPZgD2otEpQaBL95y\nqLzXZrOxyk3dblfNZlN/9Vd/pUqlYvZhGN4nIkVBPh8Vx7OSTAcuPio9di8eHAi51+up3++bWQY2\nMpvNTPpB0Pv2EE8Q9Rl4Him+3k0H48WtjJkCHjQcDr8VTu0HrmEYKVmE1WpVZ2dn5v24vb3VX/7l\nXxqTYw0eszhkOnDRYYrL5VIfPnwwcyUI7iNdcUni6fDuXIDhQ+o84dMAwN1uV7/4xS8MuITRwlxg\nDOBDaEXSg3B66niW5dgkGVgFOhyNW+AySw8hvahePqTUJ5FI8SYE4A7Dg3X+d1GvB/NCbPuI2c+F\n+ot5w7N5f/9cj3f4ZycRmNeGkG4+8CZqiuVyOVO9kdDz+VyDwcBCkD2ziz7f/7xWq5lGgvkAw8Ms\nOj09Ne9DNpvV7e2tzTcej3eqBvnz8mZREASWMMZzkKSSLMLR56J4k5TBRd1HGzwfcDG6rzCXaJ6I\npwd+vg9gZLAG/67QIHPg2uRnmBt8jTIgN+9vZjk2BhIKWxvCBCuISw31mY7RS+oZQ3RwqaMhrRy4\npB0XoI8b8BL8GAbr1URMIEk7uQz7kP5jwCNP5DwPm5535R2Ipyf2wuMyAHFJphdzsfbpdGrZqj7B\nKZoDwL4iUbvd7qMKqYZhaJ4LNAbccNjuMFy/X15oHMPAGV6wQFs+RV/STug5P4sy9mMGDIy5kv7e\nu9KZy++5/9xjBf+z0hRYQPRSeKmNZJV2QUncTnEbeEhTiM4V/eo1B37mi2c8dfjn+UP20pELdOw8\nUaAxOof32vBzEmlI5ImbL44xxDEv5kHikUTGuYDQB0Gg29vbbzGCqEYSpylE50M4cDGjzBXme4gR\nPIY24miUr4/JTty3rijNsW/eHX4omzTys6M0hWfFFF7Gy3gZ3+s4iik8uzDnl/EyXsavdzwrTOFv\neiSpbtGxz5b2KnX0eb8OLezYNX3KiK43zm6NmoJJ5kfSHsUBg3/T49h1HfN3x/zuuYzfKKYQRaD9\n91EC+tSN98/HZuVnHmT8ri5h0tr8fJ/y7ChO4b08fh7mOhbUjM6xby7m4zM+2CnqBXjK+SXZ+Z/C\nXKLricOX+BqHg/j9/C6Y3N+E4PmNYAoeJANQol1XtKqxB+aIJUh6phTfhsy7nHzYM3UAfRIPIGe0\ncu8xzMIDYayPpBu8LCDK3pvi6wIcM/B0BMFDeDDuwrOzM/OPk0zji9DijeA5cWuIag5+LvaQjk0k\nPHl3G0g+BUoeQ+ieubGHPgdBUqy34VDcQJxW4wE+/hEC7+kQzwd0QOzMY4dnqmTh+ijRqNsxDJOL\n7D5mPFumACoOUXm/MLH6p6enO5fPx7PP53MLJCEJJ6pJeI6P3z6dTtv3m83GUnPz+bwFSZHb7rMz\naUpDBNu+4TPz+D/+ZyICyRPwiT2g6NRVSOr74PfQr4u1EadQr9d1enpq4dNUJiI/gVqE0n0ps0PE\nRqw+sRA+Q5LyctVq1RKs8vm81T7o9/vWsIWWbvvWxh5Ku5ocDC+dTlu9Dc/UkN6s6xgmRGarL+wS\nhqHFR2QyGWtMRF4K+RVEiobhQzevQ+vCQwTth2FoNE8iGPSczWbtnCaTieXhjEajJ2sRz5YpcLgc\nON+zMfV6XZ999pkdLuG6RIQNh0OrzxcEgcbj8U5QjGcm9I/kAtXr9Z2uUfRIJB+ALEUYDynIk8lk\np7pQ0ro8949KnGq1qtPTU0kPNSQIB95sHtq7kba9jwlRGwJJzd5Vq1Wbp16vG7MLw3An1NmnUler\nVYve9HvotSLKrBOaS72DSqWik5MTtdttK2GHRtdsNtXr9RQEgaUBNxoNa6KaNJjHuyJ94hrZjDAX\ntAWkNmcYBMG3sluj2g/r8kFfmUzGaIZwZzppEctAeDqahKTYQrF++AI/uHWZq1KpGHOF7okDoQI3\nGaCVSuVgecCk8WyZAtxZeijcSr48XaIuLi5Mg4DY6J60Xq81GAysgUy0K7Qn5nq9boyAGgck2dTr\ndfM9kxVHi7Xlcqlf/epXymazVm8BYk8ClPiM9FAuDu5PO7ezszPrzuTDg8fjsTVE5flJsRlBcF9H\nkqhF0ovpTXhycmJrnkwmptrXajVNp1N9+PDBOhKRb0KSmN9Dvy6vacG4OSc0EzQELuZkMrE9m0wm\n1u9gX1JPEARW5IYoV9LRG42G1YGEDmAI1KjsdDpaLpdWYIX5ouuC4dBfgSY6XE5qIxJlS4Qloccw\npel0ak1oSfWPG+yNJDMVaLJD39R2u61isWjVt4fDofXUIGycEnAEoT12PEum4MEoqhR56UajTVKM\nIRCk9Hg8NhU2l8tZjr8f3hZFRaPwyevXr/WjH/3IPkdeBD0cYRxUY6KeA+pidC4/ZxSzoHHo5eWl\nTk9PraIzZdkoM4ZtT269D7lNmitqixJHD2HRDwEmw54RKeij6bzKHbemUqmk7XarWq2mbDarVqul\nZrNpRUfJFYBh+lJj5AwEQXAwyIiLg2aRzWZ1cnKiZrOp8/NzK4KLICDAJ5O57zpFsRmyCcGEktbF\nxT87O7N+n5Tt42w4y3a7bWn7dHOK1vXwgGR0Pt+MhwrOZETSiRomAZMhUrVcLmswGEh6KAKbRBuH\nxrNjChCnDymW7iVCvV43uxsCQoIBCKJCYXdTaTiaIIKmgBRE0rVaLZ2cnJitRqLVYDDY6ftQKpUU\nBIGp1lQaIpQ2bnCpyFLEzqeRbbvdtnp+ZMP5Sk9ee/KVq+P2kMIlmDE8E4KTZIk8Xrr43AjMB59M\nFJ1HkhUr4SIyn29o4vMkOFeYEpeHc/Fp69Hh7XpvDn322WemLaCC8y4kttEGD6FBvkx0D/26CKEm\nuzOVuq/9SDETaBBzBUYShqF6vd5ODc59NTDYH/YY7QaMid/d3d3ZejyGwjNYD+/+lPHsmAIDyUS5\nbP7vEV68C3BZDpMsS8AzH2brR9StRJ0BDoFqSt1u16ovBcFD85FsNmsFWPl77OW4uTyD48BrtZpe\nv35t2k+xWNTPf/5zswdpfY4Kyjw+fThuLuageAtViZDo5JYMBgO7HCSg8beYJ6ydZzNn1AW53T50\nbrq7u1O1WrUsQ8wE1k99CjJeKWjj057jPAAeP/B1IbC5MRmoCcE8jUbDWsj5pCHvhmV4EJp3oEAN\nJiS5Gpg7NLWFcTMXTM+nRcedG/sLXuT7OnDWpNkjLMA2AL0xaaGRp7qynxVT8JcJzoi7DyKlpkIq\nldJwOLRsuUajYbY36j6FO/yFjrrPUF+91wH8AdDSJy2hHnsCYfMxXw6tEWmYz+f15s0btVot66JN\n+nIYhtZejSIfvsgqYFbSHiLrz0RwAAAgAElEQVSRfAVlCLZcLu9IaMAy+k34eHqI2f/zc3lGDBF7\nLASXHJ+n1iEdwieTiQaDgYG4vlFN0mC/oQMYHqYPqekwOJgpWAZM1fexjO6h30eYjBcepNJjanls\nCxdvp9Oxtm8wRcyO6EDQodGBByyXS2Nk0GatVrPanuAjaHwkmbE3TxnPiilEI8U8QgyhhWFoFW4g\nci4qxTSotIP7MErofj7MDSrlTCYTIy66IVMCvVQqSbpnJFRExn0Ht066rMy13W53XJBoONlsVrPZ\nzGpEoBL67s/sDfhCXD0AL8W9G5N29z6DFFCWXpMUTl2v15a45LMq4xheND5kPp+bZoYGAtNZrVbW\n7CadTps0p9YhadrUXIg7L/ZvtVpZY1lK/BcKBXU6HfV6Pd3e3urk5GTHVJtMJoahUFwlCkBH50Ij\n9VrgZrMxwcDlwxMRhqEmk4lub281Ho81GAw0HA53sIU47Q76QOLjLaKnA2AnmlI+n7ciQ9TFgAFB\n70+JjZCeGVOQdtN9IWpcM95DAIhEjT4uKCXMfCMUnhudB6wBDu2bgcKAPEgGqOkrJ1FsFEkRNxfD\np8KGYaiTkxMDLbPZrBVVke67MtfrdbPteVekmK+5ELeHqKySTAvypg/MAi8FjJU4iOVyqWazqZub\nG9MW4tRsv67o2nHvcjkBIolVwLShQAhVmKI1EPzwjJDq27hAMV3ootVoNNRoNAxfQpvx5sO+jFBv\nZm02970aYUSYfh7rKpfLBj53u131+31LQfdCI25dnin42gwUrUGLpfNWLpfTzc2NhsOhbm9vd+pF\nck4/qDgFJIy3ITEj4Mh0+AVYubm50WAwsAo4RM5FAS6GVwUXi4X5mgl4okhnrVbbCSjhcqbTafOx\nS7LD2ycNkDCpVMoQc8wDvAO/8zu/Y5IHF95kMrGGpdvtfQOQ4XC499BRNyWZyu7B1M1mo7OzM2M6\nNFKB8TQaDd3d3andbu8EACXNxd74wCwff0GhFUws1GskMWCkP5ukPcQcJDaFTtww18vLS4VhqHa7\nrVarpcVioU6no9FoZO67TCYT65VioB3BIDwuUi6X1W63DeAE00CNf/v2rZUHpKCMp8O4dUUZKxec\nBsD1el2vXr0yITgYDPT27Vu9ffvWYh+iPUKeOj6JKQRB8JWksaSNpHUYhr8fBEFL0j+V9BNJX0n6\nwzAM+499djSklMuEveSZhT9c79/mb+OkjgeTfBUkwCnUOKrcICmwwXEboqJVKhUrjf7N3ux1q0n3\nhIDLCYmDFMdsgBgBTmE4uKKOmYf1+hZmxC5AeN61SPlzXLpcoH1zgZPwdx5x965MX6CVOAUkKFF7\nd3d3RtxJmhCS3GNG3oNC7wTvYer1esb0Je1oS/sYrC+gwrzj8Vjtdlt3d3cmNBAIeCWgQ+912sfw\neL53J3tciLMA/IZufXQtf/cpjOG70BT+vTAMb93//0TSvwrD8E+DIPiTb/7/Dx/7UJ93QCw7TVO4\npIBKuAyxUSEmNA3p281F/IVB8hN+e3d3Z/bhaDSyd8HLMZ1ODbTCtsOVh4aTdCj+klCnkPUiRcEX\nWMPt7a3Z2zAGH9GXRGC8N1IcBogG4eMvJO3EQ3iknIjIpEAYnus7IcHs8vm8wjA0Cc07+VqNmF6e\nIe6L4We93kSSHkKWqSaF9tHr9azuZVytxmOYAkKJi0mosd8TanwOBgPbO87BC6kkMJp38ftBjA6a\ny2Kx0Gg0srqMPrSaOXzuxXOJaPwDSX/nm+//saR/rUcyBbg7Pmm6EUsy6Yi6lE6nzdOAaul93F7D\n2DcfjCYa307RVg7LMwSIComLDZpEaPwMEwRVk4g1iIzAFTQXSr774rSYWEkDhgERYueenp4axoB6\ni4rvI/9wwUkPkZdxKL1nvrhn6dDtTS7WTL4DCD2mhDcVwWuS9pBBEd33798bIwFv8rkPhBvDFHzQ\n0r499IwUZoUAwevg3wczD+AULQEtjQu6jwkhNNh74k3woEB33qSD9qBZ5npq8dZPZQqhpP89uK+c\n9N+HYfhnks7DMPzwze8/Sjp/yoM5EDr+cOgcpvQQwINqjX2JlAGlBsTZR2SLxcKIiIg032vQ23eb\nzcZ6PnrAD5/8Pu7MRUCqpNNp/fKXvzR7cTQaWdQkZkMq9dDHAObHoe9T56PAJpF8mFSz2Uyj0Ui1\nWm1HDQak5eImAXIMPAy+5TwmFngDFbMrlYp5hLzGJ8lMh0MAGXEUXAyqOyM1yVVYr9fW/g73J/Y3\n+3dM9CTrQ2OF2RJAtd1uzQuASxUzAhA0qaOXnwsGCmPw0aXMT4Hbm5sby4fxdOBD0X9dQOO/G4bh\nVRAEZ5L+jyAI/sr/MgzDMEgotRYEwR9L+uOE3+2ougBfRJVx0VF16YngcxIkmTfBJ4+4d9uR6N52\nQzICmnGhfG1DpBFaQqfTMemQJAn4OaotcRY+u02SpYQj1d6/f2/9C1jfPncTxMi7E/rdbDZtblyA\nXhVH+8JcAcBLSrrya8TEIHmn1WqZycfl82HVaHdgDNjK0XePG6j/mG3EBhDdiOuTXBEAaCR4NIJy\n3z6yNrRXGhHBLDAVb25u1Ov1dlLQJVkwlddK9jEGTCjwHUww3nmz2Zg24hkcf+81maeOT2IKYRhe\nffP1JgiCfy7pb0m6DoLgMgzDD0EQXEq6SfjbP5P0Z9L+Go1hGFryhySz4TEJSLeNNjDxB8GlTxo+\njsFjGEhUUHMiGOlrwOUlrdjbqkkAGZ9B+tIRmUzNWq2m1Wpl5c4nk4nevXtnGYrHRKr5ub1Zg//c\nM0Pi+JEwBOl4VxoSfZ8Xx7eiq9frdmbEEPBePu2cDs1RwC8pfNuvz0ci+nD22Wxmkvn9+/fm5qWl\nmv93yHUX/XmtVrM2f7gjoRtSlQEcS6WSaS6c9aGz8+8GzUn3WM9kMjFcB1og3kLa7UHpn/OU8eQa\njUEQlIMgqPK9pP9A0l9K+peS/uibj/2RpH/x1DkkGbBTqVQsEg9i22w2FslFUxhfKIRNicMTosg8\nh0WSC4dSLBatCSwZhmgxSN1Op2Op2fvUUT+83xw026u3BE59+PDBehjQE4HnH5rLay2oy1x8AD4S\nn1B5fVMcWuF5Zpc0h8eBSN5pNBoKw9BiEwhNxjzDFenNvlQqdbBRL4weKQ2uQ/Qfe7NYLKzHKAFI\naE7eA7RvgPCTkn1ycqIf/ehHZuIR9IXWSJwB2anssy+OkjTQSDCXa7WaYU2YZ5w5Zqz0kHnrvRtP\nDVySPk1TOJf0z795iYyk/zEMw/81CII/l/TPgiD4B5K+lvSHT3k44BduKsAoNhqOSWfk4XBo7ibc\nZ36D9kkDPgvX5/BokkJmmg+wWa/Xur6+1tXVlV0kr5YmmRCeo3uuDrBXKpV0dXVlktP3kfRup7iY\n/ei6vPeBfcCl61VjvAOTyUTdbtd8+jyfde3bQzQKmAw/x3TziVzj8diCewgA82Av0u8YQA4Q0OdR\n8A7T6VSj0chMMTQUn3x0jNZFnAceFdKY0bKgl+l0utP5nHB0STvg4765ME18rgraK4w3DMOd6EwY\nq8fbngoySp/AFMIw/GtJ/3bMz7uS/u6T30gyu2y7vc/2ovvx3d2dxuOx4Qq/+MUvLNMPlcofNMR6\nyHTAY8H3ZD6enZ0Zmu3dld425d1gUh7UjNkb4/S8EyogEXmEVSO10R78M3nPQ+vyqLQki/is1Wom\niQBkAT+n06mGw+FOabRDxTrW67WZJXhV3r9/b3UNULPn87m+/vprc6n56EWf57IP1ORMffEYJGQq\nlbJs1X6/r263q/F4bPN5wDSqTcaNzWaj8XhsJutsNrNgId9Vq9/v65e//KUBt2h/CIhjTQefp0Is\nAnuDJjocDi1hDsbgBRnC4qmmg/SM+z6A7PrcAP5P4hC2vA/e8JcOaZAwp6QHiYqXgZ9DZPjfCa7h\n3fBsIH355y9vkg2OluDnIEkIex4CJyWZ77kUh9bl3xMVmPnQSLwv3AcQAcp5DCAK0jKXd0tSqQoE\n3adig/tEz0vaLYQbld5J9AnGg2ruMRk0H9/pCoaDnX+sqRcEgTFRTALwEpiC11BhbpyPxxSOiRmg\nBb30oC1TOwEzGQbLHkYF4Z55fvObweAKwtZC6kXdcdGvnlvuQ3qjc/GPv/XBQWAbYbib7+/Le/m4\n9n2qr7e/ISKeTeBJ1B/P10MSx/+dZzqeUP1l9rkcXBykXDTmg8H/o2g6mZ8+14Bz80zHn4v/fVIe\nQtI6fa9RmB2XhII07CnPJvfhmD1kbvACaGC9XhsICFbh0/OhAzQG9v2Yu+bXhevVB7vhXYjSt89m\n3TN+85nCN7+zrz6KT9KOtEF1PRZ1jVPv+Tlz+cvjXUpI832S5th38O7XaIwD75hUcu0x6/Lr8XUp\n+D8DabdvDf5C71uTjwSNngvn5TWe6O+POUs/n8dKvH0NM/gUN53HYJjLCxBPJ34Pk9Z17JzQhn+W\nF5CHzMjI+GEwhZfxMl7GdzZe2sa9jJfxMh4/nmXq9A9teLPDeyc8KBmnVnp36SGNLmpexP1NdM4k\nIHTf331Xf3NoPOXvnjrXy9gdPwim8DdJDJ8yVxS1j4KCgHA+ScfHI3iw8Nh3jfuZZ0RRphRN6Ipj\nYknMK+qhiD7fzxmHx8R5OB67Vh/Y5Jnfpzx733yH1vV90KU/1+/j+b9xTCEKlkUBHb9hn+Kv9USG\nW8/7gv2ckvb61uOejRcDl6AkcxWenJyY+85HYxKU5WMIomv2z48yHQ9a4TLE3endg/5CESATXW90\nxDE8wE3choTrcnnYXxhhkrdj3x76OSTtuHd93IhPDmNdjzkzvzaf2kw/C1/Bi8H/KfzzVI2Jf74x\nkfe4+ViFQ9Ggx4xnzRR8+m/UE0A4rfRQHxAXXzqdthBa8hqOmQsJ7V2REDRlu/FxwyTIwSBG4VDz\nDbLmiLcgSo5ItlarpbOzM3Ph0fKOegS+0CnhyvuIjag7fPr410ulkjKZjOr1upWzx/2Fi5XIPJqo\nHLpElCP3NSNw5zI3FYo4Jx9hSGQjc+0bvkQ+IchheN+7w/dIoGIVvn2YAyHcx3RRInbARxqmUvcV\nok9PT60fCcFEhHHzr9frablcWjDSvuG9a97b5vt2fP755xaqTewFgX0EapGt+ZTxbJmCdzFFpY6P\nDcenWyqVTBL0ej3zWyMFk0qkReeSHtxO+KdLpZLOz+8zwEnR9eGlk8nEMgBhSHFuqCAIjMCIU6DT\n0OnpqfL5vD777DOLd59MJrq4uNByuVSn07GoPNxeZFh6Se7nIviFC8nlIaGnVCpZYg/Pgxl1u11r\nIefLpsXNxfcE9TAXocdoQGS5+nBtMjgHg4HVzQjDbzcHjs7Fc0lSK5fLlrDUaDR0eXlpeR7kQRD9\n+vHjR9VqNdOCosFgUVMIpk2HsnK5bF22Li4urMIT6eLU3ICZU/AX7WUfY4iaIwhAuntdXl7q5ORE\n6/Xawv8J5yZwjFSAxzbrZTxbpkDQkiQL5ICoy+WyisWiXr9+rUwmY92iSH6RHtKm4fBIhkNzcYFQ\nQel09Pnnn9tFWy7vm6De3d3p/fv3JlUhDAJkGF7VYy5K1ZfLZTUaDbXbbV1cXFjX6cFgYGnAXO5f\n/epXFg5N05hooo0nAl+X0ffgpKQ8WgIpyEh5iqrSOq5arUrSt9R7P5dfE8ymUqmoUChYSDB1MDGX\nCCn/+PGjstmsdVWil0KS2QKzgWnD5M7OzvSjH/1I9XrdLieNeu7u7lQqlfTu3TtVKhUzzQg6Soor\nYF3QH5oePR35WRiGVq4vDEOrMi09dGwic5LcjrgRxXiCILBmyp9//rnevHmzU/KOHhGpVMoyKWHQ\nT43NeLZMQXoIMfUlyIlSoxhopVLR+fm5cU3sVmoPeJMgaaCmITXb7bZKpZLVBLi4uFCj0ZB0LzVW\nq5W16SJ3wXdB8kky0Xl8sIsv1AFxrVYrvX//XpIssYfqO7VazToTMUdcgI+3Q4MgMCZK67NWq7XT\nciydTluB2lKpZCnNlP7yNnTS/hGKS6emV69eqVKpSHowIShOQ5eq+Xxupee/+uora7ASBWGjc3HZ\n0HpOT0/1+vVrtVot0w5JM4ah5vN5jUYjNZtNq+rEu+3TIAkvhpH4jk3r9X2/UkLeT05O7GzJaA2C\nwDSSQ2YKggnagCGdnp7qRz/6kU5PT1Wr1SxZjr0Cu0AjprRA0h4eGs+SKfgKNRxAKpVSvV43iYwa\njTSCS1OF2ZsPSR2ipIcsQa9ywxiwgVHhPOhWLBY1mUx2SpUheeK4s7/ISEHCZguFgqVL+3Bcypr5\nTs1IdEyVpNqTzIXKjmRtNBo7mownfGoBlstlzWYzq5HZ6/VsrjgGhOTnd7wjOQ9oUuA+nB3Vl3u9\nnjXZBZOJOy8PKIJJcM40l+GCkrPBPqDBwICZy4Oe0bkwdXwR1tFopEqlYrVBJVmDW2jXt61Dhfch\n33HDA72EMYOb1et1NRoNVatVFYtF9fv3dZCXy6VVN+dvwbx8huZjx7NkCtIDcjuZTOzC+8w2kl2k\nB/OiUCjoyy+/NICMGP6kiyrturBQ6yA4QlkBptj0ZrMp6aGACRWgqAcQPQzvCcDFuFgsrNYjEm08\nHhtoyrNRQ3FX8nnwBS5e3FysBeLkcvJzbHpqR6BVUDSWd4h6OqKMwUslWtSR+IS3YTqdmuTzSUMg\n+D6r0NdtjHNbwlSWy6UajYZarZYxToA3n6mYSt2X1EdzRNuELuIkqjeRoEOYOBgS6eK+dgIl5SnV\n5/NVvLCLG/yOz1Kr8/z8XGdnZ4Yl0PilXq/vFLDxXaU+ZTxrpgASTkpxNps1jk0iDyBTtVrV+/fv\nrXgml4cKP0k+fogM4sEUoPBnKpWyVObLy0vrEn17e6vNZqObmxu7dJJ23HsMf2l8SjNqNZIEhgLD\n8Hn8INsQPd2cokTtVW8YEJoJHYV8Byc0iVKppHq9bnsEyAhDQKr6EZ0LBjSdTnV7e6tGo2HZg2S2\nrtdrMwcBhSlKy5yov9G5/JlRBBaBgNZAPQPSkAE9+RnaHlhK3Iibi8EaAZxpB0AfD9Kc8XZwSTHT\n9qn0HkiV7jWQs7MzvXr1yoBTGh1Vq1W7A9Avlb4x/35Q5gMXFenrqxeD3K/Xa7NHM5mMBoOBrq+v\n9fbtW3W7XSuu4cukxQ2fwbfdbs21NRwOzRThECSZ2jmbzXRzc7PTj4GLfkxaM1mBAJtILiSPJJNA\nEBX/h3GgUewLJqJoCeaPz2RkLkBBtI5er6fhcKjFYqF+v79TFzIuMMdrP91u1xgRzI96CjTihdlf\nXV1ZizdcrABxUW+R14AwI3w9BlynfG61WpkZmUqlDItBM8JD5IPD4uZifZhvPEOSdaDClUzzV18R\njAsLMz9UWxONDHMZ0LZYLGo0Gqnf75tWXC6XFYahtTVYrx96XEbB08eMZ8kUpF0AyBfhIPimWq0a\nEEhJtH/zb/6NPnz4YADgsfUMfao0DAdbHzURO5TuTKPRSL1eT9Pp1NTdfYwHLQDzAE8EczQaDVNn\nYQDNZtMAJySQt0v3ETTvggbE3uEapK9FtCw7hEUZdt+30qeG+/k4G5rn0F7N2/Ae8OOShmGojx8/\nqtfrGciIezBOzeas/MXEFQ0YiElJHQ7Ohuf6tGcPNu6jP4+V8Pe4BwFxOSuKx0TrM0aDp+Lm84N9\nRFPI5/O6uroyLObk5ETlctmqckGjfs6njmfJFPyBoPbjZwZt/t3f/V393u/9nsbjsd6+fau/+Iu/\n0BdffKFOp2NVmI7x0fqDQlVE/W2328rlcvrxj3+s8/NzI4rb21u9fft2p8a/lExkXmrjQQE4gtmA\nyKMO+y5Yd3d3qtfrVrKtXq/vdMNOWpMPfMEG3263ajab1pbu9PTUPjeZTHRzc2Ol0ijiiiaTNHyk\nZxAEGo/HtlbMu5OTE2tsQrGQ6+trC8ai8GlUSifRBi5Ozsx7Y8BaGHhXUqmU+v2+bm5uVKlULFhq\n31z+DHlWoVDQ2dmZXr9+bZ3BgyCwYisAgMS+oJkk4SR+eO2t3W7bc1arld68eaPXr18bXcBIvUa4\nzyw6djxLpiB92x5iM7fbrfmmCfDpdrtG8NGS14xjgzgAbIhAw3yYTCamwvm5UAfjAMa4QdwALlYY\nApLcR2CCnZTLZUOcpftGu1dXV6bd7PNAoPGAUZTLZUO1aZTqYwII+OGCwaRQn5P2kYvq/eubzX0H\nL/YNDwj7RG1L1svvDl0e/168M19970bWBkNA8wGLONbm9kFEnB1aHYwcbAT3LJ4pPEus7VimIN2b\nqqenpzsVmDzYjHeN8/N7/ynj2TIF6dtx9EQxYusDnPX7favt7+1p/vbYw/BFOVD3qDdIHwGkHGHH\nUTvw0BxeM6hWqxYth1sQN1q0wxDzcBFyuZwBaNHB52EIhPxiJhDsxd7AEOjD4M0pGAtmSFIAGPNR\nZZtn4GEZjUYWy4Cp4cuXQciEj+8jbN6LuA40K19HM5/P6+7uzjSTUqlkF47ybJTx30cbzEVreCpT\nVyoVM5OWy6V+9atfWTVp9pVQdhiH9O32hdEBIyFyEkZK7MN2uzU632w21nEaN6SPy9kXg7FvPNt6\nClxoJAJSM5PJqN1uS5KF/oLKA7ZA0ABSx1xWT4TY1R4vuLu7U6FQ0Gw2M7MBENSbOnFBIx4gQ0Kj\nSuMy5QJJD5fTaz0Adh6ERNpFvQ98RRMBrIJJeFsZdReGR7n17XZr6i+YgH9+3PpgWBCyD+ZCk8pk\nMubh8QlfXquJPjduPo+F8K7QClKcZ3GhCcH2zH8f8/GM1ffGhCEAzvrK12AO7IWPi/Brixs+Oa5Y\nLGowGFjxXoLkKJALZgaADIYB8/ZJU48dz5YpSNq52CDYZBGi1g8GA6va64FF/s5rAMfOKckuPAQt\nybwbzIVXBCbEiPMG8GwkPF6TUqm0g5x7dJqisdiJUdfqPtwEgiZuHglNR2ck8mAwMKbA87mwMKoo\n4BY3l2cgnBcBNKxBkvWzYF7vMeDS7CNoz6R8otXHjx8twctnnRLiTXi4z7vwDWiS5kKLI9+BsHdC\nuheL+zb3lHTnb2A2zO/dkUmMyGslvNOHDx9M8NDKIAgC84AB2vZ6PcMt9oHex4xnbT5IDxvlXTNI\nza+++kpffvmlrq+vd6oOe9sW0+GYwd9BxNj4BNwAYnotwtv1+ySPt0u9f90TDQzGSzQYHRcMs8WH\ncMe57mCKPqmM1ntcCOk+lBnTixgDvBowqWhwVNza/P5xYYlH8O9Bk1ekGmeMF8k/JynSEJMHOxpG\ngY3PpSQcnTwIArFms5l1jNqHX3BmaArkjsBwR6ORuZUlGdblY13AVrw6nzSX/7fZbFQsFnfa9kE7\naA7Q5M3NjQmWJPPuMePZMgV/UPjVURknk4kqlYo1SgGc47AgaOlxhUm8XUxgFEQ4HA7tInpgh/fk\n0OMIOYpi8371et1cg5vNxmxiVGJJ5rf3vSWwKf06kwbvSUoxDAmpRt8CAoYIb6Y/I0S8by5+xz7A\nDEga8q5Yzsm7XsPwoecB0m4faMt+SbKkMhLNorEYaFsIDc4SLeUQoOk9OGBAMHSClAikymazhpV4\nsxez8hgbn70kMc1nwqJBrFb3zX9vbm70xRdfGENnTz4VbHy2TEF64NTZbFatVkunp6dmk3NYbJYP\n/OHSchDHumiYCxdauVxWu93W5eWl+v2+aRGe4USJKkm6+d8zD9yfd8b2RQOAGKbTqfr9vq6uroyg\nYSL7mBBSkDgH6gH4SwphE4HH5UEj8czpkKmClkMjHdx1BJzRNRtzCPNJeshq5b0PnZOP1gRM9eYS\nocjgQHSi6vV61pnqGMnKWTAHGgNRg5iEPMtjAMSzgA3ty470Gh5MBPN1MBiYlpxKpfThwwf1+319\n9dVX6nQ6OyHVjB+k+eALaGDPXV5e6uzszOoocMF8Si+RdJKMaRxyFYIbMFelUtHFxYUuLi50fn6u\nYrFokgwTgiw43kHSDqYRNyBi1H80D58TgLREbSQys9PpqN/v22Efio7zUs7nGgCYwjCIo6d/JN8T\ne8Hf7ZuL+cATuEDsHXY5KndU6wGog8Eeaq/GesAIiN9AmgfBfeowxU1ms5m63a7evXtnfSXRfg7F\nsyyXS9XrdZPQMGm6jbO/g8FAYRha0NfHjx81GAx2Ijr3MVbowwsQ3KhoGJzN27dvNRwO9fHjRzsz\naN4zzKeOZ8sU4JbY9tPpVFdXVyqXyyYtv/jiC93e3mo2m5ndFQ1GOnZzPMiDr/7Vq1fWQu1nP/uZ\n9Vnk4D0D8ipt0liv17q6utLHjx9VKpX05ZdfmqvQewao/YDEwS/tE4VIWkrCTHBdoVYul0t9/PjR\nSnrBIK6urkxqonn4f5LskiYR9GazsWhGzBEuy9nZmUqlkhU4+eKLL4wZTKdTe340NDppEMh2fX2t\n0Wik0WhkhXBOTk5MY1ytVur3+8aAWZtvH3fITNlsNhZUNR6P1e/39Ytf/MLiO2C8hIPTBQuGzVow\nGQ/RBwwHWhoMBlaPAsB2PB7r/fv3xuzAsryX6qleB8az7vtA9B8qIe6gXC6n4XCo6+triymPgm18\nPXZ9BIgAWuXzeb169cqKdDAXki6qhew7DO+ZQMX1QBoSncvNc/hMFK8AaEsyW3xMgy+RRmSjT6KJ\n9lj0DIb989J0HygHqIhNn06nzW0XhqFub29N4pFGzdlxQY8JTee8eEcPdKL18fwotsQ5wRSOoQ+8\nHP68PE6wXq93JDTn5r8/lhZ9KL8XjASQATBGtYE4+o8ZP4xmMF6K4pcFJ0CljQIsxx52dPh+gcRF\nAL7xvOich1RCadfFBgPwqj3vDeGAWnsQk+GJOco8+N7vBTYvz/DZmEl5E/zeX6K4EWUQmA7ejYq3\nCByEkF0PAGOPew3v0PCM1IOcfl8AMaOMLqk4zb65OJPofuzDl7y34TH0yFxRRpx0xl4IHhg/DKYQ\n+dzOhnk7dF+03RPeR1cbie0AACAASURBVJJ26in4udASHkNUSfP4f9LuxfRM7tCF2Sdd/fORPjwr\nKmmjKrUnvH1IvZ/Lz4Nr1V8etB80Bj+Xf84x+xt1h/p39b97LCNImss/M254jeS7GH6+6LsnuW33\njB8eU3gZL+NlfNJ4aRv3Ml7Gy3j8eJbeh32q43f1u2OCO6L22mMDQp6DFvZDGXFqdNSsSbK19/0d\nI2paxD0r7vz3zRV9hv+buPUdQ7vHmlWfMp4lU9i3wdJub0YPNCU9I+7/SSNqk/pgEp4RRZM/9ZD8\n2qI2a3Rt3yVBxF2075rgoucXB8Y95ln+a/RnUbrweFD0vPZd9ENz+jmin/FAZBxziNuD6Dslze/x\nGkaSB+JTxrNkCgy/Cd7dhIuyVqtZJxzcgx7R9xFrjwEFg+AhO9Mn1OAXJkLNu53whjyGk3PQgHGp\nVMpKsePrZ13e40DU4VP2k3/p9H1TnXa7be+Om9K7vI51EUbnYS+lh+rOFHT1yVJ+jfwsSZJK35a6\nuHd9b5BisahGo2HBSz5GAPchsR8ebE0SJEl0SCh8rVazZDKeGY3zOIY2/O98CjQMjorUhKJL367q\nRX2FT2EQz5YpBMFDeizFQShxXSwWrasSQTGDwUCz2cxaqa3Xaw2HQ0myWo375iKJBgLAy4GLEtce\nl4bPElmJT54kmX1z8TxCnL3btVar6fz8XJ9//rmV2iIghoQe8jvI+9g3fHq1d60RxNRsNu2C0A8B\nt6UvvnJMtyFckURo+i5YtMNrt9tWj4LKxAQX9fv9ndwOP6ISl/qFhG5DKz6mhTR3isFyYcl5oPht\n0iViPtysMFK8UqVSyUrOSdJ4PDb68LUdYPa+Zmh0Hn5Gwpr07RZyJJVdXl7auZdKpZ3IXgLWer3e\nk13zB5lCEAT/SNJ/IukmDMN/65uftST9U0k/kfSVpD8Mw7Af3K/gv5H0H0uaSfr7YRj+P8e+jFe3\nKG9NdmS9Xtf5+bmazaYRGcU/SF2dTCbq9Xq6ublRp9OxZBJauiW5LH26ry+FRqYfEXP+Gbi5CAAK\ngvtyZmgUSXMRvASzId++Uqmo3W7bWslVQAuaz+e6vb2195vNZlbkI4kJwXg8g2NdlUpFJycnury8\n1HK5tEIdFBylEjFRhhD4PiLj8lDnAOb96tUrnZ+f66c//amKxaK63a5VXbq9vdVXX31lUZ5oYlEN\nJWrW0cOxVqup2WxaOjN9QAqFgm5ubnR7e2sMj2K7SHX6hFAoJW4uSfZM+ktkMhkraXdxcWEdyAgP\nJ9pwMBiYwIFJxPXk9BqJL6rDuXkNiNRt6IdzZl6iK6lC9RSN8hhN4X+Q9N9K+ifuZ38i6V+FYfin\nQRD8yTf//4eS/iNJP/3m39+W9N998/Wo4W0+uD/hqycnJ3r9+rXa7bZarZbC8D7Wvtfr6fT01DYI\nCUpsOqG3+2oqkEzDhaG8O004qNgLp0eKrtdrq3w8n88tUy+anOIHxEUyUCaTsUKcJycn1omKMu7Y\nxWg9BC8REo1kSloX0sXPWa/XLa/jzZs36na7lgTV6XQsRBgTJgxDKwiTRGTkjnhJWi6X9dlnn+m3\nfuu3rDsVn1kul1YrgISpfr9vjGxfxF42m9Xp6am1v4MmKHHH+cxmM6tOdXt7a23bfIgz5ktS0pxP\n26eseqvVsjNDcPjQ8el0quFwaGo9fR59Bero8GYd/4cea7WaTk5OVK1WjQESdQvj6vf76na7ur29\nVbPZtMza74UphGH4fwZB8JPIj/9A0t/55vt/LOlf654p/IGkfxLen+D/FQRBIwiCyzAMPzzmpbgI\nlFaHmLHdO52OqXyU2iK7MQxD6/3H5iflB0gPLdnJUMQebTQaJg04cCIdwzC0Pga8JxltPDNueAlE\nOHCj0VC9Xle73TYiImmKQ8eU4mL4CM6k4QkMZtVsNlWv1/XZZ5+ZmcLl9fgG+R5cGFKtYXhJc61W\nK2POlUrFitNiY1PBuVqtWnYjlZC73e6OTZ6kzqfTaes2Tir4ycmJ6vW6JRCh4VBRGuk7GAwsUcqH\nVUcjCDmjVCplhVOhsVevXllKOAzMp09jZqbTaY1GIwtZJm8ljjbYe8wQ6Ji2iGdnZ9bQ1vdTDcPQ\nmvKyfgrn+KIujx1PxRTO3UX/KOn8m+9fS3rrPvfum58dzRQ4DF8GjUSQSqWiq6srU9vDMLSqOGTJ\n+U3nOWSpxc3lqxJR5rxWq+knP/mJSbAwDC2Tj3lgIrQdh6Cl5OhCX2iUTEVJRuTb7X23Z0+c1DXk\nbyBwTJYkxuALk/oyZc1m08AxSZa9J8m0K88kvF28z0zxSUbsBeulMzfqc71eN20KtX42m+2YOnF2\nNxoPKL8nehrJgCstFoudzldkunozKqnupN+3MAx3itZOp1O1220z23yPijAMDXyk87QHuvftIXOB\nI6CBtNttMysxYyihR+g/9NFsNq2P6qdE+H4y0BiGYRg8ISIxCII/lvTHSb9HpUOF5TKSPTibzczE\noAALaidE4+sqJLzDDnq9Xq9NNWy328bZ5/O5hsPhTmw/5b3IcSe9mMsRJWwIzaf9+hoQ8/lc+Xze\n1FveJ5VKWf4+BMpc+8qWcVGp+Eu/h2azaaXDwzC0ngtBEJh9Pp1Ov7Um9jRuIFkBQtGkuJDsIQyI\nJCzfQq5QKFhJefYvbg5fxJQswn6/r1wuZ02AyIx8/fq1mVo0mOU9/b84UBNQVpIxL5KiSHmHKdzd\n3VlBHprM8p6YmT5pKmmwRmpNoKlgQmAWUBl7Pp/r/Pzczmc2m+0UkHmqB+KpEY3XQRBcStI3X2++\n+fmVpDfuc59987NvjTAM/ywMw98PXdilJwTcY6vVyopIDAYDs8kgOtRUpBspwEgin93mn++/hwA8\n+k/B09VqtdOsJAjuswGjNQm9LzxJgjMnkme73ZrKCPDltZvT01NdXFzsEJjHK+Iuj9tf20P2Ew8O\nlZ28mYC2td1ud9K4UbMPzYUZxbuHYbhTxox6hp5Z9Pt9ffz4Ud1u1+xf3je6fx6JZy5KyVGjk2Iq\no9FIkqzYKq5Q/vkiv1Fa8P9n/ZgieEkwXX1BVcyzWq1mDYRgflzSOMkdncvvMx4tqn9TvRwTyReo\n6Xa7Gg6HGg6HVjPCe9MeM57KFP6lpD/65vs/kvQv3M//8+B+/DuSho/FExhIRVRLmAOEBfjSbrdN\n7YdLetUSLh2H+PpDx1WFTUh/SIpZ4FGAqKV7QoUj+5oA+8Ad3sN7MpDM4CBUK6JVHTUE0A64PPsA\nTX+hfdckmMV0OlW327W6iMRjIO2R+OxdEkAmfTt4BxME0BEXIWoxdQ3evXtnVZA8eBvnSuO8WNdo\nNLLCM/P5XKPRyLwj4ECXl5eGxeDepQcDa0kCT9knSeadoSaDL9obBIGB4Y1Gw7Q631nL72HU/ek9\nDz4V22NYpVJJqVTKGuiQbSrJCtbQwMh74p6qLRzjkvyfdA8qngRB8E7Sfy3pTyX9syAI/oGkryX9\n4Tcf/1907478pe5dkv/FY17G29JIOVR/KjnX63Wru18oFKyfJCqdL33tAau4zYERwKHT6fsW9GgN\nvmgman69Xrd6AVwUahZ4rCNuLh9owt8B9FUqFdM2crmcIfWYRPRT8GDkPkzBmzBIbV8p2BePLZfL\najQapvZKMkwAIk0C/1gbaj9eCAgXsHa73er09NR6MqCOo9KzP/7yx9EGajgFTZrNpjE2+iVwHrjt\n0F7QENDyYA5JKeSYF74LE0wYrRJGjQYGvVAq35tdPtgtyhigP86VGAxiIaBVH3RGS4DhcKj379+b\nW/RTGIJ0nPfh7yX86u/GfDaU9F8+6U3c8JKeTV2t7jsFt9ttNRoNawrDpUmn02q1WtpsNrY5uNH2\nAS6+5x/gGzYkdjZlw6kVWS6XDWiC+3OI+wKXYAqSdsqU4e8GmQfxxhXJ3PSxPGZd3l6mhgEqN8VQ\nPvvsMwNM6WQ0GAwsfsJf8EO2MAMz5+7uTp1OR/l83qQbF5k9LhaL+ulPf2qt6jwYuO+8pIcYjOFw\naMBvpVIxnIkCq+v1eqcgbqVSMbSe9nZJeAn7C3MkOAicgtgIX2sSWgXjQsDMZjPbn7i5vODhbyWZ\nSUT5+mazaTTjtYPr62vd3t6aefNUz4P0jCMafXindL+ZlUrFJDE2Hggsks8j9uVy2YJyvO0WHUh4\n+h/QbAaACs6OOyifz+/YsMc24EACsS6IiYhNAqUABwEyfegqkpyGJ8cOGJ2vVIXXg/WByoPJRLWN\nfZoJZ+Y1u+l0qi+//NJUXKQ86j1Aq6+wxWXYh8t4TQI13Ut1QEWwHugB4YH7GqAwOl8cxgCwCKPh\nPIIgsM5MXPZMJmOMCK2SknWcf5I2iSbgwXGAYq/1eZcqJhRmIkF9Tx3Pmimg7oK+wkmpyZhKpdTr\n9axQKJKNv0NFjyvZ5oe3vQnBxTTBvsZc2G63OwVH0RZ8ifkklNkzA9ZVKBQs+Ip3B1Tlb+hZABH6\nMGnsz6Th1W4Kf+K773a7Zg6l02ljRL4VHWs6pC1wXuAtkgwlHwwGhhNw6cknYV6P1XibP254xuq7\nMWEG9no9STKpCyDIWjAtfJetJAbEP8Bef37+3GEYRJ96jAB3MBpb0lw+AMy7KHkucSC1Ws0iFgkT\nhyGwb/uYz6HxLJmCd0Ei8VHvsY1xbeGewg5DGqBic3hJm8QFJoovl8vp5uZGmUxm5/mz2czclJvN\nxpgH7eMgjqSEHtbl+0ogZbjoYRhaeOxisdgJmqJKEZ/DnozrJRmdE9fiaDRSv983acO7FItFbTYb\nC3HGzeYLxe5TR7k0XFDMHy4dATbL5dK8HEQBTiYT+6wkq2YdN4d39XmvEpoil4/3pqYmayUHASFR\nrVYtijLOzvcJXcztwUP6mZKrAdYBjUgys8z3/YxqJf57GLbvyTkajcy0lWSaJDEeaKu+2xYM6CmM\n4dkyBRJACLTBRwuWsN1u1ev1zGbj4AgPLpfLBmbtC3H2aDLNYzFP2u222YO1Wm3H3cklIyELSbwv\nqxD1z2dibjYbdbtdO3SafNTrdevYLMmYz3q9NtfhoYSXKJFPp1NdX18bdrHZbCzOwxdQheB8dOEh\nwsKuB4OhdyVnhST1mYWNRsO8SuAtEPW+AUMkV4WLxx5ylpw7uEm327X/12o1dbvdvfEX0kOCEowL\nxg1gCrDHWRL5iPkF4IrpkASgesFAch4Mod1uW55GNpvVYDBQv9/XcDi0uAU8dEHw0GfyewMa/6ZH\n1Ob2QTjU9PcuoWg2I4fn3Ul8H7dJSBz8ykQn8iyCjLhUPjkIXGGxWJh03ae2QaT4rjELptOper2e\nSU5csR7VhxGhtSCR9u0jw/vo8bVzOX1XIwBCGsQArh1KP2cuknYo657JZAw7IBKvVqup3W7rxz/+\nsaVsE4xGgFaSvc3eQg8wVzQH724kQpIQb0k78Rc8M442/FwMD3bzPN6XM/F4jA9CwzN2iNmB62BW\nApqSf4FmN5lM1O/3TSiRCIUG4wXhD8J88NIUxkBQCNoD2V+VSkXpdNqaw3gigaClByQ+aT4OHMIi\niy6TyRiKLT1UcgZ7YB649DESlffhPWFEoOE+/BYThkYj4BeHXK1+bX5P2ZPFYrGTEo7JM5lMdi7m\nY4BM1kN3rcvLS3NRopFst1tdXl5a9isenNXqvpuSP6dD+8i5oS3ghia+AmmLqzCfz+v09NSCf9Be\nDtWL8CCrL+S72TykR5M+T9Soj0jEpYtGuo9G0DbweoGTESxHzsPbt2+NEXQ6HcO6vOvzmD1MGs+O\nKUi7UV4eVEPdJHsS6UcHav6GSDmI7ti2cVwOvvrAFnzbHDDNP4hUQ5ruwxSi6DYaz2q10vX1tWEI\nMBpyK/A7I1HBIY6NbffuXVTgVCpl3bu50ABX/r14530Xh2cHQWBnc3FxYSbKmzdvzAzDnCAfYjKZ\n6Pr6WoPBwFTupKQrviKpuaSEucMkMB2pF4G5AS0QyYlJFjcX6/ZeMJ/3ghuaoCvvkva2PZon53XI\ne4MZkc/ndXZ2Zl4p1oFLdDAY6ObmZifN3Mex/OC8Dx51BWzhUqAxSPeHNxqNNJlM7PL0ej19/fXX\nBpQlHbwfaCVcfAgNAgQhh8vzbIAegCFfzSdpeBUSzQROz6VB2gHQjcdjffz40TpHQWCHiAzTCmQf\nMBA1GlWbgBsKn7A+9tkDZ0ljuVzuuFLn87mlNqNtrVYrff3119ZW7ec//7l+8YtfqNPp2BwQd9yA\nYW+3W9MMOTN89x6wxAuF2dXv9/XhwwdjCGSjJtn5nLf3FOH6rtVqO+5DUpUxgwi/RkPwwinJvGTP\ng+Ch6E+5XFar1drppD0YDKwnpi8qBB2jnfygNAUIdDqdajweq9frmTRoNptmF3qAD3819j0HAOK7\nzx0JgUkPGMPd3Z3lCGAjYrMi4SAKyrRxufatC+JnPgiIgCKeh5RGSwBn4LAPMR+vlcDoKP5Rr9ft\neTCaxWKhq6srDQYDI2L+HWKqMO13797p+vpaX3/9tf78z/9cp6enOjs7U6VSMWn21VdfaTAYWLs/\nPAG88z5MgfMiLBo3KOG/XJ5qtWq9P7/66isDBmezmd6/f2/S1u9n3EWFUYMVDAYDY9Lz+dyYBBcV\nMwiXNWcHQ9inRW42G/PEANBCx7i+x+Oxbm5u9LOf/exbPSQxSb22+9TxbPs+cOAs1PuMPXbgMQRs\nSw4ayZPkF/ZzERqLZM1kMmaPggpTiw8CB/kFNIxWJkoCG3GdeUALEMlHIXLxvZ9a0k647YF9tbl8\n4E61WlWj0TDTIZPJmIsVwBUGd8jmjq4t7h28z96bhoCoUcmc9GzP6Ii45N18LACBSpSawzNFWTvi\nCzxY670Q0XfE3cl7oHnh6sSk9fks5M7AVH2cx764CPJeSJ32TA6AkepNCJcoze3xSv1mNoNhwzwx\nScm9Ev1nvP3rw3yjf8f3fnikmrl8W3hCgbfb+0afBMTQgTouOGofgQNeemDV27Hed+6lwD5Gl7C3\nOwAZqrbPZAQMxExC3d4H0CbNxdd9a4+OfRpC9O/4DIzbMxYfiARYB31474t32Xl6SGIKmCk+GxaE\nH6ZCdKgkezaSnM/4ueK+Z52EwBNzQQs+mIzXCLxHhn3Ys4+/mUwh4fc7BCftHhgjyiGPte2j83Dg\n1EqAWHxTU1xB/l2OZQrR+aIaj/QgGUnyOnRpjhnsFUyCd4QJ4d34FNWTkbS//vvHMre4n3ngkXND\nK/LaWFyV46Tz8ozFazdeS/XFYPg/38NQ456/j2FG1+oxLdblPQswxCRvQ8xcPxym8DJexsv4TsZL\n27iX8TJexuPHs/Q+xKlYUZXuU595jP0bN7w6ecxnD80VVVGTAKhDfxe1h5+6T8eMY84mukePMRPi\n9uOYPf/UNT9mrk8dfxMa+lP341kyBT+idmj0HyMJrIrahsfaedHnRwEybzMes/FRTMQP702JfpZ5\n4hD66AWKrivpPeLm8aDmY9blPxd9L79n0TDfqB3svz6FmD0wHT27x2BNj5krun8828dZPBYziaPD\nuLn57DEYyWPHs2MKcdKGjfDt1Uqlks7Ozizc2PvVORhcUIy4TYr+DELGO4D7qVwuWzWiaC4AEXpJ\nsQNRcNTPRaAUc1HX0JdD894HHyjzmEP3SVi4RX16eNRjw7uSK5E04hiTB+OYi0hA3GnSbql69vXY\n0Grm9cVv8RDQH+H6+nrHA8CzfbYj8z9mD/HekBH6+vVrmyea+0A8SFLKNCOJDv1ekthFeLV3x/I9\n3qNPYXzPjinEERj56yDKuVzOugM1Go2dZBrCTiHkQ372KOPxOfZIHpBf76/mM0QFEtG4D3X26+KQ\nIWQyCPEMEDjlg6+8XxrfN7/btz7W5TP+IO4gCMzVSv1L1sR7J63Lr817g2AGfM85+BG9/GEYWum0\nfcFSXmj42gi4lMmsDYLAeiOQPcjfcl6s7dBgXQQVwcjphOWL/NK/wntzKpWKxX4cM9g3oid9unwY\nhrY+hIQvJU9UKQl1TxnPiilED9yHsuK3LZVKFnxzcXGhbDar0Whk3X/W6/tmGERElkoli0BMCvjx\nVZuYm0tDAdVXr15ZuG6UM5Oi/eWXX+6EnkbXxQWkgjNx+oToErFJ56HpdGoBTRTn7HQ62m63evfu\nnRFaUm4HkgWi5vKQWFMsFlWv162eAgyHwBuiNrvdriaTiRXGjTuvIAisjBgaCV+5vOwxlxINyNe2\nJLJvX3ejIAhUr9etUAv/KF0P3Xz99deWPUikKyHYMFVfNyJpLgLYYDicU61W09nZmVqtlp3P5eWl\nhTsT3Uja83g83tGU4uY6OTmxi44GWS6XVSgUrEmRLziEJtLpdHRzc6PFYqHRaKRisajhcPikHIhn\nxRQ8Z4PAwjC0JB66N52enur09NTKs8EcyI8IgsAOhqIaBH7EcU+ks4/6KxQKqtfrarVaOj091Y9/\n/GOTFj6Ixee2N5tNI0B/GF77gQHxj36L5+fnuri4sCKq8/lcp6enllNAs9QguM/3oBjqvmKxpC1T\nEMRHyZ2fn6tQKOjs7Mzej5BuTK90Om21LjOZzE7jmOh5pVIp6yXhq2X5YqrsG8yE94aBbzYbI+ik\n8GpMDbo0VSoVtVoty8z0oekw0zAMLRT+9vbW6nCgGe3LtyDFnLMi7+H09FSXl5dqt9sWEZrN3vea\nHI/H1kGK9VHsh+IpcYPYmCAIrEwfCWZ0EEMgVioVSbLMWgQjVcIozPMbzxSkB3UX+9ZX80E7qNVq\nyuVyFlNeLpctdRa7lcP24dJxw0cO0juiXC5be7V6vW6twmAa/F0qlTINBqmzD7n2wBuqbq1WszZu\n1IbcbrdWmtwzKV8roFAoaDAYJJpGXMDtdmsFT0hOarfbyuVyarVapmFhSpDHEYYP/SPBN5JAMBgC\nDC2Xy+nVq1dqNBpmtvA+k8nEagOE4UOlqX6/r+vr653en3GAIxcHZtpoNPTjH//YeizCEObz+U7t\nAzAh8gt8QFhclCVzobpz3hRPPTk52ek14vEmMjY5SzCGfWYsONlqtbIGsqyJugw+DB/6IKy/XC6r\n3+9LejDNktZ1aDwrpgCRQUCE3kIYlUrF1Hpq0rHZqIzYs9ioJE3FHQjPYh5UslKpZA1MPVeezWY7\ndQRhCKivb9/ed8xLMlOQEmTW5XI5Uwl9qzYuvkfsibWv1+uazWZ69+7djsYSXZcPbUbbIu+BYih8\nDmmKmoumgDYDiBZdFxoGl5T3KxaLpl1Rpo5zgqDZDwqJLBYLK5nuvS5x6yIVmoK3tVpNr169Mk2m\n0+mo1+spDEPLnOScqGkIuMo64miD9RNajHlTr9fN7KE2A6X8YCAeFI/zIkXngqGg4fjMYJ6Bxkzu\nBvPwWc4jCcc5djyr4CW/Yd5mR52ixwP2L1WCKB1GWjAbjAlxCHDx9pkksxmRqrVaTdPp1BqoUOcQ\nO917H5IOwks9CqlgE0PkEE6v19NoNNJgMNBoNLLDBmiiwAfFWOLcVt4cgtB8yjQZfmASPi0bkwXm\nFGXOfrAHqM7ZbFaXl5d68+aN9XwAX8Csoj8oGhnl2dkDBELcumB2MPF2u22Zs4vFQre3t3r79q0+\nfvxozA4TA/Xbp8j7hKi4M+P3pCZDh0jq1WplKeeYVpxnLpezPItDeSSe6VAOgAY3JEJB65hyCBGf\na0E1K36+T3NNGs9OU4j6l8k3QCp4VZSyYkgLMta4sN71lbQ5mBgU/6T8d7vd1vn5uTVDHQwG5mZq\nNps7qcyk5sIYPNItfVuNW61WBh6hdnMRcKOyBhiBL+HtcZZ9fm3sct8Nmd6E5FT4TEy8EOAQMAwI\nProuvmev6YvBpeGMer2eOp2O7u7udHZ2tlNxmzWxLhhrHEPwc2azWevHQRl8mEKv19N6vbYeCaSl\n1+t19Xo9M91gqtGcCNbJXNCIJNXrdcNlAEWHw6EkmRfCP9PXDk3SEpiHz8HQPROEiSIc6vW6lRiY\nTCbf6gyF6fQUTOFZaQrSbnce6YFDwwhQBSEcbC3y2j1X9lVuD/luvfngy7vRVZoyXh7zoD7BYrFQ\nr9ezHPcoAXjmgFkDsYET+PfGRqXeHheHebkA/F10rug/no3kAkxEk+I92OP1em1qKwwPj0CcuxUJ\niXYGQ0HTubq60sePH3V9fa0PHz5YYxRUeAgX9yuMKG5dMHiAZfCJfr9vbeTYPy4T2qMk87wgBLw2\nELeHXNj1+r7rd6vV2jk3aM431eGZmFRc8Djw1DN21kerRF/yja7TFMYFjL25uTGGMBqNrCI3FcGf\n4pZ8VpoChxBVV5GqVOFFHV6v14Zy+zz3+Xxu0hCQzKPefj5/EdE6QH3Jy8dzAcNAY5nNZup2uxYn\ngTSPqonMCRhKOmyr1TKMwre+g3mgeqPucsg+mClpXTBTpDwMAbco+wQj4PLAQCgUQrVln40XPS80\nKNZOo5XtdrtTXNQHEHkTELcdjJ6/9etiLo9tFAoFK7uP5iPJNBEkOjgT58rlkmTl2eNoETpk3biN\neS57jDbi6SYIAisJF439iJuLn3NGBFiB2YA90ZUKjwPVxvr9vjH8Q4V2D41nxRSkh4sKgAIBw4Xh\nkJLUbrftkBjT6VTFYlGDwcDsxn3177nsHtWm0g7PRe0mYCoMQ1PVqNbr89mjc3l7EeZFL0xUb1RU\n/3t6CfriK8zh8+nj1uVLwcNUwE18qTLmYp+o8MMzjtlDJPNisdhp/YYpBIaBK4/eD/wt5+b3KmkP\nfRGdUqm0E+dAhCbxJNQ45GJS7g5fvy9/Bu1FaQPGgInqwTwYD5gIpgOmXbvd1nw+t1Z1+4aPE/EM\n32sc5+fnhtvgXkWD3eeafux4dkyBweaCJRC6yiG8evVqx2RAKiJ9IBoPICZtGMg0riAazdze3tql\ngtggBspkffz4Ub1ez9TaJDcQRE0PwkajYaHUNArhPWlN56v7UApsNBpZ4BGX99AeYnL5oCHeg+/p\nk9Dtdq19HpebH+2xTQAAIABJREFUv9kXTIRGdn19bYAetvvr16/tAtMyrlqtqtfr6cOHD/rrv/7r\nHYmNqr9PghN30Ol0dHFxodPTU9XrdZ2dnZkgIT6gXq9Leii9l81m9ebNGwVBoKurq720gbkHhkAB\nYR+E5jErqiSBBeGRARRPYqzMFcUzYK7eBT6ZTKzMHHQDQ/B7t2+ufePZMgVwArQD7wNH3UKFQnJQ\nncZLVC5GtNIOA6InYo3D9ertdDpVu902DYbakb7hB63P9iG+SBjATE8EBCgBoi0WC7NPsbF9YBGa\nxb6DB3PBdo4GX43HY9XrdZPS4AfeC+HLmf1/7b1bqG1pdt/3//Z9r/t1X86pc6qqW8qD8IPcBFsQ\nIwSGOBKBjl+MXyLZiCgPMonBgbTtB+vRCbbAASNoY4EUbCkG21gEh8Q2CSYQyW4LWa22UHel6lSd\nfV33tfb9Ov2w92/sseaZc661d1X1WadYAw5nX9ae3/xu4/ofY+AA88TYAIXOz8/VbrftMkkybzkX\nRZJFV4bDoZkeSFNMhzRiLBCdlPvHD8Ra9Xo9bW1tGYqQ6t7MAY0payzWkH1Cdeds4NcBn4DWyP54\niPXq6momXsFrivzDPEZ7pWbpaDQaEyS+0Mw0a5hFM8UUPHcEUoqUYwG8utdqteyiwSl9IU5s+ElJ\nNqjQHH5/QLmQ2OK06cLJSNSBzeH9kux8OD2SC8x6CMEajZycnIxJJtbFh7TY8LhUia8lDIGoDIk5\n3mYnlEuMH2aB38Y76OJw6riqf3FxoX6/b2qvxyXAlChbhgOXhjrUhOR5/vlJY15eXlovTMBdnA+e\nCaSZc4ATmDPhfRxp59HnvkTRXfuARqNhl57K0BTdBbXIPkVRlBo6ThqL/fJ5D0DtyQ0BtIcA5OzD\nvOiY9dQy7zPFFHyoi8sON7++vtbh4aFevnxpGw+0kwuVz+fHLq137mRJU2w5j91HugBCKRaLJhmQ\nDt1u1zy+PhMvSxLArHCERlFkbdixX/3BwAnqu1HxLyv2zQH0FxMHImg5f2hZM76mCxWUNS/mhrYU\nRZHhKHK5nMGdfcYg0t63PJM0cV6STGqChEQi1+t1RVGk0WikTqdjnn+0Su8wvbq6a/s3aSx8W0Dl\nT09PdXBwoFqtpii6Q2T2ej1tbGzo8vLSbH4kOmvq5522X/iYfL9N/COgQ4+Pj62HKeeF9cfpiZn4\nVBNippgCB9mrxR6PAHKMpinSQ9em1dXVsVZadHHy2YRpY8IYrq+vDQLM5fTmh9dYBoOBbRBcG6ir\nD6lK4/Uk/bzwV6DphPCQlstBhzEwH2xppESWqcJh4LIS5yYiwUVFfSeph+fjK+DrOHnzh4sGM0Uz\nIoqC5kJoE40EQNPCwoIxV+9si88JxywJW69fvx773O3tXVl27Hfffo+CuyTMwSTSLg7vgBbE3E5O\nTsb6MPA5HzLm/ciLYc+zziGaAojTSqWiRqOhZrM5pi3CFLx2h3mCtvTYtHBPM8UUPGfDL8Akfb2C\n0WhkoSvpoU/EcDgcaxfPhvLsrHAQNjCl3XHA+cy4Tqdj6L/Dw0OzZxnTPyttfh6TQIISqiibi/bD\nJSIV9vr62i4S5krWQWNMGBwOUrQS1HzU6pOTE4vzR1E01huTZ2Wtn3f4gg/xZda5+DgwcQjDqFib\nSWMR7+fitVotw0jgKJYeHLZcSC7NycmJZXxO0iKZFxdyMBhIemhuyznx5gO+DnxPzC3LfPBRjaWl\nJTUaDcv6ZA19KB7hg5bsnwETm3Q20mimmIL0Znce6cG7e3l5aeoiWYKAeIjXnpycaDAY2IUFgJTF\nMeN2GSEgYtqFQsEcmqiLXFR8DpJMuqfZwfzcvw9FQZgL4UEOL4hAHHMgKzkQfs3ic0J6I2WQQOfn\n56rX64YoRLJxUbzzDImPZpJGcQ0IRsfe8b445MBAkMDG7+KgpSRCA/HMxztpfaQATWwwGJgG0W63\nLa05S4uMa2JoVIRtiXJwmdESer2eYQcAEXGps+bmU6Xz+bw100EwMS6MA/AXvjAg0Jg6T6WZYwoQ\nmgD/fLtvHGMAbJaWlsxp1e/37cAhGbMSQ9hQrypKd2AiYLSLi4saDoeGmmu32wZa4oJ6NGCaKirJ\nDvFwODRQVhRFlqhE+LHT6ej6+trGhSF4NZVDluaQw0krPeDxGQMpCTO9vr7WaDQyQAyXzDtfsw40\nphEHFrCZ95FIskIjeM8xJ6SHBqtZjMH/nHmfnZ29kWyG9MRjf3l5aYhKH8r1ez5pbpLMv+Odtfig\nAGKNRiMdHh6O5ZNknQ3o6urK0IqcDRjE0tKShTrRhPFxAG2GQJQ+xXSQZowpsMksOOotSTSSDEBy\ne3tr3J5NImEE54tvapJGcH8AIScnJ4YDIER5fn5uLdH29vbG0H6+OEuWysa8UMmHw6G9J+nL5XJZ\n3W5X7XbbmEAU3SVI0b6MeU1SD+O4CT57dnZm3ZHxIcB48FuAnWed05LKPDNCy4IRAU3Hc+5DnJ1O\nx9br5uZGxWLRIORpqD+/jozNPJHCKysrYz4ZmC9SlFZvRGP8uiQRFxnGgQ3v29xjGuB7If/i+PjY\nhBd7kaWV4DtjTtwB0LmLi4uGy+CMwLx9GHwaSP8kmtj3IYTwq5L+S0mtKIr+2P3PfknSfyOpff+x\nvxZF0T+//91flfTzkm4k/XdRFP2fE18ioe8DEofDyeHm5xwyr7ISpfChO8+d/SH2aiGhHyQbh4tY\n8e3trVqtlkmxuH2IaeAlNz9PG4t38em1fM7b1V5a8zwOi38+c/ZjgcRDaoLWBKEJAAu1F5Xb29rY\n6knziu2hgbvAfSwsLBiCkYu5srJiph1AHJg+F9eHYpPWUBpvzMPvGRuTAYASjABAGmaoHyttvxjL\nF4jBacplZW19SJWIA8wkfm6y1tCnlnsmi5bi81fipin3IeVefzHNYEIIPynpWNKvx5jCcRRFfyv2\n2R+T9BuS/oSkZ5L+paT/JIqiTKAATMEvGFKOBYnDen0MPYk8h3fj2PfYpfwc7y0psVwQnxLrTQze\nLy5NPPmx/DvACHzIlPdhXvF3hXy+vX9mElOQHhgD6jsOTux3Pu+1NBx/HLy0ecXNFmC/AKTIN+Cz\nFxcX9j1+CkxDJJ5/vqekeXktiDVkL0MIqtVqFtrFOQt+IavNX9JY7AnrEU8lB+LshVTcN5M0VpxY\nM+aHUxHmAmPyjID38s7uFJqKKUw0H6Io+tchhA8mfe6evinpN6MoupD0SQjhI90xiP9vmj/2k/Fm\nBJsU33R/ETjISWGsJLs7/nUUPaQnI3U804mPBYBkklqdNJ7HOjBW2t8iddIYXFo4zY9FeA5mhAPW\nP5N5ZZWti1OcOXDBkaRocz7N20dNfOu9tGdmzQvUKXPzEF8iHTyH8CO/j1/8x4zlzyNjeadvGjOd\nhm5vbw1h6v00nhF4DTLpbECT1jCNPo9P4S+FEH5W0nck/ZUoivqSnkv6bfeZnfufPZniavPneU7W\n9/GfZTknHztWHLMQpy9yrKx5cSl8DYMvgpIYLJf9qWNNK1m9+v8YBN80foussb5Miu9X2vmYNN+n\n+hWeWk/hVyR9XdKPS9qX9Lcf+4AQwi+EEL4TQvjOE99hTnOa05dAT9IUoig65OsQwt+T9L/ff7sr\n6YX76Hv3P0t6xrclffv+GWMsLS3ENkldfoy6lJbNmPa8JJXTk/+993vMIj1VrZzTF0/xMyO9edbi\nDle0sazz6Omxe/0kphBC2I6iaP/+2z8r6Q/uv/4tSf8whPDLunM0/qikf/OUMe7HkfSmAyhu2/EZ\n7x32DpnHjukdifzM26seScnP4u/yeeiLfJZ/nn/P+Bp6W/WLHDvpPb6MZ8efnzTeND6Yx4wVv7je\nEe3HnYbi/qL4197v5J3kSdET//20jMPTRKYQQvgNST8lqRFC2JH0NyT9VAjhxyVFkl5J+m/vX+J7\nIYR/JOk/SLqW9IvRhMhDwnhvTI4DjFeboh3vvfeeRqORpIdiHXh7wajz87TNYeH84ofw0D0JqOzq\n6upYiMl76XH4+BqKj50zTGhlZUX1et3qC/iYNYzvMXFoL4l4Pg7HUqmkFy9eGHiJtGk/P0KVj51X\nfFxS4XHO+gQrD8h6ytpJD5cG4BR4Fr+GOAFB/D3WGejD4jg2KeyCk9vX1+RnJIc9dix/DhcXF60j\nGu9N5IuQ5+3trTUi8g76x9LEkOQPg5LMB4iwJPF2IJ+VSkXPnz+3Re92u2NhNOrcgQJMMkf4B2Mg\n9uxBMDAGQDJEHYgccABCCDo6Ohoba5L5wJgcMA/2IRri8Qg+PyCtK5R/ttd4fMybgrHValUvXrzQ\nxcWFut2uut3uWDl3wDqTAGBJY/s54Skn1u+zBeNa4KRszPg4XEz2jmzZYrFoEpVkL0kW46c696R1\nhJgPOAJQmlR24myQc+OjU0Dik1ChSdoNzJv5sGfFYlHNZlPSQ5TCp4uTtMX/kBvziwlJ/jDJawlg\n2KktQNXjUqlk3ZS2trYMnru4uKiTkxP1ej0dHh6q0+lYdiDAGK9qeRUsl8up0WiMlVz37cjo9gO0\nmkxFvvdJMpQmSztscH/i5xSSyeVy1uHo5cuXdsDY7MFgoHa7rdFoZPUeOOBJaxhF0VibOABLpVJJ\njUZDm5ub+vDDD7WxsTFWTpyUdI+ag1lMurAkjsFI0Q4KhYI18fElxECFeuYHg52E3Sd3g7VDijab\nTT1//twK8oAMPT09VavV0uHhoXq9nu0XqM60eYUQtL29rVwuZ81Z8vm8NjY2rDlRPp839CRw5729\nPe3v76vVao3te/wcxsci94W1I/+mXq/bP5oC+/J5w+HQKoD1+31DVT4lsjVTTMFzUQ6yrxxEV6PN\nzU1Vq1WL4YMHpzcil4lyXKQ9x7Mm+Z/eARTebDQa1giGIq0cXuLf3W5XFxcXOjg40MLCgobDoQGE\nskJFXBZvDnFpuKRAkNfW1tRsNnV4eGgaEcAbYv/xi+rXEOnJIUMCwVDpWwhQC1QedQhGo5GNBX4j\ni8rlshUwhdFSE7FSqahWq1mi0MHBgbrdruWrxHEbWSnv5FPAxOnF0Gg09Pz5c9VqNZXLZV1cXNg5\nkaRKpWINYAGJYdKkhU5JWCMfgUSlZrOparWq9fV1S7ojIzOEu+rL7fYd4Je6B+A2suaF5sjZ4Mw3\nm001Gg0rtgK8nopWaMfHx8eWwAf47rE0U0xB0phK7+0iCrQWi0VbgH6/b1l30ngJKq+qZaWtwnQk\nWRntly9fql6v23usrq6a7wKVEYgu2Y0hBOslkIW0lGTPXFxctLqCW1tbxlTI8iyVSpbqXCgUNBwO\nTcPBBk9bQ9bDQ2E54CTdkCtCyXUYLKZSHF6dRWSWbm1taWVlxaQ1qeEUDaGyNAlTnU7HqljzzpIM\n7Zk0N3IKqAcBMyengcItURRZWrP3OXg7PIsYiyK+Nzc39t6Xl5fqdDrqdDrmP6BCNAwHZCPmWJaW\nBeO+vb01hkBtUHppAO0ejUaG0owzERjFU/0J0owxBe+cQnKAxaeKD4lR3W7XDiv+BjQGX5HGN9eI\nE0Ut+Dw2IwcZiXV6emqc11dG9huytrZmjCNLPeT9ODBRFBnXX1hYsLZmQFrRcJDiSNJJktszBlTy\ncrmsFy9e2OHq9Xra29uz8X1RGYqNksCVxRyYP1mOSMVCoWC5Ezc3N9rf3zekIyZav98fg2CzDmlr\n6KHlOO8Gg4E1Vz08PDSGS5k9/g773pd+Y32T1o/3oFHxzc2NrRHri3ZDIRnyPnyiFHtNunPSWFxo\nX+cCAeQh3eSHkEKdy+Vsb3yNhTgU/jE0U0zBh1A4XDT1IJtxdXXVbECfBEWyD5cJTzObkHaBWEgv\nFfkZVYiQpmROooZjz8KMvMqbNh7vjFq+vr6uer1uNQBwmqKdhBBUrVY1GAwsPZgDN8lbzxqSUkxF\nbN/PwmegInko3ME7eY960kGDqZBbQLMVUnthCiHctVpfWrrr3Hxzc2Nt8TxuP+tAw6Cur6+ttBx+\noxCCVabGW39+fm4MDgbJGF6LyhqLepIwBNaT/aYwz9XVlSqVimXtkvNAtCAr2uFDpqw/z6XYD74W\nNFQf0aE6GGv9eaIPM9UhymsKXGpJYxza/7u5uTEVCwcNB8r3WkyTBIzjNxCmQxjLMwU2Du+zL4TK\nu0zDnf3h9JEVQpxoN4VCQY1Gw5gblYJ9vD0rNo9EI6LxwQcfqNFoqFwu2wXGcckhurm5sT4JOHip\nHZgW9+aSIcUoi0fNhOFwqG63q+FwaCYGPSR9+TWvQSWN481K6lJgBiA8cPAuLi5ai/r19XUr20/E\nAZXeJ4XF15D9RlvkHPA/ac2+oS5Vs4g4cD4mhQnRIokmEDL2dT0wDa6ursx/xj75qE5ag5tpaaY0\nhSQiTx5aWFgwzsklpkCJz7TzrepZME9eHfYbQnEKH2mAKREmIvyIgwpm4G3ISRLBO9WOjo6sSerl\n5aWazabNTZIV67i+vjaJ4C9Q/PmovpLMNq3X69YXE22AtYVBEma7ubmxsuIHBweJRWg88S5XV1dq\ntVo6Pz9XtVq18u2DwWCsZLn0UEsRpuRj72kFTv3YfB6HLXMuFosqFoumjdBnkjRxKlH5Qrtx34Jn\nfggN353r7OxMa2tr5kDF7kegnJ6eajgc2nqxPlkNiKUHJo42iVMRkw7NlagcUQ/OG9EN6aGuwlNo\nppiCl4AcAK+qr6+va2trawwHQEyayjQ06PAFSXh2fCykACW6KQbi28BToBPcAhcK04aviZDwXmnz\n86orPgqkwe3trTnRaGSDV5xDzCGZBLzBhsVs+PDDD/Xs2TOrYegZE2FEIgeEeqvVqtrttj7++ONM\nWLgH0XAZj4+PjXkXi0VJ0sbGhpaWlpTL5dTpdCyUxkWNR4bS1jD+GWx5cBfMaXNz03wCvtxbnMEl\njefVeS41e0OHqWfPnlktxe3tbUVRZD4hzoY3h9Kcw96pjhaJY5FWcZiWmBTlctmcnlSSwtnK+Xqq\ntjBTTEF6WCDvLfZlveINQjlwl5eXVsGHeLivWcCzIQ4h6iYbf3R0pGKxqKOjI1PNKJlG+IkLQG9J\n1Dk8wDw/jW5vb8fmhOTi4jNHHFPE/6vVqlqt1pj5lLaG0kOI68WLFxYVwHmLWktl7FKppFqtpq2t\nLTMfKF1eLBbV7/cz5+NrQdIA9/r62g6vJDWbTW1ublqR2NPT0zGtJsu+j8/Nfw7py1lBwuZyOSuc\nCuXzeR0dHb1RPzKLMfhoDxcul8tZeByNjmrWXHC0o2nG8k5kok30yMAHhDMTXAb+B8B8/X5/rIDP\nU2nmmAKXiQudy+VUKBRUq9X0/vvvW1swVCccTCxctVrVycmJisWiKpWKAY2yForLCAJyYWFB5XLZ\nNon4so9VU6lpOByaZ5+yaVnhQuYm3R2EwWCg58+fmx9jcfGu6xUHifeg6g4MAsdZFgF62d7eVqVS\nsTb0x8fHyufz2t7etvLtNzc31isTJohNTrQii7xZdHJyona7bXBjAFMccrQSX80asFVWbwTG4XL5\nKAAhUe9o3tvbMy0Q8NFoNDLVG0TgpHn5sXBgckGZz+vXr61uBS0ICfnm83mrNpXFgIiGlctllUol\n1et1bW5umsMXpCs9TdbW1gwoh08LjIhnfI+lmWMKbAKhHZwtADeQ1oSWer3emH3lS2zhwUVCpo3n\nvcPYtxQDxS7m8OZyOVPpAY74ysQwkTTyeRzSQ/gVBoeaOhwObXyckEhcxkFqpdHS0pKq1apdTJqq\n8u5IvqOjIwNMHR8f2xqD/PNhxixfiZ8PjsyTkxPzgwAkyuVypsYTWmXN0LSyGAOfx18CFgGHXqfT\n0fLyss7Pz833hP/E589M8pXE98u3MiQKRUgV5CImBp8HS8F8s8LVCwsLZg77don4y87Ozgw8h0YA\nLD2OT+A9nkIzG33wHZfhkFwGHHvkO4Aow7kYRZFKpdIYxNc/3xOquPSghoJcRHrh5ImiaAwS6zcA\nDzA2YdYcfU6Fl0SAsDymPYRgc/FmA8/I8mbzXnjnwcP7UC7qNQe9Wq3autBgByk2zf6hMZyfn+vk\n5ESdTsfAWL1ezyIOMHCfR+KdhlnzQov0uBG0EhCjRCeOjo7Gwrn4qDyMftJeIVjQEAuFgsrlskWN\ngIhT1BVNC5To+vq6SqXSVGP5OpqsE4yTBsMIr3go0vuJfF/Ux9JMMQWIjWfjwAL4y0rs2MerwRpw\n2HjWJBUqKWbtG8vQ+clzfMwVkGoeUJSFoOSdOPyLi4vq9XrWIBXGg+ZSq9UMmIMK6jWESU65i4sL\nA0PROwLVE2lDeAtoNzZ/t9u18GJa6Tk/J2+DE8YjFwAfwtnZmfr9vmVfeg+5BxJlYQf8pQbliuZE\nt+nDw0PzT3Ghvb8Kh20WsTb8faFQMHgz5uPV1V0jW5jg8vKy7aXHsngAUlq4lbA72owvrAtj9s2F\nfQjdh1phGE8FL80UU/D2IqoektEDhDjobLDvb4CXmWKgHkHmD5p3xvmDzAZw8LyUJBxKzBiOTe4D\nlzlNzfaakEe5LSwsWLMZX0UaE4r3pb5/vHty0ji889XVlYbDoVqt1lhjXMb1yURgBy4vLzUYDLSz\ns6PPPvvM1nrS3vE/n4WREComycv3qowz2WnJa1tcQsr0o1Gh6RUKhbEuW4Qip3VsInDILPXVsLl8\nRIbwm/B3ALuQ3D6y5gmtEKczfgOfaek1SDQYelYOBgNrmTgJ1DaJZs6nII1DdFGFuLTgA0B0MfmT\nkxNrLIqEQs1OknLx8CF2MBoKKiNqIBcUvwbh0MvLS+3t7dkzsy6rvzhoC96HQg4CjqpSqaTl5WW1\nWq0xrcjH0dPGQZUk85F0Ya9CU3PgxYsX1jmq1WrZnD7++GN1u11zkD1m//iHv+T8/FyVSsW0KS4K\n3aLY60lOWmm81oBvlgL2wSdMAbwC44HTlGekXVI/ljcf2H8kMpoO+Ah8GzjDfSu7rJoKXstCu0GT\nQthgPksyhzSmGeff4zeeSjPHFOJhIDQFnCm9Xm/sMuEHwKl1cnKinZ0dyyv3wJMk8ihIsAgrKyuq\nVqvmk/DprISCOOhcOrj4tGXKfbEY8vErlYqpmVxaGpQivZH2XiKnEdLx7OxMu7u7evHihVZWVgxa\nnMvlVK/XbX273a5CCDo4ONB3v/tdffzxx2/07UwjLpjXUtBGUMN9xiumECXhfeXlSVIOSekBZcCm\nseE9A6YhK70dfbu4SWYRGglJcLlczvxHlHVnX/P5vF3k6+trS2cmPDupiC3zX1hY0OnpqWFXaByE\nMEI4+K5o3W7XUqW9j+EpNHNMQXozB4J8AGClUXTXZo3IwOLioqnvh4eHY6XDfapqkroYRQ8FQPgc\njIL232RmIt1oP9/v97W/v29OLY+gTBsLPwLfIz2AyyLxhsOhJJldv7e3p36/b5/P0kh4Nqo7NjbS\nGvPEh++QTEdHR/rkk0/08ccfm+aShdD05J2AXFZwAzCgYrFo3nmcZ2gvrP8kZnd1dWWJQph5mA2A\nfpaWltTpdHRzc6NWq6X9/X3t7++/sYaTUH8XFxemAfj0e84NrecHg4HlJQyHQ7169UqdTsfwIGm9\nJuLz8oV00A59khW1NUij7/V66na7Zn5y7qbdsySaSaYAAIbCKRwY2n7BBLj82FFeYhOewf5OWyDv\n2EKrAEoKcAjbEVDOzc2NedXRGmjSOk1cmE1H+iPZ8MxjH7569cq6KoOH8M/IIu+wBARFERpscEmm\n2lLk5OjoyDJQWZNpkq+kB1XbO8xyuZw2NzetdoNvzBu3kbNqKPh5+bwFfCYwBx/ZaLfbOjw8tLoX\nAItwDk/CRPjPwFwJ01KCTbpLdedi3tzcWJ4HZwnmkzU3BArwenxJPhxOx256i15dXRmD8FWt2LOn\n0kyWY5Me6uDhMLr/3Ji65p16/mvPzT1D8NLbe56ROP73jI9dKt1VaMLmJcbuzQhwBnF/RcJ8x9Rt\n3sfPzTtAMZP8vKaV3H6tkn7n1X0uso/GILmmGQ+NC+84pdHAmEjS9va2jo+PrXclFYIm2dxxwkPP\nGvPuaCC8g89tgCGwHtOuI5gEH4r20QRUfs4e5pbXfNLGitv+voAK88L/JN1pbWi1fo6MyznxZ8+N\n+8W0jfthUEhpG+dVbRY26WL7hfWMIS7d4pfeMwsOtPcxcBjg1r5iks+iBEASZwLTAHDSGJaPVMSd\nUI9Y17Hv07ze/rOeWaCCPuaMsGb8DdB0mM/m5qahKL3K/ViPOXsGA+Bi+nl6wBU/47OPWUfPsP05\n9GPBjPwcYKZZaxjfIw+qipu9vHN8LL5O0+jeaaaQ8rvE/+O/l95sKz7Jq5z2cxiRh/d6bIEkC29l\njfd5LrCf7+dRBZOeF2eU/n9/gONM+CnjEc7jefEsyafG0uNjea0o/g6TokKPHcc/Oz4WkY7HaHNZ\nY/l/nhnx/zRjfeWYwpzmNKcvjKZiCjMFXprTnOb09mkmow8/DEpTp/3Pnqo6Q29TC0uawzQ+hiRb\nNa66JpkfTyX/3LTfx99v0t8m7d2kfU4aa1r6vOfkbT8/Tu80U4gfkC/qmTit4g5Mf3i8feq//qI2\n8PMeVP+MLPuX770TjZ/FbdhJFzhp/LgDE/Keer5/6vziX3vIsKTEeTHmtPNK+lx8bklOxcc6T9OY\nYNxvEnc+PnasLHqnmAKL4tGF4Aa855X/J4XSkqQoBwovuofM+loJ3gsNAu0pKDK/ycyLmL0/aHj0\nmVeW8zHtADMvSVZjAJix9IAB8M+g1mXWu8cJb73vfkVi0enp6Rv7xfwA7/CzLKcyRMQIcJEHToG3\nYM8gyrw/xoHrBYWv4k2lKs4EYWr+RVFkSMNJZ8P/nrH8mKRT+wrR8WiKX8On0jvBFAg/EYeWZGXS\nfH/C+GUgczGN4mqmT5Pla39RqbJEWSzCleTBPyamz7x4tsfkk1zjU7HBD3DAfVuwtHlBHr/vk60A\nGZGTQBJcBbPaAAAgAElEQVSONF4JiEw9np00D88gmYuXoB4o5JkafxfCXfoz65tmFvhwp2cErKHX\neqgpkBQq9oVyp9kn1pBiLmtra6rVaiqVStre3rZuVK1WywBLJORFUWSArawx/FqwjjA8j4sgO9P3\n5vDQctKtn8oYZpYpcNFIm6ZiM7Xxnj17pnw+r1arpXa7bTkCg8FA/X5/rO5BFEVvbIhnBkgx6QHI\nxMUB/Ud2nC/WQX1HpOnBwYHh7NOYkYfixg81cOBms2mFTk5OTrS0tGQVkT2CjYOXZr4AM+Z9qZlA\nuS9KfkVRZOXdJVmeADByKvxQeyEpDs6lZo78I0WZd4HJcdhhPhxwqj9TV9HPy49FXU7qFNJ3giS5\nEILVf2R9OQcwChLGfM5KfA1DCFbtC62gXC5b68JGo6FGo6Hj42P1ej3Ld6ADFoVvEVBpYVjeuVAo\nGE4BeDMp2HTgiqLIqokBfWa9yDw9Ozv7arSN8wQToIwW5amePXtmZcLgjmtra6pWq/roo48kyRpl\nkFrN4qXZXz5NmsO7tramRqNhtQt9QVW4+c3NjUGH44ctjSmUy2XlcjlJsoQaEnroSvX8+XOFEFSr\n1awQyvLystWNoMoTl8mP5ecFQ2U9KQRKXQC6blGhCNjw2dmZ5UKcn58bGhGQVhKFECxhx2sivkQ5\nPTkBiFH45Pz83CDjQNbj1Yj9JQ0hWA5HrVZTPp+3edE5CaaG5sVYZBYCG0az8/OKq/FkV1JSfX19\nXbVazZLm0G5g8lEUWdIU8/PaRprGQKEdtDrWrFar2Txph4f2gXnS7/ctWZDWBpOqR6fRzDIFODu1\n/La2tlSpVCxPwBefoHtPs9kck3g+0cbDVCE2CuZCqfhyuWzSwOfII424zJRLJ+kmrjqnqW8kW8HM\nUOm9z4Aqvr6aTy6XswMddzz5OUnjFaUoEFKtVlUul9VsNs00gMn4kmbUOlxbW7OS9zwzba9IDELr\nos5gs9k0xhDCQ+NY75OhSC61KSVZklPSvBAW9MR89uyZ5SKcn59bVW8YPLUWRqORMSbKqCWtoR+T\n3BCK/CA8Tk5OdHBwYJpQt9u12plcRFKr0USywFNoxpTQW1xcVLPZVKVSUb1et9qLvlkPQmIwGJj/\nB3/Dzc2N3YPH0kwyBS4yCUohBGsN1uv17PdsKDX/yFXwHmCyKNMuqFc30RgwURYXF40hoDZ7u5h6\nBzAAHFtpfgUuHRKZCynJJI13mvE73pHnLiwsjDUWTSLPZHgeDA/GGUV3qehoCTCJxcVFK4ZCs14q\nT8UJDQG1F5PvvffeM0bO+GtraxoMBpYliTRlHWACccntCS0O5lapVPT8+XOVy2W1220z3ehURQFf\nNLBXr17ZGEjwND8JgoTkLca/urqywrRI/evru16S3iziOdJDhCqJMfizx/dketL30zsU8VNQvo+0\nbgQBQvApWoI0o0wBdR91T5KOj491fHxsF4W6gvV63S6IXwjv3Y57n/040t0BQa2jzh8LHkV32Yu+\nVReqvfSArycLMStNm3mFEMy2DCGoXq/r5ORkLPcin8/bwcSZihTk0iRVK/JOJ2+vU1LOO7R8ExZU\n17W1NR0dHdkYMLC0y8P7+aKmpVJJGxsbxlhh2tQzIP2dw35+fm6l6Fi/OLPzzM37YN577z1LbaaG\nBl2s2UMY/dHRkVXd9k7bLIccTlI+s7a2puFwqHK5bHuIn4R38pmYZC76/Ug6hz4BkNRwtK7b21vz\n65DeTgMa+p0gKHz0YdrqUnGaSaYgyaoBLyws6OjoyDoWhxDMiUhBjUqlooWFBUtdlcabebAZfnF8\nKJDxeA7lu/F09/t9HR8fmxOSnpKoaTAMNjRNHfUS0DcKwf6T7nwOODgp1T0ajdTr9czRhwqeVMbb\nzwutBCmPIwoHpn9fyr9HUTTmXyAVl79LmhOMB0dYs9lUvV43xkaK78HBgR141poUdd6Fg51mFuGR\npyU8Zg/FRg4PD6361urqqvXphDEwb3wPWcJCeqjfSZiYELX3VSEk0EhIWff7jSabNRYalG9QxHn0\nvTI4G1SAIiSO/4Jye2nncBLNJFPwajqOp+vra3U6HZNmS0tLevnypRVCwVlF/0JpvFZCmseX/xcW\nFqwICUVH0QoI12E/ItUkWRUfipFeXFxkhoOYC3Y0hwZGsLy8rM3NTfNVjEYjtVotY0w+RTstycfP\nC4cajrbj42M71BStwSFZKBSsUhPzoGZFWpEQDj5dpnBe0qLu+vpa/X5fr1690mAwMDWZHgW+zgCS\nMA0bwdoxr263a/6djz76SAcHB9brwRcrQS1nbqzJ+vr6G81imFOcuVJWDeYgyfxdV1dXqtfrY01h\niPhQSDYNX+LNXMwoIjmsO+ebMoNoEDBvoiwwVOo3PCYV3dNMMwWkKCoYoUkcgo1GQ4VCwWxjHC3Y\nVFK6ysbGX19fj1URZsHpq4gEZ6N8WfGLiwvrT8jYvpFo0gWSHtqXS7LPY7KUy2Wzw8/Pz7Wzs6OD\ngwN1Oh3z/nunVVp4ENXRS3gkMxWbUVcpMeb7bmIKAchhP+LzIjxGVEa6aw8H1uL4+FjtdtsK6dLH\ngFLmhAm9DZ5U/IR5UQAH6b2+vm57QFgOm97Xg8T88CFKfDVJF8drmh4XgVP1+fPnhpWRpM3NTXOa\nsrbUjxwMBpmFamAYMFHpoSsUFabwH93e3qpcLluJQNaKylMwgq9c5SU2xF9cpAjt09AYFhcXraEn\noRi4twe6pI2DTX17e2sdlvFPeAARZkO9XjcpjroH0tEDjJLG9QzK+znQVFZXV61h6dXVlbrdrlqt\nlhXnhCFM2mzmBRoOswdJxfcg5MBgcDBhrD7KEb8gnriQOF+5PFxSVODl5WU1m03VajULU2LywZyh\ntLGorISz1MfmfTFaTAcf9kXrBHzmG/JkMQY+46uGF4tFA6x5nAs4Arpv0bhlUtk3X4HKmyXHx8dq\nNpu2pvV6XbVazfwxtDrwf5PE0B5DE5lCCOGFpF+XtCkpkvTtKIr+TgihJul/k/SBpFeS/lwURf1w\nd+r/jqSfkXQq6S9EUfS7j30xrwJfXl5qOByaRxw1ngN1dnZmwCaAJHDdNLvRj8NhKpfLppl4z269\nXjfJBoOgduLBwYEVHeWgTYMm4/eoeTSzqVQqur6+1uvXr/XRRx/p6OhorAoSDCRNwkkPh5yD5HtM\nEDGhXiIVp/CiLywsWKFYwlqYHllz8Wor0QqiEr5LOJEDwqutVkuffvqpRSV4z6z1g2m1221Tu2Ey\nL1++tA7QhK/L5bL6/b46nY729/fN5l5fX7dQYxZ5dGE+n9eP/MiPqF6v2zkERHZ9fa1isaiNjQ2r\nzo3af3h4aEVws0xLmALNezY2NswBTqEf+kjAuPG/XVxcWHj+85Rkm0ZTuJb0V6Io+t0QQlHSvwsh\n/AtJf0HSv4qi6G+GEL4l6VuS/kdJPy3pR+///UlJv3L//5PIq/6gtKjdiISCY7OgxIu9zZ7GGEII\ndoBwIKKFSA/xfu8QgzkRw0eKe8mcNh4XGpWez7PRIQSNRiMrMIrDk/+lBwyHx74nzQsJiUaFLQ/w\n6fLyUvl8Xu1221Trfr9vBx0chveMpx00mDBOUaQqGpEvdc4lAqF5fHxsPQvQ3OIhUK+tIO1PT08N\nE8HewXxub281Go2sAzY1PTHzYJbsW9q8YAj4SZrNpu0t2iv+LtaJM8ue+uhMVpjQ+zJw+MIooiga\na3q0srJimgiwakljkZAvLSQZRdG+pP37r49CCH8o6bmkb0r6qfuP/Zqk/0d3TOGbkn49ujupvx1C\nqIQQtu+fMzV5ZuBtZA4FLbhB5BEu9L0a/AVNij6wCdjVPCMeqpMeuDhoOSQ8h4oNmKSSMh4MADAU\nvR4A8cDpfW1G5sNz4vBcPy5jcCAJm2JWYHfSMYqCoUCcWUMuRRZKkzHp/kRno62tLTPFAEN9/etf\n1+Lion328PDQ1pM5Z3nN2f/T01OrYHxxcaGtrS3TjHCKEgpFmwT45TtPTzqDHruBxkRXbs4Czl+6\nNdXrdWM8gKg8k0wby5/vm5u7ArD0mcjlclYWv1KpWIieArFU3pY0UbObRI/yKYQQPpD0xyX9jqRN\nd9EPdGdeSHcM47X7s537nz2KKfgLCzwUdWltbc28sHjEkfRsBhcCDSJu03lbERuc5y0uLqrb7arZ\nbNqFAOhCMxZJJuW8cwfpnbJ+kh4SeXyh0ZWVFYMe09uBJi6esTE3vk+6qPFwq3eqEeMGAYhTjIQd\n7F8cWB4Jmqb2ItnBWhBLR4vDn8AlpEz52dmZhsOhaQlEebIqHzMWDsxKpWKhunq9blBkQnqEJqki\n7TUR+l9kmZc+D4ZekuwDzKXX69l5xWTC+Sk9JKTx/mkCw2uAURRZ9AcHN+YV2cFHR0eSZA7uNIzO\nY/0KUzOFEEJB0j+W9JejKBp5jhdFURQeWVIthPALkn4h4/dj0pwFW15eNi7P4QHKymZLGvt9lu2N\nuoc0wTFF7JuQJyYCEQC4NglRhLsmbYQ3AVBLvbNvdXXV1GryKWBIMI8s5uOZKVKHi1YqlSQ99NLA\nFMK5iBfbg2CQupMguqj0PD+Xy5mpt7CwoHK5bIzj/Pzc8Bej0cgSrzykOinKwbzQStB+yuXymI8l\nn8/r9vbWLhQamTfriIZkAXxYc/4Wn0i4xyLg6OT8kDXJeqBxUsreY2iSyDvY4/kLp6en5i8A94EZ\nhhDhd7G7mbpvaTQVUwghLOuOIfyDKIr+yf2PDzELQgjbklr3P9+V9ML9+Xv3P4svwLclffv++Ylv\n7kNBqHAewuk7AHupQOtuDmSabQVXJg59eXlp4UCcjRya29u7Bi0whX6/b44/OLi38yesp/kpqtWq\neeNBbw6HQ4P8olUgsfDSgxDMOmAeGks6OJ/HYQvT4TB5TYi5Y3OnOTf9OuI05WB6HwaX+fj4WN1u\nV4eHhybVgO7GwWdJYxH54d1Qncvlsj0HKY0GCKITbVJ66A6V5bRlv2DIkgyVSTTDJ0qxtpyn4XBo\npifvn0Z+z1gvmAmp8svLy9Z7AiwJQszv2ySkZhZNrNF4H034+5L+MIqiX3a/+i1JP3f/9c9J+mfu\n5z8b7ugnJA0f609wY485uTzWv9lsamNjQxsbG9ra2rIkH0wGnwE3yb7ytjvhRa9GS7KuUNjLOHmQ\nfKjhWZoJcyK8BS7h2bNnFkIDxx5FkYW3cEQS8oTpTIoI8A+tiUuB1oM0wwShpTpaAkAf6QGBmTUv\nfAKYNkjS29tbU5/RDDAf+DyH2HvN434lCOEQ97nwXMw6fEQIEmL+/B4GMmle3p/AenS7XV1fX5vP\nBqEFlPvs7EyfffaZ9bXAwZlFMA7pocgK+BGYjm8Swxn0cHTPGJ5K02gK/5mk/1rSd0MIv3f/s78m\n6W9K+kchhJ+X9KmkP3f/u3+uu3DkR7oLSf7Fp7yY9yUsL9+1HS8Wi5ZGnc/ntb29bSpdp9Mx3Hu/\n3x+TXJMkN5oBiEY6Q3FYLy8v1Wq1TIoOBgNz7niVl0uWRRwgtBzSfRuNhjmUCoWCut2upcYCJmKs\nhYUFU/OTiPdB7eWCsh78PT4JMk7xzg8Gg7HcDHwPUnpOBweaMf0+cnlpc3Z7e2t1ITCRvLmTFtL1\npoU3L70Ww0XF5PHmGqFBjxdBi0wzIYjQ8HvCoDi4c7mcmbA04+31evr000+1u7trWswkU9afD19D\nYXl52coIoO2Bwux2u2PmHnOdFs+SRtNEH/5fSWnu4D+d8PlI0i8+6W0ced8Azj4uRaFQMJUwhKBP\nP/1Up6enev36tbrdrqQHSOyksAwXhTGOj4+1tLRkDrkQHlBqeHux5ZC+3ieRpbZFUWSxbUwCJMzF\nxYXy+bz1qETFJlORTcZc8WnFnrwZw/r5eZ6fn5s2Qs0BPPm+pRsU1xiS5gbz9A1f8boXCgXrxYkD\nEhwEKj2Zm6zdNCq2L1Lj0a++pgNwchgblxmwkwe3pc2LM4TZAxPikgJXJwqA/d/pdIzhwVQnaXaY\nGR41S3YrCFs0jr29PWPgl5eXb6Azn8oQJM123wekBzZWfJGodUD2IJh2pETWBfXqqFfNMFNQ8TkE\neKoxJ7wNx1hewiH1ksb1YUIkK9KIsdBQkGr+wkwzL8wOpI30kEzk4/loI16yInGZu1dLvUSNq/f5\nfH5M0uGJJ7ZP3kW32zUYNPY3YB18Nn4eSeNSqIYIDvNiD0nQuri4MBwKvhOYO47G+PPjhAnr7X38\nGfyt79pEiNdjB6ax8TEXfBm29fV1lUolFQoFM2/J0/HOVpgPGkmKdvzVaAbjGYP/XpIl4fiN8LZV\n1ty8lED9JfTDxeMgIFX8QnMouLxJqmHW+CQlkQTDxfWh07jk9NpCGvnL5B2aHm/hw7t83s8PyYp0\n9eOlMQVJJvVheDA75oG6zTMwtXxafNoaxj3q1GPwl5VxpYd6F55JSDKbH21omvPvz1yaKQrj8Gvv\nHb3T3jPPyHkOjI8Ln8/nzTHscRhoYxljfTWYgvuMpDer/3hu/ZissPiB5mdcJL/JksYujL80cfKe\n42nexY/p4cs8wye5TDuv+CXmf4+49O/o1zBNzfXvFH920ny4oLlcbiwXxZsz1D/g+UljJo3Fu/Bz\n9soXvOF76aFFXXwdk7SQLPJj+r+L/3waM2iacdgnTCW/X4ztS+Ql7VGMvlpMYU5zmtPnpnnbuDnN\naU6Pp5lMnf6qUVzdzPpdkuaW9ndedZ0Udv0yKU2195RmfvjP+88kORr936S9x2NNgvg7pj0v6Z3T\nxpr2HWeV3immkGbDSuOp1l/Uwse96/zvw3OPsUfTLoyPu3uvNkzC/0t65uedl39Oks097bOSng1h\nB8ftbj+PNFvdPy/Lp+H9Jv733sb3+zeJ0i6/f36SryvJWfoYP1MSpa3Fl8Fg3gmmEL8weGSjKBrz\n1vsNI3X0sciu+FiEKPP5vI6Pj+1QxeP2PiElieJMS3oAaPkQVC6Xs45NHj9PFESShWAfOy/WhbkB\nmuL5hCWJiFBePq1ASBKDY17sEU5AStQPh0PzyHvGQCZlFugmSRqzhiQqLS0tqVAoaHNz0/ABPBf0\nI3iUSTkdjBlnApw9xgXI5NOVAcR5Z+BjL7A/7+wXxXC8oPDryHn5PDTzTIFN94cZAuzBAYtLPfo/\nPsZzz0YDIpEeUlHX19ffgO1yaIC4ZqmNnsiJx0NO2IkwG4lPvrCK79HwGIbH+jEv/lFAFSAV4DAO\n2vHxsQaDgWUBTkMefEPIVZLVL8zn82PAJcYKIViatc+dyCKPWQGjsL6+rkajYd22Li8v1W63x0qx\n8zVgrWnNEfAQfM+FpfqSJEvdZ40JHZI895iIlAdoLSwsWBlCGA31LnwYnvWbVOkpc12f/JdfMnFQ\nJY0xBSQPv2eT6O8XwkOhVYArJP2kSXJqGnDIqNhDWzW6D7GxhO7Oz88t048CoXzGX1ivdsLtOTQA\nfcrlstbW1tRsNtVoNGweMAVAWd1uV7e3tzo8PLR4e9oBAPzCAaZuA2Xlnj17pm984xuSHvo78ux2\nu629vT0rn356eprY8sxL0mKxaMyLxiagJ6m4RJozeSxRdJfODWqTGgXx/Yqr7iQhAWCjtmWtVtP7\n779vpdioEUF5u+FwqP39fRWLRfX7/bHej/Gx+JqLzvfMcWlpScViUZubm2o2m5JkTVuAdlO0dXd3\nVx999NFYs5gk4gzzfAQFkHhqbrC/JPMBxuJMkH/xFF/TzDIFOvlEUWSQWcAoXGBUKSrv+MPbbrct\nuYniImmbUSwWTUKTylwqlax5KBV04PrUW6AMGwlYSLp4PQAvHZiLl97FYtE6HZHb4VNnLy4udHZ2\nZpDdwWBgWouvyxcnmI/HXaysrKharer999/Xy5cvVSqVDKI8Go10enqqSqWiwWBgeQtAh1HFkwjN\nA1MBxlOr1QzqLMnSqVG1z87O1Ov1rPAKWa1xc8zPL66N+PTsFy9eqFKpWDl3X2ezVqtZ8RUyHT1U\nOsnE834Dvl9aWlKpVNLm5qYajYaePXumRqNhY6HlXV5eWhm4jY0N7e7uJgLC/LPRqHg38h62t7et\nuAv3A4EH5J3MYITcNOZREs0kU/DqU7VaVbVa1XvvvafFxbtKukg07KxcLmebQimzlZUV7e7uTqzm\n400SVE46DiHtsCGx+dFaqO9HTnvcmebHkB6cUVEUmSSoVCra3NzU9va29a6UNFZ1mOo7IQSTBhzA\nrHlxkX1NATIzYYJg+nk+f8NatNttM5/SDnIIwZ4HA+ByVqtVRVFkzWW5NDBQsllhEAiCrHnBoH06\nMkly5AeQe4CgwMz0SWIeIZo2N/YeYNTq6qpqtZo2NzfHumD5/SADFk1iaWlJOzs7CiFkriMoRt+p\njLqjlNSjLD5IUfJKvMMdQREH+k1LM8kUsA/pAFWr1azb72g0MpuTTd/Y2LAipFR6ljRWOy/N/vbl\n3ZE8SE5flQgmBBQa9RfM+9LSkknBNO8z9jW23+rqqkqlkp4/f27SjZJe2Iz0EOBA4vQ8PDw0ezyJ\nPGyZg+gTblDVqY9I3gbZpajzy8t3vQp57yTy1YiolUj/T6oxkW7OBZNknz05OdFoNBpz2KVdHJgG\nzJ4cCi6lz52ggGzcRocpUQ8hC7rs1xMnJhrJxsaGnj9/rmKxaFm61PlAI6zX67q6utLe3l5mtIhL\nzd9zZmhbCHNinU5OTuzMU6If+Pq0JQPSaOaYAhsP97u+vjYuiYdakknm6+u7Zhj0MKSCECo3ByQt\nOYmxbm9vrdirLzVOlV4w59Ti41Dxt948SdoMz8mROmtra1YTguShKIrU6XRszKurKzUaDUsfRyLz\n+zSJygVnzRgTKYR62m63x3pbUE3al09PU0Nhbvwt60wHI9aBpKfj42MrFkOmK5WKW63WG0wsifx7\n4HRlbSjgS8IQexdCULValfSQP+IL4/ioQXx+kqyA6tLSXfPXDz74wOpgUJSHrMWLiwt97WtfM4nP\nPiGYsjQg9ozCKdJDKjrzIHWaCuMrKyvGkBAkWdrPNDRzTAFis4ggdDodKyyB32BhYUG1Ws0q7SIB\n+T3dmyg9ljaOT2qivgCdouKFU2nE4WsB8DXaS5r54L/O5XJqNpva3Ny0XhILCwvq9XrWQl16OJBo\nR17apUke75TjQOJPwNGIucD7orpStwEHGRV/shgdWonPOETF5937/b75K3DgIolZR2pUJJlF/nuk\nIIwNJ6OvmEwYkjH8pfLRHd497lxkHM4HIdVarabt7W1tbW0Zozk4ONDR0ZEVEiYTE60MDYILm7Zv\n/iL7aIL//Gg0so7o5XJZZ2dnpm0xb/paIPAeSzPHFFgYVNjd3V2zS+HE/K5UKpm0x3Y8OTlRt9vV\nwcGBer2eVQpOcpD5sUII1lTj8vJSBwcH1jBVkl2kQqEgSWq32294zWEiaQ5NNhh1r1qtql6vj7X/\nosAJF5Wio1RhqlQq2t/ft/dPysCDocZBM5SupxPz0tKSOUsxhSigSiyfaEpaMVWejVrvqzr5Opb8\nT9Vlio/iJ5FkDrNJERXmhbaFP4maA1xAX9Eb7UiS1eFk3vE19GFm7wPBdwVDw8v/gx/8QDs7O1Yk\n5+Liwi6sJHU6HQ2HwzEBk0Tep8PewmjQgvGf8E40QvL1NNFaJ9USSaOZYwrSQ+UY7Hk8yahSpBqj\niq6vr1sBjN3dXX388cfqdrtmx2Z5YLEpOYQAonxvRx+VkGSHvNfrjZVjT0vH9dwfTz6NWH0vANQ/\niq4gzai1wIEi6sL7J0keX4cB/wVt9zY3N1WtVnV5ean19XWbH92UUYVRW9M85lwe9grNALOAxqiS\nLMqSz+dVq9Xs0lE0xM8hKw2d0mrY+GiK+GfYT48bgFkgPX05f9YqiRAWaFsbGxtjNSPwx6AVoE2U\nSiXd3NxY+3pMJ5hC2n75uVIvAgcq2JRKpaJGo6Fqtarr62vDYBAq9xWevlLmA6gzLgCqIH0EubDl\nclkbGxvmYDk4OLD4PRVppGy4rnc0UUYb7YFiJH6z8dh78BCX2vtCksbkcBF1YC4+3MdnkDq+YAnM\ngi5PWaqoNI76Q1riL4FZYIYg6bHT8/m8hsPhmNMvPhZqtnduoUmxTktLSyqXy7ZGdIGGiVB/EDBT\nVkTF72UIwTQehIN3VKLG45ilyzV+hlqtZpc2aQ29Y5YoGKYjGhHrxc/QJjm7AMAoc+cZddK8eAef\nMu0ZRKVSUS6X08bGhoXFwXVIsjD2VxbRiCSRZHYTh5fYcLPZtAq+1MX7/ve/r93d3TEJlVUKK37g\nsQd5LqobZgTOMrg+EQoftssaiwgJXmXf8YqSXtSIjKJI1WpVhULBvOlECQjp+TnEx0KighvAK06L\nMXwIVCUipBdFkbrdrkl7KhJnESaLJLuY1J9EQwFbgOZCkVUAWYTZfGOTpHFCCAZSKpfLqtVq2tjY\nsN/zGcwEcCyYhoCqYGBZTCiEoJcvX+prX/ua6vW6jXF4eGg+K9oWVioVaz04HA61t7dn7Q59DcUs\n4tyzfvV63Sp+N5tNra2t6eLiQp1Ox94bf4wPoWbhVybRzDIF6QEKzEZ7mw6pROu4zz77zOx87331\nIJQ0p5wPWcXVOCQY9fi83ewdVaizSZqCl9h8/vz8XMPh0JxlZ2dnZopgF8OIfHFRuhGhRmd5szG3\niAYQEbi5ubG+AZKM+QE+ov052gN7kBUV8Ha4dKcprK+vm7rNoT0/P1ehULAu2kQ+eBcPRkpzblLM\nlK5aNJUl9Im2R9iOiA/Pi6LItBPeLY3QSPD7sHe3t7fq9XqmeeGvQfOk+jeNbzCRJhGaCSYPjll8\nQITZLy8vTZB488sDsR5T8cnTzNZTYHE43FwCr2aen5+P9SEEZcjm+2o8WeQ5LOXVPV7BO+LQDrx9\niEnAgc4ah8uF7ec7SvsQlk+SAu8uacxx5/M9kmhtbU2lUknr6+uqVCpj/RcwjQhTEjIjvo6mBcPD\n/uxxL+wAAAs3SURBVI6Td/r5vhS0aOMCERXyDjEiHT5KMGm/eJdarWYdwlkHEKc8m/fy9SY5W0hv\nnJFJESLmRIk5HLHUR8TRd319rWq1agKFn11dXZmmgORO2y+/hqB1EQz4Qmi1R4SGdeMs+aQwzvNT\naGaZAs4/PKmXl5emMoEYY/M/+eQTdTodK8SJRIO7T6NGIRHZHMwEJHu/37cuyT6rEPJ49Cwbn7/l\n78/OzqycO1oGnaNAB66vrxt0G8QmqmuaWo/6TPcpVHifwYhnG58F/xMaxOxKs4MZh7UmLImD99NP\nPzVfCV2NLi4udHh4aNINBoGjl+zQrPHAa3BRYT6YJTAqfCMUPsVTT/iQiFHWfjEGzsMoirS/v2/r\nv7y8rK2tLWNUrMfu7q51+gIzM0lyw6DQOqPorqS8B2zt7+/r8vLSyscjMBFSHrT2VJpJ88FPDK5K\njJ0egaurq2q323r9+rX1ZPBhGDio59Bp5gNj8nuPkJPupBeXJIS7lmHei7y0tDQWiosThxSVmHAf\n2X0eHu0dmxxI+kt4pjAp4w4NplAoqFQqaWNjw3wjaAzAnUkCAynJYU5KTEoitCpsW7QDmClaFhIW\n1ZY1BbkJQ+D94/NjDeOZrDjmgEnTQIWemYQJMdE4L/F8B79ffjy0t2q1aqA5NNdcLqdqtapisWhM\ntN1uq9vtml8GR2AWee2Es0uUpNfrjfWy6Pf7Go1GWl5etkQozj4o36eGI6UZZQpsCptBjf3b21tT\n066v71q3eSmLE4mN5CBmSVSIS+67BBcKBTsEOBRBttHcEyk6DViEQ0gYzjsyYS7r6+uWBMPPqWtw\nfn6uVqtlc5rWkYQNvrGxoRDCWIiu0WgYlJpmKWA7vL2fFOKK4yBQmVHlaa4DAySCRH8L35MBqe07\nfqeFJTEjWQNf34D8i9XVVVWrVWPihAW5rGQTemEQJ54J3Ht5ednWCx9JoVDQs2fPTDtqt9va2dkx\nTcJrgH6tksbif0wBIgsLCwva2dkxJuAToEajkc2BaAnn7CsVkow76ZB4m5ublkK6tHTXgIOwE4cR\njsoBJfQ1DXGxuZgkE4E1B2eAVuBtPd47qZiGv7zeLMJ3gdmCuosHm85Q3W5Xe3t7arVapo5y8eLr\n5Qk1dHV11ZgM4UGY7dLSkvlk9vb2tLOzYxcHlRc7PWlejI/ZBBNDkh4dHZk/gnVD46IzcxwglcVY\nWWO/BpgvvjUe64eWhdnyySef6PDw0DSatG5UfjyceZVKxWoasOekuZ+dnemTTz7Rzs6O2u22BoOB\nhVwxGydJb84TUQqygXu9ntbW1gxpiqlEVis+Kg96+sppCqhtPg20VCoZnJVwHouB1EUVxavMwZi0\nQKij0kNKKtmEmCpeuvf7faulQFKNl5Rpc/KORt4VlZcYOMwIh2m/39dwONTh4aFardYYtn1SNECS\nXToQoICisMn7/b7Zv7u7u9rf3zckqMfsZ4VZmZdX79kfHKiYE5R1xw/Q7/ctqgPBWNOiOOxDp9Ox\nOeIPWV1dtYtO05nhcKhut6v9/X37GRrepJg+56vf76tUKpmGBVYE7MP3vvc9tVotHR4eGirV41dg\nDFkMCDMLsxGNkCY57MVgMLDoio9AMNY088qimWQKqEFEIMD7s+moumyY9+AjtfwByiKkDJKaC4Dq\nTJINzTyHw6Fl9WErgsxLkqZ+HJ7L5weDgTnocC6CUDs6OlK/39fCwoJev35twC0OVpr/wq8hnabw\nU1xfX6ter6tQKBheYWdnR51Ox1TeXq9nTkCYXVZePp/DU878wVp4GxnEJk4+CqCsrKyY78LPK8l8\nYA1hkDA8NDqEyeXlpfb39y0nwPthYKyMl7ZnPm/j4OBAt7e3evbsmYWl8/m8RqORer2eXr16pVar\nZQydyMC0DIG58Tc4rmknCLAOIUHVKD+WT857qukgaXb7PiwsLJjnHfQiWWqoUa9fvzY7lb+BoSRF\nCNKIMBcIMtRd1GtMBNRotAHUcL8ZKfOzr9F+pPFwHu9AaM5HMfAwc5hJevEOsaRLy4X0Epfn+3Ad\nFMdo8HeTIg/Mz7fD43D7QiggHFkvL63RsuLZn36O8XnFf48PgOd6sBBfM66PAvk5J82Rbl7SQ5q4\nHxMVnrXy4/JZ79fK8gVxDnlnzEuYAkzTJ1d5H0zWfmnKvg8zqSlIsmQQ6UGd9MAN3z/Sq+bxxZt2\nLC46UobxvNNSGoejwt0nOTL9gUaqsuFexeSd4xEJ3gfN5zGgFA9ySroESZEZ3neacfzcfCai19o4\nqB73wWHGxEuqtBRnBH7dPRya9+SZkGeIfN6vc1Yo0o+FR395eXms87eH46dhD5Kcpllryhry914A\neGcixH5+Xufi2HvPqqYQ+/1YKIpFw5EId86CMz/iXewf0o7F5mu839Mynbhk8d/7uXFx+Rmf8Y5J\nT3Hv/2PeI+33j2E4/jlJ8/JgLi/R+ZdUeTgu+ZPGmjQnz+z8zyatU9bv/PM8kjT+zKQ1TPKLTEPx\n8eJrM41ZEqN527g5zWlOYzRvGzenOc3p8TQrPoWOpJP7/98lamj+zl82vWvvK83uO78/zYdmwnyQ\npBDCd6ZRbWaJ5u/85dO79r7Su/nOnubmw5zmNKcxmjOFOc1pTmM0S0zh22/7BZ5A83f+8ulde1/p\n3Xxno5nxKcxpTnOaDZolTWFOc5rTDNBbZwohhP8ihPBHIYSPQgjfetvvk0YhhFchhO+GEH4vhPCd\n+5/VQgj/IoTwg/v/q2/5HX81hNAKIfyB+1niO4Y7+l/u1/33QwjfmKF3/qUQwu79Wv9eCOFn3O/+\n6v07/1EI4c+8pXd+EUL4v0MI/yGE8L0Qwn9///OZXuupycM/f9j/JC1K+v8lfU3SiqR/L+nH3uY7\nZbzrK0mN2M/+Z0nfuv/6W5L+p7f8jj8p6RuS/mDSO0r6GUn/h6Qg6Sck/c4MvfMvSfofEj77Y/dn\nZFXSh/dnZ/EtvPO2pG/cf12U9P37d5vptZ7239vWFP6EpI+iKPo4iqJLSb8p6Ztv+Z0eQ9+U9Gv3\nX/+apP/qLb6Loij615J6sR+nveM3Jf16dEe/LakSQtj+4bzpA6W8cxp9U9JvRlF0EUXRJ5I+0t0Z\n+qFSFEX7URT97v3XR5L+UNJzzfhaT0tvmyk8l/Tafb9z/7NZpEjS/xVC+HchhF+4/9lmFEX7918f\nSNp8O6+WSWnvOOtr/5fuVe1fdWbZzL1zCOEDSX9c0u/o3V3rMXrbTOFdoj8VRdE3JP20pF8MIfyk\n/2V0pyfOdCjnXXjHe/oVSV+X9OOS9iX97bf7OskUQihI+seS/nIURSP/u3dord+gt80UdiW9cN+/\nd/+zmaMoinbv/29J+qe6U1sPUQPv/2+9vTdMpbR3nNm1j6LoMIqimyiKbiX9PT2YCDPzziGEZd0x\nhH8QRdE/uf/xO7fWSfS2mcK/lfSjIYQPQwgrkv68pN96y+/0BoUQ8iGEIl9L+s8l/YHu3vXn7j/2\nc5L+2dt5w0xKe8ffkvSz957xn5A0dKrvW6WYvf1ndbfW0t07//kQwmoI4UNJPyrp37yF9wuS/r6k\nP4yi6Jfdr965tU6kt+3p1J1n9vu68yT/9bf9Pinv+DXdeb3/vaTv8Z6S6pL+laQfSPqXkmpv+T1/\nQ3fq9pXu7NafT3tH3XnC/+79un9X0n86Q+/8v96/0+/r7kJtu8//9ft3/iNJP/2W3vlP6c40+H1J\nv3f/72dmfa2n/TdHNM5pTnMao7dtPsxpTnOaMZozhTnNaU5jNGcKc5rTnMZozhTmNKc5jdGcKcxp\nTnMaozlTmNOc5jRGc6YwpznNaYzmTGFOc5rTGP1HIc9Xq0LJi8UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACgzUlEQVR4nO39W4hs25rfB/5n5D0zIuOSl3XZ+5TPKVN6KBksC1H9oMaUEe22haHsB4lyQ3c1FH36QUJtcEMd2Q8WBkF1066mwWB8jIVLjaVSgS1UNMKyJCxEg2SpZGRJpWrZZenc9l5rZWbcI/IaGbMfMn9f/GOsOSMi9+XsWLVzQLIyc0XOMccY3/gu/++W5Xmu5/E8nsfXd1S+6hd4Hs/jeXy145kJPI/n8TUfz0zgeTyPr/l4ZgLP43l8zcczE3gez+NrPp6ZwPN4Hl/z8aUxgSzL/rUsy/5JlmW/k2XZd76seZ7H83gen29kX0acQJZlG5L+J0n/G0k/kvR3Jf3beZ7/4y98sufxPJ7H5xpflibwM5J+J8/zf5rn+a2kX5P0c1/SXM/jeTyPzzE2v6TnfiTph/bzjyT9r8o+nGXZc9ji83geX/64yPP8JP3ll8UEsoLfzV30LMu+LenbX9L8z+N5PI/3x/eLfvllMYEfSfqG/fyxpE/9A3mef1fSd6X11wSybMbTPiuGwjPyPC/8ftXB/FmWvfesH/dg7vQdnrKmsvfmGdPp9L250r/hd5VKZaV9KPvMU96/7DOrnsNTzmvZ+3zes/+ymMDflfRTWZZ9S9Inkn5e0v/ui3gwG7KxsaGNjY24CGzEdDpVnufK8zwI6LPM4V9bW1va2dmZm2cymej+/j6+mHfV9y+aJ8sybW5uamNjI959Op3GvKzp/v5+bt1PZSTMValUtLm5Ofdsvmctq16qdF38yzlVKhVtbGzEXrEGP6Oin4vmKpuHNfm60nPhd5PJ5Elr9H3zeTY2NrS1tRVrSvcwz/NY61OGr61SqQRtbG9vS1K8P89n3z7LXF8KE8jzfJJl2R+X9FckbUj6M3me/9ZnfZ5vBAe+s7OjnZ2d+Mz9/X18P5lMdHd3p9vb2ydtCvNAuGx6o9HQ0dGRKpWK7u/vdXt7q+vr6/h3PB7r+vp67mDS59rezK1jc3NTW1tb8e/u7q42Nzc1nU51d3enyWQiSXGBJpOJxuOx7u7udH9/vzIDYG08q1KpBHPzuVIGOp1OV2Jwvq7NzU1tbj6Qlq+tUqno+vpad3d38XfMgxSHuS6bz+fa2trS9va2tra2gjbYL/aJS5vnue7u7nR5eambm5uV6QO6gCaYd29vTzs7O7q9vdXl5aUmk0nsGft2d3enu7u7JwkKzgiGxly1Wk3T6TTozdcIffAOq9L9l6UJKM/zvyzpL3+eZ/hm7OzsaHNzU1mWaWdnR4eHhzo8PIzDvrm50e3tbRD0aDRSlmXBEJZpBVz8ra0t7e/va29vT1tbW6rVanrx4oVOT0+1s7Oj8XisTqejq6srXV1d6fLyMhjU7e1tMJ5kL96TWtvb29rZ2dHBwYEODg6UZZn29vbi542NDQ2HQ93d3c1Jk+FwqM3NTV1eXsaFWnTYqdTa3NwMBsAaJ5OJLi8v5yQnF4a/d2mzaA9hAFxILv/W1tacJsO+SIpzlR4uG2dWtC4+t7m5qd3dXe3u7qpWq+ng4CAYDhezUqno9vZWNzc38dw8z3V9fa1Op6PBYKCrq6ul9OHntb+/r1qtFgwbpn13d6fBYKDRaBTvznzQsDPassFebW5uamdnJ/bx4OBA9XpdBwcHur+/13A41HA41O3trSqVSuwrP8MMVmEEXxoT+LwjyzJtb28Hoe7t7QUzODk50evXr9VoNJRlma6vr3V9fa2bmxv1ej31er0gyJubG93c3Ojq6qr0oCuVira3t3VwcBDcdm9vT/V6Xa9evdLHH3+s4+NjSVKv11Or1dJwONT5+bl6vZ4mk4kqlYqurq7ifXwul9aVSkUHBwc6PDxUtVqNuXZ3d9VoNNRqteKgLy8vJSmkzHA4nJN4lUpFl5eXCy8M0h4i5t9ms6lWq6UsyzQcDoOxFWlR/C69LL6ujY0N7e7uqlqtqlqtant7OyQmDHwymWg4HGowGMSFQDuZTqdxUW5vb4OpFtnplUpF1WpVrVZL1WpVh4eH2tvb0/7+fgiHvb29uJwwguvra/X7fXW7XWVZNqe6+x66mQVzbjQaajQaqtfrajQacXa7u7vK81yXl5fqdDq6vLzUeDyO+dAYr66udH19LUlzmpDvJQKuWq1qd3c3hFG1WlWz2dTx8bEODg50dXWlbrerfr8f811dXenm5ka7u7sx76qmyNoyASTywcFBEBIH/vr1a71+/VqHh4dBmHd3dxoOh9ra2tLd3Z1ubm7iwiDtbm5u3psHlZJNPzw81O7uro6OjvT69etgANiYqFxZlun+/l5XV1fxfpLi/52onKB2dnZUq9VUq9WCkI6Pj1Wv1+MCwby4tPf39+r3+8qyTJeXl9rb2wtpuojjb21thQTZ3d3V9va2Tk9PdXh4qKOjI9XrdVUqFQ2HQ/V6PQ0GA11fX6vb7Wo0Gmk4HOr+/l7b29u6u7vTeDzW7e1tPN8vzd7enk5OTnR0dBREzF5ubW0pyzLd3NxoOBzGc9DgIFpUWi6/XxbmqlQqIf0PDw9jL1utlprNpvb397W/vx/mCFLy9vZWk8lkzqw6PDwMlRqzy+eSpJ2dHTUaDZ2cnKjVaqnVaunVq1c6OTkJ/AYGjQTmYvb7ffX7/fic00fZebGug4MD7e/v6+joSKenpzo6OlKj0QhhU6vVNBqN1O12NRwO1e12NRgM5s5nVaxqLZkA6ut0Og3VaH9/P6Tkzs5OEMlkMonLcnd3F9KHDXCTYtFcqG339/ehpu/u7oaahyouSTc3N3GQMAcuPZfdRwpm3t/fh4RuNpuq1WrKsixUUw6Ni5vneTAzV3mRLEWHjCoOYe3v7+vjjz9Ws9nUyclJqOl3d3exp61WS9fX1wE+IU18nxwcdUnpF6RWq+n09FTNZlNbW1shCcfjcTAwVPXxeKzz83N1u13d3NwEwHdzcxOakO8jZ8kebm9v6/j4OEwAVGXOAoaxvb2tq6srHR4eajAYxB7u7u5qNBq9t38OxKGON5tN/cRP/IRqtVrQwWg0Ck0NPAKTC+yBi8naiujDTSfMjqOjI3300Uc6OTkJJoJWu7W1pWq1Guba9fV1aIV+XquMtWMCLAoE9/LyMsyC6XQaG7+9vR0AyN3dXXD+yWQSoImkOZCmaC6IGvUbZB4p1W631e12g8sjGZn75uYmbF20kiLuywVCEiABLy8vg2nxN/v7+3ERIUIOFAJapOY5OMd7b2xsBL6ByeJAEgxnZ2dHw+FQFxcXcQ5FXgPG5ubmnCSu1+tBvFy48Xisy8tLZVkWkhpG/vbt2zksBVOqSFpyXvwfQgDN6+LiIv7WNRDWxfvDgG9ubgpdjszFpcULBdOvVCrq9/u6uLjQaDTSdDqd03wQDIPBQDs7O4WaYdlc7mXY3t7W/v5+aEa9Xi+AQIQDZpikYBTMUXReRWPtmADDL+ZkMtHW1pYODw+DEO7u7uakBpfj9vY2zAE2j2eVzQPhXF9fa2trK+aE40Io2KrSw0Udj8fxLny5WulzOOp+c3MTf7u9vT3HpCAiZ0bYtti3SNYiEFKa96bwbDwOSODRaKTLy8t4vgNRu7u72tnZifU4YaZjY2ND+/v7c2DW4eFhIPTYyqjL9Xo9zK9KpaJGoxE2OgQOwFt2XoB7CIPz8/OQiqyRi8V+oZGwP9BNit+k+5jn+Zzmh+Rvt9s6Pz/X7e1tMFDer1ar6erqSnt7e+p0OsGo3LVbNJekMF1gVqwJgQF93d/fxzkxV7vdnnNdr+oiX0smUORn3dvbCw4Pl8cM4ADOzs40Ho81Go3igCUVSuZ0PrflmYNLAXHilkSKcKjupilzEXLIAG3j8Tgup7u5+B6bcHd3N56PWwvPAMRSJM2YBxtyOBwGo+NZ/X5fGxsbOjw81Pb2tqrVahD81dVVSNtF2hT7ixrq3oRer6d3797pzZs3AVrt7+8HYOnaDcQPQ06Zm18c5ru8vAyQFCZ3cHAQ+4iKvbGxEXgEHh2A5DItIL2oV1dXwTgvLy81GAw0nU5jbgA8TBJnCs5EU1pM1+XeEzwcnAPm2c7OTtAnjA06SGlxlbF2TMAvUdGF2t/fV6PRmLuouNO63a663W5IyZubmzl/97J5+QwXsV6vx4VHpXakm7+BiF1yFj3f57m9vdXGxkYc2MHBgVqtVlx8MInNzU2dn58H+MS/gGtFajOMCS3l8vJS9Xo9LjdaEj5obNDt7W212+1gFO57LmMCPPPg4ECXl5cajUYaj8fa3t5Wt9vVxcVFMDwuozPLlNG4RrWMcaMR1Wo1TSaTYGR7e3vh1kPTYs8Gg4Fubm7U7/ffi+9IadAvMEwDU86FAuYqjAeGmAZ6FTE35mV/+JwzU94Ds9EZHOYIjJX3LaPDorF2TEAqj+Da2dlRvV5Xs9mcc0PhGnQJmQadlD0z/T3PdP8zhArX5+9ub2/V6/Xid247F82BquoXCvvdXV7Yedvb22G7Q3i4gzAFyhiOS5StrS1JmmNmeCJgdnt7e3MqaXoRivbPTTYQcfYfPzbgLq5RtDhiA5wJ+HMX7aGbSkg/SeF2RdvgvBw3QCNYFizE2pzh47XJ8zyEEGvCk0U8BoA1Kj1nXURzrMvPDPsek5E5MQMQELVaTbe3t8GEfI4PVhOQimPqOUhp5vqCcOHwqEZsqPt7yw469T/DZf1g+fsUwJtOp+r1egHeFamR6XyOrPMMuDh+dkfuIXrXNvh7BzbTwXPdlQkDAcDChUoshqRggB6SXTYHawLjACfpdDph2+/u7mpvby+QeJj33t5emDOYAL7/q+yfS1nO3FFxt+fv7+/jchIzgrQtmytV3/lbNCdcyuyfx7ZgwsLkF3mo0rkwAXh3Lr0HfEkKLTjP83BVQzvLaNHHWjKBdMCVsfMBeyDw8XgcAT8Q0KobAaFDgK4iE+UmKcAZ3EXSgwvNMQrcf4sujTRzFaYRdazHLwbvhyRLXaDL1uag52AwUKPRUK1WizmlBzDVg4kwA9yluUw1v7u7iyAWVHC0KkwcLgE2rYddu7rL2ZUNpLwzX0kRKQrYV6lUwjRwz4xfzEU04kwHk2B/fz+0KFyrgL0wcv97XJfQxyJQ0LVWgtyw8fkc/wcmtrm5GQwApr5s/9Kx1kyAy+nx/Pf39xoMBpJm4aYQecoAnPOWqUeuNnIJ/HDxvfIFEg5RQYwAfK7SFc3FPB6dWKvVwoWFNgMhczGw4bm8MIFVbL88z8NfzWV1lyjSGtCMICEuCJKpDKyDCeDO5fOo507IHgiEBofG416NRfSAj7zZbEaoNTERHh2aZQ9RhwTZwGDQQji3ZfNxxvwt4COeFhj0wcFBeKowHx3Ec8GUYhCpZufYCHuG4MuyTLVaLYLf3FxxWvTAoUVjLZmAE4O7uhztJTdgd3c3gngcEEOKL7NrOWS4NX+HSox9Ox6PY3PZcA99hZEUJfXws5sZqJK4PgloweyBGK6vr+PvMYNgXJKWHrRrA51OJ+Y5ODjQ9fW1Njc39fLlywjUQdvK8zz2mz0sI15JYXKgcrM32O/kWLRarVBfe72e2u127Dd4SRlNsIfVajUiE8mzIK6eC4NmyJmgNoPe84XwKHLtOtOBgWPruwC6vLwM+sQ+RxPZ39+PSNZlDM738u7uTv1+X41GI+gC5oz26WHdjiXgDv2gzQEulaTgbuQOeMIQHJdDhmBR6Rf5t6XiQya6jssAsWJLY4+hCeCGxJSQioEfGNPBwUGEPxOHjs0MDsAXB84B7+/vx7OQFmXDpTT25s3Njc7PzyN6jucTyUdgimszHmuwaC48HsQeuBni5sfe3l7gN1weJHSlUplLBCuaZ3t7OwKSTk5OQt0nnHhzc3POHODZMG7sd9deFtEGTN+1MDSe6XSq0Wikfr8vScHw2HsYDthAmZnoWgD7geni4Co5CdAaTAWmC/2tmonJWEsmwCay6QcHB2o0Gjo8PJSkCJpgEyAcOKWkkNTLYgTcHHDfNS5GzAESigALCYAhmxBVu8wUkGZYAOHCJKTU6/WQVFxWDtWZXJZlcVFXyRJz6e0eAycmV6F5ntvNEOQitNk1LTQX9n88Hoek998BHKJqg9xztmVah/vlj46O1Gw24/8JTkI4uPbg2iEMhsvD3xfRRrpOvoj1wMxCm4DhQEuo87gYy+byOdwlC+4EHcIAYEy4LLkDbr5+8EwAqU8iEYEYcMy9vT1tb2/HzwRy8HdsAipa2YZw6eH6HvdNgA32O4TcbrfV6XQ0Go0iO4z5ytxbvCfRcnt7ezo+Po6EEUmhVUBQqM0cODYul2SZhGZu/x4J4++Bv9tz7yXNSeRlBOUmg2cigq24VEVLQLUnZ2LRHvqAeW1tbanRaIQpd3V1FWAhz5MUDBXtDYbt0XVla2KP3SWLlwZ3oTN3TCLXRB3kW3Revm4PmsLkA2Alo3FraytMN1yfLoiW7WPs59JPfEWDy7y7uxuxAah/xJ5nWRaRXEg3P+BleIA02ygHIF2d4nCxxa+vr9Xr9XRxcRHBSUQoLpPO/h5wc5gb0sTj/ZEixD8QIOQekmVqOnO5WUVoL/H+jUYjpDTqJ0TuQVFl63JV18Fcj7kAUSc9lrNzYJeLsij+gUvh0ZoAuaDj4ERoauAV2NmkFOMyXaS9OY24d4G9dzyJKMFer6ebmxt1Oh1dXFyo0+nEXi4yTf1L0hwzQXsESyKIjUxFUrRZzzIt0cdaMgE2Ck3AI7M87py017OzM11cXGgwGIS96Smiiw6Zy8aFw8/NxuPywYakcIQfMFFnZbaY2/D460k1JSgJqUFIqjMX1HVPsoExLDN10D7Sy3h0dBQpqxsbG3PPTKskrSJRHF+B2YCkY/LABCTFZcdk4+IvYzi3t7fq9/s6Pz+fqxlQr9fjnPwcu91uMFI3e/CElNWZcPOJ92SPWB+4Ff/2er3Aka6vr/XmzRu12+1I0V6korPmFAzHQ0QkJIFDvV5Po9EohBFCEDpcZgb7WFsmwAUmGhB78/DwMLwBw+FQ7969i41GPXcsYBFA4pKFeQF72u12bPru7m7YmUiX4XAYGgjzLeO++LGZ6+rqShcXF6HmIRGHw2FIKg42VV9Tta9oD91N6kAmWgT2OReEMF/2cRXtRlKYEDAbmLWkUNsd+fYIPtcEXLspY6STyUSDwUA//OEPQyujuAfaIVK43W5rOBwGUyvaw2UXk3fk6/b2VoPBILRRsBw0O1Tz6+vroEt+XhSd6BGQ0H232w1zgt+xnzCkdrutXq8XQgMB+MEzAaQmC7m6utLZ2dlcpSFJc1ISVTLdgFVsWf4GtBgAii/UW9BmJ2KIqCxk2AcXH/Cv0+mEFMH3D3Gm9qpHlKXzlaHOMAJALEyKfr+vTqcTxT+oTTAYDEKtBGBaFofgqrKHT0P0XH5caYeHh2Fj53kel5TQ4zITx21lj3P49NNPg8lwEXl+mtrtoKC0vCgnNMH6uJhOGw46prgDAqksxyNdnwOwmC4XFxcRyEWUJ9opzHM8HkepsVXA8HSsJROQ5u1nUNfRaDSHort08b9ZlQGkc6UH4eiwh6OiqqWXcZX5YAAQCkTDZeUZRT5eB6pWWR/r4f2zLAu3HFGWxL+DXKPpkHy1DHhkcEkw4fAs3N3dqdPphBsSJgsDaLfbevv2bTCDMgJ2RudAHe/Ne/rf+x66rZ0yhkXDNTzOyWmPvQWkxk0IA0FYrEIbDpqmWkUKLEOLnl7unpynjC+lF+FTR7ak7wAbnkZV+f9Jn63cctFcDnKlczghPZXZFD0rBYPSdaF9FOEai7SAsnVBSCkABXE/pQJvEaPi+UhGciFYC8Fek8kkVFgnen+O/65sLl9H2R4SW+J7WKaWL5vLvUluw/tn0lTeRXMVjSKAsOw9VpnLxt/L8/wPvDffh8AEnsfzeB5fyChkAl9aa/Ln8Tyex4cx1goTcLWuDB0uUtV8LFORv0rN5/Osi7HMXnY1ctF7rPLcsoH9/UWc17L5P+t5rWomLfr7L2oU7QPv5pmF/rkyc9T/tmyu9G+K8iJ8rBUTYPhCfDPYME/YcbDIATpcLqsCdunwywQo6M9PbdZVALSyS+Fx4J6NyHOL1vZUPCJdC/vHHvqe+Zyr4ANlQJx7VdJkJEfqma8IG3jK2nxOcAifz+nhqQi6z+VfzOdgrT/3KXOlYGPRHnrUZfps9tDfZRVmtpZMgMEiyP32HHz8wmyC+3NBZD0KbdUD9033jXeAziWhx6EvmseZhjM1XJCAaYQne8ipX0iCmtLDXrYmL2xBlBsBPRAPc7mrFfT5KWChewjwa+OF4PleH5Hz8riIp4CdrAlXHUFRPNvdrXgs0j1Mn1u2LqdF9tXBQDwIHt+/iuvOGSlMjMCrdC89xkGaAZ+SIpflgy4v5tLfE3s8H9sj0jgw4sO9esx4PJ6rHrxoU/yieBsrimJQxozgmlSSeVLPslBez1MguIZcdZhApVKJKEHUOZgCueJF/ueUgNk/5oOh4W+mjgFJSzyD9FXOwKs3p+vxudJCIl6Ek7JfxHdIM+Y5Ho8jAYh1L2IEnHWlUomgHZgbNRq4gOPxOM4FJuoZmymDSyVoSocEJblg8mfDnHBnI4zY4zKTTlIwMeiA7FJnAnmex/m7JjKZTGL/2cdlIdHSGjIBd7uQdy9pzg9LUc5qtRquEq8ew8GPx+MI7iCaquwAINTd3V0dHx9Hx6NqtaoXL15oc3MzIgl7vV5UNeaAuSgkLPnmpy5OpLDH1m9vb+vw8FAnJycRPUjATpbNGpMQSky0Iqm7ReuCoXldPwjaOxMxV61Wi2ehBRB3T8qtd3FK1Vfv4EQZMRJejo6OQhOAoTDveDyOPaGFnPdhLDovtCaKtJCN2Gw29eLFCzUaDeV5HrklzEUMBEE2hPi63Vy0LgqJECkozRJ6yN8nvd0vJusbDAZzSWBFJtTGxkNvCArp1mq1YNzejcs1RPJM/JzYQ0lBH4vG2jEB6WFjPMMNyURFmVarpdPT07n4bYg8z/OItOKA4PplBTjooNNsNiM9lYYatAurVCoaj8eqVqs6Pj6OkNTz83MNh8MgAMyFIp+0q6toF3t7e5HMc3JyokajoY2Njbnw5yzL4tJvbm5GtqQ08xOX7SG9DtkfmmSQlEX2oFccmkwmUUMB6UJBDS8KyrqQxmR70lSV9G8qDKFdMEelUon8CelB06nVasrzPLSqonVxKWAC7CdJZq9evdLe3p4kBaNmfYPBIBqroEmUBdlAdxR9YU6akhLF51gG0X2EmF9cXLwnxb0OhAs9aIG6hZ667nUG2Rven1BqGA2aA5Gby8baMQEuiseeI/2r1arq9Xr0vKPgBhKWLC6Sizhcat8VDThtlmVqtVpqNBo6Pj7W8fFxEMhgMIi8e7SD3d1dvX37NpJuiJ9HRUvXJGnOpkQVPz4+jtRQipYQacbaPRZ/PB6HtrOoZh2XEsbJZWE+KjaTPAQmICnSYc/OziJTDiIumsuDg5D+FEyhLyDhvl4nsVKpRLSig4dofUXDU5IxPxAMR0dHoXFwEakA7CnmOzs7ur6+jmel5+XrQsuo1WrRvxEtznMmsiwLJgjdUCfBw7cpjZfOhZaxsfHQzAUmzRl6QJek+Lw0y91wk62IDsvGWjEBB5Wk9yUNFXnIqPJYfgjfgcN+v78wkxDCYB7CM2nU2ev1Ir7fVUIIBGkDETiAV7Y2aZYgBXHu7+8H4yJHHZUc8yKtY+iodzqQlF5vYXNzU61WS8fHxzo6Ogrb1hOEICrehV6MZZLZVV/2maKXJCtxARxIm06n0c33/n5WFQpCd7ylaA/5zGQy60PJxQSQI6fEwUe69LAn7g0pmstzIVDlyYz0LsNuw6PCY37Q78HzKIr2kJ4BvBeSHoyLMG/uQgr03t7eqlqtBjMv28OisVZMQNIcEQCqYF+x2Vwauujwf7QqB2gCHFyWTsw8V1dX6nQ6Ib36/b5ubm6iUIXXHySlU5qBW9jR6eaDEkszd5ir8RAAf+eFMg8PD9VoNHR9fR1MJ60ElA7Pc9ja2orCKPv7+4F3ONBJTgZqNRcTm7YMbU7BNEwuClxwGdgrVFee02w259KjSSTypjEpbbCHMAH20JvIgsZ7MlitVou+j3iOihqPFM3n2ZfUWwBj8kYnfLZer2s4HGp/f19nZ2fvpYKXgZAwr5ubG+3v72swGITnAYHAxZceNMt6vR4Vh7yCEdrpKmPtmAAMgMXDkZH0VJgFAEFKerovGWmdTidyvMu4orveSFEGUEPy8Q5++ZnHk0TKmE0qATxTkAuL1MZFJmkODKLnXtpGK12XuyJ5TyQkKbe7u7u6urpSv9+fa6jpEgZpxGUpImAnXhgbeAXMxAFJVHiKmrjEBqgD+FwmxTgzLgAgHWvjgoPoM7goq7jSPL4ARumpvXmeB5PlGZgckqIhDq3fKa2eAo8+F9qUa35oJJLm1kQtCNYEwwajSucqG2vFBNJAEi864RVcJMVB53kepbsBY7rdrjqdjjqdThQZKfIMMA+2PF1fseU2NzejIAaoN5z73bt30fIMzrvIRehrw2aTZskhnoYq6b2YASded6OlTIc1TSaTuRJXPA/bEcSalmF4Chio0F7JqAit96AlJCb2cp7n4bJDm6Ok2M7OTtRiYD0g6Yvm8r2FNgCAEQRgJpLCU4GW4iCoNyYpmos1gVm4OeLeCXdno2l0u131ej2dnZ3p/Pw89jplcK71wthwl3qpcipboaXBTAH/KDICY6cmxAfpIkxTZVGBQF3JHceltLOzo6OjI9VqtSgs4kUWvJgDUpLhDAfpi3txc3Mz3E2g6HB5r06D73dRRReP6OIgvfgG4N3t7W3Y8gcHB9EoFMmCtHWto0iV5RIgZUC1IWRpBkZNp9Nw7VHLfjQaRdyFB9mUrcvNB9R+7Fyey/8jtdEKWBfMBjNpGSNlLuiBgrSSogMQzG1nZyc0Hmm+mlRZAA9SmcF7wXiYD9MRwLhSqczRIC7lReXFOFe8WAgGaNbrW0oPAoI9Zd+oB0EtiKcEeK0dE5BmIbiAHu4K4fe4aHDXcDmRJtjVAEXL5vLorsvLy5AqjmQjwTkobHS47TLVy4E81GQYE3NUq1VJCiYHoISkcG9I2XwO5DnghvrsLko0KTQdCMfdeG6HLlsXjMbBQC/Txpo5S3AWN72WrS2di9/xrgDHvodpiLRH9ZWNVCChGXFhd3Z21Gq1grFBo5iqlP2CDp0JF83lZ+vnzVwEx+Eux9xzLIa5yjxHReNzMYEsy74naSjpXtIkz/M/kGVZS9JfkPRNSd+T9EfzPC/2z5UMDsbDT6VZxRqkDO6h3d3dUJUJoMGO9zzyZVwRicSGDgYDnZ2daTgcBpjG5vr3MKpVEVkPS3bXW6rt8FwYHI0ytre3gxhT7cb30L/cBYgERdXE0wGRIpn4HKDTKucFM+NZXHppFmbt/48k46yLgNWidcFgUnWad3EMB63IowVR21c5rzImiFvUS9XDPEej0VynLJ5TtB4/Q86c4e5l5vDLDdOhmxSmGB6zHxcm8K/keX5hP39H0l/P8/yXsyz7zuPPv/SUB7oLjggt1C6kCGAaKtFoNAoAhhJV7pJa5iFAMjDwMJyfn0fZc6QlFxTOTTy3NN+OumiAbQDCpW2teIa7EWFs7m5z+3PRwBYHQyC+APvcpQ72KMg3z17kT/f/R8MA+MPHDVbApcUbAkqfxghwdmXnxecBHL3kuIOPuNkQDqnLEsa9KMvOYy7If3BTzc0gTERAQPYPJg/dlrmroQcCvDA3CEhiPZ474Pkx0qzhCdrKKuPLMAd+TtLPPn7/q5L+hlZkAnAt1B82YX9/P+L/kX6SAhDqdrtzXW3wk3qBS2K608vJ5edCoD04MouEIeKNS4q7EKIFiEkvpktCkH40AG8XzmVlLggGnAKAChW/TL1MVUpKU79580ZbW1sRBwH4eXR0FIQEIx2NRnOYTJF6WXReBwcHqtVqc7asg3VeK5+LA4C4t7cXv/dchrLzYv1e8j3LZiXUqJ3owKO3WMM8gFEW0QYxCHgepFlDVegB9yB2OZ4OSbEmhBCxKG7S8A7EwnjHbW+PJ820LhiOx2Og2cFgXQtbND4vE8gl/bfZQ2Wg/zTP8+9KepHn+ZvHF36TZdnpUx6IZGUBHu8uKWxaLihIKAcAA/DIMqk81ReCkmbJNp6nwHM2Njbi2Xt7exF5RgIO9tkiuy9VKyE8EPrd3d0g/uvr69AWkPh+Id21VLaPuEyvr6+1tbWl0Wiks7MzXV9f6+DgIBgleQGYTl5l2F1xqK5F5wWSTaIQIBkMjUYuLh25HKixuGUX5Xg4w+Zn3LsEdUmzIpx+HgC6nLubEkUDhg3w565owEvOgZBkav9Pp9PAd4i3KDMHmIvwbhgOOAN77MyEOdgrmAUAptP+svF5mcAfzPP808eL/lezLPv/rfqHWZZ9W9K3/Xdc3lRy7uzsRMcVAlBQkW5vb0MTgNsj9V1zWKSiSwpC9NbTcFaPMWeAERAh5pmKZQRcZKO5Sk6RTy7b7e2tdnd3NRqNdH9/H2tb1niEOXhfknUIREFygEEgTQhrpdw5++vqZupd8YvJJaGhiUdC4tGQFBcXxgIzwj24zGzz+dlDzw2BkaN9gBchMDwHIs2DKDov5iR0HYbAWWNuYIqSRwKdeOBOkYfKGTt7CViLqYjGxDly/ph1/K2nnoPBLBufiwnkef7p479nWZb9RUk/I+ldlmWvHrWAV5LOSv72u5K++7gxuf0+FsRmIWVQw5DMk8lE/X4/mnUMh8PgzKiGfL/owvBFdl2j0QgmAB5AjACqH+4v9/s6Up2sde5nPg+3pjy1PwO8gbgH5uEyuRRbNJ9LcuIDcE963IWDWQ4OcnH9whTtobtysWchTnd7uXvO3beO45S5CNPhALETPutDUg4GA52fn88xMgcRy4DV9F+SrzAF8K7gVnUmTYdkf0YZLpWeoZtSLvh4b++jwN+CfbF/fnbLxmdmAlmWHUiq5Hk+fPz+X5X0H0r6DUm/IOmXH//9S099NoxAmnX79csP4V5fX0eTCbLeiOLzS7IIBXZJBmJ+enoayTwEm8B0Njc353yyNApxH/eytcGcXJLd3t7OuQw9tJXAD2rLp+Wly7AOt9mLsA/caFzC4XAYmIoXEwGkXOa7Zw43q6QZio4NC9Mj3RvQzuv0l10W1sa+OaAmKRgQ2ANZg97MBU1o0boYbrPz/FarFbEC0JjXk4AOuPT+VbaHfm7ugfJ6Av48j3PwDFAY64+FCUh6IekvPh7IpqQ/l+f5f5Nl2d+V9OtZlv2ipB9I+iNPeajbPRw2XM59u/hiPSLLi1VIsyCMRQUqsJ+4NB7BB0hDOjONO/ABv337NpjPKlVxIAIIgQuBnYztDzPjC3clqq2HKRdpAuxj0aXE3vQwazcDvCMye7LssqBlEFkIw/JnUAuByDlvOAID9RDisrlc4rM+vD8E0KAy93o9tdvt6KoEYu+MbVFADZeNPXZfPsDt3d1d0AX751GGuLVh5EVh3pLC9OJsHRdiH12bw6xhLtaV/v8q4zMzgTzP/6mkf7Hg921Jf+hzPDcWu7GxESoW4Jb0QAij0Ujv3r2Li4hNzgE7Mr7ooD08GcnxySefaDgcqtFohFQB3CEfwQuLcGjLpArzgGCTq3B/P+thj2sS9dLbc/G927RlDADAjS+AVaSH7w3eBy+uAfN0zSMdrrUQmwHhe3ELCJjuRt481guM8C6LGCkX3i9Fr9eL/yPak9wIzEXXAlxSLzsvCsbQ5ef8/FyTySRQf/oBvnv3LgBqGD1fvCd7W7Q2zsDdv9PpNOZHkxoOh9ERGxPK6c/dhmUCIh1rGTEICAZokue5Op1OqK+TySQuIpLDwUDn2ssuJkTM39zc3EQhCNBa99/jb/dYdHcZLppHUsyFZD8/Pw/7HCbAhXDzwi+KM7qygT3MZUEKIoFHo1EQGuuGCQyHw7g0XtykbE3sCwRJBiGuTOl9SQdj9vBnzmzZPnLGSDua0rKP7HMKbHJmfkGX7SESnbwS+l96EBeALutzQI6zcoZTZL5B86zx9vZWnU5nLj2as/M1QfO+nx4y/ONwEX6hw4E1IqFQuYbDYTAFiDPdaGk+0GbV2GmPkHNUleah0syVmBKs/7xoXelcvDdrRoKmZo8TlGs60vtVmYvWhUblGXBgKdi1ZMIBcnlfwGVeCObl2awPhgZQBTODqfv7u7nh0mvRuvxvAVBhOOke8nlnMssYAAN3XHrBQOK952KKjzgWkK6raBCsxfd4bqSZyeW0wmA9aASrro2xVh2IijbHQ2y5iH4Zpfm4/zLUtwy5L3iXOXsz/T3ff5bN9mextvT79J3h9OlcZRelKErM4y2yLIsyVQ5MQli46co8D9L7fQfK1pXuoQ/chI7YL0Lpi0bqwktjNPx7Z0Sr0EB6YR0zcm9IKnE5r0V4jb8DTDGlL8yCdC7/e3eNOgPi/x1veBzPbciex/P4mo/nNmTP43k8j/fHWmECv1uHq8dlmleRKbTMNuYz2J/p84piB1YBi9ZBOywbP651lZ3HKkDbonnTGJGnjkW08FnHB8cE3A70DUk3ZlX3yKrzuA2d2l7L5vODd4JNg148kw6wJ/VyFAFNRaPookjv5/unFYRT99aqdnTZmtN9TPfKz3AVjGWVdbGXRXYyX2XhwquuyQOwilqeOabi5/VURpLSIK5ef17RvE8ZHwQT8E33QwY5Z/EpuOauk1UHAKTPw5dfDA7SPRSrhLs6AyAk1NOKG42G6vV6uJXwo+MWIkTV4/mX7R3r8vRbqtNQ6w9iBdAiWhHX4qrEVbRvvqe+TwCW7IlX33nqXMzhST+OzkMXHkW6bK4UHPT943sSfSTNuT7xJhAe/ZRKP86k2TfoxAvZOCiJC/SpeyitORNgA5yg+L1XinG3lNcc4FAWubl8LjY9zWLE582z8L87Iyjy7ftw5gShej4EOQqtViuKi5IuysES2lupVCI9tqgWX7ou5iNSkBwJ+ixwYehW4+Wqsiyb84Evm4vQa2I6WK9LTJiNp2oTVedRkYvmKqonUKlUYl95Lm68VOMgsnDRupyBehEbfPckmxHVR6Snx15QQwDX9ip7yOcpaZdls74EBK9Bi3jGEBDEd3hE6bKxtkwgy7K4JNKMkMgjqNVqkV7pgR+4njh8Yg0WSU7monAkySEbGxvR64DqOjwzz/O5iC2X2mlbK2mmAZAhxkX3Mli1Wk0vX76MNFwPeCEngn6FvV5PWZZFtp+vxbUN8vz5O+Y+Pj6O+onkQxBp1u/31e1245INh8OIYCyTZoRZ0z0n7XpEXwA+C3O6vb2NUOydnZ0INMJVWXRWWZbNFZzx/H7aq9EajFJznE+e58E8icZLmWnqZqQbEFmE1Gw8PDyMJjh5nkctQRgokZ8UPCG8vKxKE9qht1XjDGq1mo6Pj6OcGVpGlmVzWhv5LF4qfhkjWFsm4NVc4Ppcznq9rqOjo2hwyeYRQERSEZeLcN8yCU12mLd7ojch1Ya3t7fnYtwhLqq7EtwBY0jjFfw9neEw99HRkY6Pj+M9PIQWJtbv9+OdYUJ8huEHTm46JdgwN46OjnRychJ9D13STCaTCJO+ubmJ8NhlWs7Ozs5c1yEYj/da9DRZpPdgMIj4ep5NFd2ysF46HFGBhzqTtVpN9Xp9riMxEaVczna7HTElnoGYXhbOjH4WhJDTMq5Wq0XGKZGXe3t7EchGoxMyKNEmXWtM9xCVnzgOhESz2VSr1dJHH32kZrMZ9ICJCrN5+/ZtzOVxGB8kE0CCVCqV4OpwYUpYk+4rKTKtNjY2NB6PdXh4qCzL1G63Q1sAUPHBxlPpp9lsand3Nw4ZIkYF9NLTtDbDJKF1l6T35oIBoP46UaDV0P8QzYeoNOxeCmZeXV0F8Ra1BWM+N5+Yn/JYMFZsVVePpVnaLJgLBFkWiOQAo3eJovovEXdoVrRcQ7M4ODhQt9sNLY+zLJoLJrq5uRmYBq3VyL9wAK3VagXDpBWdX0LW7gMGwBlJs+YmjUYj+jewh0hm3p9ITEwTLy+/KHjK6QdhBGN9+fJl0Mh0Oo0wc2l2X9BoYCRFe1g01o4JFEUIZlkWDUKRJKhlXCiaXWxubkZhUAqQYi6kw8E5DodCIY1GIwiFS4Q6i6lwd3enXq/3XsmsIi7PeqT5xBRvXcXv+XLwjPx8mMSipB6IA/CICjtI1uvra52fn8/VSWB92L+ozpLmzK2i+UDiyUbEXsaM6ff7yrJMzWZT9Xp9Li+DPAXW6XUgivbQ8xFS0wDthWelQGiePzSrhUF6nknRHnreA6YeNIrqLSkunHeqohNSWo+hbA89PwVNEm3YG9Cg/nP2CClMVJ7zFHBw7ZiAu+ModHF4eBhSi7ZPJMV4TvnBwUFkE3KRkDZFF4aL6Vl1ntXGgXh9Py6m58p7zfyiPG53DabouKf6UhMRUwOV9cWLFzGXuwp5RtFcfE/SEBmZNzc3IU15d89lOD4+jgInq3bq4W+9tt5kMlG1Wo3EG6pDgUlwYUlbhqlhbjkTYi3QB+u/urqK4h3+jvf393MME+zg8vIy3K8Ax6k55XsI6u4Zfkh66AcAmXLtMIGrq6tYl6f6LsuQBGPyWpcwAkmRjs1ajo+PA6gG3AUn+mC9A3BmiJzMKsARNptDQXJ7gszFxYUGg4E6nc5cLHzZXGw83JSCmRwE0glV2usKdjqduCiONKcBIn453ZVI63O0GkpgUWTEpTOFI7z7UJHW4etjT9CmptNp2Ol8HrW1Wq2GRkMas/fsK5KY0sxNShUfMusODw+DkAHSANg2NjbmajNQURkmXBYP4K7My8tLDQaDMKOyLIuzdu2N2oWcsXdxKpKYaUwD9IbWgarvkh8wFC8BblZchLhZy8Bp6GM6nc5VhGbfarVaYFAwdccOwD7IEP1d0YtQ0tzmoV6yOdjM7i4cDAZ68+aN3r17p/Pzc3W73diMogILHLB7D5Ceg8Eg6rtNp9MAf1BH6VgM53Vms6iYg6t+YB0QFpKQNVMZGD80UsfTmIuAHwckHYiCmdDKG9NgY2MjGJwjy6jzEHNKVKmkhkEhxZGQlGs/OjrS4eGhptOH1OPvf//7+uEPfxhp4TA/9qFoXawDRrG5uTlXNs1NSQeT6U4FSOgaThltePYmmIYX8gT7cC+PJHW73dhD97os0wT8vPI8D88Hz+YsYEZUdabWgQu+D9pF6AEd/FsUYAJqjUvq/v5e7XZbn376qdrtdhzEInTU7XdXs6+uruK5XnkYLAIi5PIv0gJ8TQ5CbW4+lPoGuacLbaVSCVWdgp0pKIjqx/6k0t81D94Freng4CCei0pONV1JgR9AjMuCavxi+vmgPW1sbOjw8FCvX7/Wq1evQts4Pz/XxcVFFGnxqjxFdjpze+CPNKtlQNchBEKlUgkEn/3xC7msDyFz+c+YEVk26xZdr9fn8ABUcb5g1m5eltG8g4YejFStVkODOzw8DMAcLAAzzIvQfPDBQq7OoSKh6tzc3KharQaYBtB0eXmpd+/eqd1uq9/vz6mUTjQ+nNgAVVAZIUjUSUfksUFdIqeXrmg46nx4eDjHaFDvcCPh0gMDAX0GzCQ4pghEc0aE5uEpsEgWLj9IOkg3fmppPhx30bo8vdhjJ7IsU7Va1YsXL3R0dKTNzU29fftWb968CU2N2gWOcRTtpZuK0AmFPTgD+lQAzqHB+cUGAylbl5sCjt0gydEM8VihgWDKuBnn+MKyPfQzA+uCmQC2cm6Yc2AxaDfQ8bLgOB9ryQR8OFFBMNiaXEpALxBb7FoOb9GGsPkcOCAfKiaXUJrVykfqQ7weq77soFHlaHJKgxXvQOReC0eE0TQAEsvcTen+pWGu/jNEDmF7bDrzLItK9Ln88hLFyaUE6EVlRduAyIu0qPT5fl7M4ZLXGQVRiZgGMADWvizMu+hdXCty1Z24BHc5o9V5abFF9CHNwEYG5g6YB5GlPBcNMfWwwLRWGWvLBJwbSrPy3BASYAx22tnZmTqdzlxkYFnST9Fc7imAGVxdXanT6UTACKXN2HRv/ex+3jKNAKAKIBCbEjsZgvQ8BVRWbG3URg8KKVuXg1YgzB526vawR1+CcvuXm2VFw0O8wR4ITgLMpflJt9uduxRF+7/ocvJ5mBfny9nc3t7GnGh3Hn7NZeEyl2E47ipkrz3wiYpXzpycwbAPRftdtoceMERcDDgVOAHnATBKqTrMTc/VWKadSmvMBFJC5wJ4QAsqX6/XC1TaA1Pcf70oZNiJClQXUMf7zcF9cdEQg4CqzbulBw33x21FBWNQ3UajEXMT9YhEQcqwNoApD+Bx6cL3fhGJccfdBOMEGCMuwLvrQHC4Ez0CreisXGvJsiz6Eb569SoiE7mgHlY9mUzmkG40Lcc8fF1u3njgFhIa8DjP84jyTKsYc9FgeosiIT13hMvsWhhMAFDQsQpyGVDdvU5kkfeDfcBT42HpeD4Ahz0E2bVED9xa5tZlrCUT8APmMrMJ0iwBh41qt9tz6Dx/j/RapILBNeHkTohpYxH69HmXFxgEUqlsLtaCxHVAbTQazbnZ+B5GQeago+dlxAvT8MQakOR6vS5pBq6Nx2Pd399HowskMB2PeAYaQJlEwcxwVXh/f38ujBjzikq5fiFhTDAaSRGrUHReabBQlmURT+IBYjAALh4XmHXgX1+mSTlDxR3tZipYAF2pYAD8DXMvUs/5PPvB99fX1+F69PcH5ATDcu3JMY1VxtoxgfQSAYhAVGAAENb5+bl+8IMfRNlxNgIblIu2aC7HD0B6XQOQFG5D6senoaDehiwdMBfXTtIeAtIsnJVnogJSvpskHi+0WkTEznAAGIm4pD2XZ7ixPklzjVRcXU6Rcp/L1VgQ+Vqtpo8//linp6fh1sT96OcESInURjNI1+UAm+MCjp0QLEPMCLgDTAIG427monVxXm4OeJISpmmv14v9cbeku7DT2hBFZqlronyPJ8CjFomK9FZxw+EwvhAY7jX6YF2EzuGxw2AEJIugXkK04/FYeZ5HU09/xiIp5qgt6p+rwahzlUolfLRc9u3t7bkknzJwi9/xLjAA6UHiMT9aDAk0Nzc3arfbkZGWZoeVrQsihvHABFBLUR3xeOB9oIkGROTRj8tcTuzd9va2Wq1WfKFhYL+ORqNgcLRyc7efd9NZNFKm7fgIocKu2XGuKbMuw4pSpB5th9gRNAHMJswGvEXgBr5vy+aCIXM2AIuYCewvIHin09HFxcWc94J1ffAuQmk+Vnx3d1enp6dqNps6OjpSq9XS3t5eNJnEHZi6j9zFuIyAfa56va5mszmXMQaRAixBSPiC3Q9cxOmlmXsK6T8ejyN2X5qphDyTXvdkENLw0vselJk7vItrIACTMBtiDugO1Ol0IhW11+sVNjsp2z830ZrNpj7++OPwgICae+9DtCH+5T34edFcaEoe+wDYSpqvh55jP2M+uS99kYfAJbQnsWESeL9F5uOs8GTR1AXmvyhi0CU42i6eI/ZvMnnouUGcBbkXHtXpmscqYy2ZgG8ECTb1el3Hx8c6Pj5WrVbT/f19ECudZjhcaXYJimLDfR6kBZtMUk2j0YiEF+ziPH9oGoJq7hIZ9HeRdObiAvKhTrqLEKyA9FBQbW864TkKZQzOOwh5jjuSi3e6vr6OrjYwAOZlnkWFN7hoaEOor0hfd3tyHsPhcK5tGYzM8+LLmLZjMWhrSGgyF2E0aE+j0Sga1nqvxbKoOmfajjExJpPJnBtQUuA2nCt0yfk54ylbl19gmAVzgR0Nh0O9efNGn3766Vz/Tf7GNbgPWhNgMW5LO5Lb7/c1HA71gx/8QG/evNH5+fkcMMiXB3csmssvEmoVoJLHmhMqzPxe3ccvZdHgsrg9LClQeRB47HVsZ/eBe5LSouo7MBLMF7SYfr8fbifW7G6mlGDZm0XMTZpl2fEskqtIcplMHrpHn5+f6+zsbK6Dr3t7XEtatC7/woxBRYcZ+ftg5nhvR0/qKVsX0hsvDg1wxuNx+OoBM/l/YveR0K5J+VrTAW1XKrMKRefn57q9vVW1WlW/39fd3Z0uLi4i0Mr3kLNa5bzSsZZMwFXE8Xisi4sLSQo7SJLOzs50dnYWRT1ubh4akXrY6SoqEcSHJEKjoNswFwYphWTh4DnclJkUDSQhB0WmGTYstjlr4JkQmv/tIvXc9xDiAjjiiz1iPpceDgq6mrpoXVRw4vt3796FicBFRW31Mls+zypzsS7pgWF3u93oB0j0njRzj3mbOv71M1u2LvIgOC/XQHDXIbXRugAoYTIupcsAO/ad308mE3U6nfAwsG7iU9I99Oc/BQ+Q1pQJSLNwSKTjxsaG2u12FPegTbdLDr7K4s8XzQWYKCm4MUir1xQEtPLL4wdQNPzQ/bOuOaAuux3vgKX/zSKNwz8LA3ACQ7ty+9PfLwWxViWoyeShhyEaS61WC6TevQ3sgY+UEayyLnfv7ezszJU/Aw8i2hFm5/hNmbcjHdAGe8/eoZ26OVmmhZZ5BdLBe4IhkJaNt8PD01PAcZU9LBtr34EIIoXrIjXZYEfkP09rMOZyuxZ3JM93lyEHtcqm87yiudyLIc3XA3DvhhNt0XyL0PR0jkWxDKn29GSCMreaNF+zwaWgr+uznJczbPYR2uC93Y73KrzL1uVMMT0LnulM2v9fUqlNvuo6/bx8Xt9DPufA5grPf25D9jyex9d8PLchex7P43m8P9YKE1gU3rvoM0/RZlb5rKusRX+/LBJr1Uit3y2jLGqxbA/TsW575ar9os9Iq9FD0UgxnUXPSN/li96vtWICZcNtII+EAzR0QKQILPmsc6Xz8awU6Enn+qx2NPN5Kqn7jj/PuormJDjJbWfs9FXBLN4pfbb0fmswz5twgIu5VgXrytaTntkiwOzz4BAesOSYh/TZz6tsD31tzOWfT/GAJ+ADMdaeCXjEm1eOxUcL4JMCMQCFiwJq0uEb7bHg5BJ44g6cOw2xfcpcEJODn8T6+xqk2eVMIxSfupcOftLxaG9vL5BpfOi4RBdFuRWtiXnc7cm6iH13BN/XlOYsrLqHDtYRd7+5uTlXqu0pQqJIC0jXxLq80IzngfhzWd+qIGhKh9CJ90lw5pm6KZ9Ch9KaMwFP4/TkDa/cAvFQSESaqVYcnJetKhp+MTxzjN8xNxclRfVJeuESLTtsn4vYfVxaRL1lWRY1/ty1RkAJBL5sLicoCJaqOC9fvtTLly8jRZpISEJeiTCEyJbNw97R55B9o1gmtRIJssL9RvCTJ2cti3jzdfnlJN7etQHv+MPZQR+LwoYZnkrseQKsl3P0zEdH9PksEZyr0gZnled50Dz5HwgjSXMp8zDuVfYw1rfsA1mW/RlJ/4akszzP/4XH37Uk/QVJ35T0PUl/NM/z7uP//UlJvyjpXtKfyPP8ryx9i4JBbDaFOAkN9RLMeZ5HeC0+fQ7ViSvLsvi5YH2RpESyhqeP0nUGTYBgE3LyPbSWYJJl7booIOkaDUVFj46OVKvVJCl83xyul13nZ/5/0T6SCOXdej7++GP95E/+pF6/fq0sy3R+fq52u612u63z83NJs7oIEFVKwG73Z9msYlK1WtXx8bF2d3eje06r1dL+/r7yPI+Q2tFopH6/HyHLfrFhEmWSmr0jbNjTpplnNBpF7gU+dpeQXuijTNtBY6IWJJWZoEm0NmJXoLFUQ+S8oMWikWXZXMIaAiLP88jMpIGsNKvcxHwERnl05CqMYBVN4L+Q9B9L+rP2u+9I+ut5nv9ylmXfefz5l7Is+2lJPy/p90p6LemvZVn2e/I8X02ftM1AelBumdx0JAy1+Dy+nktK2CbdWODIZRtCEor3z/Oefc1mc64asDSLJut2uxoMBhH+S9YcgR7puryxJNydtdIajKKf9DugkIkX5Ew77xatCy0GVZyciG984xv61re+pW984xtqNptRIk2aqa5k+3kFXy4NwzUvEq9OTk5Uq9V0dHSkZrOpk5OTKIrJOVAm/uLiIjIxib70tmeu3fkg+7DZbMZe0tmIuozsGSm3XiiGNGykp/+cnpfnkXhRWMqckyrs2Y9cdLQpGLf3sCyiDTcH0T6oR0nynNcW4G9geGScYqpAh5+bCeR5/jezLPtm8uufk/Szj9//qqS/IemXHn//a3me30j6Z1mW/Y6kn5H0t5bN45vhudu0mPLKvJKiIg4EwIHe3t7q/PxceZ7HphN5WDSXFxClySlMB8bDheWyeHgsWX8eRVYWHJTiGiRH0euu1Wqp2WxGnfzt7e0oWsGFJ14cFbRoXcwH8AZBcPm8YnK3251joqjJ/H+qShfNgwpL8BYFTA8ODsJ0GQwGc/uUZQ+1B6+urubSbqVZafWigSZYq9V0cnKiw8NDvXz5MpgP0X3X19ehiRDNSI+D8/PzOYFQdl5U+KEhKdWFEQoOPk6n07miLdPpVGdnZ6FhQBuj0ei9tUEbSH6KrJCxyFobjUYIP5KzYKL1ev09rGU4HBbu4Xt7utKn3h8v8jx/I0l5nr/Jsuz08fcfSfrb9rkfPf5upeF2pRfFpMDC/v5+ZIZJiguMOr+xsTHXCMRLLxdxeQeR/HdsOtl9Xj0IhkEabq/Xm4shL7MxYTg8i88guaiezHMwb7xCEJcQrWZRbgSEhqQjhh/p0O12w6yhMk6WZYEzUHWIy+KId9E+snYq4bhJBvNEcsGEJIXJhmTDxCg6M0yparUaX81mU9/85jfVarXizDHHYHqbm5tRNPb6+loHBwcaDAZzsf3pYC7Om3/RTgFPMYeQ3Pv7+6pUKhHjT6KXhzSn+8ffu2rPOikGgwaCMAInqFQqMWej0Zjr+7AqcPxFA4NF7LtQF8my7NuSvj33QbMvuQhs3OXlpbIsizJbXKY8z0OFPDg40GQyiaQfxwjSDfG5+H+qukJAbLSrjDc3N1HGygEfNt8LnSbrlaTIg0C6X19fx/vy73A4jPk4fADItGTWooOGECi3lZb2ph4jc2GPej1Hz3wrUyv5P9KVYZaNRmMu3JW1XF5ehi19fz/rWeCegrI9dDs5z/NoHLu1tRWYBl2r0BKZdzKZxLyOsJcxAYQD+4zWB+MCD5IU9JDneTBc+hHCmIrWBR2mniYamYJTwQCooQGdv379Ovbm8vIyqgx5abxl47MygXdZlr161AJeSTp7/P2PJH3DPvexpE+LHpDn+XclffdxATkLST4T4FetVptLx2SRcENyyLksFO1Y1tYKIoBbo25JigQU7FVURFBu5kA7Wdaui4PmWc790WRIdYUB1Gq1uPxeW8CBrpL9je+5XGg5h4eHMTfMk4vY6/XmvBGLmICfl6f1bm1taTQahVoLhuMl1iuVSgBY7K9nxpUNzot350JKD51/Li4uNB6PA1SGkUsKpg3DcTwlBTz9vGCUo9EoNE/W6pfaexAA1N3f34d26vkmRXOxHi89h/mD6UQKMQVcKBJLK7fBYBAm3qqu3c/KBH5D0i9I+uXHf/+S/f7PZVn2K3oABn9K0t9Z9aFsBIdDxZudnZ257sIerMEhYT9TeBHCSlNX0/l4JhISDQD1VFJ4BABtyFojD9/TZD3bK12XB3JAnJg/VAP2gBC4P5WNvVovjG3RpUnfAWmFbQuQitS7urpSu91+rxPQqgEoaEq4NW9vb8N+p80ZFY3H43GUH4dgnREUEbBfkqurq9h7kPmzszMNBoM5bYtzhEkRN7DIM8C6+QwaDhePGARo0WM+dnd3Q5vx0vScYVmjVb7HpMLcdE0XLXg6nUYFJUDcXq+ns7MzXVxchLds1X4Rq7gI/7weQMDjLMt+JOk/0MPl//Usy35R0g8k/ZHHRfxWlmW/LukfS5pI+mNP9Qw4l765uQmk9OrqKmxj9wsDQKF6OTF55lgZA4AAuPBsvEeE0QcREA+7jEo8MAAPTOE56Xw+uOze5QjsYGtrK9TpXq8XhJUWw1im8jn4xX41m02dnp4GUs3aSdX22IWUeRU9G0AQ1V6aAbetVit6EHoBVS5q6q5b5O2A6WFKAVpSYg4MBaaK54CyXA58pmtIBwzNYzictnATcvkxPXgvXIIwgGXBZB4tCX4CrWOielel09NTNRqNqMTUbrfV6/XeKzW2yljFO/Bvl/zXHyr5/J+W9KdXmr347+cIQppVrsE2Akzz8sxUluGgkJQuWYsGc3hKMtV83ReM2gxDQPpj60nzMedlTIfhICAqN+uQFExhNBrNAWX+DAfSivbR1XWwj0qlEpiGo+JXV1fhDnMkfdEczMOX4x4ePech3l4hCUZ3d3enXq83x4jL5nImQD0/96sTj4AXhIaexHBID/TkMQmL5oJJQlcUT0H40ADHm5LwWTQ3116L1uZn65GCaD7OdGAKrVYrzBQvCQd9ON61bKxlxGBKVKDbXizTA3tAcT2oBZwAW3iV+bD1AAIhlrRXIOYBnN5dZMuAOuf0qMxoLd5j0MNTnTGuOhfz+SWGyCBmD0HFlw3C/ObNm/BmoFIXMYIiogZjARCjvh8MF2YH3oGqDQazyJZlLzAVLy4utLGxoXq9HqYatjIm18HBQQgF8AMA32X752vmQgLUYt7keR5nx34hIJDornWWzcV+wqwcZ8FtTlPc/f39iO7sdDpR0AX6YJ9WGWvJBKQZOgsXRg3iYoOqI1FobuGACmogl65ssPGOOjsgBKoM7uDlv13F9FqIZUAaEggmwOc5RFyjEBmahhfkZK5lnN7ngymyJuxFNC7s3bSJSLovZYzA8yz4G5gLfnnWR0dfpDQBVHT05b3KBhKSop5eoxFwFVW6Xq8H0yPQCvpCQ1m0f3wWwJm9hLZo7Y4ZQyFV1xAxJTwXoGwP3R3p/RTACnCVgxF0u111u93AGlxILNPiGGvJBPxS8jUajdRoNIJAkGq4tCg3RjFI3G3uo/YNcdWTjZNm4Zej0SiirTj8arUaoa7eRAONhGcWhSf7XD6fF76UZjhBtVoNVBkGx3swFxK3bK70iznYP3raEwwDHpCqyylz8zn4F0kI8wWshVHDyOgQhHcE1yhmHu+2rDw3lyJlcFyO7e1tHR0dhWt0OByGeYNwgQmUCYjUZMCDhLsR1R+NCg8A80GHDjCnc0GTDiwSDu0mCc9BEFLvEo2Ds3U6XBQO7WMtmYCXiEKly7JM3W5XeZ5HWO39/X2oklmWqd/v6/7+Pkpqe93AMm6Y2oVZls0hu+7TR1p7hWG39xZtuBOUX0yIlnwBadaJFmLnUvhzfE1F3J53QjpwQZHIt7e3evv27VwIMgAUkpP9WYY7ILHAaAAfkc7+9/4+YDu4Dg8ODgLMXbSP7r1BEr9580Z3d3fhfiTXhOYuae7DxsbGworNThvulYI2er3eXIcgb7HuPSpZr6+/aA89LiEN0+YyE7yGCeABSe6hKHJ7LhprxwQcXHOACQ4JkRJoU6lUwnOAbUaZaGkWT1CE1vtlSgmazby+vg71i7LcfuBsPLbsMqbj83MxJYXGglQhvgEA0qP6kMplZke6l0QduhqJhkHeBEj627dvI1jJoxLLUG2fg2cR4lqr1bS/vz8XF4HNTqyCNN9xmq+ydfnvXAXHW0MQDSYisfswVfbd+zou2jvHIFylx/9PFCJaGR4XtAzceOzlMmwFzQvMxE0y5u31erq4uIjAKPaAO+EeqlXG2jEBP3zAFGLu8zyPlF0OgzRe+s65vc3BlUXW+UYxp6uHEC5qKwyJiCyiutJS0csupZs7rIH3A/xh7fQ7YL1ecXYRo/E1sH8wSC5AtVrV0dGRjo+P1Wq1IvHKiXpV8NGZQKvVih6EJGNJs8Sfo6OjwHbYW69GXMZwfF3QidvL2OneKgwGnecP0YVelXgVSekMF4mdChBppup7UBm5K9DhMvXc8ycQep6HgUngTVUwO1J8aBHjTsfaMQHXBJwoICY4pYfsstHYnl6b3ePfy4Y/kyi9w8PDiN3GH+whrZ6z7T7oZRvvMfSorGRGkrQEcyEtFFdTWkNgUdiwMxtUb7wbk8kkYh5arZYODw81nU51cXGhH/zgB9E52JtbLlsXc6Hek9E3nU5VrVaD6SGlp9NpBFu12+3wILDOZVIzZdoAap71R+bf/f29+v1+aBvEWqxyUXg+6roHjAFqwsg5Fw/UIbgHpl4mjHxtBI3V6/UAAkligwHQdcvb1ada2xcWJ/DjHv7y7ruXZokVHtPNZWHDKU6Byr4scsptMoAsKu6QpFKpVOYuZafTCfegc/ZlDMcJN82H9zxysu46nU50W/YEFEf1y+ZyrYgLSMAKa0WrwsX0/e9/X5988onOzs4CiHTCKhswRzwPaBuYVtjOSHwAyU6no7dv3851JfLzWpVx410g2YYkH5gQdjwMJg0XLjM7HD9A6GDSkJqN3Q94i1sUD4HnGRAzUHZe7uOHxj15DHcqtR+olYArkruDxvrBYgIQuFfQoeqNNItE43DT2HP8x54/XsbtmYsNl2aMh2hFpGG/3w+JhXfAs+R450XRblxid7nBXOg2y3szX6/X02AwiN9z+V19LhpIHrwCZM3d3Nyo0Wio3+9Hht3d3Z263a7evXundrsdEgaGtkhasocwSNbf6/UCE6BxJ2o7tRFA7LHbl0UMMl+q5Tjw5iYWZ+ch3d6CbJmG6G5Nzos9BDiVNNc2jjMkko/AM9/PsvPyrE5wIUA/NFv6EIIHpEzNzeAPlglIMwkvzVQ/mmYSJOQEw/cQPCCaq5Zlg4sI0kyI7nA4VKvVikvifeaQkqDLfC1TLWFceT6rdUDcN2aHNGtnxZzMBUNzjWDRcFsbT8m7d+/CD01MAPvmRUycYFcBOSFckHPPjwfc4iy5oB7ctQrQyVxuKvi+IwWvrq6iIhRuPdKnvdnqsosC06hUKqFhgtMQqQr9wOA4I753elzGtHEtDwYDvX37VuPxWOfn5zo4OAjhBvNEu2DdaKRuFqw61pIJSPOtwabThzTOwWAwB9Jhpzmx8nerqkT8DZ4GCIsgDL+40szbABE5J15l8DzWBaqNzeoBQa5dwOieAvi4usv7sacpGs3nVr2M0rxtzlowO/gde5rGY/h8aR4Ez1zkmgSpn0wmUd+Pn3u9XsQ+sGeEQtPefZkWwMAL4HtGA1Q0A2kWEOSCyZnAKpfSacMFBQl07tL0i+4/r0obPtaqA1GRSyMNrkHdc7WQv3WkfpGtV/IOc4SaZdlcWijzMVAvU8J9wprnYhQAg/wCMJA0q0rmRXOm6/D9kxYj86s8n3+ZK43BcOZTpD09ZW43CySFlsjeui2Nvb6Kmlx0DtCF159EIPH/DO9jWbafi5hCGlMCpgO9+fml5tOStT23IXsez+PLGs5g1+FOlYznNmTP43l8WePzamlf5VgrTGDVCKdVR6r68rsf91gWn+7vWSRNiqId0+etikl8qCMNtfbfS+VnvaqEzrLsSXu46Ly+qFFkvvlYhp2sOtaKCSxasPR+VpxnS7nt5aDTF2HfpvkFDobx81PQ2HQ9bsfylQJ1PndqAz6FeZaty3EU37PPsq50Hj+3dC5+9t8vel5K+KnNzr9uQ6fAI+t6Khbh++xBRGmWZQqsrgKyls3l++cRi+k7O00+da61YgJFxOzRWvxL5BYZb16YA44O4r/MRZgOP1yCNgjkgei86QMegkX18coAT1xnXhvBOyt5HD2MDp/xsrz7snU54eLGg9Gwh060HjC0ykhBLQ/qSRF0n4t9fUryC8+FLnB9UnwDRN1LijHXqm7dsnX5/u3t7c3luaRIfRqctOpcHlruTM49RbxLnucRY+AVrlYZa8UE0uEXgxBNb9hBfLiXlyLJgmos7vdeNHyjQX7xEBDwAhf2rC380FzcVS4nUWd8kfnmKcmswRkOv2dd7iteti4nIoiMS4Nb1C+kS1h3ia6yh944A0bqORgwTdaEVCf+Y5EP398L2nAGwNxZlkWItNeUcO3LoyiX7SF750VfXBghdNI0bP/7ZVGekuYYJkVLeAZRi3meB62xv2gglDf7QmsMflWjUqlE3bb9/f1oBba7u6vDw0PV6/WQLFTIJSiDNGCi8Cg0sSj3nmcjmfkdXXXq9XqYH15F9vLyMkJ/CUQpqvQKoW9ubkYk3e7ublTBgTEgxTzM1O1OIiT7/b4qlcpc8YqydXmhD89uo4sOa/Firi45CeiByMvOi/f3nn3MRXCNF391FRbNB6ZNhF26HmnWWo0Yfr4QDru7uxHUQ1KRn4H78Yn8K6sBwcUn7yLt50iuB5GQBJJ5CDlMlj1MGYEzeWjdOxGxXoq+wHC4+ATXke9BxWeiWpcxgrVkAlmWRbAHyTzE89MdqFqtKsuy6APAhSAphQHhIxGK5kLaQ7hkcNXrdR0fH+v169eq1WpBQESEXV5e6uzsbM5MgTGlLbTwmXuCEkxgf38/iAkpxvvC6e/v7yN5hOAVaT7SLB07Oztx0TE9kFx0Ozo4OAgmwAUkWpGS2hBZikeke0hVYRgBUXswc9blQS/MRds4mHie5++10IIZUkj08PAwahEcHh5Gh2U0JS/zDQ3c3NxoNBpFhSjMrDLaoCOV7yNJX3SOIliJCM/0C5rhQrK+dF07OztqNptB37VaLYQTjMgLvIB73N7eqt1uh4bjRVhX0kwX/u9XMNh4LgOX5PT0NApVePYg+f5wbGxLl66kGxehqB6IBAFxKb2XHnXqMAkODg7mKrxwiBBc0bo4UBpzcDmazWZIGCIGubRecwCNZzqdRhecslZTripDTPR1JEOSlmdeCRdG2m631el0QoOCGRWty9XxRqOh3d1dHR8fRyi0B/Hc39/r6OhI29vb8f70bxyNRpIUBO7nBdODYVer1UjyOj4+jjZhMADKnbt6vrm5qXfv3knSXB4+CThF66LwCem8zWYzshQ9iejm5ibaoBF+3ul0JCm0GjSyMpongcwZDDUfOXf2mvZo3qiWedg772uxaKwdE8CWgjvzL5fby4hDXKiBJGAAmGAHlnkKHNlFSniXYE8cIQvNy1iBP8AYyuL64dA0SHHQEcZGaCvEAkPjIntVoMlkMleFuGgPYTgOpNIhmAw7TCrPSfAqx5hTpDCXSUu3+Zl7f39fzWZT0gyx9uxJmIOkSNZaVlMATYa/xTR8+fKlWq1W1JXgIlYqlShb5ucMmFvkffF1uXkD4Fiv1/XixYu5Woy8K5ec86PWIZe4LJUY+pDmgVKEChc9z/MoqErtBq9fCDP1UOUPGhPg8tNybDgcxu/u7+8jkxBul+d5dH711F+v01/mT2XjuQwQJzaapChsyeWo1WpxsK72FalfXAAG9iLqcaVSmePiHCCmzPHxsSQFwTFPWdEPZ24wT34PAVGmCkzh7u4uQEoIGZV6UVKKo9OeZ5Gi/qwXDWc6nYYp0m63Y38XeT48GYnv0dio/0ihDeryUcKdugLkFiwyA9J1QTMwAtqDk2jmNMlnJpNJXOI0yaxsPkw7ytpx5mRZOkBdqVSi7B2ZtWg2qWdp2VgrJuC+YE+uyfN8rhiFu2kozHFwcDDHBQGg+CobHIrnHNzf34fKjvsHe45DZh7y4JFAZTaz+3ap4Qc+kGXZXGUaDtmr6EoKLQim45mWPlLACECORCxcq17h2Eu3o/l467MiKea4BASM9BuNRnHx3Ib1IicUTwHspBhM2WWBqbgHAo0NYIzUawbgGtoQ/8flLGJu7h1x9+n9/X1oh+AoXteSM0MwsedeLboIFIQBOM1TNLdWq0VilqQ5zRe6ubm5ifZkKS1+cOaAc102HqLCzsO2hQBgAjs7O3rz5s17rZ+8KGh6Of1iQuRcODabfgYwHVQwimKACANsISEWrQsPA5KYv6OFFdoBzM9jEfr9fjAebMGUiB0B52e0G3dljcfjqN9I004uPkizN9JM99CDY3gu2hkAIN9zAZCu29vbkZYN4XJeZRmgbiIiCFDBLy8voyLSeDyWNJOuMFNXj4t8+L4umJozmHq9HvEHALXuqqMXITTgWhsMvEhLZG6YNuBvo9EIWgQ/AiNDm7q4uNDFxUXUnyDNeJX0ZcZaMQFpRsAgnx5lJimAGe86401GUCvTjSgzAzwri4uHSwa0G68Btu5kMlG73Q7CTTvOFs0FUYEjSArClBTlo3AB7e3tqdlshp/Yy6Z5kcwyiYn6zf9jttze3kbdAtx6jrQPBoNQqSHyRUE1nBfajgdRoZIDVG1sbASAh6RkPTCAsvNy7ZB3QltjPuZGO8CVjOeHS+2u0rLzcrceZ4WXBvUbPARvBa5f9t7fexEmwFy4htEsrq6u5sBJaJ/mJzQgJUW63+8HY39KgNdaMgG/mNJ8kRFMAFxOMAv+jmd4nbpl8/lw28wvKBpAlmVqt9tBsBDkspGChoCEvDuqJI1HYDhOeDAcGFVZTgIXk/2CuLA3cXdhYiFhMAO84YnvS9n+ORMgroDCG+4OpST5/v7+nLmCpISJLJrLzxUtCYaIdwKGjeuQGBOXzniOCP4pWxcX2tfla4F5ext0b3nmIDXnVaS58V6cmdv30oNZ02q1wiVJ/4uihriLzqtorB0TYDhBpMg76qI0A3BSIAfbd1WO6MSHCjcej0PjQIL48zioFBxbtCZJIT0khVkDE6CYKhoOnhIv/MnfFLmbfC5X19EkYCTY5GABEC+q79XVlaT5GvhlwKqvjfNBoqPNEQ6NlOYye7su9ncRmOV7TLwGYCcX3gOVYDqAsACXHkRVNF/qVYIeBoNBBHgxD5oj3gQiOUH0oc9VBJJjEQ4qcgb8zvtgcm7uEVtVC5DWlAl40APE7mHCHKQDhG5/wQRATN1GK5vPLzrhrdh9k8kkLmeWZRGJhZRIOX2R687nAMfADqfuvyP6jlNQXhqACJwiTWxK52MgxbDxB4OBbm5uosIxjI0uyx6GLc3MpFXChtk7Z0DgA4TXwpBooME+OhNfdGF4Jt4LgskAcTkHpCjz93q9wC2Yr2wP/RygH6QtHijPWYAh804EJLEv7rouY6apu5Uv8Bw8XsSmuGcHnATwHMbxQWIC0nzwBBWAp9PpnP/cYwVczXMEHNs3z/OIVS+ai4vv0t5BI7rcZFkW6pf7Yj3m39W6orkIRYZop9NpdJYhmAYGxztjO+O14HfLJIz/ngrGmDW4sQCa8BZQzhoTB0YqzerXlc3lNjagZWrKYcs6IAjBEq6N5C0KFuI9QNExn46Pj8NPzjMxHSn6ic3s7sFlsfzSDM+5urrS+fl5vCe0AiPP8zz6RNAIRZppfovMUxiAexfAA8CmAB3ZH0BvtADXbBaFyadj7ZgADMB9rkhNkGdpVnKLLjpcZEfCXQUsGw4SwdVR8zx5p1KpBGjGxeO5/K2khRsPc0JFRGUlsMUP2W1/JLN3RuJCLbqU0kx9hhFSBBTtCs2Gr6L21u5FKZqH57kEB8O4urqaYyQwN5gEDMCZ+yJMgDWjSbAfFBclvuHu7i5yFvDAUHFZmnlJFmWZpuYhFZXxENBPgXdiPS6xGWV+e+bApOBfz4jE1Nnb21Oe5+r3+3NNSIkg5DloqZh0y8ZaMgGkioOAjUZjrnCkF2+8u7tTtVqdwwkA1JYdss8Hooz3gfBk/OwQDhITRuQZYmUjNRf43n3zHhkJ0aFCu10uaU6tLSMsdz2BQbBf19fXajabyvM8TADUZdZKxOAquIozCs4OzcYLkNLKDSLlYm9vb79XtDV126FpgAUMh8NgvqwZjYnPDwaDOY8MzInqwYs0xHQPsce54GAOMFjOzoPU+J1rHem63JxE+qMp0h0KM4tW75h0ksKDdHBwEKbqKhgEY62YgNuDnr3FhqCue9AGrhVUI4AnJGmlMt/mKx2eagu4Qw84bw6CRPHqwA7i8CyvTJyuy+1LLgZBJjACzAmIeTweB6FzCSDGMj9wmcT22APPmoSouRxI9tRFuwwUZIBbcIaupXmikrvCHBAsm4vfO3ALTbh717WSnZ2d6AKEjQw2skr9AqdJxyI8+AoJ7dGjvJdHUC4bjlPgSm02mzo8PJSksP89ASnLssjQdG+JNPM8LRtrxQS4VM4ZUVs9cxB1H64rKWxaegPAET0yrGykWgcHwJwE8aDGenx6yuGL0O1UpUbSU9Mee1GaqakwNVRfCIx1LooT8D100wPbtVqt6uTkRK1WKy4hHhcPEfbnLyJkR6VdmlWr1YhDIOfCGYv3bfBK0cs8BOwT78yX+9V5H2xmcAiPS1hWfMP3EBpxTwchxGmQENoUEZSrrMsZAIKHTE9wAjQBB2C9vLuv6SnFdNaKCTBcLWTjHNGFwyIxQWRx4XgvQqR3mWThAvNcpKMXMUEi93o9vX37Vufn50FUXBak06J4bYgdtw6EK836yvO7fr8fLqY0FtwbWyw6aPbLM++Oj491dHQUDCDLsrB1QbQ9Ndml7zJNINXeALSwnbkcYCt4KrjQXKJlTJu1pepu6mGAjmDYngzldFU2l2ulgHvUKyAGgViO6XQaNAje4fvHPGV7CA25t8ETpsCOoBG0trSvAfkXCI5VxtoxAVeX6enW6XR0f3+vwWAQG4LLxu1zgCjnxMsi+fwCexoojAbCubi40Keffqqzs7NoC+bx4KiKiwgKzQVbFWQb9TzLHkqHYW5g0niMO5LGJUzZuhzwJJMOrYDLf3V1FT0Psddd5faIwbJ1+UXi0vC3MOI8f+i2RBs3GLWnwnqMfdlgLjdT2FfPI/A9cR8774RvvQzI9XUB4MKoWSdAJmAx9ArzZg9cwyoTRq7VsCekIjuA2+l0gga9lwJM2lvjrWIKSCswgSzL/oykf0PSWZ7n/8Lj7/6UpP+TpPPHj/17eZ7/5cf/+5OSflHSvaQ/kef5X1npTWyg+rJxVAnCZwrgxGI5TI8e8y+3n9KNcZCR556fn4dXAmbApruZ4c/3r7KRIrb39/fqdDrhnnTNxtVjiBiihGExdxEABGHxtxQiOTs7i3fJ8zwuI3kQMBl/h2XqOe+UZVnUCLi7e2ib1Wg04h1g0qzRNSM0gGUaB4zQQTjU/V6vF4zVA7LwOFH9h/wCwNVF8zkoy567CYI9jseAPphoiuzjMu0mf/QIwVyI23jz5k2YGry/543wjqlbe1UGIK2mCfwXkv5jSX82+f3/M8/z/4f/Isuyn5b085J+r6TXkv5almW/J8/zJ9fDhkhRhzmINGrPAyIcWFvEedPhmwbQmOd5uLb8AFMTxdW9VdeFtPUUULdfJcU6WSNzu+2+yrqotUh6Ks/vdDpzaiTakwN3i3IG0oGLzP38BB/BnGG0HtcBI1hGvM7APRgGIBONQ3qgA0wgSXGeaFBeAm7Z2lgLLmHoEeHkWX2sk/gH4vhXSenlApP8dHd3p3q9HueH2xFTzZ/pjMBpctWxlAnkef43syz75orP+zlJv5bn+Y2kf5Zl2e9I+hlJf2vVF3LJhgTzqC53s0kz4kAFLdqEMmnpA40AhiNprtBDOp7CZNJnuLvR3Wn+Obez0wvpn1llXe4Sy7KH3AePpvRQU29J/hRCghBdMksPzTU9AMvfN5WQi+ZL98X9/OyhVz6CoUE77g14ykXhc5yBA44pGAqD8zZkT7mQCAaSt/r9vqRZLAvvDlgpzeIPVtnDsvF5MIE/nmXZ/0HSb0r6d/M870r6SNLfts/86PF3K430oPl+VSm7yrOXfcbnWzXiatkoktqolctGkQnz1OF4gqQwDZyRSp+NgJbNVeaH/yzPLRp+RosY4uddGxeU4etK5/2iz+vLHp+1Ddl/Iumfl/T7JL2R9B89/r7oFAp3JMuyb2dZ9ptZlv3mZ3yHr8X4Ii7msuc+VX1c15FiM6vgNF/GvB/a+EyaQJ7n7/g+y7L/TNL/5/HHH0n6hn30Y0mfljzju5K++/iM2LkyqYTkKgPB/O/KpOcXIVXXfawSKVZkTvn/eSRi0bO+CM3sqcNR+afQho9V7HKet0q03ar0lO6vNNtDX1fRZ1dd1yKaX3Zen4kJZFn2Ks/zN48//luS/tHj978h6c9lWfYregAGf0rS3/mMc7z3O2ww/MFuA2LfloF1n+Xy8w7YlW6uFOEOn2WkLifsW1+Lz5l+X/a8RWsBg/CEqSJg6YuSbj43IzX9VpkjvTA+PPITd54/lzWCXXxWM5O52UP2k5HGA6wC1vl60rX5PJ6jwvOKAtVWoRMfq7gI/7ykn5V0nGXZjyT9B5J+Nsuy36cHVf97kv7Pj5P+VpZlvy7pH0uaSPpj+WfwDKS2qkcPkrFHNRwGMe6exPGULiy23vcuJElF7inwr/QwnjIPvnyYGsEoqRvQo/hWzX7zebwSMHEJVK71qj4e5+77+VRmULSPOzs7sVepRyf9fdEokqieAerluJvNZgB1eZ7P0QPBNF7FqAgjSdeTZpvisiYblL2T5pmOx5SU7WGqhXiMB+5OIj6dDjgrB5tX9R7F2tZBPcYcSFV6534U2CBck5BeatgRUguA44S9LGCIuSFWsv1gAIS/UuPP/cspAa9yOdNLj5+ZAhgUQ+n3+3OFNwGLILYi33OaG+/rgQEQ8Ubteo/ic1TbA36csBZdVLQ1cgY89JtEFy9e6lLMXYdFKr9fTl8XWaa4BanAQ4CN+9Xp0EPhFI/HKDMHoAPmImkI1yCeFqoyQWfOSHG74mZ0c8DnQovhyzMLqXAlzWoLwHQ4K4/xKMhb+Ht5nv+B9MzWLmJQmm2MX0aYwObmZrQGo/OQ51QTbUWFFz/wMu6YZVkcKKW2CBZqtVrRLKPT6egHP/hBRPM5g0nDh8suSvYYIcglJEW0Vqvp6Ogo2p2Nx2O12+1gOvi24fQQVlkSkTSrIUiTDOolkh9BXDoBPvjaPVOOKDii/hYxAM+HJxV2Z2dHh4eHevHihWq1mu7u7qIgJkyH9XhR0nQP3T5O4/ap70dDkuPj40jqIaKULEkanHDZ0ApcY0wvJe3GCIOmJgOh2GSREgkJQ/AzgpYJJvJ1+feEXDvT3tra0uHhYXSMImaBsHXC0GEAfl6raMJrxQT8ELwENmYArcFev36tly9fhmrERaDhQ7/fj8qzJK4sUpFQjZvNZjTooKsNNe3v7++jE1G73dbZ2VkQFWGiBKWUxaPDbCDWer0ezTNOT0/VarXCFKAACGHMpI/2+/2QsJLeM0O4KOwhLbNgAo1GI5p1VKvV8KHXarW5XHgi8IhWQ/soYwLU2fP6hVzQFy9e6OXLlzo8PNTt7a0uLi7U7XYjhLjb7Wo4HM4lU6GuF9EGmZ6e5NVsNnV8fBxZd2AdfpmI8UdjdJ9/6o7j//f393V8fKzj4+Ng2pSiR7shxqRarYYmxZoIQSdVmr1M/fqYajAW3ps0+kajoVarFaXSPNT67u4u5qPCc5bNunN/KcDglzXczgMQQa2EwF69eqVXr17p6OgoGkGiBUiai8HHni1r/yTNOgRvbW2p2Wzq6OhI3/rWt3R6ehpgoHNUJDWX0BM4PGuvKAbAbTwSbD766COdnp6qVqtFBBzaC4yQ52LmkGjiQVRFe+j17yj4+dFHH+nk5CSi6SCStJoy9rQXMykDHbm8MALPgIMpeKm4ly9fRn+9SqUSkXeE6LJPqRTDViaGnzVSWxDpT/UgLhufRdJ2u925QKl0D1kT6j+aW6vV0unpaWRFsj8wE7QRCn6S2k5EKOdSRPeefu3aG8leVKNCW6KMOpiDh5S7Br3KWCsmIM0KgrgrhYsKYaGuS/NBN160ExTVAbyiuTzqi/BQUofv7u7U6/WiVJWXl767u4sED5+nzCWTEhufoVqtN7QkMo1DR/XkslFRpgysc5RcmlWtefHihU5PT6OBpksSN7lQ4VFriVwrUys9ivP29va9ugwAVn4+1WpVV1dXuri4iOdgRyPFUgbAOaFtud0rKfYQhuxMwxkLc6VIfrom7HEYMJoF2hN1Crhw3rKMgCzHuYrOizXB2BxLwMwhdd5xGp6DCeaNWPzufCHegR/3YCNYwGQyCWl4eHioo6OjwAJQKSG8V69ehRSbTqdhSy/CAuCW2G8AZKhYo9FIk8kk1DQ226vaggcwFuEBrAkThsq/l5eXUcp8Y2MjauUDQOX5Q5s1mpIuSrl1IuB76tbXarW54ihEvpEA02g0Yn3sgefUp9qAX0ywBPAY7FbP94B5Q7zUTEwz+tJ1+fyeHnx9fa1ut6udnZ3ItWfdmF/8y2WDwXtxkHQuXxchwzc3Nzo/P9f+/n5kIqIx0LXaQ4hhOuBGzLvItcz6+B5shQpTnB05Lq1WS3d3d1Fr0+tcsI5lY+2YAAOi4lDTVtDtdlsXFxeRYcghI41ooAEyXHYx3d0yGAy0ubmp8/Pz6AYLYWVZFl19sclSVyHPW8R94fRkwCGRidm/vb2NWgZe6xC70y//IneTu1V3dnZ0dHQU3Y9ZFzX3vLbi/f299vf3wwzg4iARy+aDMZEcBdDqufCsywuCepy9J8Wk5+XEDG1QRKTRaOju7i6YJcwdkG1nZycAO89YLMM5nNnxWdrheS0LfnbXJA1cpFmpMwRMEbDq2oJ7f/I8n+uwhfaBtwjTC4bT7/eDsUFTq7qR144JoDK5RoBkqtfrAZyBlud5HsCQp3yyGSSOFMVh83wOio2n3ffV1VXUewO5hyP3er05t2SaXbhobUgXwMROpxNE7MVVAZN6vV4Am0gKdxsWSRNpptJSKYnL523GptNpSGrvZ+C17ii0UqTO+nrZBy6pg5beTZhnkWXIxXSpXLSHvn8ew4A2wYXh79lLys156rXXm0iz/JypwcCgk1qtJmm+QzI4CGYHPSqRzC6dOfeidTFYO8/knDF/JEV8gscH5Hkeqe6uDSwba8UEHOF2PyocnU3B3qJjz8nJiU5OTnR5eRkElhapKNoMZwLu76d23f7+frhmjo6OQpXtdDpzLit/3iJpyf8hXQDfsKGlGa4BBiApGqA6QFfGbNzWrVQqAS69evVK1WpVvV5vTr0HkKK02vHxcZgCWZap2Wyq1+vNRWemo8iVx76jDRweHqrVasUlpedAGgeRouYpbaDqA45y8TyADBpAknL5vCmJM+6ifQRk84AjvDUwVlyHXofSMyOhP4+zSJm202ClUglhBWPDNLy9vQ0BiNaxv78fdRtSE/opNQXWigkwkE6SgkA5bFxEVGHlosLd3WePXbfIRcL/oUUALnm1V9xQW1tbkRq7u7urw8PDOXBw0UhdhwCRVBRGbacCkDSzCVnf9fW1Li4u5sKn0+EMArDq9PQ03KlcgLQj0O7ubjC7/f39yIcHhV7kHXCGlGpjlcpD0UzXRjxugwu7aoSbo/0MTBrXNiTN1frf399XvV4Pr4sDwkXr4p1g1nh8rq6uArDFG4AGB/NLn8O5FHkhfF3soWtknBlnQByG1x3kDHnXZXOlY62YQHoYXAw2mYPHheIhvdjLqHkcHK6nRcO5Mapco9GYA/GGw2EQhkeOAQR5zvyywXOZ6+DgYA44Qk0nfmF7ezv8vylDLHq2u6O8aQUqPv5t9sdteMwd9hCAa1WicoDQqzD5mvFGePUf6f0+B2XP57Ne78H3xk0mSXP4BCYC7uVFtMHFdA+B4zGOGzhzco3NG48sAupYF1iOMyj2z5kDdwKh58zqKeclrRkT8E2C+8HxsO0c8ZZmattk8lDrjTp5aAKU7UJCLRs8C40A0AWUudlsxgHf3t7O+eMX2bMMDpcoMzwZXP7BYBCfwdZk3aj3xDVQXz59PsOTW6bTaWACoPLsJb7lPJ/5nN1GT/d80XA3F9FrnU5nDt9hn1PTBcJ11bbo+Q7GeYMOPEIeV0/AEsw63UPmdtqADv0LjZL3BNdxs5C+lZw/AoN3Y91lGhyeBmgtLaeHIIAhgGl4xKPnUazKCNaKCbA5ftAQMQCSAyXYRlza29tbdTqdiN9GRaL45LIB8RGa6xItyzI1Go24HBw2B+XBQWX2GAfN4VQqlbmyW1yc+/v7uKj39/fhKvQkGSRC2eV0/zSg0Xg8nsMm3N/sbjG0KgBTD7pZ5fx4toezEulYr9fDDILxSQppC1NM8RUXDuyBV4NGI+TZVDbi85T/khT7t7u7G/tTtA6YqPc28EpGeDjyPA83NnRB1SgCmHhmWmSliOa5wOydlxvf2NiIgCQYuGNfaAmUJftgXYRsuKvpV1dX6na7oZ4REslCXf30mv3SYrddalvD2XHHQCSoYgRwSDNigiiR7GXzuArvUubm5iZARxgPwSLYgjCbFBwsWxeMhurF7XY7tArWhQaC1sXzCZAi3r7b7S6Nt+C8fA/BBZCYuHNhmA5Qesj1IsJlrz3C0YO77u/vI/GKFujQE2o7e+mRn0VzEmjk32NaATSCA7ipmGWzsHeYO7kRZcMD3JxJA4KD4WCquSCheQv09JRkNmkNmYBfDrfD8vyhe403g0QKkDhBM0iq3WLPu7RbZX44uvuwkVAwFI/O2t7ejjmfgsr6XJ5l5q7ALHuIT+j1evFcGF3ZpXSVlSAkgDEQZhgIaiwXA2nHPtKgtMj08JECYK7F3dzchFYGwXrKKxfM36vIO+ARkFxgLibMlLgQ3Hu8C/vLBeYyFWTazc3FfgJIAzqC03hqt/eOQCJLmkPvfa98LjeFYFZuMpIsxD7xN5Tdp3+Dt0BbdawVE3BbTJoBM56mibSCa9Ks8+LiQj/60Y/muumsGsDDcAbEM7Ism8suJE8d96QHhywDtdJ1eqIHf8tlrNVqOj09jUAX3se1nKJ1QdDY9Ujzer0e62LQSRfTo9frSVKkTF9cXLwXD7HK/qEueyQh6jqXA3V2d3c3VHf+tiimg+GgGSYRlwUGABBI/r3XZoDx+HoWaYl+ST01Gs+HvxNAnQPWrq1Cy0X0wHAA0UE/mI/b+iR5OWbgsRkftIsw5ZTS7EDG4/EcAkxV1rdv385FCDqS60Ei6cY400EikTCCy+no6EhHR0c6OTnR6emprq+v9e7du7A/CeUsu5jpcNOANGJJAWDhFsQ1CLd/9+6dLi4uIhBlUaAQaioA58XFRSDVSHUHHdEuJpNJdFo6OzuLsOwyf7qvR5ol3sA4Sbw5OTmJ5CukG2YJ0tmxgKI99EvLxURdd4zG6yZIiuhIN28IDfdaE0UjLcYCY8EUhClAN5PJJJg2FZ69hXjZXL5uaDvFIarVajBVksx6vV70w8CE9WCyVcZaMQEuqRO3SxPnjNj/3W5XvV5PFxcXsQn+vGW2EQTl7h389YQqn56eRrwABEvHnsFgMBcgUrbx6bqwIVGBIVq3JSEeLiXpot5speyygJlQB5823peXlwGqoTJnWRaNR25vb2NPmWtRfQQfXMp0/1qtVuTiS4pLiHbnTKZsD90d58zdU59xE0oPEpWLPplM1G631el0gk5cbS5ipO65wJPgxVk8rBs6IyoRjwiMx3s5pGtLtV6+l2bJcWg8/D1mL4yAHBDXclZJIWasFRNwLoi04JAuLy+juwzZW/1+X/1+P1RWD83kEngdgUXShcuABCVQ5uDgYC47jfz+H/7whzo7O4sCIxDbIi0AwkWt55nk85Mx5n5pbPrhcKizs7PIs192MVmHNGOGt7e3Ed+AO8svFwwWNJ92a451FK0P15mbAsxHIhEXgaIib968UbvdjqjBsoi69Jw4X1fPcUUiqQHvptNpeI1YD6DhogQihjNa1oPpR1IZGggMlCIszMd5sY9leAd/DxZFXQynYUBqem7yObQ4MCVnbiuZwavaDV/myAqqDWPr7e7uqlaraXNzM9ByQCZvyOjdYVC7nKjKzAFp5goCbATsA0yjqszh4WEwgXa7HRLTCXjZ8Lk8xRWsA7yDSwXDQLWEMMu0gCJACzMAu9Vz+yXFmj04BS2Ar0UZfpybI+isicIsJMGA3pP8xdqWmVKpK415PGzY3ad8jkvERcHkSelDmhcIDOIQYJysCxzFU3dhdoTyOsP2iwxTZj2pOQrehLbBfHk+K47Dc10bQktKtUTb08LyYmvFBFL0mcPlUCFoB1jcVeZAohNViiuUvENcTj7HITshIDmww0C7V1W9HHx0RLiIGNzlAzEvuyxpgIiHGDvhMacj+WleQpnGsQgbcF93nucRpcfZbWxszNnIRTX+Vl2Xg2Sg6Qx377EeN7/Q2pw2WJfPxZq85BdApwOH4AEusQFUF+1h0bqckQEWS5oLgEvX5Zff6cPXpQ+BCSS/i39dbfVQ0fSzXBb//1UYQDovOARc3l15PAeTY9XLXzSPM72U8FJPRZHEKhplUWKpP9wZj68x1Z7K1P9la/M9TLUTnsHlWPVc0p/9vfM8n0t39vWyh6lJU6SWp3PxvQcOSbMKVnzGGRAaatF8jgHw3JSWU3pzmvf3QVOEoaUuSBeQj+PDYgLP43ms80iZko8f151aVbDZ+HCqDT+P57HuYx2E5xf1Dl9bJuCqXJmLKOX2qdpW9nfp5xdJjS9qFJlHDoYuewf/TBmI6v+f/n4ZoFf0nk8Zq+zhZ5CMc8PPi68va12Oz3zZY9m7fVBMwO1oD42V5jGARfZs+ryiy+PPd7BL0py9zPdPAQaL3oH53BZkpOspSq5Z9uzUxnW70/cgtc/TecqYSco00vlYkwOhRWtZdV1la0z30M8nffai8ypiAOmacE96wBLzOK6yagDZsnfxqMUiMPwpdJ+OD4IJpGGb3pPA68QBbHEIq7Z+kt53TXpwCO5Bd8EAbOGeJFbgKUCXI/P8Sygy7+3FUUCaPcBm0dqccCEe1ketBp7r+ff+zFXdn84A3CPhpcr29vYCzCoKbCkC75btoa+HM8ONjO/cgVXQ/GVzFYF1XgOBeag8hauOTFDo4u7u7r2WZ6usy2meIDaPLmUP2Te+PPZhVWaw1kyAS0L2nhfgpNIPwSeky7o7DVR4WWCNHzDRbsxFW6tqtSpJc8Ue2XTq3KeocNlwPzeVabyyEO4h/PPu4qO4pvu8i+ZKNSaPDXDXK9qU169L3W5+aZedlxMuxMyFcZcd6+I9CJNNg2NWoY00go/EHXd3Mq8zKGcGy9bl/nvOiGYutVotojGHw2EUnaEacpbN+mAURSgWrcuzJWEClBSrVCoRkzCZTOYaoGxsbETA0AdZY9BHpVKJYB1Cd+k4Q5eZSqWifr+vTz755L2IMPK5aUxS1q4LYiAmnH/5/vj4WCcnJ9EchLJbxPMPh8O4TBQoXVSxhhhwmmVUq9WI3iMoiRJjFIyUFGui6AjBMSRQ+Xr8e8qzQVRcUApkwkh5Z2cASBVvg7ZoXV75xmPqd3d31Wg0Is4CKSnN3LpeFQofe5k0q1QqUdOP/ASCefDnTyaTiCb1CDr86khuDy4roo0sy6L+IvMxz+HhoU5OTiIcejQahZDgvKCPra2tqD1QluHneRcwThjbwcFBlH7L8zwYDEyTfSWT8vLyMnIYPkhMIMuySNx58eKFXr16pdPTU7169Sri0KmTD4GPx2N98skn2tzc1MXFRai2cFZ8+0VzkTBE8Uhq9J+cnOjFixdRi386nUbnoF6vF3Hqrm4WBWwwYDYwMZKUyFDkovBcDxAajUZ69+7dXM15JKhLFzcD0GQouw2BIcFIWPKKuxRgIayZC0natudm+B4St+95+phSR0dH0cYrVVkpDw8z87TjtNiHnxft4o6OjubK0Xs5836/r1arNVfAxIN4iCJ03CAdFH2lniBFU09PT3V0dBTJRGT60VQFQYE5J81XwSrbQ09Q4vxoj0exW87BBcRoNIqy4zBiEuyWjbVkAh5S22g0dHR0pJ/4iZ+IdFhPmKDaCpcY9QuO76BUEdjjdfa8sQhSmUtBDDxBKZR7JtmH33sYqQ8O2ctjY+PRyMRj7mGE1E+cTh8ad/T7/bhgaZQc80iz4htcRBJ46KVHshK59h56S2KWg3mUUivbQ1RXahfu7++r0WgEI202m9rc3IzLCOO8urqKdFhy4r1WQzoXl7JarUYPx+PjYx0dHYXpQlMQmBJq/2AwiOYt3uugqAKPr4t/YditVkutVivAYg8Xhg6q1epczwqPcCyiD8xBZ6bQNEV16cJNUhPaLncAUxRz4oOtLAThYRNicxOP3el09Pbt26jsQtVfv2DYfpLm7MEi11aWZe+ppC5lSRjhMzAoNtsvD/Z1kdkBEUB42PY06SRZCFszvVTgG6xtUbINTAJiQCX3dF6YkqT4DOYBkoo9QeKU7R/ME8KjZdzp6ak+/vhj1Wq1qPIznU7nwFCaobj3pSw3gvBcbHPUcsqpj8djvXv3LiojYZuT8wHjBi9yE6EMCOSdOCNi+sF/RqORKpVZuq9HSCLJ0Z7KvEjQEPNhmkDbpBBjSlAcBQ/I7u5uZId69+hVwcG1YwLSfImvwWCg7e1tfe9731OlUlG73Y7a+c1mM7q0YoOm6K+jzkXzSLPU2/F4HC3B6vX6XDy2I+RoHkgtadYfflFBDMwFDmw6fahYRGVjzABKUVHWbHt7W/1+f44I0ISK7MvUnw8BoUrzuzS19fb2VtVqNbAE7OayEGn22rURLjnNVuv1eqjkdHG+v78PyYpUYw8XAauuuUkKrQ2mRhEUNAuv19doNHR//9BZejgcznkmfM98XWiUZPixH47IO/2wb5g9MIdlwKoDv+6lccZMrUKvfM1c1N70RKlVQUFpTZkAm3p7e6t2ux0cDamB6o691Gg0NJ1O1W635zIIXaKlww8dW40502qtZLl58Qh+7wdcxnnd7wwBYS+6+wdmJs2aTuAJIHecbEKXCIsGhIU9jKmB1gMBsV6kEu415kXCFO1h6rPGXKL34d3dXfSNvLq6CgmNqo2NOx6Pl+bds48ec0AhFLI7aRCSeiq8p4PTWpEmUPSZ6XQ6V84MRs2Fp4Oxg6K8X1n9h6I95GzRqmB0g8EgAFO0PeZBKJBevIrXg7G2TIDLQg+4arWq0WikjY2NqPADaJdlmYbDYeSng5qmX0XzONf3Ah+uMlOXz1NVx+NxqOVoHs6AiubxdXGYdJcB3Nrf3w9GgzvIC1TQYxHG5DUU0/0DNByPx/FciAs8hXfd2NgIswpkudPpRK0Gt3mL5vKLsrOzMwfSDQYDvX37NjS4g4ODACVhpNPpdA60Sy8M++emAgj51dWVzs/P9e7duzBd0uAlN/fSoKEiFT2dm8+g+cGwKXLKpaQfBiYHOE8ZI0iDfPgsz0PlR6ug8jUeLFzTnlLsMQqrBLGtHRNgI/xS5nmu0WgUNf5ev36t169fB6CGBEkj5LgIRRLaVWX+xebEp015r62trdAQPM13PB4HmAOBlmkDDlRCeA7u4QqtVqtzQUP4l72YqtcZLGM4zHV7eztX9Zb1wNQ2NzfD9YoJgK3r5dqKpBg/c8HYd+82nGVZMBswkFarFa3OIF4vasL3KTDotjnzwUgozU1/CvaP2AsYNozcAboUL+J7zgZTyvsyAkKDPbh7EkYK+OuVlIsuJefo7+OuQQehaRxDc1wC1Xg+GsEHW15MmleLuDAQJa3B6vV6lOimqgy9+qrVaoB50vspu0Xz8TlXi72OPL/z8GEYBbgA3oyyuXxdzOeHj/qPNOai8oU96Ny9zAvhmoCrzbhUUcdB7IlbQMNB40DbWLaH7oVxBJxKOfv7+zo5OVGWZeF52dnZ0XA4nLv80nz9gyKm4xL9/v5+rqrTxsaGGo3G3GXBQ4IWhCT3uImitbmGg63PJU8LmnjEJ1okwimNaizbRxhEGi3o3gtiTBwr8L/zs/Kvzx0nkGXZNyT9WUkvJU0lfTfP8/9XlmUtSX9B0jclfU/SH83zvPv4N39S0i9Kupf0J/I8/yvL5vHhFwaNwDkc5ZexJyeTiba2tlSv16MiMY0o/MKUbQYH5f5VLp1LJS4UsQkcUMoEyuaCoHgWn4O4JcVl8LBnr0oMwfn+lO2hNPO2QCwQF/5oQCcq10wmk6j6g7trmavJJSlr4pIyF/gGjBwmhQ3rc6U1IXy4dnd5ealutxvSlsIvBNt4YBTPQk13N1oZTfA3eFfYe9ytCA43K1nnYDAIld5bxy3bQxgp5y0p9hGNBnORz0I3vM+yPUzHKprARNK/m+f5/5BlWU3S38uy7K9K+j9K+ut5nv9ylmXfkfQdSb+UZdlPS/p5Sb9X0mtJfy3Lst+T5/lqKIXmkyawqdwH/ObNm7kLV6vV1Gq15sJHUaGWuUkgCIJovLa814aTFO/ijSB4hkuDsgvj/mLPTUB6Yu9BLEhTZ0T8rTRzW7pJAKPh75mH9+cdcWe6W4rS7dTGA+lf5N/2wTMBIWEGBDc50wOrACz0kOVlzBQGiXmE9OWieU4AwgB8CVdeWhqs7LyQ6gR24e4E72DPr66ugqGivSEkHKBcxAg8ZDg9O0lhejgjpOYgNMrfs0erjKVMIM/zN5LePH4/zLLstyV9JOnnJP3s48d+VdLfkPRLj7//tTzPbyT9syzLfkfSz0j6Wyu9keaztPgetxLMAJBlf38/gBAu8MHBwVwUXJHE5GdH5+HaHiQDweKPvb6+DjuNd0wvdhkBY2a4OolkwQzg8nDYqORE0vF+HvKagmD860SFOQBhoKrzLoCB3W73vcuCJCrbQ7dlCdd9+/ZteAg4A4KfiD0AzPXekVyYRZcTBH08Hs/lfMDQAF13d3eDWRBFKCl6EXjlqHRdSGVPSCJwjDP3IqrT6UPHqLu7u6ATtDr+dpnm4WsHB6M7VZbN8g/oMI05RMQgTB0zAXPic5sDyYt+U9K/JOm/l/TikUEoz/M3WZadPn7sI0l/2/7sR4+/W3WOOQaAKoYt5N1mJIWdC1JLhJxLIUJEfbjqxeWF2+/s7Oj29jbALd5LUtjTGxsbYdMuO2D+3hNpUFuxxflb1FUvUAmhImmcUMouC4TqgBQXjwKg/N6r27oEw0xZZKO77Xl//9AAY2NjQ2dnZxFUA34znU7jbIgHwJvj9ROLYhJ8XTA03I1gQI1GI6ISWQfoPbgDIClBUUUgJOuCCXjUHxIWyQuGQkYr+42XwwWQm30pbXi8BdorIdVoI4CfMD72yDMUHdT8woHBLMuqkv4rSf9OnueDBZy66D/eY0VZln1b0rdL5goiRrKnLhHcKHx2b29PjUYjQELiCRZlpPlBI5XT4Ay3iR1wkhQureFwGLHcaQFLnwutA0ZCIA3hoLFZ+ay9d57n0R0ZrwEEmHo4fC7OB7QfxgWxEyoMIyN2H+ItwiaWSWdJoZGB3SCNCUJCesKQuEScFedVxHTSy0SEJefPhXH8hBBl9ty1AmilbA/97DGXYI6o4e45wWxKQUsSilKtrWxtrM9NK/42y2YxHpIix8N7LHh+wheFCSjLsi09MID/Ms/z//rx1++yLHv1qAW8knT2+PsfSfqG/fnHkj5Nn5nn+Xclfffx+UVMIqQ0rkFXwT2l+MWLF3OoN5l20qwzzTKgjgvvTUDcVQMOQIimu7dc8pQxHB+o9bVaLcpxA4BmWTbHxT2uH2njKn5RFJ9/z7PQfPz5EBkqJaotQVnu8ixibOnguYRFD4fDyJR0rWQyeWgGcnZ2Fs9M8+3L5vJncEFA4pGQjinAeJCgDiYvik70ywhTxE8PPXA2MNjp9KEXhnel8joTjuQv2kMHxjFrHTDEVKMJCRc+rZGwCgOQVvMOZJL+c0m/nef5r9h//YakX5D0y4///iX7/Z/LsuxX9AAM/pSkv7PS28zmDMJHbT4+Po40SrffDw8P9eLFC+3v70fjzMFgoG63G/EDi3K42WyI1G3l+/v7sGP5bJZlkbF1cXGh8/Pz6Ay0yD/L37oNS4AQ7bq9MzHAnEsR0mwhjLL0aN9HJygAUN4BgmKP6APgJcE9HmEV9ZKLB7OGadVqtWBi9NDjgrgGwLuWnZczbWdyuFQlhSuPFOOtra3QdIhC5fIsmsufD+Pxvb+/v4+GOGgH7CV4R7/fn+s/UBZv4UzLgXFMX3Il0BjRZLrdbuA50Im/8ypjFU3gD0r630v6h1mW/f3H3/17erj8v55l2S9K+oGkP/K4oN/KsuzXJf1jPXgW/thTPAOSYqMcSb27uwswDXcJOAHx1N1uV59++qm+//3vR9ceV9F9cHAQBtybVt7SDDSUZhfz8vIyAmm63W4cctoEpWi4ve2E7IFImAI83+sXAEAhYfg5XZc039iSC5kCkkg579XHJXXPA5JwmZcFaQWDpoMT6a/sNQyU/XLzz989HS7d/LLwf2iH7pZDegOeeRuyZZobEZd8XV1dqd/vBw7EZ3hvGCf4CnvqEXxlOA7n6CYuNAIuBiOGRvv9fphUHknJmX1hTCDP8/+viu18SfpDJX/zpyX96ZXe4P2/jQWhqqJqDQaDyOve3d0NG5B+b2/evNHZ2ZnOz8+DKy6SzNK81AV17vV6c4UqAOo4XBgGDAGCWlTODJuX2H8INcuyubRe7PPz83P1er05yezpr8s0HJfebq+jGsO06KTkRSjczPEEIt83XxeaFAzHC4vARLGdr6+v1W63Y9/cRenEu2hdrrnxTMLLuUB8Frcr6jkNSWnftei82GdH7cFXwHYoJMNeQQNcVLQdaKTsYrLn4A9gCp5fsbGxMUeHCAcwMABW94ytMtYuYlCaVbVhY+jIC7qO/Q+gh4pMmKvbs8viBHyu6+trdbvdOZcOh8ABotJ5Ag5zLcMDnOHc3T2kRn/yySexLhhFeqhIYnd5lqnnXATmwLVE5hxgHS4uQE3m5T2L5uXZRYwAMA+Cdy2LugwQNxGJYAdc0EVM1M+LwBikPBGlvV4vzDfAXRgC50seBkJi0VysgXOhPgBMDnewNNPAYJYIMMcTFklmzotnVSqVcNli3rhZAhMHQIbmPZlt1bGWTECamQS+Oc7pcfNgu/M3EO8y25LhSCxMp+hv3IXDRXDbK3XRlA13I5EqjEqZZn65FPd5Fl0UVzVZjwfx9Hq90DhSCe9rcGa3bF0O1kG8t7e3Iak84AuGyrsB7qWg1qKBlPazQWPq9/tBGwB2rBdEnwzJZfTh9MeeuDnCZ2AMbp5wTp60tGxdRUFfrEXSHEDooG2avPYUBiBp/TsQpbaf/wtDANkv8pcuem7Rz45DpL54n9NVuzJEOyUYHx4fnuezlmc8k7kB11y9K1Nf/e/SNXmIaRqW6utzzcbnKdMC0j10nzcEjIcmtXXTyrjLnl30O48pYX3u3uP/HFBdhDmwX+lwW90vaBGo51GcMJJ0+DkXzeUYidNGeh+cNsr20H733IZs3UdKEKtcvC9qLp/zQ51rkevty5iv7B3WeA+f25Ct+1jCxb/0ub6s8eOaax0E2od4XmvHBNzWStXxslGmdvvG+XPL5kq/X3U8Zf5Fvy967qrv+FVdgM+6b6t+Pt3bRZI2pZen7onPVUSHRXOU/X3R3/nzyly7n2Us28tl+7B2TMBtrHSk2IBv8io4QNnwudLnS5qzz9J5UgByEQ5QNJ/P5basNPOXL4ra+yxMy+dz+zed4yl7uui8/Kvs2aviOOlnivAakHupvDXYU+nF1+cAcZpd6ZebORZFdabPLpo3XVv6bD+3z3IH1o4JFIFxnq3ngBpAFoecElyRe8vnkd6/tFxCLyTigScg9H5RcXWVpS6XSUtfDyHSVIyRFO429/26++6pROx7x7qoAoxnhb0C2V7ktiu7+L4mD1TKsiy8Dp41yFgU1+Fn5XOzHvZvZ2cn+lVsbGzEuZCjkLaNW3Rx0vk89oH1kb2YelNI8MnzPM6wLHmIuYpow9O/6U/BfDzTvStezn3VsXZMQCo/YC/+yQCp903jM1yYonDNVOPwtFHKlnn0G7kEuJd4Tw4ZgltUcTjVLPyScCmJgfDElTzPw83mwSvLwoaZ0y89REvuwsHBQayLCETcYtTvL7ucRYTLnpGenXomYDa4LvGOENbsxWOWrQu68OpB1WpVJycnOjo6isy7Xq8nSVFdiJRiGMIyJufrIk7F6ZKAKPaJtHfmoFisRw2WzcV5pTQPXVK0BEZGyLQHNjHPsj1krBUTSAmKjL20+AYbhJvJ87a5PBAx9efS3mzpXIeHh/F1fHwc5aRo3EFm3GAwCM5OGDEJSxw2QSJlayS+wbk8BEynnizL4mLmeR4MjbUwD/UGyuZiHbu7u6rX68Hg6GhDDny/34/4+n6/Hxl6XEzm9bmKzotcj2q1Olc7AYbgBUdggATWeHi05+OnA2ns5cO4nEdHR9GpCibAexFIxt9QRdkLrqbryrIs/t6zTMnDgGY8noVBYNRgMNDZ2VlUayrT4qANL2HmSXT0PSTQq1arzcXGQOuscxEd+lgrJuADSUXrJ1RX4qgJAPGEH6TN9fV1EDKJFmx+OrIsi6ajR0dHUQSTDWd+zAvKmw+HwyieAaEh9TyOW5qXmKiQXpp6d3dXzWZTL1680MuXL4PheNw6ueVE+HlOQ1kFGYgWE6PRaOjly5eRwtxoNLSxsaHxeKxqtTpXqafdbkdBCzQJ8haKzJ2trS3VarVo5cblgBlQ4QemxRnCdLrdbjANr2VQNBd7SBkxZ6AfffSRXrx4oVqtFmHDfJa0bxcWBC2luA5aIvTmVac4L5K/vLGKx0FAe5RTY01FZoGkoAXKpZFAd3BwoJcvX6rVaml/f1+S5tR+IiZ9Dz2l+YMDBiXNJYJwKU9PT+dKQrGZpHLSWefu7qHGPX0Jt7e340B8cNCuVdCNmMN1yYX9SrMTuC/Zi0hdEoR8ON4AkVPcYnd3V8fHx3r58qVev36tZrMZEXBe9IIuPXB+pFlZIRMHkUi5pgciRMmejEajeH/21InZMZKiwXo2NzejajJdgSjywYCZc17ee5DLQXj1onW5qbi7u6tWqxUXBcbF5b67u4ukM7Ia/e/L1uUhwtAG6d/Y555GTKo5+Adpx1xUcIlFc8Hg0DROTk7UbDZ1fHwcFaFvb2+jToM0qxJF7gd0v6x8GmPtmAAXBTW2Wq2qVquFik7oJ+DL3t5etLxyqej/lqHKEDtSF3v/7u5Og8FgrrLL4eHhXAUjDtfjvRflcnPIRJzx/rVaTS9evIiuy5Smcjuc+bkw0izhpsgUcMANAiTufTqdqtvtxt+SIwEegWZ0fn4e+7YoB8Ptemd2xPAPBgMNh8MoNoI2x7+bm5saDodhllC4o2hN6bpguNjL2OqoxuQV8O4Aeq5pFGEdzJPWbAC4hXmQb7GzszP3PpVKJaoc8ft2ux1nX7Q2zyIFU6DsHKXoCTHH/pcUgoCcEDo8LUvE8rF2TIBDYvPu7x9KepMNNhgMIoEEgiBO/fT0VKPRKDgiwA9EnLqoGGR9jUajQMq95Ddqp5eqcrWf90yruvhwFJi/xU4/PT0Njk9GHKW+Njc31Ww2Q2vALClDm32gvpON1ul0lOd5MEhUadxpWfZQtPXNmzchpd0rsYioHLe4v78Pc6zb7QZghbYFmEofxoODA11cXMxhHunanMl4Ig2VjMFvSMSC+dBsBdPH07Xx5qTSMnVj4teHcW5tPXRoQmJDa5PJRAcHB/r444+Dhjz5bBFOxBwIFkyCer2uer0eAgiTkOfDPEkwIh/jg84idJ8uNt3FxYWur6/VaDQi5x0i3djYiBbRbCTlliiaCSbgw/3WbF6n0wnCPzw8lKS5xp70PMBMABgEzHJNJNU+UqYjPajpx8fH+sY3vhEgT7vdVqfTCfUfoI1npIVFFrnTWBu9GQC4JpNJqKysq9lsBrPFVpcU6PkyouLdKLVNIQwwBMdAUKthGJwRVY6L2qul8QCsmwv+0UcfqVqtSlKUTMe7wfth0/vFLPLjc3Z8keHojBe6wFRDY0PbAlBlDwGTy+I6nMHxTggJ3IJ02KJ/gnuR0GC9HNmqbsK1ZAKSotgFAAfSU5oluoABSApkvtfr6d27d3r37p36/X7k5BcBWvwMlwYlphJNvV7X0dGRTk5OAihEXadoCUAdqicqbdGF4XccHG2nAZb6/b46nY663a4kqdlsRkFQgEAu6DJ/MISMHxnX0Wg0ii5AIOxU/alUKjo7O4v6DKT4enWhsoEEGw6HIV0haCQ0ZhTFWvAGXFxcxFmhyaWutDR2BFPu4OBAJycn0drM6z1Mp9Oo4EQNCt4BbWCRhuPzsXbOFyzJeyd6EVi0U86UzMoiE45L72e2sfHQ9NZLycFk0aiazWaYyDBe/1pVG1grJsBmcLEB5FC/cNd4xVgwAz4PA/j000/V6/XmMtWK5vI03jzPw+e6ubkZpcsoXwbIyIFQuYh87kW53Gl0FxV/0WAqlUowIW+5jnsPlRrAzgOhyuYqCkRB+2i1WqrVamGfVyoV9fv9OVOMi1KUVchw5kC8BtKTuIRqtRoqLZ4DAlt6vV5cFC5wGXNz6QyQeXR0FBWbsc3RNjY3H7orgapzybrd7lzTEJ6XmoqYffzO6xeCaUA7kgIs3NnZ0c3NzRxTBxcpYqR+XpwToCOMCzc09P/ixQs1m83QCNFC3CT7IDUB54RO7B64gipJ8UoAk7u7O11cXIQ6jSRIo9J8Lul9Lsx87vbiYCWF+o/GwN94amiZKeBMwHvXcfF2dnbUarXUarXmmIAzKFT4NFw1HUVaD/tKBWfAKw8wAZ2G4aX7VTRc8kszt+Xd3V3EWRwdHQVqDaPHT0+RkUXptX5WSFvWAHMBJMSORv3nDDlbMIS0BkDRutgDGBqaDGuG0VQqFdVqNe3t7c0VS+l0OkFPy+aCTmFo0IZ7QJrNZpgJYA7ehxOTC9xslbFWTICR2mnYOtRZcw8CB4C/udPpBAbAhhCiWiY1fbNc+iHRBoNBoPLYWg6ocVBFXgFpnuEgUVBLsSshalRAvAm4hPBc4LJDFX3KnvLF3yO1HeXe398PTQuVd5kp4Ot0FRrG5f5/rzAEfkPPPvZw0VycF5ebdwa8xWTzegJUNuJsPL/AY/HTeVgHc7k5A0PxCElvDENVINdmoaGydfFuXH72i3gPAoUwp1IvhzQLmCtzexaNtWICqd0HAXmUID3zXH26v7+P/vS9Xm8ugAgVqQgBdrcTRIEkBODx56UFLHjuzs7OHOEuitJiLdiNSAD/PdISBjEcDuM9wBvcNCgb7upCA4CQkcRIbWxa6QG4dF8z60lNAj8viBcmQnNVJC6MlYsDok4fQhgq+8f+F60JiU/EYLVajSAa9pBYDvYQ88MZGs8q0t48WKher0eMBSq6o/loVh4xen5+HvUxveZi2eVkPujcA8k85gN6RjtMW9XDPJhvFea9VkzAGYCrpXA8D6Rwfy/Re6DLeZ5HpyI4dhpV58SLpOIAKE0F0IM9TmciCNQJn1BOj9QqWx/Sdzwe6927dxFWC/LPOiFk7EsAOy7fIiYAgbs6iTmFdPeQWSQOJg7rxc4ucn36eXEZKdBKDAT9IpBYfiZ4YgDB8FqgPhetyQUCv/PmHKDjzEWbOoBIQq3BndgjX5uva29vTy9evIhwblB7DxAiuI0isqwLV2dKt2VnBk0j2AhR5wzQBD1gDpcybkPWtGqgkLRmTIDhrhYOHUJETecQx+NxgC/eCZbNBEsoU9M9QQgphlqO+gXXxRXEJQI8pCEJ3Los2g1uj81I6W0ATrfvarVaHKakYHTuHlyE/romhLoKgAqB0AcQbMUj5GBMjmiXEZUXgCU3wSUYmgchulx8Lu7BwUGg25xJkXRmD2H+YEXD4TAYMYDt3d1dgK4w1F6vp4uLiznAeFG8hYftEsnpICJ0Vq1Wled5SGM8TeBIvueLzot1wUDG47Ha7XaAxXhNoBXpQTsDmPbw51UDhaQ1YwKu5kqzum4QJCgwn6GkMzXsYQzY0p6EUkbAqGs8H78s7heYiQOGksK/TnQXmkbZxkPUqKPexmowGMz5vb1pJ6h9p9OJgBqk3SL3IHvna0OV5fKQMMR6UNn5W6TdIu+Am1RZlgUjYD5MgclkEkAg+APgquMBvhdFDMAlKZIXAI41uJSHlkajkdrtdqjpnlSWzgUdehSfpIgWlGYmC3EHaflvtE9ow8+raF0pUA2wilcAbAtMhUjWwWAQnpU05XzVsVZMgMEmeVAN6C9Ek+d5+JjxZ8OVHdSDM5fZs0g/kkKI3COTC/DN1SuY0P7+/lzUmduJRd4BvveL3Ol05kBC1EYG0gtgMG3euWjwTm5DQ2AQCeYPDA3PR2orFzGBFFdhDWQrEpyENkGcAkx1Y2Mj1HUHZBe5CKGL6+vrUPGRlh49h8cgyzKdnZ1FqXECsRbVf/D50ARhWN5ZGVpACyCj1BkEJoFjEkVr4ntwE86i1+sFBkEiG/ei1+up3W6Hqca+uRdqlbGWTACicsCOwB2AJg4QlRhVWtIc0ZURsGsGbtvXajW1Wq1obw4Qmed5uB3dBYQ6ilSB8SxS/fz39/f34c1oNBpzodDgHO12e65WvpctX6QNwAC4EPjMWXu9XtdkMom1O1iInYkEK8vo89+5mwvXIDEXfuEAsPAKUDOfC7MsEpL34W9Go1EwbMBM1jKdTnVxcaHhcKhOp6NerxfntSj/gnlQ7ckIJLCK9QIeX1xc6N27d4HZgE05KJl6vVI69N/5XtJ0B7rCXOh0Omq326FdQR+L1lU01o4JpJfWASpAJ1cJkS6eb89mOSiYBoQw2FBAJdccsIkBZbyWPh1mAILwd8MofLiqx8/O5FinR6CxrouLi+jWwzOQPmXcHoni6if7waVM0eazszPd3t6q2+0G0xkMBnP5A2VMzQNUYFKkIcOg2XvsV0BP7+rr1X/K5nIGQLYhrmPMndvb20i2wdwiKMnDd9OU76J1ca69Xi/okJDy6XQamsibN2/U7XbnGBoaHc9ZZML5WUIvXoUJDRLTgmhVzonzcW30g2QCLJ6FQ8iemMOl7Pf7evfuXYRkwoH5GwiSQym7LGwqTTmkB/uRVlMQKyGgXqeAaEEn/iIbk+FpuhwSTAhGA5HiEUDT4JlcZFTURXPhhhuNRup0OhHzQIAV+wQ+wLqYdxXJLCnmwTcOkxqPxzHPYDCIYC5/NmfD2YLtFDE4V5elGQo+nU5VrVYDSWfOu7tZhyLOyrv1eDxIER2CY7jLEeYGkxkMBjo/P9fZ2ZkGg8F75iFrA9AtY9y8D7QBbY7H4zn3NAKHcHXXDtFGHRNYxSRYKybA4FJtbm4GJ97aemg8ur+/H8RGQgUXB2knaW4zFm2E28G47CAk3FCuUXhcthOSNB8RWDQgCCRilj3knO/u7kZBCMA4GATSwyvFeEmsMg0nxUSurq7CDYqN6RLHM+H8Iq5iX4JQ8/3V1ZU6nc4cQAuTSG1x/nVmwO/K1uW5DLhsvcQYajT2M8/mAjkTLRMOSFT23126gNWo4LhueaYzADcJluEPDmJXKg/1Abx4CvvrXhb3DkCPTvOLzFLG2jEBDgAu7ujsxcVF2JLEYjsuwN87uJKqWUUb4viCN0CFiJCCzqWlmU1YdFnK5uJZjh0MBoMAPLGX0UpcKnBZnXgX+YJ9b1wyuMvUvQBOtP7zKtIEace7YqJ5SDLrda3C1df0vIqGg4POVLl47HvqK0+xhEVz+Z46toRg4v0RDkXmH89w1XzZPnJefC/Ngst4F352mvP3WCb0isbadiBiEwnm2N3djZ+R+GwKaLbbrqk7psguT/8PrIFLws/p3zBnESEten66Pp7PReTvHXGXNMfQFqHmC/Z37oKkTMDfz23JVZ5btIcp1lH03sv2sOi80rnT9/e/cTezr2sZluLvnM7j5+Wma/o5X6+v29fF759KG74mvwerrEu/W9qQOTGn48teC/OuomJ9nufzPWMdzuizjvQy++8/5HVJxWv4smkjZRpPnOt3RxuyVdXTL2tu//fLev6XOcePeyyygT/08eMURF8m7a0LE7iQNH7890Max3p+5x/H+NDeeV3f958r+uVamAOSlGXZbxapKus8nt/5xzM+tHf+0N539aTj5/E8nsfvyvHMBJ7H8/iaj3ViAt/9ql/gM4znd/7xjA/tnT+o910bTOB5PI/n8dWMddIEnsfzeB5fwfjKmUCWZf9almX/JMuy38my7Dtf9fuUjSzLvpdl2T/MsuzvZ1n2m4+/a2VZ9lezLPufH/9tfsXv+GeyLDvLsuwf2e9K3zHLsj/5uO//JMuy/+0avfOfyrLsk8e9/vtZlv3hNXvnb2RZ9t9lWfbbWZb9VpZl/5fH36/1XpcODzf8cX9J2pD0v0j6SUnbkv5HST/9Vb7Tgnf9nqTj5Hf/d0nfefz+O5L+b1/xO/7Lkn6/pH+07B0l/fTjfu9I+tbjOWysyTv/KUn/14LPrss7v5L0+x+/r0n6nx7fba33uuzrq9YEfkbS7+R5/k/zPL+V9GuSfu4rfqenjJ+T9KuP3/+qpH/zq3sVKc/zvympk/y67B1/TtKv5Xl+k+f5P5P0O3o4jx/rKHnnsrEu7/wmz/P/4fH7oaTflvSR1nyvy8ZXzQQ+kvRD+/lHj79bx5FL+m+zLPt7WZZ9+/F3L/I8fyM9EIak06/s7cpH2Tuu+97/8SzL/sGjuYBavXbvnGXZNyX9S5L+e32ge/1VM4GiPNh1dVf8wTzPf7+kf13SH8uy7F/+ql/oc4513vv/RNI/L+n3SXoj6T96/P1avXOWZVVJ/5WkfyfP88Gijxb8bl32+itnAj+S9A37+WNJn35F77Jw5Hn+6eO/Z5L+oh7UuXdZlr2SpMd/z766NywdZe+4tnuf5/m7PM/v8zyfSvrPNFOd1+adsyzb0gMD+C/zPP+vH3/9we219NUzgb8r6aeyLPtWlmXbkn5e0m98xe/03siy7CDLshrfS/pXJf0jPbzrLzx+7Bck/aWv5g0XjrJ3/A1JP59l2U6WZd+S9FOS/s5X8H7vDS7S4/i39LDX0pq8c/aQz/ufS/rtPM9/xf7rg9trSV+td+AROf3DekBX/xdJ//5X/T4l7/iTekB3/0dJv8V7SjqS9Ncl/c+P/7a+4vf883pQn+/0IH1+cdE7Svr3H/f9n0j619fonf/fkv6hpH+ghwv0as3e+X+tB3X+H0j6+49ff3jd97rs6zli8Hk8j6/5+KrNgefxPJ7HVzyemcDzeB5f8/HMBJ7H8/iaj2cm8Dyex9d8PDOB5/E8vubjmQk8j+fxNR/PTOB5PI+v+XhmAs/jeXzNx/8fbIrQbcGZXsMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 2 Train loss: 145.1598\n", - "Test loss: 135.1738\n", + "Epoch: 2 Train loss: 148.8094\n", + "Test loss: 136.5518\n", "Epoch: 2\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd8XMW1+L+zu9Ja3eqSmyQbGyMX\njLEJwQ0DAWPAVIOJIbyQByGUx3v8SGJSCCnAe7yEFF6MP86LAxiCTeJGiB/FtJAPxb3gJltylWWr\n97Zlfn9czfiuLNsreYssz/fzuR9pd+/de3buzJmZM+ecEVJKDAaDwXD244i2AAaDwWAIDUahGwwG\nQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoOhj2AUusFgMPQRzkihCyFmCCF2CyH2CiHmhUoog8FgMHQf\n0VM/dCGEEygCvgYcBtYBd0opd4ROPIPBYDAEy5mM0C8B9kopS6SU7cAS4MbQiGUwGAyG7uI6g2sH\nAodsrw8DXznVBUIIE5ZqMBgM3adSSpl5upPORKEHhRDifuD+cN/HYDAY+jAHgjnpTBR6KTDY9npQ\nx3sBSCkXAgvBjNANBoMhnJyJDX0dMFwIUSCEiAXmAG+GRiyDwWAwdJcej9CllF4hxMPAO4ATWCSl\n3B4yyQwGg8HQLXrsttijmxmTi8FgMPSEDVLKCac7yUSKGgwGQx8h7F4u5yKPP/44AHFxcYwdO5bb\nbrtNf/biiy/y2WefAbB48eKoyGcwGPooUsqIHYDs68fSpUulz+c75VFUVCSLiorkkCFDoi7vqY4R\nI0ZIv98v/X6/fOSRR6IuT0JCgpw/f76cP3++9Pl8cu3atXLt2rUyLy8v6rKZwxxhPtYHo2ONycVg\nMBj6CMbkEiKWLl0KEGBeAdi1axfvvPMOAEOHDuWGG25g2LBhANx1110888wzkRW0G1x00UX4/X4A\nSktPCDGIOAMGDOC+++4DwO/3c/HFFwNw/fXX8/vf/z6aojF+/HiWL19Ofn5+UOdfffXVAOzcuZND\nhw6d5uzIccMNN7Bq1SoeeeQRABYsWIDP54vIvbOysgB44403+PTTTwFYuHAh+/fvD/o7UlJSmDp1\nKgBvv/02Ho8n5HL2ZoxCDwETJkzg5ptv1q+3b7e8N2fNmkVlZSWNjY0AxMbG8vnnn3PhhRcCkJaW\nFnlhu8G4ceNoamoCYPny5VGVJTMzk5deeimqMpyKa665BrfbHfT5s2bNAuDee+9lzpw54RIraNLT\n0wGYP38+AC+88AIAixYtoqWlJez3T01N1e0mJSWFY8eOAXRbmW/YsIHMTCtCfsKECezZsyfkstpJ\nTk7m2WefZfTo0QBcddVVUe1Eeq1Cv+222/Ro7MiRI7S2tgLw2muvcfToUfbu3RtN8QLIzc1FCAFY\nyvyaa64BoKysLOC8xx9/nMLCQv3673//e+SE7CZjxozhkUce4ZVXXomqHP/2b/8GwE033cQll1zS\n5TlTp07F4XCwZcsWAP7xj39ETD6Xy2pCM2fO7NZ169evB+Cxxx4jISFBd5zRQo1qBw4cCMDrr78O\noNtdOMnIyGDp0qV6gDN//nw9Q+gOP/rRjygoKODb3/42QFiV+dy5cwF4+umnGTz4eMB8cnIyVVVV\nYbvv6TA2dIPBYOgj9NrAopKSkpPaIxsaGvT0LBgOHz4MwHPPPadHRqEmLy9Py1ZdXd3lOVu2bNFT\nM7CmZx9++GFY5DlTbrvtNt544w2mT58OwMcffxwVOZT9Vtny7TgcjoDPDhyw8hfdcccdbNiwISLy\nfe1rXwPg//7v/3juuef4wQ9+ENR1jz32GGDVydzcXCoqKsIm4+lwu93885//BNDrEtdddx1g/a5w\nc/XVVwfcJycnp1vlMWrUKAC2bdvGihUr+Jd/+RfAaovhYNCgQWzatAmwTFV2Hbp06VIefvhhgJPq\ngR4SVGBRrzW53HfffdrWvGPHDm2quOiii7j88su59NJLATh06FDAlAfA6/UCUFFRQW5urn7/4MGD\nYVPoSpl0xXe/+10ARowYAcAXX3wR8Lc38r3vfY8DBw6ErbyCYfXq1Vppd4Wa2jY2NpKXl0dBQQEA\na9euxel0hl2+MWPGaNNEcXFxtxa4lQ29NzB27FityMFqP5FQ5GoR9NZbbwXgW9/6FkC3lfmaNWv0\n6xUrVoRNkSsef/zxk65/3XHHHcyYMQOwzDEvvPAC7e3tYZXHjjG5GAwGQ1/hbAwsSk1NlVdccYW8\n4oorZHJysrzyyisDjkmTJslJkybJzMxMWVlZqYNjHnzwwYgHBFx//fWypaVFtrS0SJ/PJ8vKyuS0\nadPktGnToh2o0OWRn58v8/Pzpd/vl7t27YqKDKp8iouLdTCWx+MJOF544QV5ww03yBtuuEFOnTpV\nPvXUUwGff+c73wm7nEuWLNHPduLEiUFfl5aWJhU+n09mZmZG9Zk/88wzuo34/X751ltvReS+ixcv\nlosXL5ZSSrl+/XqZkJAgExISuvUdDzzwgJZ70aJFYZc5Ly9P1tXV6Xq5efNm+c4773QZQFhWViZz\ncnJCde+gAot6rcnlVNTU1PDBBx/o1++//36X5916662kpqaybds2AJYsWRIR+exMmDCB2NhY/Xrp\n0qVRs0cHw7Rp0/T/0bDr5ufn6+eUkZER8NmBAwdYtmwZAD/96U9pbm4O+Oz++619VDIzM3nuuefo\n168fAP/zP/8Tcley2267jZkzZ2pvq3Xr1gV97Q9/+ENt9//oo4+ora0NqWzdRXm4ALS3t/OjH/0o\nIvdVtme/38+RI0eCNk3ExcXptYoHH3xQf8+9994bHkFtjBs3jqSkJD755BPAai/9+vXj61//OgBP\nPPGEjjPJyclh1apVXHvttUDIbepdclYq9NOhbHPz58/H4XDws5/9DIhMgdpZuXKlDiABeOWVVyLW\nWHrKmDFj9P/PPfdcxO8fExNzgiIHa1F2zpw5VFZWdnndgQMHePbZZwF4/vnniY+P1/K/+eabFBcX\nh1TO2bNnEx8fz4svvhj0NWqRf+7cuXqx9+mnn46a3/Jll10W8BegqamJzZs3R1yW6667jnfffReA\n2trak5brtGnTAtbQAP76179GREawFpCllPz617/W77W2trJo0SLA6uiHDh2qP2tubjY2dIPBYDB0\nnz45Qn/ooYcAa+pdU1PD7t27I3p/5Vlz2WWX4Xa79ajyF7/4hY4a7Y189atf5Zvf/CYAmzZt4r33\n3ouyRMcDcO69996Tjs4Vb75pbZg1d+5cJk6cGBZ5UlJSAPQIUUVWBoMyCWVkZLBz506AANNhpOmq\njLoz4zhTfvvb3wJwxRVXkJubq00/QoiTegEJIQLcBEtKSoJ2FQ0Fd955J3DcrXPlypUBn0+YEOhZ\n+Pnnn0e0zfc5hT5p0iTmzZunX9900018+eWXEZVB2XlVOPWrr74KEPJpf6i58sortTvW22+/HZEo\nwa6wuyp+5StfCfo6Fa3rcDgCvuOnP/0pd911V0hkU+H9AwcO7PaajLKtAhGvk11hVz7Kjr9gwYKI\n3V/FCowZM4Zx48Zpd7/vfve7ev3m5ZdfDrhm8eLFOiIY4NNPP41ou3r99deZNWuW7gxHjhzJmDFj\ndOqP1NRUXZapqancd999Ok32jh07wi6fMbkYDAZDX+FsdFs81fH0009rN6b33ntPxsTERMQFSx2z\nZs2Sra2tsrW1Vfp8Pvn+++/LxMREmZiYGFE5enL85S9/0WV38803R0WGX/7ylwHuh9259pFHHpGP\nPPKI9Hg8Aa6Ow4YNC5l8cXFxMi4uTq5fv15u2bJFpqWlybS0tNNel5WVFeDS9tBDD8mHHnooas96\n8uTJ0uv1Sq/XK/1+v9y3b5/ct29f1Ovg6Y6hQ4dKv98vN27cKDdu3Bhxl8+0tDRZXV2tn6Pf7w94\nru+8844877zz5HnnnSd37dolfT6fXLBggVywYMGZ3js0botCiMHAK0B2xxcvlFL+VgiRBiwF8oH9\nwO1SyprTfV84iYuLY8aMGXpV+Sc/+UnEPAiUeeUHP/gBMTEx+v3Nmzf3ars5WO5VAFOmTNHrDStW\nrIiKLDfccEO3r8nMzKSwsPAEW6qatoeyDqjMg8XFxdx66606wdrzzz9/wrkqzcOwYcPIy8sLsP1G\nMuVGV6SnpweYpXrDekkwPPnkk0gp+f73vw9E3rW2urqa22+/XXvWqDUVlZ3y+9//vjZVLl++nHnz\n5ulkfcOGDQu/eSiIUXUuML7j/ySgCCgEngPmdbw/D/ivaI/Qn3zySen3++Xq1avl6tWrI9pzP/PM\nM/KZZ54J6K2XLVt2VozM582bJ+fNmyf9fr/805/+JP/0pz9FTZbdu3d3e4T+m9/85oTAo+LiYjll\nyhQ5ZcqUsMh5wQUXyDfeeEM2NTXJpqYmPdq1H0ePHpVHjx6VZWVl0uPxBHymRvrRKufFixfr2Vh1\ndbWcOHFit4KjIn3Mnj1bzp49W/r9fllXVyfHjx8vx48fHzV5rrrqKnnVVVfJRYsWyeeff77LWXhc\nXJxcsWKF1gcvv/zymdwzNDsWSSnLpJQbO/5vAHYCA4EbAbVi8TJw0+m+y2AwGAzho1teLkKIfOAi\n4AsgW0qpEn4fxTLJdHXN/cD9PRfx9CgXoh//+MfU19fz85//PJy36xKVPc/Oww8/3OvNLXA8UyRY\nUbhnC6tXrwbg/PPPP+GznTt36mi+cLBz505uv/12LrroIiDQg0VhD3h5+eWXdQ5tICKbRpyMQYMG\nafc7sLKRdifSNRqoaEuAt956i40bN0ZRGnRCMHtisM60tLSwdOlS7YI5ffp07UUWriDHoBW6ECIR\nWAb8u5SyXrmIAUgp5clS40opFwILO76jy3POhPT0dH73u98B4HQ6Wb16NZ999lmob9Mj0tLSurTf\n1tXVAZZtV9nblS0uNTUVgP/4j/8IuMbn82m7oT3kPRTY7dZvvfVWSL+7uwghAmy79ob8hz/8ISB7\nZuf0uXauv/76MEp5HJVGVf09GSUlJQGvVUSuSksRSS677LKAMl61alXEZeguqh40Nzfzq1/9KsrS\nBM8bb7yhFfodd9yhU+uq6PVQE5TbohAiBkuZvyalVHuRHRNC5HZ8nguUh0VCg8FgMARFMF4uAvgj\nsFNKaV/KfxO4B/jPjr8R7eZVvuu3335b58EuLi7mxz/+cSTFOCVbt27t8v2//OUvgLVFXXa2Zam6\n4447Tvt9R48eBaz8H6FiypQpWobewIsvvhiQQ0bNGNQovKvReOf3IhkcEyxCCOyz2miMzBXKI0tF\n3qqIzd7KAw88oOtoeXl51M0t3cHv9+v6fOONN/KTn/wEsBIFFhUVhfx+wZhcJgF3A9uEECprzw+w\nFPkbQohvAQeA20Mu3SlQNkt7Yv7HHnssatGYyp574403nvbc2bNnd/m+1+sNUE4qlF2Fv6tdZULJ\nTTfdpDvHTZs2RT0T5PLly/WGIGqz39NRUVHBzp07dWh9571cewM2T6+ooxLGHTx4EDhuAuytPPDA\nA7rslJtoUlISYJko1e/orahkZ08++ST//d//DcAzzzzD3XffHfK1lNMqdCnlPwFxko+vDKk0QZKX\nl6czs8HxHYGiaf+95ZZbAGunH7sfOhzfIqvzKHzRokUBu5ovX75c5/iIBPHx8QGbG//1r3/VWQCj\nxYEDB5gzZw5gdTaPPvroaa95+umn+f3vfx9u0c4IlcoXIrPxcleoenneeecFyBHNXeq7i8/nY+7c\nuXqNafv27dxzzz1Rlio4XnnlFb2B9S233MLPfvazk87ie4oJ/TcYDIa+wtkY+m8P7/f7/XLChAly\nwoQJUQ9+ONuOmJgY+emnn8qVK1fKlStXyvj4+KjL1PmYMWOGnDFjhly+fLn0eDxy2bJlctmyZfKa\na67Rnw0ZMiTqcp7uOHr0qKysrJSVlZXy0UcfjYoMTqdTOp1OuWjRIun3++VLL70kX3rppaiXzemO\nzZs3nxBqv3DhQrlw4UI5ePDgqMvXnWPIkCFyyJAh0u/3y9dee6071wYVWHTWKfQpU6bI+vp6o9DN\ncVYdf/vb3/S2idGWZcCAAfKPf/xj1PPJBHtMmTJFfvDBB/KDDz6QTz31lMzOzpaxsbEyNjY26rL1\n9Hj33XdlY2OjLCwslIWFhcFc0zcV+hNPPBGgzPfs2SNHjhwpR44cGfWHZA5zmMMcwRzJycly3759\nctasWXLWrFnBXBOa0H+DwWAwnB2ctRtcqCT3V155ZcT3CjUYDIYzob6+XsfPhBIRSd/YcIT+GwwG\nwznABinlhNOdZEwuBoPB0EcwCt1gMBj6CEahGwwGQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoPhDOmc\nHjlanLV+6L0V+4476gEr19BOUbOGECGEwOU6XpX9fj9+v9+UsyEsdG7jUsqoZylVmBG6wWAw9BHM\nCP0McTgcpKSk6M2CJ0yYwJAhQwAYPnw4TU1N7Nu3D7CiW9euXas3YGhtbcXr9QKYEWUQ2EdGTqeT\n2NhYABITE4mJidGjJJ/PR0tLi948wOfzdbnTkcEQLHZzin0/VrBm3uq9aM/AjULvIWpT56lTp3Lt\ntdcyePBgwNrMQk3/3W43QgiGDx8OQG5uLpmZmXpD4c2bN1NfXx8F6QNRldHhcOB2uwGIjY3F6XTS\n3t4OQFNTU1SmlfaG5HQ69U41GRkZTJ48GYDBgwfT1NSkO8pjx45RXl6uNw9pbW2NiELvtHH6ST93\nOBwBU3ZlIoKut9iLBPY64HA4AjrHc53OzysmJkYPJtxuNz6fT7fjaG8WYhR6D3C73ToPQ1ZWFsnJ\nyeTl5QHQ0NBAWloaYOVrEELohx0fH8+gQYOoqKgAoKioiIaGhij8gkDsNn61s05hYSEpKSkcOHAA\nsGSNZuOOiYkhNzdXl/vUqVMZP368/qypqYlDhw4B8PHHH1NdXa07o3DJbZ8xqE5cbefn8Xi0chZC\n4HQ6dWfpcrn07kFut5vW1lba2toAa1d7r9cb0VGey+UiKysLgAsuuAAppd42rba2NmKdjOrwlF3a\n/r/9tSpP+zVgdYb2Z32mZaiebUxMDHFxcQDk5OTQ2tqqFboQAp/Pp2fazc3NJ3TOdjnC/VyNDd1g\nMBj6CEGP0IUQTmA9UCqlvF4IUQAsAdKBDcDdUsr2MxFG9bZOp/OEnky97s5owd7ThwIlX1JSkpaj\npaWF4uJiPcLyeDzaHLN161aKi4v1qCEpKYnMzEz69+8PWHujVlVV6euihSojp9NJYmIiYI1EBgwY\noH9nSUmJ/o2Rwj4Sy8nJYebMmUyaNAmAoUOHalkTEhJoa2sjISEBgC+//BKHwxHW0ZCSTY204+Li\niI+P1yN1uylNSklcXJyWNy4uTl/X3NwMoEfvLS0tIa+3p/oNAMnJyXzta18D4M4776S5uZkFCxYA\nsGbNmrDeG6x653K5dNnZXQAdDgd+v1+PiF0uFwkJCXrEbJ8BV1RU0NbWFpIZhZIJrDWa5ORkwDJF\n9u/fP2CGEBsbq9fNysrKdPbXhoYGPB6Pbv+RmOl0x+TyKLATSO54/V/Ar6WUS4QQC4BvAS/2WBCX\ni9TUVADS0tKIiYnRDeDYsWNamUgpaW9v16YBh8NBU1OT/szhcOjr4uPjqa+v1w+8ubk5JNPvxsZG\njh07BlgPtKysTDfM+vp6LU9dXR1SSl0ZCgoKSE1NZeDAgfpztSl0a2tr1BdFhRDaXFRYWEh2drb+\nXdHocBwOBzk5OQBce+213H333WRnZwNWI1ONvqmpiZqaGt2Rjh49mk2bNlFZWQmEx+TicDhITk7W\nnXNWVhYJCQnU1NQAlkJQ5jS/3x+wiDts2DBdn1taWigtLdXXRUqZw3Ez0QUXXMB3vvMdwFqPKCsr\n0yaEUGJX1PbOMCUlhfj4eN2p9e/fX//vdrtJSkrSnbXb7SYrK0vXi6amJnbt2gXA2rVr2b9/f8Bi\neE9wOp04HA79vBwOh9Y3SUlJ9OvXT8vT3NzMyJEjdbupqqqiuLgYsPTWwYMHqaurAyKzYBqUQhdC\nDAKuA54GHhPWU7kC+HrHKS8DT9FDhS6EICUlhYsvvhiAiRMnMmTIEF0Q1dXVuoJlZGSQmppKRkYG\ncFxpgzXyaWlp0QtnQgiqqqpYsmQJAJ999pnuPXvysO22ZqW0KysrOXTokN5B3ev1Bny3veImJiaS\nnZ2t7ZW7du0KsLNGS6GrRuZyuXRnM3nyZDIyMvj444+ByCp0Zbvs378/d911FwB33303ubm5emTU\n3t6uZWpoaMDn8+nX6enpjBgxQs9+ysvLezTD6wpVVjExMaSnpzNx4kQAsrOzKS0t1XW2paVFK22f\nz4eUUiuB8vJyCgsLtexer1cPECJVB4QQeuAzd+5cRo4cCVh14PDhw+zduzek8qj1BvX84uPj9f2H\nDx9OSkoKo0ePBqwZg30E7Pf7tZLOzs4mJSWFQYMGafmGDh0KWMr92LFj+twzkdXtdutOJSEhgfj4\neMB6lk6nU9eDtLQ0EhMTtTyjRo3S1zmdTmpqamhsbAQi48kWrA39N8D3ANUa0oFaKaXqxg8DA7u6\nUAhxvxBivRBi/RlJajAYDIZTctoRuhDieqBcSrlBCHF5d28gpVwILOz4ri67JzVCV1Nkl8uFx+PR\n7n5SSt1DDhgwgNTUVD3acTqdekTc1tZGZWWlnh7Fx8fT2tqqvR3a29v58MMPgTPrLe12sba2NqSU\nXa5oq1G3MgVMmTKFyy+/XI/cVq1apWWLJnYb+mWXXQbAiBEjqKmpoaioKOCcSKCe7cyZM/nGN74B\nwJAhQ3A6nXqm5vF4tFfLvn37aG5u1t5DAwYMYNy4cXpktHHjRj1yPlPTlhqZJSQkMGrUKG3Tr66u\nZuPGjVqmmpoaPWMQQtDW1hYwy1R1Ii0tjZKSkojHIwghdJvKz8/Xs8i2tjaWLFnCkSNHgNA+d7vJ\nxe12azNFTk4OF1xwgZ4lxMbG6tnVvn37aGtro7y8HLC8bkaMGMGAAQOA4+7DYM3o7BHDPZ31qshP\nNVNsb28PeHY5OTm6vbe1tWnzG1i6S80YpJQUFRVpmSIRDxGMyWUSMEsIMRPoh2VD/y3QXwjh6hil\nDwJKu3tzu5tSU1MTmZmZAGzfvp3LLrtMu05VVlbqAktPT2fYsGHarJKSkqKVYlFREV6vVy9QjBw5\nkoSEBEaMGAFY02R7AEBPsfsNd/4tUsqA/2NjY/X0+qqrriI3N1e7Atp9u6NtPwfrdw0bNgywpr21\ntbW6YUcKl8vFuHHjAPj2t7+tp7IqcEiZzD7//HM+//xzwFrT8Hq92p6dkJBAeno6Y8eOBaxy3r59\nO2CZxHpqPrL76RcWFjJ9+nS9OLdp0yZ27NjRpUlP2U7VexkZGdq82NbWxrp160JSL7uDlFIr8fz8\nfF1nKyoqWLNmTcjWHextvLOLoeq409PTiY+P12bMvXv3snbtWgBtzlRtvKCggOTkZN2m7de1t7fr\nNR/1G3uCel7KjJqQkKDt6YMHD8bhcOg1j/T0dADdOdn1WGNjI1lZWXqg6vV6wx5vcFqTi5TyCSnl\nICllPjAH+EBKORf4ELit47R7gFVhkdBgMBgMQXEmgUXfB5YIIX4BbAL+2N0vUD2ow+GgtbVVj1yr\nqqqorq7WvVhdXZ1e6IiNjWXUqFEcPXoUsHp+NR1rbm4mNzeXa6+9FrDcAr1er17gqaqqCtsiZFff\n5XQ6SU1N5ZZbbgFg0KBBeDweDh48CFgzj84BFNHE4XAwatQowBoRV1VVUVtbG1EZUlJSuO666wA4\n//zz9YjY5/NRUlLC6tWrAcs1UUWGer1eHdgF1ugnIyNDj56GDh3Ks88+C9CjQC67Z4ZayLvgggsY\nPHiwnkVu27aN6urqk45sVYQhWKN7NeOsqKigpaVFT+kjWQeUPGlpaXoRsqWlhbKyspDJYW/j9tft\n7e26rFpaWnA6nTpFxtatW7XnSkVFBe3t7QGBW9OnT9cecS6XS4+WDx8+HJKgLCllwGjabsZRphg1\nCs/IyMDv92sTUWZmpjb9uVwuCgoK9Ai9oqIioP6FY5TeLYUupfwI+Kjj/xLgklAI4fP5AqZLTU1N\n1NfX66mx1+vVFcLv91NSUqILwx6RB5Yt86qrrtKvy8rKdMMvLS2NaMNxuVxcfPHFXHrppYDVgKSU\n+qE2NjZqe7+aNkaT3Nxc3VCklGzdujUs7msnw+VykZ+fz9VXXw1YXkGq0R86dIhXX32VlStXAlYn\nr8xu2dnZVFZW6ml5eno6hYWF+lqn06lTM5SXl9Pe3h7087ebClwul7bzjh49GpfLFeCidqoGardZ\nDx48WJuHdu3aRX19fYBXRyQ6dyGEtv/by7m4uDgs0cv2dSawFLrqrFtbWykrK9PeakeOHNEDCfWs\n1DNITEwkIyNDe7m1t7ezdetWfV2oomyVZxIQ0AaEEOTk5Oi619zcTEpKiu7o7R16Tk4OOTk5ei3Q\n/j2qjO2ec6GgV4T++/1+2tra9ENrbm4OyL9hT4bTVQpa+yjAHsbs9/upqKjQvX1DQ0P43YZseR/S\n09O55JJL9Guv10txcTH/+Mc/gMBRW6Qacleoci8oKNCKprGxkbfffjui4f7x8fHcfPPN2nXS4/Ho\nhr1o0SIWL16sG31sbKwuu8OHD1NRUaFH5FlZWfTr10+/rqqq0t+5cePGbpezen5JSUk6f8yYMWNo\naWnRHXFMTAwulytgBqhQaynTp08HYNy4cXpUWVlZGbBYpgJpwk1MTIwe+MTGxmp78bvvvhuWhXq/\n3x/QOfr9fj3LTktLC1jbcLlcem0CCIgtKSgoID8/Xz+TmpoaPQOvqanp0imhJ9h1jBpwqv/j4+O1\njjl27BjJycnaxt7U1KQ7qmPHjpGVlaUtCMnJybo9eTwe2traAoKOQtH2Tei/wWAw9BF6xQgdTpyS\nnez/U/W6DoeD1NRUPR3yer1s27aNdevWAcddDMOBPa2rGuVeeumljBw5Uvfu5eXlrFu3Tq8VuFyu\ngORO9t8ZyZG6mu7feuutetR74MABnRUyUvcfOXIkkyZN0jK0trayYcMGAN566y2qq6v1CM8ewOXz\n+aipqdHl7Ha7SUlJ0dGEasZ2jqi7AAAQZElEQVQH1si0u+kjlKkkKytLu6QlJSWRmpqqTTkDBgwg\nLi5Oy+R2uwNcEXNycrjtNsuHIDs7W9tcGxsbA8LVI/XcExMTGTNmDGCVv5Jny5YtYZPB3nZ9Pp92\nJa2traW2tlZ/NmTIkACXwX79+ulyzc7OJiYmRj/PpqYmSkpK9Ln2VLY9nel0NoP4/X59v9jYWO1F\npX6Tfabd2tqqz21oaKCioiLANGj/XSrqXRGKUXqvUuinen2qz1QhxcfHM3v2bL2wV1FRwfr16ykt\ntTwqwxleb8/zkpubC1iLcVJKvQi6fft23nvvPb1I4nQ6tR+tMjkpJWC34SnCJbtyH/vKV76if8f+\n/fsjtiCqpqvTp0/Xi01gNda///3vgGVWUSH0YJWdajgej0dPYcFqGP3799fl1dTUFBBq3x1UpCIc\nX0RU/wshuPzyy/U9Dh8+rGXKzMzUdlKPx8O0adN0vbQr+yNHjtDc3KzNDV0993Dgdrv1wqzf79d1\nVK0JhBsppX4Wx44dw+FwaLOYEEKv5TQ1NeF0OrUJJi0tjeTkZF1GW7du1Wtk6vtCbZf2er2686mq\nqqK9vV0vfLrdbtra2nSHaE9FUFdXR0JCQkDaANW+GhoaaG1tDXChDYXJ1ZhcDAaDoY/Qa0bowdK5\nB7NPd8aOHctNN92kR0lr1qxh3bp1AUmSwoF9IdTpdDJt2jTA8maoqqrSJpY1a9Zw4MABvcBjH6Er\n7xcle0tLS8CmA1LKgARlocLu7ZCfn6/LaMuWLRHJ3+J0OvUCU2pqqh6ZgVUGamTk8/kCTFR27yYp\nJS6XSweUXXzxxfTr10/Lv3//fh0g1ZNFXnWfhIQEbQJKTU0lJiZGBxJlZ2cHuOLZF/bcbjeXXHKJ\nXiwTQuipdnV1NY2NjRE1uagRsN00qRYWVXmHA7UwqlDP58iRI9TV1elRrtvt1h5vPp8Pt9utI0Nz\nc3NJTk7W565du1bPeJXpKtQul1JKLc/evXtxOp26zTidTkpKSvS5jY2NerbjdrtxOp3a9Jeenq6/\nJz09PcCTL1Qzs7NOoXfG4XBoF6Z//dd/JTs7W0cQLlmyhKNHj4bVU0MlHVKNd9iwYdrk4nK5WLt2\nLVu2bAHg6NGj9OvXTzdsKaX+f9CgQQH+9na7qtfrpaam5oRNp0NBTEwM999/P2AlN1MdyieffBKx\njQ1UR5Wenk5ra6vu8FpbW3VZJiUl0dDQoBW6vQHExMQwYMAAbrzxRuD4Jg32Rqg8Dbpbdj6fT8u3\na9cu7ZOckJBAQ0ODLqODBw9SVVWln2d1dbV+lsOHD6e9vV2bi5qbm3Unf/jw4bCu7XSFEII5c+bo\ncm5ra9OmrXB34na7tLqXMpkpjyF76mOn06m9YMCKLXE6nXo3qnXr1mnTYLjMVXYvl9LSUpKTk/nk\nk08AS2kfPnxYdzB+v1/XO+UNo0xbMTEx2vzSr1+/k3pFnQlnvUJ3u93MmDEDgK9+9au0tbXx5z//\nGbB8l8Ptdqd2M1GKZ/To0domXV9fj8/n0zMIlWFOPUS3262vU7Zj9dmRI0e07LW1tQHBJ6FUtAMH\nDtQZA9W9IHK2VPsuM2VlZcTExOiGHhcXp8P3t2/fHvA829radEM5//zzmT17tv4dKSkpeL1e1q+3\n8sGtXLlSN7ie+NWre9bV1ekUAnv27CE1NTXAX1rljlH3sWfkq6ur07+rqalJl69yW4ykQo+Pj+e6\n667TnWN9fT27d+8GIpt6QJWrECJg1yb1Hhx3HFCyJiYm0tjYqGdKx44dC3v6DPvaVmNjI9u3bw+Y\nydTV1eln7/V69ZqQ3+/XqYHBqpf2vC52n/nOrtg9xdjQDQaDoY9w1o7QVY9dWFjIQw89BFg94N/+\n9jcduBPO6aMaQcTGxpKfn69dwCZMmKDdFsvLy5k0aZJ2dWtpaaGyslJPdWtra/WGDXl5eWRkZGiT\nx6effqqDaI4ePUpcXFxA4qFQ/YYrr7xSjyD8fj/btm0D0HbJcGM3jezZs4e6ujptmkhKStJRttnZ\n2ezZs0ebMRITE7XNPC8vj+zsbD0zamxs5JNPPuH5558HrKRtoQiW8Xg8ulzUxib2kPbOMyc1Gqup\nqaG+vl7b8cvLy9mxYwdg1YlIjYpVnZ08eTKDBw8OSK2hPMGiwam8UlS5qmhLla9deZI0NzeHvfzs\nyfhUEJhKU6ACwexBUfY1l4KCAt3eY2JitD29vLw8IJjqnLahOxwO7Qf64IMParPFoUOHeOmll7Qi\njFRDcbvdnH/++YDlQ6vsZAMHDqS9vZ38/HzAclWy24Grqqp0dkO1C4ryqc3IyAhYyPN6vSGP4HM6\nnQwbNkxXwOrqal580dqjJJJpfZWS/vDDDxkxYgQzZ84ErHUF9WwHDBjApZdeqpW/y+UK2EjA5XLp\nafCWLVt4/fXX9W5QobRRd+WjrOi8ubHqmGJiYigtLdWNefv27drtLZIbQqvyuueee4iLi9PKZN26\ndQFb5vUmHA4HSUlJeuG8srKS/fv36w1BgLCsLZ2MznlelL1fmVXtO60NGjSI7OxsnRnS7/drk93+\n/ftpb28P+TqVMbkYDAZDH+GsG6GryL2bb74ZgAsvvFCP8N555x127twZkYRS9qxxyvUMLK8Few5v\n+wazamFMuVG6XC69EKRc4tRK/5YtW3TSocbGRurr60M+AlGLN4cPHwYiGx1qR41SysvLWbZsmTZf\npaSkaA8mFeGpvInsmw6oPUU/+ugjAJYvX87atWu1+SpS2JNIOZ1OPVNLTk6mubmZTz/9FLC8ZewJ\nsCKVjEu5/o0dOzYgGd6f//znqGf67Ix9I4yhQ4fqmVpdXR2HDh3SuXCigX1B1+/343A4tLzx8fHa\nejB69GgmTpyoy72qqkrrKrWBdKjdVc86ha42DlamCq/Xq6fWr776qt6YOVJ4vV6OHDnCihUrAMs0\ncOGFFwKWC6Pa8FqdW1RUpE0ptbW1ehpeVVVFZWWlttHW1NRoVzu7jS6UCCFYt26dNq9s2rRJe4NE\no4F7PB6Kior45S9/CcDtt9/OJZdYCT2zsrICEldVVVVpe//mzZspLi7myy+/BAKzakYK+y71EOiH\n7vP52Ldvnz7H3rBD5a52OhwOh17bOXToEImJibrz/vLLL3udQlflmJycrF0VwYr+LikpCYgKjqbs\nysZvT0Oh1qTcbjepqananHXw4MEAn/lwmNvOGoVu77GzsrJ0L3jkyBHWrFkDEHaf865QG9gqN7TO\no1yVMheOuz/Z81mohTOPxxOwnV6oczx0hcfjYceOHToQoqKiImK+512hFki/+OILAHbv3q1nN3l5\neaSmpmpFXVpaGrCQV1NTE5bAq2CRUmpbPlj11L47TV1dnQ4iU+6sYI3k/X5/2DsgIYTuYKqqqjh4\n8CAbN27U8vQ2VDmmp6fTv3//gEAsh8NxQsi8nWg9f7DalJr5JCQkUFRUpJ97TU2NrhNqJh5q+7+x\noRsMBkMf4awYoQshtD1y7NixTJs2TY/QN23apN0UI20zVdhtavbIwt6Ox+Nhz549AdnpIj3D6Qo1\n+qqoqNDeIMpNrKu9W6M97VbY64HdK6muro7W1la9VlFbW6s/67xBS7iwu9otWLAAIQR79uwBCLk7\n7JnicDh0e8/OziY2NlabqLxeLxUVFV0GIUWzDtjXc5QHzqpVqxg4cKD2eqmvr9fmYft+D6GkVyt0\nu11SbcI6duxYJk+eHBC2rBRAb2jUZxNKAfUGJX46omkKChZ7x2LPpNfc3Kx95MFq9PY6G4l66/f7\n9dpNpDf+DhZ7dKgasOXl5XHeeedpG3plZSVerzdgh6dot3v7M/R4PDq/T1tbG62trRQUFACWOVaZ\nt5Q/e1Rs6EKI/sD/AqMBCdwL7AaWAvnAfuB2KWVYlp779esXEERSWloakFdYLTqqh2wwRAv7+og9\ntN1uI+8tM4rejFJ8RUVFxMfHay+yvXv3ah9uiFy64WBRu6/B8a0z1W+x73AVrviDYG3ovwXellKO\nBC4EdgLzgPellMOB9zteGwwGgyFKiNP1EkKIFGAzMFTaThZC7AYul1KWCSFygY+klOef5rt61CUJ\nIfSq98CBA5k2bZoe/WzYsEH3iKWlpWeN/dpgMHSN2hsYrFgJu4dOQ0PDCZG/vWmE3pnOe8ueARuk\nlBNOe78gFPo4YCGwA2t0vgF4FCiVUvbvOEcANer1Kb6r95a8wWAw9F6CUujBmFxcwHjgRSnlRUAT\nncwrHSP3LpW1EOJ+IcR6IcT6IO5lMBgMhh4SjEI/DByWUn7R8fqvWAr+WIephY6/5V1dLKVcKKWc\nEEzvYjAYDIaec1ovFynlUSHEISHE+VLK3cCVWOaXHcA9wH92/F0VxP0qsUb4kcnNevaQgSmTzpgy\nORFTJidyrpRJXjAnndaGDtqO/r9ALFACfBNrdP8GMAQ4gOW2WB3Ed603o/VATJmciCmTEzFlciKm\nTAIJyg9dSrkZ6KrQrgytOAaDwWDoKSaXi8FgMPQRoqHQF0bhnr0dUyYnYsrkREyZnIgpExtB2dAN\nBoPB0PsxJheDwWDoI0RMoQshZgghdgsh9gohztm8L0KI/UKIbUKIzSrYSgiRJoR4Twixp+NvarTl\nDDdCiEVCiHIhxJe297osB2Hxu466s1UIMT56koePk5TJU0KI0o76slkIMdP22RMdZbJbCHFNdKQO\nL0KIwUKID4UQO4QQ24UQj3a8f07XlZMREYUuhHACvweuBQqBO4UQhZG4dy9lupRynM3d6lxMdPYS\nMKPTeycrh2uB4R3H/cCLEZIx0rzEiWUC8OuO+jJOSrkaoKP9zAFGdVwzv6Od9TW8wP+TUhYClwIP\ndfz2c72udEmkRuiXAHullCVSynZgCXBjhO59NnAj8HLH/y8DN0VRloggpfwH0Dlu4WTlcCPwirT4\nHOivopT7Eicpk5NxI7BEStkmpdwH7MVqZ30KKWWZlHJjx/8NWJleB3KO15WTESmFPhA4ZHt9uOO9\ncxEJvCuE2CCEuL/jvWwpZVnH/0eB7OiIFnVOVg7nev15uMN8sMhmjjvnykQIkQ9cBHyBqStdYhZF\nI89kKeV4rKnhQ0KIqfYPT5Xo7FzClIPmRWAYMA4oA34VXXGigxAiEVgG/LuUMmBXa1NXjhMphV4K\nDLa9HtTx3jmHlLK04285sAJrmhxUorNzgJOVwzlbf6SUx6SUPimlH/gDx80q50yZCCFisJT5a1LK\n5R1vm7rSBZFS6OuA4UKIAiFELNZizpsRunevQQiRIIRIUv8DVwNfYpXFPR2nBZvorC9ysnJ4E/hG\nhwfDpUCdbbrdp+lk/70Zq76AVSZzhBBuIUQB1iLg2kjLF2469lr4I7BTSvm87SNTV7pCbXAa7gOY\nCRQBxcAPI3Xf3nQAQ4EtHcd2VQ5AOtZK/R5gDZAWbVkjUBavY5kQPFh2zm+drBwAgeUlVQxsAyZE\nW/4Ilsnijt+8FUtZ5drO/2FHmewGro22/GEqk8lY5pStWDunbe7QJed0XTnZYSJFDQaDoY9gFkUN\nBoOhj2AUusFgMPQRjEI3GAyGPoJR6AaDwdBHMArdYDAY+ghGoRsMBkMfwSh0g8Fg6CMYhW4wGAx9\nhP8PPLhbsZMXvNYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABG+ElEQVR4nO29eXBc132g+53edyyNxr6vBLivIiWKorVSXmI7lp3E8SvrPVdcM372jOoledHYqcnUVL0q5znRJJVMpSyPnYkt59mOZZdla7RSpEVREjeQFEESJECC2NcGutGNbqC3+/4gz9EFSIogAXSD5v2qUAB6u6fPvfd3fvsRmqZhYGBgYHD3Ycr1AAwMDAwM7gxDgBsYGBjcpRgC3MDAwOAuxRDgBgYGBncphgA3MDAwuEsxBLiBgYHBXcqSBLgQYp8Q4oIQolsI8exyDcrAwMDA4NaIO80DF0KYgYvAY8AAcAz4I03Tzi3f8AwMDAwMbsZSNPAdQLemaZc1TUsAPwE+vTzDMjAwMDC4FZYlvLcC6Nf9PwDc91FvEEIYZZ8GBgYGt8+EpmmBhQ8uRYCLGzx2nYAWQnwV+OoSjmNgYGBwr9N7oweXIsAHgCrd/5XA0MIXaZr2PPA8GBq4gYGBwXKyFB/4MaBJCFEnhLABfwi8tDzDMjAwMDC4FXesgWualhJCfB14DTADP9A07eyyjczAwMDA4CO54zTCOzqY4UIxMDAwuBNOaJq2beGDS/GBG9wEh8OByWRCCIHZbMZms2EyXfVWxeNx0uk0qVSKRCKR45EaGBjczRgCfAX44he/iN/vx+VysWbNGnbv3k1xcTGZTIYXXniBzs5OLly4wG9+85tcD9XAwOAuxhDgy0hFRQVf+tKX+MxnPoPP58NsNuPxeCgsLMRisaBpGo899hhr166lo6ODI0eOMDU1RSqVyvXQr0MIQWlpKV/96lcpLy/n17/+Nfv37ycej+dsTHa7nYcffpgtW7awY8cOent7OXDgAG+//TbBYDBn4zIwyBWGAF8mqqur2bJlC08++STr16/H6XSSyWSIx+MEg0EymQx2u52Kigp8Ph9CCOrr6zlz5syqFOAmk4nS0lLuv/9+ampqOHbsGGazOWfjEULgcrnYunUr+/btY+fOnVy5coVIJEJ3d3dOBbjZbMbtdtPW1sbQ0BB9fX23fE9+fj6ZTIa5uTnm5uayMMpb43Q6ycvLY926dQwODjIxMcH4+HjWji8VnqamJiKRCOFwmFAoxOzs7G19htvtxmw2EwqF+F3fMtLoRrhMfOYzn+Eb3/gGu3fvxuFwkMlkSCQSXLlyhTfffJOXX36Z9957j2Qyic/no7a2lkceeQSv15vrod8Qk8lEQ0MDbrebRCLBxMQE6XQ6Z+MRQhAIBNi5cyf33XcfmqZRW1vLxo0b2bx5c87GBeByuWhubua///f/zqc/vbhuEmvXrqWlpYVA4LriupxRVlbGo48+yssvv8wzzzzDAw88kNVF2+PxsHbtWv7mb/6Gf/fv/h179+6lqKjotj7D6/XS2trKhg0bsFiyo58KITCZTCrOlU0MDXyJmEwm2traeOihh7jvvqudBHp6evjlL3/Jz372MyYmJohEImQyGVwuFz/96U9pbm7GbDaTn5+fU632ozCbzbS2tuJwOBgeHubVV1/NmaZot9spLi7mr//6r9m4ceO851aDhpWfn8+ePXvweDyLPp+7du2iqqqKdDrNn//5n+d0cQTw+Xw8+uijPPPMM1gsFr74xS9SUlLCq6++mpWx+Xw+vvnNb/L7v//7lJWVEQ6HaW9vZ2joutrAG2KxWCgoKOAnP/kJZWVl9PX18e///b9nYGCAZDK5ImOW2v7Xv/516urqmJub45lnnsmqRb1qBfiaNWuoq6sjEAgwMzNDOp0mGAzS29vLzMwMkUhkVWRxCCEoLCzE4/EghGB0dJQf//jHvP3221y8eJF4PE4qlcLv97N27Vr8fj8Oh4NwOMzFixdXjfmsx+l0UlZWxoMPPkg0GuXChQu3ZcYuJxs3bqS2tpbm5mY2bNhAXl7evOcLCgpoaGhg165dBINBpqamsmr2CyHwer1s2LABm8226PeFQiHq6+upqanBbrcTj8dzuhhVVVVRW1tLZWUlAGNjY4yMjKy4MJJC8A//8A/ZsWMHeXl5nDx5kl/96lecPHmSTCazqM+R7r41a9bQ3d3NqVOnCIVCK7b41NXV0djYyM6dO3niiScoLCxkfHwch8NBLBZb9LiXyqoU4CaTie3bt7N7926ampoIBoMkk0muXLlCe3s7ExMTDA8PE4lEFvV5mUyGVCrF9PQ0yWRy2W8Uk8nE5OQkPT099Pf382//9m9cuXKFmZkZ9ZpAIMDDDz9MaWkpTqeTiYkJLl26tCoFuNvtprKykm3btnHw4EHOnctdh+AHHniArVu3sm7dOiorK68zU4uKili3bh2apnH58mW6uroIh8NZW9ztdjt+v5+2tjbm5uYWfVwZFyktLcVutzM3N5dTLby5uZna2lo8Hg8AFy9e5Pz58ysuwG02G36/ny984QusWbOGRCLBgQMHeOmll5iYmFjUZ1gsFmpqati3bx8Oh4PTp0/z1ltvMTU1tSJjNpvNbNiwgb179/L5z3+e4uJizGazinH19/dnbUFetQL8G9/4Bk1NTfh8vnnPaZpGNBplYGCAcDi8qM8LhUL09vby/e9/n/PnzxOLxZZtrOl0moMHD9LR0aFW31AodN0KXFJSwpNPPonL5UKIG/UBWz14vV5qa2txuVycPn2a9957L2dj+ZM/+RMloG9EQ0MD9fX1fOpTn2JkZITf/va3PPfcc3zwwQdZEYjNzc3cd999bNq0ie9+97ucP39+Ue/zer2UlpZSX1+P0+lUVma2EUJgs9n44he/yI4dO9TjR48e5d13313x4+fn57Nu3Tp27NiBy+Xigw8+4B/+4R9uS/hWVVXxwAMP8KUvfYlXXnmFV155hXfeeWdFxiuD+1/+8pf52Mc+Nk8++f1+/vN//s/8zd/8DRcvXpynwK0Uq1KAZzIZ/vEf/5G6ujp8Ph+Dg4OUlZURCAQoLy+nra2NsrIySktLmZycxO/3z/M9ZjIZkskkMzMzFBQUkMlkaGhooLe3l8HBwWUV4JJQKITJZCKTyVwnvD/2sY/x+OOPU1VVhclkYnR0lLNnz3L27NmcuSY+iqamJp566illJSwmq2K5KS0t5U//9E+pqKjAZDLdUIBHo1Hm5ubIZDIEAgECgQCPPfYYjY2NPP7444u20O4Ek8lETU0NX/nKV3jggQcYHBzkpz/96aIF+JYtW2hoaFix8S0Wu91OfX09LS0tFBcXo2kamUyGzs7ORX+XO8Xr9VJfX8+DDz6IxWLhf/2v/8Wrr77K1NTUohYzi8VCZWUlzz77LPfffz/pdJrDhw/T19e3YveVw+HgD/7gD2hsbMTtds97zuVy8cgjj1BTU8MHH3zAW2+9xW9+8xvm5uZWTBtftQL86NGj9PT04HQ6GR0dpbi4mMLCQoqLi7l8+TJlZWVYLBb6+/upra3FarWq96dSKeLxOFNTU3z2s5/F5/ORTqdxOp0rpv3eyNQ0mUyUlJSwe/dutm/fjsvlIpFI0NXVxfHjx1fUR3enOBwOysrKaG1tZXZ2lkgkQjQazeoYPB4PlZWV7Ny5E6fTed3z8XicwcFB5abSNI2mpiZqa2spKirC6/XS1NREd3c309PTKzJGi8XC1q1bWb9+PXl5eRw8eJDu7m5CodBHvk8IgdVqpb6+npKSkpxbY3a7nebmZvLz87Hb7aTTaYaHh5mYmFjx897a2sr27dvZunUrkUiE06dPc+zYsUW7baTrZOPGjQQCAXp6emhvb2d8fHxFfNAWi4W8vDx2795NUVERmUyGaDTK7OwsHo8Ht9tNIBDA6/UqmfPWW2+RSqVWzBW1KgU4QGdnJ52dnTd8Li8vj5qaGmw2GxcuXGDdunXY7Xb1fDKZJBKJEAwGeeCBB6ioqCCZTDI0NLRiEekbYbVa2bp1K5/85CfZtGkTZrOZYDDI4cOH+fWvf70qgrAL8fv9VFRUUFtbq3z02ZwzIQSVlZWsW7eOiooKVQCVyWTU79HRUV5++WUOHz6s3Gi7du3iy1/+MjU1NQgheOyxx0in03R0dCz7IimEwOFw8Pu///vU1NQwNDTEP/zDPxAMBm95LJl91NTURElJyaL9vCuF2+1WC6WmaaRSKU6ePLlo9+RS2LdvH48//jg7d+7k9OnTnD59mjNnzizqvSaTCbfbzfr16wkEAoTDYd544w0OHTq0YnEll8tFeXk5Dz30EG63m2g0Snd3NxMTEzQ2NlJbW6t84Q0NDXg8Hv7xH/+Rubm5e0+AfxTT09N0dHQghCCdTnP06NF5moymaZSUlLBz5078fj+hUIjTp0/zq1/96pYa0nJitVrZuHEjBQUFmM1mMpkMr776Kvv37+f06dNZG8ftsHHjRurr69E0jcnJyawvMuXl5fzJn/wJTz31FKWlpco1pmkag4ODHDt2jPfee48f/vCHRKNRMpkMZrOZ3t5eHnjgAQoLC/F6vfzZn/0ZLS0tvPbaa7z44ovLegPV1taya9cuHnnkESKRCF1dXZw+fXpRC0UgEODrX/86BQUFDA0NqWyJbC6SevQCPJPJMD09zXe+8x26urqycnzpchwbGyMajS7qPNntdvbs2cOjjz7KH//xH+P3+/nFL37Bs88+u6JJAUVFRaxZswaPx0N3dzdvvPEGf/mXf4nNZmPz5s3s2rWLp59+mvLychwOB5WVlXz3u9/l7/7u79i/f/+KuPTuSgGuado8n9LCG8fpdNLQ0MCXvvQlXC4X7e3tvPnmm1l1WWzZsoW9e/fy8Y9/nKKiIqampjh37hy/+MUvuHjx4qpznUjKysrw+/0kk0lef/11hoeHs3Zs6V7Iy8vD7/erjBMZhH7++efp6elRAWw5h+l0mpGREd5++22sVit79uzB5/PxwAMPYLVaOXDgwKK048VSUlLCtm3bcLvdHDt2jJMnTy7qs91uNxUVFezZswen08mFCxd49dVXSSQSOUkhDAQCNDY20tzcjM1mI51OE4/H6e7uzorbTH5nIQStra18/vOfp7W1lXg8zrFjx66LVcnsqKamJjZt2sS6desoLCzk0qVLdHd3r3ibB4vFgt1uRwjBiRMnOHLkCNFoFJPJxJkzZ0gmk+zbt49AIKBeJ127K5VWeFcK8FsRCARoaWnhoYcewmw2K99YtlL2ZBHM7/3e77F582ZMJhOXL1/mnXfe4f3338+KeXq7CCFwOp3U1NRQUFBANBrl3XffzbqJbzKZsNlsyiU2OzvLwMAA77//Pi+++CLhcPg6bVVmJrW3t1NcXKwyGurr60kkEng8nmVbvE0mE0VFRbS1tWGz2Th//vyizX6/309dXR1r1qwBoLe3l3fffTdni3lRURE1NTWUlpYCVxfKkZERlba70oTDYaanp0mn01RWVrJ3717a2tqIxWJ4PJ7rNFafz0dzczMbN26kqqqKQCBAIpHgzJkzWbEYHA4HBQUFwNU8+dHRUQBlQdhsNpLJpBLWmqYRiUSYnZ01XCi3w0MPPcTDDz9Mfn4+09PTjIyMMDg4mLXjFxYWUldXx9q1a7HZbExPT3P27Fm+//3vMzU1lbUk/9vB4XCwYcMGnnzySQKBAOfPn+f999/PegBzIZcuXeKll17iu9/97i0Xk1OnTpGfn8/999/Ppk2blAa/nIFCl8tFRUUFbW1tCCE4fPgwBw8eXNR7t2zZwhNPPEF+fj6XL1/m3LlznDx5ctnGdruUl5erTBhN07h48SK/+tWvsnZ9vvbaa1gsFjZt2kRJSQk1NTXU1tYCsHfv3uuskoXnMZlMMjg4yAsvvMCxY8dWfLx1dXU8/PDDCCFYu3YtfX19vPXWW+p5m81GW1ubCrxnMhk6OjoYHR1dMeXxd0qAWywW1q1bx+c//3mVVvStb32LQ4cO0dt7wz1BV4S//Mu/5MEHH1RVg++//z6HDh2iv79/VQpvuOp22rlzJ8XFxSQSCXp7e1WKXrYRQqib9dlnn+XEiRNMTk4u+r2yL4XJZCIQCPC1r32N73znO4yMjCx5bFarFa/XS35+Pq+//rrSwhZDQUEBJSUlAPT19eU8gFleXq7iHTMzM5w5cyarArynp4d//dd/5fDhw6xZs4aWlhba2tr41Kc+pSqVz579cJOvsbExjh8/zne/+10KCgqYm5vj1KlT9PT0ZKWZWU9PD/v37+exxx6jpqaG1tZW6urqlFW1ceNGfD6fKsqy2+185jOf4eLFi4yNja2IEvk7J8DXrFlDZWUldrudgYEBjh8/zsDAQFaCcXa7nfLycjZt2kRV1dX9noeGhnjvvfdob2/PWaBqMdhsNmpqanA4HIyPj3PhwoWsm/ZCCNasWaPMVID+/n7GxsYW9f6ysjIqKyspKipCCIGmaWoxWq65lymq09PTyt1jtVpv+fkyqFVXV4cQgsHBwZx2UCwpKaG5uZmmpiYA5ubmmJycZHBwMGv++EQiwfj4uMoY6+3tpbOzk4GBAWZmZhgaGpqneEWjUYaHh0mn0+r5N998M2uN1iYmJujs7GRubo7CwkI2btzI008/TUlJCZWVlZSVlTEyMsKRI0coKChg+/btFBcX09bWxuXLlw0BfitsNhubNm0iLy+PSCTCqVOnuHTpUtZ8zj6fjx07dlBXV0deXh6pVIrOzk7279/PiRMnsjKGO8Vms1FbW4vFYmFkZITjx49nXfs2mUw8+OCDVFRU3JYQkTsftba2sn79etXPI5PJEAqF+M1vfrNsGQBS0A0NDambtrCw8IYWgtlsVhaBjMtI/3d/f3/ONHCTyUR9fT0bNmygra0NgJmZGcLhcNbjM1IYd3d3093dDcAPf/jDG77W7XZTX18PXG1FcPbsWV588cWsZZYFg0EuXLjA+Pi4irXs3LlTpV9OT0/z9ttv80//9E80NjZSUVFBS0sLmzZtYnx8nLfeemvZ76lbCnAhRBXwQ6AUyADPa5r290KIQuCnQC1wBfiCpmkr03xgEVgsFrxeL3v37sXn89HR0cFzzz3H9PR0VgSR2+2mubmZb3zjGyqDIplMcvbsWSYmJlZlzxOJ1+ulsrKS++67j2AwqLJ2ciHA9+7dqwTwYnC5XOTl5dHQ0MDTTz/Nli1b1HMzMzOEQiFSqdSyaZWJREJpqk8++STf+ta3+OQnP8kvfvGL615bW1tLcXGx0tBaWlrUcwszqbJNQUEBDodDuaqOHTvGpUuXcjaexVBbW8szzzyDy+Xi17/+NT/60Y+yugjOzc3R39/P1772Nf7iL/5CFecJITh27Bhvvvkmf/u3f0ssFiMajfL666/T2NjImjVriEaj1NTU0N/fv6wBzcVo4CngTzVNaxdCeIETQog3gKeB/ZqmfVsI8SzwLPAXyzay26SxsZE9e/bQ0NDA2NgYHR0dnDt3LmutHbdu3crDDz9MS0sLVquV4eFhzp49y09/+tNl8b2uJE1NTezcuZP8/Hw6OzsZGRnJma9eaq2LpbW1lT179vCJT3yCtrY23G43mqYRDAZ54403eOuttxgfH1/W66C7u5uf//zn+P1+ysrK2LVrlwq+6RFCYLFYcDgcBAIB1TdD0zSOHj2atVzrhZjNZmXeZzIZZmdneeedd7hw4UJOxrMYWlpa2L17Nw8//LDK7shFNlcymaS9vZ3/+T//J6dOnWLDhg3E43HefPNNDh48yMzMDJlMhp6eHv7t3/6Nbdu2qc6FX/jCF3j++eeXtcnWLQW4pmnDwPC1vyNCiPNABfBpYO+1l/0LcJAcCfC8vDzWrl3LQw89hM/n47333uPcuXOLDnwtB2vXrmXHjh0UFhYCV4NUhw4d4oMPPliV/U70lJSUUF9fj91uZ2pqasXKz5eblpYWtm3bxu7du9mzZ48S/JlMRlkS77zzzrLnB4+NjXH06FEaGhrYvHkzZWVl17W5BRgcHCQejyOEUDvwSAYGBnLiQjGZTDgcDjZu3Ijf71fl4OfPn1907+1cUFdXR1tbG9XV1WruslmUJ9E0jbGxMQ4fPszw8DAjIyPMzMxw9OhRzp8/r85xKBSio6OD06dPU1xcTFFREbt27eJf//VfCYfDy6Yg3ZYPXAhRC2wGjgAl14Q7mqYNCyGKb/KerwJfXeI4P5ItW7bwiU98gqeeeopYLMarr746L70nG+zcuZNHHnlE/X/s2DG+973vrUjjrOXG6/WqnU9mZmZW1YKj18YX/v3Nb36TNWvWqMwOiaZp9PX10dnZuSJabiQSIRKJ8F//63+lrq6O0tJSysvLr3vdwYMHCQaDWK1W/v7v/56PfexjKmiYSCRykv9tt9spKSlRnfRmZ2cZGxujq6tr0cHiXCDjB5qmcezYMU6fPs2VK1dyNh7ps3/99ddv+LzcTvHgwYOsW7eO6upqNm/eTFFREcFgcNnkwqIFuBDCA7wIPKNp2vRizVxN054Hnr/2Gcvq9DObzfh8Pp555hk2b95MKpXit7/97arw5zkcDvLz82+YnSD3QUyn05jNZmw2Gw6HA7jq062srOSTn/yker3sAfKTn/yES5cuLXs2S0tLCzt37gSuLjy5NKVl0E9eX9u2baOwsBCXy8U3v/lN/H6/KvIJBAJYrdbrtrNKp9P8h//wHxgYGFjx8fb39zM0NHTD1ghyIZRtAPQ59XV1dUxMTGRdaBYWFrJ582a13dj09DRvvPFGVlqfLoV169axdu1aYrEYP/7xj1dtKwo9qVSK1157TWUe7dq1i8997nO89tprHDp0aFmOsSgBLoSwclV4/1jTNBmtGRVClF3TvsuArC/fxcXFPPXUU8r3OTY2xiuvvMLw8HDONwrevHkzX/va1254YwwMDDA6OkokEsHtdlNSUkJ1dTVwNRskPz+f9evXz3tPJpNhYGAAi8VCR0fHso2zoqKC0tJSlbo3OzubsyZbmUyGU6dOqW5ucHWv0ampKaxWK62trbjdblWeLIW8Phg4NTXF+fPnGRkZWfHSamDRneb0gVQhBNPT01kZ30Lk9SWD7BMTExw8eHDVWooWi4X169dTXV2N1+tldnaW7u7urLpHl0I0GlVulJ07d7J3717GxsY4c+bMsriAFpOFIoDvA+c1TXtO99RLwJeBb1/7/aslj+Y2sFgslJeX85WvfIXKykqmpqbo6uri9ddfz4lvMZlMMjc3pzSbbdu2sW3bthu+9uzZs3R1dTE5OUl+fj4NDQ1s2LDhutfNzs6STqeVqS3TkZZLgAshaGpqUrsEye+Qq8VP0zQOHz6siiNMJhOf+MQn1HP610lkM6RUKqV2qN+/f/+qzrmHqylpK9mv/GbYbDYKCgoQQhCPxxkdHeXdd99dtQLcarWyd+9e1ZlyfHxc+Z2ltbZa+wpJzp07h8/nY3Jyku3bt3Pp0iV++9vfEg6Hl5yJtBgN/AHgfwPOCCFOXXvsm1wV3D8TQnwF6AM+v6SR3CZFRUXU19crTfXw4cN873vf48qVKzlJzzp79izt7e08+OCDt3xtW1sbbW1taJo2z6+bTqfn9VE4cODAvAKAM2fOcPny5WUbs8lk4mMf+xi1tbUkk0k6Ozs5duwYPT09y3aM2yGdTrN//362bdvG+vXrlaD5KOLxOKFQiO7ubp577jlOnz7N1NTUqvLjS+R1mcv0wUAgoHabD4VCyhJcrRXCDoeDP/qjP6KiooJgMMiBAweYm5vDZrPhdDrx+XyMjo6uytbMksHBQd59912ee+45/vzP/5wdO3bw9a9/nWeeeYZ4PL6kuV9MFso7wM3uokdu8viKIYSgqKiIp59+mn379gHwk5/8hJdffpkTJ07k7Ob4+c9/zrlz57hw4cJ1qXAyD1guNkIIotEohw4dIhgMKjP8yJEjjI6OKm1ocnKSeDyuhNHMzMyymd0mkwmn08m2bdsoLS0lFovx9ttvZy1v/maMjY3x4osv0tvby/bt23n00Uev21ZPz5kzZ3jzzTd56aWX6O3tJRqNrkrt22q1qpbCy5mXfjuYTCY8Hg/l5eWYTCZSqRSJRCLn7sZboXeVZTIZHnzwQZqbm2lsbGR0dJQf/OAHWYl3LIVQKMTrr7/OU089pbaAq6yspL+/f0nWz11XiWkymWhubla7ocDVJkYXLlzIaWlyf38/MzMzuFyu6wR4IBCgoqJinvY8MzPD+++/z+TkpBLgJ06cYHx8PGu+Ubmj+uzsLCMjI7z33ns5D2bNzc3R2dmpyqudTifV1dX4/X6Ki4sJhUKEw2FGRkYQQvD+++9z5MgR2tvbczruj0IIQXV1NS6XS20CkIvCLiEEmUxGbfE1OzurdjS6G3A4HNTU1PD444+rnW9Wc38hPYlEgitXrvD222+zd+9eGhsb2bBhA6FQ6N4S4Farlccff1z1zJBd1FZDsczk5CS//OUvcz2MRaFpGul0mnA4rDYl+PWvf70qXA/Dw8MMDw9z/Phxzp8/z44dO9i7dy+PPPIInZ2dtLe38/LLLyOEUD7R1YzJZGLPnj3k5eXR19fHD3/4w5zlMMsmUVu2bCEUCjE+Pp71cdwu0rVYWFjII488wkMPPcTx48d5++23eeGFF3LeFGwxpNNppqen+W//7b8xNzdHW1sbn/vc5+jq6rqthmgLuasEeCAQYN26dTz99NMEAoFcD+euRtM0YrEYf/zHfwygmvmvNo4dO8apU6f453/+Z2w2G6lUimQyqXye0qxezWiaxpkzZ2hvb+fIkSO8++67OdHAM5kMZ8+e5Tvf+Q6apjE8PMzFixezPo7bYWZmhr/6q7/iD/7gDwgEApw9e5af/exnjI2NqXz81X7+9cgNzU+ePMmjjz7KK6+8wvj4+B03urqrBLjP56OpqYmCggLVPD0UCqlsDYPbZ7VXXUr30mpcXBZLKpXiBz/4gbIscmnlxONxBgYGeOGFF4jFYqs+HS+VSqndbpxOJxMTE3R3d6tNEu4m4Q0fpsr+6Ec/4q/+6q/Iy8ujoKDg3hDgLpeLsrIytf1TKBTigw8+IBQKrepmUQb3NplMhldeeSXXwwCuWlqRSIQDBw7keiiLIpPJMDQ0tKrL/G+XS5cuEYlE+NznPkcsFptXhHa73FUCXM/Q0BDvvvsu3/jGNwiFQnfdSmxgYHBvIncSeuKJJ5b8WSKbEeilltI7nU7y8/MpKysjmUwSjUbp6+sz3CcGBga/65zQNO26ysC7SoAbGBgY3KPcUIDfufPFwMDAwCCnGALcwMDA4C7FEOAGBgYGdymGADcwMDC4SzEEuIGBgcFdyl2bB75aEUKoH/hwk14hBGazGU3TVHWhkbtuYHD3Iu/xhS2PNU3LWoMwQ4AvEZPJhNVqxWq1YrFYsFqt5OXl4XA4cDqdFBUVoWka8XicyclJkskkkUhEtYaVrUVXQ6/ouwnZzF/+LWsBjPkzyCXZFN5gCPA7RgoQq9WKz+fD5/Phcrlwu91UVFRQUFCA3++nubmZVCrFxMSEapM6PDzM2NiY6vctd5WBq6XDuRJCeutBCkf9JhO5Ro5Lv2gKIVRjLnnz6H8Mbo20DqW1KK1DYw6vZ6G2Le+XXClgRiHPHeJ0OvF6vQQCAdauXUtjYyPl5eWqStThcOByuVS/7UwmgxCCixcv0t7ezrlz5+jq6iIajaobRi/Is3xe1E1cWFhIXl6e2ki4u7ubiYkJ9R1ygRyf3A6sqKiI5uZmysvLmZ2dJRgMcuLECeLxOMlkkmQyqca72oTQwk2bpfWQKwFgNptxOBysXbuW8vJy/H4/7e3tjI+PE4lEiEajOal01rsh4ebzoheeH/W6pY5F7p6lVyJMJtO8RW+hNa1//0LuoIvmDQt5DA38DpA7ydvtdmw2Gx6PB4fDgRCCcDhMXl4eNpsNi8WiGuan02kSiQRmsxmLxYLZbMZut6tm7nrNO9s3sf54c3NzJJNJNE1Tmq7FYrnl1mYrhclkwm634/F4qKqqorW1lbq6OlpbW7Hb7UQiEbWze39/P5OTk0xNTZFIJLIivBfGPG52DvXXjMfjwWq1kk6n1WIju+tlMzaiH3M6ncbtdlNTU4PX6+X06dP09vbOWwhXchzyvtC7I+XuRdIKlEJUL0Dhw46V8rXLdd7l/OgFtbwe5Q5L8viJRGLeYqJfqOU4M5kMyWRSKWo32pT7dln1Avxmq9fClTeb41moRaVSKbXJqlyNHQ4HFouFubk5TCYTmqaRTCaZmpoiHo+jaRpWq1Wd3NVg9usDrHLBAZbULW0pCCFUTKGsrIytW7eydu1aampqqKmpAa62w/V6vYRCIaUpzs3NEYvFVlwQ6i0Xq9U6T+OXC6B8jcViweVy4fF4KCwsxOFwkEqlmJ2dVRsS5KotsryfbDYbPp+PvLw8hoeHmZycXNGFW38v2e12FTfKz89Xlom0qKRg1s+n3BZubm5u3s9yWrFyfNLFJBUvh8MxLylBLsjyXl+4kMtFUr8QLYcMW7QAF0KYgePAoKZpnxRCFAI/BWqBK8AXNE2bWtJoPjzWdT/6le12TKaVEox6rXpiYoJoNKr2PJSb8WqaRiKRUNq41WolGAwyNTVFKpXKqWZ7IzKZDOl0Wm2aEA6HSaVSORXgHo+H6upqtm7dymc/+1nKysrweDzqunC73Xg8HhKJhFosE4kEU1NTpNPpFV3o9XEQr9erLBcpvG02G2azWQmA/Px88vLyKC0txePxkE6nicVizMzMKAG1UJNbSfT3htR65TgLCwvxer0rOnf6xa+goACXy0V+fj4tLS3Mzc3NUySk5irPr1R+pqenicVixGIxpqen1f6eS7UaFsaD5Pm02+1YLBalhS90p9jtdnX/yAVFLkLy3C48v0s537ejgf9H4Dwgd5h9Ftivadq3hRDPXvv/L+5oFNeQGpfL5VJuCL0JL0+43W5XZkgymVSbO8zNzWGxWObdOE6nk2AwyMTEBBMTEyQSiSVpZtJ3FY/HSSQSRKNRwuGwCqilUillWgkhcDgc5OXlKe1LCIHL5cJmsxGPx+ftn5lr7VsKzMrKStauXUtxcTHHjx+nu7s761uASS1r/fr13H///Tz66KM0NjbidDoxmUwkk0ni8ThCCOx2O4FAgI0bN+Lz+UilUgwPD88zVZd7buW16nA48Hq9lJaW4nA4lNmfyWRwOp1omqauS4/Hg9frpbCwkMrKSmZnZxkdHaWoqIh0Oq162mfrOtDfU1VVVWzcuJHdu3czMzPD0aNHV8x9og+a2mw23G43gUCAhoYGKisrqaysRNM0otEoU1NTjI2NqbFYrVYKCwux2+1KmI+OjjI2NqYWRLkoLfW864W3xWJRssXtdpOfn6+UB5/Pp1w/LpeLubk5EokE8XicUCikrBkpexbKnxV3oQghKoFPAP8P8H9de/jTwN5rf/8LcJAlCnCLxYLD4SA/Px+/3680loKCApxOpxJ0Ho9n3kmSJlYqlSIWi+F2u5XATKfT9PX10dPTowIyS9XIpdmkDzxKQay3FMxms9pANpPJ4HK5KC4uRgixKvaeXIgQgkAgQHNzMzt27EDTNM6fP591K0EKx+LiYrZu3crGjRuprKzE7XYDKGEnUzFnZ2dJJpP4fD5KS0upqqri7NmzSvtZifGZzWZ8Ph/l5eUUFRVRWlpKJpNhamqKqakptchLgZ5KpbDZbOo6kC4Xp9OJxWJR12/WsxiufZf6+noqKyvxer0kEglisdiKBzBNJpO631tbW6mqqqKoqAi32008HicejzM2NqaC6JqmqeQAmUQg3ShSGVou9EFm/WLt8XgoLi7G4/HgdDrxeDzKwpYyIC8vT7mAbDYbsViMeDxOJBJZ9iypxWrgfwf834BX91iJpmnDAJqmDQshim/0RiHEV4Gv3uoA8kKSQcHCwkIqKiooKyujqqoKr9erNNy8vDylGZjNZqanp5V/KRgMUlBQQEFBASUlJUxPT+PzXTUazp8/r7S2pU6e3t+ZSqXmaTPShLZYLMo8lTeq3++fl7OsF/i5RI69oqKClpYWNm7cSH9/vxIu2c6KsdvtVFdXs2XLFlpaWvD7/dhsNubm5pidnWVqaopgMEgsFlOLodPpxOfzUVJSgsfjYXp6ekXmVVqBRUVFKvvI7/czPj5ONBpV2tdCl4rFYsHr9SrzO5PJYLPZAJTZnQsrzGKxUF1dTUlJCVarVdUqrOR+k3prurCwkIaGBoqLi3G5XCqmND4+Tl9fH+FwmLm5OWW9SqtH+sxnZmZwuVzXxZOWMraFv/Wad3FxMQ6HA5vNhtPpVAuvvE+8Xi9Op1Mt2FNTUyu2deEtBbgQ4pPAmKZpJ4QQe2/3AJqmPQ88f+2zPnJW9dFnr9dLY2Mja9asobi4eJ52kslkiEajyu81OzvL5OQkk5OTmEwmpeHk5eXhdrtVpoIMPEg/2Z2iD0zoAxJyYdD7jIUQOJ1O8vLyKCoqwmazEY1G1Q2uD2zkEpPJhNfrZefOnWzZsoWSkhJ6enoIhUKEQqGsjs9isVBUVMSnPvUpNm/eTElJifItxuNxhoaGOHjwID09PcpNVlFRQVFRkXJh5efnEwqFiMfjy1rkYzKZ8Hg8lJSUcP/997Nu3TrlAjl37hyDg4MMDQ0Ri8WUyaxpGjabDSGEUkSKi4uZmZmZl6onA2DZRAYQi4uL8fl8pNNpOjo66O3tJRgMrthx5X3jcrnU+ZXa9Pj4OO+88w59fX2MjIyoBVq61ZLJJF6vl5KSEpxOp5IbcjHUH+N2uNliL12LJSUlVFZWUlRUpIKWsVhMWYSpVEqlDUs3cCqVIhgMMjk5ecO01mwEMR8Afk8I8XHAAfiEEC8Ao0KIsmvadxkwtpSBSOEnzZVYLMalS5cIh8M4nU6cTieJRILp6WklvKPRKGNjYyQSCRKJBKlUCp/Pp050SUmJilbbbDYlwJdbK1uYOiT9exaLBafTSVlZGfX19axbtw6bzcb4+DgzMzNLXkiWEznvLS0t1NbW4vF4MJlMyrTPFiaTCZ/PR2VlJffddx9+v1+laM7OznLmzBlOnz7N/v37CYVC2O125feWlk5BQQE7duzA7XZz+fJl+vr65gnTO0UuxuXl5WzYsIH169dTVVVFKpXixIkTnDt3jrGxMRVM0x9PBrKEEJSXlyszW2qRcq6zjc1mo7q6msrKSvx+P8lkko6ODhUvWm4WBi9lnEumUqbTac6fP8/ly5cJBoPzqpWlYiSVDb/frzRvaQkvZVw3G6eMqdlsNlwuFz6fj0wmw+zsrIqD6f3bgUBAuXoymYySOzIut5zn+pYCXNO0/wT8p2tfai/wZ5qmfUkI8R3gy8C3r/3+1VIHI4OSMzMzhMNhMpkMk5OTytRKJpNMT08zMzOjIs+Tk5PzUozi8TgTExOEw2F1Ac7Ozqq0suXOSJHH1f+tvzjz8/MpLy+noqJCmaiJRILx8fGcu030SLeFLOSxWq0q5TGbgsVsNlNdXc26deuoqKiYJ9wmJyfp6uri3LlzDAwMkEwmcblcCCGIRCKk02nlq6yvr1c31fj4+DwL7k7Ov1ycXS4XRUVFVFdXU1FRgcViYXJyksuXL6tsJJkxsdA9JotmZNBLX/0ob/5sa+AOh4PW1lYKCwuVv1ZuuruSaZiaps3zG5tMJmZmZpiZmWFkZITp6Wnm5ubmVQLrA+3SlWKxWFQett5ltZzzKDPIpDJosVhUnUEmk5lnbUl3i8PhUAqFPNf61ONlG9sS3vtt4GdCiK8AfcDnlzIQuYLOzMyolXhiYgKTyTQvoV+mFcnAlT5IJScpFAqpGzoej6tIthRGK5FSCB/eqPpodWVlJU1NTdTW1lJYWIjP5yMWi6lMlNUixE0mE263G5/Pp4KF0gLKpgC32Wxs3ryZxx9/nEAggM1mU+l1vb29nD59mo6ODiKRiJo/aXqbzWYVvJbvtdvtdHV1zcsLv1MBLl0zpaWl1NTUUFFRwZUrV7hy5Qrnz59XSsON5kvOrwzMy+tafjfpTssmQgh8Ph8PPfQQfr8fIa4Wop09e3bFfLYSGb+SMSOHw0EwGFRtJvSLoP7+slqtlJSUKCXDbDYra1wGje/k/OoVMekNkJ9jNpuVIIYP023l+ZJBykwmo/L93W63SjeUgl9+tvyRx10KtyXANU07yNVsEzRNCwKPLOno8z+bZDKpAoLDw8Pqiy/0OesF+kLh6XA4qKuro66uDqfTycjICJcuXaKjo4Pp6Wl1YawkFotFZURs27aN1tZWysrKKCwsZG5uTlXjlZaWEg6H0TRNVWSuRM76YpDCT7orYrEYnZ2dyhLKBiaTieLiYhoaGmhqalLadSKRIBKJcOjQIa5cuUI8HleVmcXFxRQXF1NfX091dTWFhYWqUEZmKZSVlTExMbGkIKHUrGpqamhqaqKxsRG32004HGZoaGie0Fn4Pqk1btmyhb1799La2srU1BR9fX10dXUxMTGhspWyid1up6SkhCeeeAK3283IyAg9PT2MjY2plMblRn8vy9xoaXXLOACghLuUB9IKl5k/0qKV97S+iOdO76GF1rQMTMqUYbPZrKpoM5mMsvDtdrtakOR1Id0tyWSSvLw8ZXUtjJctzFy73XGvqkrMhSd3YbmpXltd+EVlQUUgEKCmpoby8nLsdjs9PT309fUxPj4+r0pruZEnxWQykZeXR1VVFY2NjVRXVytfmKzAlC4dOWabzaYuhlz0Q5ExgrKyMlwuFwAzMzMreiMvRN6kDQ0NlJeXq8yhdDpNOBxWmq5cUGR1pt/vx+/3q8wjGbi22+3k5eXh9/spLi5Wefd3cv71qWRlZWWUlpaSl5enCrfkdarXrPTfyWazUVVVRUtLC01NTTgcDmZnZwmHw0p4Z7vPjAyk1tTUkJeXB1xtRXD48OGsZMNIRUwK79nZWRUIdLlcyrdttVrn5dGXlJRQWlqKz+fDYrEQjUaVxa13ky0l02yhwihlj9So5Y904bjdbpUlIxU1j8czz9Wiz33XpzIvlGu3y6oS4PDh5OlLTvXoVy/9Y1IIVVRUUF5eTmFhIZqm0dvbq3xqK3lh6pP+pQlfVVWlyoLlhZpKpQiHw0xPT6vCBGnq68emv6GXy9y6GTIToaKiAofDoXz0sqdINpA3SF1dHYFAQBXBJJNJgsEg3d3dDA8Pq4XP6/WqfGC73Y7T6VQ3vt7/6PF4yM/Pn1cMdifzKM3okpISioqK1A0qz53T6SQWiykhohfeLpeLxsZGamtrKSsrw2KxMDs7SyQSUW6XbAtwk8lERUUFjY2NqqdMb28v7e3tKz6WhZa01J5l1a+s45DzJ+dYv2hLAS+VIWnBLPUeWagV6z9T+r9dLpdKr5VVpFK2BAIBfD4fDodjXrBS31dI33l0qSnNq06AS26UI73QvJFI7cjr9XL//fdTVVWFzWZjeHiYCxcuMDIyMi+IudzoI9ZydZbCRBYgyBW6p6eHixcv0tfXRyQSweFwAFd9v6FQaF4wRv/58nuvBGazGa/Xy9atW3G73QwPD3P48GFltWQDuYhs2bKFiooKbDYbqVSK6elpOjs7ee211xgZGUHTNOVLnpiYQNOu5tnrtSTpG5fBZJmitlBDXiwy+FhRUaHcNlLLr6qqIhgMUlNToypEZdqg3h+/b98+mpqacDqdAEQiEZWiqRfgK32uJXa7nV27drFv3z6EEHR2dnL8+HGOHTuWlR4ygOp1kkgkmJmZUa4HGZSUQUxZP1FUVKSKfeQ8ys/TZ3/B8rZllosNoCxVOXaZDy6zZAoLC1X9RyaTUfe9LFiS1oTe3bYUi3vVCnA9+tXwRjeg2WxW5bjl5eUAjI6OcuLECS5evEgwGFzRAJFeWLhcLlUS7PF4mJubUzer9HmGQiGlrTmdTpVy6Pf7lSkZjUbnndiV7OvhcDjw+/1s3rwZm83GyMgIx44dy2oLWdlXXbo7pFDr7e1laGiIaDTK3NycWvCkdSC1L5mjuzD4ZDab5+UR30lu8MLPlFkJJpOJ8vJytXDInOVUKqU6VMrAek1NDfn5+artg1yo4fpmYSstvIX4sOK2ubmZTCbDoUOHOHPmTFYqhOV9LPOnI5EIk5OTALjdbkpLSykqKlKVttXV1TidThXXkBkz+iQGuThL4blQk14qUuuWcTqv1zuvUE9f9SvL5mW/I9lqQaZmxuNx9Xpp4erHeTtjvisEuJ6FX06etPz8fFUKHIlEGBwcpKOjg6mpqWUzr26GNI9kipjspa1pGuPj46oXS19fH/39/UqzgA8zZ6Tm6HQ6SSaTWK1WlQMrc4pXQjuT6YNer5eCggLS6bQKsGWrAlPvApNBa5ltFA6HCYfD89ryzs3NEQwGVSBb+rf1GSBCCGWe63PA7/T7SG1Kas2RSESVUefn59PY2EhRUZHKjnI4HPPaxepTyNLptCrgkQVd2UwhlLGG4uJi5fo5f/48g4ODWc2EkedYFjTJ8y8bW8mqzEAgMM8HLa8D/fmVCs5KIDPkZLBUXk9S69d/H1k0mEwmlWIJqFxy2S9HLjBLcevBXSjAFyIFUGlpKc3NzbhcLoaGhujs7KS9vV1tmLCSvm99Ux6/369SnObm5ujr6+PKlSuqmZa+qlFq7Q6HQwlRh8OBpml4PB5VKi4F+Upo4LIfhfQpyw0ShoaGsiZQ9HMo0+nkzT09Pa2Kt2QsQZbTyxxij8ejbjD9jSz7T8i01DsRkvpshJmZGQYHBykoKFAl+1LLKi4uJi8vb55mPTU1pdJZpUYmF4Lx8XEmJibm5TtnIwNJuhs3b95MaWkpQgimpqaUAM9mJoycC2mhyuvb5/OpuIJ0ScpgoMlkUvOVTCZVUZ98fjkrm/UKk0xVlLnqMltLBqTj8TixWIzh4WEGBgYA8Hq9pNPpeemSsqJYr3nrf26Xu1qAy1W5sbGRLVu2sH37dmKxGGfOnOHUqVP09/evmPDW+72lf6uoqIjy8nIsFguRSIRYLMbAwACDg4Oqn4PUGgHVK8HhcFBaWkp1dbXKEZ6YmGBsbIzR0VFGRkaU6bYSN7nP58Pv96NpmroQZVe3bGG1WvF4PMq9JDMjJicnVatemcol50CmEra0tFBTU0NRUZGyfGZnZxkaGuLChQtcuHBBlTzfCTJbYnJykmPHjjExMcHg4CB+v18FqmKxGFNTUyooHY/HCQaDymcvfed2u52RkRE6Ozvp7+9Xge1sat8ul4t9+/ZRWVlJLBbj3LlzqmFUttAHMWV7hEgkwsTEBP39/dTX16ssD6fTqdJvKysrVS+ZeDxOb2+vWqQXLtRLzUKBD4W4PJfxeBxA1XTk5eVx+fJlpWiNjY0RjUZVK4+1a9eqoGxZWZnq23SjNhp3fRrh7SL9S9u3b6e2tpZUKsXp06dpb2/n8uXLK551In2hDoeDkpIS1ZtBXkhSO5DugYU9wG02m8ppra6uprW1VeWYlpWV0dvbq1KRZPrccpu4JpOJQCBAdXU1AIODg4yOjma1sZJ+MdRr4HIRlPMmb1zZ2rOpqYn6+noaGxtpaWlRPmZN0xgZGaGjo4OTJ0+qdgtL+T5SA+/t7VUVodLlJG9I2RFPLjKJRAK73Y7f72fr1q3q5pWuNOkTzeZCKZUF2c9jamqKAwcOrHjl5UL0gUFN01SMQy6AsVhM+b1lJ1KXy6VcJ7JWYXx8nOnpaWWlrkTwUmr6Mid8dnZWWazSZSutQv2iLX3m8pqWcRPpkoHrg9b3jACXrpOysjIaGhooKCggHo/T2dlJX18fwWBwRS/IhWli+fn5FBQUqCCbPLZsQQmokybNfLfbTXl5OTU1NdTX11NfX696LFgsFkKhkMp2WKnNH2TjKH3wd3JyMut9WmRhhDRTZTBXH9yU1XB2ux23201bWxvV1dVUV1dTXFysgkqzs7Mq26erq0u5MZZyY8uURtlZbmRkBLfbPa+gTJ5XeW3IcwwoV8Hs7CwjIyNMTk6q4pVsIcTVZlp1dXXqmpyenubs2bOqRiGbSAEps7TkhgeyN4oU3nLrQlmjYLFcFVvxeFy5oBbGEZbju+gXGWk9S01fjkuOSWbNRCIRVbCzMECpL0zMWi+U1YoMXO7cuZPa2loSiQTDw8N88MEHqjhiJZEauMvlUr3LfT6fCkTKFDKn06l2oJfBOkBtINza2kp9fT0NDQ2UlpaqzopXrlxRF6Zec19OIS79x7W1tSoboa+vj9HR0awKFrlojY2N0dvbq9p1ypayXq+X2tpaXC6XKqCQDa/y8/Pxer2YzWbl/gkGgxw4cIAjR47Q1dW1bFWOUnOSi5usntWjT3mV1oJszyrTHnt7e7PuOgFU1szDDz+s3BITExNcvHgxJ5WgMD8nXM6dzM6IxWKqXF7eU/K+ltaa3DVqOQX3wvFJV4eMv8zMzCjrW/YCl5q21L6lK08uPrJ1sFx8FrpQbpZhdyvuSgFusVgoLy+npaWF7du34/F46Onpobu7W6VyrfTFqA9ElpWVYbfbAZQm7na7cTgcKnNhenpatZWUQcPy8nJaW1vJz8/H6XQSj8cZHh5mcHCQrq4uTpw4oUxEecMvp1VhMplobm5WKY+hUIixsbGsls8DSgMLBoOcPXuW/Px8XC4X9fX1rF27VvUN0W96K6P6cmGbm5tjamqKK1eucOTIEd58801GRkZU9ko2v4seuciPjY2pc5htF5UkLy+Pmpoatm3bhslkYmBggMuXLyv3SS4EuJ6FqXTSR65P5cxkMoyOjqprQqa6flSV9kqMTb+JjKzI1bQP+7vo42J2u10pKDIgLzX6pc77XSfAhbjagKeqqora2lq8Xi/T09MMDQ1x5cqVZWkbuhjkxSVLomXFmDy29I3K9EBpaskcVofDMS+fVa7sPT099Pb20t3drQI7+lSp5fpe+gBsIpFgcnKSZDLJ2NiY2jkkm0gNR/bj8Hq9BAIBlVIm/d76tpz6901OTvLBBx/Q0dHB+++/z+jo6JICl0tFXxtgtVrVblFSs9QX7mQrVbOgoID8/HzMZjPhcJjBwUHV1THXwnsheoEsz7l0n+m3LNRvn7iwb9JKoP9cKQP0C4g+pVhWCsvnpGzQd57UB1t/57NQpNuisLCQ2tpaampqsFgsKnLd29ubtdxluQrPzMwwOjqqtEFZti2j5g6HQ/WB1u+4LS8+6Z+NxWJMTEzQ1dWlBHgwGFQLkr6t5nKg99OGw2EGBgaIRCIMDw8TiUSW7TiLRbonxsfHuXz5Mna7nZqaGuX7ln2j9UUvsr/M9PQ0ly5d4t133+X06dOcPHlSzWsu0PdOkQs7MC+PWP+6bGAymdQ+jjKNsbe3l76+vpxs5XYz9HMi86yl4JZCUb4mnU7jcrmIRCIkEol5HR6zsTDqffj6+0k/Xrl4L2wNslxju2sEuBR4brdb7dRTU1NDIpHg8uXL9Pb2MjY2llVTUJ6YK1euEIlEGBgY4MyZM0royKpMfbbKuXPnVBGA1WolFAqpPNKLFy8yNTWlChv0aYPL/Z2kPz4cDtPV1aW2r7p48SKTk5M584eGQiEuXLhAMBhUpn1TU5Pq0yK1r2QySSgU4ty5c5w8eZLf/va3av5y0RxKog9iut1utaer7PMhX+Pz+VRb5JUWNnp/fCKRYGRkhGg0ytGjRzl16lTWt8y7FfLalHvkFhQUqPoKv98/b/NnqSxJN9xKVizrWehSkdq/vmWDyWQiEomoa1b6v/WxsKVyVwhwqXnLwFVTUxMFBQWYTCai0ahqdJTtlCyYb8KHw2FMJhPj4+PK7Dtz5sy89LeFwQuZxSD7fsjA5UKNe6WCM/JmlhVu+g0JckEmk1G+YplKWFpaSkVFhWoxq2ma0rq7u7u5dOkSg4OD83ZGySWyr4vMHgKUJi53UpdjzMZOPHqBEYlEuHDhAtPT04RCISB7XS8Xiz4vWlq1JSUl5Ofn4/F4VHWrXPyk++RG/W6yIcj1gWtAWQLRaJT+/n7lWpXWl0xM0L/nTse56gW4PEFut5uioiJqamrUJscA4XCYYDCY9ZQsPfLkyPHKZH85dv3uK4ASzvo8WL0wXwmNeyFSgMsydZkSKXt55PKmlpbN6Ogos7Oz9Pb24vf76e/vV2makUhEZcyMj4+vaLOyxbLQ/JcuAOn+uZFmmK3xZjIZIpEIQ0NDKl1THydYLUJ8oUDU+5Tl1oqyE6BsFKUnWy6pWyFzx4PBoPKDy66Ly6kgrWoBrvclBgIB6uvr2bRpE42NjZjNZiKRCCMjI/N2rc4V+kDEwpOjF+4Lb5Rsagt65IIRjUbnjSXXQhA+XFxkRejIyAhCCI4fPz7vNfpg0GpDKhNWqxW3263SHGdmZpZt9/TFIq3E/v5+hoeHVUsCfcuC1TSH+rQ6ff9s6UbV+8AlMk6kdznmIq8dUNWlU1NT2Gw2PB6P2jkoFovNCxovdZyrWoDD/E6DZWVllJeXq3xQ2bVPNjLKteZ4K240tlyONxcX+Z0gx5mt3uR3ipxLWZQ0OTmp0iM9Ho8SnAMDA8pVlS3tV1YG32zMqw2ZtSPz7icmJnA6nbjdbjKZjBKGMoak74WTC8EtFYq5uTnC4bDKTovFYso9OT09rbLKlqtqdFECXAiRD/wPYB2gAf8HcAH4KVALXAG+oGna1JJGcwOkNpZIJJiamqK7u1tVCoZCIbq7u9WE5dr3aWAgb0hZdi21MZlBI32jN9s7MxtjW+3oc8A1TSMcDhOPx1UqqXxOdiPUC8NcfUf9mGVHShlUlZtPSIG+nN0nxWI+RAjxL8AhTdP+hxDCBriAbwKTmqZ9WwjxLFCgadpf3OJzbnvEJpMJp9NJZWWl2u9Q7tYSjUa5ePEio6OjSgM3MFgN6FuF6n260o222q3F1YI+o0OiF9TS7ScfzzX6gKqMgci+KAs7Y94mJzRN27bwwVsKcCGEDzgN1Gu6FwshLgB7NU0bFkKUAQc1TWu5xWctaYZlQAjIasDPwMDA4HbQx7b0hTxL4IYCfDEulHpgHPhnIcRG4ATwH4ESTdOGAa4J8eKljG4xpNPpeS0vDcFtYGCwGlmYJ75SLCab3AJsAf5J07TNwAzw7GIPIIT4qhDiuBDi+K1ffWtyFWE2MDAwWG0sRoAPAAOaph259v/PuSrQR6+5Trj2e+xGb9Y07XlN07bdSP03MDAwMLhzbulC0TRtRAjRL4Ro0TTtAvAIcO7az5eBb1/7/atFHG+Cqxr8xJ0P+XeSIow5WYgxJ9djzMn13CtzUnOjBxebhbKJq2mENuAy8L9zVXv/GVAN9AGf1zRtchGfddzQxudjzMn1GHNyPcacXM+9PieLygPXNO0UcKNJemRZR2NgYGBgsGiWpyWWgYGBgUHWyYUAfz4Hx1ztGHNyPcacXI8xJ9dzT8/JonzgBgYGBgarD8OFYmBgYHCXkjUBLoTYJ4S4IITovtY75Z5ECHFFCHFGCHFKFjcJIQqFEG8IIbqu/S7I9ThXGiHED4QQY0KIDt1jN50HIcR/unbtXBBCPJGbUa8sN5mT/yKEGLx2vZwSQnxc99y9MCdVQogDQojzQoizQoj/eO3xe/paUSzsn7sSP4AZuMTVsnwbV3urtGXj2Kvth6udG4sWPPb/As9e+/tZ4K9zPc4szMMerhaEddxqHoC2a9eMHai7di2Zc/0dsjQn/wX4sxu89l6ZkzJgy7W/vcDFa9/9nr5W5E+2NPAdQLemaZc1TUsAPwE+naVj3w18GviXa3//C/CZ3A0lO2ia9jawsG7gZvPwaeAnmqbNaZrWA3Rz9Zr6neImc3Iz7pU5GdY0rf3a3xHgPFDBPX6tSLIlwCuAft3/A9ceuxfRgNeFECeEEF+99ti8xmDAijcGW6XcbB7u9evn60KID665WKSr4J6bEyFELbAZOIJxrQDZE+A32uvsXk1/eUDTtC3Ak8D/KYTYk+sB3QXcy9fPPwENwCZgGPjba4/fU3MihPAALwLPaJo2/VEvvcFjv7Pzki0BPgBU6f6vBIaydOxVhaZpQ9d+jwG/5Kp5t6jGYPcAN5uHe/b60TRtVNO0tKZpGeB7fOgOuGfmRAhh5arw/rGmab+49rBxrZA9AX4MaBJC1F3b0ecPgZeydOxVgxDCLYTwyr+Bx4EOrs7Fl6+9bLGNwX4Xudk8vAT8oRDCLoSoA5qAozkYX9aRQuoan+Xq9QL3yJyIq7shfB84r2nac7qnjGsFspOFci06/HGuRpAvAd/KdfQ2Fz9czcI5fe3nrJwHwA/sB7qu/S7M9VizMBf/H1ddAkmuak1f+ah5AL517dq5ADyZ6/FncU5+BJwBPuCqcCq7x+ZkN1ddIB8Ap679fPxev1bkj1GJaWBgYHCXYlRiGhgYGNylGALcwMDA4C7FEOAGBgYGdymGADcwMDC4SzEEuIGBgcFdiiHADQwMDO5SDAFuYGBgcJdiCHADAwODu5T/H1Hb9AMIOpsjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1281,32 +1252,36 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZOt1JvbdmOc5IiMys7Ky5vER\nFNlkg6QgtdSyZRsGtBPc3rSNBrhx71s7A15pa8CAYS4a7l7Y3Q0IQvdCkGU0RYkU2xDHR76qeq+G\nnDNjnufxepH1nTpx60ZkZFYVmcXOAyQyM4b73/v/5z//Od+ZDNM0cUVXdEVXRHL8um/giq7oii4X\nXQmFK7qiK5qjK6FwRVd0RXN0JRSu6IquaI6uhMIVXdEVzdGVULiiK7qiOfpgQsEwjP/KMIwvDMN4\naRjGn3yoca7oiq7o/ZLxIeIUDMNwAngO4L8AcATgRwD+iWmaT9/7YFd0RVf0XulDaQpfB/DSNM0d\n0zRHAP4NgD/6QGNd0RVd0Xsk1we67gaAQ/X/EYB/uOjDhmFchVVe0RV9eKqYppk+60MfSiicSYZh\nfBvAt39d41/RFf1nSPurfOhDCYVjANfU/5uvXxMyTfM7AL4DvNEUDMOQHyvWYffaIjJNUz5vGMbc\ne7PZTK7H37PZTP63+4712vr7Z93HFV3RKrSMv628qT931vcuwoMfSij8CMAdwzBu4FQY/HcA/vuz\nvsSH15tUCwqn0wmv1ysP6na7YZomXC4XZrMZZrMZJpMJptMpRqMRTNOUz+prAnhrYklOp1O+x0m1\nEzK8HwqV6XT6LvO1dD4AwOFwYDabXVjQ8FoOhwMOxymUZJqmXJf/k/jcFxnvrPnUY+k5/tB00U3y\nqx5L89iiA05fX88x6V2e84MIBdM0J4Zh/HMA/w8AJ4B/aZrmk1W/ryfF4XDIb4/HIwLC4XDA7XbD\n4/HA7/djOp3C5XJhNBphNBphMBjANE20221Mp9O3Tna7k54bnKT/1szMz2lm5z1Np9MztY1VSV+H\nf3NDn0cIWQWsaZpzGpPD4YDL5ZJnnkwmts+wCqPxetb5sgoZ6+9fBV3GsaxCUa+R9UCz8gN/W3lB\nX+MiwumDYQqmaf4FgL+44Hfh8XjmXtMP6ff7EQ6H4fV64fF45Kff78PtdiMYDKLT6WA4HOL4+Bjt\ndhuDweCtTc4Jdjqd8pr1FOXYHo8HLpcLDocDXq8XLpdL7nE6naLVamE8HsM0TQwGg6Wb1noSOBwO\n0YKCwSCuX7+OaDSKSCSCcDiMyWSCyWQCp9OJk5MTVKtVHB8fo9VqYTQaLRxHb04yCu87HA5jY2MD\n8Xgc0WgUgUAA/X4f7XYbk8kEo9EI9Xod9Xod+XxehN0y8nq9c4KLz+Tz+RAOh9Hr9dDtdkWbA4DJ\nZCKaFl87j/agmd76jPF4HD6fD8FgEJPJBJ1OB6PRCL1eD71eT7RLzReL5lGPpQWp1+uF1+tFMplE\nMBiEx+PBYDBAu91Gp9NBq9Wa4z3rWNZ79/v98Pv9CIVCCAaDiMfjyGQyWF9fRzqdFl5rNBooFouo\n1+vodrvodrsYDofodrsYDAYYj8cX1l5/bUDjIuImIVM4nU44HA74fD54PB74fD7EYjGk02k4nU64\n3W5MJhM4HA5EIhGMRiP4/X7MZjP4/X4Mh0MAp4vBv4G3NQVeixoIF4uLFA6H4fP5MJ1OEQgE4PF4\nMB6PMR6PMRgM4HK5RBBppreS9dSmoAkGg4hEIshkMnj8+DE2NjaQzWbhdDoxHo+xu7uLZrMpz+hy\nuRAMBmGaJsbj8cK55FgUZsFgEGtra8hms7h79y5yuRzS6TQGgwEGgwHq9TqazSbq9TqcTiecTidq\ntRr6/f7SU4eaXDgcRigUQjQahc/nE+Hm8/kwHA7RbrfRbrfRarXQbDbRarXQ7/cxHA5Fg1nldFtk\nXrrdbvh8PgQCAXzta19DOp1GKBRCvV7Hq1evkM/nMRwO4Xa7MR6P4XQ6l64Xx+DBQWHAcYLBIEKh\nEB49eoRoNIpQKIRyuYxXr17h4OBg7v74fS0YrGZAOp1GOp3G1tYW7t69i/X1daytrSGVSiEajcI0\nTfT7fZTLZRwcHODg4ACff/45arUa6vW6zN94PH5rrFXp0gkFfdKQKBi8Xi/8fr9Mvt/vR7fbRTgc\nxnQ6xWQygcfjEQbt9/tyUvV6PVvpqbUAp9MpGz4QCIhGkEwmEYlE4Pf7EQwG4XA4EAgEYBgGarUa\narUaisUidnZ2RECR2RaRNkOcTiem06loGrFYDH6/H4lEAg6HA61WCz6fD41GA91uF41GQ0wiMrfd\nPFr/d7vdiMViuH37Nh49eoQbN27I/DqdTsRiMYTDYWE6r9cLt9uNL7744i3txnptn8+Hzc1NRKNR\nbG9vIxaLIR6Pw+/3y9x2u100m02YpolarYb9/X0RajRZ9Nzw71X4hc9ALYH38+Uvfxmz2Qy7u7so\nlUqoVqtwu91zhwXNvmXX1xqIz+eDz+cTwRwKhRAKhXD37l0Eg0EEg0EUi0URJBors+MDktvtRjQa\nRSwWw9bWFh4+fIhUKoVEIgGXy4XJZIJ+v49OpwO/34/t7W0AEL5ut9twOBzCR5fOfLgoaVWeD8PT\n2+v1IhqNyqna7XYxGo0wHA4xm83g8/lEfacK1ev1ZANZNwo1EjK/1+tFOBwWBshkMvD7/djY2EAk\nEsF4PEYgEEAgEEAmk8F0OkWn00Gj0YDf78fJyQmGwyF6vd5CTEGf3mRInpBUozudjgg2p9MpauHx\n8TGOjo7QbDYxm80wGo1sBY9VpQZOGS6dTuPevXv45JNP8PDhQwQCAXz22WdwuVyoVCpwuVzY3NxE\nJBKBy+VCt9udYzB9/3osnsxUda9fvy7aApm51+vJXHs8Hni9XozHYzFZBoPB3BotY2Q7AUXB4HK5\nxFyJx+Oi/YVCIbjdbuENzpsVR1o0lpUfKShM08RoNMJ0OkUoFEI6ncZ4PEYwGJwzT5ZtUC00KJzX\n1tZkzFqthkqlgkKhgHw+LxoFtbG1tTUcHR2JhvCu2MmlEwqGYby1ifl3IBBAKBRCPB5HIBBAo9FA\np9PBdDqdMzN46vJHn8pWMk0Tk8lETlKOGQgE4HA4EI/HEYvFAAChUAixWExsVKrv7XZ77pTt9/tn\n2nOaSWivO51O+Hw+jEYjOBwOtNtteDwedDod5PN5NBoNUb2n06kw5llE8+TmzZv47d/+bTx48AAe\njwfVahXPnz9HpVLBeDyG2+1Gt9vFxsYGotEoHj9+jJ/85Cei+nMttMBxuVyyXn6/H/F4XNRWl8uF\nVqsl2MRwOEQoFEIikUAoFEKj0RAhwROO97vM02L1HHEOtY1PLc/n86HT6aDZbKJcLqPf74tQoFmw\nbBPpExeAeLaIY81mMzEfuUkJ1pL/rG5w6/1r4rqWy2UMh0OUSiWUy2UUi0Xs7++j2+0iEong+vXr\nuHHjBoLBoOwNh8MhGM27eD8unVCwTpjepLFYDLdu3RLwrVaroVqtwjRNhMNhRCIROTG0FF/EYHxt\nNBrJidxsNuH1egEAmUxGJHUwGES/35cTOhQKyWbmIlAQUECdZc9pZtPelEAggMlkgsFggE6ng1qt\nhna7PScE+XOWSgqcagmZTAbf/OY38ejRI6RSKZTLZTx58gQ/+MEPRDMJhUIy15ubmxiNRrh///4c\nxmJ1e/F0I7jWbDYxnU6RTCYFEDs5ORHz7fr164hEIohGozJPXKOLeGwWneCcm2aziWKxiN3dXRGo\nes4WzaH1GQGIIBmPx3LPAET4aB7q9/vodrtneqL04TCZTNBqtXB4eIjpdIpEIoHBYIB+vy/3PxwO\n4fV6MRgM0Ov14PV6he/ohreu03npUgkFO/DI5XIhEAggnU5je3sb4XAY0WgUjUYDtVoNg8EAwWBQ\n7DyCjO12G+PxWCbNip5b1cLhcCgaBu3bUqmEbreLTCaDwWCAeDwOAKJRcOFPTk5wfHyMfr8vJ8Sq\npEGmSCSC7e1tpFIpeY58Po9Op4NyuSynrTYZzlJ9ed2vf/3rePDgAdbX11Eul/Hs2TP8/d//PfL5\nPGazmeAqw+EQgUAAfr8fkUgE9Xod8Xgc9Xr9reeyukhrtRpGoxGi0ShGoxHG4zHK5TJarRYAyNzG\n43FEIhEYhoFGo/GW4NYeoLPmTrtYuTm41hTk1BL4DNptvMqJyutrtyoBR94rza7RaIRarSb8oE2H\nRWtEms1mIrSGwyFGo5GYV9Qeo9Go7IVsNguPx4NWq4VOpyOC96JYAulSCQVgXjsgmhyNRpHNZpFK\npZBMJtHv93F0dIThcDgHFBIk7Ha7smBWRiFppuApxZOA6li/30csFsNwOEQ4HJ67z9FohG63i8PD\nQ+TzedRqNTQaDdmw540j8Hg82NzcxI0bN3Dnzh3U63VZ6JOTExQKBXEXrmqjEhBdX1/H48eP5fQ/\nPDzEX/3VX+Gzzz4TYJRzQiR+Op3C6/UilUrBNE8DxOyEnQZKy+WyCAPtEYhGo4KzJJNJ0YR4omoV\n+7ykNxxNQI/Hg2QyiUQigdlsJrY4hYIO1lpVKOhxKPiplQaDQWxsbMDtdmNvbw/Pnj3DycnJuccy\nTVOwF5oCoVBIzFiv14t0Oo1PPvkEqVQKPp8PzWZTPDrk8VXduYvoUgkFLYXJVAT/MpkM4vG4AGDt\ndltASZfLhVAohEgkIqoVBQrtTeBtd5BWtTih2h1Ke5d4AYA5/KLb7SKfz+Pw8BDdbhedTgcAlnod\n7MjtdiMQCGBrawtf+tKX5D4LhQKKxSIajYbgFNqvftbiu91uhMNhfOUrX8G9e/fg8XjQbrfxs5/9\nDLu7u8LYmhh7QdWXrjeNpOt50z8MGKNQSKfT4koOBAKYTqfi2q1UKqjX6+j3+289g1bZVyHNMw6H\nA7lcDg8fPkQwGMTu7q6As3R78jv696rj8PPEUcLhMK5fv454PI5Wq4Vnz57h5cuX6HQ6CyNFrdfU\npPEwmnThcBi5XA4bGxtYX19HMBgUE7nf78Pn84kw14fcb4ymQKCF7sd79+7h9u3buHHjBsLhMAqF\nAhqNBuLxOD755BP4fD5EIhGJWxiNRkgkEjK5jNQD7FVtK/ij1eHhcIjhcIh+vy/BJE6nE+VyGYVC\nAS9fvpQTqNPpiNmx6mLwJA0Gg9jc3EQ8HsdkMkG1WhXtgPdN82aVUGeeStvb23j8+DH+8A//ENls\nFtPpFD/60Y/w8uVL0SKIlgOnwUdOpxOtVguVSgXr6+soFApzJ791Dvk/555Cy+l0SsyCBiHX1tbQ\n6XTwy1/+EsfHxxJzwWtRICxzE9rNI7WEQCCAx48f41vf+hYODw/x05/+FM+ePUO1Wn0vyDzHo3vy\n5s2b+J3f+R2Uy2X8/Oc/x5/92Z/h+Ph4zsVKOsujonEpar4MMrtx4wai0agA0HSJEnzPZDKoVCoS\nT8Jr/kbEKQAQ5DqRSCCZTCIUCsHr9WI2m8Hr9UqMgsvlEtRXxypo04Auy0VIPSUu8Aao4kSORiM0\nGg04nU7E43EMBgN4vV602+25KLJFkZKrMKDT6YTH40EwGESr1cKLFy+Qz+dRqVTg8/mQy+XQarVQ\nLBbFbWeHvtuRw+FANptFNBqdC9bx+/1wu91wu92Ix+PyHF6vF5FIRFyGg8FgDrFf9jw6Yo8uyFqt\nJl6VWCwGn8+HeDwuXhViFzzpdRzJeYSCJpfLJWtQLpfRbrff6dS0I+IJ1GC3t7dRq9VwcHCAwWAg\nn1vkbVhk8vGQIN92u12JSzg4OBDX+Ww2Qy6XQyAQkPuhpkwTSbtcz/vsl1Io0GyIRCIIBoNIJpOy\nWcfjsahLBOTC4bCcdvV6HQAwHA5FhbObGDIOQ3FpFlhNiMlkgkajAZ/PJ1gDI8eoHfBkczqdc4DU\nWc/I7zAgBgCOj4/x5MkTeDwe3L17F16vV1yw9DzY+c7tiG45qpb8vMvlmhOqPGGTySSuXbuGdDqN\nSCSCXq+HUqmEdru9kotQA3dE4RlZmkgkYJqm4D8M+IlEIjBNE51OR+bkPOaDPhUZTOT1ekWQkW8u\n4tmwG4s84/P5kM1mce/ePYRCITx79kyARSuAedbYGlRnbAo9Oq1WS9zSDGlOpVJotVrY2NhAMBiE\n3+9HNptFuVxGtVoVDfeiOM2lFAqUxFSnaFM7nU70+32J96/X6xLkw2gvqt/VahWtVgvdblfUbr04\nWjuwuhfpYqJkDoVCoqoRcKtUKpKTQHWZmsYie1Xb7zp2Ph6PIxwOi0bw4sUL3Lp1S4JxIpHIXAyF\npmUngc4pmE6naDabcj3eQ7FYRDgcRiwWw6NHj4TJh8MhqtUqisWiPOOy8bRdz3kkeq6jQJlXwbB0\nugl19qaOWViF6M6liRIMBgXj0YFKdrRMq7NubAoEv9+PZDKJ+/fv48GDB3C73cjn8yiVSnNCgdfV\ngguwB6F1iDZD66n+0/tQLBbR6XTQ6XQwHo/Rbrdx/fp1idBkvke/30er1bqwhnTphAIFATf/dDqV\nyMXxeCyumtFohEwmg3T6tJCMaZqo1+s4OjpCPp9HuVwWF9kyW5zMRAyDdjGj9BhByYCY0WgkEXhc\n8GXx7NZnAyCYidfrRSwWE49KvV7HwcGBgExEmMvlsgSn2F1z0cI3Gg2USiU0m01xcQIQrwLzGxKJ\nBB48eIAvf/nLSCaTGI/HaDabODg4wMnJyZzpsKoGBGBOYDJX5PDwEIPBAMPhUDxEPCWpcWlAcJWx\neHInEgmJBDw5OZEkNWIWVgGgN+sq9j6fIxwO4+7du3j48CG8Xi9KpRIODg7EnqcJo4FGapHLxvB6\nvchkMgiHw3MaAzd5r9eTiFlGm3o8HtH+EokEKpWKCJTfGKEAnE7QYDBArVbD0dGRnOJer1fsrMlk\nIuAZ7XsuTrlcFrR5NBrNMSpJ4w7pdBqxWExstHa7DZfLhXQ6jUQigclkItGKzWYT1Wr1retrG26R\nPUzGpz2dzWYRCAQkYrDVamE4HCKTyeDhw4e4ffs2xuMxPv/8c/T7fbn+WWYDmb3ZbKJSqQiwOBwO\nxZNAEyyXy+HatWt4+PAh1tfXEQ6HZQ6Pjo5QqVQkKGYZk1k9EfoeqcXl83kxLRwOB3q9HgaDAQKB\nwFzK9rINpO9BhzZTS2ASHDMhmZWp5+UipE3NWCyGXC6HaDSKTqeD/f191Go1cZFTc9Fhzvz+ouei\n5hiPx5FKpSQj0jRNiTgdjUYSTp5Op5HNZsWdTWxGR7qeJYgW0aUUCqZpSuouw5apatLlZZomfD6f\nmAftdhv5fF5AM+Y+WN1nJC4efecbGxuCkvf7ffj9fsRisbkci1KphMPDQxSLRRmH98NrLkN8uVB0\nFcZiMcRiMaRSKclvmE6nePz4MR48eIBYLIZ8Po9msyk+b+spt0iVB4DBYIDnz5+LQFtfX5fYCzIT\ncxUIXA2HQ+Tzebx69Qp7e3uSwHTWevE3mZJMzo00Go0ETCVWQ5CYbkmGTJ+Vtcjn53eYYkzNCjjV\nABuNhsRHEC+yS4hb5TTlWKFQCBsbG7h+/bq4x6vVKhqNhqjwvB4PDZ3PY/dcvD+aWNFoFIlEQty4\nTC4j/6+trUlkKEHhTqcj7xPsXMVTZUeXSihohudm40nV7/cRDocxHA5F3Weo53A4RKVSkSxCjSNQ\nGNip3jQT3G431tfXxVTgqajVv52dHXz++ediljCykKq+BvMWCQVqCrQZg8Eg1tfXkUqlJBLQNE38\n/u//PgCg0+ngBz/4AZ48eSKBS3oDLjv5aIY1m008efJkLvJOxwvwVBoMBjg8PEShUMDTp0/x7Nkz\nqQWwislg9cXrjEVmqno8nrkcCppufr9fTA2e6quccBQ+9KJEIhHZKIwj0Qlzi2hV00Gnn1NLoQZH\nITccDudOaJ3HsUjDIwBLDS4SiSAUCiGbzQqGRYFCTY+aiGmaqFarODw8lBoOZ/HhWXSphIJmcp4m\nLIpBacv6An6/X1yDTByhQLADxhadPLPZDJFIBIPBANevX0csFkMoFBLsoF6vo1ar4ac//SkODg4k\n4kxHFjIq8Cy7m8/HhJpgMIh0Oo21tTUApwlXBDP39vbw9OlT/N3f/R0qlYoEE2k6a7MyWadareLV\nq1cSSxAMBuUECgQCknDDXJK9vT2p38Aoz1WeC5gPUaZgZ4EYCglqef1+H7VaTQrj6DDxZdoWf2vP\nCT04TEriBmEuhg6D1vO3bA6154J4ArMtqQVQK+UJzWuy0A7/X4Zr8TOz2QylUgnhcBhra2vi9qT2\nwD1QLBYlnJq1G4rFouwBBtFdREsA8GGawZz7Jl4XbiVDWTEAehh4qrO2ATUA2qa9Xk8ASTKVNQrQ\nmrHmcDjwe7/3e7h37x5yuRwMw0A0GsVgMMDnn3+OJ0+eoFQq4fj4+C3tQ93/nBtzWURZKBQSVdTn\n84lbjtl1hmFIhOS7hABzfL2JyNhUgwlk0WwYj8dS9EQHYq0CMpJh9Vh+vx+BQEDU3XQ6jUwmg1Kp\nJHUoarWamEcUQmcBjTrxiaZYLpfDrVu3kEql4PF4cHR0hO9+97uSOn/hU/O1Fww4jfaMRqNYX19H\nPB4XrxU9RoPB4K08jlUwIH6OKevkJ2pR9EoQq6KrcjabzWV9ah5fIIB+YprmPzjrmS+lUADeBKGQ\nqCYyPZpMqE9rCgQrjqAZwuolAIDt7W1sbm6K7/no6AimaWJ/f19UaJbUWnZa0uQ4y81lVfutLix9\nn+97faxuWf5ooWanVa3C1FaNgad4IBBAIpGQSFMm8FCQE0fghlolaEnzCoVdIBAQ1Z3xJatsyFXH\n0t4OhtATZKYgu8hYWoBr4arfXxSev4gWvPdxCwWeBlp91TkR2ieuJ41BSLSptY+ar/FvAOLViMfj\ncm2qsMQNyKiL5sqqMn9sZBVSnFO+fp5AIqt2ojcRtTvGdwCYU7G1SXbRsbRwPm8Oyqpj6ddJF9VE\nFo11ke9psmoqr+njFgpWQUAftn5IZueRqTSDEAW3MpkVa9Dj6JLt+j09hvX+rKS/dxnm9iKk7/+8\nTGrVRKwAL1VgLUj1Gr3LnFkxqQ9JF928H+Ka1vUiXdR8uFRAo520vWhF2rO+a2VCXU14FbqA6vbR\nkNWT8C7fXXSCvsu6rjL2h6YPMdZFr/ku62VHH6wV/RVd0RV9nHSpNIVfJWlVbZHKZTUx7N6zu+bH\nbj6sStZ5OytiUCPxq5hf/N/uGlf04eijEQo6iIRExJy9H3SRifNEc2nhoMEqjS/o+yDj2sUmXFQg\n2AmpZV6J8xDvkwE4dHUFAoE5b4OOqmRC07Jn0fe7DISzzp+uocmALmvS2iLBYSck3sdn3oU0LmXF\nnt7HOHb3T0yGWNsyU+28dOmFgt6grAHA8NlgMCg5+PRUEHWme0sXs9RkBxrqTQ68cXdamX8RKm89\nCc/DEFZGWvT983o6eL8ej0f6PrA3AStju1wuKbza6/WkSQtDxZe5Y63C7CyhaH0uXfGKAp9FXVZx\ngy4bi7TqvZyHtOAG3u7RCcyHGZ93w+rDx8p3iwQwP/OuXrBLKxR0gIouu8aAm3A4LBFy9FHrcGN2\nOjIMY2ELLU4m05J5egYCAanlEIvFJMOPMfy9Xk9qKTB4qlKpoFarzQWRnJe4qCxCy/BgZhoGg0E5\nvYvF4lyhTjti6Kzb7ZYQWkZRZjIZbG1tIZvNSmXsRqOBw8NDyQRkkRIK12WCQTOkdR2pVTFtm1Ws\nWMmKORHNZnOua5Rd9SKOtwrjWzcSeQd4A4KuEhJstwn5PCwAlE6nJdOWtTwMw0CpVJJQ/FUC0XRM\nBIUCo0F1Zi2Dp3T5wZ2dHam5wOzgi9ClFQqcFC0YrH5vhrcytZmbhG3IgDdx+NaFty40Y9pzuZxU\nK2KFJyaoAEC1WkW328VsNpP8dhZsZUgtx131Ofl87EmYy+Ukvl4XSgmFQhIoE41GcXx8jFKptLBD\nFDcOeyKEQiERoCyNRuHLxjKGYaDX64nWwI1jp8Lq16hlLQr0Ybgu259RY+H9+f1+0WZo/i2LDdGb\nXddh0LyiqzAxKlZ/j9WNzhLk1hObzxQMBpHJZIRvKBTK5bIU4dHfMU1zqRC3PpMei0WHWFAllUpJ\nXQzm/jCojyYZcDEvz6UUCovsUebfk4FY/EQnh7ArFGPuF6Ux64X2eDyIRCKSd8DrsrAK6zUOBgMp\n4trtduH1eqUIibXDkbXGwqLnJPP6fD4kk0msr69L7UnWTGSlXm6WarU6V1bN7kSlUNBZi8zzYHam\n3+9HsVjEyckJAEh0IetZ6DyEZZGaVlVXd2qidsL4/Uwmg42NDdH0OBYrDfV6PQCQtn+LeIO8oGsZ\nas2IQpTFd5n3wUazjKikabTqenFMFt/h+jkcDinuy6I/mg+1ibXswLAKU/JBJBKRcv3k/bW1NSmt\nbw2Lfxd84VIKBeBtu4yRisQUKBj4GZoWlP46OQVYbIfxb14jkUiICm+aptQZrNVq8Hq9qNfr0kfS\nNE3RJLrd7kpJUdZ7YDhwLBbDxsYGHj16hFwuh0ajgWq1CsMwJKOx0+nIXDDpRRem1dfls/Pz3NRU\nP5mA9Pz5c3lG3j+b4fAEXRZybcVhtJpO7SeRSCCXy0lPROaxBAIBwSyo0QGn5lyv13tLoFvxJZ/P\nJ1W+4/E4EomEgKh8bq4RtaRut4ter4cvvvgChUIBtVrNVgs6a92ohbBLFGtoMuGLB4WOij3rmpxj\njSnpZ/V6vXA4HGg2m5L+zr6VrOX4LmYD6dIJBTsUnuovmZppuEwOYcw7C5Pq71nVKZJ14ln8BICY\nIAQsDeO0lDZVUDJ2IBCQDE6eSLpw56Ln0sRcjkwmgy996UvY2tpCPp/Hzs6OqJ+RSAS3bt2CaZrS\ndYnp5ItUbKvrj3O3vr6ObDaLRCIhjXGbzaakHzMcmc9JbWuZpmAHkvJEjcViyGQy0riE9jULyrAi\nFNu2U5jYrRnvg4KU2YSZTAa3b99GMpmUNOzpdIpCoYDBYAC/3y8p4r1eD8fHx0gmk2g2m8JHq4CV\nmi+Ju7BaV71el2I8AMRc0F4xrUna8YaeXx5SDodDQGHgtAAQgLnmRR6PR6qR6dZ7FwUbL51QWObO\noY1NVZG5DQQYdZIUP88EmWW9ljMSAAAgAElEQVSaAsuM93o9tFothEKhOWyCwBeltt/vnzNjeE9k\nhLOeSxMblzx+/Bg3b95EJBLBn//5n0tpdbbCY7o4G6h0Op0ze1ZaTSSWr8tms/B6vVIcZDKZSMlw\n3aBVd+rmfFkTc+wKv+j5p7lCwX1wcIBYLAbTPHUl0zSjQNfl86xrpsfRpexu3LiBXC6HZDIpmkC5\nXMYvf/lLmKYp5hLBTbZb067rVTwRGvhjmjsPlEajIfxBs0gLm2UapN17/JvClaYczR2aWePxWDTj\nRet0Xrp0QsFucaz2KrtGlctl+Hw+pNNpuFwuFAoFQed5LTvmshI/Q2bjwjJvncxP6W11c7IyciwW\nmwMbz3pOfuf27dv45JNPkEgkkM/nsbu7O6eKhsNh0ZBYaowqt10lIevftIFTqRRSqZRgItyArENA\nnIE1KlgHkKCfdSyrC866XlYbv9lsiuaVSCQQDAal8nC9Xkej0ZA0YOvpbfUk0PxIpVLI5XLweDxS\njq9YLGJnZweVSkUKr/AZWfCU5dpWwRKsz0YQkBprpVKRFHQCxCyhZic0Vx2HP6y/QTwkGo3i/v37\n2NzcRK/Xw9OnT6VsAL9z3ufSdOmEgpaaWp3iJiLIwveY485Nq5umkCgcrKRBQZ6QbHPfbDbnsi3p\nOuOEaxCOrjaqvqucOtw0bAMWi8XQ6XTw5MkT8dN7PB4kEgncvHkTiUQCR0dHUsDTau8vejZuJpbC\n56nd6XRQKpUQDAYRDofFrHA6neh0OqI58STnPNitFcfQjExhQJNMe02y2az05Tw5OcHBwYEUCGEt\nQqv7TjM755jPwnJkhUIBe3t72NnZQblcBgAZb21tDZPJRHpqcNMSBFx1AxG0pTeF6jorPIdCobnm\nQNZkr1W0EeBNTQTdxo8H3rVr13Dt2jVEo1HpY6qLyfA+f2OEAvB2EBB/yNSJREJOuXA4jGAwKA1l\nucCclFVchARycrkcUqmUtGX3+/0AAJ/PJ14NmigaZZ9Op9je3sZnn3221ITQtiNVUC5uKBTC8+fP\nUSwWBTSNRqPI5XKIx+MCLvI0XRRQpIWpvk+e2ixEyw7GkUgEmUxGnp3zzIAmtpOn23IR2XkkCI7x\ntGPzl7W1NamvyW5bNIuoAS1LezZNU6oS0UvBEuiFQkGqVPn9fuRyOTx69AgbGxvS5m93dxfFYlEC\ntM67eWiGsHoy7f1kMilrwsNJz81FomzpjqS2x87r2WwWw+EQe3t7UnFbHxKLYjxWoUspFEjav0zb\n8c6dO4JOf+Mb35DCrgSuCMzQFqa0XWSf0u5Np9O4du0aQqGQlLniqcWSZhowop8/Go0ilUrB6XQK\nrrFIU9AgXDQaxZ07d/DgwQMEg0G8fPkS9Xodm5ub2NzcFO0jnU7DNE08efIEBwcHEiexrLyX1oA4\n1ubmJm7evAngtMpzrVZDKBTC7/7u7yIYDMLtdgM4ZVy/3y/A3RdffCHl4KghLRqPJzljSFhlyuE4\n7VQVDoelTd3z58/x6aef4vnz52i1WnNYwiINiM/rdJ62fG+32ygUClJ2jY1SMpkMhsMhHj16hG99\n61vIZDLodDr48Y9/jKdPn8p3NI+syo80XSlcNzc3ce3aNVlz4jR2HafPs0mpGfPQc7vdyOVyiMVi\nePDgAY6OjvCDH/wAP/nJT4Q3LzqWld5JKBiGsQegDWAKYGKa5j8wDCMB4N8C2AawB+CPTdOsX+Da\ncz78SCSCzc1NpNNpjEYjaUHm8/nE9nc6T9uTscgpgTJeZ5Gtz82XSCTQbrelOOtgMBAgjl4F5g+w\nZh4LsDJqcJH3QT8XowvZG5C2ORvkckHX19fhdrulQSpPNh2FZ2en8nUCs0SvWcKe95pIJKQxKu1s\ndm5iYxGegrp4jR3DUUOiJ4brxpqJ9G4AkP4cenNqQaa7f9tpIPxss9kUNzFjIvj8sVgMX/3qV6UN\nwO7uLp48eYJyuWwbYbhq/AC1SuBNB65oNCpYU7fbnXPLWitJLRvHqknS9c7I2ng8jq2tLQQCAelt\nokvX6YKx5IGLCIf3oSn8nmmaFfX/nwD4j6Zp/qlhGH/y+v9/cd6LWgWCDo8lhpDJZKSZ52QykWrB\nfr9f7GJOMG1aTZywUCiEGzduSDdkRvTx9OH16T4kwGStKHSWHac1HwYeMRpNh2hfu3ZNqkGxzTjD\ntjWgdBaDEfwKhULSb5NgG/3cHHcwGKDf74tXhyHdeiPQHWYl3dSF88PoO6q/2iTodDool8tzQKYW\ncGeddjyB2b6PeA/rGFKgsT08a22+evVKqoMzhmDZOPpedEAR4yyIx9ANGQgEcHh4KDgTr23ncrQb\nR4PpDGv2+/3SvfvatWvY3NxEt9uVsHSaysCbTti838tkPvwRgH/0+u9/BeB7OKdQ4OSQGRkjz+AN\nus9KpRJGoxGazaacilxwTYtOcC4A7elYLIZisThXqZcmBPAmR4L5Fgyv5qLTll2FydhrkQ1B6Vqi\ne/STTz6B1+vFixcvpJ06S8tbE7XsiExMDITI9WQykbDcbreLk5MTGXc2m8HtdiOZTMoJpOdhmQCa\nzWYSq8HfDLqixuDxeNBqteSU0ziQ3jRk6EWeKGqBs9lMmtWGw2G591AoJH1Gi8Uifv7zn+P73/8+\nTk5OZK51qb5lm9Xq+aJmxzgJh8OBarWKRCKBXq8n+IYOWNKA7Fnh1Lw+cSBGtTL83jRPm8Ps7e2J\nGWn10nAOf125DyaAvzJOy6n9H6ZpfgfAmmma+dfvFwCsnfuiiiGYpMSS7qzWO5lMpMtvrVaTaC7a\nplpS2tX912o3VeRYLIZsNovj4+O5BabG4ff7BQDMZDLiJjQMA7u7uxKOvIw0FtDpdHByciIBMEw+\nWltbk4CUWq0214Fo1Xb32janGsoNxWhN3YiUp2smkxHXZ6PRQKVSkVDkZQzNE5pgMOM2+DOZTKRX\nZqVSEbNBr4cGmM8iCmryAs1DmkCbm5solUr40Y9+hB/+8Ic4OjqSnBUtVFdxF2rPFw8YalZOp1PU\neCbHWRv66jU5iyh8eADSTc7O4fV6Hb/4xS/m3O+8d5pwZwmfs+hdhcJvm6Z5bBhGBsD/axjG5/pN\n0zTN1wLjLTIM49sAvr3owrTFWECVwUTcrNVqVUwHlrvWCS4MPNLgoOXe5k7tUCgEn88nHZs4jmEY\nwmhk+O3tbYTDYaRSKQQCAWlv12w2AZztDprNZpKWrN1wrVZrrh1etVoVdx2FnZXRrKepfk7OR7fb\nRaVSwcnJCTY2NgBAMu7i8Th6vZ4AaGzOWq/Xsb+/j+PjY1FTOW9WIpagey9Eo1Ex+5jJBwAHBwfY\n39+XpiX6nnW8CAWJ3VgUbnpDdzod8WwkEgmEQiG8ePECf/u3f4vDw0Nxry4SBqu4CvW9AadmULfb\nFf4jBkUsy+77Z42l3yOGQwyDbfz29/dRrVZlDrT5oDGJX4tL0jTN49e/S4Zh/DmArwMoGoaRM00z\nbxhGDkBpwXe/A+A7ALBIcNB1RjWq2WyiVCqhXq9L9yO61igdqfKyaQsnyi7IRyPGJycnyGQyiEaj\nuHXrltiODBS6ceMG3G430um0xEqwjPjOzo70vASWnwi8l9nstGa/2+0WfzlBK7Yapw1slxikr2f9\nn89FRi0UCnNhx+yDyHoK0+lU8BoK2YODA7x48UI0hUXx+8QlSMweZB6C2+2WgKRms4kXL16gVqvJ\nd/n8VoBsmcZlGG96d9J9THBxY2MDmUwGk8kE3/ve97C/vz8XIWmNG7CbQytZtQuaIMwZmc1mqNVq\ncojRC6VNo1XG4Vi6WBBNiXa7jX6/L5mx1EzoqqS5p7WEX7n5YBhGEIDDNM3267//SwD/C4D/AOCf\nAvjT17///UWuz8lkFyE9+eyNWK/XxX7jhAwGA0kc0nUU7HIfAEj02cHBAbLZLNbX17G+vi4mCz+X\nyWREGwFO+zR2u10cHR3h+PhYsIHXc3OmlGZexXQ6FdXQ5XJhc3MTwWAQR0dHKJfLsilXVatJFAwU\nnpw/0zRRKBSwvb0Nt9stmlWr1RLXYLVaxRdffIFyuSw9Eu3G16etTtphtCHnj0zd7XalMa8u8W7F\nSFZ9Vj4TMxY3Nzdx//59wUQKhYIAs8vWZBXPAwPj6AJvNpviLmbtCYbJWyMZ7eZs2VjkXZ1F6vF4\n0Gg0pF8kQ591jojWUDk3F6F30RTWAPz5a5XIBeD/Mk3zLw3D+BGAf2cYxj8DsA/gj897YW1b8rRj\n96BAIIB6vQ7DMOayIanS0fY9K5JMAzKtVguFQgFPnjyRFvculws3b97EYDCQkzCfz4s3YDY7TWGu\nVquo1+totVpy7bMYTGsudBlubGxgbW0N2WwWg8EAxWJxTk08j2DQqupsNpPQXoKNqVQKL1++lN6V\n/DxPwGazKYlSOqR7UQq61hQCgYB4HNgwhZukWq3OBQzZaSD6RF80f/pvpk6vra1ha2sLGxsbCAaD\nyOfzcmhoF66eG97/MgBVv8/oTgZZDQYDJBIJzGYz6fBN8NQaCr+qMNCmLrWORqMxh2XwsCPfa6HN\n5zxPoNRb93LRL75PsjMfrItPNYrIr1XN0uqnFdw5a5Myd4HIr652RNcSVXiNXOsMOL0oWoW3kq5E\nRHAvl8thY2NDGPr58+d4+fIlTk5OBJA77zotGt+KpBPU0hWJtBqszR2+r6+l5zCZTCIej0toMbMS\nm82maD37+/tzJ6nWNqzzuOi5uEb8fePGDTx+/Bi3b9+W0OPPPvsMf/mXfyknt14XHbNyVoakdbMS\nO6H3gVGvlUpFvFYX0eyAN633uC66AhjzROjO1etj5bklY398fR80aabW2ACAtzbJeSSy9fqmaYo2\nwIlttVpvnVbWMRZtOutJZPc+AIllp9+cjULpatVq9kUE96J7tGMa2qfccFZ0fhGT6TEYVFUul8Vr\nwngRJlfpfP9lqrWeQ7v7p0eF0aisbcBIwnK5jJcvXy7MP9A1IM+aW6u2yfGpMQBvMI5VXMXLiF4z\n7Z3ScSzMgXgfYy2jSysUdP4CSZ/KyzYe8Lbqd9bn7Py9dqciSb9HgaKjyBbdn5XJJpOJmCA8jezs\n7IvSMuFF0kCcPv01YGl3Pb1xCZwyR4RCRmtU1nRiu/s8y77X481mpynL3DBerxf9fl/iP+xObf1c\nFyFt+mlz6n1uTq312iWhLeKLd3muuetcVvPB8j6A5Sc0P3cRNdtKduPoe9A2NF9b9v+yca12JF97\nn+uyqttNf1bTKvOt1Wv9OgWmBnytQsVuvLPumcg7r8/6ixSqxEd0GLNV+7zMZDVbLqIN29DH10vy\niq7oij4orSQUrtrGXdEVXdEcXVpM4TeJtJ1+liq+qgn0HlXKj4KspobdPK0K/lrNwlXxp/9c6Eoo\nnJOsdvR5GMnKjATj6Caj7a09IfqzrA2xSqHRdyGO/15AqzME4XnsfDusQeMxGrnne/ysLnMPfBiQ\nUAseDT6/L+Kzkh/09d+nULsSCiuQ9aS3xlCc94QH5uMVmMhimqakzLJ0OL0wLP9GkNPaT+B9ktXb\nAFx84yz7nh0jnyVE7P7m/NtV2dIbSOdScP4vGuRjdy/6OnYA57uslR5PN0biWMtidc5LH6VQ4EQz\niIRx+6yn4HA4JHPS6qdedk3tVWCQSiQSkXh6wzDEzcXqRdr/vkokGcOZWVMhEAggnU5jc3MT4XAY\n165dkxZkTOxqNpsS9szoy0KhIMEy73Ia8bl1JWefzychyp1OR6L0LiqErCeoPvGoJXFTc/Mu04bo\n5WBwmS69zxT66XT6VrcphkQDp2HqzJE5KzhM14ugAKLwZjh3NpuVilOM0yAPMvlLp2ufh3QwUywW\nwze/+U2pJN7r9XBycoJCoYBKpYJWqyUxMBcVDB+FULD6zsnEkUhEyqLlcjnMZjPU63VUq1UpskLV\ncVnZLataxmQotgVLpVJ48OABQqGQlH5jYg9jJ3TloUUxDxQ6uu3d1tYW4vE4UqmUhDlns1n4fD7J\nr3C5XKhWq4hGo5IgRmF3VryG3Tzyb62VsAuRzmxkhmWpVEKj0ZA8iVXWiHPJH+0y1HMAnNbAZH4C\nhQ8T3axzqL/LTcncEUY5sv4GS+KzNwLrbkwmE0mj5ia3FuCx8gYjQPWBxHnz+XzY3NxEIpFAJBJB\nrVaTDNhOpyP8xzlfVTBwLGaw3r17F/fv38dXvvIV4QHWm7Sao0w0u4hguPRCwcpkZAin0ylNTe7f\nv494PC6lyfP5/NLS53ZjAG9X0mXOAIuDslYkW46xlRwDdFbxK1NlJU2nU9kwDocD7XZ7rsgGpf7a\n2hq63a6ciDz9KIhW3aycP7fbjUgkguvXr8MwDKTTaUSjUSlTziCkk5MT1Ov1uU1hp/LrGAUKVfbH\n0BuIrc+4Ufv9vpQyYwMe5mno007HPTgcDqnizOrbLI3GkGCeyrlcTupGsPkra0r0ej0JGltUlITz\np80BmnZs7Mqs2e3tbRiGIcV2LqIVWMfl9TOZDB4/foxvfetbCAQC8Pl8yOfz0v+j0+nMtf3jNX6j\nhILdA1FlZHqujg3nb/ZM4ImzymlqZwtSMDBP/+TkBM1mE51OB7VaTVRqBsqsYp7oKEViBew/wI5F\nzWYTu7u7CIVCUjaesfosvHFWmKsV+9CnNuduY2MD9+/fx82bN6X+ot/vRyQSkRObDUd2dnYkWtBa\nJ0ALbZ7efr9fKmaxRybrPrKgy2QygdfrlSYwbOLC8G4dvUrSVYmYMhyPx0WrC4fDMresFs2eCRQI\nDodDwpw13rBozcgfulaBrvvJwCm2q9PdrZjApM2u8+JPrDt669Yt3LlzBz6fT+pRsF4Gi8vo9gbn\n0SCtdGmFwiLXEqv7RCKRuYXqdrs4Pj6WDDbdPUmrrWeNxc2mGYcM6/f7JSNS24ncnHZagnUczewU\nDIxvDwQCcqqVSiWkUqm5jENW/mFhUztTRT+PFgw0uQKBANbX1/HVr34V9+7dQyQSEXyCacbMEiWx\nDJ3dBuKzcCMwL4FjsYs2+1qwPgXxIAobml80abjh7Mbiqc5CIhzTNE1pGzcYDNButxEIBOQz3NCc\nM92XYhG/kSc02k/tTPe+XFtbQywWm+M/XZqNAk0DomcRtZJoNIoHDx5gc3MThmHg5z//uRQqnk6n\nktBnFxZ9Ebq0QoFkVRuZs89qPq1WC5VKRRqC6Fbx+hqrSGarq1F/hyZLr9eTFGBrco9mmkXX5nV1\nGzBqGqxwxBoGrVYL6XQakUgEiURCVEndUn3VWnxkZJ/Ph1u3buHGjRvIZrPY3d3Fzs4OhsOhnLy6\nL4PVDbpI6Om5Y2FYVkJiq7bJZIK9vT2YpimdotPpNADMVZ4iDrDoOagp9ft9tFotJJPJueY8FDzE\nRNhHw+v1SpUpCmhqQ4sODS0Y+Dl9CFD7Yiv6YrEoVbhYR1IfSucBhdkb5O7du3jw4AHC4bAUv3G5\nXMjlcjBNU/AYYlbvoiUAH4FQ0MQFYboqgLnejqPRaM4ToJl4VduKn+WJxC5NiUQCyWRSQEyi13an\n8qL75ud4cvH7BC8dDoecMFrlJ9LMU0YX19Dl0c+aO1Y95nw1m018+umnaDQa8Pv9kvZMoK5Wq6Fe\nr6/Uoo7Px56XuvFpo9GAaZrY29tDtVqd68HJ067RaMxVz7YzU/ibgkdrJxSshmGIGTKbzaSBLfAm\nC7HT6cz1GD3Lq6KFADCfrEdshgVXWPZO18Gwm69ViIJsa2sLyWQSTqcTpVIJ/X4fGxsb8Pl8cDqd\n0p1cJ+SdVRJwGX1UQoFSmaWuCO7kcjnUajW0Wi3JjtNC4SKACyeUdRvv3Lkj0p/IuF3e/FkCSPvU\ntXmjuzuzHyHtZmpGLLnOzcANtYqmYBinNQ9Yv5AaVq/Xg2EYCIVC2Nrawu3bt+FwOLCzs4NXr15h\nZ2cHpVLJNsNRawecM5oBBMMo3A4PDwWAIyBIsI/FXGu1mlRqXpZNqcejGUFQluYX55mmFj0djPXQ\nguQ82pb+m27CW7duwe/3S9s6VmHS4LMdRrLKmrE2BT0ppVIJyWQS29vbiEQi0gSJgpv3dlF3JPCR\nCAU+INu/k8G3t7exubmJUCiESqWCarUqKpt1gs4zSVxwh+O0Z+DGxgai0aiUE1u1ZZvd61rt54Yn\nek77kPn6rHV4/fp1+Hw+KQxLwbhKgRD+pumVSqWkT+R4PJb+mLdu3cLdu3eRTCbx6tUrvHjxQk52\nXc1q2ZzxBAUgABv/Z0MY1qGkp4Ol3huNhngg7Kpv6+dkDUTyAzEglnlnjw/eA92uBBuphejKy6sS\nhQjXIZvNYmtrC+PxGLu7u3j58qV4T6w8eF6h4HA4xE3tdDqlulcikcD6+rqYK7rj9PsQDB+FUNDu\nSNqT29vb+IM/+APU63Xs7Ozgb/7mb/Dq1Sv0+/2FwNt5x2N3nnQ6jXQ6jWfPnqHRaEiwjR2dtUmJ\nCcTjcWxubkrHH/arpE2cSCSQTqexvb2NdDqNTqeDYDAoG9qq0i4jmkHUNjqdDtxuN7a2tvDJJ59I\nJet2u43vfve7+Ou//msUCgUBzZaVlbeenixF1m63UalUJH5ge3sbDx48QKFQEJfo3t4evvjiC1Sr\n1TkTZREuQ62AgB0F42g0Qr1eF5cmNz4/z4KuwKkgYJCPrii9KpE3CNh+/etfx6NHj/DixQt8//vf\nF8/AIpNkVcFAUy+TyaDdbuPZs2fodru4fv06PvnkE5imiefPn0tJQgLD5zWX7eijEArAGxeh9rOz\n8Qu1hIsGaywiBpq0220cHh6iWq0iEAggHo/LZuGpo8ddtPCGYUgJr42NDSQSCQl+4UYYDAZSej2R\nSCAQCAhewtOeQTpaFV5EuuQazSpWmur3+4hEIqIF7e7u4mc/+xny+fxcezrr8y0ah9oCIwUbjQYA\nIB6PwzRNiSGIx+PodDrSnZnFcFfV6sgDDodDkH6v1yut76ihUKgzpoGeJMMwxPzTxXbP2sQ0XehZ\nicfjYgaxjLwWWna0ilDgdxmty74gyWRSvDb1eh3pdBqVSgWRSATVanUueEnjC+elj0IoaHcY0XAi\nrv1+H/l8Xmrvk1Y9Re3G4m+ecqwMbJomIpGI9IGwCxZZRi6XC6lUCslkEtlsVlrhUdi1222MRiOk\nUimEQiGk02kpu65dTsQVloUec86IS3A+6KZjFGE2m0W/30ej0cDTp0+xv78vTW3Oe+LoICAGfgEQ\nj0I2m8XDhw/FDcrAm2UVmezGYNASg584L2xhb5qmgJipVAqRSETiQCgcF+Ej1rH039rbkE6ncfPm\nTanyXS6X59bGGl5/lltcE6+h40b8fj9SqZTMJ3uA0qNE16rVTL0IXXqhoCeTqDMbs5TLZRwdHeHo\n6Giuyo51gXUQyqpjMgiFANazZ88keIguNtqoegz+bTeWx+PBtWvXkEgkkM1mEQgE0O124Xa7Ua1W\nxd1GlZc2Mq/NKEqiztbMP+szaN84Nys1hEQigVgsJq3mnz59Kh2mF4X8LiMdK0CAjw18OG9cu/F4\njFKphFqtNleif5U14tqwqatpmhKkxM0OnG4cdmwm7hAKhZDP5wVcpYayaM34mlUgRKNR5HI53Lhx\nA5FIBKVSSex9amY6poPf588yk4VrzchValjRaFRyKhjC3O/3hQfpyXofWZkfjVDgZLKhSTqdRrFY\nfKunnhURB1bXGjR2wQCc2WwmSUgMc7Ym41iFziKwkfkaLEXO7tnlclkAL7akS6fTCAQCcLlcYm9T\nYyC6fhYDUNWlcOH1GC25sbGBer2Og4MDPHv2TMyG82Iyeo10UI8OiyaoyhLyR0dHF9JIKOjYtq9U\nKmE2O+0pacV6ksmkdPXy+XyCk/DzqyR48XrkB7/fj0wmg/X1daRSKWnQQtOBmqU1KYlRqQzpXuUZ\niaENBgOEw2EUCgWUSiWEw2HE43EBVRlpqs2vi2rKwEcgFID5SWI4qcPhQKFQwMnJyVumw3kEgtVm\n1B1/6elot9til3s8njkEmottNV3snoFMQ+Td6/ViNptJ1ymqvcxHME1T+kxUq1W0220p+a5DbRcF\n+hAQYyt6eh+2t7dx584dpNNp7O3t4Xvf+x4+/fTTuU1qN2eLNCC+psvFcwPwf4Y+N5tNPHv2TNyP\ni+ZtmY3PWAg+D+M6qHXRJcrndrlcKJfLKBQKKBaLUvWZz8rQcbv50yYBw+optBn8VCqVJC6D0Zge\nj0e+T+GzSis3vaHZ3evOnTuoVqsoFos4PDzE7du3Rdup1WpzmZ7LDqZV6aMRCgxSojpoGAbq9Toa\njYa4Y3RMgnVyVrVX6XvmJvL7/eh2u1JKPJlMolarScix9fvLxjJNc65HZSwWQzAYlNDiyWQiobet\nVktahbHRCDs20ftwlpuQpzbxiXg8jmw2i1wuh3g8jtFohL//+7/HL37xC+kixeewnt5nMZl+dp6q\nXDOebD6fDycnJ2/1xrR7hkWClWO1223BFjKZjJhzNGNCoRAymQym06nkqxDHYOl08s2yOdR8xbbw\nyWRS1o0Nc5gURzc2zTSrWbWKaUawlpW+9/f3EY/H50rxA6feGK0l29WTuAh9FEKBjEbENxqNwuv1\notFonBnRdx4cQat6TCGOxWLSiZlJScyx0DH1eqxFpymxg0ajgXq9LkFJzMHnCXtyciKdmZvNJvr9\nPtrttvikGVO/Sqw754zg5vr6uuSNnJyc4Ic//CHq9bqtX33VOaTZRRCQSVFMayZ+kUwm8eMf/xi1\nWm0uN2VV4qmuW6ZxHG50un1jsRicTicajYacsvV6XQKoVql9obEECjmaXjrehLEeVPXpFrerYL2K\nzW+apgicVquFly9fYmtrC6FQCLdu3UI8HodhGNjb2xOPC02V9+F9u5RCwQrwkNnIWJFIRFqgnReo\nWjSW/puLSEApGAzC7Xaj3W7j+PhYQp3JYKtuILZ3f/r0qQTphMNhdDod8UIMh0O8ePECJycn0nGb\nLj5qGdoNuoix6T0h0ysxEO8AACAASURBVOZyOdy8eVNAv0KhgM8++wz5fH6lFmfL3Fs6boARoLqz\nEV13nU4H+/v70ndzmaazTLBSU2g2m3JI0CNFN6Xb7cbTp08l4IzzR1vfWqnIjjRgyDgACiRiLwT8\nGo2GRBfStawDo8ijqwKBdB0fHx9L9y2anbPZDKVSSQ4YFlZ5HwIBuKRCQdvswJt+iIPBQIKVZrMZ\nisWiTPxFUVd90lNto81ZKpWkpfp0OkW9Xke9XhfJfNZJQ+KGarVaeP78OQzDwH/6T/9pzrOiVT/r\nBrVT5e1e10TVmFmY7OFomiaOj4/x05/+FE+ePJFT7aznWPY+7W4yrcvlwvb2NpLJJJLJJGazGSqV\nCnZ3d+eCjOxwoLPupdVqIRgMSkJauVxGKpWac9cyRqJarYqbku9bazMuA+UYM+JwOMTD0el08OLF\ni7k09n6/L3Eyy3hx1U1LLWM4HEoexYsXLwTc7PV6qNVqAtYuCy67CF3avg9Wlw5tY51uSzzhQzyD\nDgThPXDiVxUGJM1wPHGsSLGVyKiL7Hrre3bXYJ9Kp9OJ7e1thMNhAMCLFy9weHiIVqtlGwF6ETIM\nA9lsFoZhIJVKIZPJ4MaNG5LNWqlU8OzZMxweHtrGCVjBYbvr679DoRBM05RALl1pyBqzYMUuFo21\naFzmc/B/zRdcvw/Fh9qEYdAWx1zWgm8BffzNYOz8xNQgaMP9qu5/mfq8yndJZLBFMRVnXYfC0rqh\n7E4nh8OBRCIhdjZVXwYNWU/rdyXa1l6vF9FoVMDa4XAoXpRms2nLyOcRCgCkUIvmDasgtRai4fva\nC0CNatG4wPwBtYg+Bj7Eb4JQWPBZ+fsy3PsqZD3lNK2q9mnPih0TL7qGBgEXYSfvi7jhGFDF4jCG\n8abgrS40u2wtl2lJ+rn4XbtnJG6gPwe8MRmtY15E+/tYePA1fdxdpxfRR7YIAFbbvKtc4yJgqkbB\nPzRReyOdVaNw2XOctWGtoN2yZ1zV5Xke+hj5cFW6aht3RVd0RXP00WkK74usAKL1PTug77zXXoSu\n26nyq45lp1br/xlQZXdd/m2HS/DvZXUY+Z5VA3iXeVpm9izCHawm1KI4FTvz47xYxir0jnb+pRvr\noxMK2nZchsCfx/1jtdW1312Pq+1TEt1cZ4U52zEjf3Qmo/ZwEBAjoGZVmfnZRfOgX9fRgLokvBXM\nZRSk9q/r5180h9ZnO+t9vsZov7Pmj69r5J/3xdetws56H3yGdwWMNU6jn4c4hjbzLmLyLRrXbmwA\nbwnrdxUaH4VQsNusZA6CSYvSpledIA1c8X+NXuvsN36OgJVelEUbx07wMIGHv7kZzyrhrk9zu89Y\nmUhrLgT9rIg8P6vReH2vq3gpVj119dha6+BcLtu41g1v1Wz0vVqFpvZ6aOD2PECv9TkBvDWenSC4\nCD/aaUFaKNCTRV71er3ynO/Sc+LSCgVGxzGPnN2Uvva1r0mWWrFYxP7+Po6OjvD06VOcnJxIJWTr\nCWu3GHyPJ7L1tKX/mz+smhQKheB0OhGPx+H3+yVk9/PPP5dw21Wi5IA3xWMYv8BxKCyA+b6TTH4h\nmm8nEHl9awKOLqOuPQA64QzAXEIPA7oYbWnHbGRc3fSFIch0TTKJjVGZo9EIw+FQ6m2apimuUmtR\nXOs4ACRIyqptMQmLqdvMSNSRr8xT0MJymTDX2gjXg/0z2HiGApdzB0ACm1iMlnyxzGSyakI6QY+1\nIba2tiTKVjfPabfb0iGNQWIX0RrOFAqGYfxLAP8tgJJpmo9fv5YA8G8BbAPYA/DHpmnWjdOn+V8B\n/DcAegD+B9M0f3ruuwJk8wUCAaytreHOnTu4f/8+tre3kUqlEI1G59JiW62WVLUF5pu6LHiut1Q+\nMoBeCIaYspIPI/disRgASNUiwzgNvT06OoJpmhLuSrKquBQ0zCJkBSZmTrIaEzc2w2l5Td3oRqvj\n+vSgAKBwYSFVazFTt9stpcsoGLjBuYlYbbrT6bw1h8B8vgh7YwYCASQSCYTDYYTDYdkU1WpVyrgz\nBJm9HxiExMpaeiyS7gTFH/Y+YC4EG7GwyG6325XWdzpWRJujy7QTzg3XKJVKST8LCkwmyTE0fTgc\nolqtCn9yHRd5SqwmAYUc+43mcjlks1kpFOvxeFAsFqWOpmGcFh2KRqOS8HWR2hiraAr/J4D/DcC/\nVq/9CYD/aJrmnxqG8Sev//8XAP5rAHde//xDAP/769/nJjIvw1MjkYhE5JGxyuWy5A1sbm5iZ2cH\n5XJ5qepNWmR3cuN6vV7JLmRqs2EY0oxG9y10uVzo9/vCoBQSds9EJtQZn8lkUhaZzUx42jqdTimu\nUSqV5HS1qrN8Hob6Uoj5fD4RDtzoAOb+Z6IX7Xuv1wsA8Pv9Et5N4aS1BT2/FArBYBDJZBLpdFoK\nxTBXgCdnMplEJpORXoulUgmFQkH6Z2qTzaoFMQ07m81KD85oNCoJa8x9MAxDMijZD4TmA7NMrQeC\nnWbC9dKaDwXCtWvXEI1GYRinKcwUuiwxzyZCvB8dJXsWDsP/qTnygKR2QO2KB8tgMBDhyvUhn5xX\nWzhTKJim+beGYWxbXv4jAP/o9d//CsD3cCoU/gjAvzZP7+L/MwwjZhhGzjTN/Lnu6nRcDIdDsZP2\n9/fh8XjQ6XRwdHSE0WiEUqkEwzCkwWgul0OxWJybmEW0CJgi07GScjablRRcqr31el2awJJR2WaN\njGln1xOLoIBhufVYLIZoNCqqd6fTgWmacgLy/tj3EHhTY8KqjvKEATCnxrPQClPDWUFIq8as/xcI\nBACcRigOh0Ps7OxgPB6jUqnYziPviXPHQjD5fB7dbldOSZoEiURCkqQ8Hg/q9ToAyLotw1KoUfH7\nsVgMoVAIhnGaNFcul+V52BGaFayZhEZziPeuTQkrf2jzKhgMIpVK4fr167h58yZSqZQITQozpnOb\npikFaXVVpEWHBXle/09+DAQC8Hg8Utz36dOn0lIwHo9jOp2K6UAh9C7RqhfFFNbURi8AWHv99waA\nQ/W5o9evnVsoEPAaj8coFosAgFAoJBV4GbfPxqher1fayZHJVpGQVuCJJyiLkWxubkodAPaPBCCl\nvnQKLjepnXTW77H4CYu20BwJBoOSVkwzJRKJSEhvPp+XueHmt0PuWdyDreVZz4B1Bpi5SG2HG3E0\nGomwmM1mCAQC0oDE5/O91THZCtaxCW+pVEKpVJL6kjyRWSg2FAqJNsLmqGx5z0xHuznUBWW46WlL\nu93uuTLxo9EI6XRaWu+xvwTNIwoOake6UI0VR7CmTjMxiQ1z9vf3kc/npUM5DwoKf2omZ/GhFg76\n8zSreK1KpYJutzs3v3wG4ltWbOI89M5Ao2mapnGOMGWSYRjfBvDtRe+T+Xq9nqjCpVJJatIxd552\nP+1Vno6L1DTLvev7EbsxmUzizp07uHfvHpLJJFqtFnZ2dqQyEXEGqt266CptOStphNp6utLG5QYp\nl8tiG+dyOemZoIuwOBwO21oSdqg18x6Ydp7NZqXhK1PAWSOSG9jlciEejwsoxxOWWpF1/mazmQCF\ntVpNNhG1DtrSbCPHOaCqzfbty2pEEANgizm93loT4Kai5kK7mtqnFYux8sgiLIhmSzqdFn5kjwxq\nC8BpIhoFGwXCssQl7a2w3hOFHwHN0WiEQqEgpnQikZir7sSs4XepbH5RoVCkWWAYRg5A6fXrxwCu\nqc9tvn7tLTJN8zsAvgPY5z7wAWkD6tbvbEtG1Z4nppbuWgXj9axkVdO8Xi/W1tZw69YtfPLJJ1Lt\nhtWC2BiVtjZrB7DYC4FBOwbQmgJVdQAyBmv3ET1eW1vD9evXsbW1JR2F2cvS+oxW80ELBr/f/1Z9\nRmoHZDDd8CUej0urMgpBpl1bPQK8B25klgjjycZ1ogkTCoVw//593L17F263GwcHBygWiyiVStJt\nms9jFQz69B6NRoKw82BgWTzgTft2qv0Oh0M6etMLAcynzds9lx5XN8yloDk4OMDe3h4KhYJ8x+12\nS40MzotO67Ym8VkPLqtg4DPT1CLgGw6HkUgkBIcBIJ4bXu9XbT78BwD/FMCfvv7979Xr/9wwjH+D\nU4CxeRE8AXizSJSCPAFYzScWi2FtbU2ahrIHAtXcVQNVCMaQiXO5nBRWnU6nUtSUhTl1iTGqs9QQ\ntGptHZenHIWdrj6se2HSvRSPx7G+vi7l4NgST5/m/G2dN9q29KKwNwH7L3CcVquFV69eyelJtDse\nj6Narc6lqLM7lXWzaibWpgIAwUhYZ+HmzZv40pe+BJ/Ph0qlgmKxiOPj4zktgfdvfTYKCgZesdEM\nBR/XnWAfK1oNh0M0m00pjKPdghpotOM/LTBo8hFwZa+RdruN2WyGSCQiwCdNFBY/Wab9LNMeKGiI\nmVH7ymQyiEaj8Pv9MAwDrVYLxWJRTGtWBL9oOvcqLsn/G6egYsowjCMA/zNOhcG/MwzjnwHYB/DH\nrz/+Fzh1R77EqUvyfzz3HSmyosK0g2OxGFKp1Nwm5OvJZBJHR0dzteuWmREUCD6fT1qA3bx5U6r/\n7u/vS/lu4E2cgd/vnwMYCQjqCEBdOEVLf+IAvFYsFhMtaDqdihcjEonA7/ejWq2iWq0KQy/roqRV\nUWYp+nw+BINBDAYD+Hw+FItFAchoy89mMyQSCQE3WRsSgJSEWyQQ+LdmZGpDsVgM165dw40bN3Dz\n5k1EIhExM1g4R6vXiyoU6ecCIEKY4K1G9jl3NHny+by4PvX1FtVotD6L+Rrl1++z7wg1IJacY/1Q\nNgrWjW9X4UfNlzwEOY/aw5JIJODxeNDtdqX4DwFG3SX8IrSK9+GfLHjrH9t81gTwP13oThaPL5Jf\nI6vFYnGup2IoFEIymRT30HQ6lUAmO3yBjMdNmU6n8Y1vfAO/9Vu/hXQ6jVqthr29PfT7fWQyGWxu\nbmI8HsPpdIpLkkxtGMZcibFFdirvgdoBT+9wOCw9IOjn54m6s7ODnZ0d1Ot1cWGOx2O0Wi10u13b\n+dJ4C082Nt6lqjkajeZcjwCkUhKDjCqVimyowWBga6da8QvgTbQmEXPiCp1OB59++ikCgQD6/b5o\nMcQ8eG+LNg43LwUuBSu1NV1GPZPJwHztAdjd3UWhUHirB6jGdewEHjUEfobxHsPhEH6/Hzdv3sSN\nGzfmvD2hUAjNZlPm284TZafWW80Yto1jnVCu0507d8SU7Xa7qNVqODw8RL1eF0Fpx3/noUsb0Uji\nJNLdNxgMkM/nJZAmHo+LS4+Se2trC91ud66ZqJXJ+D8ZK5lM4saNG+LNGAwGSCQS6Ha7Arw1m034\nfD6JmdCaCoNlyNjWZ9B/WyMjCR5ev34d0+kU9+7dQyaTkeIkjIEgWt7r9SQq0ZqLwTF4MvH9Xq8n\nYCJVcAoPl8slTUsTiQR6vZ5oEJxH2vtaA7KOp5+VvvR2u42DgwNUq1U8e/YMiUQC26+rQIXDYYl2\n7Ha7c2XKFwHFdsKdAkI/E01J7WKmAGe+io63sLsu54pzOB6P0e1250r0AxDXNIUgA4lYI1Pz8TIA\n3Ao+ezwe8T6xGxgxG5oVrBNqh6H92rwPH4qsICAAMQnowqKLLBqNSrm2ra0tAEA+nxc/8Vk1HAOB\nAMLhsGx++nj9fj9isZg0ZKVAYJQePQ4EB6kKL1J9+TyseKzDimkLh8NhXLt2DeFwWDoP0T/PiDjO\njW6/bh2Pz0Kvha52TG2LjW79fj8ePnyIaDSKYDAoqih7TOiqxHbrZBiGqLaa4elaHY/HqFar0j4u\nkUiITcwir/V6XaJJ7exv60nKcXUeCiNBCQiyJ2ehUEAgEBDzgcLU4/GIMLEjCga6LXu9Hur1uvTf\npPZA7xHBXLfbjUgkgmKxOGfuWXnB+nxcK0ZOUlPgIUSQ1OFwIJvNotVqCfBtzdt5F23hUgoFLV0Z\nbszGH1TVWOE4m83KZNGPHAqFEI1GEY/H0W63RQ20S5oyDEOAwm63i0qlImh1q9VCpVIRYIvRbA6H\nQ07PYrEo5cO1+WAnpcnEfK/X66HVakmDG4Jj9DKUSiU0Gg00Gg3RGGgnc56WnaRE5XUnZgDiERiN\nRvB4PMjlcsjlcjBNU0qGF4tFMVHsVG5NFJgA5tRX2t4cezKZIBQKScgxn5vz5fF45NnsTm6+rjUk\nriEFK6NQeV0C0ASHKTD1b/KTHY3HYwmgY9gyNy/H6HQ6ovVoHtO2/SoYAgU5tUiatcwBajabOD4+\nRjKZRCKREKGkMRmdzfsbJRT4cDz9o9GoeBoCgQCm0ylSqRTq9To8Hg8SiYQ0ZWW4bTwex97entic\ni1Qp+tebzSYajQaOj49FRWf/BUby0QXE0GPa3IeHh6I16GASu7GohfAELpfL0huRpwHt0ZcvX+Lk\n5EQAQW4saiSLIje5USgo6ULr9/sA3tQ3JPPdvXsXPp9PBFC5XBYXHgO2rDa2XisKBZZa1yAvAInd\noL0PQBJ6eL9U07W6bvdcWpgzPoHuZB2DYRgGKpWKdG7y+/0SCqwBO4akL1ozChaaDtqE83q9sobb\nr3NyaOYxapLrrYPc7Ejn3JB/k8mkBJgVCgXx2BBjoNmiK3dbwe1VQE0rXUqhALw5GdxutyC7t2/f\nRjAYFMYZjUYS4EN1sdvtYjAYoNlsChILLI4tNwxDAoY+//xzaT02m82kx0Or1cLm5qbY/gAk+Ymn\nud6gy2xhhqTSrmcyUrvdxr1799DtdpHP51EoFPCLX/xCXGkE+ph/QLLbpDwtGFdB9JpAXL/fl2rI\nN2/ehMvlQqfTwcnJCfL5PI6OjiRkVveZ0LEAmgKBAAKBALLZrMw5NRu9BsFgUEKEs9ksTk5OZAxr\nshB9+ot4g+o214QeKbpfmRzHQrH8YdwGg+K41nbrxbFY2p2CYTQaSfBQt9tFt9tFIpFAtVqFx+OZ\n8yRpXuA17cwwnSjn9/tFKIRCIUlIOzo6EpOMmosO2LJe+yICAbjkQoEL4nK5kMvlkEqlsLm5KQvL\nSU8kEnO+fwaUaNV3mX+dodQ6sYlhuTzd6G5iEFGj0RAwzi5GYdFicFPTrPH5fGJH5vN5mKaJw8ND\n7OzsyP9sF6a1BLrvlp0+tIGZNMNrMA/C6/WK+VUul1EsFlGpVNBqteY8PSQ7N5cGvTY2NkQrIwLf\n6/UkGi8Wi+Hhw4fY3NwU84+ouVbf7eo3aDCT88gAMp1YxjWiR4jCgDET1LDIPzonYxEfMpKQm5bR\nlFxLHlAEfwkec2xtTi0DGMmPDPYiwEjciHyoTV62OdB8sMh7sypdSqGggRI2Z2HKq9vtxtramqjA\nFAwE+3Z3d/HFF1/ISbVKi25uMCbTkNkYRuvz+aQLNAN/mAvByDW9KHZMbSVKdwqrer2OWCyG4+Nj\nNBoNadNONygFAM0hnUFq9zw8TTqdDoLBoNi8VLfZTo54ye7uLo6Pj0XQWeMH+FzW8WazmfTj0D0q\n2Quz2WzCME5Ddbe3t5FOp9HtdvHixQu8fPkSxWJRBKQG46wMrV11OuWZgKEGm4FTDZNCgdoIn4e8\nQ83LTiOx4kLkM4KKxCrocaDtz1NdzxOFxTLBQ2yA12cyYCgUQr/f///Ze9fYSNPsPOz5qljFYt3v\nLBbvze7ZmZ7Z1exKsCwkMgQFSLJCgE3+GP4Ty4ER5YeExIADRPaf6KcTxA4cBBCwRoRIgBPFgB1Y\nCBwltpGFECjSajy7mt6e6R6ym3ey7vciq0hWfflBPoen3v6+qiK7Z5s94gGIIotV3+X93ve85zzn\nnOcgmUxK6vvc3BxarRa2t7dRqVQEs9HK4LbZjMAdVQoUmpTVahVbW1vyAFlQwyYjrVZLOuY8ffoU\nx8fHApKZgBKFg6ezDGkezs7OinnKGgGPxyOZd8xm0wkj2oebtFB5TbRufD6f9IuMRqOo1WpirvLa\nqEQ02q7JPbSJys+xjLjX6yGdTiOTyYjJTGykWCxia2sLBwcHks6sW57pHdppoukFXK1WkclksLy8\nLDslnwF3vS+++ALlclnK3LWlZVmW3LPbuXSyEqs6mUima17Ozs7E1GeKvK57IE7AUPekMCHPzzlJ\nXgUq1/n5ecFuLMsSjMkct3EWpE7TJ5jJwifiIDMzMygWizg+Psbu7i6azaZkMpo5Mre1FN6Zvg86\nBEWTlfFcvUD0DzA+BARgZJIB1+FBnY8QDAbF9G61WvJjJouYCshJEZmhI4Jg4XAYkUhE8ts5aTnJ\ngNGCIGIM5nk0WxN3bloKi4uLiEQi8Hq94sf/8Ic/FCCT79E60N2sqCScfH3LsrCwsIDvfOc7ACCL\nxe/34+TkRJJsqtWqdJzm8bR5rRfmOCXO8myGdxkiJDOR3+9Hr9dDtVpFrVaTmgea4lQKdDdNxWrO\nOS3MHwgEAkilUlhaWkIymcTCwgKGwyFarRYODw9RLpdRLpel4Sw3gXHzkanMDGuGQqER644WCq0D\nWghOm57Leb6ezWBcvi+/T3s/+juarYgLl9mS3I202c4JpU02nnvcrqBzLnSEhZOcyS66nkIvGG0a\nMvnGjN9rsllGZBjOJVMVffhut4vPP/9cemNy0moLgWOjU4qdzG2PxyPgJXc5hkO1q6N3s5vMPX2f\nTEzi+zMzMyPKm+4bsRGzoSzDf7ymcf63nif8nYuUWamRSERC1Z1OR6I4rG3R4zrpHnW6NseV485r\n5PjfIpX5L45SuI2YFZXa7NcPRz8kjfByceqqRDPSoSchMKoI9MLTuQucsCZoBFzXXdCKoOhrI5oO\nQFB5Xie5FEjiQjo07qAmfsBjMc+f1+Pmr7rFxk2lPc1n3P6vzWs9hjqsyTE1lYG+Tt6rfkbjFIP+\nn35uTOmmQjezJYFr6rxp1poeQxPX0GPgNkYTznGvFCac85Xf+bCd0oedqs60MuH3+L7Tg+P7elKZ\nD15PCP1Z/T/AvSyWgJWetMQPSPNGHkRGW2j18Bp5XTrmra/TLTdCi8Y4nN43/2diIk7Hd1uYGkPR\nx3JKJDN9btNtcROn+aKvw+3539a/N3Gi2xzDQe6Vwr3cy72MyFRK4b5t3L3cy72MyJ0KSepIgGl+\nO5mP01g52mQHrklCCMjpAhzThHV6NSvdTPNYf19n5/F9fR6n67sJUOp0XyZirk1ZJ5/fNJ+dfjfv\n0SmxyO04JhZw0/u7rbzO981yZ6cx0Mc38zfcxsHped1FuVNKgcKFB4z6bNqHBEZTQ/k/ppma0QE3\n391En53y7rWPqq9Dg10a+NPXbx7HvC8Cj6wD4GcYk9aThyCW9pWdJr7T/xjG5fl0eMz0XYneO1V7\njrsv8zimonPCGfQGcFMlws/qRjBc0Hz+lmWNYCCTQtVu59HnYhWjvn6NKxF7MkOub0qccKY3efw7\npxTMyaUnDQddAzp8SExiYXiKE6JcLo9w/zmdSy8GE113W3Q6m5ATkYvN7Xv6vLRUiF6bSLiOWTPG\nzfsFpkO0TZSc7+kQmZvVQsti2sl3E1BM/8+Jm2Hahcux4zMnuzEAIaDRCt3czZ2uh//T18Hz8Lkx\nuY2f4fhqoNOcG7Ztj81TmEZ4TpZK85p0Ity4UvBp5c4pBY24M0bOBcQdmKEn5u8z/z0cDiMajcLj\nuWQOajQakq7rlt+uFYKeNE4Tha96oXGRDodDKf1lQonb97VC4Hm5g3MxspBJv6+r9ZgD4LYL6evU\nf+uKRzdXQv/wu5PyL27qHjhdK8XJfTQ/T6uA2Zls1MJiJ61o+VyZMKV7IrgpfV6HZVnyHFjGT0Yl\nKiRaDSxH58Zllo07pYlPGhf9TLgBRiIRyRxNJBI4PT3Fy5cvUSgU0Gg0RpTSbeROKQVzELRpzzpz\nJhQxtZTsuqlUaoQGncQiTKfd29t7peUZMNqJWCsjLli/3y/55kw3Zb8GNiPhdW1vb2NnZwelUkl4\nD/W5tOXDCc00aibf6NdWqyWWwtnZmbD6zMzM4OXLl6hUKkKeYt4XAImdM/mK90orimNMJcXvmu6P\nZj92akPG++F4OvnT/L9WiDqvQFuBTPvWzMTmPKFluLS0hI2NDSFU4YJg7wnyHjCzst/vj1R/OvVk\nMBUUz8eiq0gkIj0eWIfDjYidoUh2S67LXq+HUqkkCmJa0a5qIpFANpvFL//yLyOVSsHv9+Pzzz/H\n1tYWOp2OUPDzurVLexO5U0pBL0zTrGVxEmnKI5GIpPGyIEfzB7BeIBKJoNFoCBW2BhV1noCetKxS\nY7efVCqF999/XxQBC4rIoERKb+C6uYmuMDR3HuC6bdvs7KywD3HCcRInEglZoFws8XgcvV5PGKFY\nAmzW0Xs8lzTgZHhiX0j2emCKuFZSNEep0JiNyLHRSUxa+H9WIfJvnpNK3bIsoV8jmQxLf3W2qG3b\nUnzm5F7wWuPxuHTZIoOUbdvSUEdnOtLasm1b/kfl6GQxcS5QeZF7IhaLYXV1FZlMBvPz84hGo+j1\nesKClMlkJBfE6/VKpahZ7j7NTm66ch6PR3g00+k0dnd3heSHdTnaReEmcFO5U0qBD1znoptmMOsE\nyEpDwhMWMnHxezweIcGgia8ntLlT6t2HuwLbm7G5LQt8BoOBcAzGYjHEYjHMzMygXC7L72aNg/Y3\nuSDp8iQSCSEIubi4kBRZLngek7sgs/WciFQ5edgkh30Wo9EogEtfO5VKwbZtxONxib5QGZIDgbvc\nxcWFpApzJ9KZm3ono9Imz8FweEmPxszKSCQikzoajUpHo2KxKNybZ2dnQvBiKiDtZtBlYN0BQd9K\npSJl4PT9AYhiYIkzFZybJWImcHk8HqTTaSwvLyOXyyGfz8Pv96PdbqNSqaBWq4mrwZ6apH/TVZK3\nda84D1KpFBqNBg4ODnB4eIhSqSTPR7utToD5tHKnlAIHTaP8FO3TpVIpLCwsCOGnLpFmPwYuIh7X\nSTubD4l+m+4jubKygoWFBYRCISlUqtVqaLfbyOfziMfjAnDG43FRZCa9l6mAqBiYNx8OhwX4Y1dm\nXT/A0lkeezAY/c4btAAAIABJREFUiHtgTjQSirKxC8u+W62WuFt0UdLpNACM7DDNZhPb29tC9BoI\nBKSa0XQfOOE1CEf2IfJZLiwsIJvNIpVKIZfLCTciezIkk0lsbm4ik8lI8RL/Z46h3jVpqQGXBC77\n+/tCfMMW8Nq9Y9tBMjA5hR55Ho/HI+NPS4H0calUCsPhJWPX8fExSqUSDg4OxNrjHOJYVKtVqeS8\nDdhoWZel58vLy1hdXcXBwYEwcmmWKw3Iv07E404pBcAdcabpvri4KD+dTge7u7uSu8/cfhKhsCiG\n4M+481DLU+nE43GsXdX/R6NRVCoV7O/vo1AooN/vixmcy+UAXPrb9IPZKclJ9O5K14GT5/T0VLgN\nSP1F2jI2SeWiZJWk23komtSTuzZ7bhKooqLRLc7IN9hsNjEcXjY7KZfLrqi9rgHgfSUSCXzwwQfI\nZDJ49OiRdIxqNpsjfnKn00EqlZIJTlIT0/zVSp5VhKQuI98lTWlaix6PRyonaR21223Mzc25mtb6\nfUYXaHnF43GxSorFIvb29lAoFMRlYaEUe3bYto1wOIxarSbjdFOTnhwi+Xwe2WwWP/jBD4RZ6uTk\nZOq6imnlTikFp12POxCbveRyOSwsLCAej8viIRGJZVno9/vCYUcqLg2u6XPp32nyMoKxsbEhLegH\ngwGeP3+OUqkkoS6a8B6PRwg8Xr58KVaL6aroHY6IdTKZFBeF5C31el0QZDYoJbhJRigCkMRRzPGi\nxUOglguEvxOD0RRvBKjoMvj9fgHjTk9PhXfAVAQ8J4ARE5kALbkb6X6Qf3IwuGx6A0CYryqVyoir\n4gYAejwecY3IunRyciI9KnjdBAABiHUEXFoVLD932r21BUEFzg0nGo3Kszo+Pka5XEahUAAAcV9Z\nnk5+RR6TnBI3ET7/Bw8e4OOPP0a/35fn3+/3BZTVloEOs99G7pRS0OabBpTYemxtbQ0rKytIpVI4\nPT2VztNc1ASzOKm4a5P3wAw58hx8gOx9QIp1PsRyuSxkLuxlSSCy1WrBsi55Hqk4zFixjvlzcnCS\nkuq83+8LVySvjbsOSV2ZpEUlR1dLT2jGw8ku1Gg0ZCcdDofSqZl8lp1OR9wSj8cj3aiOjo5GSEqo\nLMwxHA6HI7kTfGYej0dcHp/PJ5T79XpdgGJaJy9fvpRnyXZ2mq/RSYjHZLNZeDwe4ebU+QLBYBDZ\nbBb5fB6pVAoABF9pt9sCCLqR7ZrhZ62ECfKyxwOZrQh4cnxIq2biStMK3bB4PA6PxyP0awSQddcr\nLV8b98EEFrnj0URcXl5GPp8XYJHkFYxVU1NzImvQjrumKZzERJdJ1BGLxTAYDIR8hGafx+ORiARD\nhLVaDd1uV+LEmufAFBKN0kqgIrNtW3pZkByW+RcENXXJtGVZI6FFPYa0jtjurtFoiPIjwFepVOD1\nXnbL5nn8fr/stOz7YNu2uGDmDqQnHhWhtiZIOkoL6vj4eIQ9i64EqctJL39ycuK4UKlcmaxGwJRh\nWQKLOomNrhLPF4lEUKvVsLCwgJmZmRHqOXMemvPDxIpIBHt+fi6WBM8NXLchMEO80+7idGkZ/aJS\nIF7BddJut+Xzb8KNuFNKgaJzBfhQV1dXkUgkMDMzI30QCPLR5yOARTOZpqrZuwAY1db0s+fn54WI\nRO960WhUwEu2W6Mp32g0UCgURCFQUWnRi4esRLFYDLlcDtFoVKjXCTYyfBYIBJDP55HP58XcJ+cg\nd1KncJp2lxheJHre7XYRDodlcpPxmUxFpLgz3RK3dF0ucroftHhyuRxKpZJEbKiYaPmx5d7+/r70\nydRsQuOEwB9feX/s4H1+fj7SaIZt6XjtqVRKcgd0xqHbXOTmRFeSXcAYFaIlF41GBUDmDk4rQ4dq\np124DOGurKyINWpZljCLM5xLy2xc8t1N5E4pBa2dg8EgotEo1tbWsLS0hPn5eXi9XpTLZQFZVldX\n0e12hXHH5/MJas3YMfn53MJbXq8XiUQCS0tLSKfT8Pv9ODw8xHA4RCaTgc/nQyaTQb/fl7qKRCIB\nACgWiygUCiiVSqhUKiP59ubOQL89FAoJXyJNTiLdS0tLyOfzEvsOBoMjxCgXFxcjjVnd7otZfK1W\nS3xcXju5LekyZbNZcR+CwSCq1aq0WKPPz93b6b60yzcYDIQ1ant7G7VaTfAL4FL5Pn78GNlsFo1G\nA7u7u3jx4sUIzqB5J03ROQ/EgBi7n5mZkZAhLZ9KpSLksbQUaWEQM5mbm5Od1jwXsQviTFx0vB/O\nSSoeRlRo0Q2Hl13G2C2cZK/TWAqWdUk1t7GxgY8//liu5Wd+5meQTCZlc7CsS9Jiundvwlq4U0qB\nZhsBv0wmg2w2i1wuJ23TiBHQ32ZY7+LiQjpFM8WZLMFcKE7IOY/DtGKGsjyeyy5RpGFjW7f33ntP\neiSenp6iXq+jVquJqa7DQqZonIBs0ToOTtcinU5LbwFaDJwA5+fnwlLM+3IaQ7IWc9x0mi0pwwFI\nApjX68XR0dHIrsZMSuZWuEVw6LJwYdCSYdiO9xwMBrG0tIRAIICjoyNRprpPwqS6By4upnsTQwmH\nw+j1eshkMmJpsAmrdkkjkYhYPWR+dlNA3OU1zRzDrdp6CIVCI4lwjE7Yti1hVX5+mkXLa6UCY64J\nFbnP50MkEpF0boZl9ffNZ3QTuVNKgTfDmHI8HheAhZONHYuIitNvJDV5u91GuVwewRKcFqq2Snw+\nn+TN0yTjwgoEAuh0Osjn85ifn0csFpNYerlcxvHxsSgInZbtlGXIe9PUXdVqFR6PR/zai4sL1Go1\nzM7Oot/vS5EPlRRBOIZZne7LvF8qH4KTVKo0O5klSvyA9Ow8Fncgtx2OLgsAUQZ6Z6afPT8/Lw1s\nDw8Psbm5KRgMvz+JMxGAoP+FQgHhcBgnJycSYqQiajabODo6QqfTkXZytm0LMHh+fi70/ONcB44z\nE7Ns25ZsVr7P8+r7YF6ImeruxOrlJASkg8EgQqEQEomENIThc2y32yOtDpxcydvInVIKFE6mWCwm\naaMMn/GHZiSTlQaDgWSXMalD+97mRNMTXGdJcoFyAtDkI5JNs/zo6AjFYlFQaC4GnY1pnsu2bYmI\nMBYPQBQRw50zMzNiHemmH41GQxYsq+IAd34DujMkn+WkJQbAHX52dhb1eh3NZlNCgqYZ7Jazr++N\n2ZYcBx2FSSaTWFlZgdfrxcuXL/Hs2TNhxNYLcxrUfDgcyvOlC0BMg3Og1Wphd3cXXq8X6XRaIi+M\nvrA7Fa0Np3Oaz1CnhVPJEg/inA0EApIZqj/HZ68VqJsQTGW4u1qtIhAIoFarYXt7G+FwGMlkEn6/\nH41GQ8bQvO7buhJ3Tilw8BnLZyESdypq7sFgIK3Qut0ums0mdnd3sbe3J5ONuzfNXw3EUGMznJRO\npxGLxST1l5OOoR/6lP1+H/v7+9JenT6+7ing5Dfy+hkGbDQasnBmZ2dRLBYFSWefTO4ojMGzhRwt\nBeDVZBhaKVRoTKihYmNkg4spHo9jMBjgxYsXEndnIxqem5aKUx4Jz8kxJdAGXKPzqVQKa2treP/9\n99Hv9/GjH/0IxWJx5PnwODo/wClEyIXGFm1nZ2eIx+NYXFwUnIW4E/NX2FKQbiI3GG3dmaLH8OTk\nRAqO2JSXrhstV+ZAaDCSkSvdLp6p1uOEG57Gadgro9PpIBqNCn7G2go9hq8rd0opcEKzmIkpqWzx\nTYSZOQlsilooFHBwcCDoOUOSGrQyzURz8lH79no9zM/Pi3YGgHg8Lllph4eH2NnZkXNpy4UP3tx5\nNK7BzsUEuIiiAxA0nJOdVsjZ2ZmEPdmsVS9ErRT0zs3zac6JUqkkO+fMzAx6vR4ODw9Rq9UkK48L\nhqCpNo2dTFTznFSA7AO6traGb33rW8hms/jDP/xD7O3tjexu5tjp99zmCfGiWq2GeDwuz4uuAf1v\npnXn83nMzc2NFKsRnBtndg+HQ8mt0PgM3Tqmofd6PWn4SsU1GAwkr6DVak1lBVGorDqdDorFItLp\ntLT5Y54Oe1pw3L+27gN3G2roSqUiIaVgMCi9Hn0+H2q1GkqlEra3t6XbEIFIWhMasXYLSdJMOzs7\nk6pLug20FBqNBra3t/Hy5UscHBxIQo/u4sQF5JTKqsE7tplnsxnGurWVwYnPsCc7XvFYnAimf2qa\njoPBQHZEItjNZlNqEJgnwAlGC4tg3bRsT/p9muqsBdjY2EA6nUa/38dPfvKTkbwHvVAmTWJzsdKN\nomJmYxjusCxLJ0iqszTZz9MNU9DKjh3GqbzpxzOEzOgNcOm+UAkwbVvzOExbHclrbLVaePHiBbze\ny87kiUQCtVoNx8fHePbsmXSiuk01pJvcOaUAXAM8pVJJwmlM3vF6vTJxDw8Psbu7i0ajIX49m5ro\nJB/Lsl5JKNKWAouccrmcoLkrKysjZdDPnj3Dzs4Ojo6OpLUa/W4uOL463Y9WCqzpZ3SAxU38m1WK\nrMKjOaqTYWjeuvVB5ELQC48AI03c2dlZdDodFAoFVKtVaSqrU591GrDbhNbpzkTZmTlIK4uKlT04\naXmYVs40yLxWiLrFHRd9MBiU6w2FQvI7k7H4XJ06bJnXwfnR7XZRr9fFekylUiORBt2azuv1jrT+\n0xT60yoF1tKUy2UJwa6srAAAXrx4gS+//FLcV61g34TcOaVAQIbVdyynZetvKoXhcCgNNun36npy\nJ3PeybwiWl0oFJBOpyXrjbsN8x62trYk0qCVj3YNuNO7kWjwMwQZGT8ndkIF0Wg0RFH5fD6JdjB7\nc1zGpI6qaMXHHZ/KgJYUQUzu3rpnJX1gKmPT1NbKjs+GVh3vJ5lMCq/A/v6+PCsTLddhw3EKyOn5\nMcqkFSf5DMilYds2crmcpG5r12icm8INhU1zWSTW6XTQ7XZHqh9psfAaCCDrTWPaxUuFzxwH274M\nb4ZCIezs7Ajg7MTy9boyse+DZVm/A+A/AFCybfujq/d+C8B/CqB89bG/a9v2v7j6398B8DcBDAD8\n57Zt/18TL+Kq74PecYLBoEwSnfKsQRruEuaOqBcDJy7f03kB/N/S0pJQXJm1+VQ6u7u7MpnNWDrP\no8/FyaTvC8AIySzdGibD6O5O2jelouT3uKB5L1z0PBevgeYzsyTn5uaQzWalNBwAjo6OUKvVpFku\nd0biEPShzZ6WxvODx+NBNpsFAClc+/DDD/H48WMByp48eYIf/OAHohicxpDH1ziFy5xxxYj0NRG0\npsXJcaXiZXaiFq1Q9ZzUYKGOEOjz6eemQ7q2bb+SIn0TcQJgb2EZTNX3YRpL4X8G8D8C+D3j/f/e\ntu3/Tr9hWdZjAH8NwIcA8gD+lWVZ79m2PdUI6InAicmJqs1vfsZJGZg/bskwevGw1LZUKmFzc1Ou\nhb64mRdgTkZOIh2OdNpRuXg1yQd9R6eHbl4/fdpJOymPQYuLE1QDXqVSCZZlST6H3nH0gtChT3Mc\n9b1SSdm2LS7OYDDA3t4eTk5OhCHIjDboMdTv3XTCO32P7olWnjyPZsZyGj99DE0sA8DRFXXagHRj\nWJMR6abyGorgxjJRKdi2/UeWZa1NebzvAfh927b7ALYty9oC8JcA/H/TfFnfsCa7BK4f8Ljdiq9a\nY+sHpY+vfyc2wPiyuQNrxeNkHZjnMLP/zPOb92UqEio/81waF3C7Lz0eFxcXaLfbYkoTH2m324Ka\n0/zWx6Wp65Yg5SbValUwkc8++wybm5tSzNbpdCTUSSVlLj79XCbhC9NgD/q4uuhpUtakKRrQdZtD\n+nduEtxQ9Iahz39X5XUwhd+wLOuvA/gEwN+2bbsOYBHAn6jPHFy9N5W8icGiBTFJ9E7L351ISced\nx21SmeefdD03NSXHfd7p3IzkvI443av5HvPxea56vY6jo6Opj3eT/08S/f03Ob4/je+/bbktkdtv\nA9gA8DGAYwB//6YHsCzr1yzL+sSyrE9ueQ33ci/38hXIrSwF27aL/N2yrH8E4P+4+vMQwLL66NLV\ne07H+D6A718d46t3lAwxTWXTH6QbQItAhwGBaxNff17jFABuTbF9L86ix9rpd1Oc8A+n383P/jSF\nbolTbouTi+j0OfPzptzUAr+VUrAsa8G27eOrP/8jAD+5+v0PAPwvlmX9A1wCjY8A/PA251DneiWi\noP+nPwNcE4lO06nJabE7YQQABCfQ52S0gD7jmwKDTKzCzXe9qehIjj6ePoe+7ze9UCbhBJNEg8n8\nXaP/mjWZn9ffNbEmp2Pe5F7M350Uz7QL0lRuGuw1Iw7mc2S0zGneT4MFmTJRKViW9b8C+CUAacuy\nDgD81wB+ybKsjwHYAHYA/GdXF/LUsqx/AuBzABcAfn3ayMOY849MAg1QORFkaOUAYCSEaB4XuEaX\nNUBJy0FTqJuDrP1GjTbzfzd9GHpi6RJbrXD0Qr2J9tdot9vOqK0ct5Tw2y7or0LJcB4wIgO8GinQ\n0ZRxwPRNr4vzToclSd3H+WMqn3H5EHp89D3pDQcYVWD8G4AkL7Hi1ePxuLZKnEYm5in8NMTJfeCg\ns2ad/AOani2VSkm9vi6AOj09FRYkRjHMScEHykHX1oKZaWdeF1/NB6Qfpm07Zxs63aOeDEz4YY08\nd4FOpyMJRm6lsk7HZ3o3j89zckwDgcBIGjMzQxmK/CoshtcRjjezLVkHo0PXvF+nJrq3iWjoMWOy\nEglqyOvJFHTSBJJVmuQ4binO2tLhffFvp4xPnXvB301LQadVG9bKG8tT+KmLZVkjg89mKdFoFEtL\nS8jlclhbW5M6BaLeu7u7ePLkCQ4ODjAzM4NKpSLZeGamoSYT0X4dGX1I6smJYNu2pMxyp7AsS3gI\nNSsUs93c7o2vzABkG7wHDx5gfX0dv/ALvyC5/eVyGc+ePcPTp08dmXXGKQfem8/nE0q7XC6Hb37z\nm3j48CHW19clualarWJ7ext7e3t4+vQp9vf3hbnIiWLO7d7Miau7aLFsnBOVE5g/wKvhW6exm5mZ\nwerqKtLptDBZBQIBzM/PC/9ApVLB8fGx0LCzKlPnY+idd9wmwHLoYDAovTQePHiAVCqF9957D3Nz\nc0in06hUKjg6OsLTp08l6qKft3Zf3J6XnpOaci4UCgntWzabxcXFBYLBIHw+n4wnU54bjcYIGe5N\n5U4qBeA6NswKNHbeOTk5EQ79er0uXIecDLplHNOhdeWek+9M/kWWF0ejUaTTaUQiEVE8WiHw+vTf\npDpjnvw0CSp8mKzDp+LTDT5o+bBegszU01gJVF5kslpfX8e3v/1tPHz4EOl0GsFgUKoN+X8m+7Ac\nnQ1bJwmtEq0ISK5COjMSxZ6fn0vBEHkHzWfjdHyOdzgcxqNHj5DL5aR3BanrSNybz+dHunfR6uHi\n1/iQPr4pBPY4DxuNBqLRKA4PD9HtdtHtdpFOp1EsFkc4IpnqbKbejxs/3h93f84J8j+mUikh+zUt\naOByDhYKhRG8hUD6TeTOKQVtjtM3ZxkxNWmr1RK+gWw2i/Pzc6mZZ/quXljAqz44B4wuCnezhYUF\n6WhEZcO+AizJBiDl3JxcZExir0nt65riBICRGmxmZgafffaZUMlzDKgg3TASp3PooqalpSWsrKzg\n/fffF7KYcrmMzc1NqbmIRCJYWlqC3+9HuVyW1OdpnhktA1KWkZ0onU7L+TOZDF6+fIler4dIJIJy\nufwKQcg4YZWnpm3PZrOYn5/HcDhELBbD6ekpAoEAzs/PkU6nJa2cC5U1Evo5THIptIXG8SdzU6vV\nQrlcRj6fl1JsTWCjXVc3ZacjCpyPZNemFUJqwpmZGamZoTVBF5FNY7jR8Hg3lTulFEyFQI1HboTZ\n2Vk0Gg3JzuPOShOc1YY0qcyeh2aWIbP6qBSSySQWFxfx8OFD4cYDrhmLSZpBE5S+/9zcnFgzmmDE\nSfTEMJFyErTu7Ozg7OwM6XRayqrpO5sdpiftPqx52NjYwLe+9S3pzFwoFPDs2TM8efJEeC7X19eR\nSqUQDofxjW98Q4hC6vX62JRg/nAcScG2uLiIeDwufTkBCH0+6fGDweArSWNuwKauDaEVwAKlRCIh\nHZ+5EMPhsPSQLBQKyGQyotx1VuW4KIFZ6Gbb9giIx1RmLlIdqnaKcDjdF8+jNxKv1yus3+FwGKlU\nCqFQCN1uF9VqFRcXF8IynsvlJHsSgFALMEP3pnKnlIK5YIDRHoftdlsYkQGIFiUPPk1RanYzXViL\nNtfocyeTSczPz2NxcVFarFWrVbRaLbx8+VL4BAHITsXGH6zP1/Rvk+5Vm3hsusrKvuFwKGQrmjhW\nH3eSC8HJmc1msbGxgdXVVVmMm5ub+NGPfoRnz55hOLxkrj49PcXGxoYoxl6vh0KhgKOjo4mgKc1j\nLkgqBpLq1ut1oanX3aNYsanHxO3eWNhFYh1WuEYikZHOUFSiDx48EGVF1mxGdgi6Aph4b3osqRw4\nP1hsRSo/lr1rRTNuLujPmXOCrQTIMk7X+ejoSKxUdqwKBoOCn+n8mK8kJPnTFL3zmdWCHCy2ESfY\ns7y8jFgsJjRXpVJJKN7HVdtpcJF4RSaTEbZhlvsWi0WUy2V8+eWXYjqylp6LlX0MSVSiQ5njhBOC\neEYsFpMJS7JRWiFOzEfTWArsHfH+++9L85Tnz5/j2bNnwrhEIJbt3Tyey4Y38/PzQgE/qUTXtq/5\nLNmdejAYSMcsPkOCxR6PRzgH+X0dhnW6F/rHvV4Pu7u7ODo6QigUElo+7YqsrKzg5OREODwZHeL/\neX2TgEZeG4X3ws9Ho1HMz89jfn4efr9fukA7tdlzel6motdhTioer9crDXoODg6Ess/kq9DkxbzW\n28idUgrmgOliIQDycNlo9tGjR5ifnxfOgXK5jMPDQ6FA5zGcjk9zjT4wy4m5k5yfn6NarQqiTKpw\nIr40TXu9npybRCXA9PnvnGBspXZ+fo7l5WVpYmvGvieNmRayYi8vL0tnqF6vNxIu44RKJpOy252d\nneH09BR+vx8PHz7EH//xH0tDHSfRO65lWeJCaFKcVquFYDCITCYjfTOm8bn1fVJhnJ+fY3NzE5FI\nRCjXuICIIZBQpd/vi7VFrkTupuOU0Lhr4DWTDWlxcVGIVUhpZ4LBk+5NA8P8YciYxVyNRkPwGIZC\nE4kEzs/PZfMikznL06exgky5U0rBSfRgEjSLRqN4//33EY1GAVy6FTSr2EdA76xmKrM+tuYhIFqu\nuxVdXFxIzwJO3mAwiFQqBZ/PJ2FDovUMuU0L8FDRhMNhWaAEUEnOyWuaZF6bx2VORy6Xk3wEYgSa\nBVk3XwUgWIvX68X8/PxIM1vzvBpV1+N5cnKCbDYr/+MOSHOYHJdkPZ4k+jzEd87OzsStikajI23b\nPB6P0NSTUUrvwtpSuMnC4bO1bRuzs7PI5/PSp6PT6QhtvBnd4DMxFavGG3iPnOesUuU9UFGwQRGb\n2jQaDRSLRRwdHcnvDCOPS4t2kzuvFCg6iywej0uIsNPpoFKp4PDwUBBzHfPmRDIfCB/cxcWFhHa4\nCP1+P7rdLmZmZiRJKhwOS8+AVCoFj8cj5lq5XEapVBppZDvNROd1aV/U4/Egk8mIUqEfrePc0wgn\n1+zsrOwmFxcXYn5yckejUdi2LTyEc3NzODs7w/r6ujTdZehyXDNT/Tt3YYJd3W4XXq8X8XgcmUxG\n2KVqtdorINw40T66LuvWpeAXFxdIJpOCa5BZirs3LRiGXnk88z7cROdKkF9zZmZGmudOy8Podmwq\nc80tORwOpesVwWcCt61WC4eHhyiVSigWiyOh63FZlOPkTioFM37MxBH6xplMBgCwtbWFer2O4XAo\npiGjD2aSii5uAq7jz9TIrVYL+/v76Pf7qNVqAiaRRXdhYQGdTkc6YHs8HnEb2DqOFODmPUy6V5q8\nx8fH8Pl86HQ6ki9BzCKZTI5gJfr7bkAqLRCa781mU+jpGdIlXkHS1r29PbHCvvnNb+L8/FyYi93O\npfGA4fCSn+Ho6AiBQACZTAZerxeZTEZ+yD2oEXseR7sJblYJz8NXuiFsDEMAbn5+XkBbtuizbXtE\nyXETuEnoNRKJ4PHjx1hdXRU8q1AojOAyZq4JxWw1oN9n/5FUKoVEIiHNkKh8EokE0um0KMJSqYS9\nvT0cHBxISwImzenI203lTioFLmDujmTpTaVSmJ+fRzqdxmAwQLFYRKvVwvLysrgI8Xgc3W5XogCa\nwNQUTiq6Gt1uV9ijuSsTyWZ4kmFIy7LEVSEdvT7mNA9DR0ioxMgvaNs2UqkU6vW6TBI2n7nJg9Yp\nwNqt4nXTNNW/0yzX5uyk3U/v+CR32d/fR7vdlqQwEtNSUVGB6sU+bqz0ebTo5CJaJ6lUSrg2GarM\n5/MyZ+h2jMv70CAknxWVwuLiIpaXlzE7O4t2u41ut4tkMimfJ8syn6tTnY75nBglYeYiuTuJNzE5\niyS13W5XSIQ55/WmN02Sm5Pclk/hKxWdscVYbTabxQcffICVlRUkEgkMh0OhviZSy/bubPpBUFDT\nYlF0lIMAHH1PtmZjcgpDkgTbNL7A3ZtKiDIJU9CTjBmU5E9kg1v69QRC9Xf1j9vxmY3ILDt2ucpm\ns8J4zA5D3Fmi0ShmZ2cFYzF35knCz5J4lgzYlUoFxWJRQmfEBHTPjHGKQVsQXGS6WpBRpEgkgocP\nH2JlZUXS1AHIwmIIma37ND270xjSzWI4MxAIYHFxEaurq1haWsLc3Jz04GRWK58lXQuei1iH0zkA\nCPsXgVp2KCeASoCU1izp+UlYy+iPnhvvfPIShbs0zc9EIoGPPvpIzLVOp4NyuQzbtiUKQBowLmTN\nNqT9S40xcJIxlZjmdCAQkAIrpseenZ3hG9/4hrA703ejluZimAZJ1wohFApJOisXcaVSQSQSwenp\nqaQ98zrMPAW3CW3btigrmsbEFxYXF1EsFsXcHA6HMgHz+TzW19fx4MEDzM7OSoHPtOzKHG+a9Dqx\np9Vq4eRCF/zzAAAgAElEQVTkRFrP85hOboLbuGmLhFmUxFwY3WBaOucRu2gTwGO9CrGAcbs4z8W0\n40wmg5WVFSSTSXlerVZL6ORDoZDU4hQKhZE5pPk5zXMA19GiZDIpVgHxLs5TuoKNRkMyTmnlMXKk\nXZavBabAhw1AwJX3338fy8vLyGazEqLx+/1YX19HNpvFwsICwuEwSqWSZNBxUQHXmXB6gOhaAJdI\neTQaxenpqSTTBAIBMTsZuuOOenFxgZOTEwHtqBjod08DnFmWJd2nQ6EQTk5O5KGyAId+JvskOAGo\nbmLbtjTk5Th4vV4sLi4KUMfuz1wwq6urePz4MZaXl5FOp9HtdlEoFKSl3aS8CPPatJVhWZb0qyyX\ny69kFvLzHJtxFgNfuRB0n4lEIiGYE/koCQozg/Li4gKNRkPcRDcAV4PTHo9H/HwufsuyZC7OzMwg\nn88jGo3Koo3H4yM9Lpx2bR2pYiIdoynMluX4lMuX5OkMkxPc1hWRfKWiuwnFIOVOKgXmI9AtYCw6\nl8sJumtZFubn5xEIBCR5xe/3yyCcnZ05Is0U/YBoVbAAKBQKyQ5CxJrgIoE+AlWcbPr6gfF5Cnqx\ncGIyCYVWB3P66RPrfgnmsdzk/PwclUoFz58/x9raGj788EPE43Gsr68jnU7j8ePH2NvbQ7fbhc/n\nQz6fRz6fl3bupVIJL168GOlVeBvRO9fx8bFYPjStNXg6zkrgq6lsAoGAFMRxMRGg7Xa7spMTVGY0\nhGAgd1c30eeOx+PIZrPw+/0Ih8MC/AFANpuVhcjqRs5n3VXcTQjS8v5ISX9xcSH4QbValc2IESVy\nSDDiwHPcJAqm5c4pBSoDmpwAZKFSI/PhU0sOh0Mp9a3X6xIJIJjGB2+eRyeM0O/u9XqSNq1r1RcW\nFiTXvtFooFKpSGqtpjfXkQ5T9A5IEJNU7xcXl/0JV1ZWsLa2JhbEkydPUCqVUC6XR5TPNDs304Cf\nP3+OVCqFeDw+UlGYyWSwuLgoiP3MzAxisRj6/T52d3fxySef4LPPPnsjtHJMaqIJzEVK038aK4TH\n4aupXDk3mFPR7/eFur/VagkoB2BkAblFVrS1R5wEuFZc4XBYxoys2Uyeq9frqFarI6zY3NFNoXLj\nXGMvTwKlnGPtdlusn2azOVKMRzyBLuxtw5HAHVUKAMQ0I2B1fHwM27YRjUYRDAYxNzeHUqmEer2O\nTqeDvb09NBoNQby5G3HBOlkKZpSAfqbP55OQIABJLKJ/WC6XUSwWRzLHdEHLtBqaEQ+a01R+3M2q\n1Sp2dnawvb2NUqk0Qoaix8pJOMnPz89Rr9fx6aefSirshx9+iIWFBQQCAUQiEVEwLL3d3t7G8+fP\n8eMf/xhffvnlVDiJm5hmPnEdLigq/0kukRlK1gqdFgC7edMFJG7CNnHstEUCGbqHbladmVTE2oOt\nrS2pPQiHwzg7O5NSam5Mm5ubMg+1eT/JEqIi48Jm5Ihl2I1GQyxHbp66NZ22oG6bL3HnlAIAdDod\nMZ2KxSLOzs5Qr9elrnxubg7D4VD6SDKTrNPpjDSX5atTA04z5Mn3mGHHYiu2PWMeAZuxFgoFNBoN\nsQw4QXWjF1PM6MdweEmMsbe3h4uLC1SrVTFBDw8P0Wq1pF2d2bZ9Wv+eIOrBwQEajQZ+/OMfY2Nj\nAx9++CFWV1eRTCZl7Bj3Pjw8lLRZzWh0W6GVQDM/EolIhEXjPeOUnQYZdcia+Ei320UkEkGlUgFw\n3TeE6c00v23blpDv3NwcKpWK673pLFjWXHDzOTw8RCKRkAhNoVDAxcUFKpWKVJdy7tEScbISeHyG\nVBn9mp2dlQ2K1Y6FQkFqG6hcTWWjr/m2tQ93lo6NmhiYboeahFiboqvk6JoEAgGJEZNkhQ1F2V6t\n2+1KhtzJyclI1yaNdwDTVd/p66Ro4GkaAtrbijbFnaIakxbqNMJQYTwex9raGtbX19FsNrG7u4ti\nsThS6jxuZ9PXZ4baiD0xXZuvXGTkwaDlRN+du+ybUHqUmx5Hj/3MzAwymcxIxMHr9QomwogX78Gs\nrtTH0tmfalzfXTo2AK/sHjcVE9E2hSYrzWbbvswSq9frsuPPzc3J5zTKq3MS9MJyQtKnFTMyol+/\nKnFa8Pr6Ocluu+PwOAwVl0olybzTrFg3ec7mOHHcGRGq1+sCOpsZhRrv0UlLr6twX+f7OvJBy4K8\no9zttRIYhxfoufg613ZnLYWvWsi8rAeS7xF042TVO7/WwPy8Zg/WC+k2FWp3QUzF8LqT3vzRmYzT\nAmLmdZjWjd4pnQBDza3BZzhNuvhXLSYorVm7tNI2r9vJOtBCwF5bFJjSUvgLqxTu5V7+AspUSuFO\npjnfy73cy9uTO4sp3MvriZsZ/SYtQ6ccAx061GKCl9q8Nc1f7dJNkyOhIxM3ic68Kfm6neudVgpO\niSxvatDoh2pMAbie7CY3w1f9oG56X26JOLpM2fy//gzBuEnn1DgKF7qZQ6CTfsyxZG2E9n2nBTd5\nXtLXMe+BkQw39i39c9OkKRY1sVKWuQFO3cRuGrlxwk2AVzt86bCsxhneFHD6zikFJ4TV/Ntp57jJ\nsSmc8Ho3M5FyDfi8TrRkktwKRVbjMO44ZsRE5/vz/seVF/OVk5XHYg6BzvbU39HXyIlPshSnazUt\nAd0hihmoTPwxE9bMBeoGSroJQ6u6iC0SiUgkpVarvZJc5ja+buJ0baay5bXwf6bC4HFeJ3J155WC\nkxLghGBZrBbdG4GLedLDcENvTdGluiZpi27RNe3OoyMVprmtd83XyRngcc34tXkd/Kwu79VRlHEZ\neeSs0H0w9O45TpFyLPX1cdK7JZzxnNp9YaWgmXKu71Pf702sO3YpW15elr4YAKTorlqt4ssvv5RU\naoasbxNWN0ufdfYmnw9bGtDSYko3E6XMKMtN5c4qBW2G0jz0+/1IpVJYX1/HxsYGMpmMVN11Oh0c\nHR3h8PBQuP+Y1cbJMu1i1edkqXEqlZJsRb/fPxIvbrfbaLVaKBQKMjHcwpFUZnNzc8JbwB2InZWS\nySRisRhs+zJTrlAooFarjTAE6wXi9PDNxc6/NcU5y6WZ7EOOSOZtsIsTayNMIg+trHRDEp3hqVPA\ntQXCXV7fP81/Zuy5lWzzGZGDkvwWpHdnvJ+fI5U8r5sLiF2cxll5MzMz+Lmf+znk83ksLCzg4cOH\n8Hg8mJ+fF+V5cnKCzz//HFtbW9ja2sLu7q5wNd5EkZuhW3IqxONxzM/PY2NjQxilmHl7cHCAg4MD\ntFottNttNBoNmfdUUDeVO6sUtHACRCIRIcrw+XyiGXO5HKrVKkqlEgCMaExgfLzdyQLx+XyIRCLI\nZDLSB4Gp0LwWJpnwPOQ95A7mpoSY86+LdzgBWOyysrIiDz+VSgldmhOo52Tl6HHT18wFoglscrkc\n4vE4crkc/H6/7Hz6fKzSM3kHNNmJZVlCd8YdnAU+/D/5BJjyTGuL6bzEH2j+mz0M+IxIjhIKhaQz\n2MzMjBCQkKCWTE8c5/Pzc+kdQmuEYKeT8B74eSqfUCgkSohKbW1tDZlMBjMzM6jX6yN8ljfZjCgs\nByfB0IMHD5DJZJBMJuHxeCQ9ndWhnIvahaAVcVPX804rBRMM4qRmhtzu7q5MRpZKc0cyM9YmKQT+\nzSYm6XRaLJL5+Xns7+8Lyw0VRjwex/HxsWhkJuW4sd1oKwTACEMzc/S5kDKZDHK5nHA7aBNbH8/N\nzdEKg/fF84fDYcTjcaTTaWxsbGBubg6xWEy4AEhY0+/3EQwGhZuSKcEUKhrt15P9iGPO9mUkPbEs\nSypAAQhgNzs7K5WtbNBrKmwqba0UcrkcwuGw1JHQfWQPDXIbspkKOR1Y/KbHyAkL8Hg8YoF4PB5U\nKhUMh0NUq1UAEOs1Ho/D7/djdXUVL168QLVaFYU2yYU1MQTOEW6EuVxO0u9Z9cmaC2IpTNmmpfQ6\n+NadVQpaGTC1mL8PBgMhTGUqsu7FyAHR/pgbAGSGxKh4MpkMHj16hIcPH8K2LxuoNBoNDAYDZLNZ\neL1eLCwsCNkGy5onTQAWZ9FUJrcjr9O2Lwt15ufnpc2Zxit0NpuOEjiNn44MABCXgT0z8/m8TGZS\n3Nm2jVgsJuSm7XZbmpiauyqvlYzYoVBohPVIv0frSy9EjjUXM3kH9/f3hdFICy0Lgn25XA6JREKO\nTXbtXq8nlt3c3BwWFhaEu/PFixc4PT2VoigqLT2GepHqdPZCoYDBYIB6vS4Nb3hvDx48QDweR6FQ\nECXHOWG6WyZgas4ZPgf9vJi2XalUsL+/j0QigVgsJkxhtKrotrptTNPInVUKwCgazl2GviEblpBg\nlByLTgiwG6hkAlHciRKJBFZWVrC4uIjBYICjoyM8e/YM3W5XeiUsLCyM+MOcQOPMNYJvrLjjebWZ\nb9uX5eGLi4tot9vY2dmRSlHTJXEze033gmAhd1kuXPL/nZ+fo1wui5XC45LjkD0TTPdBjx3dETZm\nIQsSuxiR2p27bavVEvOe7hRdF6/XO7bTNZURKy5JgUZFy2PRciH/BtvLsYUdu2E5HV8DyGSgajQa\n8hm2veP4cIGSMYvKzwTKnUBXt+enu3fPzc2NNDyybVvOz4az+lxO+R/Typ1VCuMWNRdiOBxGIpFA\nNpuVluq6HwBl2tATfdtcLodkMik717Nnz6RMmhTc5CMgmy81OwBHJh+NyDuZxdps1N2F9/f3Bbyc\nNnbvNI56J6TZ7/Fctm6zLEuYpfQ1VioVIVjVnIoUDYix4zHN3EQiIUAtLQSWh5OtiiZ8NBodYbBi\nT07zXriACZCSXt3j8Uh/SfJodLtdJBIJ5HI5aS03GAykIzWxHzOKpMeQ1ha5M9hs5vz8HIlEQhRP\nPp8X60jnMGgmcb1Qnc6lnxUtYh3p4vc6nY70Po3FYrJR0HWgNTkOK5kkd1YpUPjAyAsAQMC3jY0N\nMZ0I0nGy6e+PEzNUFQ6HpZt1r9cTN4W+/cLCAj766COsra2h0+mgWq2i2+2OMCI7PQz9wJ0sFL3A\n2E6c5DL6nibdzzhTlfTk7FM5GAzQarWkZyX9/OPjY2EQ0p2yTDp0Tl4yJVvWJUVeMBgULkSWLZdK\nJWmcQyuAHY4IENLnp5I1Izh0MQAIwzF9aaLvJO49OTmR8mMuWDIwcbFTiZOsxBxD/t5qtcQ8bzab\nwtdJK5W065rdizu7XpxOm5MJFuv/U2nynmmJplIp4YNsNpsSJdItBoHbJ9XdeaVAoZZnSI/hSDbf\nIMOyfjCTzDQKHwrNZTItDQYDCXEGg0Gk02k8ePAAH374Iebm5lAsFqUtuNnHYFrrRIvH40EkEkEs\nFkOtVsPz589RrVYdQaNpIyoarPX5fBJp4G7GayYtvm3baDab0taNbhqfgRl90MePx+Oya52ensLr\nvewQTV7GRqOBUqkkFhdxILoNDCWbzYHN+6ZFQ6yDSrPf7wvHJT9LBXhxcSEhTh5fRyGchOeny9ft\ndqWTGBVLOp1GJpMRjoZ2uy1MzCRddcuudBONiTGiw/6l6XRaAFQAEukgNyndVyrw28zDd0IpaGsB\nuC5tnp+fx2AwkBh+r9d7JY4/bkBMhJ5kIETaydQcCoWwsbGBhYUF/OzP/qyg9OVyWbS0CQTeRkMP\nh0NB71++fCkt4N3Cm+OwC20CAxCzlj48/XsSkQaDQaEl39/fF/IT7vZuuxxj/blcTs4BXE5OtoWj\n66Xvg/0uuMi5C/J8TolLHGNiEPTfuaOypwT7b8ZiMXmWw+FQQEguqJmZGXGfxonmt6D1Ydu2dGyK\nx+Oo1+uSL0C+T+ah8Jo4BuOyDU0A0nSpUqmUsEmTB5INlRmSNF2Wm8pEpWBZ1jKA3wMwD8AG8H3b\ntv+hZVlJAP8bgDUAOwD+qm3bdetyhP8hgF8BcALgb9i2/emNr8wQbU6SK3Fubk64DXO5nDQ2IbCm\nd5txCoK7KDW89vPff/99aedOrv9Wq4XPPvsMT58+FQpxJ9992vvS0QHbtrG/v4/t7e2R/ALTHXBy\nD8x7Aq5pw4PBoIQNT05OJF/igw8+QDqdRr/fx9OnT7G5uSk9CRn756vTObiI2a6MpnS5XBZzln05\n+J1kMonl5WVkMhlRrgwzM+xrmtUcK+7wBOAIbK6srAgucX5+jkAggOXlZczPz8PrvewITQxqZmYG\nlUpFUpPHKQUzrBuJRPDee+9hcXERGxsbSCaTGAwG2NnZweHhoTTWpTvh9XqlATEZmJvN5itWrI6S\n8Zycw+zxyZyFSCQiXI1sJGtZo3wgxBVuk+48jaVwAeBv27b9qWVZEQD/xrKsfwngbwD417Zt/z3L\nsn4TwG8C+K8AfBfAo6ufnwfw21evtxYdmmQ+gmVZ4kelUimcnZ0hlUoJOaf5sMft3Iwi0KSmRmdj\n1kQigaWlJYnfv3jxQqwEknNqJXRTK4GTghOPZi75Cwk2cafVqPa4MaP1w1g2sZfBYCBUcisrK8Jh\nWC6XUavVRvpbcLK6mfIAxGz2+/0j3bUIDHKnpkJYv6KYp4I9OTlBo9GQVuuAOy5j27bkc2jrg02B\nyCkZDAaxvLws/TsYuaLyIb0ZLQ6T7ZtjyFduGkyGevTokSg7XgdD2exSRkuKx+/1enjx4sXY56Wz\nPclQrestCG7zWvjDNaGjWbd1YycqBdu2jwEcX/3etizrCwCLAL4H4JeuPva7AH6AS6XwPQC/Z19e\nyZ9YlhW3LGvh6jg3FnOwdFrr1taWNDD1er1IpVKScqzjv6Yp7ST0GdmlmCSxjDez4Wy328Xe3h62\nt7dRqVTEJDVDkdM+DG2V+P1+JJNJIRN1ayZr7ipOu4FGrsn5Rx/65OREwCrgcgGStLVUKkkKLbMK\n9fnchOSvtOI6nY7UQoRCIWm+8vDhQ6TTadm92bGbmEOtVhv7rGz7khqvUqlIYhXzKjRDNMeFwGW1\nWkWtVkOn05EuXOwi7paSznvmGIZCIWQyGayvr0u4lQovGo2O1CXk83lxLROJBOr1OnZ2dgS3cZoH\nPBfPx2Q8dpkmGzc3L52kpu9hmuc1Tm6EKViWtQbg2wD+FMC8WugFXLoXwKXC2FdfO7h678ZKwdSc\nTFe1bRvlchm7u7uo1WrY2NgYmfxM19V+1bidVVcBdrtdFItF2VWJMIdCISSTSRweHuL4+BjFYlGs\nEp1FNs5a0O/r66GJH4lEkEwmR0BLM3Sm6xgYsXBLXqKZzQkVDAZhWZb03UwkEuj3+zJha7XaCC4D\nXO/y41wUgn2lUmkE/OP5NPgXj8fFvWMYsVKpoFKpiPtHt8PNOiHV+czMDDqdDg4PD6VBC5u00o1g\nJyq2qyMFO3GOcS3xdBIRXY9oNIpkMik7NmtYNKM0Iy+Mku3t7SGdTuPw8HBkszLvi8+UtTEEf0lh\nz/oT27bFQmGynn4W+vU2MrVSsCwrDOCfAvhbtm23DNPctm5IqWZZ1q8B+LWpLvIqf4APvd1uS8fn\nQCCAs7MzsSCYvOLxXHfdnWRq0zXh7sbBbrVaoog2NjZQr9ext7eHYrE4UnCllcqkc/Ez+oegWD6f\nx9LSErLZrIB0wDXqr2Pq056H5jHDf6z24253fHyMzz77DE+ePEG5XB4JrQLXCpPXaoZ7uVtdXFzg\n+PgYkUhkpIKVk5nhRL/fL1GIYrGI7e1tYclm4ZXbTqcXE5OJQqEQvF4vqtWq1JPEYjHE43FUq1XJ\niuz1eigWi6IU6GZwdzYVgz4X5wNBWbJ/M4xLwDIWi0n3KS5c5kS0Wi0BYsdZQRxTXXNBxc+oENP6\nWX9hPq9p3WY3mUopWJblw6VC+Me2bf+zq7eLdAssy1oAULp6/xDAsvr60tV7I2Lb9vcBfP/q+I5X\nrhcAQ0G6ko51CslkEsFgUIA5PZH1cdxE4xU6ky6VSknYiY1SCoXCSEjLCUuY9kFwJw8EAsjlcnj0\n6BEWFhakIQhBU96Trjjk7uHWS4DXwTi+z+cTtDydTkul52effYYf/vCHOD4+Hqkq1QVllHG7j23b\nqNVqGA6HsnPS0vJ4PJKW3Gw2BT9gsxYi9mbZ87iMTfb4oCJn70a6B8wtYNYrqwapzLlpjIvu8FzD\n4VDyYHhOFiKdn5/Lbs6x1uFRRnJ2d3clm9LpeXH+6A2GCmQ4HKLZbErlZbPZlPoSRl5Y7wNcEwnf\nRiEA00UfLAD/E4AvbNv+B+pffwDgVwH8vavXf67e/w3Lsn4flwBj86Z4gmleMdzChxOJRJBKpaS/\n5NLSkiDXemID1xN50gBxIbCdOHcrVqpxUdJnJpijFcI05+ArFRgjJ+vr63jvvfeQy+VQLBYlBKXD\ncxo4GtevwEk5MQWXMfuzszPUajU8efJEog0mJ4R5T5NMUu70rHcgwBaJRCSpiR3Dq9WqIOi6rRoX\nBUFWN2FegC6Ao3XB17m5OWmuAlznG+jqwXGKRy/WTqeDYrEoDWCYOUmrjgqabekvLi5QKpXQ6/Ww\nvb0tXcVY6+J0Lr7S7SFHRLvdlkzRSCSCcDgsUQzmkeh5Qgvoq8QU/i0A/zGAJ5Zl/fjqvb+LS2Xw\nTyzL+psAdgH81av//QtchiO3cBmS/E9udWVKqIHp77JddyKRkP6E9E3Zvw+4mabUC8m2bckXYJUk\nfW/d/ccNXHQ7L3cTDQAyJ58Zan6/X3oRNhoNOYc+Fx/6uDoLKh2tUFk6fHZ2Jgvy8PBQym55/045\nAm7jaSYBUeFQcdIv5rUcHx+jXC5L0o3u1j2pnNkJNKZC0LRuACSiwYU1NzcnCT7BYHAE53BbPLwO\n3lO1WsXm5iZKpRKy2awUlNG8L5VKsnNrzIPuLkOvbqLNfuIyzWZTcAtiZszcZKiT+BmV+evkygDT\nRR/+XwBuDuy/4/B5G8Cv3+pqxggn8vHxMYLBINbX1+Hz+aTd+v7+PjY3N6U4RLseN9GYDCOdnp4K\nqMcCG/aO5A7OCQxMZ5FQIeh6ARb20DwEgL29PVm8uhDKNBPHnYvXw1ReRgeGw6GAmV9++aVYJE5g\norZsxk0yphtzZ+33+6II+ENXRsfXWXVK4Wc9Ho9rC3WniBIXLpOE2u02LMsaSbqiBUMQ0LIs6aY9\nznWgMMza7/dRLBZRKBTw53/+57JQ9RwjvwHdPIZEmX/hdi5t3TJLV5dRkzui3W6jUCigXq8LDkRL\nic/htinOAN6tvg9mgQiTNYBrboLbDAYXtgb+iCJzJyAyrxvXuu2o40SnyPLczDLkddDvfZ0HC0BC\nqgAE5GOIVYcOx/nU5s6sXRYqHI4Z05aJk7DvZywWEwW+vb0toUuPxyOvLGGmucyxMHdWXg/BPI4h\n4/QkrWEmIRcLx5dxfyp+Xbp+60VkgL5mRSmf9aREIs4//TtDk7wv1mAwXdttnrjcy9e/GYyZt/46\nD9UsXOGD1eivyVNo+p3Tnt/c7fiqrY7XMf8oROPNzE7uqrQ6plUITsen2PZl2i+jPwTiWJXIe65W\nq1J1yXukK8VKP4Zjx/nFGnPQz0tHRHhsXivDfbZti4V0m4y/SaJDxryPaZ+nmdWoj2fOtXHRmb+w\nSuFNi9OD0CCQfrBm2Od1dxrzeG/quXByao5EnmscQ88khQCMNum1bXuk/p+Zp3qXY4IYU6K5mxLv\noIuhx8Ft0ZocFObz4j04hXNvUpx0G3EKF9/keZrf13NLz0Xzc1PMw3ulcC/3ci8jct827l7u5V5u\nLu9E6fS7LiaKP+4zN7XczHwM/f6btgKdjulmwpq/6/9P+q6JCwDOboJ5DtPMNutGzHOY1/BVuRO3\nFSe34SbP9bZz4J1SCuaE0O9reVM+uQYyNdDDc2h0eZrzOT1UE2w0j6/f1+eZACiNnUDjxtAEXU1g\n1e08TsdxGi99fv7fzNcfd938nAbzTAYlHdmh8HMmnnCbeaJBRKf71UDgTSJITliCE4s3AMn7sG1b\nqO6cuERuoxjeCaXghKq6TVC3793kXPp4OgTmdlyCWJMmgFPEge+Zk9RJebh9f9z5pn1fj6sJSLol\nE5nXYC4Kc7c2FYh5Lg08TnpuJnhoWdYrWZ7m9ejyaFNhTRInxafPwwImhkbJWsXw9ThyFX2NwDUA\nC1wXxOnoCueiaS0xGsT07WnvzZQ7rRTMBzFpV9Q7g15Ek8xCc5fkd/g3O/UwiUTHupkwoxvQjMuQ\n46u+FyfTXy9IfW16IU2yFm4z6fUObP7fXKx6t3dbNOb73LHNWL4O+TpVfupjMf0cuO64xVdGPxjH\nt217JNmMNRBOeSbTjg3HgNW7Pp8PKysriMVikqvB2oeDgwMhVXFTdubmo3MqGOLlvfFvKoFQKDRS\na8Gak5taKVrurFJwWqicTKwxZ468bdvCLkSGIBKB6r/dWmjpJByfzyfFV5lMBgsLC1hbW8P6+rrk\nzDNdd3t7G6enp6hUKmg2m2i321Kf4XYucyejkmGDFKY6B4NBmSDcEXVZdaFQkHRhprk6jZ/TWOoU\n60wmI2Qh7GHQ7/eln0On00Gj0UC5XEa5XB45l9s5WOhFQpJYLCbNc1KpFABIfQC/d3p6KoVMn3/+\nuSSLUTSm4PP5hAZtZWUFjx49Qjwel9oA8hj6fD7UajVUKhWcnZ3h2bNnwrh0dHSEZrMpC3YaC4+7\nNBdjPB7H48ePsbGxgQ8++EBSp9mbgXU6pGYvFAqOTN96HnKO+/1+WJYllG7MftVZsOl0WupJPB6P\nlJGfnp6iVqtJEtzXwn3QphAz/khyMRgMpF8BE1FITw5ASnDJeANAtKtTrYA5sTmp2TEpm81KAQpT\nZS3LQqPRkIYptBK4E+kd0O3+9OJhgdfy8rJUMbLakIuUlY62fckuzAQkptCOG0u+UpmyyGtpaQk/\n//M/j9nZ2ZHFSoqvfr+PcrmM/f1LeozT01NHqndtLegJzC5Ua2trwkWgFTz5B7ngWdkYDoeFKIdj\nqHEEAEIjH41GkU6nhTMiEolImTLHMJPJoN1u44MPPsDOzo7QtZE1GoAofDcx/fRQKIS1tTU8fPgQ\nmQhpUOwAABVMSURBVExG3j85OZHsTo4H5+EknMdpfnCOUznQKiCh62AwkO5X3W5X3BTNu/HOKwVt\nGXCCsX6dyoDcCRyUubk5IQ49OjpCsViU8t1xHHymf8v3aHlw5wSAnZ0dXFxcCNUWd3cWaukahXHu\ngDYT5+bmEI1Gkc/n8ejRI6yurgq1nO5fweugAqI5yUnDxWXelza3eb3sH7m4uIhvfvOb+Oijj+R8\nlmUJPTu/T9YgUrg7gWEcP07kcDiMWCyG5eVlLCwsSO+Fs7MzYXZm7wIqer04NX2bOYY6O5BMVax9\n8Hq9OD4+loIhMirznmKxGFKpFBqNhlRp8ljTulgejwfRaBQLCwv4xje+IfOO3JYXFxcjHZ20S+RW\nX2KOqwZeycegd3zWRhDLoDXHzeJ10+PvnFIw/W36nrQU2LfPsix5CGyKwaIRFkVRIdBKcBLTR+eA\nalP79PQUOzs7I74fS3R5bJqFOnNQn0Onr2oXiF2019bWhAeSLEi2fUk9Rmo4XpuujZjE9KyV0Ozs\nrDRIefjwIdbX16X4iP0V5+bmpHkLFTALfqiEnc6lJzbvTXdRYleoL774QnbwaDQqjW29Xq/07TDv\nwem+WBnJMWKxGglSu92utAJIp9Nyb0y9ZiGTG4jqJDTnU6mUKPFEIoFCoYCf/OQnwk9JMhY2w2EG\n57idW5d8W5YlSo7jqa0N4NqCptXCWg+WyLMD1tei6zS1NgeJJrnX6xWzd3Z2Fr1eT8qkyThM66HV\nao2gvU6EITwXX7kL6WqzSCQihCdk9qlUKlIB6PP5xF3gcSZVG1Ip0PJZW1uTH6/Xi3q9jk8//VQm\nktfrRT6fF+yh3W7j4uJCMIxxJq8+P8k/Q6EQVldXZYd7/vw5CoWCFAalUik8ePBASGtarZYwGLEM\nedxipZXH1nThcFhK2nd3d7G7uytWy3A4RCwWk2fe7XbRbDbR7XYdn5feQXu9nrQKDAQC4jIeHx/L\ntbIWw7Is6SZFrs1IJDLCMD3tGKZSKTx+/Bjf/va3kcvlUK/XUSgU8OTJEwwGAzlmIpFAIpGQ++I9\nmWOn56Ce+3pekYVJW9HskuX3+0WZ6uiLk1U3rdw5pWCaUdospX9Fjr5Wq4VAICCa2e/3o1QqwbIs\nIVPlwJo7qjZ7zUiALq0NhUJC8KmrJ23bFspu8vyZD9g8l3aJAoEAFhcXsbq6ivX1dSE3ffnyJfb3\n96VvQCKRED+SHYHIXkTQ0elcWmhtkdCFVPa9Xg9ffPEFarUaPJ7LRjQsEaZbsrOzg0KhgGq1+ko5\ns9O5LMsSs53gV6VSQalUwtHRkfAsELmnhUeeRoYNnXALji0V+MnJCZrNpuz4BA9pshOvmZmZEX+b\nlgXxIZrmkxaQx3PZin5lZQUff/wxVldXAQCNRgOffPKJlEpzR2c/UvJv1Ot1R9Zoc/FqxcDnenFx\nIcDtxcWF9CGJRqMCdLNHicaepnWLTLlzSkFbCNy5h8OhmLLkamSrcvL75/N5WTAmASknkZZJGpth\nLKLYbJhK9mgSgXK31grM6dhUCFwQRI/J5HNycoJyuSyt7TUzMKMSLDkmLbpTkxZzl9DuCtmquIOx\nxwJ3OM0NwEVcrVYlymKG8fS5dLiVCjQQCIilxXJoRlni8ThisRj8fr9wNGo2aLcJrXEF+tbkReS4\nDYdD6TFK5QRA2KXOz88RiURQrVblmYxzIbgpZTIZPH78GGtra/D5fNja2sIf/dEf4fDwUOYtAAlN\nxmIxWJaFaDQ6QvVuitN80fNJd+zu9/vIZDLS0Ibkt81mU6gESTd3G9cBuINKgaJ9Yk46hp2azabs\nAkTrA4EAisUiSqXSK92nx+UOOMlweE3rTebjTqeDTCYz0juAzDe6z+KkCcZFE4/HBTDl94maRyIR\n+SxNXcu6ZEUmrTwJP+iDjkO0PR7PCFjLcC4AQcnZXi0UCoklUigUcHR0NMIANc594AQmA7a2jEhp\nxwWpzXdSoRMLcGqma57bsq65Bsh2FI/HhSCWfREAjPRjJH0+o0huC9V8ZpFIBAsLC1hdXUUmk0Gj\n0cCLFy+kIzitBD6vfD4v77HZ7rhx03/z/ujKsr8pAMnDsG1beo3qTQK47jR2W7DxTioFvWvrVE6a\nhMPhJZlpLpfD8vIygsEg+v0+jo+PXyENGccX4HZujS/QNyUoR8yCjT1NSnSnhWPiJJw83J0ZvbBt\nW3YB+u+cDOyJQKWgaeXd7oHC+De7RHU6HVlUa2trgsKTcox+cqlUkk5P0yhV+rpcDCcnJwgGg5IL\nkUql5NxcJK1WC2dnZ6JgqdDdjg9cR1NI5sJSbZ30MxwOxRKgNcaNhWPHXhj62E7nJOntd77zHTx6\n9Ai9Xk9yHcgyRQwmHo+LQqClNO6ezHvT1hcVLMlyqMzY3+Tw8FByR0y8QueA3FTunFJw8o8HgwEq\nlQqOjo4ERJybm0MikcCDBw/g9Xrx7NkzfPHFF0LxxZAQQ4VuYu4+NLUjkcgIp78mK+EOrd0THsdc\nkDwurQ8AwkoNYKS7FFuccUJzxzs/P5cu0NwVGO4ad1+8F15bpVKRvIdIJIKlpSXpYVCv1+Hz+XBw\ncICdnR0JHTI0aoYI9fMicMpMO8uyhEiF6Hg2m0UsFkO1WgVwuXv3ej3s7u6Ka6IZnZ3OwzGcnZ3F\n8vIyVldXheKNDXt4LO7epHrv9/uScxIKhXB4eCjKZNzi8fl8WF5exne/+1384i/+IhYWFlCr1bC5\nuYlGo4FEIoHV1VUZh3Q6LbRpvJdarYZGozHRIiFxDDNoY7EY1tbWkE6npfFwKBQSjKZarYpC4Nhr\nq9jMSp1W7pxSoNCP83g8Qr1eKBSkGzQAPHz4ELFYDM1mE9vb28LmrF0HHmvcefT5zBwAEo/yc9xp\n2DWZSDfwajjVFL2AOJmZg0Bzj+dijgABQVpN5+fnEpnQ1omTcNdk92Mi9trlyWazGA6HWFxcFIp2\nYg0cS72LuQkXK0FY+u5+v1/yILiDszt1IBCQzk06AWyceL2XXcKWl5cFBGaqOeP1tGy400YiEVko\ndCN0PgbgXCFJ9yKbzUqiFLELhlWJjzCqkclksLa2JuHCVqs1MZOR96XnH10GZoSm02mxdhhxoWum\na0BoVfP6vzYZjRS9+zKFlJmEHJTT01McHx+jVCoJIajTju02MDp5xOPxSHydoBxj3Pv7+1hYWBhJ\n4eWDByA7vLZunM7N6AYnVrlcRiQSEd/4/PwcrVZLMg4Zfh0Oh2g0GhLa0sd38vOp5JgVSQXn8/kE\nba9UKggEApifn0cymRSlSr/eBFDdxpL+L10H9lkg0xIBPu6sADA3Nyft6rmIdc2DE4ZA94T+fSgU\nQq1WE4o3KpZ2uw0AyOVykkdC10Jfp6aTc9s4uMFwgdXrddkEOLa9Xk9Sr/P5vCic/f19bG1toVwu\no9PpuIKn2tXlZkM6O4KWbHTEUDTp9HkdjOLofIZplKyT3FmloH1w3iA7THMHoGm2ubmJarUqi8fc\nQacZGMbx6QOzUWi/30e1WsXx8TFCoZAAZDSXZ2dnZaGak9jpvEx08ng8aDQa8lmSqDK68NFHH6Hf\n78Pr9QoIRyTfbbHq8+oaBybSsJ7CsizpGbC6uoqFhQUMh8MRhmWzoMbpXFoIirKrM60tKpmTk5OR\nxiw8pu4SbtLDOaHyBC1J8e/3+0fa91H50ZSnD57JZOTZXVxcTN0UmGOp6fLZgIY5AsPhEB999BFW\nV1exuroqjXa3trbw5ZdfolKpCHO0k5jWajgclroGurBcA/v7+ygWiyO5DFT6BHI9Ho90wLqN3Fml\nAFwDdKbvTpAIuEw/3t7efkUh8PsUtwGi0uGDp3VAE5dRBl22St9WRxyoxDS+oEVbEJxYNH99Pp90\nfa7X6wIucgdlNyXiKXoyO40ZxefzIZVKYWFhAel0Gr1eD8FgEGdnZ5KiHY/HAUDChuz8rCM3kxQd\n759KkhENVioSmOXf7PZsJis5PWd9X4zseDweZLNZCVFzIdj2ZUp4r9fD/Pw8crmcmODs2ExXtFar\nSe2D5lkwnxl350KhgHw+L6npLCJrNpuIRqNYWVnBysqKNIp59uwZNjc3BQdzi95ohcD/E0Bloh4x\nEra7r1Qq8h3LssQSIn7GMOvXClPgoHGiaPpzWgqRSASnp6fY3d0doenWcWy9aNx8Rv1/+vTBYFBq\nLhqNhsS9uZAGg4GYb9q81Od3E8bWO52O7Gh86Ezx5WRg5p5uI8ed1Wm89H3xh7t3MpmUz52cnKDX\n6yGdTmNjYwO9Xm+k+7PTTq1dOfNcfJ91/ARUOTbMH2AEiX45W7xxl6cScron4DqcSwyBSmBpaQl+\nvx8rKyvS4YtNduhvE5u6uLhAsVhEuVxGrVZ7Rfk4jWu5XMbm5qbkxBBHWFlZkVwT4hbNZhO7u7t4\n+vSpJFONY43mtfFcpJ2Px+MCnrJPJ1PFOZ6cp3ymBE3Npsc3lTupFLQ25UShucYQTSKRQLvdll3G\nXCjT4Alac1Oz6uzFi4sL6ZLMRBjbtiXJiCa9DmO6KQWeg+dj3bvuRchsSfaUpJVweHgopbAaUAKc\nwU2ei+XkkUgEi4uLEv7s9/uCcPv9fhSLRWxubuLly5eS+TducZrjqkt+6RJEIhGx5ugaBAIB6ctJ\nhc4Ih/m83HZUIvSFQkG6dLOG5PT0VHpo0NfvdrvSNq7RaODo6AilUklSryctGuJZW1tbAC6V+urq\nKrrdrtSFRKNR9Ho97O/vo1Qq4fnz5/jiiy9G+o5OGkfe33A4RLvdRr1eF6uOkRw+f26QdMOYvs2I\njgalbyN3Vino3+lrcRefn5+X0IzuRegG5ACTgUbguoMTzUtiCJFIBB6PR7Ilt7a2JG+ACkkrhEm+\no87hByCl2rlcTuLcVBy7u7sol8tyn9xxtMvidi4i/36/H/F4HIlEAsPhUKyNSCSCo6Mj/Nmf/Rk+\n/fRTsRTotkzyt83nxEgAQ5C2fckBkclkRqoGCQ63Wi3JCNU4g1awTiBtv9/H/v4+hsOhkJswBZ39\nIwaDAba2tnB2diY9HBnSZVs+WpiTFi1xJeYiFItFZLNZeQbdbhe1Wm0kmYjnNJu1uAGN2socDodo\ntVoIBoMjIV72Se31euLyMDql554m+xn3/NzkTioFrTkZFdDmMJttbm9vy3e4OPQiH6ckKPTBKMzV\nZ4w5lUohEAigVqvJDsOWXYwRm5bNuHPq4intA2YyGQGpwuEwyuWyxKOZNafHwcnvNu+Lk6ler6NU\nKonJSXagdruNTz/9VNrQN5tNURjmM9Bj7HQugoo61z8ajSIWiyGfz8Pn86HT6WBra0sWEHMudORh\nnIVn27YkDv3oRz/C0dERtre3EYlEpAqSxyEOw/oQhirpQuiEHyfLhOfjGLO7VaVSQTgcloInov37\n+/vSk5PRgZuY75pRiTkb9Xpdsnd9Pp+kgLNpjmVdd9PiffMZ3YRZypQ72/eBvhIAyQDM5XJYWVlB\nIpHA+fk5nj59imq1OqKRTbBv2siDBtP4nl6EwHWY8aY163qiEx/RhVFExlnJR3CrUqmI8jGLkcx7\nc7oWhsZmZmYkRTuXy0nbuG63i5cvX8pEG2d1OB3ftBR0RIahQ2IANGdPTk5kt9cT18R3zNwI/RwY\nWdEujtt4jAN9tUXC895EzPvX573NuuKc4O8a2Aaus3PdrOJJGBre9WYw9Ou5izDDi8k+tm1L8ZAu\noNG+9rQL1w0gNHdKtwc+yUTTD0trda2AdEYgTUAdaTB3btNCcDq/rkSkgqMC5P1q18vt2qdxH4Br\nhmG9eM3P8LrHYUBOSkFbWObzmvYZ89VM9tHj8dMWc3wZWjRFW6Ru90sFoj9jHP/dVgoULiLbtoXm\ni38TqNN53q+jqR2u640cyynspK0ZvQvqXcvJJTLBzHETRS9O0xKa5O443bsb+Of2Pb2QKW672zgT\n3hwD81omWYTm+Dqda1qr8qsWc24Ar7Jpa0WmvzfF3P96KIV7uZd7eWNy3zbuXu7lXm4udyX6UAHQ\nvXp9lySN+2v+quVdu17g7l7z6jQfuhPuAwBYlvXJNKbNXZL7a/7q5V27XuDdvGYt9+7DvdzLvYzI\nvVK4l3u5lxG5S0rh+2/7Am4h99f81cu7dr3Au3nNIncGU7iXe7mXuyF3yVK4l3u5lzsgb10pWJb1\n71uW9dyyrC3Lsn7zbV+Pm1iWtWNZ1hPLsn5sWdYnV+8lLcv6l5ZlbV69Jt7yNf6OZVkly7J+ot5z\nvEbrUv6Hq3H/zLKs79yha/4ty7IOr8b6x5Zl/Yr639+5uubnlmX9e2/pmpcty/p/LMv63LKsp5Zl\n/RdX79/psZ5azBzwn+YPAC+AFwAeAPAD+HMAj9/mNY251h0AaeO9/xbAb179/psA/pu3fI1/BcB3\nAPxk0jUC+BUA/ycAC8BfBvCnd+iafwvAf+nw2cdXc2QWwPrV3PG+hWteAPCdq98jAL68urY7PdbT\n/rxtS+EvAdiybfulbdtnAH4fwPfe8jXdRL4H4Hevfv9dAP/hW7wW2Lb9RwBqxttu1/g9AL9nX8qf\nAIhblrXw07nSa3G5Zjf5HoDft227b9v2NoAtXM6hn6rYtn1s2/anV7+3AXwBYBF3fKynlbetFBYB\n7Ku/D67eu4tiA/i/Lcv6N5Zl/drVe/O2bR9f/V4AMP92Lm2suF3jXR/737gytX9HuWV37poty1oD\n8G0Af4p3d6xH5G0rhXdJ/m3btr8D4LsAft2yrL+i/2lf2ol3OpTzLlzjlfw2gA0AHwM4BvD33+7l\nOItlWWEA/xTA37Jtu6X/9w6N9SvytpXCIYBl9ffS1Xt3TmzbPrx6LQH433FpthZpBl69lt7eFbqK\n2zXe2bG3bbto2/bAtu0hgH+EaxfhzlyzZVk+XCqEf2zb9j+7evudG2snedtK4c8APLIsa92yLD+A\nvwbgD97yNb0ilmWFLMuK8HcA/y6An+DyWn/16mO/CuCfv50rHCtu1/gHAP76FTL+lwE0//927Rg1\ngSCKw/g3VXpTWSbgDVLmAtqls/cYewc7SyuLXCK5QKrEIKIexWJTvBF2ggt2s8L3g6l2iz8P9jHv\nsZ2rb1X/5u03otYQmecppYeU0hMwAb4q5EvAGti3bbvsPLq7Wl9Ve9NJbGaPxCa5qZ2nJ+MzsfX+\nAXaXnMAj8AmcgA9gVDnnO3HdPhNz66IvI7EJX+W6/wIvA8q8yZm2xAc17rzf5MwHYFop8ysxGmyB\n73xmQ6/1rcc/GiUVao8PkgbGpiCpYFOQVLApSCrYFCQVbAqSCjYFSQWbgqTCH+B/MAgb87q1AAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACtSElEQVR4nO39aYhs65oeiD0r5oiMeczIeU9nn6mO7lADQkaUEd3uFg3V/UNCbbBlKFz+ISE3tEGl7h8tDIKycQsMhsa3aeGSaalU0C1UGGO1VLQQElKVbhV17z33DHvInXPM85iREbH8I/N59xvfXisicp9z7sldN1/Y7Bwi17e+6R2ed7Js28Y93dM9/fyS59t+gXu6p3v6dumeCdzTPf2c0z0TuKd7+jmneyZwT/f0c073TOCe7unnnO6ZwD3d0885fWNMwLKs/8CyrC8ty3phWdZvflPj3NM93dNXI+ubiBOwLMsL4BmAfw/AGYB/B+A/tW37s699sHu6p3v6SvRNaQK/DOCFbduHtm1PAPwOgF/7hsa6p3u6p69Avm/oudsATtX3ZwB+xe3DlmXdhy3e0z1981S3bTtn/vCbYgKWw88WLrplWb8B4De+ofHv6Z7u6U06dvrhN8UEzgDsqu93AFzoD9i2/QMAPwDuviZgWU48DfhZ5V1w/Hcpz4PvbFnWwnt/lTm4rYPb/qxLt30ny7Icx/y65rlsXCf6qmN9U0zg3wF4YlnWAwDnAP4KgP/1NzHQN7Uw3GjLsuDxeOD1euHxeGDbNubzufyzbVvG+jrGXPX9N33Qvg7yeDwL/2azmayTXqu3ff911kn/zFwzNyay7H30efD5fPD5fAs/s20b0+kU0+kUtm1jNpvJM819u+1czXNoWRbm87mMoc/h24z1jTAB27anlmX9dQD/FIAXwN+zbfunX+cYenH0pns8noVF4aVd95nm8z0eD/x+P4LBIAKBAABgPB5jMpm8wQjWHctNSprz0L/n9wBkjNlsJgfhLpC+JCTzYH5dDBN4vSZkzrycgUBALgwATCYTXF1dyX7NZjNZQ+7ZOgyAF9Dr9cqZ8Pv9sCwL0+kUl5eXuLy8xNXV1RvMZl1tzulMc01DoZCcwel0ivF4jOl0+sZzTYa7ir4RF+FtaR1zwLygXq8XGxsbSKVSiMfjsG0bV1dXmM1m6Pf76PV6wpXJoW/zfEqxcDiMaDSKeDyOWCyG2WyGTqeDq6srXF1dYTKZYDQaYTqdyuFaxghMKeXxeOR/r9cLn8+HcDiMUCgE4HpDvV6vbOh8Ppdxx+MxLi8vvxIj0AfN6X99oNaVlFpz0toTL4cpQS3LWtAWOO6yd+XzvV4vQqEQQqEQwuEwMpkMstks4vE4wuEw5vM5Wq0Wms0m+v0++v0+BoMBhsOhnAunS2vOi3Px+/0Ih8OIRCKIx+OIRCKYzWa4urrCaDRCv9/H1dWVPHs+ny+cjVVrqKW9z+cT4ZNIJJBOp4WxdbtdtFotjMdjEQZaEyGzM8b7I9u2f9Ec95syB75WMrmjz+dDJBJBNpvFo0ePsLe3h0AggF6vh4uLC5TLZeGUAODz+TCZTDCZTJY+n+T1ehEIBBCLxbC1tYWdnR0Ui0WEQiH0ej2Uy2VcXl6i3W6j1WrBtm1MJhPZbG7+snlwHL/fL5sdi8WQTCblcIVCoYVLMZlM0O12cXl5iV6vh3a7jV6vh+FwuFID0WPyApmShtKN78gDRqbD+TkRLwjfm/PyeDzo9/sYj8cyHn/n9XrlElJS87I4aUn6XfmPgiCVSiGXy2F3dxdbW1vIZDKIxWIYj8doNBqo1WoolUq4uLjAxcUFLMuSdfN6vU4X5g2m5vP5kEgkkMvlkM1msb29DZ/Ph6urK4zHY/T7fXS7XQwGAwwGA5m31+vF5eXlSgbn8XhkzQKBAKLRKJLJJLa2tlAsFpHJZOQs12o1nJ6eotlsYjAYiECgJqyZwSpBf+eZgCmhqRYlEgkUi0Vsb2/j4OAAoVAI5XIZ/X4fjUYDwWBQmAAP/bLnawnl9XoRiUSwv7+Pjz/+GI8ePUI8HsdgMECr1UIoFEKr1cJsNsNgMFiQ5vo5yw4VP0+Nhpy+UCggk8nIQUgkEvKcy8tLNJtNVCoVABAtxA0X0RdHS5ZYLCaq5cbGBiKRiEi4aDQq2lO5XEar1UKn08FwOJRLY85LM01ekFAoJJ8PBoMYDofyLrxQPp8P4/EY3W4Xw+EQl5eXsj5uTE3vUSAQQCgUwsbGBtLpNA4ODpDNZpFKpWBZFprNJqbTKbxeL3K5nKjSw+EQg8HgDZXbjfhOwWAQGxsb2N7exscff4xUKoXxeIzhcIhWqyVMqd1uIxqNyj6PRiN4vd4FO96JtHnj9Xplrw4ODrC9vS2aQKPREMZDU4cMm/ujtbB3ngmYNqXH40EoFEIqlUKhUEAsFkMgEJCFuLy8FHVPSxUn6aKfz6/JjZPJJN5//33Z7G63i06ng9FoBNu2RQLVajU5TMtsdG6IHpMbTq6fy+WQSqXg9XoxmUzExoxGo0ilUggEArAsC+12G9PpVHAJJ9KHm3Mis9nf30exWEQsFkMkEpEDQzU0EAjIuIeHh+j3+64HSUv//f195HI5xONx+Hw+XF5eYjQaIR6P4+rqCn6/H36/X8aazWbo9Xo4OzuTteMhdrKhuX/mz3w+nzA2y7LQaDTQarVQrVZh2zbi8ThyuRzC4TA2NjbElteScpnHgb8LhULY3NzEwcEBHj16BMuycHZ2JpqGZVkIBoPIZrPw+XzyXGqlfI4bFqQxJZ7XWCyGdDqNeDwOv98vUp9mYzQaRbfbFe3TCadaRXeeCQBvXhraf1zocrkMAGg2m2g2m2i1WiKFtN3ptiD60FmWhXA4jAcPHuDRo0dIpVLo9Xr48ssvUS6XcXV1hXQ6jUwmg36/L1JrlV2uGYBmTLT5A4EAvF4vRqMRms0mOp0OACAajWJ7exsbGxsinTXesUzj4NeUYul0Gh9//DEePHiARCKBy8tLdLtd9Ho9WJYFv9+PdDotz+x2u+j3+2IKmMS1ikQiiEQiSCQSyGQySKVSiEQimE6naDabwpwTiQTi8Tji8Tg2NjbQ7/dxeHiIarUqUnOZRCZxvWmqEBRst9sYDAZot9u4uLhAv9+H3+/H1taWXMxAICAmm2kWmXPTl8jr9SIej+P999/HRx99hEQigUqlguPjYxweHmIwGIjwODg4QCQSwWQywXA4RK/XE9Nn1bw4JhliKpWSva7Vamg0Gmg0GoKBkXFzPfQ5XBfveyeYAPD6YFPtJBjYbrcRiUQwHA7R7XbRbDZFC+Al0VJ41RherxfpdBrb29soFAoYj8d49eoVPv/8c1xcXCCRSCCVSolqSHTYVL2dSDMbUjAYFNW43++j1Wqh2+1iNBohFArB6/Wi1+vB7/ej0+mgXq+jVquh3+8vzNGchzmnTCaD999/H9/73veQTqdRrVZxdHSE4+Nj9Pt9hMNhbG5uirZRqVTQ6XTQ7/dxeXnpaAYQB+A8AoGAYDWz2UxU5X6/D5/Ph+FwiGAwKO8Tj8fRaDTeWENtDpioN//nReZnW60WJpMJ+v0+qtUqWq0W5vM50uk0AoEAAoEAbNvG5eWlXCotXJadCQLEe3t7ePr0KTKZDObzOZ4/f47PPvsM5+fnmEwmiEQiMr9YLIadnR0BC7X54XQWnTTSRCKBjY0NbG5uYjKZoN1uo1QqodPpCLbDS0/w+G2A/neGCQDXh2NjY0OAM43UXl5eotFooF6vC8jExdQuoWVEJkMmEIlEUK/XcXp6irOzM0wmE+RyOUSjUbEvw+GwqGluSLqb3cnvCZLNZjOMRiPh8JSu0WhUVMpGo4FOp4PxeCw24TJVVptPOzs7yGQyGI1GODk5weeff45arYb5fC6gE+13mj/dbncBtHMaixeRXxMQazQaKJVKYkJ5vV4Mh0Nks1lsbGwIs9ZgpX6WuWdaOlPtJSBHJkqmM51OEYlEsL29jb29PWxsbAijoDfH7cLoi0oNKZVKCeYQjUbx7NkzfP755zg7O0O32xWzbj6fCyNMp9MYjUYol8uisrutoWZw2iTN5XKIxWIYjUaiWdi2jWAwKN6AQCCAcDgsHqPbMoJ3ignQrk0mk0gkEmJ/+f1+1Go1tNttcf2QCbhhAU7ECxOPx0Xaj8djtNttzGYzJBIJ7OzsYHt72xF0cZJe/N60MbUECgaDCIVCohWQwWUyGUSjUfj9fvT7fZTLZWECxAOcDpXT84k3jMdjXFxc4PT0FI1GA+PxGJFIRA4c1dxyuYxarYbhcLjAVM1xLi8vRcWmpsIDW61W0W63cXl5KZ4Zotu89JeXl7L2eh8AvGFimWtNbaPX6yEUCslFjMfjSCQSKBQKePr0KXK5nGiN5+fn6PV68o5u89LmZzAYRD6fR7FYRDKZxOXlJV69eoV6vS7gM82tZDIpGoFlWQL41mo1wXjM8+iEFREUJjNpNpsCiNu2Db/fL+tjWZbgL5PJBLPZbC2zivTOMAFyx2AwiGQyiXw+L7bnaDTCYDAQ1NQJ7FmH65MJpNNpscFns5lIlM3NTXzwwQfY3t5Gq9WSv9UHeF2zQx+wQCAgh4jvQdUagMytXq8LOOkUJOL0DpRkZCz9fh+dTgfT6VRiH1KpFPb397G/v4/5fC5MoNfrSeyFk6pJ0IuXul6vC05D1x/92rPZTOxvAoR0ZVGtp0bAz7sRL4sJgtHb4fF4EIvFsLm5ic3NTfj9fjSbTdTrdbRaLYxGIwnq4fOWue145hKJBDweD6rVKqrVKkajkZiFPJO5XA6RSESETzAYRDgcRjgcxmg0WunO5Xv4/X7BT+i6TSaTC5/1+XzI5XIolUqYTqcYDocYj8drB8fJc2716W+RaNvSdZJOp7G5uYnpdIp2u41Go+Hqwlp1MU3QMR6Pix/56uoKW1tb2N3dRaFQwN7eHmKxGNrtttjyOkT2NtGJ+uDTT59IJCTijWYMVWvGCJhhuMvmS4lAVXE0GgGAXBCqkjs7O0ilUjg+PkapVEK3212Iq3AbZzKZIBAIwO/3i4kyHo+FiRG9579MJiPSjEwiGAwKkAhgKYNzMqnIOKhRxeNxJJNJpNNpzOdzCawhvrHMFDCJYCIvJLENmhscKxqNIhwOI5VKYT6fYzgcwrIsYXAMaHKS0E64DufEmJDBYIDZbCbhyl6vF8lkUoKlrq6uBFAmWLouvRNMwLykqVRK3CYXFxeoVCpoNpuutvG60tnv9yMajUoAiNfrlYjESCQifmnbtsVDQZeTz+eTw+umimkEnB4Bj8cj7k3+jtiAx+MRicqgICc30zIPAX93dXWFo6Mj0To2NzcRjUbl94lEAl6vF+12G81mU9T0ZfMBXkcw8mJRxSZeQyyj2+0iFothd3cX0WhUpDjNHzIpMj0TRNOqMv+RgXBfQqEQotGo4Ci2baPf72M0Gi2Eeq/LtLV7lcxSmxz7+/uIxWLIZDISUMX3nUwm8v5k9OsGdFHLabVaKJfL4l3hvkwmE3EPJhIJzGYzFItFVKtVNJtN2Y91TYJ3ggnojdDx04PBQLg8JZyb9HACmvg7/s9LqdXLVColG6nRaNpltP3MCDwnotbAZ9O9Q1uR6jf92OFwWC4wtRzT3luFNtNuPz4+Rrfbhc/nQzabBXB9UD0eD+LxOILBIC4vLwV3oFnFZ7m5I7VJ4PP5ZE84B15SugVjsRhs2xathFKLtuyqfAiCqADk0lNKJxIJxGIx+P1+Yaxa6tOlSc3FsiwxCUwN0mSwmvkkEgk8fvwYrVZLzkyn05FzenV1JR4FelYY9+G2Z6aHie7VUqkk8RTlcllMwWQyuSCA6EkIBoNvBEKtojvNBHi5dCw6F4ixAHSr6cQN8xnLNAFuMFVyAMLReSCpFofDYbm40+l0IYBII79uzIYuNZ0MwngHuoCI1G9vbyMej6NWq6HT6SyAQOsAnVp9p8nEw1Gr1ZBMJmFZFrLZLL7zne9IJNrx8TEGg8GCG22V64nJM36/H5PJBM1mE6PRCPl8HgBkvrx41HI6nQ46nY68m7bTndR+7pPf7xf7P5vNIpfLoVAoiBY3GAzk7zSAlkgkMBwOEY1GJdZ/Wa6HBl47nQ7K5bLgNLFYDADE82EyCnqsGCcwHA5dgUhNPCOWZcmZoICo1WpyFi3LwmAwwNXVlZhS+uLfxl14p5kAsBhmStW53+9LEEW9Xke323UFRLQ66Ua88Ny0breLo6MjJBIJ+P1+8TYUCgVEIhHxRXc6HUHY3RB0TVQlaTvShuWBHA6HYu4QOb+6upLN1glK68xLJ+1o9ZQYSiqVQjabFdfdixcvJCDqNkEn8/lcYuOvrq4EBzg7O4Pf7xfwMZ/PS2zFcDhEu91Gp9MRpqFVajdG6vV6EQ6HEY/HUSgUUCgUJCSY2gVDuSORCGzblsQvqtjUUHjJ3YJ4qEV1u12Uy2UcHh4im82KAKhUKrK+l5eXAhJSO+x2uwJGasbqRlogETRl8hM1RpqNBDc5NnNjnFLcV9GdZwI6c0tHp02nU0G62+22HB43KblMbQZeH+Rms4nj42PM53NsbW2JXRsKhTCdTiUx5Pz8HGdnZ6jX6wtuNDfSOEAqlUKxWEQ0GgUAtFot9Ho9mS/fdTwei5tNZ4jpDSZu4EY655zzpWkUCARk3er1Oo6OjhbQ69uAS2Q0pi3KCz+dTheAT5/Ph0qlIoFRZOLLDrEGhyORiERuptNpwR5oLpERbWxsYGNjA1dXV7i8vBRtTs/P6/WKBqLHonDo9/s4Pj6WOIBEIoFut4tutyuaIZndxsYGbNsWxlGtVlGv15dme+qzqbUPnjd6JahdkBHGYjGx/+v1usQj6HD5dehOMgFthwGQTY/H49jc3EQ2m5UF4QHSNhzgHHO+jHiIB4MBqtWqJG9o1ZOShCo6NRCt5rktPA9lMBhEKpXC5uamHF4eovl8LpmEwDVzqFQqb9QvuK0LiJ/X66kz8Gz7OiS12Wze+tnmGupLCECATb1XDJwh8wZeRwm6rR/XluZhKBRCLBZDLBZbiN6kWUHAcWNjQ+ZOzwU1LM1Uncbj/1dXV6jX6+KGY5IS/1a77hjN1+l0UKvVUKvVhNE5xXSQeEa12/Tq6kqYGIFpel0ODg6Qz+cRDAZxcXGBo6MjSS2+jfcDuKNMAHgzA86yLKTTaSQSCcm1Z7TYqjTNZT/XvyeA0+120Wg0sLGxIRGEPp8P8/kco9FIQnd5mNd1SerIuHQ6jXw+L8lDTEnmIadGQsRXz9GUHOuuJ7EVmiN7e3soFosIBAKirn4dRUq0lsJ9ZJw/LwQPOX3ppFVRdXyeNjvoi6epxYugk5iY9s1oRp3jv+rS8DPdbhcvX75Eu92WbE+aGgSOiW/QrBwMBgJ6umk4el4aaKXqD1xrVNlsVuJjyADq9ToODw9Rr9cllFwHyK3DDO4sE9DECZFDchOZTEHu73Z41iWOMRwOJaadqitR7kqlgvPzc9RqNUf0eZlkofQhoJnP5yUkVUcn0u1ZKpXE82FiAfq566yfDrbKZrN4+PAhPvroI+zs7KDX66HT6Ygv2m3tbiNd9OeJTRAHoJuSLlmdQrzMj8/LOJvN0O12cXZ2Jqo83Z0066ilUVAwQIqXVHsj1mGkFBBaWhPDIChK5kavi671cBt3NefAtHh6knQ8wmAwEJyiVCqJVmV6dNahO8sEuGhcfObyn52dSRbd2dkZyuWySLG3vSTm5wk+VioVYQx0r7EohQ5R1lqI23jUIgKBAPr9Pk5PTyW9NhqNSvZgrVZDuVyWYhE8rG5zWTY/02XJTLjt7W2899572N7elgSlZeDqqnGWjctLozMtKbnp7tMSj+/gNtfxeCzxFmdnZ+h0OgKw0v1KRksgjWtIAUIwT6ff3kZTpMeo1+uhWq1KKjXnx0AvIvvrmHF6fI0HkCF0Oh2kUilJ/2ZiUqvVEkzJNG/eaSagX57x4Vz4SqUibh+Wi7pthNSqcfWYjNZjRh9VPR4mDcqtQn6pDk8mE3Q6HTx//lwiBWmr6sAWt5JUt5Eq/JxO8CH+UalUMJ1OcXR0hHK5vFCDwWldlpGpNeiAHEYLUpviO9A2p4uUktvNxKJfnyp9r9eTAisaU+BFIOPRajj/3UZd1u/Af/Qm9Xq9hchRndrLgh/LTAFzfvyaf8PAsXa7jbOzM4lx4HOoYfG83mbPSO9EjUEuDm1MHfyzDGz5Gt5rAYwC8MaBIq37DnyWvpCci37mMum0DtCpP8v/tXstnU5LdmK9Xkej0Xgju+620t8MrNEVhBhfH4/H5aLEYjGp/6ATj5YFdZlfu72nXqNlgK0TznIb0ucReL2/mhE5nZe3Hce8AwDeEBZLxnGsMfhOMAHjs/L1z/Ld3/aQuD1Lc319gd7mAq47JrAYjELGpt2PHPttx9cMk3ERnB8DpAiA+v1+KWqyrNjnsvmYtIxx3ubztyGnwCbz+V/n2TG/v8UYfzqYwD3d0z29NTkygW+sNfk93dM9vRt0J4HBZbQsGOdtbPSfBZnq4bpuS22vmj9fZReb5ob+uek10H+/jkp+G6DQaSz9nNuqyyYoasYPrHrvdcy6ZWfM7blOn102Hn/mVuOQz2BcicZJnCI6NeCpf0aQchm9E0zAKXBIJxVpEMYptv7bZgh6c8wL+TZI9aoD73TpuV6MOGNSD8OO6ZVgDwCuJ/BmyPGqsTUwSB93MBiUjDftX9f+enMsJzIxFI5pFio1cRcAb8RA3IYB6TXke65yLTqBmcvmpcdhfgMjBnVSG12VBFGX5XqsM7c7zQT0gdLAFt1NLMkFYKEbj060Wacr0KrxnciJ6+r/V/3NbQBO/XtzPdZJWmLKLSMgGS7McFcm8dRqNak8rF2F64Yr8+JrrwBDexnt6fV60e/3Ua/XF0qPaVfaqnRicy30Gplnhp4X1hHgZ8kE1pkT50VA1bxwTu5Mp2doL5D+nf6fDFOHC2uPii7gyiYnZOTaU0aGsY6GdGeZgOkO4eEKBAJIJpPIZrNSsXY2m6Fer0sFFhaSYOTWshhxPR6ABQ1Dt4Ni9CAAWVzbfh0FyMNLSer0bCemYko0J0ZhakBac+DBcFNJ2WuAlXbIDBKJhJS84rz6/b4Ep2hJw3HdLoy5R6x2Q7fg5uYmtre3hWEzIYpjMtrOjHhblZC16h2oJeo5kHhplkUN8m90j0MWldEakz4rvORa+OiOVE5mq2YADH2ORCLSUi0UCkl5OF2khdmJ7EXAHA3NRN9ZTcCJAbAEVT6fx4MHD/Dw4UPs7u7KQb64uMD5+TkqlYpE+lmWJQkq3BinRdFjMZafpaN1IgrDNrnATIVtt9uSCsuyUmZpLicJpcfWNqL+PPC6kAbfiW624XAoqbMmfmBZ1oJESaVSkneRy+Uk+InjdDodKYKh10xLrmWMQAcHsaYhU5WLxSIKhYLUG7BtW4ql6oArzt30tZtnw2Sm3CeWFmOdQb7/dDpFMBiU7znmYDBYSEBz0rh0JiLXkCHDAERtZ2UpRikyanE0Gi2YWny2035RayOT3t3dleKl0WhUKlJPJhM0Gg3EYjHR4tjFybKsNwKHVtGdZQL6a15OVvtlY5B4PC5x2+l0WtQkZnLx73UpKadDZR5gShGWEEsmk4jFYtI8IxqNot/vY3NzE8fHx/D5fKjVarBtW7i100brmoJaxeSYvOw6PZWFTqLRqISnWpYlra9KpdIbF1c/W9di4LN4MTgWQ1vp09d2pnnpTUmm56cvDt+dJggZFQ+rbb9utKovq6nWr5JknNfGxgZyuRyKxSKy2axoHUxvZhs0VkXW7ePckpbIeDOZzEL2KjUdlp9jSvh4PMZgMJBqxuwhwcKklNCmKai1PJpryWQSyWQSmUwG+XxeulKRAUUiEeRyOdFSuN6dTmft0nCkO8cEzI2fz+dSXJENQllBVneb5cULh8PyHP79qqhCrXpSJeVzmA/Psk1aE2AcOy+LW6VjADIHs1TaxsaGqH8sYsKLSOyDc2ddwNFohBcvXuDq6kpUeb1+2v6kdGLoKUFBlhijqkzwiaHY68TTmzY5n8W1ACAMjbkRzHfn2obDYXQ6HRnPbVxT+vPykHGnUik8efIE7733HrLZLGzblsQyng/G8zM4irH5TmaaZtRM/WZJdgoI1keIx+MLacpMG+71euj1etjY2BCNwJTQHEPjLqYGFwqFJFeBOR5k4ixiArwOd9eVld5JJkAy7aZAICAYQCAQQLVaxcnJiZTkYr8+HgodBWeCR05jmR4GbT8y+SSTychlmc/nUmyCIbfrgGeU0OwlF4vFJD9dbyhwvYEsaMKmm2x2kslkUKlUFt6Tf0Oth4dCq9ehUAjj8Vi6C1Fy53I56XLEC6Cfuc5+kdmyECZbgzN7kFWYfD6fFG8dDAYLl4DjLXO7meu5sbGBhw8f4oMPPsDBwQHm87lklzKlOBqNiqaow2ydyqlr0JCalGa2fD4jIPl5SnpWNKKZ0Ol0pBCJCXqaZ5PvxZLjFHZcP1aZms/nwvwsy0I8Hl/IY1insCnpzjIBTWzrFIvFEA6H0ev1cH5+jufPn6PdbiOZTIq7i8U53FRWk5xAGsuypFikz+eTrrKawTSbTVSrVSkFrsd0UqG1yhcMBhGNRrG1tSVdfHUtfnYaJsenOUSpTolKiWtKSI1+M9GFlW+oilPiMK2XmItOTjGxC5PJ6XFMphEMBmWuzHZjsw4CldR0zOq/TpKZz9XvRgbA9mBPnz5FKBSS9mqVSkUYLS8kzcR1uvXoeREEZH/GXq+H+XyOcrksadF0h2YyGQHzKKSYOWlmapoMiGcunU6LFlqv13FxcSFdoufzOUKhELLZrNwJpmETh9Bdo1bRnWICmiuagAkBu0gkIplkLMlFu52AGTdcL/CqzdbEC813CIVCKBQKePLkCdLptGggpVJJGnbqcdyQZt1JlnMhCMlSX/1+X1RW2sysQFyv1wFAzCB2CDIlC1Vy7SKlFKR01vOOx+NS20DjB1rFd/IQuF1U4hk0ZWzbFnXZsiypCsT3ZGbcOllw+l1oFz99+hQfffQRcrkcKpUKzs7O8Pz5c6kCxFoDLKbC1mvaQ+DmtiMQx7RxalFU7VnuLhKJCG5EdZ61BTTjctLcNPDKysyxWEzSrBuNBs7OzmS/aVpSG9Ct5hmDQe/FOtrAnWICJFNF4vfaTafdUHt7e8hkMrKpTuWr13GVmO8QCASQzWaxt7eH999/X8pMsyVYr9d7owjGMjBL4xSUDKxIww1nQ1W29yLSTqCJRTJ0xSEnyaIxAUpZViciis51TKfTSKVSC2OykhLfW7taNZlMlug+Lx1rM5KxsE9fIpEQTIMS2vSMOI3F33m9XkSjUezv7+ODDz7A1tYWAKBSqeDVq1cL6jovKCsN0cxyK16iBQBT1pvNpuAIvNjBYFAKuLIEHms2eL3XHZlY+48eJDeTUTNPCgZiGKwaRK2P7chYY5Geg0QigVwuJ6nWZFyr6E4xAVOtBF6rfVRZuVCJRAL7+/uIRqPI5/OIRqMiQXUXXZ1jvi5p19DW1hbee+89PH78GJFIBCcnJwslsrRN6fT+nBc3X6PulCxU29nOS18MMj6WPGN5dWbfLcu953OZs8+1Y51+HtxUKiXdhXXTEMuy5MCbklqP46SmsxkImQrbu/GgEiyjFkT3oYnH6LH4fA0G7u3tYWdnB8FgEI1GQ+okplIpKd2+s7ODRCKByWSCVqslDMctZFfvpS4gwshKAscEdcmoeTFjsZiYbWdnZ1Is1kkyk2kCr70RfCYA2V/iGpT8Ok6GpiLNZmqabAu/iu4UE3Ajqkk80AAW6g1SOyDXo90H3C4yT/+NrscXiUQwm81wfn6Oi4sLCULStMrs0OgvpXS/3wdw3USFvm12lJnNZgI6XV1dodPpoFqtotvtinpNl9Ey0oyQ9j/93XRHscQXa+jrdlv0FLhV5DW/1lLR7/fLOrI5CP8xJoG2M7Ufp2eba0x0PpvNolAoIJ1Ow7ZtjEYj+Hw+7O/vi2TkZ7xer9jTusjJsvqCfHeG6eoLyTLqGxsbYsPncjlsbm5KN+tKpSJRmKawMIkMn8yTwgCAeKR0NCGb5hI7IsP3eDzS5IWMZBV9JSZgWdYRgB6AGYCpbdu/aFlWGsA/AnAA4AjAX7Ztu3XL58rXnLjmyro5o7Z9KTU1SKPR/nXcXhzftm3h/NVqFf1+H6VSSXCIVColLijTVeZGlO58rs/nQ7vdlo1lQ1KqsDwE7LhMdNkEM01yw1QCgYCE8KZSKfkZgc5eryceFvrWdZFTehvcxtFaG/EMMhrGLFDyA1gAJonec5/poTDnSslJZpZKpWRN/X4/dnZ2sLm5KZ8nkyNKz3fi+VhGOveBc7Nte6Fl/MbGhsQRMJ6E3Y/a7TYACH5Bz4kTkMs94tllcxONd5FhUluIRCIiDNg2j2Pp915FX4cm8L+0bbuuvv9NAL9v2/ZvWZb1mzff/83bPFAng5A7agCGEyRT0EAUP0/XzqoYAR1Pzu+1PU33H33dOqKrVCpJnIAJai6TLgCkog/tPEozqs28IAwRZaNJM57fJI6vNRUdTbe1tYXt7W3xpgAQnIOuPXoqdPlsSkJKNXNOXDceULoAaRqwrBi/J2OmtjUYDCSqj+aH1gxI2tPCdej3+yJJ2V2IQCTzS1imS5f9cuqToInrRq2BqHw4HBaNJpvNYnd3F/l8XnCUTqeDXq8nFzeRSEjUoJuGQ9BYX3bLuu4QxfHZQp4MlfMYj8cL0a0squoERDrOc+Unbk+/BuBXb77+bQD/ArdkAiROihyW9g8AqdXHPmwARBswXVy8qCbxd6ZLihyUbaDYAUZH8M1ms4WOxKZHwSRqFtoGZKSfx+ORYqp8p42NDcxmM1SrVVxcXAgISQbF0FCT6ZgaCdeQMem8FPF4HMPhUEpjM2CHQTAApBciowo10q3H4td+v1+SXrgujEpk92ItoSj9KMF0x10304PMmcVfT05OBCyzbVsKwFqWJaj5fD7HxcUFqtUqXrx4gePjY9Tr9QWfu9NYAEQqkwn4fD6J5tve3pYoRcZfUHsCIFpCJBKRjtImWKfnxXnQDa33i2ZCJpMR4XB5eSlnhWeRZfB5jtehr8oEbAD/k3VdGej/adv2DwAUbNsuAYBt2yXLsvJv82AeEgadZDIZeDweqa1ObpfL5eTAsQ2VGSS0zAzgoaP0AyAaxHQ6FSnDA02OTLNEq8M3c3ZeqBt1Wtug2oXGuARKgV6vh2azifPzcwEiqfXo5ywbj2vId6ek0j0MdMvyq6sr5PN5aRra6/XE00LV1mkM/TXXkQ1OyVgIXPEd6Akg4k7AlGDrsrLjLNh6dnYmGlU4HBb8ArjuO5hKpQBAPvujH/0Ih4eHC5qP29ngz+iGZM6A7lBMAI7+fJZuJ0BH04PZkqaw0eummRsxCM1MPR6PdDji72macF1I1BBMz5EbfVUm8Ods2764uej/zLKsL9b9Q8uyfgPAbzj8fAFA0YeLKjATP7h4dH8xLp3x03Tf6eeaY9EGo2+WzyOT4QYwhpyoOk0AfQnMS+E2LzI37aqKRqNSiJMBHwwQYT8AXoxl0XV8PsfS2kKv18PZ2Rk2Nzcl+5KXj757mlSXl5dS5p0mgJvfWTM43T+Rko0Xh8/weDwiMak6c+9oAjgBr5qpj0YjnJ6eotvtolariaQmIEhzBHjNBNhxeVVzUK4h7Wsi8WRws9kMqVQK6XQaoVAIlUpF+hkwQpMJRWR0OpfD1KaoSTKystlsSryB9gow9oB9CAkg09xpNpuC7TDAbR36SkzAtu2Lm/+rlmX9YwC/DKBiWVbxRgsoAqi6/O0PAPzgZiEcxRmlFstL01amikrQiYePUoVqFw+tm42uMYd0Oo39/X0A1wfw/PxcLghdklTt2EDTzUXnZvfxPTTzsazrRpN0LxGVd8u3Nxnkiv2RNdGHL5lMitbBA0VVHYBE+F1cXODVq1cSfquzFZeNxQYjwLVKTGZJRsD01263i3a7jX6/L6XcyVyXaW9khCz5TZcuGRm7RjFC7/z8XBrXkklp5uh2PniZiXMw1gB43ZW4Xq/j5OREmsQwfoEmFHEIt4a13EeaeM1mE69evYLP58N4PBacg6aObdsS8s0gMgDikmTlaDOIbRm9NROwLGsDgMe27d7N1/8+gP8zgN8D8FcB/NbN///kLZ4tC0O7nOGZAAR4Yqw9tQCmETNhRF8UN0yAlzEcDmNvb08kyMHBgSRrELjxer3SHOTi4kISUExy8wVr5kDfMsNmqQnQZiQj0/0NdKTfMq3DfBdeFv1etVpNkogofem7Z6cedrbhQWYmnhOZF1O/F6Wodo2y9gOZNkE6Mu1V4a76fDBJh54GtisnuMnAKrfGsW4MlVgSQ60BiHux1+thPB4vaGvUHNkwl2aCZgJu0YnAdWhyu93GycmJCAa6A4nPUAui0CPmQjcyNTd6Db5RJgCgAOAf30zCB+Af2Lb9/7Ms698B+F3Lsn4dwAmAv3Sbh+oNIXfsdDo4Pj4WxDebzQpKenl5iWq1iqOjI7x8+VI2e50S2pRedIkNBgMUi0XJVCQyz6ivV69e4fT0VMJGqZabz1+mGRCDYOorwU6G0dJG5yVxanWmNQqnxivaJNDraN+4qHq9Hsrl8kLdBNqxVCFrtZrE+tM16NbkxbRrefB1GDSZAHBtsxItp3qrmZzTZXE7K9oMiUaj4l61LEu6SFUqFbRaLUdAju/tdjYYK9HpdAQzokl6dnaG09NT0dgoLCgwGHpNHISmn9NYmoky0YqgIFPIdcaqBv/YP4LVhhiE9o0zAdu2DwH8GYefNwD8hbd97s0zFnz1VH3Ym01XXLm6upKN5uXUyDmf57QYdBuxD+D5+TmAa5cZ/datVgunp6c4OzuTOAFdI3+dRdbvQDdaOp3G5uammBmz2Uzs1WaziXa7LfNwCwjSjEF/rX/Hr8kIeAGpsmvfNM0ry7KkDRoljltTEK2RAK+BOyYuDQYD6etIBJt7QxCQoKS+DMuYjeln12AasSDGVTCRiGdIYynmOpH4Oz6n1WohEAhgNBoJ/tRqtXB+fv5GJ2BqfMzxpweEzGQZcyNT4z5p74ouAMP3025BMk66Pm9TWOTORQyah5cLow/vxcWFSDAAC+2reCCWSWZNDCVlUNAXX3whdiA3g2o5kfJ1L75JOmqQB5JqHluea/uVc9KXTwNmq+xm83u9nh6PB1dXV2LH0manxCFIx4u67lh8vj6UOp3Z9KbwMybWcRvmqrWOWq0Gj8cj2Xu1Wk2CvXQ4ubkm5jOpZTUaDfE80ZtDMJIeG11KjM/SqD6DmZZhVE5MW5O+/Pyfz+73+wtuas2011nHO9t8xIlT60VwQubNzzt9v+Qd3lDbV6n565IJCCaTSRSLRfEx27aNer2OVqsl+QHENcysPf5zY3RucQrm+5trSJSa0kszVCcbWs9Lj6u1OPPQmuNp7Id/q9fcfL6btsNn6dBbAsislahDzlcxG72GOnSc2gC1Da256Ofq9dT7ZSZ68fnm2OZZNrUt/VnNbPhZnThn4CvvZgeiddQ2t0W6C3MziYeVh0rbkJTMlMDavWkypXWZnXkRnfAKvX4aS1g23rKxVv1eq/Vvy2j1vExmwMuhL7p2L5pzMiWzXgM+S5syGrsw10i/g3mhnebplFrMnzm9q/lZnieNbWimpL/Hu8oE7ume7ulro/s2ZPd0T/f0Jt05YPAukKkiA87YhNPvnEgju27PMsfUaqyTnahVaYJ85jNXqf7m+6+alxOg9aeRlq3DKpPHiZz+ftXP+HM3U3fZWG7n1o3eCSZwm0v3VQ+qaUM7vcOqTVmGomtmQECHfmTz4pNoo+p6BASA3MAtpwPlNi83PMU8TF8HA3AC9Zze99skc+7L9tvpbLrN0enZTs9yAlVXjev07HXX9M4zAScJuuyiux3+VQviBDS5fc7cXI0CO5UzM6W5zk/XJbV0dh3/mWASv9cpsevOy+l3bhfdCVBcJxlFA1tOQJnWYHSBFS31vi6G81XIaR3cvBLm35nvv44QMy++0zl0Ykym0NAA6LouwjvLBPRh4vdOl4+fWVW5BVjuYXDj/PxaN/GgCq5RXC443WtOLjzOSTMBXV9PlyNnEA+TYjgG49HZbMTNhafXiPPQaLKuMqyrHOukIh0f4IZym/ulMxa5bnQ9srAq50OGyejI4XAo87ltPIbJkDWD5Rzc0PZV54LP0vPhnHT1Hh3zYJY15zhuNS9NJqnPv7m2OgRbz0EzUMYKrLOOd5IJcOF5mHgpGMTD6DZOmO2/mBzilGwD4I3IO/Oi8GsdpUW/My8Nx2UyDICF6i5sMsFSXZr4bB5UJvHwH5tPMhFG10Fgui/TijudDoDXGoET6bF0l1tGKzKbkPnpLF/GGvcMkmLGmmVZjpoH94tZcrzs3DeGtkajUZkffz8ej6VEOAu4sEqO2wHWF1RfDJalTyaTUq6Nsf/MVHSKKNVhuObzedHJxFipiBmfzOVnQVLWfmSmq65FyYAhM5zXFCqcl85riUajiMViEkIMvM75YJi2rgDFTkjMQF1Gd5IJsPoMizkmEgkUCoWF/G0WkQAg/fgYcNPpdCRjjOGcjJJzi8TSnDYSiUj1GBbl5KGlpGaQx2QykYvD5A1KbO2v1SaDxgJYSj2TycjBYrYiuTvz5HmQGQ3HmHmnlFEt9ckAstks9vf38fDhQ+zv70uZca1hdDodlEolnJ+f4/z8XHoccD5OBVo042Q5rEwmI0ybhUYY08+Gskyb9ng8GI1GwsiXmWRcP61JMQPz8ePHePjwIXK5HJLJJILBoESCck4nJyfC4MjQdMFY7hfH0Z2i2AGLuSW8mIwIZIh0rVZDq9VCuVyWyE9do3BZEJgpIJLJJAqFAlKpFIrFomQy0oQik55Op2i1WhI5yb4U64QP3zkmwIsRCASk/RObdLADEDPveBF0jYFarYajoyOUy+U3WpRp0gvP73XRENaNYyFLSi0eEKrrwHWWXKlUklRbt7HMuHVqOaxqzBr5OrFHS3nG9gPX7cTNQBOSZjiWZUlOerFYxOPHj/H06VNks1l4vV6pXcC5p9NpudQ8sNQIgOWYC5kNcC2dWAWHpcXIRILBoEg1psqGw2ExIZaZdKZJE4vFsL29jY8//hgffPAB9vb2RAtgwBUrDHm93oVqQqYGYK4hzT+OxQrG+Xxe9gqAaKAsfso1Yao5tQAnTMUJl6EGQiawu7uLg4MDqavJi831ZPWkaDQqSV/r4gHAHWMCekGoDnHzdGls237dzIJMg12IbNtGs9lEuVxeqA23CrEncSzWdGfVVtYPYK38eDwu1Wqp3ulSWea8gNclpKhaswDG3t6eXAoyOG4yLyhVZKrS7ClogodO6LBt21LMM5/PIxAISDflarWK4XAoJkg+n5e0XB4yXmI3pFqDlTrpybZtadvGg8oiHcz2YxenRqMhc6RmswpgAyAtzXZ3d1EsFuHz+VCv11GtVjEej4VpUmui5qarKy2zz018iAxBC51ut7ugQerQa6b1OnkNzHmZ3qFQKCRCkFWoG40G2u227DvNlMFgILUgOfa6uMqdYgIkXlrW3SsWi1Jvj6mw7DEQj8ell5/X65WSWHrytHndDjGwaIeFw2FhHp1OB7VaTQqJeL1ekXCkTqcjfeKA5WHMtm0vFMBIp9PSfprJO7QjeaF4+LguxCd42JzIxENoW9q2LR2MTk5OpKtxKpXCo0ePkE6nRY3U+Ipb5VptV2uPBW3ffr8Pv98vBVW3t7fx+PFj+Hw+aeJSKpWkEjAr8qzKtiPQx7Rsy7qunPTq1St8/vnnKJfL8Hg8ePDgAXK5HCaTCcrlMiqVykKy2SogWSdBsSJRt9uVPgflclnaum9tbYkp02q1JBWcmMoyD4vpcfD7/XIu2MqNtQaYMKTTjFlPgKYAQcF16E4xAY2OEkRpt9s4Pz9fSPntdDqCJPMAs8YcpRH/Xqtibhvg5MaiOtzr9dBqtdBqtQBASnXzUna7XSmTxUxHt9puGjmPxWJicrByrd5IvYm0qwlKAhCNyC1nXF8UgqeTyQSVSgV+v3/hABNU29zclCQZriPTiTXYqteNYzGVl0yJl4ygmWVZUiBjd3cXsVgM5XJZ2muR6ejEFydswATzCJjOZjPUajUcHx9L1mAmk0EqlUIul8Px8TF6vd4CgKw1GHNeNF/oJWGaMhmBbb/uesxsUIKeTGl3qvW3SjprJkDG7fFcF6LV1ZEISPKcA6+xMdYVcOqC7ER3ignwMGlVSoNRLLyoa9WFw2Fp6Hl5eYl6vS5pnjxYqxgAxyax7BfVUkqxYDCIra0tASnL5bJUA2ZeOQ+YG/BD25t1BHZ2dhbsc+bB8/LSI0HGQY2Gz3cCO7W7iAeZ1ZeSyaRI3Gg0ivl8jmQyiQcPHoi5VSqVUCqV0Gg0FvruuV1IvXc6iYUXlWZMLpfDRx99hEKhgKurK5yfn+PZs2colUpv1P1bZcLxXFBbvLi4QKFQEEA3Go1ib28PBwcHUnOCuI1ZXsyJtOnGqr5kHMSEaNZcXl4im80inU5LIRpqq/o8rAI89d5pLwvBW5q+2vvCS04NoNVquVZQcqM7yQQALNRko/S0LEvcQLwcREz9fr+06ur3+wucmJfGzTesN0j7gYl2p1IpJJNJpFIpHBwcIJVKod1uo1aroVQqSa843QNRE9VWmht00+3u7kpLLroX+Qza+/w8XYacCy8B4ByRZvqNzQo8hUIBiUQCw+EQiUQCu7u7SCQSUo6LrbN4iDmPZaSBT61mB4NB5HI5/MIv/AI+/PBDhEIhlMtlfPnllzg9PV2oasy9MPfInJtW1Xn48/k8isUiCoUCAoEAcrkcAoEATk5OUKlUpGy7jutwM3G08KGWw3qXlPxE7ol1WJYl2iAZp66tYK6LOS8SwVy6XHn2OR+eTQCCVbHQKYHeVTUgNN0pJgC8qcaysQIXg8AYyy9vbm5iY2NDKvKwNJNWK50WwwnB57hUnWezmWw2qw1ns1mMx2OpM2jWrtOppiZpplIoFFAsFhGPx3F5eYl+vy+17AguUfsgaMjilUSul0lMPT/OiXYtvSz0BNDcoMSsVqvS89AtuGXZWmr7lkVaHz58iI8++giZTAbdbhcvX77El19+iXa77RjUskwL0POaTCbSoblQKCCbzSKfzyORSAjuwFLgvMBOef1uxN+zDBov+Ww2k4Yu1BhYck4Hf2ktcB1wWn+enaHo5k0kEohEIgJwAq8L6uhybZzjO6kJmMRDzjJVtJOIWLMV9Hw+F5SWnF531aU2YD5b+2WB1xvQ7/cFqWdHW/rxbdtGtVoVH7ouNroMeKSWwRZWW1tbSKfT8Hq9UjGJABwZHhkA/fm0sSkFKTXdxjX9z7zUGlCjBLMsS4AsBuzo9VmHCejLT0YVDodRLBbx9OlT7O3tSXDQF198gWaz+YbaqsOo15FiLD9Xq9Xw6tUrJBIJYZr8Xb/fX+lBcdovU/OgLz6VSkmgEJvIsi4kcN0ns9vtLhSG0TEjbmSGn7fbbenZQLxBe17oXiY2YNaCWJfuNBMAXqPOjPzSLkPd+rparaJery/41XlhnOIEgMXAEx5agkC9Xg+hUGihEm84HEatVpOahizqaF5Gt7EocdkQlOPx4nEscn52uqEpQK+BLj7iNp4ZnKRtdX7+8vJyAYAajUbyGUoxndzkRHw+sMhYGey1ubmJx48f4+DgAJFIBKVSCS9evBCvhHaJ8Xn6wqw6zNQGWq0WQqEQDg8PF4rRUtOhZuW2R6YW4uQiZMxErVaTQrfEb8gMaL7Rx68rNDn1wNAYAMFogs6sZUgAVJupDBrS2AZNGLdweze6k0zAaRPI/QjO0CzweDzSsIE2LO0vYBHp1Quiv6bkpduPjEOrqHRzEQdgIVAzHl0fYpJ+l1AoJI00PR6PNN9gr0EdTJPP5yXSjmXHCTppO9ocS19+3ceOEZiWZYkaOZvNRNNg+XbOWzNIp0hBtzFp9uRyOTx48AAff/wxtra2MBwOcXJygpOTE/R6PRmD9i3/ntJuGbKt19S2bSkKenp6KuDc3t4e8vm89PjTGIpbHoF+NkkHDlFI1Go1KTPG9WJnYuDai9TtdhdiR5wupIkF0P3L5jSz2UyiDukVYIRkKBRaqC/oVtZ8Fd1JJgDgDduKseQAREVPJBIYDAY4Pz9HqVRaiKTiArq1swLejBFnEBClIEExBs5cXFzg5cuX4rIkd9duq2WLT+bCw8+vGbJLb0cqlRIGwHZWnCe1EBPkciM+k80zGUvBv7Os62ao7BdA3MAEzlapsWSkDF4pFArY2trC3t4estmseAOOj4+lexRLrGmgjmMxFHcddxovNYFg2tEUEozfWGauOT2b70ImwLl5vV7pUEUgjpeQFzgcDi8khC0LttI/Z3xALBZDOByWbk40O7lfBCHpHdEuVq7luozgzjEBLamB1+2huQlUt+LxuPjUj46O5FIAr1HqZT5nfcApfWlPMgiHqPxkMsHR0REqlQpOT0/FHagPrfZsuKnnVOvYBJTBO9FoVHrNM1KRbaiY2FOr1XB4eIijoyPBIjTi7DQvqvPUApLJpBzIXq8nbknmJtA9CbyOp9fqppM2wDHYSJPJNXt7e9jf38fOzg6i0ai8f7PZhG3bkuTDBiGMvKTKTNfcMjLNOTJu27bRaDSQSCTg9/vFW+SGn7itof4ZNSqdHcm1a7fbksNAPGoymSxk+2mzSa+h6RlgzAY7KDWbTdECuC+cB+M4mCjEIC0ygWXam6Y7xwScbDVeUtpZuVwOoVBI2nUxQooS3C0F1ol0Mg+ztejvZTQWE2vOzs7QbDbfqDS7ivPq3zGW4eLiQiLMCJ7RJRgMBsX1xUCki4sLHB8fo1arLWgBTmvGefHg+f1+SYTS2IdlWcIY6J3QHg6nzkdO+6XbaafTaWxvb+Phw4coFArI5XLo9Xo4OTmR7sp0gTIW3rZt6W7EuazTOIMMiHkcrDLs8XgESNNeFg3yrSMlnRiBNqvontNzJ44DLNZ80F4Wp7G1vU/QmyHP2kTa3NwU841Y0rKArnXozjEBYFHNY5INXXTs2kM7yHRjmdJ/nSANAjO6DTp72rGrLDPDzA66Tjaem3o+n88lq41hyel0GrZti0+YKam2bQv+QNcnQ5PX8d3rQ8VnezweaQlGG5lZcIw973Q6GAwGErijL84y1yc1qQcPHkjCSzgclijFZ8+e4ezsDIPBYMHG1mAZQchlZpzeS86RTI6AayqVwt7eHjY3N4XBmM80wTm3s2GeE9u2EYvFJNGLjCabzWJ3dxf5fF40DzJRU2C4jcV/NDvi8bhkZNIbkM/nEY1GpZ08G6BoN+ttPQR3kgmYqaK8nFxotiOnC4Zqtpk2qRnBMruZY4VCIUkfpubBEMxWq7XQItxccH1gnLg98QM2jqTqypRbHRswn1/362MPPQJDuhvtKltdq7SU5nxGKpWSll22bctYZ2dnOD8/X+jlyLktk6DEbwjAsU6/3+9f6OBUrVZFrWU6Nt+B2gf30i27T58PMhPu28HBAR4+fIiDgwMUCgX4fD68evUKjUYD1Wp16TPN88Bx9DryHefzOTY2NqQLFlPAgWu/PbVTZl/qNXM6h5qpcZ8YgBQOh7GzsyN5JQBkTQ8PDyUXwin0+Z2NE+BB08VEGBdAwISgEW2yfr+/0CFISzBt12oyLwiwWKWHWAA79BLF12oX31dLCbeLwnehGj+bzdDr9VAqlcTWZGoyA1PYYt3MzHNaL6extGZBlxwBJGIf4/EYlUoFL168kPBnAk4aW3EDPRkkw2AVthybTCYIBoMol8t48eKFgJlaw9C2PPeEa7TKM6D/1uv1Ip1OY2dnB0+ePMH+/j5CoRBarZYwN+2zX0daUnJr1x3duYwe9Hg8SKfTSCQSAIBGoyFmDyNJGQ7t1slJe78YHkwz1+v1Sj4HsYhms4kXL17giy++QLlclnRlMxnqNmbPnWMCwJvtuigB+/0+Li4uEA6H0ev1JBOuVqsttGI2ubfbpQRe220MOLEsS5iLHkP35jM1Cycm4AQ28WAz3LXf7wOAhIXqfHodtWgeXB5KNxWdY/HvmYfBC0GtA4D8jq3YNLCk57HsQFG7oTvr/PwcgUBAgmsYzqrRa/N9tda27OByzpb1uhkr04fZnq5UKsHn86FUKuHHP/4xXrx4IWng6wTt8H3Mi0VNZTabCUZEFN+yLOmMTbCQZ5JzWqYFkMFoAXFxcSH5HEwnZ+ESXYVJr9k63hyT7mzzEe0apEeAh5fRc7rclqm+Asu5IQ83JYl27UQiEQCvQzJ19Ra3TDp9WUzi5dZ2n9O7mS4v8/e0gfXf6gPrNEet2vJ/8z3cwp3XsZv1u+kmnE62/W2k0zqkPUj6jFB7pBfGLQFq2XO5rnocah+m65pmHAO5yMS1yajXQK+rE8Zhajl6H8n8zMvvRA6/e/c6EHExTBtQgyz68JoX8TabTkmsA0p4GbUt6IQBkNzGIxPQz+XfO112cx56DbRU0uM6qc9O76if7/Tut5mX03NNSbSMOX6dZK6rk1bxNu9ggoN8jhmV5/SZZQFJy8bSDFp/zd9prcJJ8jsxmBt695jAPd3TPX2tdN+G7J7u6Z7epDsFDJr2tdPvgMUoKyc1Wn9t/mxdt8m3RW4q/F3Q2L5NMlXuZeaLEyi7DulnmufNbSzz7/W5dDujwOraDD9LulNMgGSCYQRIGFxi2uZ6wYmc83f6mV83IGW+69uSmaij3WYa+3gbvGMVcVzS1z2G04V1Y9zrkn4e14oeFnMO2pNj4ijLxndiCE6gqtN6mSDgXac7yQSAxUg+DYqZXNppE/WhJlK9bqDIqnda9rPbaBomiKWBT9NVyHUwvQJfhbHp8VjiXBc3JbJ/22QUE8jiz8zPuDEaJ0bhRBqd13Ph35puXKcs0mVjOX2W2Y4m4LeMcboJpG+S1l1D0p1kAuaimxugM/G01NSSlJ/TyRtvc2n0u9AFxmcCry+qljzrFpPUX5tMj14QjsH31zUTOdbbzIfJPsViEY8ePUI8Hl9ooMLiqroQyao5ORVo4Zz0JdCMxQlBX6WJUPLzuaFQaGFvmFHIHAX+jR5fMzo3hF0zZz0v7UEymYA+a04eoK9Dy3JiqubPbzPOSiZgWdbfA/AfAajatv3xzc/SAP4RgAMARwD+sm3brZvf/S0Avw5gBuBv2Lb9T1e+xZtjvnGIuJlOKcb8p3PTGWjE6rLLDrHTourNZ1JPPB5HIpGQS8ogI0b2AdeLzoi7debG+ek4BQaH6Kw6HmzLsiRewXQXrbOuTMZKp9N4+vQpfuVXfkVKgFcqFZycnODw8BAAJOSVF0YzO/O51GCYyEOfPRuLaOY8mUwkA06nwZJpczy3SE+Ow9BuxvB7PB7xobMgK1N5SRyfUX86DNyJePbIdNgUhsFWzF+Zz+cLuRo8b4wX4JhONSjN+bmdFTPWw0kQWtbrFPp1ew+sown8vwD8PwD8ffWz3wTw+7Zt/5ZlWb958/3ftCzrQwB/BcBHALYA/HPLst6zbXttcWXGBGiuz8vBBAtdcJSZcdwARsKxAIiTXQi8yUXNIBAeNBb5YOeZ+fy63HitVoNt21I3n5vjdGFMDYDJL0wfZelxBisxzJYh0mbk2dtoOJZlIRqN4tGjR/izf/bP4pNPPkEgEMBwOJRsQJ/Pt9DCTb+70ziaiTGVeH9/H9lsFjs7O5KDz/VnVWXmRpRKJSkHzvnqvnr63U1Gw9h9AAiFQpJ3oDPwmJ/ALlLsH6HDgZ3OBXMbmCXIJCmeB53pyH3g/wwcYpovE6fcytHrNdbnn9WoWB2J51EXwQEghVTI2HSg21dmArZt/0vLsg6MH/8agF+9+fq3AfwLAH/z5ue/Y9v2JYBXlmW9APDLAP7NqnH0ImhVkZeEk2f+ABOKotEoEokELMuSwgvz+VzCR2nn6lj4ZeNroIlVgNjgJJlMShYXC0iwHZjH45G6+27S8mY9F/ANHs5wOIx8Po+trS3pKMNKP0yV1iGob4sHMBPt+9//Pt5//30AwPn5ORqNhtT8AyApsFqaOI1HRsaeivl8Hvv7+3j8+DF2dnaQSCSk+Qv7JjJ7kjUO2X8QgEhKJ1yBQoDSmWMDEEHAHo7UKHQzWzIUSklWcjILfnAsdnliL8pEIiFZffyd/hsyf+I4urkrNSmeMadEN64nBRDrTDB9OJVKCTPgfKgdMFS5VCrh6OhI1tTUch3PxBrnxokKtm2XAMC27ZJlWfmbn28D+Lfqc2c3P1uLtHqrAUG/3y994FhhmE0h2Xmo3+8L52UHIaZcsgHlMnBQ2/QaMNOlnBgSy8PHWHnGpeu/X0W8VB6PR1pzbW9vI5PJSHNLrcoyD9/0jqxbOILrG4/H8d577+G73/0uEokEDg8P8eMf/xjValUq/VCLWcUAKC11BR1qBVwzNs3Q7bq0BkezjZrAskNLycdxKKnZlk2nePNzlKIEPs3kL43vaKJZRknMNHZ2c+YeDAaDBeFB5s536Pf7woiWeQv073jmWZzl6dOn0h4OgJxlzfSomVDz4Tldh75uYNBphm4hwb8B4DdcfgfLsha6Eu/s7CCXyyGXy0nGGIs9TqdTqbs+mUwQjUaxsbGB2WyGTCaDaDSKZrPp+MJOG6NNAX3Z5/O5FK+cTqdSnpuJH3z3dSQ058h6gmxHFgwGJXGJ8fBmyLL++9toA36/H5ubm/jlX/5lFItF1Ot1/PSnP8UPf/hDXF1dibShhHQCzNzWUPf6m8/n0luw3+9LSbbhcIhoNIrt7W1sbm7CsixJtNH5906p33wXjf+wSSgbjrK6MNV72vJkEp1OR7QMAp40UzTpege66vPe3p7U/mdFH5YyJ8Mh0zGB5MlkAp/P51j5Wu8jNYGNjQ0UCgU8ffoUm5ubUpvh4uIC9Xod0+lU6iaQEbDiMZvHftOaQMWyrOKNFlAEUL35+RmAXfW5HQAXTg+wbfsHAH5w87L2zc+Eq7LeHw/m9va2FHKkTU6bmRlkbKRBjkk1m2CJSW6XiIgzq7voEs+8rJ9//rkcbN1hRkuBZWNRirIRCHvmsfHHcDiU8lyHh4eiYZgI8G2wAK/Xi0KhgO3tbczn1zUTmWFH9ZaMSeevu43F+VLVpenSaDSkNBoZJQ8nc+TZX49FWggWauzGXC9qRVTV6dpkNSF+jiYFf6bLz9M04IV0m5v20mxsbCCZTEoHrPF4jGaziYuLC0lQYvNQ4jl8ti6auiybkOeeWmYsFkMul0M2m4XP50Ov18Ph4SFevXolJfFZbpwlxyeTidQw4PfrgMZvywR+D8BfBfBbN///E/Xzf2BZ1t/FNTD4BMAf3ubBGsGOxWIoFArI5/NIp9MIBAKYza47szKvfzAYSMUaqnD0CGiUGXgTFDS1AB4GXgTWwet2u/D5fNjb28P29jYsy5LOx5oJcBOdEFmnCxQIBKQxx+7uLq6urqS/PXv2FQoF1Go1aY2mn0+0fV3Ng/YtS6axIAVNnlQqBZ/PJynTpgvPJH2g6Q1hJaZMJoPBYCC4Cte2WCwim80CuG7k2u120e12F6rwOK0XAMFhtNrNddcpwtRI6ELk/hAL0N4Vk7GSJpOJ9GTgehNfYhEWulNHoxHi8bjU/qdJRRyE3g83LId7yfdgoxFqhn6/H2dnZzg8PJRGq9lsFrlcTlq6dbtdAcFZSWndzMl1XIT/ENcgYNayrDMA/xWuL//vWpb16wBOAPylm8n81LKs3wXwGYApgL92G8+AGlMOLDsOs/Nqs9lEv9+Xxe10OpLLrvsQdLtdUZGc1EuSk4rNUmPUBIgKP3z4EOl0GkdHRyJBiRBzjHVVdI/nupDp9va29AEsl8uYTCbY2NjAzs4OHj16hEQigZcvX8ph4EVxAs9WEc0Lmk22baNQKEhRjlAohG63K5J9Ve69ZgK8fFTt+/2+AGm60jEBQe6LWb/A7eDqmAj9OQ0oEpijECHD0C5mzeidQEF+RuMLFDhkjOzPCLwuQBoKheQfAWOuhYnjLFtLviuBb/bYpEeD3pcPPvgA3/ve95BKpfDixQucnp5K52yzDsUqWsc78J+6/OovuHz+7wD4OytHXvZSNwxga2sLxWJR7CH641klhq4Qy7LEhUfVqN1uA8BC7vUq0nYZAAFfiNrn83lcXV3hxYsXODs7cyxisuzC6MPm8103GGUPQHpB8vk8MpkMHj9+jGKxKLYtsRGfzycbfZsoSGIsxDcs67pL8JMnTwSc5IHXc1kHD+BnWBWIEj6bzSIWi0lnYJZwo+TWhUCXPZffa1eebdvyPGpJ8/lcujdTrdYmBBlDMBgUTcEJ+CQT0PgE1wa4PhfU4tiViuAhS9bz3FE7ILbktJ78mXYRApCu3DyHm5ubgov9mT/zZ7C7u4t+v4/j42Ocn58vdMNyMzuc6E5FDHIxiC7z33w+R71eX+j7x41jnfZCoYCdnR0AEPWLASG3sZuBa6lDtY9uSPYMLJfL+Oyzz6TWvJNJsWoMHgq6yAgEZbNZsUPz+Twsy0Kv1xNwi+ow69cRTFvlHdAuT17CQCAgh5b+eTIh1u3n366zfpoRDAYDVCoVYTrpdFr6R1KDobkXj8el+5EZtGOOrUvH0QtBnznNJN2Vh94Ajufz+eT8UF13mwsDfKiB8Czx2QSfgddAIkvW81wCEHAwEAi4BpBxrvr89ft9aaumS+CHQiFsb2+jUCgAAEqlEr788kvpvkXmeJtI0jvFBEhUv8n1qtUqOp2OhLFykXmJnjx5gnw+j1gshsFgIHYtK+gyYMJJ4pj+YX7P/gC8aARdWDXXLRiI5AY48gCzTDYlum3bAkZSKxgOh1Kmm3Om5CQTpOaz7KISf4jH4ygUCtjc3ARwXROPngifz4dCoYBkMolarSaq9LpeCP1ODFw5OTkRzYDIORuhsiApf0Zmx8vrJjF5uM2IUWpvjEngngGQuBECkxwLwAI2oD08lP6MOmWfBjY0oc9eu7IZJakLjOp/pgnjtIbAtQbANupkLOxkRMAwFAqhXq/jj/7oj/Ds2TO0Wq0FHOA2ZuKdYwJcLNZxT6VS0vKJ6i/bauXzeezt7eHRo0cSLQZAsAP+02r7MtK+XrpbCFyl02kMBgO8ePECrVbrDRNjHVeMVvtY5PP4+BjRaFR85NPpVEpMNxoNlEolHB4eolaricTWNv26AVCBQAD5fB6FQkHckPV6Ha9evcJoNJIW7wAWVPTbaAFcP4bS0iXH2vyBQEDwgK2tLfme0YbsPcD3dgLQaJuzui/NF0p5j8cjwOZoNJJy5KbbkMzGyW7mRSUDoPZFDTEUCsGyLPEEeL1epFIpAa7ZJq7dbqPT6QhTWHZBNbOYTqfodDrSE5MelUQigcePH0tHp2fPnuEP/uAPcHFx4dgLY126c0wAgGxWNBqF3+8XiRGNRmFZ1116WOM9Ho+LSk2vAENST05OpHruuouiwz4J6rBo5snJCcrl8oIri2TalE7En2t/9ng8RrvdRqFQQDqdRjabRTwex3g8xvn5Ob788kucn59Ln0W6frQLah3mRrcTD3S9Xsfz58/x8uVL6UVAG1v3NVg2H7exdBMYdv7hIaXEZUNNnWzDcOVlY3JfiAfpRix0N9J+Z/iwLhhKJkJNwWywArxm6Hx/MrfBYCBuuWq1KqHLLDZKfIp9Iur1OgaDgbyvOY4mXl7dYYiaKEHWYrEo/RyePXuG3//938fh4aF4A/gcrt26+3YnmQDRaUZAZTIZfPTRR9jZ2YHX65XYAcuyxEMwGo1wdnYmDRnOzs7QbrcXovmWgTI6A5HSIhwOCybQarWk6jAP1bI4g2WMgIeLB7rRaKDT6eDJkyfY2NiQQ31xcSGuKB7627h+zHeaTq+7N1uWJYyAOEM6nUY+nxfbkh2Xb6MJAK8DrXip/X4/bNsW6RwIBAQ1DwQCwhx0xqd2her351i6dwM1CYKS2i/PPWQeCZF9E08xI+v03jJ6czabIRgMotVqiQlCDxL9+ZeXlxgMBri4uJDgNcbva/xo2dnQzECfzY2NDQkMqlQq+NGPfoQvv/xSIkndYg++Fu/Az5q4EGwBHY/HRRsIhULIZrMIBAJSkpkXqFarSVso2lO6Zj/gvCgmEk4mQAaQTqfh9XrRbrcXwBd9KPUz11l4SiQyBKqQVIevrq6kZj7noUNetVmxznryULVaLbTbbWxubkrgUDabxfvvv48PP/xQsJTT09MFEGwVmbgKtTgA0pjz6upqoY8kUXNGXy4rGMt58OdUy+v1OkajkfR05O8ZCUgzg54Blq6ndGVQzSpsx9QKPZ7r1uvcO9rrzIzkOAQV13XV6f3SofMM9d7e3sbV1RVevnyJzz//XBLjnCT/OmeDdOeYAABRvcPhMNrttnQE0iGYpVIJx8fHEo3GDCqivlSbNRjjthEaAKM6m0qlkM1mxVZlIwkGp3CzbuurJ2mgiFFo9Xod5XJZoiGZ8wA4V8Uxv3YjZu5dXFygUCiIV+CTTz6RgJNQKITT01P8+Mc/FhXztl4VAAtgHeMsKMnYQGZ7exvZbFY8LDrOfZUqqyU06erqCqFQSMwQovEcn0xIuz+B16aUWxCZZkbaVUjGwiav9H5wnXVIMjUjgpTL5qW/5t8lEgns7e3h8ePHiMViaDQaePXqFSqVykKK/G0Eg0l3kglMJhM0Gg08e/YMnU4HyWRSJIvf7xebv9FoSCNNzXH1P+B1R+BVqju1AIakkgkwHVS3Pnfi7rcB0/g5MoPJZIJWq4Xj42MBHtvttmMm321ckvzMZDJBrVbD8+fPpWfg5uamgGYvXrzAv/7X/xr/6l/9KzET1p0HL7Cu6UBAjpFtXFPd+aherwvDNqMFndRbMkwSJS3NPcYdcA9DoZB8hmdEa2G86G6S2ryYnCs1gXg8LqYAwVZGCdKk1MVhVtW14Dhs6RaPx1EsFvHxxx9LYtnZ2RlOTk7Q7XYXMAbzXdcBwkl3kgkQ5OHlpR3GC8FQTR4gp8g2SnX+fJkdpjUAbjLdP2xwQrXcZDbms25DPOy0ZxnEQylME0EDW5pp3YbZzGYzaeM+Ho9xdHSEg4MD6cD88uVLfPrpp6Ji3wZdtm17wVWnmWkqlcLBwQGy2awkurRaLekPSASdJs86yDYPPMFHUwrq/obEjHgZia9wD5eZPNplrCMLdWIRtQJqGhpUpWlExrPOvBgxyOQoBo35/X40m02cn5+Lt8wNB7gt3UkmoO0worKUhmZOgNNl1JsHYKlJoCUrXVu8+K9evUIoFEKj0cDp6amAjG8DzK2aL7UBnQXGABptW+q/uc078HKx6/Dp6Sl+9KMfSXdkalTLEOxl706if9zv96PRaMDr9eLy8lIaoDL3o1wuo1arSUkzt5ZrTuOZGY58B9NNRmB5MBjIe7AtGgHEZeCnHkubiwQtCRo2m014PB4BW3VGq+mJcDMhTQ2PHjKmQHe7XRwfHwv4rTEbzQRvKyAA3K3mI3oRdDEIAAuXwUnlV8+SzTIlBbA8iIfaAP3XjNQiWq5Vyq95/gsSlJiDvvjm5fg63kFL1NsyFadnmZKSwU38Wu+lidtobc7pPXSxFqciIHoPeXY4JoFKBv1wbLOVl6lR6Gea82JgF3EHAAI4zudz8T4wmUnjU3oscw2pCQSDQaRSKRQKBdGgOp0OKpWKuIvNqMA1zNG734HICWWmfclQT6fLbx4OHhg30GfJeywcZF0Syw0H+CrkZHNybLc53oX9WkZOl1N/TYajkf51mJup5mrGqU06/k4XgOE5orvOzexwAtdMAcGLqrM6g8GgqPz8PDVZp6CuZQxXz0szNOB1tSfT43ALLOruM4F7uqdvit7Wi7Pus4FFlf4u3CsHcmQCdxITuKd7+rrpm7yUq8zNu073TOBnQG6lurSLygnVNcEi/XP9DAC3yhp7V0mbE06/M7+/rffmXbzAXwfdM4E1Sdu2pNvY6dovbdpyxB60G9Acy+nvzM/fZh7L5qWfrb//NslNzeaa6mw+c04E5NxqB7ztu7h9/1VBVvO5q571VU2dd5YJOC38Nz2W6Xp0qsHndgA0IKYPrunicSLzeQSNtLdk1fvrmAknwE6P4wRMusWnf9207oE2kXsNqBHA47xMt6fWmpzA42VjLvvZ1wXemnuyihk4McbbvMedZgJOF07nketiErpGnRO3/yocn1l4OnSZP+fYPFjLfM/6oPJ7rQWYri7NODRptyHgbgro52iThGPoghe6dBmwWJGJaPeyxhlO6+Zk+mhE3zzg+hKtQtBN150O8qIrUicw6b4DuvOQ9jitmo/b2rrNlT83I1mXjWP+03/H8cyeiOa6OTGmZXRnmYA+vKyKo1OKI5GIuIGGw6G0A2MkoRn2qguOmuTEdbnYrGybSCSkfDkAiQ5j4RJdq58JJE5z4jvzEuo+emQ0utEmXVl8f8ZL6FZaDH4x56Qloq7Vr0Nfo9GoxL7z+QwoYrozALlcuoSV2zo6HWbt7tJNO7hmZrCQrilojqHVftZKoN+eFYiZ5cf+BiwpxvkxSInVgledDXMeusAL35trywAsp8zGZRqVdmeSOev10HtIxsyiNG49ItbRFO8kE6C056HRBUbS6TSSyaTkxjPKj9VWK5WKFFzUF1FzZE3LfMKhUAiJRAKFQgFbW1vIZDLS8oqltRuNBgDIheE7OYWJ6s3lIWLrsVgsJmWkWdWH783AE1ZXHo1GaLfbkjVp5v/rNTSlPhkAm3akUimp5gxAajPS782kG5oubiHFJtPW6di6nRd7EwYCAQQCAWl8yjwCXhK3gh/6UurwZCbasC8hS6jbti1fM4eAfndeIvrynRipqZlRG2RSm9Y8+Dnbft2PUjdVWRbGzj2JRCISbh2NRkWLmU6ncmY0I2Dvg0ajIWdeM4N1YlvuHBPggeM/Xbghl8vJReQG27YtbaLIlZn2yX+mLb8O6UKg7733Hra2tuQg8IAyrwF4LdHczABycX7NEmrZbFYqKrNll66JT83C4/FIanS73RYzxGleWuUmkTExxZYHLpFICCOYTq97HvJQ6xBZztFtz/h5MhvG1SeTSWHalNSs0UCp/Nlnn0k48Wg0cgU7zUxDy7KkWEqhUECxWEQikRATRgcHRSIRZDIZXF1dCRPiBTEjEPlsXWdRazJst1YsFqVUmtZeBoOBCAkyA51P4DQvMsV4PI5MJiPrFY/HMZ/PkUqlMJ/PRYAkk0lJcW82m3j27JnUMeD5f2cxAdPGosqr68Wx79pgMJDsNKas8vNmtRX9v0kmMGdZr2vysTUYc/7ZT4+SkqWkdP64yelN21yHhvL9abvSlGGxC9t+XbSSffx4kZ0uO0mnPJNxaTyC78GLGolE0O/35bNMmqIkWhc843g8qJubm9jb25NKQixgwjUtlUp49eqVdFzm2nLd9NcEQ/U4bEj6+PFjuZCVSgX1el20s0gkgu3tbZkf0821iWiuIVV7zSRoGu7s7ODBgwfY39+XNGGWHQMg5cFrtdqCaeqmmtPso7DiOeJe0fylIGGtSNZLPDk5wenp6UJiE/dxHdfxnWMCwGvAi9yMEp3pkyyOMZlMRFrrUtdmVRx9GcxNMAFEbauz5ZllWdIZiKpmIBCQgibcaOD1hpqkQR6+E2vUU3thXDuzCJnDwAPAjrpMTiFz0F4Kt/XkYeb/ZAB8vsZW2NuBZbkpqZZ1VjJBXNrhbOVO1ZiFRbjOw+FQGqFy3TSI50RkCKw0/eTJE8FrSqUSLi4ucHFxgX6/D4/Hg93dXbkQ2sxgkVEn0uAt3zUSiWBrawvvv/8+Hj9+LI1WmJmYy+VEQluWJWaattdX7RHzDvjZ0Wgklx24TqXf3t6WdZ3P55J9SkZPIeGmUZl0J5mA5pqU/IFAAMlkUi4e7SwmWgSDQVQqFcn0MxND3OxLJ1SXBTFY/GI4HEpn4EQigXg8vlDElPY6ybwsGunn+2jmxr/nBWdvO9rRPFB8D86fn9XjaVTZzDWnVCfIqpNgPB4Prq6upHmomS3J91ylYuq94yGdTCaoVqtSIPTRo0eIx+OC43BtdRm4ZVKT2Eo0GkUmkxFzisVTy+WydAJmDUpqimTSnJ/JnDmG3jOCfclkEsViEfv7+9KZigwHuK5nwHqNvJAa3AXe7IKl94ZZiVrDJEbAd2WRlGQyidnsuodErVZDv9+X52uPwjvpHdASmweBAE6r1RJ7zrKuq70+ePBAauWXy+U3mICTC8dpLBIPGTc8Go1Kx6ONjQ1sbW0hHA5LN2JKZV5E4hKmhkE1nvMioEk1kiW4x+OxSFIeYBYm1VKa9Q1MAFK7iTTT0XY7GSq7PLPuf7/fF7vcLH/m8Xgc04z1s6nS8jPhcFjarLN1HMHIRCKBWq220DlHM5llTEADm8ziI6Pk2sxmM9HmCoWCZPpRc3NKxTX3S+NONG+2t7dlTy4uLnB0dIR2uy39BqhBaI2DTEAzaHO/iL3Q9KW5qU1Dnk19fprN5kJPDm1+rJsWfieZgPk/pcloNMLGxgZSqRTC4bCU0AaAWq0mZZrX9cvqcUgej0fqCyaTSTnIxWIRyWQSW1tbGI1GYnOahUacSB8CXQtBq2qsmMyKu2x4wtZgbILZ7/cX3FpOarMTBqLVWvYHpAQNBAIL7cOd3E1u2IM5DufJcXS3H5bM3tvbQzAYxOnpKc7Pz6WtvFldyBzDtu2FEmJs2BIOhxfwGHpYkskkdnd3hdlRg9IFTLg2JmlMhp9hq3oWS6VrmAybWhVwjSlwPm7xBHpuBJp5LjhPamgsXhKPx+VczmYzNJtN6cuhC+04mb5udOeYAPCmnU7/NX3JvJSsoc86g8uKY667IDxgXq9XAB+aAMlkUsyOZrO5UEV21VimKWAWRiHzYRwCS2VRTR6NRgtVcsnpV9maWlJrlJtmVDqdFv8/cRYnDWodpqo/Q4lF11Y+n0cymZT+iq1WC1988YW0MNfai9s4/BltXsZusKx4IBDA5uYmstmsuHfpkTArUJFRuXlYyFTM2ICNjQ3Zv2AwKC3Wk8mkdMweDAYyjg5YWoXY63nzHbmGtm0LE4rH4/B4PFJUV3fmcqs/sYzuJBMwVVnacLSJ2f+NNhEvBtFvvamak69aEK2u0RfPWm+8lMPhULq9aJNjGafnz7WvmKQ711K1ZQDRdHrdBVf3zNPBPvq93eajv9Z/o+MV6M6i50MDqebaOa2jmySle5P1+La2tpDL5TCZTPDpp5/i5OREKhFpd5xboBDHpb+cRT5TqZRoG+l0eoGZskrTfD6XQDP69iltl0lnfo4uPJpvfr8fhUJBajSaNQCoEbFD8bJgNTemy3N/eXmJYDAo5eHD4TAuLy9RKpUED9DANL1I6yaV3UkmALx52GgDUWKxZj27EFOC64usF9Zts50uimVZ0sZsPB5LhRqW56JdqVXmdcbSSS7UNCaTCfr9vvQaJHMhhqAlKp/NYJfLy0tXz4CpyjJ4h4eUNuh4PEa1WpXOznxHShTdSISHa9k6apuYUYcMiqKkrFQq+OEPf4jz8/OF0GS+M92bbhGDvJR0ncXjcdi2jVQqJV4Dr9crZpTP55N10/EBeiwnRqYlKVF4mi80QailEZ2n6cpGojraUwsMJ0bq5GnRZdC8Xi8ymQxCoZDUG9QdtngHiCe4jWXSnWUCwJvJGQROer2egIPsAqvDbXkQ3VJ03cbi39u2LTZ4KBSSNtTsDNRoNBbq4rnZsSbN53ORwHxfjk2pz/dlpxvgWpoR69CcnlJzmSagQ1H5Py85aymywakG5rSLbB0ybV/tEgwGg9jZ2UGxWIRt2/iTP/kTfP7553KANfPlmE6AFs8ADzj3qdPpiEuMVX85/mQyWZD8DPfW9f+WSWgyZXo4xuMxotGo2Px8/+3tbYnwOzs7W6iErftNrlLR9brrAKVYLIa9vT3s7+/DsixUKhWUy2Xp0K21YG1WvZPAILCownMxtJQg9yU4Eg6HAUCaQOi/XRcL4N9wIS8vL1Gr1aSePS+NtsHM2nj6f7d58bIQoef7DodDaV/NAzubzUTz0PHhZAjm2E5EyciOxByDzIMhpwyssW17oYOuvpDrgKzalmVz2Hw+j1wuh1gshrOzM/zwhz98o7W7fsYyokbY6XRwdnYm/nJqVpwbMRSCoIFAALVaTaopk7EuA3W14Ol0Ouj3+ws1IHlB0+k0Dg4OYFkWWq2WMIFeryf7tuoyai2BEp1hydFoFLu7u/jwww+RSqVweHiI09NT1Ot1wUJ4rgAsYA/vvCYAuHefZUBNJpNZQOjNUFdgtTTT9rquFa/VcKq29EHrlufmQXZbeB42r9crCDbDhD0ezwLiz8PXaDSksYouzmmq0G7EA8Ugp3A4jHA4LGAgy39TE9DrrS/HKnRbj0cVeDKZIBAI4MGDB9jZ2UGn08GPf/xjvHz58o1EJI3Umyqxua5XV1fodrsol8uwLAu1Wm2h+QcvN6MJqVH1ej0JNNOhtW6mB4k5B1qw6PwSBo8BkE5VOvJz3WhL7qe+/NQAvv/972N3dxetVguHh4colUrSmIa4g9YMuX9OAV4m3UkmoA+CjoCyLEuyB3mwgesMN5aVNgt0kNbRCLhZbDUVj8eRSqWQTCYRCoVQqVQkFNQtKMOJAWgVW4OIDEqaTqfCCPgZqpLME9AMwC1jTK+fXkNiAmQ8xWJRKtgScCWwRDXXDIFexWz0GpLR+f1+bG5uYmtrC36/H8+ePcMPf/hD1Gq1hUunTZplmIr+/OXlpXTh6XQ6iEajgvYzGtOyLAnA4rwItOkWZOvOS+8dBQ4Aaa8+m80ketBMgHJjbHq/eHnpKWKD2o8++kg0jYuLC5ycnIh2yLXSLs1194p0J5kA8GYuPyPECAZtbGwgk8lI4IZlWajX63K4THNglbTk/7Z97cpJpVLiFoxGo1KzXie4rHuASBqN1mg9bUwzIIRSjfEIJqC1bF76UukLHYlERGJQLdYaFA8USQNj66Sl8m+m06kAgR6PB8+fP8ef/Mmf4OLiYsHUcLocyzABfeiZWEWtQ2cn0p1Hc45YgOn54Pqsu49678hseFaYgEUzx2k/3J7J5+lw7lgshgcPHiCVSgnW8OLFCxFE3CcdXbssRN6N7hwT0NyWF4J14xnFVywWEYvFkEqlMB6PcXJyIpLT6VAtu6zmYvEAUkoz3JRNJtj9yPT5miCm21gaAKOd7vV6hRFo6cw0UbPzrDZ53NQ9UxqQ4egDQnCMXhc3O5n/u6nMer+odTBQKBaLodPpoF6v4/j4eGEuTmYUx1vFtMkI6ALkvHTKMteUIda8pPT/3xY30meLZhYbrAKQvSKT03vAv3XLK+FZZyh3NpvF3t6exFcQA2FOBAOetAaqk8NM0HoZ3TkmYHJabavTzVQsFpFKpeDz+VAul6UfPOOuzUO2CqzTjEdfLNu2xfbXbbN03vs6ZKpsvOys1sN0UcuypGZAo9FArVZDr9dDv9+Xz+tgkGVhrwzS4UGkRhEIBNBsNt+IUdeZkOa6rVpHSjLNtGl+jMdjnJ6eSoCV2xjrMFGncXVlINOmZkclhhPTvNJRpeteFHM/yQR0MBKTv/g77WpdNi8txYPBoDCWWCyGRCIhnomLiwtxezLCkqTH4rqsez5XMgHLsv4egP8IQNW27Y9vfva3AfzvAdRuPvZf2Lb9/7353d8C8OsAZgD+hm3b/3StN1Gk3V/aVmX6LMOHJ5MJKpUKjo+P5WCbUXSrNthUMVmIpFarwePxiP+8XC4LF3YreLFqHAa0+P1+9Ho9sVlZuAOAaBrME9eRYFoSmb5ncyydikrGQgbHOIvJZCIah9Zu3DCNVfM1k26IbcxmMznATh2H9Di3XVOeETI+Mrt6vS5tz+gS1BoBmeht9xFYTGJiJud4PBZvgJt2sWwcuj7ZsoxxKgwJbjabOD09FSFERsbnkgHyrNxmXiubj1iW9ecB9AH8fYMJ9G3b/r8Zn/0QwD8E8MsAtgD8cwDv2ba9NHTJcmk+onEButXoY6dbhKG0utPL22wqiWNxgxmPwLp0t+3VB0Akv1aVdcQeU2ctyxKXEiMJdXaiqbE4oeuaqHVozUpXG+J6mRfTpHXWkxeDlyMcDiORSAggx2SrZaHdy8gMfnIa33wHSkf+ndYanDCOdedJzZT5K7u7u4jFYuLNYTy/9lqtc2ZoDjBvJJFIIBgMSl4AqxTpQDX9Xppc5vJ2zUds2/6XlmUdrJzBNf0agN+xbfsSwCvLsl7gmiH8mzX/3hwbwOsDrwNqNEp72410G4fP4wHREvptGYx+PqUVq/fokFlqPjykOsxU2/P8mb4Qbu+ktQcdWWh6UPQhNZ93G9VcS9jJZIJut7tg+txWQpnP11+7HXqqybTLOSf9uXXMRCcyz8J4PJbMVZ/Pt5DfQgZ+m3EIdtJMK5VKACCpyU4M9G3MKJO+Cibw1y3L+t8C+CGA/9y27RaAbQD/Vn3m7OZnX5k0Q/gmaV3V9zZkSgGqfj8L0hedtMx3/FXnva7Uuy25mSg/S9Jng2YIzYCv672omWkmts47fRVaXpLGnf4bAI8AfAdACcB/ffNzJz+Im6r/G5Zl/dCyrB++5Tvc0z3dCXpbzeKu0FtpArZtV/i1ZVn/LYD/z823ZwB21Ud3AFy4POMHAH5w84x3c/XuMGnV1ennTqRB0mXPdVJHl9mn69Kq564iJxNhmbrsNleaZ07vpP/G/IwbZuE0L2pjHMspOUuDrHou2htikvk5PZYbvRUTsCyraNt26ebb/wTApzdf/x6Af2BZ1t/FNTD4BMAfvs0YLuO+8bXGBwBnrnxXObQZLOM0P/OA3cZGN5+lD5vTAVonvt1JLXfzt5t74/aOTpfH6ZC7MSBzjnps/c78f53EMj0vkg6pJobjhElpZrouY3ULm9Y9GvS8zPmbHrFlIKpJ67gI/yGAXwWQtSzrDMB/BeBXLcv6Dq5V/SMA/4ebwX9qWdbvAvgMwBTAX1vlGViHlnE882BykTQQ9jZo9DdJq5iZ26UyD+YqFVR7V/Ra6fgL8yA5BQmZX5tj6PfSa+/E4JYxNXPey3AAPZ7+mc7/ACCAsp6bmX7tNDdzXkzo0VLZKR7Fyf1pxoa4aTx6/cwzrwOB+Bnzsuu5mTUil9FKF+HPgtzMATe1yjxwOmZaLzj/rZvJZR4o68alZ6LzWqLo91prwR0OLv/X7jtNOr2Uh46H2w1td7qUWpLxouiLR8nG77XvelnsBd9Xq9E6T0J3XeK68XkEerUnQ0tYt7GcgskYvMMS6vTA0MVGxF63WOO89Th6HyzLErc0GYE+ByajpOqtn033r23bspb8HPeAczPzS/Q51CnhrBugzQWORe8IXYkKhH47F+G3RU6qoFNUGpN9LMtayNHnJtNdw0PgdmH4DJ1xpyvxcoP5LPq8mdCjD9I6F1NvLmMFmArNy8C5cMMtyxK3E5Fpsw7AsjULBoNS1FR3OmIxFgAS7MLGHZyrWQjUnJOuV8C5MAae4dGaKTPghc/VYbDcN7d5aZWcMQmZTAabm5vY39/H1taWZA92u12cnJxILwId+q3z/AFnIcMIPmb1hcPhN2ofkLkyQUm7CBmWrTNSTWHEi6wZAmNVuGeMHuR8mTrN80bX6Hw+l/qHrKm4iu4kE3CSljxcPFBMImLgDevm2fbrQhNMjmEOvVtihz64rC2fzWZxcHAgSUoApPsPoxQZycWMNL25blVxzItJKcPEKLPYCH3E/FteeuaRU8txu5x6TDKCfD6PRCIhlYa1esywV6bdUu2lSu00Lx3IxVLmXDf+z5oPvBij0UgYDHsD6sw+tzRcPSfOJ5PJ4MmTJ/jFX/xFbG9vIx6Pi9+e7byYB8LxJ5OJaBNusSYUCOzXyE5KOhCJqeBm0BVTz9kkR5c583q9C+XV3faKAVebm5vSeYvt97gXurYE17XT6cj8GeuyTEu9c0xAq6d6s3VxyVwuh3w+L/3gGH1H6VGtVkWaMG9dq6p6LB3+yXLYe3t7ePr0Kba3t6XwBwt+bm1tySFjXvyy6jQkHjinn7FabSqVkiw/HlJWH/Z4PFJBhoxAawvm+gGv/dla60gkEnjw4AG2trakaCYP73g8FilDAJHhtvqQaonJfdEaFOeSzWaFCWhJyQSXXq+Hbre7YLfrgidOZ4Nz4loyNfrjjz/G06dPEYlEJM242+0CuNYcCoUCrq6upCq1NvGcxuGZ8ng80g4smUxKvUliDhQgumApS6vV63VZI0prJwGn8QttgoTDYeRyOezv7yOfz4uJoysaTadTaR7j9XolgYnjmmfOie4UE9CH1yT2BuSibG9vL+SPM2Os2+2iUqkshPiyWo/TeNpens1m8Pv9UoWXyTYsK8WDzhRSxnnrZA43O9ZUITmm7knIKjlMV+bcmKs+HA6lrDrVTLesNBN88vv9yOVy+M53voMHDx4gnU5jOp1KPD8PMw8W6/QxRNttbrrwKc0m9o/M5/NS7IOmxdXVleTfW5YlTJpa2yqpRaIKHY1G8ejRI3zwwQeIRqMYjUZ49uwZjo+Phant7OxID8RkMinFSNwuCH+nz41mpBQKxItotlB1576yAxLNLx35ago65nrocdLptDCAVCol+8UQ7NlsJmXouEccj3NbJ0LzTjEBDXIAi/YmiywcHBzg4OBA6vF3u11pq816gLQ3ebBYKcgkzZHZrJObwaYih4eHODs7w3g8RiAQQKFQQCKRkGo/GmRaRqYU5UFJpVLY3t7G9vY25vPrQqatVguDwUAaZgCQ5p3D4VCy4zSwtmzcQCCAbDaLTz75BN/97ndRLBYlOYWSkeuvL3Umk5G+ehqcNPdHA1LUumiCtdttsVH7/T68Xi+KxaJcHuIsunwacZFl54RrmE6npUmMx+NBrVbD4eEhnj9/jvF4jGw2i1gsJrUGGI/vBsLqMTTT47lks1GPx7PAhNkDgeapiT+xjRlL4znNh+OwkjLL6ieTSVxdXUnpMhYUoVagtUGaA9wL89w50Z1iAqaaBLzmbOSKH330EWKxGGq1GsrlspSATqfTGI/HC6W4KFGpPjkthEb4KWFbrRY2NzfR6XRQq9WkHFUmk5HP8vOkZe40U+PQACRLcbM5BsErbiJbnQ+Hw4WQUi1V3FxnXDs27Pz4449xcHAAADg9PcWzZ8+k7DelHtVeqpjpdFpi2ZnSrIm2MZkApRXxBsuy0Gw2pSALG2dsbGwIQzPTv93mZc6RvQWIDU0mE+nIo4ucUuKyQjFxEA0Iurkq+T6Xl5dot9syDk0arpsWVhoM5LzMYjfmWGS8TMHO5/PY3NxEOp1GKBRCvV6XylaDwUDMV56nUCgkjVW0priq1wFwx5gAN0tLHRYU2drawieffIL9/X10u13U63VUq1WpMJROp6UUF7OtyI3dkGZ+z42i3Uowjjb0ZDJBNBqVSjm2baPX68lh1c9ykiw8SFrCUTJsbm4K2EOQkWBOMBhc+Httfmjm5ablUJ0vFot4+PChmFAXFxd49uwZXr58KfYxLzPHJ5CWyWTQ6XQc8+MBiCQig/L5fGKKEcvQrkfaupZ1nZnJBrKcl9vFdNo3aiixWEzOCouK0H5nKTXgNcNnuXAdoGNKS+4XcSWuUSwWW6gCpd2C9O5ohJ4FQLh3pkeCpLNX2WU7mUxKYxUWfqFmRu8Va0YS06HmpUHWVXSnmADw5mXy+/3IZrN4+vQp3nvvPWxsbEi/vEgkgt3dXTx8+FAkt+aATpzYaSz+T/WU/QATiQQAIJlMyiGLRCKifZhcfdmCazCL82NHGaLWo9EI8/lcVEp6DWg7m3X59FqZl0d7UzKZDHZ2dpDJZNBsNnF0dITDw0OplcB0aZOxUMoR+DMZnAYe+XleHBa+oDeH7bny+bzMt91uL/Rw4D8tpfVYTuObFzIUCknLONaH3NjYgN/vfwORd9svrUazPsF8PhfmFYvFFio3W5aFdDotgDH7RureFW7tyTmWjt/Y2NhAOp0WQJVMn6XM2IBkY2ND0rVZXZnMgozJzdzRdOeYgCatzm5vb4uEBoBCoYCtrS3s7+9jf39fALXBYADbtgXd1WWW3DQBElM5yUxo5+mN8/l8SCaTqNVq2NjYQLPZfEN9NEmrlaYLiMDO5eUlAoEA8vm8HKxIJCKMiOWutbq/qiiG3+9HJBJBLpdDNpvF1dUVSqUSnj9/jna7Ddu2xb3FC8VDQwZAENQNRCNz4xzJzBgDQLCMiHo2m4Xf70er1RIp6YQxrIq1MNeVXhrLslAoFMTkIiPkujNOQmubbqTX4vLyUmoIcG8YQUjQNRKJYDQaodVqSQUgve9cL61NabCY70dNgKbHdDoVja5QKEjcCGNMeD7JCLTwW4fuJBPQgCDdTtPpVDq9cEFCoZD0I2w2m+h2uwLwhUIhOUjrlF3mgRqNRri4uEAsFkOhUJALQLArlUohFouhWCzi6OgItVpNGM0y6aIBJsYHhMNhuSzT6RSJRELAo+FwKAwQABqNhjA2+pyXzYPrR1/9xsaGlNnqdDoLB5PqKu1nukxZxZmuvWVz00yQngzOIZVKSc1Bqq60q9lJSjNaruWy80Gi+UFpzQtKoUBwOJlMIpFIYDgcSvAPTRU3E05Hn3LvaNLouBL2RCQzImPT55DmnJOrmuvH/dVt1Ag8RyIRpNNpMVlZAYut8TRGpJnyO28O0KYdj8dS7ouuFh5Wn8+H4XCIs7MzHB8fC7LuFC++yl1CsI9Vi8vlshyWcDgsoBYlLGvZreOL5Zx4sOjeJGDGC6g75uoKSsCbJcudzAH9c64Ro/UYvMLDwsNEdZwHlCg61WF6JZzUaCfwjvjAYDAQRqelL+ei4zf0haN24cRUNYjGw97v90UVp7BgYVgA0jOQF4nqPPfA6RxoJsA14Vpy31kRmFoAO0azpyPNKDaW1b0dzPWj2UVGCUC0Q2qAxIj4DD5/NBrJZ8hwyEjfeXOAPutOp4PDw0PU63VR51jg0efzoVKp4Cc/+Ql++tOfolwuL8QHmDUHTXJSRemC63Q6AvYEg0EJfikUCiIBaE+vIkpIbqbH4xFwkYeZl45obzKZxHw+lwAQ0522jKFp+3o6naLVai38PRkO7VVWPM5ms+JPp0eg0WiIautm7gCL4bx00Xa7XYRCIXkXDXZqHEKvIX30y0jXnCRjmE6n6Pf74vpstVoSrcjIUWphGuNwYjT6HQk20nzb2NiQoKh4PC6FRjUQSC2MOAUlt65WxbkCrzEe3S+R+8w1ZV9HmiCMGGXcAgFWxmO80+aARvTZyordeemr/+CDDwS5//TTT/GHf/iHOD09XajHTqnCr9dRjfg3vByXl5fi9726usLZ2RkODg7Q6/XETeSmUmrigae7ki4nFi5lAAntvGQyieFwiEgkgsFgINF1RH3NDDY9DgAB5yj9qQGYXgYyyEgkgu3tbTx48ADZbBa2baPdbqNUKqHdbi8k3DitGSWn1gYIdNLVSJNkMBiIy5PrrSWY3je3PSJDobZDE6rVaqFaraJSqQhKvru7K0yIjFjH6TvtlSa6FlOpFDKZzII3IhKJYDaboVar4ezsTDCieDy+cPG1F8Wci/Yy6MK6/Fmz2RQmRwHICNnZbIZGo4F2uy2eFl2N+J00B4BFtF4j5rZtIxaLSSiqx+NBpVLBp59+iouLC2njtU6UlNOY+gJpwIZ+Ytu+dg1WKhV4PB70+/03+um5SRcSVeVut7vgdtPeA9qFw+FQqijzn7m5Tuo53+Hq6gr1eh2fffYZLi8vEQ6HJegpGAzKc+LxOPb39/H9738fuVwOXq8Xx8fHODw8xPn5uXgm3DAPbcvzAmuNg9WT9Rowd4B/byLntH2dxiKzILPu9XoSgcjqvyzImUgkEI1GBdvhHvJcuXkdyDD4mWAwKMU/PR6PhA8PBgOcnZ3h/PwctVpNLirVeO1+Jo5griHPAIUOcRu6owlWz+fzhbnQw1Kr1aQcPiNKOeY62sCdZAIk2ujaPgsEAtLcstls4vPPP8fh4eECOGJOfB11nePpOAWi41xQ2oFEoZ0Sh9YZg8AYgAU3E99TNyUhyEbga10mx8vS7/dxenoKr9eLXC4HAJKYwgtDzYqRd7VaDa9evcLJyYn01XNiOvoCae+ADkHW0Wy82NSI/H7/gtprpmkvM+Go+nc6HVQqFaTTaQHnqAFMJhMcHBxge3sbuVxOtK96vY5Wq+WaVcp5Aq/NKuIMRO6pfbTbbZTLZekNyCw/AKJtEU8hyGcyba4jzwVBVa4PzYTZbCaRj5eXlxJGrl2SZoXqd1YTABarwJBL0iZjs45arYbj42Opbb/uZV9GvIwEasgUotEoDg4O8OGHH6JYLKJWq73h+zfffdnceLi09NKmAOPude/B22o4tPubzaa4VwuFgsRAJBIJxGIxbG5uYmdnB7Z93erq1atXOD8/R71eX2gW4jY3t/gBZhTSw8OYCB3NCUB84ZS+TuaAOQaxm0ajgfPzc2xtbQlKDwDpdBo+n08YAEOKS6USarWaaI1OKLq+mBRE4/FYMh79fr+sKVVxrhMZNaMraZ6SKTlFrmpmenl5KViMBp0JGtKDRMCWDWsJSGqTal26c0xAq+FOvyPY0mq1UCqVUCqVFuq7LwN53MYzVXkyAQa5pNNpPHr0CN/5zndQLBYxnU7x7NmzW2kA5vvwnXhwmHTDS8mUVWoB1IbM56y6LDzEVFVHo5EwAEad+Xw+1Go1iSPgP5oBJoi3bE78nu8aDocFQWdSFiUky8drn71GuJcRTYFGoyHMczKZ4MGDB8jlctjc3BRQ9/LyUnJAvvjiC1Sr1YXL6GbiaIxDR/x1Oh2J5Gu1WhLwRGYNQJrl6vwCArFOGA5/psOuqX0y1Jng5Hw+F+yjXC6/EZDENV23ovWdYwKaK2oVWaPq9KszjtoJtHK6DG7kdIgZubW3t4cPP/wQH3zwAfL5PKbTKcrl8kKwyypJqeelx9KAIgNFGOXm9/ulHZlOt9USyu3wOjEa5kQwVLff7yMWi0l7ch7iRqMh7cp5iNYB0DRKT02HpgD93sFgUOxe2uU6pJv/nABPJ8yFKbvEg2q1Gk5OTrC7uytp5vRuMNfk6OhoIcHGaR25vswq1R6PbreL6XQqHhvWDaDGZlnXNR/oBaHZw1gGp3gLSm9qQsPhELVaDZeXlwJ+p9NpMSmGwyEuLi5QrVZl7/Q94DPX1RzvHBMgmReGbhEu8uXlpfTqc4oKXHVZSKaty8Vj+HC73cbJyQls20alUpGc9NPTU1Sr1YWMvnVVMD2WRobpUiP+0ev1JHmJB0h7PtZlBDwMvHC0pXU3Jz6X9uiy9usmETPh2DpUmx6Ker0uwTvVahX1el0iM8kMdKSb3j+n/eK4Wquo1+s4OjpaCOvl74ghsFXYOoxbYxXUPCzLkouoKwfxszQRuR5kjgRCTdenNns1VsSkrU6ng2AwKGC0x+PBeDyWqERd3Uqv2W1MgjtbY1AHxjBaj7EBtG/pNjObXJqS8C3eZyGohyotU3spTTudzq27zHBOWm1j/DtDbHUVHjI4BkCtupRO5o2ThmSODbxOYtENO7V97iYxOSf9HO4Z8QBiA9w3mhpmeTZzH1fN0fy5noc5f/18ktNzmHpOvCYcDi/UVaBmRWGhmZ7JBPgOdP/p7wFITIBeN36t50KQmtqCTriiMNEmoo6/WFVj8M4ygZufL2yoBtG0xHYLLPmqc9MXxsw/15v+VZ7L/3UUnC4iyUNrmjy3YTqrfq/npSMrTWbjdvn0OHqvuG66RgG1Hl4yHavgpMV9HaTXeRUDABZ7R2ohxAvKi85gNP5MRzqaXhOT+fDM0gPgtH5O8Sfapcw5kWE4CQeu9w29e0zg55W+zgtwl+hdn5e+2O/oXN6tasM/z/QOHq616F2f1zpaxLtId4oJvK2f38QBlv38rm2etqs1mSr4be3jnxW54S9vs5cmlmE+8y7SVz1fbqaK22fMMbTZ4Ga2rXqnO8UE3C4zyfQY8Ger3ElvQ6Z7UgN6HGMVar7OGAAWQCzzvc15Lft+nbFuQ+s8W+/ZKleiuX/6UJsHedVZMJ9vgnG8HE4A59uSPgfcM413ECMwAU7OZ9lzzTPLcRjrwPkxahZ47WLWlZwALHiQ1qE7xQScNt28IMuAl2WBM+ssiNPF1yXJebCcgpNM5rBqHJ2mqhFl/TOCjybwaV6edefl9F6rDif/X+WNMPfIlFaa4elnmxGXBLJWZRHyGToVmaHWRPcZQLOsFsI6xOfr5io6EpIu1uFwKN4qejy0Z8Vtv5zWyrz4upx7IpGQtGlGJDKakfk2fId16E4xAVOqcNHpFdCuJyK4RM6JnuvF5/N4mdxIc3i94ewHwMKbjOBjgIauNqzdd25BGnw+uyexcAeAN9KjbduWaEFdQVnnKnCMZYzASYXUpF1RGhE3QTC3cFS9ZyaD1nPWLld9cVnSW6c+s7PSsj2j9NWJOXTj+Xw+SdPW78X3XVdC8/11KrFuZJJKpZBKpSSsuNlsolwuS0wHM0Z5Gd0qXHEc/q89RfpnwWBwobYgcxpYecjj8UhgmVsejRPdKSagDxMXXheOjEaj0qmHbjQmXDAtl8kj2vXEGH0nzqgXHYBw+WQyic3NTRwcHKBYLEoserPZxKtXr1Cr1SRunHncPMhOG60ZAANZWEwyGo0ik8mgWCwikUggHA7D5/Oh3W7j9PQUtVoNFxcXaLfbC23HtIRfxnT012b8BbDYe48MVoedMsiITM9JcmkXIJ+n++exCAvDX/l7XhIGJzFOgZWinBiB1tAYbs28BDIRqsrajafrS6zjbuV6MGclmUwil8shk8kgm81KMhEve7lcxnw+lzqDvKBcF/6/TEjwfXTKczgcRiqVQi6XQ6FQQDqdltwJFtVhkBHjCbiH62imd4oJkKj+8NLrC5LP56VuPMNGqYZdXFyg1Wqh2WwuFFbQi+92qLQNFo/Hsb29LY06WBev2+0uLDJVTh0Db15OTeTm5OhkNOl0WhqCxGIxyVHP5XJIJBI4PDyUuH/NbPT7OzEdHcpLzYPaByWo2eiSHYioieiegQy3Ne1XbdrwexbuILNjshKLcFCdZdw7I/m4flSvnUwhMoBwOLygqWUyGdj2dW+AYDCIbrcrEZ2MHFxmWpnEdeO/YDAo6cEUGmQ4bKISj8dFg9NRkOaYq0wzzaiTySR2dnawtbWFQqEgNSl5psPhsFRENrXadXCVO8cEtA1OLs+S4izvRSlFLsumobSDut2uaz66JlNF5KYzZ2B/fx+5XE4SazqdjsTEZ7NZjMdjVCoVed6y4CG3S8nOSoyqm81m8v4sEsoLWKlUMBwO3wjoMcmU9jzALE/NCrz6wrPUNRkwy1vrDkxO9fG0BqDnysusW8exsAjz5LmezMGnZqeDbpzWUF9O5u5TO2QvB5Y2Y34H8+zXBVM5NjNYmeevG36QmRLHsG1bsAKPx+ManuzEsE3Alz8LBAIoFot48uQJMpmMVBHiPwACFjJDk5qEnscyulNMgIdWh7JSAjJUkgeSajGru/BS8UBSC9Ac0W3zyVH5t9FoFJubmwgGgxgOhzg+PsbLly8xHA4Ri8UkzZcVYfkMtwXX41MyMB+c6jXbgVHqshEli1mwJp62c50wAdME4KXhc9LptJTHDgaDEvvO/g5ktNVqVWrchUIh6R7kdDE1ss/vaRbQlublIBOfz183iu10OlKpybIsMTtMhqoZA/Gf6fS6P0QmkxFThtKf9QD5LOYpcL9WnUWeC52Nx3NSqVQQi8VEK2CNBl5IU/VfJZVNJgpACunu7e1Jz4vBYCDFQ3q93kIjWK4hNbt3vrIQEzZoIzLenIUhiIBGIhFks1lsbGxI+S1eNGoCOgx0Gc3n84Wcba/Xi/Pzczx79gyHh4eYTCZStJKFJXQo6bIF55y0KycQCKDf76PVaolt3O12Yds2isWiMBnbtiVRxATvVm0yNat4PC6mBysYs1AGazXw0g2HQ4nt54W6TS1FMgAyAVb61e3ghsMher0eGo2GJBfRBiZzcCM9b9aXIM7A3HqabmRqs9l1SzTTG2E+z2k+xHl4jrheLBZC4cNqRU6JUMvGcdIMWGn6wYMHgkv1+31UKhUcHR2h1+vB6/UK42GrMrM0/Tp0p5gAX5pAC3DN/VutltiAlJQ8vLrNFFFaEyxzyvLTC8S/p9TU1VuYitrtdheALeA109AZdPqZeiytCTDllAyAFZX5/iwLxWSpyWQihStM6bJsHbWdz8ul6xSw9iAAcT+REfX7fTSbTUn5JfjkNC83TSQajSKfz0vhUl3uyrZtNBoNKWI6GAwAQABf1iA058V9JMOwbRvhcBiRSESyEvn+1NZyuRym06nsnU7L5j6a42hNQGsf8/lcTDfgtU8+EomIpCb4SEa4bnyCBo/ZWOf999/HRx99hOFwiBcvXuDZs2eoVquwbRuZTEbaplMjoDZJ79U6dKeYAPB6Q3RmIFNCaQMSqZ9MJlJDjn+rfae6bJfJBMxLpMEubY9R1aIqzQo2fJ7uD++22ea4GmFnzzwAIvn9fj/y+TwSiYSUW6/VagsFJPmuTvMivsHfa4kciUQwn8+l7h8burKOwWQywfn5OcrlMhqNhjBbs/2ZOZa+nMD1ZSYWsL29Dcu67qJExqRr6WnvCluXOZkD2mTT+8teDPw8tSpiKroOBMFV7pebd0WPzYuuNQK2juPvksmkmB40aylUdLKPG2kMJxwOo1gs4pNPPsFHH30En8+HcrmMFy9eoFarYTabIRaLCXNNpVJyDwiAcn3fOXOAm2JeKl5soue8oLPZTNo1sbY9SUveZWqYk41LNx43e3NzUzguW4g7LfAyl5O2ly3LElCTh59jsYx1sVgU9Za+ZzMGwgTk9Fj6oujSazoAhTjA7u4uNjc3EYlE0Gq1pM+jLnXuBnrqi6mZAiv0kpnxPf1+P/r9/kKbdT0G/34VQ+W8aIMT5ByNRoI/8JLk83npUKyLw/LCmmM5CQh+hoAkMQhe3Hg8LtWxWeacwkgzHDfSgHEikcCjR4/w/vvvI5fLodvtSgERj+e6cvPm5iY2NzelDD6FBwuU0gOjm+a60Z1iAsAiMkpQRnfhZcMF2rC0zZmCy4ARs777Ko6oL7BlWdJv0OPxoFAoSKcjFqwYjUZvRPmtmpP+3gzooDeABzcajYr3oVqtuoI8y5iAZgb8mqh5KBTC3t4e/H6/HKjhcIhSqSQlq0yV2a1QhZMk1RV5tHuSxT0ojZ1qQ7rFWphnw7Zft+KiSUCm5PP5BMCldE0kEhLcQ21KI+kmaeHBsXm+2KBFS3kyFWpdJgNws9NNLWBzcxPvvfcednd3YVmWdKsOBALY2dkRYZROp6XWAWMk2BdhWUl1k1YyAcuydgH8fQCbAOYAfmDb9v/dsqw0gH8E4ADAEYC/bNt26+Zv/haAXwcwA/A3bNv+p2u9DZxj5VnJhaocN0GjsASBtC9dYwGrFkRLSlagoX3Kem98N4/Hg0gkIk0odNyCfpbbOCZazANAu5JgD/3cBPe0d0Aj8E5SU7sk+Xm6Hi3LEjAtFoshmUzC4/Gg0WhItyFqKuaeOO2XNj04F14KBs1QNaY3wrIs6dpjFktxA1mdTB3iB5SGBCCp6bDUl2VZSCaT0kNBu9KWuZL1vBgjouMsdLQgi6cmk8mFPdYeBpqs5ryo0cRiMezv7+Px48dIJBJSVcrn82Fra0twADJVvhPNZmoqXzcwOAXwn9u2/ceWZcUA/JFlWf8MwP8OwO/btv1blmX9JoDfBPA3Lcv6EMBfAfARgC0A/9yyrPds214ZDK4vq54Ay1S1220JpKHvW2+Q1+uVwBSG2pKJ6IOjSaPF/JquJAJ42k1Jz4DP5xPVnYtvuiWdxtLYg5ZiDKKhu5PqMf337MfIv9XquZuWwPcgct3tdgFADgkBKNYzZNkvluPSkYT6UJvgINeW0XLUzHQ0J5F02qvatWuGLpsXfRnpbrwM5uFe6EIsjHokQ9U9EJftF+elw5O5drqzMoOdaJqwCzPHJbbCvzODvchcGBiUzWYRCARk3Wh+kMFobYnvR7yo2+2i1+utJfyANZiAbdslAKWbr3uWZX0OYBvArwH41ZuP/TaAfwHgb978/Hds274E8MqyrBcAfhnAv1k1Fl+YL6/DeRkn3Ww2ZTG5CIzyo43b6/UQDocXmpG4RQpq6aWBQEp2SjNKFDa5YFARY98153VSZTVz08FCbP2Vy+UEQacXwOO5LnWuW10BWEhgcrL5tFTl90TN6Z/n3FOpFK6urlAul3FyciL187U0NoNe3EhH1QGv6+SRqfGCmniGKTXN9XSaGy8oy45Ho1HxYFAiE2CksGBcgV6/dYjAKsPYiT30ej3U63X0ej1pEkt1nJ/TnZ70XM1zwa+ZGwBAGCY9EtRAyUwty5K+mADQarVQqVRQr9elT8U6dCtMwLKsAwDfBfAHAAo3DAK2bZcsy8rffGwbwL9Vf3Z287NbETeRXJsumdFoJMgrJTYDaeLx+EJwDCX0OllptPcY0svIvaurKzSbTelmSy5PN9tkMhFpZm6olvqaCJwRvU4kEgJEanWRFzaXy6HRaCzMg5LODY/QwCCfR1cjtZV4PA4AaDab+PLLL8X/zENLE2hZdKImfVl42ZvN5oK7jDiLmeXmZAa6mQQaXKV20263RSvTUYW2bUsHZAZokQms6uegwUwGHtHFyLwGzkN3duZ5pcuVGhEBbnOuPCt8TqvVQrvdFpcfzalUKiV1LnXE4mx23QbtxYsXePnypfRVWLcf4dpMwLKsKID/AcB/Ztt2d4ma4fSLN1bYsqzfAPAbTg/QEoJMgFyPG6s77ALXzGFjY0P+Roez8m/c/KYa/DKlEy8lI80ofRlKyg4wesFN1dKJ++u4d9rl7NU3Go1kzmQM2WxWcBGzXPayy8KDrk0JIvLD4RAnJydoNBo4Pj6WVFTTO6NxFSefup4jQTFm83Fv9GHXQUiaWTkF2LjtF01Eps5SC2FsADW1VColSUXMVWDsg87IXDYWmQ41GTJixmBQ9Y7FYtInkPul8wr4NyZp3KDT6aBWq+H8/FyA51QqJeeFNQn5f6fTQafTwcuXL/HZZ5+hVCqh1+utHSMArMkELMvy45oB/Pe2bf+PNz+uWJZVvNECigCqNz8/A7Cr/nwHwIX5TNu2fwDgBzfPdxQx3ACqQcFgEKlUShbWDO7hJaIayA6/buaAHocXhSpsPp9HKpWSw0JJEI1GJS5cN4Ak2r1kDReYA+04AjycA9X7yWQiUj4ajS4kpPBiUxq6SWiuHyUhEWRqWMC1CnlyciJdi/XfrpL8TiYPLwsbqjJQaT6fi7lF6andgyYTdXq+056RWVF74d/yMtJWZtgw94tMYd1xaG/TBRiJRER7nM+vW5+Fw2EUCgXk83n4/X7UajWJxdB5EuZ4ZHqTyQSNRgOffvqpCK14PI5MJiNuVp79TqeDVquFVquF09NTvHr1CmdnZ8LIV81L0zreAQvAfwfgc9u2/6761e8B+KsAfuvm/3+ifv4PLMv6u7gGBp8A+MO13ub1mAuqNC9xOBwWe5bhoPQH7+7uIhgMotFoiA1ISbiKCZBo/7fbbfHxMnfbtm3BBMbjMTqdDi4uLhYaSugLbpKTdOPhDYVC4pLkJeL7Ex1uNBoLkW7LMAFzXJ2vkEgkJPLx6upKimCYwJ/eA/N7k6it8J152NlEhaorLyX3wol56jFXET9Dc4MaG7XGyWSCfr8v606NgaCa9rQso/l8Lvkqg8EAuVxO+hICEO2D+I1lWajX62g0GpISzWAmtzZk3KfRaIRyuQzgmkFns1kJ5NrY2BBTpF6vSzNSNoxh/smqmAST1tEE/hyA/w2An1iW9Sc3P/svcH35f9eyrF8HcALgL91M6KeWZf0ugM9w7Vn4a/YangESgTN9oTQHpcRPp9MLYbxsH27br7vOUgKs4wbSaj872YTDYYkQpInR7/dRrVbx5ZdfotFoLJgCqw6wBrs4Vq/Xw8XFhfych5T2+2AwQKlUQrPZXPCv09Z1azWlgUheCmYRZrNZaa/Nd+E/fSH0M1ZpBhrA5RrMZjM5vJSYlGKVSmWhg6757uswbY6jx9UNQClNM5mMuAlNk2MZ4Knnze5DAKQjEPMWaLISb6DH4uLiApVKRbRJrsky/GE6ncq6dDodwRbi8bgwW2qrbBTDMZ0Y6jrMdB3vwL+Cs50PAH/B5W/+DoC/s3J0578FsJiiqrPuxuOxtCcnJ2Y9Af6rVCoL0W5OuQMcS3NMqoytVgsvXrzAYDBAvV6XaLrZbIZSqYRKpYJKpSIx6joMeBnIRBOAavxgMMD5+TlGoxEajYZk9/l8PoxGI9TrdXS7XUkwImhHhmW2QDPH06o/vR8ML9UIN91X1Bj0Wq1y05HJ0u1I7UW76ogJMHT39PRUXJF6TP3u6x5gfWb0u5NhMwCHwsWszLQKU9HzZHNXegUIIrPFGpk310x3yDJxFrd58B+T5QKBAOr1uqwnP8dYGL1vb8MAgDsaMUj1joed7hAAUt6LwS5cMMYFMDONabp6cZwOtFad+FlesG63i/Pzc4lKtCxLQBeitjpmfdnCc158Dz23fr+/UElJq7JEnWk383Dy37KN5sGnN4XupNlsJglCdCfp9F2TAXBMJwwAgMRTWJYl6Defx7kRnKOKzCxFzQBMjWOdOAFzjbmfuuchtQBTYq5zKfU7kZGRsdHjoV2u2pzjGVwF4jqNy7UhU9Hucn7G/Of0nHXoTjUfMRF0/uMCOIWhAq/92Nxo3SbaXKC1F8YYX9vLbhdj1bNN3ze/1sVG+M9Ey83nr3OgtIuVIc/UNObzubRxM80M/W7LxtKf0ftDpqMj95gP4ATKaY3MSVu7Dek94xmhOs18BYKs67jPnN5LX3i9p/yartVl+6fXbZ0LrMdwe9Yaa/hudSAyJ+30v9PXeuH14t9Wqri9jxPd5rlOTMA0S8znOm3uumPycvJCUnJpxFu7HN92LCemadu2pFnzuToOghqRHmcZQ1jnHfS8tSZE7cqpg/VXJSfhta7wWQXguTED82yYTNvlGe8WE7inb47e9pLd0ztP923I7uma7i//PWm6ZwI/I3JT10y/vPk5J5PB6WsnW37dd7otU3gXmIhp/n1Vc/BPM72zTMA87O/SBjsF4vDn+n+iwfqyOuEbtwE73X6ux+TznIJ47iI5Aa4E6PSacj46ou6bwgZIX/X5Jtai+wmYyXFvO9Y7xwRMRPbr3shvityAHPP9ecHpJeBctY/YsqwFH/EycjqYZvo0D5f5NzrAap0krJ8lOQFieq2YockYAQ3YMbJunXDvdd/FHMPJm3Sbs2p6jpinwAxXs1q1qR3e5k68E0zA5Ia6wAZddToU9LYLzjGcvtYXEYCrf34Vqm0+3019pwSja4+oPnML6Dpksgkr3LqNaUp5LVF0vXqG9PJndCHSJ85Arbe9ME7MyDSB1tVu3FxzPBssBbe/v49MJiNBQoz/ODs7Q6PRQK/XAwCJNL3tXLhXvKC6XyXXWrepY/DaunPjnJj3wcQsy7Kk7RiZGMegdmB6XpbRnWYCWq1jzToWVWSEFsNvWaxStyG7TQqsjq7jhYvFYtIWzLZtyUBjxR+mpDq5g8wNoHR3myf96mw8mUqlJBKNwUpkfKyYc3p6iuPjY8d6h04MgM/QxVNjsZhkqXk8r5t6Mq+AkYtsseV2YcxLqd2RZqq1/qxOiDKzCZ0OsakF6vlxz/L5PD744AN88sknUoSj1+uhWq1Kdp6uzqvrGzqNp8fSTJRdpLLZLAqFguT86yxT5mawqKpuguI2N63RsFoSqwqxrF6325UcF+Y1OGUPrsMI7iwTMLlsoVDA5uYmnj59KiWkKK36/b6EC1cqFUm2cbOhNfFA8OInk0lsbW1hZ2cH+/v7KBaLEpnIaMSTkxM8f/5cssR0F1raak5qPsn8ORNskskkisUitre3JXNMN19ldSHLui6mEY/HJU/CLcWXc9RMjk1GstmsxL6z7RsrHjMzrt1uw7KuIwHdctS1xOKesTpzPp9HMpmULEzGKPCZrVYLg8FA8jBYoIMX6TaBNIFAAKlUCgcHB3j8+LEUhWW4NkuLmabUOmCqyeDYx+HJkyd4+PCh5LJ4PB5J+SYD7XQ6aDabUmV5WZdkU/DFYjHs7e3h0aNHyGazCIVC6Ha7UryEyUNaEJjMdpUQvJNMQHNcLkShUMCHH36Ihw8fYmNjA4PBQCYejUaRy+UWuKQONeYznQ6Pbl2VyWSwt7eH9957Dx9++KFUytXSajwe4+DgALlcDkdHR3j58qWkizIW3knFB95UdzXHT6VSePLkCX7hF35B5sisNYa+klGxRh4ACYnVxOg8JylGJsACFV6vVy47NZCtrS3pVAQApVLJNaBJMwAy02QyiUePHuHx48c4ODiQEG/iDrRnWX+QocRnZ2c4OTlZmhnpdKCZXx+NRrG/v4/33nsPOzs7iMfjch6YyqtrAuhu0uuMxzUMBoPI5XL45JNP8PHHHyOdTktTHKZtR6NRWJaFRCIhWqObBsBn6/F4LmKxmAglppRPJhPpKEVmvSxHZhXdOSZgSjDbvi4SwjztYDCIer2O4+Nj1Ot1AEA+n5dureVyeaFW3SotwAzZZe/DTCYjHYJ0jTzWxSsWi2g2mwgEAiKd12k0YR4qj8eDeDyO/f19/NIv/RLef/996abEbDsWmmQV4qurK7RaLVSr1YWCFU5j8HuuI6U9pTJVVY7BOoq6O7KJtZj7pTWASCSCQqGAjz76CE+fPkU8HhdTimG7l5eXGI/HC52KeSHXkcpO+xiJRLC5uYn3338fT548kbJp7BxNTIOX32SStx2rWCxib28PiUQCrVYLr169QqVSwXQ6RSaTkY5ALPfFRC0npuM252AwiEKhgGKxiGw2i3a7LTUDmLrs8/nkHph41brzunNMQEscToix79PpFM+fP8fLly9xdHSEbrcLv98vqhJ7Ejipq24LQlCFOAK59unpKSzLQrlcxvn5OYbDoZgKwWBQUjlZvISagpvdr99Ff72xsYHt7W18//vfx3e+8x1Eo1GUSiV8/vnnAmBNp1NsbGyg3+9LK2zmqTNDz1xDvZaW9brbciKRENvy6uoK1WpVug0TD+l2u1LKmunMPLxuWg7wujHmw4cPUSwWEQgEpOrNy5cvUS6XpVZjJpPBgwcPpCZkr9eTRiS3Bel4WT755BPR4DqdDs7OzoSJWpYlmXcEW82ScOuMRZODre8qlQo+/fRTPHv2TErQMUmJWZPs9LSOJ4JzZ4uxzc1N7O/vAwDq9TpOTk7Qbrel6A0rYrsx6HXW8s4xAY0Yc2KUVu12G8fHx6IFsKRYLBZDLpeTLj1udevNcQAsgIv1eh2xWAzPnj2TfO5yuYxWqyW+ZXaa4d/RM8EDpqWm07xIWnr90i/9En7xF38R6XQaZ2dn+MlPfoIvvvhCgB8iwolEQjLjut2udAhyO1gaMddgYDAYlPkxg5DApK6/QHCL6LqTLWt6OohfDAYD+Hw+HB0d4Sc/+QlOTk6kfx6bZ9DbQQCN3oh1C5tSZY5EInjvvffw3e9+F8ViEYPBAEdHR3j+/Dk6nQ7m87kg65FIBOl0Wkqq6/Ljq8YicJrJZFAsFnF1dYXj42OcnJyg0+kAwMKZZQEVrvEqPECfDVbO3t/fRzwel6Yw9Xod0+lUzNd+v7/wN99IPYGfNWkpxktF1L/ZbC7Uw7csC6lUCo8ePUIymUStVnsjv9/NltULxJRej+e672E+n0etVpPKr0SrM5kM4vG4tPCiNqBRbT0HkzRg4/f75d2/+93vYmtrS+oYPHv2TDabmxuLxQRYoorrpAXosTTIxI7A6XRasi95iejeIjjo9Xqllj7BT7N6kl5HuqPYfIPAXrVaRblclpx6anX5fB5bW1tIpVIYDAaoVCoCEN6mEjALyu7t7eFXfuVX8OTJE8xmM1QqFbmYtm0vVIhme2/WoFjVOEYTNZ1UKoVMJrMAlrLAqm5Wy6pQLGm2bpwFzwdrT8ZisYXaFdlsVsqSDwYDmZsTBrQO3TkmQOJh01FRs9lM+vONx2NsbGxgZ2dHpArtLicbeRnKTGZDRLfb7QpwFovFBPlNJpMLdfW1a0m7tNzGIvOiFrC/v4/vfe972Nvbg2VZqNVqqFavSzVGo1HJJacdr6sRkQm4udH4v/YIpFIpcWPRlcTy1lqqejweNJtNtFotKaLh5hqkT5x7xIvBmoWz2QypVAqWdZ3mnU6nBTD0+Xw4PT2V4hs0ydaRXhpQ/eSTT/Dee+8hEong7OwMp6en6PV60g6MBWjZoMTj8eDi4kKes85lIfCZTqdRKBTkOeFwGLlcDrPZTOo1BINBABBXMmspOpmqPBvmO5AJsKvSZDKR7kQ7OzvY2dlBMpnE6enpQmFdDQr/qYgTAF7b7JR69ATwMhIEmkwmC5oCF2Nd+5LjdDodNBoNZLNZjEYjcdsRl6Bvmci6U1WcZaQRem6oZVlSIy4UCmFnZ0cYHQAJ6CG4RtVymY2p1VfWEaBKzFgD1sMDIF6NUCgkOEez2RQX6KrS3DQLqKlQ+rKvAg9lNBpFoVBAKpVCpVJBqVRCtVqVHH83+1bPC4DMbX9/Hx9//DHi8TgGgwFevXqF09NTjEajhXboZILhcFgalazCb/SYxAMSiYSUErMsSzoC0+UYDocBQIq16Ki+2wRakcFQ+5vNZigWiygWi7J+xDQYSUit9J33Dphk27bUVLu8vJT2X5TQu7u7iEajaDabsG1bLir/1ul//WxN8/kcw+EQ5XIZoVAIl5eXsuDcfD7fjLJb19esy3xtb28jEAig3W5LU5V0Og3btkU9jsViiEajgouwmtEqlVkHBfHikYGRCVALmEwmuLy8FI3DrMq7LNJNSzFqAs1mEwCkvRk751JNZsVmxgewNPe6fm1qN+l0Gh999BF2dnYEhDs7OxMVmUyTZ4VFY3lW+M7L9kvvGwOqiG0QR4lEItIujj0kms3mQljybT0QNNkmk4kErbGxC39HM4QBX5pRaw1tFd15JgC8LsrZ7XalcCURWtq4VI3ZIEKXvFp3A8hwBoMBzs7O0O/3Ua/Xkc1msbe3t1BqmnY0S2fpajJudrNuZUUp3Gq1RIJyDvSjezweaVDaaDSkRJeOiHQiIuasJ1gsFpFIJAC8Nn24LgQBdUQhewXyM9rUcVtPfm4ymYgpQMCNh5YaGnv4MYJOh7quOriMQgyHwzg4OMCTJ0+QTCal/l+z2ZRAo/F4LEyatQAJflLzI+DrFkei4ysIZNLbYNuve0FeXV1J3wFKcBPgXEdL5DrRfBoOh8jlcshkMgsl23SLODJ7xmJok+CdDRbSxIUhE2g2m1Kam1ycCLaWSJrDr+MP1p/hQmvUf2NjA3t7ewtVc1gGbN05cHwCcNPpVBB+zo8b7fP5BBlmpV660XTTVTcimEjMJBaLSYSeVrl5mGhXUkugP53raVYe0mSCuZPJRIqXApC4hn6/L0Evk8kE9Xpdag2uUzdRA52JREI69LLdF00qrb0wqIaaCNeZoO6qYCEyLTJ9v98vmhiTkCzrugT+3t4e0um0gMxOUY9uY/HnFCiz2Uxci8QyGDsymUzEJObzyfTWBVU13XkmYNu2SJVKpSIADdFQtg7rdDoiIbUKdpvACR08REaiDwklByW3Lma6yubTUpUHi70S6Yqk7cdgJIYMj0YjnJ+f4/z8XBjFssNL0IwHc2dnB8PhEIFAQKLzmCHIPodUMy3LkkhFMptVdrpeY+1inM1maDQauLq6QiQSEZWa2ka9Xl8ocLoKXOXcGNTFkGcypl6vJ9gGA6JoMmxtbUm16OPjYzQaDdfcDz0WAOlxSaCO7z4ajXB5eSlh7alUSi4ruxQvcxs7rSPPO0vbf/bZZxgOh+IJaDabb5TZJ/bA0ubruMg13WkmwMWbTqdiNzabTSk1TpsvkUigVqtJnAClpL6Uq9Qira7zf7rNGDgDQFp303XGQJpVY5mqNTPaAoGAXDYdBk07ejqd4uLiQpqFUsKuMxcizDs7O7i8vESlUhEpw/BWXnLGPgwGAznEOkmKl89N+zAZLs0xemv4Pb0PTKjRBUfX2S9+joxD917I5XKwLEs0qWQyic3NTWxvb8O2r1OIv/jiC3z66aeoVCprZ0Uyt4MuYpZLZ9NP2uQMs65UKiiXyxLOa2qly/aOcwOAarUqZuLm5ibm8+tCralUSgKT2C9Ta0C3AaqBO84EALxxcRhcMh6PEQwG5TCZl+NtNQHdlZhJNrT1IpEIxuOxZNW1Wq2FABA3s4Pvwd8TeCNiTmZDP/rW1pbkD3S7XZydneH8/PyNnoeA86HS4xEBZ3wD7WdG5jFhiLiLbdtoNBoLSTzr9OzT43ItmbjDf7FYTHz05XIZ0+l0oU7CusQGHUdHR3jw4IG0HPvoo4+kkrHOvacZ9Omnn+KP/uiPpHPUKlCQ/7SXhZhTOBwWt+DDhw/x+PFjRCIR0dhqtdpbFzXlWWf/S4an0+anUCIewPugNZvbREK+E0wAeN27D3ht8/PQaRMAgCNa76buaTBGR9ZlMhmkUink83kUi0Xs7u4ikUiIlKzVaiLJuOjrqLJ8fzI0xh9Q04jFYtjd3UU+n5dY8ePjY2E4egw3psN3YWQhGU0sFsPm5iaA10k81HrYE4BRhFq1XGdemunoPAwzOSuXy0l49vn5+QLgqJ+zzPSYzWaSSv3pp5/C6/Vif38f0WhUEr6A6zPTaDTw/PlzfPnll3j+/DlOTk4EC1hFupYE50RvTSwWw2QykcSvzc1NdDodvHjxAp9//vnC2TDffxVpbScQCKDZbErp9Hw+LyYc41p0CfXbCj7gHWACmpgpRXWJySfEAgAslLjmJVkmxbjRGnVOJBIoFAo4ODjA3t4eisUiMpkMptMparUayuUyyuXyG6oXL5/TpdREl2en0xEplkwmkUwmJUGp3W7j1atX+OlPf4rDw0Oxd/Umu10WqsntdhtHR0dIJpMSj8Cx6HLVgCs1Kkb96QChVcEnGrRjj4NUKiWp0Ts7O8jlcvB4PAsXUSfyaEawjAnYto3xeIzz83MxYY6Pj7G1tYVoNCrgXaPRwKtXr/DixQtcXFyIKacvp5vE5EUkys+AHzJT5l8wQ7JWq+HLL7/EH//xH+P8/HyBYb8NkdmxLTnjHehC5r4xjkOfxdtoAcA7xASoItFmZZ44D5LOdTczxFYdKF2TnyYBbcm9vT1ks1n4fD40Gg0xBRiTrrnvKuCM7zWdTtFut+UQ5/N5RCIRARy73a5IucPDwzekyqpN5iWhJgEAtVoNtm1LS3LWYODF4PqZPfPWBZh0JiFj9Pf39/HBBx/gyZMnyGaz8Hg8qNfruLq6kvRr02W5al5aK+n3+zg9PUWz2ZQCKdpF3G63Ua1WBdsgaLmuhOT+EuBkEhtddl6vV7weh4eH+Oyzz3B+fi44yG3AOae5ApAzb9vX3ig2I+10Omi32yiXywJA8nzdZt+Ad4QJcDLEA3q9HkqlkoQOMxWWqqwOblnFjfXBoE0cCoVQrVYRjUYxn89RKpUEWf7JT36C09PThdZdWv1atvBazWNKbbPZRLVaxenpqdh84/EY1WoVpVJJgB+tYaxicATmhsOh9GU8Pj4WgI8XntLNNK9M7WbV3PTf0ZOjE6sIWl1dXeHs7Ayff/65SGZ6OvT6rFpDaiVaMNTrdWFExEG0kFi2Vm7Ev+d7DYdDnJ2dCUZEPGM4HIo7T9vlX5U4LjWCZrMpjIAeFjIDjsu/u83471TzEdpmumwVW1LrTjpvw4W1OstSZizvRRODmYzat01aNpa2dU3Vl6qelqQAJDTYyQTQZEpR/Xttn2tkXwNiy6SGW7CJ21y1aRUOhyUBhio6pTPToDXIeVs7dhXdJkhs3efxf9ar0LEpt9Uybju2PpsEBTmmrmwFLF3DPz0diPSGAKvDgd/m2cCbRUa1pNKHbNV4mgk4/dyck3YnupEbMGiOZb6/2/vexp5cxfD4Pxmbfgetdax6p3taJO2xMPd/TaH3p6cD0Td5cPQzl7mQbjO22/vq799mLssu89uu0VddUz0u1el7+nroq2AMy2i9NKp7uqd7+lNLd0UTqAMY3Pz/LlEW9+/8s6B37Z3v6vvuO/3wTmACAGBZ1g+d7JW7TPfv/LOhd+2d37X3vTcH7umefs7pngnc0z39nNNdYgI/+LZf4C3o/p1/NvSuvfM79b53BhO4p3u6p2+H7pImcE/3dE/fAn3rTMCyrP/AsqwvLct6YVnWb37b7+NGlmUdWZb1E8uy/sSyrB/e/CxtWdY/syzr+c3/qW/5Hf+eZVlVy7I+VT9zfUfLsv7Wzbp/aVnW/+oOvfPftizr/Gat/8SyrL94x95517Ks/9myrM8ty/qpZVn/x5uf3+m1diUdcviz/gfAC+AlgIcAAgB+BODDb/OdlrzrEYCs8bP/K4DfvPn6NwH8X77ld/zzAL4H4NNV7wjgw5v1DgJ4cLMP3jvyzn8bwP/J4bN35Z2LAL5383UMwLObd7vTa+3279vWBH4ZwAvbtg9t254A+B0Av/Ytv9Nt6NcA/PbN178N4D/+9l4FsG37XwJoGj92e8dfA/A7tm1f2rb9CsALXO/Hz5Rc3tmN7so7l2zb/uObr3sAPgewjTu+1m70bTOBbQCn6vuzm5/dRbIB/E+WZf2RZVm/cfOzgm3bJeD6YADIf2tv505u73jX1/6vW5b14xtzgWr1nXtny7IOAHwXwB/gHV3rb5sJOKWs3VV3xZ+zbft7AP5DAH/Nsqw//22/0Feku7z2/w2ARwC+A6AE4L+++fmdemfLsqIA/gcA/5lt291lH3X42V1Z62+dCZwB2FXf7wC4+JbeZSnZtn1x838VwD/GtTpXsSyrCAA3/1e/vTd0Jbd3vLNrb9t2xbbtmW3bcwD/LV6rznfmnS3L8uOaAfz3tm3/jzc/fufWGvj2mcC/A/DEsqwHlmUFAPwVAL/3Lb/TG2RZ1oZlWTF+DeDfB/Aprt/1r9587K8C+CffzhsuJbd3/D0Af8WyrKBlWQ8APAHwh9/C+71BvEg39J/geq2BO/LO1nUi/38H4HPbtv+u+tU7t9YAvl3vwA1y+hdxja6+BPBfftvv4/KOD3GN7v4IwE/5ngAyAH4fwPOb/9Pf8nv+Q1yrz1e4lj6/vuwdAfyXN+v+JYD/8A698/8bwE8A/BjXF6h4x975f4Frdf7HAP7k5t9fvOtr7fbvPmLwnu7p55y+bXPgnu7pnr5lumcC93RPP+d0zwTu6Z5+zumeCdzTPf2c0z0TuKd7+jmneyZwT/f0c073TOCe7unnnO6ZwD3d0885/f8BNrI6QpkktEkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 3 Train loss: 128.1274\n", - "Test loss: 124.5251\n", + "Epoch: 3 Train loss: 128.4078\n", + "Test loss: 124.8055\n", "Epoch: 3\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl8VFWW+L+3KpWVJFTCFoIQdgRF\nwCgoi+IGDbKoqHTT3U7To2OLjDP+7BbbdusWu4eZ1u52BIZucWEcBFkdm0FtcG1UZAkqhjUQtiyE\nELInlar7++PlXqpCYiqk6lUI9/v5vE9SVe/Vu3Xfveeee+455wopJQaDwWC48HFEugAGg8FgCA1G\noBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E1ol0IUQE4UQe4UQB4QQ80JVKIPB\nYDC0HHG+fuhCCCewD7gZOAZ8CXxfSvlt6IpnMBgMhmBpjYZ+NXBASpkjpawF3gSmhaZYBoPBYGgp\nUa24Nh046vf6GDDyuy4QQpiwVIPBYGg5RVLKzs2d1BqBHhRCiPuA+8J9H4PBYGjH5AZzUmsE+nHg\nEr/XPerfC0BKuQRYAkZDNxgMhnDSGhv6l0B/IURvIUQ0MBN4OzTFMhgMBkNLOW8NXUpZJ4R4EHgX\ncAJLpZS7Q1Yyg8FgMLSI83ZbPK+bGZOLwWAwnA/bpZSZzZ1kIkUNBoOhnRB2L5eLkUceeQSAuLg4\nhg4dyowZM/RnixYt4rPPPgNg2bJlESmfwWBop0gpbTsA2d6PFStWSK/X+53Hvn375L59+2TPnj0j\nXt7vOgYMGCB9Pp/0+Xxy7ty5ES9PQkKCXLhwoVy4cKH0er1y69atcuvWrbJXr14RL5s5zBHmY1sw\nMtaYXAwGg6GdYEwuIWLFihUAAeYVgD179vDuu+8C0KdPH6ZMmULfvn0B+OEPf8hzzz1nb0FbwPDh\nw/H5fAAcP35OiIHtdO/enXvvvRcAn8/HlVdeCcCtt97KSy+9FMmiMWLECNasWUNGRkZQ599yyy0A\nZGdnc/To0WbOto8pU6awfv165s6dC8DixYvxer223LtLly4ArFy5ki1btgCwZMkSDh8+HPR3JCcn\nM27cOAA2btyIx+MJeTnbMkagh4DMzExuu+02/Xr3bst7c+rUqRQVFVFeXg5AdHQ0n3/+OVdccQUA\nKSkp9he2BQwbNoyKigoA1qxZE9GydO7cmVdffTWiZfguJkyYQExMTNDnT506FYDZs2czc+bMcBUr\naFJTUwFYuHAhAC+++CIAS5cupaqqKuz3d7vdut8kJydTUFAA0GJhvn37djp3tiLkMzMz2b9/f8jL\n6k9SUhK//e1vueyyywC46aabIjqItFmBPmPGDK2NnThxgurqagDeeOMN8vPzOXDgQCSLF0BaWhpC\nCMAS5hMmTAAgLy8v4LxHHnmEwYMH69d//etf7StkC7n88suZO3cur7/+ekTL8c///M8ATJ8+nauv\nvrrRc8aNG4fD4WDXrl0AfPzxx7aVLyrK6kKTJk1q0XXbtm0D4OGHHyYhIUEPnJFCabXp6ekALF++\nHED3u3DSqVMnVqxYoRWchQsX6hlCS/jVr35F7969+ad/+ieAsArzWbNmATB//nwuueRswHxSUhKn\nTp0K232bw9jQDQaDoZ3QZgOLcnJymrRHlpWV6elZMBw7dgyABQsWaM0o1PTq1UuXrbi4uNFzdu3a\npadmYE3PPvjgg7CUp7XMmDGDlStXMn78eAA++uijiJRD2W+VLd8fh8MR8FlurpW/6O6772b79u22\nlO/mm28G4P/+7/9YsGABv/zlL4O67uGHHwasNpmWlsbJkyfDVsbmiImJ4dNPPwXQ6xKTJ08GrN8V\nbm655ZaA+3Tr1q1F9TFkyBAAvv76a9auXcs//MM/AFZfDAc9evRg586dgGWq8pehK1as4MEHHwRo\nUg6cJ0EFFrVZk8u9996rbc3ffvutNlUMHz6c66+/nlGjRgFw9OjRgCkPQF1dHQAnT54kLS1Nv3/k\nyJGwCXQlTBrj5z//OQADBgwA4Isvvgj42xb5xS9+QW5ubtjqKxg2bNighXZjqKlteXk5vXr1onfv\n3gBs3boVp9MZ9vJdfvnl2jRx8ODBFi1wKxt6W2Do0KFakIPVf+wQ5GoR9I477gDgpz/9KUCLhfnf\n/vY3/Xrt2rVhE+SKRx55pMn1r7vvvpuJEycCljnmxRdfpLa2Nqzl8ceYXAwGg6G9cCEGFrndbnnD\nDTfIG264QSYlJckbb7wx4Bg9erQcPXq07Ny5sywqKtLBMQ888IDtAQG33nqrrKqqklVVVdLr9cq8\nvDx53XXXyeuuuy7SgQqNHhkZGTIjI0P6fD65Z8+eiJRB1c/Bgwd1MJbH4wk4XnzxRTllyhQ5ZcoU\nOW7cOPn0008HfP6zn/0s7OV888039bO96qqrgr4uJSVFKrxer+zcuXNEn/lzzz2n+4jP55PvvPOO\nLfddtmyZXLZsmZRSym3btsmEhASZkJDQou+4//77dbmXLl0a9jL36tVLnjlzRrfLrKws+e677zYa\nQJiXlye7desWqnsHFVjUZk0u38Xp06fZvHmzfr1p06ZGz7vjjjtwu918/fXXALz55pu2lM+fzMxM\noqOj9esVK1ZEzB4dDNddd53+PxJ23YyMDP2cOnXqFPBZbm4uq1evBuCZZ56hsrIy4LP77rP2Uenc\nuTMLFiwgNjYWgP/8z/8MuSvZjBkzmDRpkva2+vLLL4O+9vHHH9d2/w8//JCSkpKQlq2lKA8XgNra\nWn71q1/Zcl9le/b5fJw4cSJo00RcXJxeq3jggQf098yePTs8BfVj2LBhJCYm8sknnwBWf4mNjeUH\nP/gBAI899piOM+nWrRvr16/ne9/7HhBym3qjXJACvTmUbW7hwoU4HA5+/etfA/ZUqD/r1q3TASQA\nr7/+um2d5Xy5/PLL9f8LFiyw/f4ul+scQQ7WouzMmTMpKipq9Lrc3Fx++9vfAvD8888THx+vy//2\n229z8ODBkJbzzjvvJD4+nkWLFgV9jVrknzVrll7snT9/fsT8lq+99tqAvwAVFRVkZWXZXpbJkyfz\n3nvvAVBSUtJkvV533XUBa2gAq1atsqWMYC0gSyl54YUX9HvV1dUsXboUsAb6Pn366M8qKyuNDd1g\nMBgMLaddauhz5swBrKn36dOn2bt3r633V5411157LTExMVqrfPbZZ3XUaFvkmmuu4Sc/+QkAO3fu\n5P33349wic4G4MyePbtJ7Vzx9tvWhlmzZs3iqquuCkt5kpOTAbSGqCIrg0GZhDp16kR2djZAgOnQ\nbhqro5bMOFrLH//4RwBuuOEG0tLStOlHCNGkF5AQIsBNMCcnJ2hX0VDw/e9/Hzjr1rlu3bqAzzMz\nAz0LP//8c1v7fLsT6KNHj2bevHn69fTp0/nmm29sLYOy86pw6v/+7/8GCPm0P9TceOON2h1r48aN\ntkQJNoa/q+LIkSODvk5F6zocjoDveOaZZ/jhD38YkrKp8P709PQWr8ko2ypge5tsDH/ho+z4ixcv\ntu3+Klbg8ssvZ9iwYdrd7+c//7lev3nttdcCrlm2bJmOCAbYsmWLrf1q+fLlTJ06VQ+GgwYN4vLL\nL9epP9xut65Lt9vNvffeq9Nkf/vtt2EvnzG5GAwGQ3vhQnRb/K5j/vz52o3p/fffly6XyxYXLHVM\nnTpVVldXy+rqaun1euWmTZtkhw4dZIcOHWwtx/kcb731lq672267LSJl+I//+I8A98OWXDt37lw5\nd+5c6fF4Alwd+/btG7LyxcXFybi4OLlt2za5a9cumZKSIlNSUpq9rkuXLgEubXPmzJFz5syJ2LMe\nM2aMrKurk3V1ddLn88lDhw7JQ4cORbwNNnf06dNH+nw+uWPHDrljxw7bXT5TUlJkcXGxfo4+ny/g\nub777ruyX79+sl+/fnLPnj3S6/XKxYsXy8WLF7f23qFxWxRCXAK8DnSt/+IlUso/CiFSgBVABnAY\nuEtKebq57wsncXFxTJw4Ua8qP/XUU7Z5ECjzyi9/+UtcLpd+Pysrq03bzcFyrwIYO3asXm9Yu3Zt\nRMoyZcqUFl/TuXNnBg8efI4tVU3bQ9kGVObBgwcPcscdd+gEa88///w556o0D3379qVXr14Btl87\nU240RmpqaoBZqi2slwTDk08+iZSSRx99FLDftba4uJi77rpLe9aoNRWVnfLRRx/Vpso1a9Ywb948\nnayvb9++4TcPBaFVpwEj6v9PBPYBg4EFwLz69+cB/xZpDf3JJ5+UPp9PbtiwQW7YsMHWkfu5556T\nzz33XMBovXr16gtCM583b56cN2+e9Pl88pVXXpGvvPJKxMqyd+/eFmvof/jDH84JPDp48KAcO3as\nHDt2bFjKeemll8qVK1fKiooKWVFRobVd/yM/P1/m5+fLvLw86fF4Aj5Tmn6k6nnZsmV6NlZcXCyv\nuuqqFgVH2X3ceeed8s4775Q+n0+eOXNGjhgxQo4YMSJi5bnpppvkTTfdJJcuXSqff/75RmfhcXFx\ncu3atVoevPbaa625Z2h2LJJS5kkpd9T/XwZkA+nANECtWLwGTG/uuwwGg8EQPlrk5SKEyACGA18A\nXaWUKuF3PpZJprFr7gPuO/8iNo9yIXriiScoLS3lN7/5TThv1ygqe54/Dz74YJs3t8DZTJFgReFe\nKGzYsAGAgQMHnvNZdna2juYLB9nZ2dx1110MHz4cCPRgUfgHvLz22ms6hzZgy6YRTdGjRw/tfgdW\nNtKWRLpGAhVtCfDOO++wY8eOCJYGnRDMPzFYQ6qqqlixYoV2wRw/frz2IgtXkGPQAl0I0QFYDfyL\nlLJUuYgBSCllU6lxpZRLgCX139HoOa0hNTWVP/3pTwA4nU42bNjAZ599FurbnBcpKSmN2m/PnDkD\nWLZdZW9Xtji32w3Av/7rvwZc4/V6td3QP+Q9FPjbrd95552QfndLEUIE2Hb9O/Kf//zngOyZDdPn\n+nPrrbeGsZRnUWlU1d+myMnJCXitInJVWgo7ufbaawPqeP369baXoaWodlBZWcnvf//7CJcmeFau\nXKkF+t13361T66ro9VATlNuiEMKFJczfkFKqvcgKhBBp9Z+nAYVhKaHBYDAYgiIYLxcBvAxkSyn9\nl/LfBu4Bflf/19ZhXuW73rhxo86DffDgQZ544gk7i/GdfPXVV42+/9ZbbwHWFnVdu1qWqrvvvrvZ\n78vPzwes/B+hYuzYsboMbYFFixYF5JBRMwalhTemjTd8z87gmGARQuA/q42EZq5QHlkq8lZFbLZV\n7r//ft1GCwsLI25uaQk+n0+352nTpvHUU08BVqLAffv2hfx+wZhcRgM/Ar4WQqisPb/EEuQrhRA/\nBXKBu0Jeuu9A2Sz9E/M//PDDEYvGVPbcadOmNXvunXfe2ej7dXV1AcJJhbKr8He1q0womT59uh4c\nd+7cGfFMkGvWrNEbgqjNfpvj5MmTZGdn69D6hnu5tgX8PL0ijkoYd+TIEeCsCbCtcv/99+u6U26i\niYmJgGWiVL+jraKSnT355JP8+7//OwDPPfccP/rRj0K+ltKsQJdSfgqIJj6+MaSlCZJevXrpzGxw\ndkegSNp/b7/9dsDa6cffDx3ObpHVUAtfunRpwK7ma9as0Tk+7CA+Pj5gc+NVq1bpLICRIjc3l5kz\nZwLWYPPQQw81e838+fN56aWXwl20VqFS+YI9Gy83hmqX/fr1CyhHJHepbyler5dZs2bpNabdu3dz\nzz33RLhUwfH666/rDaxvv/12fv3rXzc5iz9fTOi/wWAwtBcuxNB///B+n88nMzMzZWZmZsSDHy60\nw+VyyS1btsh169bJdevWyfj4+IiXqeExceJEOXHiRLlmzRrp8Xjk6tWr5erVq+WECRP0Zz179ox4\nOZs78vPzZVFRkSwqKpIPPfRQRMrgdDql0+mUS5culT6fT7766qvy1VdfjXjdNHdkZWWdE2q/ZMkS\nuWTJEnnJJZdEvHwtOXr27Cl79uwpfT6ffOONN1pybVCBRRecQB87dqwsLS01At0cF9Txv//7v3rb\nxEiXpXv37vLll1+OeD6ZYI+xY8fKzZs3y82bN8unn35adu3aVUZHR8vo6OiIl+18j/fee0+Wl5fL\nwYMHy8GDBwdzTfsU6I899liAMN+/f78cNGiQHDRoUMQfkjnMYQ5zBHMkJSXJQ4cOyalTp8qpU6cG\nc01oQv8NBoPBcGFwwW5woZLc33jjjbbvFWowGAytobS0VMfPhBJhp29sOEL/DQaD4SJgu5Qys7mT\njMnFYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E4xADzMqD7Z/LmyD\nwdB+aEt92wh0g8FgaCdcsJGibQWHw4HL5SImJgaAnj170q1bNwDGjRtHbGwsHTp0AKwdhz755BO9\nCUdhYSE1NTUAbWbzg7aO0oaklAH/GwyRQAjRptqfiRQ9DxwOBwMGDACszTaGDBnChAkTALjsssu0\nAHc4HAEPvLKyktzcXL3z0OLFizlw4ADQ+NZqkSQ6OpqMjAwGDRoEwEcffURpaSlgrwBVQtvhcNCh\nQwe6dOkCQE1NDUlJSQCUl5dTUFCgB8dI1GXDza19Pl9APQkh9M5QLpeLqChLl1KbTPhvLBKp8gN0\n6tSJ/v3763ZZVFTU5tpmQxoO8qFqn42ZUhwOBw6Hg+joaODsc66trdWvw0RQkaJGQz8PYmJitEYu\npeTKK6+kR48eAERFRenOClajUA9ZSonL5dICv66urk3Z3+DsXq1du3Zl9uzZXHrppYC1HdyyZcsA\ndOO1A1U/HTp0YNy4cYwePRqA7t27U1dXB1hbqG3evFlv1Xfy5En9WThxuVx06tQJgJSUFOLi4qis\nrASguLiYsrIyfW7Xrl21oImJidE7GJWVlXHq1Cm9a1BNTY3tAtThcOh9Rh999FFuueUWXfbZs2ez\nb9++sA/iUVFRpKSkAJZQ9N9FyePxBLz2HxxjYmK0cPV4PNTW1upnX1dX16oduPwHaHUPNRtXn6m+\nXlJSAlh9Q9WVEvZ2KkDGhm4wGAzthKA1dCGEE9gGHJdS3iqE6A28CaQC24EfSSlDprr5T2H9tdiG\nU1k4O5I2ptmEa3QsKCgArClqTk4OCQkJgJVFTWnvR48eZe/evXpanZKSQkxMDBUVFYC1we2xY8cA\nIr6Xp0L9jsGDB3PllVfq10p7shu1D+awYcOYPn06Y8eOBawZg9LaPB4PvXr10rOkVatWcerUqbBr\nuk6nU2vaQ4YMIT4+Xs9evv32W63V1dbW4vF46NixIwAdO3YkOTkZsNruN998w6lTpwC02cgOVL/p\n2LEjN9xwAwCjR4+mW7duWgNWmzGHA3WPuLg4+vbtyxVXXAFYm3yrZ3fy5Em8Xq/Wumtra0lOTtbt\nIjExUfedmpoaiouLOXnyJAAVFRUB2nJLUOZSsLRwNatOSkoiOTlZP1u3243D4dB9fs+ePRQWFgKW\nKdDj8QTM0MNNS0wuDwHZQFL9638DXpBSvimEWAz8FFjUmsL4T2Pi4uK45JJLAKvS1EKjx+PB6XTq\nKeLw4cN1J5JSUlJSwokTJwBL6O7bt0+/Li0tDUmlqoYDsG3bNnJzc7VtNz4+nvz8fMBaBPV4PPph\njxgxgpkzZ5KRkQHA+PHj2bNnD2CvGeO7UJ1j7NixdOrUSQuYLVu22L6ZcFRUFH369AFg7ty5jBw5\nUg8sUVFRuqxer5cRI0ZogXnkyBE+++wzPQ0Oh2AXQhATE6MHkREjRnD06FG94H38+HHOnDmjy+dy\nufQaRGxsLP379wcsk0FhYaEW6JEY2IUQDBs2DIBu3boRHR1NeXk5YP2OcAgif7PJJZdcwlVXXaXX\npQYPHkxubi5g9aeioiJOnz4NWGYUp9Op10/69OmjhW1paSm5ubnaXKR+g7pfsL/D6XRqWzlYA44a\ngN1uN507d9YDeVJSEkOHDtXn9uzZU6+R5efnU1RUZOsgHZRAF0L0ACYD84GHhTV03QD8oP6U14Cn\nCZFA79ixI927d9daw7XXXqsfYExMDFJKLdDj4+P19dXV1ZSXl2u7VlFREV9++SUffvghYC3shUIo\n+dv4vF4vlZWVWtMWQmhtQgkS9UCLi4txOp2kp6cDVmNUjbqtoDSfSy+9FLfbrWciu3fvts0WqDSj\njh07MmvWLOBsG/CfjalBUAlXNVBOnDiRsrIyvvjiCyA8Wq8QArfbzW233QZARkYGu3bt0nn6y8vL\nAwYSn8+nhXVpaSm9evUCrDaQnJzM3r179ffaXc91dXVaE09MTEQIwcqVKwG0thlqlHcYQN++fRk5\ncqR+flVVVQFKWUFBgRbOqk5Vv3c4HFqZSkpK4vjx4+fdx1V9+Hy+APu5w+HQ8icjI4O0tDRdjtjY\nWGJiYujcuTNgzXDVOsqBAweorKy0d9YV5Hl/AH4BqBaaCpRIKdXK0zEgvbELhRD3CSG2CSG2taqk\nBoPBYPhOmtXQhRC3AoVSyu1CiOtbegMp5RJgSf13Nal6CCGIi4sDLC0xJSVFexD4fD6tKVZVVdGh\nQwdycnKAsyM4WPbs8vJy0tLSAMjMzGTkyJEcOXIEgC+++CJkZgOlRXm9Xnw+X5NeFf5Ty379+jF0\n6FA9RSwvL9f29baC0kRGjx5NXFwcn332GYA2F9iB0pT69+/P1KlTAbQ5RWnlBQUFVFVVAZanSGpq\nqtaMBgwYwKRJk8jLywMgJycn5KYMl8vFpZdeqmdbn376KX/729/0dL+hli2lDDARqd1qevfuzY4d\nO7S2aidKy/R4PGRmWh5xSsPcuHGjLmso8bdLK/NZdHQ06enp+hnn5uayc+dOAPbu3UtlZaWuT4fD\ngdfr1SaY1NRUvc5TXl5OeXm5bhf+623NzXr8Z0ZOpxMppe63UVFRup927NgRIYRuh06nk7KysoB1\nsquvvhqwtPfs7Gyt7dthTgvG5DIamCqEmATEYtnQ/wh0FEJE1WvpPYDjrSmIlFJPTUpKSjh+/Djv\nvfceAG+99ZZufCUlJZw8eVK/9hekaiFD2V1/97vf0adPH92IwuUi2LCx+N8nKipKd97Zs2eTlpam\np4+7du1qM4uhYJV72rRpgNVwa2pqeOONNwB7faPVoDJ79mwtMB0OBzU1NRQVFQHw+eefk5WVBVhC\naMCAAXrKnpGRQceOHbVwXbRokRYArTVn+JuDxowZw9GjRwHYtGkTp06d+s7vV5/16dNHKx1gteFI\nBJipe6Wmpmr7tRCC4uJi7YceLqKiorTCNmTIEGJjY7VQzMnJ0WtLDU1Xyg1Qra8NGTJE96EdO3Zw\n8OBBrbS1tC79/dkdDoe+r9Pp1INPXFwcpaWlWtiXlZWRkJCg7xUXF6fXzPr27Ut6erpeH2nMoSPU\nNGtykVI+JqXsIaXMAGYCm6WUs4APgBn1p90DrA9bKQ0Gg8HQLK0JLHoUeFMI8SywE3i5tYVR05i6\nujqOHTumTSX+zvn+bkCN4XA4tNYeHx9PXl4eu3fvBtBTMbtQCzZPPPEEYLneuVwuvv32W8AyAbWl\nsOHo6Gh+9rOfAZYGVVJSwieffGJrGaKiopg+fToAU6ZM0dNpj8dDXl4e69dbesOWLVt03QkhKCoq\nwu12A1bQUZ8+fZg0aRIA69ev1x4vra1vZRrJzMwkIyNDezQdPXq02VmM0up69OihtcGqqiq2bt0a\nEQ1dmQImTZqkzYBSSv7nf/4n7At5Ho9H37Nbt24BAXn+C5sNZ9VRUVHahRWs2Y5a/M7KyqKkpET3\nf3+50dxic8PPvF5vgMxRlJWVkZ6ermfZ5eXl5OXl6ZmkuhYsJ4j4+Hj9O8+cORP2GXmLBLqU8kPg\nw/r/c4CrQ18ka2pSVVXV6AMIxhamTBzx8fF89tln2oPAjuhBVQawbGhTpkzhqquuAiwPHa/Xq6eT\nZWVlbSpStEuXLtoNDyxfav9oRztITU1lxgxr4peQkKA705kzZ1i5ciVvvvkmYHUWNbWNjY0lNjZW\n+/fHxsaSkJCgTTfXX3+9bgOtMR0JIXTnTE1NJS4uTnuBBLMW4u/jr+zFH330EQUFBREJr1f194//\n+I9auFdVVemI4HDgbwtXg2N+fj5XX321Xqfx+XzacwUsLyV1bqdOnZg2bRrXXHMNYKXTUP3p6NGj\nAcLXX1YEM1D6m1z8cwX5fD7tghodHY3T6dTmIuXlps6Njo7WJpbKykoSEhK0B5H/WkC4nnebDf0/\n3x8cGxvL8OHDAavRfPrpp00uVIUDIYQOOujXrx+jR4/WjVHZJ5VLVkpKih7p/R+23SjN8eabb9bu\nYF6vl5dfftlWQRMdHc3w4cO1Ldzr9epnt3z5cv7yl7/ohU5A+wJHRUXx9ddfM3HiRMCyYwohtNCM\njY0NSd06nU4taK655hqcTqcOYomJiaG2tjYgiMRfO4yOjmbo0KGA5eOvrsvNzT3HTmwHDodDKz6D\nBw/W7x85coRDhw6F/f5SygDf8qNHj2oNvV+/fnTv3l2fd+LECT1jyMzMZMyYMVqAnjhxQqd88Hg8\nAamq/e3graG6ujpA65ZS6nbgdrvp27evPtffbVopl6q/+2voasYQ6uduQv8NBoOhndBmNfTzwel0\nctlllzF58mQAjh07RlZWli2O/WrK6nK5tJfN7bffzqhRowJsaDt27NBRpgMHDtSudoWFhVRXV0dE\nS1earv/Uu6CggI8//tiW+/sn4Lrxxhu1Lby2tpbDhw8DloZeUFAQYINUdRcVFUVeXh7Hj1uOVsrt\nTH1va6Md1fc4nU6tjbndbqSUDBw4ELACsY4fP65NLx6PR892hBAMGDCABx54ALC8eNS0vKysjLq6\nOtufu8vl4qGHHgKs2YXqI6+88ootnlf+GQqzs7Pp0KGDTgQ3atSogERd6jmD1VZTUlK01vv3v/9d\nr48AARp6S7XfxlxNwerbav0tLy+PHj16aNOky+UiMTFRm3rKysr0rLtfv34UFhbqGafP59Prgqqv\nN2bvbw3tQqD7C4Tbb79dh+n++c9/DlvockOU2cLtdusp7OjRo6mpqdE+8ytXruTDDz/UHSYjI0OX\n1efzUVRUpAWCnR1cNc5+/foPEYswAAAOyElEQVTpsi1fvjzAvBFO1CDSvXt30tPT9euysjL+/ve/\nA3Do0KFzBJ/6v7a2ltjYWB09rKIy1cB5+PDhkAl0Nfip9BOXXXYZYAnFY8eOabfKXr16aTtrfn4+\naWlp9OzZE7Bs6crcUFBQEJCR0y5SU1P1orHP59Nmlv/6r/+y5f7K8QHODsyqDjIyMvSg7vP5SE5O\nDoi+rqqqYt++fQB8+OGHAXlwQtlv/NuX6pelpaUUFBToyNDOnTtTUlKiBX5FRYUeqOLi4nA4HFoe\nVFZW6sGnrq4uIHoYCEk7MCYXg8FgaCe0Cw1dacfDhw/n5ptv1ol9PvroI1s8W/yjQbt06cKoUaMA\na3qYm5vLH/7wB8CKJpRSam+HsrIyPS1PTk4O8CjxX2BThCtJkkrMFB0drTXMVatW2eYVpDRypQEr\nDae8vJzPP/8c4BxzlL9JReXzHjlyJHA2cZea3rZWQ/df3FQa1uHDh0lJSdHPqHPnzkRHR+tskP5u\nb+Xl5cTFxelnXVNTo8teUVFhe9IzIQTjx48PiL7dsmULgG1eTVJKrZl7PB6++OIL7V7cqVMnPZsZ\nNGgQ8fHxun+NGDECIYReCD1x4oTWjhtrr63Z1UpdU1dXp597TU0NJSUl2uvF7XYTExOj3Vc7dOig\n67WoqCggkZf/zmYqM6f/zCMUs7R2IdDV9GzOnDl06tSJV199FQhfpriGCCECsr8pG7rP5+Oll17S\ntuja2toA4V9UVKRdmpKSkujfv79+qGVlZXpgUtOycAhYp9Opo0NdLhdfffUVgE4yZQfqGXXo0CGg\no+fk5Gjh7nK5AjJS+tdjSkoKjz/+uBYCdXV1FBUV8dZbbwE0G8EZbPk8Ho/OpvjJJ59QXFysn01C\nQgLR0dH6dU5OjjYplJWVMXPmTL2WUltbqwfOsrKykJsKmiMqKoof//jH2hvr5MmTPPnkk7bdX6Hq\nSpkblekkLy9Pr53s3LmT5ORk7fo7fPhwysvL9cBTVlYWkG3Vn1DVqZRSD7p1dXVUVVWxfft2wDIT\nVlZWapOM2+3WClu3bt1ITk4OUFj8lRCXy3Xe9v6muOAFusPh0O5qI0eOpKysjHXr1gH25E5Qwlwt\nfEyePFm7NO3Zs4dDhw4FuCr5Z3Hz92seNGgQgwYN0gNDcXExf/3rXwFrYCotLf3OvO/nS5cuXRg3\nbhxg+SCr3C2RyDFTV1dHbGys7jyJiYm6LhMTEwOyXKoFcICnn36a0aNHawFVWFjI2rVreffdd4HQ\npSauq6vTmlh1dTX79+/XHTI5OZnU1FQtxE+cOKGFTmJiIpMnTw7I17J161bAEl52zYQU6enpZGZm\n6vvu2rUrbFkVm6KhW6d/m/Z6vbrPVFVVIYTQ6bPdbjdVVVV6QLRjh6eG7oX+uWQ8Hk9AMGN1dbV+\nznV1dQE5amJiYnS+qvLyciorKwNkVCgGIGNDNxgMhnbCBa+hu91unTO7rq6ORYsWafc1O1B5sceP\nHw9Y4f3KTuZ2uxkzZoy2nRYWFurNl8HSMrt27QpY4dfDhw/XQQlfffWV1gaPHDkSYGIIlUYihGDG\njBl6llBZWck777wDRCZJVEFBAdXV1QGmFJW5zuVysWXLFu0Sds011zBnzhwAhg4disvl0tr79u3b\nWbJkSci1Tp/Pp2cu+fn5FBYWam1M5elX7n8N98A8ePCg1ipPnDihPZ/Ky8ttd1mcNWtWwFrFSy+9\nFNGNoBv+fn/vD9W/lFnV5XKxe/du3cftcrFsWEZVd6dPnw6YdVdUVGibeUZGRkDW2OLiYq3Z+7ta\nqnuEggtWoKtKvOeee3TmuuPHj7Nq1SpbMxgqv1flxpSYmKgF+tChQ+ndu7denKuoqCAlJUUL7bKy\nMl32bt26kZKSohdbEhISAhao/NOvhoqEhAS9iQhYCfl37NgR0nsEg/pdp06dYtu2bdrM0r17d8aM\nGQNYPvsDBw7UJqnx48frunM6ndTW1uqcHk8++SRHjhwJu5Dy+XxagKspd0M3NLDq+dSpU+zfvx+w\n7OvqOjs3P1CC5vrrr0cIoRWGjz76yLYyBIt/KP2QIUN0rhSPx0NOTo5eZ4lUdLV/Wl7/BXohhO7f\nycnJuN1u7ZocGxurByaHwxGWDaSNycVgMBjaCRekhi6EoF+/foAVjalGxHXr1ulprV1IKamurtaL\nYUeOHNGBBPHx8SQlJWnvC7A8DPzdtZQJQUrJoUOHdATcxo0bdfBETU0NHo8nZKO5/wYS/fr10+aB\njz/+2FaNsSGVlZWsXbuWQYMGAVbOcbWg1K1bNwYMGKC1zJiYmICo1o0bN/Liiy8CsH//ftv3aPV6\nveckWvOPHo6Pj9cJwrKzs3XQlp2zSZVLpnfv3ni9Xr33ZSSfeWP4a7lpaWkMHDhQz9pU9LAyWdi5\nZV9T+N/f4XBojbxHjx4B+/J27dqVb775BjibuynUyfkuSIGekpLCb37zG8Dy0lBCcN26dbZ7DCiX\nq+XLlwPW3pvKDXDixIkkJibqMkVFRVFeXq6nuqdOndKdPCsriwMHDgSkDFY7MdXW1oa00Sq776hR\no0hOTtYDzOrVqyO64YbX6+XQoUO6Lk+fPq1NQsrfVw0+Ho9HRzfOnz+fHTt26ME8Ur+hYQf1zxAY\nFRWlTWhHjhyxvYwxMTE6MtTtduPxeNi0aRNg7+YlwSCE0O68119/PRkZGQEulqWlpbr+Ii3MG+Lf\nBoqLizl8+LD2bImKigrYFSkcKR8uOIGemJjIM888w5VXXglYQvGFF14A0L6rdlNbW6sX4DZt2qQ1\nn2effZbU1FStqSUlJREVFRUQ9q00SZX6NdS5HRpD2fHUQq4K6Dh27FjEO0hNTQ0ffPABYGna77//\nPgDXXXddQPbFrKwssrOzgbOLqW1JMKmd48FyvcvNzdX5Serq6gK2YrNDuHfs2JEJEyYAll26tLRU\nzyrbUr2BJdCVltu1a9eA3Yx2797NyZMn29ROXxC4JaXq36WlpZw+fVrPLgoKCrQDgtpKz2RbNBgM\nBkOjXDAaupq+Tpw4kfHjx2vXtsLCQr0DUCS1S/9VbxWKXFVVpc0rbQmlQSxYsID09HQd9q0i9SKN\nsjnm5OToWZdK4+C/0bJ/nbcVGtvAoLi4mL179+r1gGPHjgXkAreD8vJyVq5cCVia4+bNm3VUcFtE\nzVwPHz6M0+nUNvU9e/Zw+PDhiOzwFAz+rquHDh3C6XRq06n/ZvLK3NKa1ASNIeysECHEed3M6XTS\nv39/AB588EFuvvlm7Rr45Zdf8tRTTwHWw25r00eDQbm2KiUkHFPtYFD3B3s2LD5fHA6HtqGrLJVK\nKB45ckSnHG6LCCECYhM6duyoTZxqUALYu3cvNTU1Lfkd26WUmc2dFJSGLoToCPwFuAyQwGxgL7AC\nyAAOA3dJKU8HW7qWoDxJwNLesrKy9Ot9+/a1qW3cDIaGqPWQSCsbbc3u3BQ+ny8gV0tOTk7AImik\n6/G78I8Xqa6uprS0VM/Y4+PjtQOC/2wzlARrQ/8jsFFKOQi4AsgG5gGbpJT9gU31rw0Gg8EQIZo1\nuQghkoEsoI/0O1kIsRe4XkqZJ4RIAz6UUg5s5rtaPcdT/sf+G0GE2g5lMBgMrcXhcARYD1o5uwiZ\nyaU3cBJ4RQhxBbAdeAjoKqVUW9rkA13Pt6QtobEgCCPIDQZDWyMSpqFgTC5RwAhgkZRyOFBBA/NK\nvebeqFQVQtwnhNgmhNjW2sIaDAaDoWmCEejHgGNSyi/qX6/CEvAF9aYW6v82mtpOSrlESpkZzHTB\nYDAYDOdPsyYXKWW+EOKoEGKglHIvcCPwbf1xD/C7+r/rg7hfEZaGb2/ClbZPJ0ydNMTUybmYOjmX\ni6VOegVzUlB+6EKIYVhui9FADvATLO1+JdATyMVyWywO4ru2GW09EFMn52Lq5FxMnZyLqZNAgvJD\nl1JmAY1V2o2hLY7BYDAYzheTy8VgMBjaCZEQ6EsicM+2jqmTczF1ci6mTs7F1IkftuZyMRgMBkP4\nMCYXg8FgaCfYJtCFEBOFEHuFEAeEEBdt3hchxGEhxNdCiCwVbCWESBFCvC+E2F//1x3pcoYbIcRS\nIUShEOIbv/carQdh8af6tvOVEGJE5EoePpqok6eFEMfr20uWEGKS32eP1dfJXiHEhMiUOrwIIS4R\nQnwghPhWCLFbCPFQ/fsXdVtpClsEuhDCCbwEfA8YDHxfCDHYjnu3UcZLKYf5uVtdjInOXgUmNniv\nqXr4HtC//rgPWGRTGe3mVc6tE4AX6tvLMCnlBoD6/jMTGFJ/zcL6ftbeqAP+n5RyMDAKmFP/2y/2\nttIodmnoVwMHpJQ5Uspa4E1gmk33vhCYBrxW//9rwPQIlsUWpJQfAw3jFpqqh2nA69Lic6CjilJu\nTzRRJ00xDXhTSlkjpTwEHMDqZ+0KKWWelHJH/f9lWJle07nI20pT2CXQ04Gjfq+P1b93MSKB94QQ\n24UQ99W/F5FEZ22QpurhYm8/D9abD5b6meMuujoRQmQAw4EvMG2lUcyiqP2MkVKOwJoazhFCjPP/\n8LsSnV1MmHrQLAL6AsOAPOD3kS1OZBBCdABWA/8ipSz1/8y0lbPYJdCPA5f4ve5R/95Fh5TyeP3f\nQmAt1jQ5qERnFwFN1cNF236klAVSSq+U0gf8mbNmlYumToQQLixh/oaUck3926atNIJdAv1LoL8Q\norcQIhprMedtm+7dZhBCJAghEtX/wC3AN1h1cU/9acEmOmuPNFUPbwM/rvdgGAWc8Ztut2sa2H9v\nw2ovYNXJTCFEjBCiN9Yi4Fa7yxduhLVDxMtAtpTyeb+PTFtpDLXfYbgPYBKwDzgIPG7XfdvSAfQB\ndtUfu1U9AKlYK/X7gb8BKZEuqw11sRzLhODBsnP+tKl6AASWl9RB4GsgM9Llt7FOltX/5q+whFWa\n3/mP19fJXuB7kS5/mOpkDJY55SusndOy6mXJRd1WmjpMpKjBYDC0E8yiqMFgMLQTjEA3GAyGdoIR\n6AaDwdBOMALdYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ3w/wFzeSrf0VINXgAA\nAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABHp0lEQVR4nO29eXBc132g+53eF6AbQKOxL40dBEGCu0hRpChRu5XYsSUncfzKes+Ja8axZ1QvyYvGTk2mpupVOXGiyTaTsjx2JrbsZzmWXZKt0S5SC0lxFTeQAAgQOxpobL2iATS67/uDPMcNLhJIohugeb8qFIDe7ulz7/2d336Epmno6Ojo6Nx+GFZ6ADo6Ojo6N4cuwHV0dHRuU3QBrqOjo3ObogtwHR0dndsUXYDr6Ojo3KboAlxHR0fnNuWWBLgQ4hEhRKcQolsI8cxyDUpHR0dH55MRN5sHLoQwAl3Ag8AQcBT4fU3Tzi3f8HR0dHR0rsetaODbgG5N0y5qmjYP/AT49PIMS0dHR0fnkzDdwnvLgcG0/4eAuz7uDUIIvexTR0dH58aZ0DTNe+WDtyLAxTUeu0pACyG+AnzlFo6jo6Ojc6fTf60Hb0WADwGVaf9XACNXvkjTtOeA50DXwHV0dHSWk1vxgR8FGoQQNUIIC/B7wMvLMywdHR0dnU/ipjVwTdMWhBBfA14HjMD3NU1rX7aR6ejo6Oh8LDedRnhTB9NdKDo6Ojo3w3FN07Zc+eCt+MB1roPNZsNgMCCEwGg0YrFYMBgueavi8TjJZJKFhQXm5+dXeKQ6Ojq3M7oAzwBf+MIX8Hg8OBwOmpubueeeeygqKiKVSvH888/T0dFBZ2cnv/rVr1Z6qDo6OrcxugBfRsrLy/niF7/IZz7zGVwuF0ajkZycHAoKCjCZTGiaxoMPPsjatWs5e/Yshw8fZnp6moWFhZUe+lUIISgpKeErX/kKZWVl/PKXv+Ttt98mHo+v2JisViv3338/mzZtYtu2bfT397Nv3z7ee+89JicnV2xcOjorhS7Al4mqqio2bdrEo48+yrp167Db7aRSKeLxOJOTk6RSKaxWK+Xl5bhcLoQQ1NbWcubMmVUpwA0GAyUlJdx9991UV1dz9OhRjEbjio1HCIHD4WDz5s088sgjbN++nb6+PiKRCN3d3SsqwI1GI06nk5aWFkZGRhgYGPjE9+Tl5ZFKpZibm2Nubi4Lo/xk7HY7breb1tZWhoeHmZiYYHx8PGvHlwpPQ0MDkUiEUChEMBhkdnb2hj7D6XRiNBoJBoP8pm8ZqXcjXCY+85nP8PWvf5177rkHm81GKpVifn6evr4+3nrrLV555RUOHTpEIpHA5XLh8/nYu3cvubm5Kz30a2IwGKirq8PpdDI/P8/ExATJZHLFxiOEwOv1sn37du666y40TcPn89HW1sbGjRtXbFwADoeDxsZG/vt//+98+tNL6yaxdu1ampqa8HqvKq5bMUpLS3nggQd45ZVXePrpp9m5c2dWF+2cnBzWrl3L3/zN3/Dv/t2/Y8+ePRQWFt7QZ+Tm5rJmzRrWr1+PyZQd/VQIgcFgUHGubKJr4LeIwWCgpaWFe++9l7vuutRJoLe3l1/84hf89Kc/ZWJigkgkQiqVwuFw8MILL9DY2IjRaCQvL29FtdqPw2g0smbNGmw2G36/n9dee23FNEWr1UpRURF/9Vd/RVtb26LnVoOGlZeXx+7du8nJyVny+dyxYweVlZUkk0n+7M/+bEUXRwCXy8UDDzzA008/jclk4gtf+ALFxcW89tprWRmby+XiG9/4Bp/97GcpLS0lFApx4sQJRkauqg28JiaTifz8fH7yk59QWlrKwMAA//7f/3uGhoZIJBIZGbPU9r/2ta9RU1PD3NwcTz/9dFYt6lUrwJubm6mpqcHr9RKLxUgmk0xOTtLf308sFiMSiayKLA4hBAUFBeTk5CCEYGxsjB/96Ee89957dHV1EY/HWVhYwOPxsHbtWjweDzabjVAoRFdX16oxn9Ox2+2Ulpaya9cuotEonZ2dN2TGLidtbW34fD4aGxtZv349brd70fP5+fnU1dWxY8cOJicnmZ6ezqrZL4QgNzeX9evXY7FYlvy+YDBIbW0t1dXVWK1W4vH4ii5GlZWV+Hw+KioqAAgEAoyOjmZcGEkh+Hu/93ts27YNt9vNRx99xEsvvcRHH31EKpVa0udId19zczPd3d2cPHmSYDCYscWnpqaG+vp6tm/fzsMPP0xBQQHj4+PYbDZmZmaWPO5bZVUKcIPBwNatW7nnnntoaGhgcnKSRCJBX18fJ06cYGJiAr/fTyQSWdLnpVIpFhYWCIfDJBKJZb9RDAYDU1NT9Pb2Mjg4yL/927/R19dHLBZTr/F6vdx///2UlJRgt9uZmJigp6dnVQpwp9NJRUUFW7ZsYf/+/Zw7t3Idgnfu3MnmzZtpbW2loqLiKjO1sLCQ1tZWNE3j4sWLXLhwgVAolLXF3Wq14vF4aGlpYW5ubsnHlXGRkpISrFYrc3NzK6qFNzY24vP5yMnJAaCrq4vz589nXIBbLBY8Hg+f//znaW5uZn5+nn379vHyyy8zMTGxpM8wmUxUV1fzyCOPYLPZOHXqFO+88w7T09MZGbPRaGT9+vXs2bOHJ598kqKiIoxGo4pxDQ4OZm1BXrUC/Otf/zoNDQ24XK5Fz2maRjQaZWhoiFAotKTPCwaD9Pf3873vfY/z588zMzOzbGNNJpPs37+fs2fPqtU3GAxetQIXFxfz6KOP4nA4EOJafcBWD7m5ufh8PhwOB6dOneLQoUMrNpY/+qM/UgL6WtTV1VFbW8tv/dZvMTo6yrvvvsuzzz7L6dOnsyIQGxsbueuuu9iwYQPf+c53OH/+/JLel5ubS0lJCbW1tdjtdmVlZhshBBaLhS984Qts27ZNPX7kyBEOHjyY8ePn5eXR2trKtm3bcDgcnD59mn/8x3+8IeFbWVnJzp07+eIXv8irr77Kq6++ygcffJCR8crg/pe+9CXuu+++RfLJ4/Hwn//zf+Zv/uZv6OrqWqTAZYpVKcBTqRT/9E//RE1NDS6Xi+HhYUpLS/F6vZSVldHS0kJpaSklJSVMTU3h8XgW+R5TqRSJRIJYLEZ+fj6pVIq6ujr6+/sZHh5eVgEuCQaDGAwGUqnUVcL7vvvu46GHHqKyshKDwcDY2Bjt7e20t7evmGvi42hoaOCJJ55QVsJSsiqWm5KSEv7kT/6E8vJyDAbDNQV4NBplbm6OVCqF1+vF6/Xy4IMPUl9fz0MPPbRkC+1mMBgMVFdX8+Uvf5mdO3cyPDzMCy+8sGQBvmnTJurq6jI2vqVitVqpra2lqamJoqIiNE0jlUrR0dGx5O9ys+Tm5lJbW8uuXbswmUz87//9v3nttdeYnp5e0mJmMpmoqKjgmWee4e677yaZTHLgwAEGBgYydl/ZbDZ+93d/l/r6epxO56LnHA4He/fupbq6mtOnT/POO+/wq1/9irm5uYxp46tWgB85coTe3l7sdjtjY2MUFRVRUFBAUVERFy9epLS0FJPJxODgID6fD7PZrN6/sLBAPB5nenqa3/md38HlcpFMJrHb7RnTfq9lahoMBoqLi7nnnnvYunUrDoeD+fl5Lly4wLFjxzLqo7tZbDYbpaWlrFmzhtnZWSKRCNFoNKtjyMnJoaKigu3bt2O32696Ph6PMzw8rNxUmqbR0NCAz+ejsLCQ3NxcGhoa6O7uJhwOZ2SMJpOJzZs3s27dOtxuN/v376e7u5tgMPix7xNCYDabqa2tpbi4eMWtMavVSmNjI3l5eVitVpLJJH6/n4mJiYyf9zVr1rB161Y2b95MJBLh1KlTHD16dMluG+k6aWtrw+v10tvby4kTJxgfH8+ID9pkMuF2u7nnnnsoLCwklUoRjUaZnZ0lJycHp9OJ1+slNzdXyZx33nmHhYWFjLmiVqUAB+jo6KCjo+Oaz7ndbqqrq7FYLHR2dtLa2orValXPJxIJIpEIk5OT7Ny5k/LychKJBCMjIxmLSF8Ls9nM5s2befzxx9mwYQNGo5HJyUkOHDjAL3/5y1URhL0Sj8dDeXk5Pp9P+eizOWdCCCoqKmhtbaW8vFwVQKVSKfV7bGyMV155hQMHDig32o4dO/jSl75EdXU1QggefPBBkskkZ8+eXfZFUgiBzWbjs5/9LNXV1YyMjPCP//iPTE5OfuKxZPZRQ0MDxcXFS/bzZgqn06kWSk3TWFhY4KOPPlqye/JWeOSRR3jooYfYvn07p06d4tSpU5w5c2ZJ7zUYDDidTtatW4fX6yUUCvHmm2/y/vvvZyyu5HA4KCsr495778XpdBKNRunu7mZiYoL6+np8Pp/yhdfV1ZGTk8M//dM/MTc3d+cJ8I8jHA5z9uxZhBAkk0mOHDmySJPRNI3i4mK2b9+Ox+MhGAxy6tQpXnrppU/UkJYTs9lMW1sb+fn5GI1GUqkUr732Gm+//TanTp3K2jhuhLa2Nmpra9E0jampqawvMmVlZfzRH/0RTzzxBCUlJco1pmkaw8PDHD16lEOHDvGDH/yAaDRKKpXCaDTS39/Pzp07KSgoIDc3lz/90z+lqamJ119/nRdffHFZbyCfz8eOHTvYu3cvkUiECxcucOrUqSUtFF6vl6997Wvk5+czMjKisiWyuUimky7AU6kU4XCYb3/721y4cCErx5cux0AgQDQaXdJ5slqt7N69mwceeIA/+IM/wOPx8POf/5xnnnkmo0kBhYWFNDc3k5OTQ3d3N2+++SZ/8Rd/gcViYePGjezYsYOnnnqKsrIybDYbFRUVfOc73+Hv/u7vePvttzPi0rstBbimaYt8SlfeOHa7nbq6Or74xS/icDg4ceIEb731VlZdFps2bWLPnj089thjFBYWMj09zblz5/j5z39OV1fXqnOdSEpLS/F4PCQSCd544w38fn/Wji3dC263G4/HozJOZBD6ueeeo7e3VwWw5Rwmk0lGR0d57733MJvN7N69G5fLxc6dOzGbzezbt29J2vFSKS4uZsuWLTidTo4ePcpHH320pM92Op2Ul5eze/du7HY7nZ2dvPbaa8zPz69ICqHX66W+vp7GxkYsFgvJZJJ4PE53d3dW3GbyOwshWLNmDU8++SRr1qwhHo9z9OjRq2JVMjuqoaGBDRs20NraSkFBAT09PXR3d2e8zYPJZMJqtSKE4Pjx4xw+fJhoNIrBYODMmTMkEgkeeeQRvF6vep107WYqrfC2FOCfhNfrpampiXvvvRej0ah8Y9lK2ZNFML/927/Nxo0bMRgMXLx4kQ8++IAPP/wwK+bpjSKEwG63U11dTX5+PtFolIMHD2bdxDcYDFgsFuUSm52dZWhoiA8//JAXX3yRUCh0lbYqM5NOnDhBUVGRymiora1lfn6enJycZVu8DQYDhYWFtLS0YLFYOH/+/JLNfo/HQ01NDc3NzQD09/dz8ODBFVvMCwsLqa6upqSkBLi0UI6Ojqq03UwTCoUIh8Mkk0kqKirYs2cPLS0tzMzMkJOTc5XG6nK5aGxspK2tjcrKSrxeL/Pz85w5cyYrFoPNZiM/Px+4lCc/NjYGoCwIi8VCIpFQwlrTNCKRCLOzs7oL5Ua49957uf/++8nLyyMcDjM6Osrw8HDWjl9QUEBNTQ1r167FYrEQDodpb2/ne9/7HtPT01lL8r8RbDYb69ev59FHH8Xr9XL+/Hk+/PDDrAcwr6Snp4eXX36Z73znO5+4mJw8eZK8vDzuvvtuNmzYoDT45QwUOhwOysvLaWlpQQjBgQMH2L9//5Leu2nTJh5++GHy8vK4ePEi586d46OPPlq2sd0oZWVlKhNG0zS6urp46aWXsnZ9vv7665hMJjZs2EBxcTHV1dX4fD4A9uzZc5VVcuV5TCQSDA8P8/zzz3P06NGMj7empob7778fIQRr165lYGCAd955Rz1vsVhoaWlRgfdUKsXZs2cZGxvLmPL4GyXATSYTra2tPPnkkyqt6Jvf/Cbvv/8+/f3X3BM0I/zFX/wFu3btUlWDH374Ie+//z6Dg4OrUnjDJbfT9u3bKSoqYn5+nv7+fpWil22EEOpmfeaZZzh+/DhTU1NLfq/sS2EwGPB6vXz1q1/l29/+NqOjo7c8NrPZTG5uLnl5ebzxxhtKC1sK+fn5FBcXAzAwMLDiAcyysjIV74jFYpw5cyarAry3t5cf//jHHDhwgObmZpqammhpaeG3fuu3VKVye/uvN/kKBAIcO3aM73znO+Tn5zM3N8fJkyfp7e3NSjOz3t5e3n77bR588EGqq6tZs2YNNTU1yqpqa2vD5XKpoiyr1cpnPvMZurq6CAQCGVEif+MEeHNzMxUVFVitVoaGhjh27BhDQ0NZCcZZrVbKysrYsGEDlZWX9nseGRnh0KFDnDhxYsUCVUvBYrFQXV2NzWZjfHyczs7OrJv2Qgiam5uVmQowODhIIBBY0vtLS0upqKigsLAQIQSapqnFaLnmXqaohsNh5e4xm82f+PkyqFVTU4MQguHh4RXtoFhcXExjYyMNDQ0AzM3NMTU1xfDwcNb88fPz84yPj6uMsf7+fjo6OhgaGiIWizEyMrJI8YpGo/j9fpLJpHr+rbfeylqjtYmJCTo6Opibm6OgoIC2tjaeeuopiouLqaiooLS0lNHRUQ4fPkx+fj5bt26lqKiIlpYWLl68qAvwT8JisbBhwwbcbjeRSISTJ0/S09OTNZ+zy+Vi27Zt1NTU4Ha7WVhYoKOjg7fffpvjx49nZQw3i8ViwefzYTKZGB0d5dixY1nXvg0GA7t27aK8vPyGhIjc+WjNmjWsW7dO9fNIpVIEg0F+9atfLVsGgBR0IyMj6qYtKCi4poVgNBqVRSDjMtL/PTg4uGIauMFgoLa2lvXr19PS0gJALBYjFAplPT4jhXF3dzfd3d0A/OAHP7jma51OJ7W1tcClVgTt7e28+OKLWcssm5ycpLOzk/HxcRVr2b59u0q/DIfDvPfee/zzP/8z9fX1lJeX09TUxIYNGxgfH+edd95Z9nvqEwW4EKIS+AFQAqSA5zRN+3shRAHwAuAD+oDPa5qWmeYDS8BkMpGbm8uePXtwuVycPXuWZ599lnA4nBVB5HQ6aWxs5Otf/7rKoEgkErS3tzMxMbEqe55IcnNzqaio4K677mJyclJl7ayEAN+zZ48SwEvB4XDgdrupq6vjqaeeYtOmTeq5WCxGMBhkYWFh2bTK+fl5pak++uijfPOb3+Txxx/n5z//+VWv9fl8FBUVKQ2tqalJPXdlJlW2yc/Px2azKVfV0aNH6enpWbHxLAWfz8fTTz+Nw+Hgl7/8JT/84Q+zugjOzc0xODjIV7/6Vf78z/9cFecJITh69ChvvfUWf/u3f8vMzAzRaJQ33niD+vp6mpubiUajVFdXMzg4uKwBzaVo4AvAn2iadkIIkQscF0K8CTwFvK1p2reEEM8AzwB/vmwju0Hq6+vZvXs3dXV1BAIBzp49y7lz57LW2nHz5s3cf//9NDU1YTab8fv9tLe388ILLyyL7zWTNDQ0sH37dvLy8ujo6GB0dHTFfPVSa10qa9asYffu3XzqU5+ipaUFp9OJpmlMTk7y5ptv8s477zA+Pr6s10F3dzc/+9nP8Hg8lJaWsmPHDhV8S0cIgclkwmaz4fV6Vd8MTdM4cuRI1nKtr8RoNCrzPpVKMTs7ywcffEBnZ+eKjGcpNDU1cc8993D//fer7I6VyOZKJBKcOHGC//W//hcnT55k/fr1xONx3nrrLfbv308sFiOVStHb28u//du/sWXLFtW58POf/zzPPffcsjbZ+kQBrmmaH/Bf/jsihDgPlAOfBvZcftm/AvtZIQHudrtZu3Yt9957Ly6Xi0OHDnHu3LklB76Wg7Vr17Jt2zYKCgqAS0Gq999/n9OnT6/KfifpFBcXU1tbi9VqZXp6OmPl58tNU1MTW7Zs4Z577mH37t1K8KdSKWVJfPDBB8ueHxwIBDhy5Ah1dXVs3LiR0tLSq9rcAgwPDxOPxxFCqB14JENDQyviQjEYDNhsNtra2vB4PKoc/Pz580vuvb0S1NTU0NLSQlVVlZq7bBblSTRNIxAIcODAAfx+P6Ojo8RiMY4cOcL58+fVOQ4Gg5w9e5ZTp05RVFREYWEhO3bs4Mc//jGhUGjZFKQb8oELIXzARuAwUHxZuKNpml8IUXSd93wF+MotjvNj2bRpE5/61Kd44oknmJmZ4bXXXluU3pMNtm/fzt69e9X/R48e5bvf/W5GGmctN7m5uWrnk1gstqoWnHRt/Mq/v/GNb9Dc3KwyOySapjEwMEBHR0dGtNxIJEIkEuG//tf/Sk1NDSUlJZSVlV31uv379zM5OYnZbObv//7vue+++1TQcH5+fkXyv61WK8XFxaqT3uzsLIFAgAsXLiw5WLwSyPiBpmkcPXqUU6dO0dfXt2LjkT77N95445rPy+0U9+/fT2trK1VVVWzcuJHCwkImJyeXTS4sWYALIXKAF4GnNU0LL9XM1TTtOeC5y5+xrE4/o9GIy+Xi6aefZuPGjSwsLPDuu++uCn+ezWYjLy/vmtkJch/EZDKJ0WjEYrFgs9mASz7diooKHn/8cfV62QPkJz/5CT09PcuezdLU1MT27duBSwvPSprSMugnr68tW7ZQUFCAw+HgG9/4Bh6PRxX5eL1ezGbzVdtZJZNJ/sN/+A8MDQ1lfLyDg4OMjIxcszWCXAhlG4D0nPqamhomJiayLjQLCgrYuHGj2m4sHA7z5ptvZqX16a3Q2trK2rVrmZmZ4Uc/+tGqbUWRzsLCAq+//rrKPNqxYwef+9zneP3113n//feX5RhLEuBCCDOXhPePNE2T0ZoxIUTpZe27FMj68l1UVMQTTzyhfJ+BQIBXX30Vv9+/4hsFb9y4ka9+9avXvDGGhoYYGxsjEongdDopLi6mqqoKuJQNkpeXx7p16xa9J5VKMTQ0hMlk4uzZs8s2zvLyckpKSlTq3uzs7Io12UqlUpw8eVJ1c4NLe41OT09jNptZs2YNTqdTlSdLIZ8eDJyenub8+fOMjo5mvLQaWHKnufRAqhCCcDiclfFdiby+ZJB9YmKC/fv3r1pL0WQysW7dOqqqqsjNzWV2dpbu7u6sukdvhWg0qtwo27dvZ8+ePQQCAc6cObMsLqClZKEI4HvAeU3Tnk176mXgS8C3Lv9+6ZZHcwOYTCbKysr48pe/TEVFBdPT01y4cIE33nhjRXyLiUSCubk5pdls2bKFLVu2XPO17e3tXLhwgampKfLy8qirq2P9+vVXvW52dpZkMqlMbZmOtFwCXAhBQ0OD2iVIfoeVWvw0TePAgQOqOMJgMPCpT31KPZf+OolshrSwsKB2qH/77bdXdc49XEpJy2S/8uthsVjIz89HCEE8HmdsbIyDBw+uWgFuNpvZs2eP6kw5Pj6u/M7SWlutfYUk586dw+VyMTU1xdatW+np6eHdd98lFArdcibSUjTwncD/AZwRQpy8/Ng3uCS4fyqE+DIwADx5SyO5QQoLC6mtrVWa6oEDB/jud79LX1/fiqRntbe3c+LECXbt2vWJr21paaGlpQVN0xb5dZPJ5KI+Cvv27VtUAHDmzBkuXry4bGM2GAzcd999+Hw+EokEHR0dHD16lN7e3mU7xo2QTCZ5++232bJlC+vWrVOC5uOIx+MEg0G6u7t59tlnOXXqFNPT06vKjy+R1+VKpg96vV6123wwGFSW4GqtELbZbPz+7/8+5eXlTE5Osm/fPubm5rBYLNjtdlwuF2NjY6uyNbNkeHiYgwcP8uyzz/Jnf/ZnbNu2ja997Ws8/fTTxOPxW5r7pWShfABc7y7ae53HM4YQgsLCQp566ikeeeQRAH7yk5/wyiuvcPz48RW7OX72s59x7tw5Ojs7r0qFk3nAcrERQhCNRnn//feZnJxUZvjhw4cZGxtT2tDU1BTxeFwJo1gstmxmt8FgwG63s2XLFkpKSpiZmeG9997LWt789QgEArz44ov09/ezdetWHnjggau21UvnzJkzvPXWW7z88sv09/cTjUZXpfZtNptVS+HlzEu/EQwGAzk5OZSVlWEwGFhYWGB+fn7F3Y2fRLqrLJVKsWvXLhobG6mvr2dsbIzvf//7WYl33ArBYJA33niDJ554Qm0BV1FRweDg4C1ZP7ddJabBYKCxsVHthgKXmhh1dnauaGny4OAgsVgMh8NxlQD3er2Ul5cv0p5jsRgffvghU1NTSoAfP36c8fHxrPlG5Y7qs7OzjI6OcujQoRUPZs3NzdHR0aHKq+12O1VVVXg8HoqKiggGg4RCIUZHRxFC8OGHH3L48GFOnDixouP+OIQQVFVV4XA41CYAK1HYJYQglUqpLb5mZ2fVjka3Azabjerqah566CG1881q7i+Uzvz8PH19fbz33nvs2bOH+vp61q9fTzAYvLMEuNls5qGHHlI9M2QXtdVQLDM1NcUvfvGLlR7GktA0jWQySSgUUpsS/PKXv1wVrge/34/f7+fYsWOcP3+ebdu2sWfPHvbu3UtHRwcnTpzglVdeQQihfKKrGYPBwO7du3G73QwMDPCDH/xgxXKYZZOoTZs2EQwGGR8fz/o4bhTpWiwoKGDv3r3ce++9HDt2jPfee4/nn39+xZuCLYVkMkk4HOa//bf/xtzcHC0tLXzuc5/jwoULN9QQ7UpuKwHu9XppbW3lqaeewuv1rvRwbms0TWNmZoY/+IM/AFDN/FcbR48e5eTJk/zLv/wLFouFhYUFEomE8nlKs3o1o2kaZ86c4cSJExw+fJiDBw+uiAaeSqVob2/n29/+Npqm4ff76erqyvo4boRYLMZf/uVf8ru/+7t4vV7a29v56U9/SiAQUPn4q/38pyM3NP/oo4944IEHePXVVxkfH7/pRle3lQB3uVw0NDSQn5+vmqcHg0GVraFz46z2qkvpXlqNi8tSWVhY4Pvf/76yLFbSyonH4wwNDfH8888zMzOz6tPxFhYW1G43drudiYkJuru71SYJt5Pwhl+nyv7whz/kL//yL3G73eTn598ZAtzhcFBaWqq2fwoGg5w+fZpgMLiqm0Xp3NmkUileffXVlR4GcMnSikQi7Nu3b6WHsiRSqRQjIyOrusz/Runp6SESifC5z32OmZmZRUVoN8ptJcDTGRkZ4eDBg3z9618nGAzediuxjo7OnYncSejhhx++5c8S2YxA32opvd1uJy8vj9LSUhKJBNFolIGBAd19oqOj85vOcU3TrqoMvK0EuI6Ojs4dyjUF+M07X3R0dHR0VhRdgOvo6OjcpugCXEdHR+c2RRfgOjo6OrcpugDX0dHRuU25bfPAVzNCCPUjdx+XvYvTS79vlyZCOjo6qxNdgC8DcksvKaStVit2ux2Hw4HVasVms2EymTCZTESjUcLhMNFolFgsRiKRUEJeR0dH50bQBfgtILVss9msfux2Ox6Ph4KCAjweD3l5eeTn52Oz2TAajYyMjDA8PIzf72dwcJBoNKp6OqwWIS4XJLlPp6Zpqnf0So/RaDRiMBgwGo2LNkiQHetWeny3O+mWI+hW4mpHF+A3icFgULuCGAwGysrKqK6u5q677mLPnj0UFhbicDiYm5vDarWqLb+Gh4cZGxtjeHiYQ4cOLdpBZjXcLEajEY/HQ01NDU8++SRGo5FIJMKZM2fYt28f4XB4RXY/kfNdXFxMYWEhxcXFav/O2dlZgsEgExMTxONxEolE1lsrpLvIrmdRSeEoF5/0BWelz73RaMRms2G32zGbzczPzzM/P8/MzMyKVDpfayem9D1F5e/0xSb9NZmez3Q36ZUbTlyLTI1HF+C3gNxdxeVykZ+fT1FRERUVFTidTrXjidyFRdM0tSNKIpEgkUhQUFCA2Wy+6iJcSaSgdLlcNDc3q00I4NLGGSux6bEULmvXrmXjxo3U1dXh8/nUpgShUIiPPvqIU6dOMTo6yuTkZNaam5nNZiwWCw6HQ+1uI3/S4x9GoxGTyYTZbMZms5FMJlVr3PTd61cCIQQul4uWlha2bt1KRUUFExMT9Pf3c+DAAYaHhzMuxI1GI1arVc1RerzoSgs1fR49Ho/apCIWixGJRNS+rstpkaUvKAaDAZPJhNFoxGKxqPtdtmiGX8uGubk5NY5MKBW6AL8FpOluMpmwWCyLuiRKoZd+8pLJJEajEbPZjMPhIDc3F5PJ9In7PmYbs9lMTk4ObrebnJwc5VJZCYQQ2O12CgsL2bFjB5s3b8bn86ltwebm5tTmsHKj27m5uaxo4dJ9lpOTQ3FxsdJWZcc/KUSkdi4FT05ODslkUlkPcoeclUAIgclkoqKigrVr17Jjxw58Ph9DQ0PY7XZOnz6d0Y2D5dw4nU5ycnJwOBzY7Xal1KRSKWZnZ9X51DQNk8mEzWbD6XRSWlqK0WhUVpjcWi0TAlNq2yaTScW43G43JSUlmM1mAGZmZojH48RiMUKhkFqoMzV/SxbgQggjcAwY1jTtcSFEAfAC4AP6gM9rmja9XANLN03k/9fiSnP1yo2CM3ljpJvLcvWVW7tJrSASiZBIJNQelOvXr8dut2O1WsnLy1PaxmpBCkyp2SQSCUKhEOfPn2dqairrvawNBgMej4cNGzbwh3/4h5SUlCiNBy61R5Wb3GqaRm5uLolEQs17Js+/PKcej4e1a9cSj8cxGo0A9Pf3E4lESCaTCCGURm4ymcjPzyeVSjEzM4MQgkgksmKBbPkd7r77bu6++27a2trUuff7/VgslowpGNIyMZvNFBcXU1xcTEFBAS6Xa1Gmltx2TApxIQROp5Pc3FwVa1pYWFCWl4zZLNfeo+muEmkpeDweiouLaWhoYP369TgcDkwmE6lUip6eHvr6+ujo6GBmZoZUKqXGvdzn+EY08P8InAfkDrPPAG9rmvYtIcQzl///85sdiLzwpVlisVgwm81YrVbcbjcm06+H6vP5ANSNajKZlDYTCoWw2+3q/eFwWO3cIVfE5UBeYAsLC8RiMXp7ewkEAirwJzXuUCikNIa8vDx14oUQyl+bTCZXlQvF7Xbj8/lwOp3MzMwQCATo7u7Ouj9UCEFxcTH3338/Tz31FD6fD4vFooS3nDOr1UplZSX33XcflZWV5OXlEQgEmJ6ezpgrRbrD2traaGlpYfPmzRgMBgKBAMPDw4TDYSwWC3Nzc8rlJG9+r9eL0+kkGAwyMjLC1NRUxm7w6yEFktVqpaSkhMcee4zW1la8Xq+6BhwOBzMzMxkZkxSGdrsdt9tNS0sLjY2NFBcXYzKZmJ2dJRwOMzk5qYL9ckG2Wq1YrVaEEHg8HhwOh7J8HA4HTqdzUdD9VsafnqggZVNZWRnr1q1Te/M2NDRgtVoxGAzMz8/T2trKhQsXyM/PZ3p6WrlMMzGPSxLgQogK4FPA/wv835cf/jSw5/Lf/wrs5yYFuPS7apqGxWLB7XZTXl5Ofn4+OTk5CCHURe90OikvL1cCP93vOD8/j9/vVyfY4XDg9/vp7u6mt7eXaDS6rH6xdBMPLu12YrFY1DGSySQzMzOYTCYcDodamJxOpxp/Js2rm0Ga+HLT2Gg0SiQSYXR0NOMa7ZUYDAZaW1tZv349dXV1WCwWNW/AonNpsVgoLCwkkUgQDocpKSkhkUhkZH6l8MnPz6epqYm1a9dSWVlJJBJhZGSEiYkJJicnicfj6tgOh4OcnBxyc3MpKSkhNzcXm81GPB7HbDavyO4yUjDl5+dTUFBATk6OcgPGYjGmp6eZnp7O2LgsFouaD5/PpzRwg8FAb28vo6Oj9PX1MTY2pnbdkosOoObNZDKpzCSDwaCUp+VCfrbT6cTtdlNXV0dzczONjY34fD4Vy5IuvWQySV5enrIkMmldLVUD/zvg/wFy0x4r1jTND6Bpml8IUXStNwohvgJ85XofnO5XSqVSmM1mXC4XdXV1lJWV4Xa7mZubw+fz4fV68Xq9eDwezGaz8h/HYjElwAcGBlQetsvlYmBgQAWYLl68uGxmlUTTNHXSZmdnMZvN6oRJF4QMYAFqEQLUyrxaBLgQQgUwi4qKcDqdyoUyOTmZde3bYrGwYcMGWlpa8Hg8GI1GpaVKH7K8QYQQOBwOioqKaGxspKqqinA4TCwWW/ZxS4WjtLSU+vp66uvryc/PZ2JigomJCQYHBxkbGyORSACogJu0JktKSnC5XJhMJmWhrUQcRPqf7XY7NptNBdRTqRTj4+OMjIwsq9V65bGtVisul4vS0lKqqqrweDxYrVbm5uYIBAL09vbS1dVFNBpVY5DXhXz/7OzsooCnEIJkMqnm/lbGl/53umJTU1NDbW0tVVVVFBYWqjoP+R6ZUmwymTK+MH+iABdCPA4ENE07LoTYc6MH0DTtOeC5y591leSUwk5qItJ/JSPSVquVqqoqXC4Xubm5KtAhJ0uuuMFgkMnJSWZmZsjNzcXlcuH1elXxTCwW48iRI+qmXw6u9IHLlV9eSHBJS7TZbOTk5FBUVITH42F+fp7x8XH6+vpWNIB1LXJzcykrK6OhoQGDwcDAwADd3d3E4/GsjtNisVBZWckjjzxCa2urukE0TWN+fp5QKEQ4HCaVSmEwGMjLy1OCtaysjF27djE7O0s0Gl3Wcy7Hlp+fz6OPPsq6devweDwEg0H27dvHsWPH6OzsZH5+Xgkdg8HAzMwMFotFaZtSA49GoysWB9E0jUQioWI2cn7j8Tjvvvsu77zzTkZcUOm+5Pz8fKqrq2lpacFgMBAMBjl+/DjvvvsuY2Nj6hynX3tzc3MqM0kGDRcWFggGg0ohkvfhcowVULGOqqoqampqKC4uJjf31/qsPJbMKopEIsqFt6ICHNgJ/LYQ4jHABriEEM8DY0KI0svadykQuNlBpKcLzc7OMjk5yYULF/D7/TidTsrKynC5XMp8Li4uxmAwkEgkGBsbUz6yubk5bDYbmzZtorm5mby8POWyyMnJWeRHX07SBXj6/3LldrlcVFZWsn37djweD+Pj40rDmZ2dXTXbwRkMBtatW0dLS4ua48nJSfx+f1bHaDKZKCkp4atf/Sp1dXXKjZZKpYhGo0xOTtLd3U13dzdGoxG3262CwxaLBZvNxj333KN8ub/61a+W7UYyGAy4XC6V819QUEAoFOLQoUN88MEHatPidK1VWmnSwiwrK1NugFAopDTfbPrA5TUqXUG5ublqTNPT0/T09NDf35+RY0uLOy8vD6/XqwLTkUiE8fFxTp48ydjYmNK8010QUqBaLBZycnIoKChQ+erxeJzx8XFVHCe/562OVS42TqdTySEZc5ufn1feg0QiQSwWIxwOEw6HCQaDGc9L/0SJpmnafwL+0+Uvswf4U03TviiE+DbwJeBbl3+/dLODkF9OTsLMzIyKgNtsNsLhMA6HA7i0wuXl5SlNLBAIEAgElJaVHplOzwCQbo5McaU2Li80q9VKUVERVVVV+Hw+HA4HqVRKnejlduncLNKcXrNmDbW1tTgcDmZnZ5mYmCAQCGR1jG63m+rqarZt26YC2FII9vf3MzAwQFdXF729vSqFr6KiQrlZrFYrpaWlNDU1EQqFePfdd5ctrdBkMuF2u6mqqqKoqIhEIsH4+Dhnz55ldHR0kdBJJ5VKLRIEFotFWZmyDcNKYLPZaGlpUQpOMplkYmKCqakplQqbCQwGg4oLyAV6ZmaG6elpAoGAWgSv5T+2WCzk5eVRXFyM0+lUcZrp6WkV7FzuHPD09hjwa007FospS2Z+fp5wOMz09DThcHhRxlamFudbUUm/BfxUCPFlYAB48lYHk+7wHx4eVr7joaEhpX3LlBzpP04vKjEYDIRCIYaHh6murlarcDgcZnx8POPmTLoWLlfunJwcmpqaaGlpoaqqCrvdrlLIMuGfvRXMZjPbtm2jpaUFi8VCOBxmeHiYwcHBrI1BCEFVVRUbNmxg7dq1KidY5tcfPXqU06dPMzQ0RCQSUTm4o6OjypcrC1NqamqIRqN4PB7C4fAtZ/sIIbDZbBQXF9Pc3IzNZiMQCNDT08OxY8c+NnVRtibIyclZ5G+en59fUQHudrt57LHHcLvdGI1GEokE/f39hEKhjBRspVsadrsdp9OJ3W5nbm6O6elpxsfHVfqlVITStW9pAVVVVdHY2IjD4VALzsjIiEo3vFVheWU6skyKcDgcSpmIRqPKPZZIJJibmyMcDqvxSPfoldWaHzc3NzruGxLgmqbt51K2CZqmTQJ7b+hoH//Z6rcUhPLCltVN6eXK8gSnC+RUKsX8/PwiU6e/v5/Tp09z4sSJjPqb0z/XYDBgNpvJzc1l69at7N27l8bGRkpKSohGo0xNTamg4Gop4rFardTV1VFTU0NBQQGJRILDhw8zMDBAJBLJ2jhcLhf33Xcfn/3sZ1WqmEzV3LdvH/v37+fcuXP4/X6qqqrIy8tbVD4vzXObzUZ+fj6FhYVKi79Vf67RaCQvL4+SkhLKy8uJxWJ0d3fT0dHB+Pj4NRdjec3abDa8Xi9lZWXk5eUpH20oFLrK5ZItcnNzqaysZOfOnSoVLxQK8dd//df09PRk5JjpWUPSbSot6ZGREQKBgLK8jUajKoQBVNrhmjVraG5uxufzEY/HCYVCBAIBxsbGFlU+LocQl58xMzPDyMgIyWRSLcQyFjc7O8vMzIw6jzKIKttoyPs83aK41vhuZryrshIz3aUCi3sfyMfST1L68yaTicrKSsrKyhBCqMyAYDCY0WZH6YJYBrnKy8vZunUr5eXlykwMBAKMj48zPT2t3icDsSvlSpGaZVNTE7m5uRiNRuLxOGfOnFE5ytnAYDBQWVmpKi2lRhIOh+nt7eX111/n7NmzjI2NEY/HmZmZYXJyUuXnyuZh6ZlNMtMhPYPlZpAWVVFREcXFxYuKRyYmJhbNUXqAXQZWCwoKqKiooLKyUi0m8sZfqV4jMnjodDpVNlcgEGBoaIh4PJ7R46cH+tOrFc1mM5WVlbhcLjTtUvsJadnIVL6Kigpyc3PVAjgxMaEshiv95ctxT8nECuky8fv9KhkhFospa8pgMBCLxZTrRGacSUtLunGlF0F+9q2MdVUKcFgcCEz/kummyJVfWGYjlJWVqZxg2RtD+qoySXpaVklJicoRzs/PV8UJo6OjBAIBQqGQKq++3oqcLWT1pex9kkqliEQinDt3jlAolLVxGAwGqqqqKCkpUYI4mUwyNTVFZ2cnx48fV8JbLjLT09OqDqClpYWioqKrKudklsetWDvy3Mrukrm5uWiapkrhjUajWiTkd5EtFmQgvry8nOLiYlX6LbOjVqKQy2QyUVNTQ0tLC2azmVQqxeTkJJ2dnSo2kymk5ZzeL0Q2c7PZbFRVVak5NZlMqtkbXMqnLy0txel0KoshFAqpwGUmgobpPu54PE4wGFRW39zcnLq+ZGKF7IEkc8HlvS/Pu5zbZYnJ3PInZJilmBlypbZaraqXg91uZ3R0lJMnT9Lf3084HM7oTSKFhUxj27FjBw8++CBr1qxRFaOjo6OcOXOGvr4+pqamsFqtyp8m+z2shCA3m814PB4efvhhXC4XkUiEnp4e3n33XSYmJrIyBpmxs2nTJioqKtTcxGIxurq6eOONNxgZGVFalrhcgh6LxZSFdebMGZxOJ7W1tcqUnZ+fX9SX5FbGJzVAmc4qhFBB8/QFR1o0DodD5Tlv27aN5uZmCgsLMZlMTExM4Pf78fv9yx50Wwq5ubncdddd3H///UpDPHjwIP/jf/yPW86hXgqyO+f09LRSsFKpFMXFxaoxnHSjyH43UoOVdRSySlgGDDNhyUh3bbrPu7S0lGg0Sjwep7CwUFXcyqwes9msYgoTExNqkZcWYywWU6mPV3oSMuoDX2mu9+XSK8p27dqFz+fDaDRy4cIFTp48id/vz6iZmu53LSgoYNu2bbS2tlJUVMTc3BxjY2P09fVx9OhRjhw5QjgcVhejbN9pNpsX9QZPNzGXMge3Ql5eHpWVlTQ2NmKxWBgaGqK9vZ1QKJRRTSwdmdcri2KEECQSCYaHh+nq6qK9vV0F1WQcRGpl8vzLMmo5f/Pz80SjUUZGRpZFKMn+NjJ9rKioiObmZqVpj42NqUKT3NxcVc3qdrspLS1VBTxms1lV6UpXWjaFt8FgoKioSFkEmqYxOTlJb28v7e3tWRmLtKxkfn99fb1qDJefn6+6PMq5lVlnmqapwjyZeSZ/blYIfhxSuMqCIbPZrASw7HooK0KlEimbf83Pz1NdXa2s7EgkwtDQEOPj40xMTCjXUPr45TGXym0lwK+HEIKCggLq6+tpaGjAbrcrczAQCBCPxzPmx5XCw263q7zUyspKCgsLsVqtxGIxhoeH6enp4fz586okXb5XppFJIS7bz14rAyBT36G0tJSGhgalVQaDQXp7e7PaV1te/G63W+UjJ5NJlTMvLah0F5o0mWVwKz8/X/m7ZTl4KBRS2t2tIM3+mZkZgsEg4+PjFBQU4HQ6KS4uprGxkcLCQnVOXS4XbrdbVQ3Kx2WxmvSnplcZZguDwUBzc7PScjVNo7+/n5GREWKxWMaPL4XizMwMU1NTSmuVi598jczYkVlnJpOJ3Nxc1aNHVjpKt0UmExSkn35hYYF4PK5cIXIxlr7t9HbCsjeL3DNAVt7Oz88r94t0z9wsvxECXG6osHnzZmU+BwIBjh8/ntGGRsAijSs/P19lKOTn52M0GhkbG6Onp4eOjg66uroIh8PAr3eWSe/jYLPZVEBT+uzTM20y4d8TQuDz+Whra1N9MKanp+nq6sqqYJHfX/bjgEsLViAQYGpqivn5+UXCO11jkd3sSktL8Xg8yucoc4ploPBW5k3exKFQCL/fT29vrwq0ytYP5eXlyp0nu9PNzc2p9sJSS1tYWCAajapq0mzvJmQ0GrnrrrsoKytT2uHZs2cZGBjI2jmXi5hUVmQlttVqVYFJt9uNy+UikUjgdDopKCiguLiYnJwc4NJ5l4Iw0+7H9PTldBeILOeXQjkWi6lApnxe5vtL948cq0yXvFZQc6n8Rghwr9fLtm3b+MxnPoPb7aa3t5eenh6OHj2a0dRBqTnIvsQ1NTVs376d8vJyAPx+Px9++CHvv/8+fX19yhcLKF+p1ODNZjO1tbWq2f/k5CQmk0kVBszOzmakGEAGDltaWoBLvkm/38+xY8eyWn155Q5HsrdMLBZTudLpvSXkPMhUuD/+4z9my5YteDwelXp64sQJ9u3btyz59lLjl5aJNJ/lzShdaNLsj8ViDA4OqkKzPXv2qM6EiUSCvr4+RkdHFwmfbCAtnb1791JRUQFcEk4vv/wyx48fz8oY5AIsteaFhQVmZmZUIHBwcFC1GpB9RhobGwGorq5WbQdkJbYUpumL9HK7UdLbZMRiMWZmZlQtx/j4+KJmerKNrMFgID8/n4WFBWw2G3Nzc1RWVlJQUKC6FI6PjxMKhW46DnLbC3CDwUBbWxtNTU14PB7i8Tgffvghhw8fJhQKZdR1IgNbpaWl1NbW4vP5cLvdqiuZbIcpNUBpPqe/X+7m4nK5aGtrw+12YzableY2MDBAf38/fr8/I6ldVquVwsJCSktLSaVS9PX1MTAwoDZJyBZSu5EdB+XCVlJSQkVFBRUVFYsaWEm32ebNm9m5cyebN2+moKBACflTp05x7Ngxzp49u6xa5ezsLOPj4ypgKd1e0qKSqa7j4+Oqf7rsWCk1rXg8zvDwsKo4zGbgWqa4ejweFXwLBAL4/X5lHWaLa9VzyNiH1F7lNm/SbRGJRMjJyWF6elp1fpTxpEzPo3SfxGIxRkZGlMUgO1/KDSVGRkZUj3pZxSkDm7LYTC760v1ys+O+rQW4TNlbt24dNTU12O12xsbGOHPmDB0dHRnfVktqhU6nU+3TKItGZJBDjlGafemaghACt9utikNkyqHUwmUFZDQaVdHs5UQIobo7yrzajo4Oent7s75xgwwQyi2xHA4HRqMRr9eLz+ejqakJk8mk+lM7nU5qamrYsWMHd999N6Wlpaofczgc5vjx43R2djI6OrpsN7X0V0rTN5lMLiqHlwJkYWFBxV5kiqbU4KS2OTU1lZVNJ64kNzeX+vp61dI4Fotx5syZjLsaryRdU74yjVbeH3KOhRAq739mZkbdD7J1QTayeOR4pLtnYmJikdtP9nEZGxtblPUkLW5Z/i8VlPn5eWVt3oqSeVsLcNnd7YEHHqC+vh6AAwcOcOjQIbq6ujJ+fGn2Sx+d1+ulsrJSCSNN06ivr1f7XwaDQVV6K/NcS0pKqKyspKmpiV27dpGTk6PyRZ1OJ/Pz80xPT3Px4kWMRuOyZoUYDAa2b99OdXW1qhh75ZVXOHz4cNYbbMm2tR999JEK/JjNZpUSWlpaqrRWg8FAY2MjW7duJT8/Xwl7uZVZZ2cnL7zwQkYKUqTvVvrYZX74lRsaS2EiNxaRvm8ZBA2Hw4v6hWcDWbzzuc99TvX0CAQCfP/732dqairr6avpQjxdA5cLpRSasqmaTHGdnZ3lwoULdHd3Z6UZXHrMJZVKqYC69H3bbDampqYYHR1ldHRUbZ0o007z8/NVFe7s7KzKvCkrK2NkZOSWahRuWwEu9/H7wz/8Q+rr6zEajQwODvLjH/+YwcHBrKW/yYmfmJhgaGhI5YUCSqgXFBSoiPXc3JxqzVpSUoLH41GN/t1utzLBpR9XmofLra3J8u5Pf/rT1NfXq6rCixcvEgjcdGPJm0YueocOHcLj8eB2uykqKsJut1NRUYHX62XdunUqGyEvLw+73b6oif/U1BQHDx7kH/7hH+jt7c14q970IHP6DSiPKX21UguXwUvpDsi29u12u6mvr+fee+9V2vfY2Bhnz57Nqvb9caTPR3qQ2uVy4XQ6VcxAzmG2+sikLzbSCpNdEKWVIBtcySB2UVERDQ0NrF27lpKSEhWUl1lrU1NTahG/WffPbSnAZTJ9U1MTbW1tmM1mJiYm6O7uZnBwMCu9q6V2kF5ea7VaKS4upqSkRBVzSPcEoJoFyXzWvLw81ZnOYrGocl2Zu3zu3DmGhoaIxWLLntJns9koKyujuLgYu93O7OwsnZ2dGWtitBRSqZRqE1taWnpVPrAs4JCLT7q2FgwG+eCDD3jvvffo7OzMeOOyK7ne9SaDhulVh7LwJFtKBlxaROrq6qitrVVl6uPj46rXzWppaQy/rnqVG2HIDcBzcnKw2+2L2g+kd3PMxj0vjyPdKTMzM4yPjy/qV2+z2VSBl3Sr2mw2VaEZj8fx+/0qbfNWUiBvSwFuMpnw+XzK951MJhkZGaG9vZ3JycmsVJLBr4MakUiE4eFhUqkUBQUFWK1WJXRkG0oZtJQ5orK9qAzYSHNMdk48c+YMp06dUvt5Lme5tRCXNoWtrq5WedMzMzOcO3duRTskplIpBgYG6OjooKioiNraWqxWqyqpljdJelMzmbp14cIFXnvtNY4ePUogEFg1AknuYC5v+kQioTaZyOY8y9zv+vp6lS7q9/tX3aYi6edXtiGQG7S43W5ycnJUm1sZg0pvsZFp5DzJmIbsoigzyWQjrpycHPLy8tSOPekB7unpafr6+vD7/XeeAJeBrZ07d7J7925SqRRjY2McPnyYl156KatmqQxYjY6OMjU1xdDQEOfPn6eurk71Or777ruVhm2z2Rb5P2XmhVzN/X4/09PTqsBjfHxc5ZQup0CSfRqampqwWq0kEgmmp6fp7OzMevDySoLBIIcOHWJychKHw8F9992nttpKv0llNkdvby+nT5/mH/7hH+jp6VE7uKwG0ouTcnJy1GIks2zkT6avV7kBc3NzMzU1NZjNZmZnZxkcHKSnp2dFG6ldC5ndZbVaycnJoaysTOX4yy6Gcl7lJtfpc7mU1q23QrpPXKaSyloOt9uteh9JK1EWlY2Pj3P69GkuXrxIb2+vEt53TBBTBgUef/xxNmzYQGFhIdFolP3796tGRysRiJFCWPY7iEQiSms8derUoqIdWRJ85UIjfcBSQ5eulvR2mss55pmZGYaGhrh48SI2m43p6WlGR0ezHli71timpqY4f/48P/7xj+nr68Pn81FZWUlNTQ3BYJBIJMLMzAynTp2iq6uLrq4uLly4sOr6q8vgpgxcy9xgmUUjt1TLBpqmqUwO6fYLh8PLUuS03EghLK2XvLy8RbtpyTz8a8UR0hf5TC6O0mctBbQU6LKQJxgMMjY2Rm9vL9PT0yrZYXh4WPU8Xw636G0jwGUgqKioiLa2NsrKypTgkTtYZ7oF5vVIT3mSgQx5IQUCgau6413Zu+FK8+/K6svlvgjTBfiRI0cwm81q84Zs+46vhTRLz507RzKZpKenh/Lycnw+H9PT06qJ1blz5xgcHFTnfqXHnU66FiivCSnAZWFSevfCTCOrSKemptRPIBBgenp6VS16kvRuhXLuZHqerGBND+xfeY9k0wpPH7PsXR8MBpXVPT4+rtIHx8bG1G5Hy2H53DYC3Gg04vF4aGlpobW1FY/Hg6ZpRKPRRZufrhauVxGWLf/8xyFToc6dO8f4+PiiQOBybwB8M0grZWxsTAWI0nf5lrn0q01zvBIZ84hGo0SjUbXproxpwK8zVTKJNPX9fj8XL14kJydHufv6+/uzng3zcaRXPcrWrf39/RiNRpW+Nzo6ysjIiNrAIVMVmDcy5vTfMhFgZmZGtY2W9SADAwPKjXplE6ub4bYQ4AaDAafTic/n47777qO0tBSTycTU1BTt7e1cvHhRdXXTWRryBhkaGlKPrbTgvhayV4bshbJaBM0nIRdF2XGwvb1dLUbSckhvrZDpsczNzfHKK6/w5ptvqu550pW3GjVwqcnOz88TCoUYGhpSVa9yIwWZZrsafPhy4ZGbHM/NzTE5OaksQzm+qakpNefLYV0vSYALIfKA/wm0AhrwfwGdwAuAD+gDPq9p2rJLUel2KCsro6amhqqqKrV7yOjoKKdPn151vs/bidUotK/HSt+kN4o0qaPRKOfPn2dgYAAhhPKBZjv7Q/ZikazW+UwvsZcBfplfLfvkpGdzrZbvkZ5aLBUO2SpBPi8t3OVyjS5VA/974DVN054QQlgAB/AN4G1N074lhHgGeAb481se0TWQaW8yei7NkIsXL6rGMavdnNa5M5E39ODg4KItxFZK8Nwu98i1euLLeNHNdu7LBlJIS64X41i2lOBP+iAhhAs4BdRqaS8WQnQCezRN8wshSoH9mqY1fcJn3fSo0xs/5eXlEY1GVTFEukmio6Oj8xvIcU3Ttlz54FI08FpgHPgXIUQbcBz4j0Cxpml+gMtCvGg5R3slcmWTvrH0AIAuuHV0dO5ElhICNwGbgH/WNG0jEOOSu2RJCCG+IoQ4JoQ4dpNjVKT7xFab/0tHR0cn2yxFgA8BQ5qmHb78/8+4JNDHLrtOuPz7mh2QNE17TtO0LddS/3V0dHR0bp5PdKFomjYqhBgUQjRpmtYJ7AXOXf75EvCty79fWsLxJrikwWdnq/Pbh0L0ObkSfU6uRp+Tq7lT5qT6Wg9+YhATQAixgUtphBbgIvB/ckl7/ylQBQwAT2qaNrWEzzqma+OL0efkavQ5uRp9Tq7mTp+TJaURapp2ErjWJO1d1tHo6Ojo6CyZzNfx6ujo6OhkhJUQ4M+twDFXO/qcXI0+J1ejz8nV3NFzsiQfuI6Ojo7O6kN3oejo6OjcpmRNgAshHhFCdAohui/3TrkjEUL0CSHOCCFOyuImIUSBEOJNIcSFy7/zV3qcmUYI8X0hREAIcTbtsevOgxDiP12+djqFEA+vzKgzy3Xm5L8IIYYvXy8nhRCPpT13J8xJpRBinxDivBCiXQjxHy8/fkdfKwpZip7JH8AI9HCpLN/Cpd4qLdk49mr74VLnxsIrHvtr4JnLfz8D/NVKjzML87CbSwVhZz9pHoCWy9eMFai5fC0ZV/o7ZGlO/gvwp9d47Z0yJ6XApst/5wJdl7/7HX2tyJ9saeDbgG5N0y5qmjYP/AT4dJaOfTvwaeBfL//9r8BnVm4o2UHTtPeAK+sGrjcPnwZ+omnanKZpvUA3l66p3yiuMyfX406ZE7+maScu/x0BzgPl3OHXiiRbArwcGEz7f+jyY3ciGvCGEOK4EOIrlx9b1BgMyGhjsFXM9ebhTr9+viaEOH3ZxSJdBXfcnAghfMBG4DD6tQJkT4BfqynunZr+slPTtE3Ao8AfCyF2r/SAbgPu5Ovnn4E6YAPgB/728uN31JwIIXKAF4GnNU0Lf9xLr/HYb+y8ZEuADwGVaf9XACNZOvaqQtO0kcu/A8AvuGTeLakx2B3A9ebhjr1+NE0b0zQtqWlaCvguv3YH3DFzIoQwc0l4/0jTtJ9ffli/VsieAD8KNAghai7v6PN7wMtZOvaqQQjhFELkyr+Bh4CzXJqLL11+2VIbg/0mcr15eBn4PSGEVQhRAzQAR1ZgfFlHCqnL/A6Xrhe4Q+ZEXNrS5nvAeU3Tnk17Sr9WIDtZKJejw49xKYLcA3xzpaO3K/HDpSycU5d/2uU8AB7gbeDC5d8FKz3WLMzF/8cll0CCS1rTlz9uHoBvXr52OoFHV3r8WZyTHwJngNNcEk6ld9ic3MMlF8hp4OTln8fu9GtF/uiVmDo6Ojq3KXolpo6Ojs5tii7AdXR0dG5TdAGuo6Ojc5uiC3AdHR2d2xRdgOvo6OjcpugCXEdHR+c2RRfgOjo6OrcpugDX0dHRuU35/wHTH9HEUJ8AowAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1318,12 +1293,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVmMnOl1JXj+2Pd9yYzIfWFyqYUl\nlqSSSmVbKmjkEWzI8IMxbT/0DBrQy/R7+22AefLrAAMMRg/t6YY809220HBbGGtsSzKlskolVZFV\nXKq4ZDL3zMjY9z3in4fkufwiGBEZkUxKpJQXIHJh5L98y/3uPffeczVd13Eu53Iu50Ix/Lof4FzO\n5VxeLDlXCudyLufSI+dK4VzO5Vx65FwpnMu5nEuPnCuFczmXc+mRc6VwLudyLj3y3JSCpmm/r2na\nfU3T1jVN+/PndZ9zOZdzOVvRnkeegqZpRgAPAHwdwB6AXwL4V7quf3rmNzuXczmXM5XnZSl8AcC6\nruuPdF1vAvhPAL71nO51LudyLmcopud03TiAXeXnPQBfHPZhTdPO0yrP5Vyev6R1XQ+f9KHnpRRO\nFE3Tvg3g27+u+5/LufwWyvY4H3peSmEfwKzy88zj34nouv4dAN8BnlgKmqZB/ariHf2/G/SZQaJp\nWs9nzms9zuVllv71/DzkeSmFXwJY1TRtEcfK4H8A8Kfj/rGu67LpjUYjgCeDYTQaoWkaDAZDz/cm\nkwkWiwWNRgOtVgu1Wg0A0Ol05G9/FQP6vOQsnn2Q0h103bO4zyDlPeheL/Oc/DrkVzFWz0Up6Lre\n1jTt3wL4/wAYAfx7Xdfvjvv3XEjc+ADQ7XZhMBhkcalKwmq1wmg0wul0wu/3o1arodlsotvtIp/P\no9FoQNf1l27xqZv4WZ7dYDjGk3kNjqHBYJD/MxgM0DQN3W4X3W4XnU7nVPfsf2ZVwQ+63ss2J78K\n+XUryucSkpz4IR67D9z0AGC1WgFAFikXsaZpMJvNsFgsMJvNsNvt8n273YbFYoGu6+h2u2i1Wmg0\nGsjn86jVami32+h2u6d5vp7NQ2VlMpnQarWg6zra7bY870kKSLVcNE2DyWSC2WyG1WqFz+fDwsIC\nXC4XAoEALBYLNE3D1tYWkskkCoUCSqUSdF1HsVhEs9kceh+OF+9pMpng8XjgcrkQDAYRj8fRarXk\nOQqFAorFIqrVKtLpNFqtFtrtNhqNxljjZrPZxDIzGo0wGo0wm80wmUxwOBwAgGaz2XPdVqv1lAIa\n1zUcNK4AZG4CgQAcDge63S4KhQIqlQparZbMEcfopHfrt3zU9+M7RiIRLC0todVqIZPJ4PDwEIVC\nQQ6ncZ/d4/HAbDbDZrPB7/cjEonA4/HIOvf5fMhms6hWq8jn88hkMvK13W7LGue/PvlI1/U3T3qW\nXxvQOEjUiep0OgAgL8aNaTab4XK5ZKBsNpsoAV3XUa/XoWkaWq0WHA4HWq0W7HY7ms2mXLNfVMuD\n33PzW61WmM1mBINBsUbMZjPMZjN0XUetVkMqlUK1WkWhUBhLIfTfFwDMZjOcTie8Xi/m5uYQCoWw\nsrKCTqfT807lchlWqxX5fB7A8QYY9l60rgDAZDLBZrMhEAggHo9jYWEBc3NzaDQaqFaraDQaCAaD\nKJVKKBQKoiRqtRrq9fqJc8fNYbfb4Xa74fV64Xa7YTab4fF44Ha74Xa7USwWUSqVkM1mcXR0hGQy\niXq9Lkr1NIpAPTDoSjqdTnz+85/H3NwcyuUytra28NlnnyGbzfZYTMD4ioGHgc1mk4PIbDYjEAjg\nlVdewZUrV9But5FKpfD+++/jwYMHI5V2v3DTOxwOXLhwAdFoFAsLC4jFYgiFQvB4PLBYLEilUqjV\nakin00gkEvj444+xubkpv6/X6z1u86TyQikFitFohK7r8mLcoPxnMplgtVoRi8XQbDZht9vlJLBY\nLOh2u3A4HOh0OjCbzajX6zCbzWIWj7ovJ54T5Pf7sbq6is997nNoNpuwWCxoNpuYmpqCxWJBPp/H\nvXv3cPPmTdy6dQvtdhu6rg9daINAz263i3q9DqPRiGKxKIql0+mg0+kgn8+j2WzKqVMul9Fut080\n8bkouGFcLhempqZw9epVLC0twev1YmdnB9VqVT5jsVgQj8fhcDiQTCaxt7eHYrF44nyZTCZRBNFo\nFPF4HH6/Hx6PBzabDVarFSaTCdVqFa1WC5ubm2g2m6hWqzJmnO/+5z9JVGvIYDDAYrHA6XTi6tWr\niMViSKVSSKVSsFgsMJlMPetAdW9Ouod6SPh8PlG0drsdmqah0WggFovBaDQiEolgd3cXlUplItfV\nbDYjGo0iFAphbW1NFLjJZEKtVkOtVoPD4YDT6YTD4RAcrdFoyBo5Ccc5SV4opcCB52JXX4omGydh\nenoa0WgU1WoVnU4HJpMJRqMRtVoNZrMZBoMB7XYbrVZLAMlB91OtA+D4RKWZPT09jYWFBSwvL2Nl\nZQXlchm6rsNsNmNhYQFWqxUGgwEzMzMwm8148OCBLPBxJkI9sbrdLhqNBorFIrLZLIxGI3K5nFgF\n29vb2N/fRy6XQ61WQ6fT6TGDR10fOD6FpqenceXKFbzyyiuIxWIolUrY3d1FOp1Gp9NBsVhEPB6H\nwWDAhQsXMDU1hU6ng8PDw5FWFl0Ebv5oNCqnG5+Bi9ZiscBisSAWiyGdTiOTycBkMqHdbp8KEOZY\nU6nxn9PpxPT0NOx2O8xmM1qt1lOuw6BxGjWOVCZ0G+v1OsrlMiwWi7y3y+VCt9uF3W7vcd/GfY9W\nq4VKpSIWqcvlQiqVQqVSQTKZRKvVgsViEdfSZDL1WM6q1TzOuw2SF0opABi6obj4PB4PVldXcfny\nZXg8Huzv76NcLot1QbCsXC6Lr14ul2E2m1GtVp+6l/oVgEy61WrtGfStrS1ks1nY7XYsLS3BYrHA\n7XbDbrejXq9jaWlJFNMQf27k+3IiLRYL2u02XC6XWAPVahV7e3vI5/NyshJnOWkDUZn6/X588Ytf\nxNe//nVEIhG0221sbGzgo48+Eren3W6jXC4jFoshEolgfn4epVIJd+7ckWjOoGtzs3Q6HbEITCYT\nDAYD0uk0KpWKuCJzc3NYXFyExWLBxsaGXEfdPMSWJsF/1ENEjVjRQszn8yiVSjJ2/RjGOIqBz1Sv\n12WOW62WPDPXgNPpRKfTESxm3I3Z7XZRqVRQr9ext7cHm82GWq2GZDKJUqmE/f191Ot1+P1+LC0t\nCfZkNpsF36CF+ixg5QulFPoXuar9eXpfvnwZX/nKVzA7O4udnR2ZJE3TBEMgeNbpdNBqtWAwGGTy\nRkm/ye5yuZBIJFCpVNDpdJDL5bC8vIxQKIR2uw2HwyGLsFKpyALgop7ktAOe+OVut1s2WDqdxs7O\nDjKZDCqVilgi6t+dNKZOpxOXL1/G7/zO72B+fl425HvvvYeHDx8KWErT2mq1YmVlBXa7Ha+//jr+\n/u//fqBS6Ld0CHQlk0lYLBZsbW2hWq0ilUqhVCqh1WrB7/fLmHGu1Xca92Ttfw51vPksPNEPDg5w\neHgouNJpNwuftdvtiitHxVWtVuFyueB2u8XMr9VqEys2Hmjb29s9bhVB4Ha7LZufrgyfh1E3Xuu0\n8kIpBaAXOOJCNZvNCIVCuHbtGt555x28+uqrsFgs+Oijj1Aul3sGgidVrVYTbKDRaKBerw8dqH6z\ntdlswmAwIJFIIJvNwuFwiJ/ocrng8/lgtVpFAe3s7OCTTz5BrVY7deiTodVQKISpqSkEAgGUy2U8\nfPgQDx8+7DnlBj37sPeyWCxYWVnBV7/6VayursLtduPw8BDXr1/H+++/L5EMKlF1QcdiMbRaLSwv\nL+PmzZtD78371+t1AfK46UulEnK5nACmLpcLLpdL/qZcLosr1L8GRuE//aLOHzeX1+vF5uYmNjY2\nkMvlepTPaYXPqSoiXddht9sRi8VgsViQSCTw6NEjNJvNE++nzh/XXqVSgdlsRiqV6rEIiSN87nOf\nwyuvvAK/3w9d18UK4lieFkugvHBKAUAPkmyz2eB2u/Hqq6/ia1/7Gq5cuQKz2Yz9/X1sbGwIUt5u\nt+F0OsUqMBqNcnLRnBw2SOqkqL5dtVqV0//ChQuYnp7G5cuXEQwGYTAYkM1msb+/jx/84Ae4ffu2\nWCOTKgaenE6nE/Pz81hYWBB0eXNzE9lsduCCPmniDQYDHA4H3njjDVy7dg0+nw/NZhMfffQR/vZv\n/xZHR0dPbXQqBvqn09PTcLlcsNlsT7lf6tjxhFMTybxeL6xWK5xOJxqNBgwGAwKBAOx2O7a3t8VH\nHhSSnPSEVUFVk8mEaDQqh8P6+vrIsOqkFh03qnrvixcvYnl5GXt7e/j444+xt7c3llLrB555IFUq\nFQBAJBIRZRCNRjE7O4vPf/7zcDqdqFar2NzcxN7eHnK5XA9oC5w+3+GFUgrcTAz3aZoGu92O2dlZ\nvPXWW1hZWYHFYkGhUMD6+jpyuZyAV3a7XdDuSqWCcrmMbreLXC7XE9Ycdl+KOtl8Bq/XizfeeAMr\nKyuIRCIS4tza2sIPf/hDvP/++8hmsz2I9iTChezz+XDhwgU4nU6Uy2UcHByg0WgMBS9Puo/VakU8\nHsfrr7+OSCQCTdPw4MEDfO9730MikRBwj8+gntDValUsn/n5eXz88ccjxw0A2u22uFFOpxOBQEDC\nd7TUHA6HLOaDg4OBp+kkmAxFjVJ5PB7Mzs6iVqvh4cOHYqkMkknnimuCwmjV5z73ObTbbdy5cwc/\n/elPR1qmo66tumIM8S4uLmJ1dRXxeBzT09MIBoNoNpsoFotIp9MAIFGdZ3k3ygunFPjVbDZjamoK\nr732Gq5evYrLly+j2+3io48+woMHD5BKpRCJROB2uxEMBuH1etFoNOD1epFOp1EqlVCv13Hjxg0B\nhIYttP4wmMFggN1uF1BzeXkZb731loBn6+vr+Pjjj/HjH/9Y/ObTug0MoTGUBwAbGxsol8vwer2Y\nn59HuVyWZKJJ7uH3+/GNb3wDb7zxBux2O9bX1/GXf/mXWF9fFwvK5XIJWEiz3+v1ol6vI5fLwefz\n4fDwcOg9VAyFyqvb7eLo6Ejeye12w2q1wuv1IhQK4fDwELdu3UKxWBQcheFIbt5JsAX1sx6PB1ev\nXsWXv/xl3L59G7du3ZID4ixEzVdgbsni4iLm5+dx48YNfPe73x1ogU0iPCCmp6exvLyMtbU1LCws\nYHp6GlarFZVKRRT23NwczGazYAqMJP3GYApcFAaDAU6nE5FIRMxXhn+Iztrtdtm4Pp9P3AxGCxwO\nB3Z3d9Fut3vSeQfds18pmEwmuN1uzM/P4+LFi5iZmYHJZEIymUQ+n0cikcCNGzeQSCROdSL0399o\nNApoubOzI5vT7XZjeXlZ7jsOWKoKE2vsdjtarRZ2d3dRKBREIRiNRng8HhgMBgECGftmiKtWq6HV\nao2VhKOecrVaDQcHB6jVaggEAvB6vZidne1xQ6xWqyiSfnxiElH/jiCc3W7H0dGRWC5nKVQKDocD\n8/Pz+OM//mMAwC9/+Uvk8/lTvYMKqNP1pcWWSqVgs9mQyWSgaRpSqZSMqcfjAQBEo1F4vV7J2mw0\nGqfODH2hlIL68PRJCezVajUUi0UcHByI4ohEIhKOYXJOvV5HKBQSt4GLmX/Tv0CoMHjicUEx7EPQ\nr1AoIJPJIJvNYnt7G6lU6imFMKkP15+J1+12kclkkEqlsLy8jFgshkqlAq/X22OCT3J9Anz1el1O\nGOBJBqXVakWj0UCn05H3XlxcxPLyMpxOp8THR923fzPruo5Go4FcLod6vY5arQaXy4VCoSB+r8/n\nQy6XE0WiuhEnJZmNEoJ+TIw6SdGcds7sdjtmZmbwzW9+E1/60pfEamRm5qT34tpjGJyJbIlEAs1m\nE4eHh8jlcjg8PITdbsf8/DxeeeUViRLNzc1hb28PpVKpp/bnNPJCKQWgtxiKZn+5XEapVEIymUSl\nUpGIRKlUgs/nk79jCKhcLmN3dxfr6+tiTo0yR00mk2hpq9UKv9+PWCyGqakpGAwG5HI5qa1gEg6R\nXt6bEz4qLq0uCtUHZt0D89mLxSLC4bCg0Hy+/pDtSQu61WpJXrzX65XsT4/HI1gMLSlaZl/4whdw\n6dIlzM/PI5/PI5vNolgsjmWlqCdTt9tFrVbr+V273Ua9XhfzmEqcY6+6MLzGuMJxsNlscDgcAmyO\no1wmyZykleB2u/HFL34Rv/u7vwuTyYSbN2+iUCgMvKaacTnoPurhYLVaJX2/0+mIG9xoNLC7u4tS\nqQS/349GowGHwwGfzyfp5KFQCH6/H7lc7lShXcoLpRT4Ikzi4MnCSsdms4lGoyELiJmLXAjM/Ds6\nOpKwEDMeh/lZdBUMBgNcLhecTid8Pp9sSqfTiVwuh3g8Dl0/rq04ODiQTaImTY06JdR35CYgQBoK\nhWC321EsFmVCafFww1oslp6CMRUIHbagK5UKNjY2sLq6ik6nI0AmMz81TZOIQTgcxle+8hWJ7nCM\n19fXUSqVRm5QdfGr4WT1nY1GI8rlsuQLMB8jn88LpsG/J3YyySnOU9br9ULTNCQSCYk4jNog/cDh\nKOHnLBYLFhYWcPXqVQDAL37xC9y5cweNRkM+x+v2X3uUYnA6nYjFYvB6vfD5fDIWuVwO6XRaXDnW\nNjDkznR+ppSbzeae532p3QfgyaDRbP30009Rq9UkbZmKQdd1BAIBiTiUSiUkEgmsr69jd3dXTtyT\nYsVGoxFLS0vw+/0AAK/XK+mlAMQ/YwoyJ0dVAPQBxzFVgSfFScFgEG63G1NTU6jX66hWqwI6Li4u\nIhaLiZXDzTYJiFSr1bC7u4sHDx6Im8VM0Hw+j4cPH2JqagqRSASXLl3CtWvX4Pf7Ua/XcXh4iK2t\nLdy9e1dArZOEG0GtWeGYNBoNGI1GZLNZAMfuHJOJWNlKV29SfIHjwxRqq9UKh8OBSqUiZvSz4D68\nBwCxEgKBABqNBj755BN8/PHHyGQyPVGuQdbBqJCoruuSis6iOCbmsd6G6dPBYBBra2vyGVq4rVYL\npVKpRymdxoV4oZSCOnHNZlOSN6rVqmhBxt51XUckEoHNZkOj0cDR0RHu3buHg4MDyf7iiTPq1DEY\nDHjllVewtraGVqsFn88noFu73UYmk4HZbMbW1hZKpRLu378v8XV1EwBPZ2QOej/VJ43FYojH43C7\n3ZJ56fV6sbi4iDfffBPhcBgbGxti7UwKxDWbTWxsbMBgMKDZbGJ5eRlerxerq6uoVqvwer0IBoNY\nWlqCz+eTTM1SqYSNjQ1cv34d+/v7Ey0stTKTY8LaAyL21WpV4vFMCW42mz2FcOMKrRACzMSXaG3x\nADlpXsYRRmsikQhWV1dRLpeRz+cFS+B9CHZyPOgKjbIS+NwsxJuZmRFlEAwGEY1GkclkAECwBK/X\nCwCiDBi1UkHG08gLpRRUYRJNJpNBo9EQsKrb7cLv98Pr9Qr4mE6nsb6+LvUB9PfVjcTTvF+Yp7+0\ntIRIJAJd11EoFLC7u4tsNguDwYBMJoNPPvkEiUQC5XJZXAd1szC2PmqBcaFwc1gsFoTDYUxPT6PR\naEjl5fz8PJxOJ7a2tvDee+/h7t27KJVKE4NvxFfW19flvd566y3k83mEw2FEo1EEg0F4PB60220c\nHh5KduaNGzck6jFJHYdq1ajmLd0lpuVyA9CCsVqtMnZMOhtHVCXLEzwQCMBkMiGbzT4T4NZ/H4vF\ngmAwiJmZGTgcDhgMBuTzeYno8Pn57uppfZK1YDKZxKKy2+3odDrweDwwGo2YnZ2VjW4ymaRQrdPp\nIJ1OY2NjAz/96U8Fc1CzLk8jL6xSAJ4oBp4kDocDZrNZzPn9/X20220UCgU8ePBAsAe1Gq7/NO+X\nZrMpSTeBQEDi9FarFXfu3EE2m8XOzk5PVpxqnvEe3PAn+cG6rotSYepytVpFIBBAKBSC1WpFt9uV\nJJj79++L1XOaCj+CVffv30e5XMbm5iZ8Pp/803Ud+/v7KBaLyGQy2N7eRj6fx+HhoZw6J8kw8JPj\nzlJmr9eLcDiMWq0m7kT/eHI+JlWAjKZcvHgR09PTyOVyPQDps7oPBITdbjemp6cF4yHmxVRtFRfr\n/zrKUiGofnBwAKfTiVAohGazKdE3WsomkwmNRkNqYu7evYtbt25ha2tLUrkJ3v7GRB+AXp+SC4Q+\nPf3xRCKBg4MDAfgqlUpP7Tr905Mq7ur1OtLpND799FNYLBZBxNfX1/GjH/0In3zyCbLZ7Ino+zgT\nwLAoT+VUKoX79+/3VGQylDdOafQ4wjEslUq4d+9ej28MPDnV+iMo3KDjPoMKavHzdBGYl09Skna7\nLSQr+XxeQqbELiZVCFTITqcThUIBt2/fRjqdxtHR0anZtvqFB9T+/j6uX78u0RNyJqj36bdyxhk/\nHjjr6+t49OgRfvSjH0kpusvlklwTHiKFQkFCybSI+/Gm066dF4qOTQVngKfTj1VAyWq1wmq1SiUk\nB0wdGF5HZaEZ9L7hcBgXL14UtP/hw4dIJpOiDF6EMXqeMmzcJ43fq0g+/WSLxQKHw4F4PI75+XnB\nig4PDyXRRlWA/cVR4wgrBpnQxjyHVCp15nNHvIAhcyrRs3JR+PUka/OUMhYd2wulFAZlHaommaoY\nGIqkEuDmJdClKgRVSQyaPJK3cKI7nc5YzEbnMlo4VwQCGS5TowLA0xWOpxlz3gd4EiaehArtt0Re\nPqXQf2L1f1WFIZx+M1s1g1Us4aTTrz8H4FyeTYah3+rvVcviLMZ+kryG31J5eYlbJ4nDn5WcdX78\nb7uMG/47y018rhDORp5bK/pzOZdzeTnlXCmcyzPLIDdv1O8muea5/OrlhXIfThIVZFS/OhwO6R1A\nJPi07sBp8sVfdF9WbWTDRC42HFHBPjWkRiZs/t9JMk4EQ01u4s+DsJyTslBfRBmUzfo8n11NIT/r\ncXrhlYI62OQAIHcCGY+Z6cVOUCwYGRS7HSXcPCoAxp8HfUb9/2GffxGEhWPMk9C042o81uSrtQfV\nalUSfzjuo3Im+hfkqBN+kMIdxc34oo3jIFEjYur7PQ+MalAU7nnc54VVCrQEBhWZqMVH5A9k7Lha\nrUpNObPmTlIMzHtglhp7BfA0bbfbkkjCUBpPU6aVlstlSa9+Fs2t1tSzZJrXZKMP5mqwhmDYvSwW\nizx/t9uVYis2hVlcXMQ777wDi8WCXC6Hhw8f4tatW7KomVTEEB8weKOqi3UQuSu/8t1sNpsod6b3\n0jKhcuK9n1X68ybU741G46lYs/gupLsLh8OYmZmRMn9mF/aHXoGTFd2gtcP7kTJgZmYGq6urCIfD\nAI7Jb1OpFDY2NpDJZJ45pP7CKgXg6VOE5qbNZpMWaCyXLZfLqNfrktrKzTLOoHADdrtdBAIBoerm\nCcp7sbjGarXCZrMhn88LXwH5HYDTnXAs9AoGg7h48aKk1ZZKJWH4Zdms1WpFsViE1WpFJpMZmG3J\n8WLWG6nkSB0fjUaxsrIiGyOVSgk9GlOqOYajTm5aSf3lzwBk47HugYlMbI3GLL1msyljRzIYZkOO\notDjvclHQSuISlQ9ULihaOn5fD60223ppTDJPLFWIxwOY3l5GbOzswCe1L+QUEblvRzXzO9PvFNz\nPJxOJzweD2ZmZrC4uCi9MovFIjqdDnZ2dmCxWHp4LE4jL6xSUAeHA0pt6XA45GRnByOWODOHnNcY\nRzNzobBXH31tNXuNdNoul0vuRR4HfmZ3d3eiBaA+g9lsht/vx+XLl/Gnf/qnks6ay+Wwvb2NcrmM\narUqBWAGg+Gp+v1+UfPx+ZXZhfF4HHa7HQcHB3j48KGkVzebTVit1p7F3O8eDDrJ1HJpdROyUMlu\nt0tX8KmpKXi9Xuj6cS/OcrmMbDaLTCYjrc+oUEaZx7TmgsEgfD6fMEmxKS97c3AeWYfBpjfpdFoO\nmklSyul++f1+WTscO7XLuVp/07+exxEqBLfbDb/fL7UXlUoFBwcHQjvIblRU6Ex9Pq28sEqBovrr\nTJvlSc2TkyYazbdBtOGjrk/CCp5OXNRs7OH1euH3++H3+4V9KZlMSmn39PS0nNzkH5zEWmAJ8ZUr\nV/D7v//7CAaDePToEY6OjnB0dIR6vQ6fzwev1yvU3kdHRyMzADluaoYn2XnYcs9sNuPu3bvY2dkR\nF4NmMSnBTkrzVjcuP9fPIsSqVt6Tbc7YLi6bzaLRaEg+v81mE7dlWM0JFRAtj9nZWSEooQJKpVJC\nIuNwOODxeOD1emE0GnHz5k3k8/mh3J2jRLVMyPJ09+5dAJBx7C/KU8dnEmE6P11alvO3222EQiEE\ng0HpfVKv12Xtq+M06X1feKVA4clFM0rTNFSrVWkZxy5NKodCPwA4TKjVeeLR3221WvB4PLBarcKx\nQHq2XC6HZDKJRqMBn88nrcLHJSRR38tkMmF+fh7vvvsuLl26hJs3b+JHP/qRMDiTAyEajQrjFCtH\nR92rHyAlt9/q6ioWFxeFqerw8FD6M7BVGQlWucGHYQlc+P3jzFPO4/EgEAggGo3CZrOhVCoJYStP\ncJvNhkqlIs11aZ6PqtCkdUa2orW1NenpqWma9HuoVqtCgBsKhTAzM4NEIiHWhNpqbdz5omKLx+PS\nbSuZTAoBi4p5DbKqJgG+2Q/E7XYLXsYDSMVLSqWSVN2e5l6qvDRKgcKJNJvNQs5KJTHIVBs3KsBF\nTGGpLxmNU6mUuA65XA77+/vSDp6nokqDNYkp6nQ68frrr2N5eRmNRgN/9Vd/hd3dXQEHdV2XOnqz\n2YxHjx4JmHSS0lPDuDwpZ2Zm4Ha7kclkkEgkBHOgW+b1elGtVuF0OqXQjNfqB80G3V99d7vdLr4v\ny3rD4bAoqWq1imw2KyFlgsWqWzfonXha22w2RCIRBINBaJom/JyPHj3CnTt3RMF7vV5cu3YNbrcb\nhUJB6iJOomsbdG9d12XN5fP5nsavJJQ5qyIpAOIqkiUbOMZE5ubmpLXh4eHhQGzkN14p8NRqtVqC\nWpOohCd4P1Cjfj9Ka3NzejweRKNRrK6uCghGjgNaJmz4yQlqtVpC8KE2hTlJuLgXFxfxpS99Cbqu\n47PPPsOjR49Qr9dlU/AUD4XIOUsIAAAgAElEQVRCPd2vxlU+dLvC4TCWlpYQDofFbCebELsPkbiD\nCoDKZ5DP3b+ZVAXEUzMYDIrPq/Jr0h8ndT8VAynaGOEZJtzoFy9exMrKSk8/iY2NDRwcHKBUKsFk\nMiEWi8Hv9wswXavVUCgUpMXdpMLojc/nE3o+k8kEr9crTGCD3NfTgH9UfipDtcPhwJtvvolLly6h\n1WohkUgIp4N6r9OGLF8apUDXQWXwAY4nyO/3CxkoP6smyphMpqEVc5wociksLi5icXFRiFo3Nzdh\nNBqFuIInGkM+NOMY7+eiG0cIYH7961+H3+9HMpnEz372MzGbGcJbXl4WwtW9vT3pEj2MTapfWdD3\njUQiuHLlCkKhEHZ2dlCpVDA7O4uZmRkx70lrls/nxQwul8sAIKj2sAQd1XIgkajL5ZIxIlFtLBaT\nhLO9vT3s7e2JUqDVQuUwas5mZmYwNzcn3a/29vbw6NEj7OzsCLO32WzG8vIyXn31VXg8HmSzWWxs\nbAhYOw5uogqVnd/vl43KeQ+Hw091mu4HaSfdpLSKTSaTuLYrKyv4whe+gGAwiFu3bkljHVURsbnu\naeSlSXOm7xkMBqVzMdHkcDgsCoHWBIlDgJPNXKvVCp/Ph7W1NSwuLiIajcopFgqFEAqFpFGtGuO2\nWq3SIToej0tjjnEWGEOOc3NziEajKJfLuHfvHnZ3dwVVt1qtiMViuHTpEtxuN0qlEg4PD8X8HdYf\nsX8hms1mOBwOzM3NIRAISGSjWq1icXERKysrmJubk1M9EAggHo8jEonA7/fLwuw354e9JxUAIzO0\n7oDjpiWxWAx2u11Q9P39fWl7RhOZncOHidPpRDweFzq5TqeDZDIpwCJ98cXFRfzRH/0Rrl27Bl3X\nhcSE+Qk81ccRWkFUdLRW1XAh8CTq86xJbTwISSLMcb1y5Qrm5uZQrVbx4YcfYnt7WyIelGdppvtC\nWwrcgBaLBZFIBCsrK1hbW4PFYsH29jZCoRAuXLiAeDyOarWKUCgEp9OJZrMpSDaByEENRjhhTqcT\n7777LhYWFqDreo/5yQgHOzepKcMzMzMIhUJYWFjA4uIibt++3ROBGCb0p6PRKN588024XC48evQI\nBwcHmJqaQiwWg6ZpCIVCWFtbQyAQwN7eHt5//338/Oc/f4oTcND1KSQCvXDhAmZnZ1Eul1EsFrG9\nvQ2/34+VlRVxiyqVCqrVqgB2ZPzZ2NgQYHAQkNWfIESLgBgNIwQmkwmrq6vQdR03btzA9evXhVdT\n9fENBsPIU07XdYTDYYTDYei6ju3tbVQqFczNzWFlZUWo8t9++21885vfhMPhQDqdxoMHD3D//n2Z\n20KhMLHvr+vHTONsBsTuZIFAQA4mtiYol8syXqdRCAyPVyoVcZfm5ubwzjvvIJVK4bvf/S6uX78+\n0DKdNCFLlWdSCpqmbQEoAegAaOu6/qamaQEA/xnAAoAtAH+i63ruNNdX8xLY13FxcRGtVguVSkV6\n+LErM0/rZDKJo6MjiXsTre8XmuBTU1NwOBxwu924d+8ebt26Jam+9Xpd+lCoQKbL5UK1WpVYMcNu\ndDN4/SHjJmY6T1GLxYLFxUXU63U4HA7UajVZ+I1GA/fv38edO3d62o0PE24suh98PvYhJBBmsVhw\ncHCAg4MDFItFIXT1+/1yAhMPGIRfqC4a34uKgc9gs9kAHOMugUBA+mbcuXNHTnaV2n2cECHRduZv\nMF2b85/P57G6uopr167JptrY2MC//Mu/iAI5Ld2druvCy8ioFUOi5AtVcyVOEwFQx4FWmtvthsfj\nwZUrV+B2u/Hhhx/i008/7XF9VAbp094bOBtL4au6rqeVn/8cwA91Xf8LTdP+/PHP/27Si3JxUSGw\n27PX60Wr1ZLGmzSpNU2TxcwUXQBy4pDnsV+MRiMCgYB0KV5fX8fR0VFPfwdd13uAPYawiCtEo1E4\nHA4BQIHRCsFoNEpSj8lkQqFQEIDK7/cLUj81NQWn04k7d+5IS/p+M3GUqHRoXq9X+kSq8fkHDx5g\nd3dXCFMZ2o3FYmi1WmItqCHe/vtzPBjBYXo4lTexilqtBovFgq2tLRwcHIiCAiD9C8YNIVcqFezv\n78up3Gg04HQ6ZZ4InpZKJdy+fRv/+I//iPX1dSSTSeFbPK2JTStD0zSJTgUCAbRaLQGlh7mu42xU\nKgW73Q6j0Sj9QS5evChr/uc//7koJpWHlIfBs8jzcB++BeD3Hn//HwD8M06pFMjQy+7S3W5XYugs\nhmITGG4uotlcKAT+hvmNBoMBCwsLiEQi0nSmVCr1tIDv7+ugFmb5fD4B1WixnDTprCWgmZxOp2Xj\nEURcW1tDOBxGOp3Gw4cP8dlnn/W0qhtn/IAndHRqAhizCff397G3tycukgpSEfQDMDa7shou5rix\nCIvdt3K5HB48eIB0Oi04grqJmHl40uapVCrY29uTzlqbm5sIBoOIRCIIh8OIRCLodru4e/cuvv/9\n7+OXv/ylsB1TwU2iFFQ0v16vI5/PS/4A+3AyWlUsFnvmapKcGXWNESzUNA0LCwuYnZ2FxWLB7du3\nsbm52ROpOa2rMEieVSnoAP5BO6ZT+z91Xf8OgKiu6+xdngAQPfXFH5v3jD9TAfj9fjidTqyvr+P+\n/fvY398X/42Twf4C7A0xzEfVdR0zMzNiXk9NTcHj8UgvQloEzBXg6RCPxwWci0ajEqYcB/Gln8nG\nocFgEOl0WjCQr3zlKwiFQjCZTDg8PMRHH30khS7jTr6aTcfFSTSejWPb7bZ0FrLZbPB4PAiHw9A0\nTXptMNQ1KHqjLnImAakFTxaLRe5pMplQrVbx6aefSgSFkRz+PZ9RzYsY9r60bBimczqdUpzGnhb3\n7t3D3/3d3+H69evSA0J99kn9bvVveH9muO7t7cFkMomFyejHsEjNKOFpz76bDJebTCbs7Ozg+vXr\nyOVyApKqNR78+utMc/6Kruv7mqZFAPyjpmn31P/UdV1/rDCeEk3Tvg3g28MuTE3O7K1ut4vt7W2p\nfnS73fj444+lG2+n05E29VarFQCk4/KoBrPEB9iSfWZmBvF4XJQKTU0yBTNG7fV6pQltp9PBgwcP\nkEqlTjzl1EVVqVTQaDSQzWYlU41NbwAgkUjgn//5n7GzszORQuC7ctNks1ns7u4iGo3C7/fL+zJv\ngai/w+GAzWaDrutS7EXW5UFFUao7wWgKATGmhpMKnSfsgwcPcHR0JNabeg21kGlU+I6mssoATbeB\nGY5msxk/+clPcP36daTT6aesgtOcrPwbpjGzATBdrkKhgMPDQ1Sr1ZFhyZPuzffjHGracYXs7u4u\ncrkcHj169BQuwjkfVEQ4qTyTUtB1ff/x16Smaf8VwBcAHGmaNq3r+qGmadMAkkP+9jsAvgMAgxSH\nrutSy9DpdHo6J2ezWcRiMWxsbMhkMMGGpxyz40Z1COKgbW9vY21tDS6XCxcvXoSmachms9A0TaIJ\n4XBYqtUYm2a+/meffYbt7W3pOnzSRPA0ZFdogo2lUgl2ux0OhwPlchnvvfcebt++fSouSj4Dn/He\nvXuSBDU7OyuNb3w+n/R4ZDiQCUzr6+vSNm7UyaOeUCzsYmOb6elp2cB7e3ui2MdZzKPGsT+b02Qy\nYXp6WiJC9XodP/zhD5HNZp+qQThNEpH6LHzWWq0Gs9ks7dto/YxqKTCOQuhXtuzv2Wq1cHh42JPO\nTHdDjQT116JMKqdWCpqmOQEYdF0vPf7+vwPwvwL4bwD+NYC/ePz1b097DyoGXdd7EpPYbjuTyUjd\nvYrAclDUzLJRA/Tpp58iFAphZWUFFosFs7OzkhDl9XrlFASOq+FMJhN2d3eRTqelXXsymZQIxbhg\nEnsdMvGJFYztdhuffvopPvjgAxwdHU2c8KKeULSWjo6OcOvWLTQaDVy6dAkXLlyAx+ORGD8VAxvz\nplIpHBwcSPGNet1h9wIg4+TxeBAMBuFwOKBpmlgdxWKxx69XsQReZ5zFzA3D0F0wGMTq6iouX74M\nh8Mh+Q/ELDjm6vgPe6dRomJK7HwViUQk4YoKXFWUp7VKCBATJCZvgnrQqe0MVCvrWTCGZ7EUogD+\n6+MHMgH4v3Vd/4Gmab8E8F80Tfs3ALYB/Mkz3KPHrGw0GpJezEal3PhEbDkYauccXmeQdLtdPHz4\nEK1WC5ubm5II1e120Wg0kEgkRDFkMhmk02lpYksrplKpPAUsnSS0FgwGA9xuN6LRKFwuF6anp1Gr\n1XD//v2h+eyTjh87aO3s7Ei0Zm9vD9PT0wiHw6IEmC7b7XaRzWYFsOUCHGUt9J9wjLDY7XaUSiVU\nq1Xs7e0NTbhSr6N+PUk0TYPb7cbS0hJee+01TE9PQ9M07OzsSILSqPtMsoFo1vOwYtUpQe9kMjkQ\nSzhtWNJkMkmNBTMv1V6m/JxqKahK9bSK4YXq+zDmZ0/s0TAJiMRcCDU2rJq26kDz5/4iGtUHHFcY\nw5+amsLs7CwWFhYQj8dRq9Xw3nvv4eDgoAdMmlRGLUS+q4pyq+PKTU03rN/87r8HT06fz4dgMIjp\n6WnMz89jampKUpmZl8D6FHVT9pvz48wdgU2v14s33ngDb775JmZmZmAymfDJJ5/gJz/5Ce7duzdw\n7AaZ2pMIn5numNfrhaZpyGQyqNVqPdWrp9lfBBrtdruUzAeDQaRSKeTzeaTT6acs4P75HnLfl68Z\nzK9L1OSccZXJswoXFlOQSSlnNpuRz+dRrVbPrA/iSc+hfqVi5IZRwbVRf0/+CafTiUAgAKfTCafT\nKeQpuVxOCp5GKSvg5FNcNeF9Ph8WFhZw6dIlmM1mFItFPHr0SPI6hs3nad0HVbh5mZPRb52eVtS5\nUN1mYjPPkMJ8rhR+VfKsPtyg0/J5K4NRz8KvqmU07LPqBiaXAIlwAAhuQqT8JKtn3LFk3QHZnQKB\nAHRdR7FYlPyH0xYETSpnoWBOurYqz3Cfc6Xwq5LnuSh+HaK+z0luiPp/dENUq4vA77h4i2raj/p8\nf9ae+vlfl0J9CeTlaxv3sspvijKgjOGbDvy/UfwHk977pDE93/jPT16a0ulzOZdz+dXIuVJ4QaTf\nlx/2/8N+/m0RNQTXP2bDxo6fOema53Is5+7DhNIPrp3WdVCTTuhDq8knlP57PWsM+mWX/vi/GkYd\npjjVxLZ+1+hlw4P6o0WUs3SnzpXCGMINy0WlpuZOkmSj/q3arUg9qVg8xOur1G/qxKub4bdB1PFT\nlSilf8MDT2/6QXkWp81V4N8Put/zmhOGQNWwMYAzj7K8tEqBySMulwvhcBhGoxGlUgn5fF7yxFlf\nftLmURFzNX+AFX/T09NYXFyE2WwWhqLt7W1Js2Zs+qR7aZomTEjkhiA9+fT0NFwuF7xer/RDKBQK\n2NrawsOHD7G7u4u9vT2pbqSSOIuyWVUxMf6v5myYTKaeBidnKarCJY2aylVBUTc4OSeZeMZcD3Jm\nMPGKeQMqu7I6xyzT5vWHjSPDn8wb4P11XReGKXYUYwMfNoVR5+e0mY3sxTE1NYXLly/jnXfeQaFQ\nkNT1zc1NFAqFnuY/fKfTyEulFFQ2GqPRiEgkgunpaaytrQk78b1795BKpaRgZlwKb3Xi1M5QJBlZ\nWlqSYqiHDx8ikUg8ZcoOY7xRFQ7bt7Gz0cLCAoLBoLAHBYNBGAwGtNttoVjXNE16Vaot3dTnHlf6\n/W+Vb5KbjNclczSb5FQqlZHXHXYSA71zx+vzfnwGdnPqdDrI5/NCGMtrUchfaTKZpOqTJC/q5mYn\nL6Y7q6xT/TKKb4Pl+ySLcTqd8jsqpMXFRYRCIeRyOezs7PRkg/a7fpMI10w4HMaXvvQlvPXWW5if\nn8fBwYGQ1pCzQi3EehaM5KVRCqp25wn++uuvw+12IxwOS+GPzWabGDhSFYJaYabrx0zGrIVgJSNp\nxFSTfpzQHZ+JDEecPG7Ier2O3d1dSZVlkY3ZbMbKygoajYYstv7rjhP/5+bjpnK73Zibm4Ou6/B4\nPJI9x8rKUqkk9OtqVeKgew3y9VXFYzKZhCDX5/NJ4hHJcEn7xo1sNpt7+Bb6larFYkEgEJBNqp7I\namNek8mEYrEoDFCqpaX2tFCthv73YsEYa1XYvarb7QqbVSwWQzgcFoo7NXX8Wa0ri8WC+fl5vPHG\nG3jttddQKpWkpUGxWBw4D89iPb40SgF44lORVJSDzgw2Vqn154WPO0D9PqGu66KNWYJbKBRkkanV\nfuo1BgkVjq7r0kSVzFGlUgmadlzwlUqlkE6ne5rRuN1u1Ot1TE1NSc+CSU4e1TIg3x/LjC9fvgyL\nxSJWAYvOqtUqMpmM0KZxE42jfHi6Eh8hQ9XCwgJWVlaErYhsWRxzg8GARCKBbreLmzdvDryu6mo0\nGg0EAgExr1k0xB4MJF2ZmpqS99E0TUrE+f1Jqcm6rj/V+4IkPFQYLBcnz+dZMCJRoXq9XiwvL0vb\nvZ2dHayvr0vz4bNyIykvlVKgf+t0OuFyuYRchYtErTXv187j+nP8DP+eJwRPbnZE5mQMuuage/Fn\nnvxsRlqr1ZDJZLC/v49isSiViuwMHYvFsLq6CpfLhVAohGQy2dMybBLlQBN9enoaFy9exOLiIrxe\nr/TEJAsTW9YTL1E347i8CvT1PR4P4vE4Ll26JCQvVAj0+1U+B7oZPp8P29vbQ+eI1aOZTAZ+v1/I\nYXjfZDIJTTtOvQaOGbvz+bwoQLaXo6VyEqELP0MKNNUdqlQqCIVCiMViyGQywlrVDw6fxtdnd+vL\nly9jZmYGlUoFH3/8sdxn0uuNIy+VUuBiI1tuJpOBwWBAIBCQkuph3XkmFRVo40nh8XigaVoPt+Cw\nvx3n2pqmCRV9pVIRLoNisQiLxYJmswmbzYZyuYxgMIhcLgebzSYLetKQGnklg8GgKIStrS1kMhnp\n3ESmJCo94hvcsCcpV7VIyOv1YmlpCa+++ipmZmakOSqVa6VSgclkEldsZ2cHVqsVyWRSLAhV+jEi\nUqGVy2WxNMiVWSqVEIlERIlVKhUx5dkvkx2o+fth79VvcaohTjJzhcNheL1ebG9v4+DgYCS5z7jC\n9R6PxzE/Pw+DwYDNzU08evQIFoulJ0p1lorhpVEKHCA23eCmsdvt4j+qJv2zCDebWsJKDkeVB3LY\nc/Ia6u/UBaWCmfShi8WiuBIMMbGTcKfTQbVaFaS7v8bgpHHj2NlsNkSjUSwtLQk/xN27d6VxbiQS\nQbVahd/vFz4JNQrQb5Wo91fHiyXFFy9exGuvvYZQKASj0YjNzU3s7+/3dMByOBwoFotSdlyr1aRR\nTf8py81LRcWoAN/PYrGIJcfxpTVAnk6LxSLYEwHUcdZMvwWpujxkBK9Wq7hx4wYODw+HpnxPEoHQ\ntGNW6jfeeAM+n0+6nXc6HbhcrpH9P54lAvHSKAXg2JRimXGtVoPD4cDs7CycTicODg56GIhVeRYk\nlj5dJBKRXhLPSnzCZ1JP4EajIacLQ5cEVCkk7+RnCHaddCLxs+yd4XK5UCqVsLu7KydyJBKBx+PB\n4uIiOp0Ocrmc8F+qNOyqDFpwtBLi8TjefPNNhEIhaJom1G4kgiW5bjqdlgY1ZNCiz99/fb63yu1I\n0NHr9cp1XS6XXJ8ANHAM2FEY1Zm0vVo/7sQomNVqxfb2Nj744IOR5eGTbFKj0YjZ2VnMz8/DarUi\nnU4LcbFKiqt2Q1MtyN/4kCQBRqfTKZNNk81isQjINMiUOu3gqHkF3W4XmUxG2qUPk3GQeYbl6JeS\nVVm1INhUlIh9KBTC3t4egCcEI+OajQQY4/E4wuGwkKi2222YzWb4fD4sLi7i1Vdfhcvlwo0bN3D3\n7l3kcjlhLe73j4e9Oy2SqakpAYNJmUfTnUSrBE2JrQDHG5/sRYPGkKFSu90u64H5IXQracmp4Ug2\ntAWO+zYwvEoehElEzXWg9VUsFvHhhx8Kee+wvxtXqLDm5+cRCARQqVSQSCTERSaoOcxyPG0IFHiJ\nlIKmHZObZjIZWK1WBINB/N7v/R6sVityuRxSqdSpCE6H3YsKIRKJYGlpCbOzs7h9+7achACGkqAM\ni9kDx92S2Z8yEolICJUhSvI8Wq1WzM7O4sKFC1hYWICmaeJa0Jc8yYXgSUoLq91u4+joSLCF6elp\nvPbaa1hcXMSVK1fQbrfx3nvv4f79+9jZ2ZE+Cc1mcyQYB/SeoK1WC6lUCg8ePBAr65VXXsHly5dx\n79496dmQTCaRTqefsvCGKXaCkpp2zNpss9lQrVbRbDZRKpWk3wTdEM6Vx+PB9PQ0VldXUSqVcPfu\nXYkAnQZ/4ny5XC584QtfwLe+9S189tlnuHHjxkAL5zRChVOtVrG7uytjajab8fbbb8PhcGB/fx8O\nhwPBYBCffvqpWGHPohCAl0gpUPObTCaUSiVYrVZ0Oh04HA5sbm4KRZUqqttw2omnmUYGZ7vd3hMX\nn2QCSB/GkCAp0RnH533IiMxu0B6PR8JrJPFkBGMcU5HXTSQSwj5Md2VmZgYLCwvCVXnz5k2sr6+L\nQpgEuwDQwwdpNBoRi8UkV4A0+kajEbVaDeVyuSfvYpz78O+Z9UnsgdaiGpJm4hXdBhV3Ip5wGlOb\nypadxRYXF/EP//APkjMw7HqT+vlUsKVSCQBkXayurqJcLst7tVot3L9/v8eFUK8xqbw0SgE4fvla\nrYZsNiub02w248GDB6Ilz1LYx9JsNiORSKDVakmjGPr/6klzEnZhMplgt9sRDAbFJWG7uFqtJiBZ\nMBjE3NwcZmZm4PP5ZBFzkxLQI3o+bAGqsf1ms4lyuYydnR24XC5YLBb4/X688sorcDqd2N3dxfXr\n13Hjxg1pnMKNdVIoEuhNQ2a/jvX1dRQKBaTTaUSjUTidTvh8PjnJ1RTxk0QdW3blJlDLHIp+5mY1\nW5INcJjPwpyLSfEmjqvdbkcsFsOrr76KQCAg/R5U16LfbRy3XkWd43q9jmw2C6/XK/iMx+OReQF6\nW+6NM1cnyUujFGg+crEy5HVwcIDPPvvsqTxz/s2gQplxhXF2UoZzkzgcDmGS5gKg8OdhgCcz+mw2\nm/Qh7Ha7knPR7XYlP8HtdgsISaXB9Ger1Sr3H4ZjcNHwWdg/kUk/rL1IJBL4/ve/jw8++ACJRKIH\nSO0Pw40SPgtrF+i38/culwuzs7PSsVnFgPr94WFCbMnj8aBWq4k1QJBRfXc27/F4PAJi7u/vS7et\nQV2vTno/FbR97bXXMD8/j2QyKUlX3KzqO3AemBk7zn25udPptBwUDEWrqe71eh2Hh4cClp6F6/JS\nKQVuPqfTieXlZbRaLdy4cUMQ8kEDMmmsWA3hOZ1OOBwOARlzuZyYqf0M0P0hx0GihjcDgQDsdruE\nmFqtFpxOp7SH9/l8MBgMkqVZKBRQq9Xg9XqlgQxz3YdhGP2ItIqYz87O4hvf+AbK5TJ++tOf4oc/\n/CGSyeRTXYzHBTR5L25ago4EDhkGBCDdsFQrZ1wznkp5amqqpykKcx6AJ3MeCAQQi8UQj8fh8/kk\nQYzgJw8adYxGvR/Hw+12Y3FxERcuXECj0cDm5ibK5bLk0KjJTuqJzuc/SfgsbBhUq9XEEmLildvt\nFms1lUqJlfKseALwEikFCotgFhcXsbGxgbt3747k9z+NUCmYzWZBybnomDRCs5yTPI4ZTPCSjVKs\nVitsNpswILtcLqFJ52IoFAqoVCrC7syFoWbUjSrmoanNRe10OnHhwgX84R/+IV599VX84Ac/wF//\n9V/j8PDwqXfgphlnbGlFMblKHUeOUSgUQrfbxcHBgUQI+u836vqq4mGvTboPzEfghmI9wvLyMux2\nO3K5HCqVCjKZjFS60jIbJ1OTc83IysLCgoCamUxGwGFGVtQO2lRSTI0eZyxpCdD9qlarcDgcAjYC\nEHyNkZ2zUAjAS6QU1EUdCoXg8Xjw4x//WCoiz0opcCGzgq9er4uZGo1GoevHnaFVcLC/f+SoZ6FW\nZ+WbwWDA/Py8/L3X65VEm4ODA0nkASAt8giSnWQF8aRyOp3SmCUajeJrX/salpaWoGka/uZv/gb7\n+/sDk23GrTClcMyYM6BpmpQUx+NxTE9PI5FIIJVKjVVHoUq/T85OXfF4HDabTRq7ckP6fD5cuXIF\nRqMR9Xod6XQau7u70hGaLgdP9HEsBYYfI5EIIpGIzGUmk4HFYpG/Z1csXdfF3aUiH8dypVIAgHK5\njKOjI+zs7EiKOHEuUgVQzqqs/aVQClwQnJTl5WV4PB6pVjxrK4H3YjiPOIDL5UIikejJgmMe/Ekn\nHjcX483hcBiBQEDy9lltV6/XsbGxgYODA6mD4MKlxcDGtMDohcDFxfZmMzMzeOONN6S/44cffoiN\njY2hyTunQcttNhtsNhtcLpeg5YFAQOLtv/jFL0QpTCKqadztdpHP5zEzMwObzSaJXswhYcFcq9VC\nIpFAJpORRCyGDNV/w8KtaiIQrQTWcvBQYI8O/lMzQKlsmKQ2DsX9oPdNp9PY29uTbN5oNCody5PJ\n5IldtyaVl0IpcGIcDgcikQjm5uagaccdeSY9cU4SThxNS+IK0WhUugqrbef7q+GGKQQVfLt//75k\n2sXjcRgMBkxNTUHXj7s9v/fee0gkEiiVSrKIWMHInAGeQKPMe26gTqcDu92O2dlZ6Wh969Yt/PjH\nPx4Jep1mXIklkAAnGAxKaLVUKuHRo0dPdWUeR7hBCbzmcjmJ0bOXJBPAaCExdl8qlXqaEPdv2mHP\noWIxajSn2WyiWq2KFZlOp5FOp59qMKzya3CdThIZoKWRy+WkYIxl9oeHh9jY2JCxPIv8BHnvs9xQ\np36IMfo+EFyZm5vD9PQ0Go0G3n///TPXko+fR9wIZhUydMhy1X5WoJOuxwWtnr6qf3nSAlWLkfo5\nH4YJIzTT09O4evUqlpeX0W63cefOHfziF78YmaM/iXC8HA6H5GBcu3YN0WgUU1NTMJlMktzzwQcf\nnEqRc9zIBUFMgW4RlUcFZS0AACAASURBVBsVb7VaRblc7jm5qTDUMQRGg5xqLgOzNWl5Mf+CuQT9\n3BqTWlqj3p3At9/vRzQaRavVkuSvCayQ36y+DwwhbW9v4+joSFqQnbVCAJ5sNsazgaeLmia9HgAB\ntfjzJBtSVRrj+vmMp5MmjLH0u3fvIp1On9nYqe/HecrlcoIhkFbu4ODgmSpYOSedTkcqZBlxUPkO\nVNdulAId5znUMeJ60DRNemIO+twk1x9HiEmw+1UymZTnOUsLgfLSWAqPP/dUttaL8PyTyLOeHsPC\nj4OuR98aOOYnoN9NHsuzHjsi7jabDTMzM4hEIlKsxvqGZDJ5qvuq70gfXy0MUyMIdB/UYjF1rain\n//M4VJ63TJqBqch527gXUc7CpJxkUTC2robHmONw1nNPpa3G9MkhSIvrtMzD/VZSfx6GeliwRoJu\nQv+Yq+7CKNfhN1B+s9yH3xQ5i8U3yTXGKa0+K1FPY57ajJKcxbUHfR0m41R0Dvr+XM47RJ3LuZxL\nn/zWWwqDzHnVVFX92EGf6b+WauL2f56/67+u+tmT3ItRf8vfDbqXal4Pevb+9xz07vTFX0Y//FzG\nl996pdDvp1LUlFr1d6rPDDyp/e/3T/sjBP0bmSXA3GDqfQZtWDWc1l+P0L/J1bi6+v04uQHq5h+k\nSF40U/tXiQf0K8pBUaD+OTmrZ+ufi/7+GWpI8lnv+VIqhX7gDDibWPCgk7B/M6sgGidGDYUNy0Hv\nX1D9SoApt+o79T+DKmrK7ygLZtjnRkn/mPYXfb1oMsqiO8t7qHKS1fisCmGYJUrqfBXEZU2MaiE+\nS/7JC6sU2IqLSUtra2u4evUqPv/5z8Pn88HtdiOVSuHu3bv46KOP8LOf/QyJRGIkP54q/UlEVAaD\nEG4VSSeLEdmf6vU6PB4PdP1JWW65XB5Yxs0klH70X1UyLLoies4J50lA4JCFUEyj7b8Pr6taCyaT\nqSdsd9LY8KvauGYUfwMzClmyHA6HJU+/2+3C5XIJQSs5GZvNJiqVSg8gehL1m6ZpEmpVU9JZwMb3\nI4HLsH6c/etgmKi5JcyNINcGqeXZ4IekOUx0I/UdMyFPKrziqc/vWZhns9kQiUQQDofx+uuvIxAI\nCMnMzs4O9vf3USqVkMlk0O12Je36NNwKJyoFTdP+PYA/AJDUdf2Vx78LAPjPABYAbAH4E13Xc9rx\nCP9vAL4JoArgf9R1/cbETwUIIaXZbMbc3BxWV1dx7do14RlkJlun00E2m8Vnn302cdpzf2iqf0OR\neYn8BXa7HQ6HQ6oZNe2YFqzRaAh5iFruOkhURmK2ayO3QiAQgNPplA3Menmm9VYqFaEZUxe/eqr0\nL2CWMXNMgSdJU6pl0q8Q+f+M/5+EJbDwyuPxYG5uDsFgEH6/X8qWOV8HBwdoNBrSoyORSODw8BDZ\nbFbSuPsLzAatDWY0kguS1Zkkwq1Wq8hms6hUKkIMO6wnyChRFSQzKFl/wP6frNa0Wq1C/18qlZDL\n5ZBMJqWm5aRxVPMm1AOJPKF+vx/z8/OYmZlBIBBAq9XC0dGRPFOhUJCuW6xOfS5KAcD/BeB/B/Af\nld/9OYAf6rr+F5qm/fnjn/8dgP8ewOrjf18E8H88/jqxMLZttVpRq9WEk4+KgIupUChIbcL+/r6U\nkZ4kg3y/fheByT+sn6dioDntdrtFOei6Dp/PJ01IBpXj8sRViVndbjdisRhCoZBsHjZKsVqtaDab\nODo6wtHREfb396HrunQ3UvGC/nx+o9EoKdpUDCS85TOolaDkPmTdAklda7Ua8vm8MD+x6lAVPoPZ\nbEYgEEAwGMT09LRwGbCYi0rT6XQiHo+j0+lgYWEBd+/exaNHj3r4HIblD/DkZE1FPB5HKBQSajKW\nR3PjVqtV7O/vi5XDZzjJ7eLv1LmjdRCJRLC6uoqlpSXJGGVSVqfTQbFYFBLZdrvd03dUxXr67zXI\nsuQ7ezwe+P1+OBwOpNNpqdBUi61oIbCuRsUbJpETlYKu6z/RNG2h79ffAvB7j7//DwD+GcdK4VsA\n/qN+/HY/1zTNp2natK7rhxM91fF9pWTZYDCI5i2VStB1XYqSuHljsRi2trZQLBbH5jboB4M4Edws\nPL1XV1dx+fJl6LqOUqmEVCoFTTtuCsNKR1opg+rlVVCKm8doNMLtdiMej2NhYQGzs7Nwu90wGo1I\npVJSt9DpdGST0lqgOQqgB4vg9al86IY4HA6Ew2EAEPMWeNKol9YFu17z+Vivf/v2bRwdHQklXf+7\ncexarRby+TwikYh8z8a4tVoNJpMJiUQCHo8HU1NTiEQi0smbp+pJbgMrSv1+P4DjMmV2gK7ValKB\naTKZhIgnEokAgLgT3LzqWhsEGqqi67psztnZWayurkobv6OjIzx69EjcSo55Pp+XzTpqTY6yilRe\nUDJX37p1S9Yp2bvYf5TUfeOwbw+T02IKUWWjJwBEH38fB7CrfG7v8e8mVgpqP4S9vT3EYjHs7+8j\nl8uhUChgZ2cHuq7j0qVL0twzHo9jb29vYheCws1L33Bubg7Xrl3D2toarFYrtra2UC6XkUqlxFwm\nqSb9/HK5PFAxcKNSSLYyNzeHhYUFcYnIIsXT0Ol0wmKxYHt7+ymfnqf7IFBJVWxutxs2m03cE2Ij\nZrNZ/HlSoIdCIei6LlRwlUpFSD5I+T5o/MiwxGdJpVLwer0oFApCGML/Zwp0MBgEAGErAvDUZu0f\nQzaFLZVKMBqNgiNVq1XhVKjX69A0DYuLi/Lue3t72NzcHDhOo4DhfveBh8Ts7Cza7Ta2trZw+/Zt\nJBIJ8fm9Xq9YZrQYR0UjRikLrkWv1wur1Sr9PVUlTko/lZaOz34axfDMQKOu67p2ijRlTdO+DeDb\nI64rL1oqlbC5uYlu95jNuFqtolgsCnDmdruFN2Acuiv1Ho+fRb7StJ+ZmcHbb7+Nt956SwhdHj58\niMPDQ5TLZelRWCwWYbfbxR+mtu6faNX35+lM0FEt6snn88hkMojFYvB6vfD7/WIZqO3R+FV9fn7P\nn7khPB4PwuEw/H6/sDxRIXBxEeBsNptipoZCIZRKJXEx6HIMEwKiyWQSuVwOQG9vi06nI41Yl5eX\nEQ6HpU1euVzuqccYhei3223h0shms9A0TdrQcVMYDAZcvnwZ8/PzyOfzskkmYXtSx5Sbk/wQzWYT\nOzs7uHHjBjY2NoRUl24hSVeILanvNclG1XUdDocDTqcTnU5H1gdL+okdkHdDdRlOsn6GyWmVwhHd\nAk3TpgEkH/9+H8Cs8rmZx797SnRd/w6A7wCjax9o6rF5CVHseDyOqakprK2tweVyIZvNCuPNML9t\nkKif58TH43G8++67ePvttxEIBLC/v48PP/xQqgy50B0Oh6DK9HWJBwzzT2myk4gkFArB4XDAbrfj\n6OgI6XQa+Xweq6urgjNsb29Lp2kVMxgUwlQjDlw4LpcLVqtVFhg3LiMAKt260+kUIhueQPl8Xghf\nhy1ozhO/kvdBpa0zm824du0a/uAP/gBra2toNBr45JNPpPJ10Lj1vxep/qlI+Dzkq6DFZjAYkE6n\nBQNiz85B+BGff9Da4L1JjT8/Py+RjwcPHmB7e1sOKCoGn88nwGk/2/e4FixFLQ8nSS3dEzaDoavA\nyJt6cEx6P+D0SuG/AfjXAP7i8de/VX7/bzVN+084BhgLp8ETKHwpml8ulwuxWAydTkdM0FAohHq9\nLpRlNptNQl0niaoQ6J9NTU3h7bffxle/+lUEg0Hs7e3hJz/5CdbX1yUWbDabhe2HYTi1l8AgUcum\nWQ9AU9nhcKBer6NUKiGdTkvXJtKSk8CDJymjCGazeSA/ZafTgcVikU1OSneChEdHR8hms2Jx8flb\nrRZcLhf8fr/wAzabTaRSqR5Ow2FzxXvzPam4zGazUMH92Z/9GZaWllAul/HgwQPcvHkT9+7dOzEy\noK6DVqslSLsavlPfX9OOiWgajQYKhYJwK/RXTY6Tg0E8we/3w+v1IhAIiDKgVUjf32azCYZQLpd7\nSFAYGRhXGHkgSSsPnkAgIK4gDyFiTbzXpO3wVBknJPn/4BhUDGmatgfgf8GxMvgvmqb9GwDbAP7k\n8cf/XxyHI9dxHJL8n071VIpwslSe/ng8Lj0fdP0JZyKpt8vl8li4AhcF486hUAivv/46vv71ryMa\njSKdTuODDz7A7du3Rcnw1OApzIXZ7XbltBhGmMKTvh/oA4B8Pi/+N6nZaH7u7e3J5icI2H/a9W/K\nbrcrLD1McKlUKkgmk3Lyc9OwWxK7V9FdIA07AcOTEmJUP1btt+D1ejEzMyNdosrlMra3t3Hv3j3c\nv39fiEpUwHfYtdX35Aan+0UlxHAvIwGZTEYiKIPculHrRI2stNttUa6NRkMUQbPZlFYAxGKoVNX3\nOg0vJRUJoxnEF8LhsADBdJ1UJrBRXdFPknGiD/9qyH+9O+CzOoD/+VRPMvz+koiSSCQkRNhutyV5\niEzI8/PzuHr1Kr73ve/h/v37Pd2HBl1XdQNWVlbw5S9/Ge+++y7i8TiSyST+6Z/+CR999BGazSYu\nX74sCsBisSAUCmFmZkYWH3n0BvWzVDcwN4zNZhPi11wuB4PBAJfLJe5QNBqFwWDAo0ePUKvVcOHC\nBUHTO52OcBTQreh/N46bw+EQTEalAQeegJ+6fkwYGwwGsby8jEgkgnK5jM3NTem+NWosKaobZrVa\nEQgEEI1Gsba2hqWlJSwsLMi8HB0doVgswmKx9Gz2k07sfpeJCpBku7TivF4v4vG4KLVSqfRUctAo\nend1faiJZZlMBjs7O2i325ifn0csFhP6emI4/VR9k1aqqmNIhVetVqFpmrQxBI7Dr0dHR5IXQ9Kh\ncaIpo+SFzWik8ORhaKtcLmN/fx/dbhe7u7uIRqPSr9Dlcknr7kwmg2QyKX4eMDw11eVyYWpqCleu\nXJEuPK1WS1qMe71eYVluNpviZng8HjHVdnd3BckfhWQTrOPPNNutVisikQiazSa8Xi/sdrskvDAK\nUalUYDQaUa1WUSgUUCwWn3JX+q0ftlFjOJMLjX9H/5vh0enpaWE2SiQSwg2obsL+/It+wJPKgS4W\n+yEyasPWd8FgEF6vt6dB6kl+dz9QpypAPofVapXkou3tbQAQZaHWCPSzWQ1SDFScxDIODg7EbPf5\nfGi1WpJfUqvVxHpV3RrVghoVaVC/pyJyuVyw2+1iJRI4LpfLojhUq+lZlAHlhVcKwBN/Mp/PC8Nx\nrVaTBbe6ugqbzSaTs7y8jE8++UT4FAE8tZB5XQ62z+eT/gg0/XRdlxRmh8OBXC6HarWKcDgMt9st\nAB6bpQ7qUsX7qIuOmZI0QwGI1cAuSoFAAEdHR6L9uTBognLTq8Ai8GTTqCE+LmgCgExCYg8Lm82G\n2dlZzM3NweVyCQDJiAqvy8XeLyqRi5pRyd6KzFEoFotwOp1YW1vDhQv/P3tvFhtZlp6JfTcy9n1f\nuJOZZO5ZmVVd1VL1dEktoQXZMCBYEAbzYnuMgeWHGRiG5sHjebEf58ELBjAwgAwbtgDD4wFsQAN3\nqxs9ltSNBrr2NTfuW6yMfSUZJOP6gfn9eeLmjY2Z1c0q5Q8QQQYj7nLuOf/51+9bQTQaFYXHkuBh\ngb9R79O3j8ViuHnzZp/lwMyKWgk6irPDGLRrtVpShenz+YTYR+X6ZB2F3++X+TSOqAqRi93v98Pv\n9yMQCAhyFhUDC9vU52E810WCjMAlVwrq7sEfVjrS9Ox0OsKgw8VAUzifz0sgzTih1YXKqjDW5He7\nXezs7KBcLkvOO5vN4vDwED6fry+iTwbldDo9tokNQCL+jUYDh4eHgkZME5Rmbz6fx97enviNXDjN\nZlNMSjOh62C1WuVzVCqMS5yensLv92NmZgZXr14VfstarYb9/f0XIvaAuaVAa8PpdPaR0p6enopF\nQ/N2ZmYGjUZDFiSLfbjDTuJ3q+lXKkrGL1isRUXNoDAACdiy2Iz8koPGUQ0QVyoVHB0dYW5uTuor\ncrkcGo2GUP2x4lRNkY+TCVAVAhUBlQ7rRzqdTl9xGqnpOZ+5Ri5SyUi59EpBNTeTySRmZ2dlAtJ0\nD4VCUh7MQWMQcNDgqJOJMN21Wg25XE4WLCvtGN0livDi4iI8Ho+QdBAIdVBwR93Jab5SsW1tbSEa\njeLg4EAi9A8ePECtVpNg3NbWljS6qAVLrLM3Ox8LbRwOh/BO8hoYJXc4HLh27Rpu3LiBVCol2Y/t\n7W0Ui0WpRDSm8YxCliuyWasWCRuCODYkZo3FYrIQyWLFgjVjPGbQ3ACepypp8UQiEcRiMYnzcI7w\nh2PIc7Fke9gioqXKrAf5HtxuN1qtFtLpNLrdLuLxuJj8VCZqNeM4AU0GZ2OxGGKxGFKpFNxuN05O\nTtBqtVCr1RAMBgFA3EtamypupepOTJwGnejTvwHhAp+dncW9e/fE3wbOB8XtdmNmZkY0KYtg+MNd\nbdhDbzabyOVy+Pjjj3Ht2jXYbDZREuVyGc1mU6oPV1ZWpIAqnU7jyZMnEk8Y1HyiWiWsuahUKlL9\nmE6nYbPZMD8/j1AohOPjY5TLZayurmJ3dxf5fF52PAaeeCz+bjwXxy6ZTEonH8umdV0Xd+nWrVtI\nJpM4PT0VLgF2ezLNpZrXZhPMarUiHo9jenpavtNsNkWp0D92Op24desWHjx4gGQyibW1NRwfH0uV\norEnYZxFpNaX0NxWLRYqNe1ZYREbzbgr81jDFAKtF2YBgHMLJ5PJoFarIZPJIBKJ4ODgAMlkso8S\nT72fcRaoWl4/PT2NcDgsBMMM+PKZlEqlFwra1JSrUcGOK5daKfAmrVYrEomEdEuGQiF4vV5Uq1Vh\nWGLTzcnJCfb398XcH/Qg1MXT7XaRzWbFLPf5fMLCxB1oYWFBzs1qto2NDWSz2YEBRoq6w6rlqNwp\nGbTqdrvweDyoVCpIp9PY3d2VSDaPwx1ukP+tRufr9TpmZ2eRSCTgcDgkTsAFwjoPANje3saXX36J\ndDotbhMLxoYFAOm3z8zMYHFxEcViEX6/H7lcDvv7+xJnYMbmhz/8obgQ1WoVhUKhzwQetoCMBUfA\n8+5MWgms76DVyGOyyIcFQMzjs3R6mKhFUcwWOZ1OVCoVqeWgC8WGJJXncpQY5wfw3PrS9fOK01wu\nJ2373W5Xzk3XkNbPOG7KKLnUSgE4DwJxF6Z5PTMzA5vNhkQiIZ1hlUoFW1tbePz4MT744ANhBFKj\n04OELkSxWJRz0jez2+1SQckgXKlUwqNHj5DJZKS2wKihjfELVdTPcrey2+1SHKPrulgox8fH0t1o\nBmEO9C8gVdnVajVks1mkUimEQiE0m03pcaD/vba2hnq9Lk1PLLihMuC9DYvQs1oymUzi5s2bQsar\naRr8fj96vR4SiQTm5+cRCASQz+fx+PFjfPjhh9jY2EC1Wh2ric3owlDZkPQ1FotJnQW7CVmJqZra\nFzGvjXGVZrPZR/TKylSLxYJardZXTKSWsQ86tvp6dnaGer0OTdPEKk4mkzg5OcHx8bFwPxQKBVF8\nnLNqzOdbGWjkYm42m3j48CEikQii0Sii0ag8kEqlgtXVVWxtbWF9fR0bGxvY3t4WRWI04SjGXZY+\nGwAJTDGqzmYfVjUS1II+vZqyGzbJjItX3cXIWRmNRgVHQQ2kqbs18RRURWF2jmaziWw2C4vFgkQi\ngWg02sdcXalUsLOzg93dXeRyOWksUkuH6bMPiieomaF6vY65uTmhiSP1nd1uRzgcxtnZGR4+fIj1\n9XUpEeYYqsp0mDmvfkYFIGHjF4vK2CBFMhoqBZZD0y1QMxKjhAry+PhYYjssP15YWEAkEpG5QGXE\nOTzKJVJjTizjJsHwzMyMWAOapiGTyYhFR2vE6DrwWBeRbxTvg+pD8pULy9hdN6pSTT0eJxmPycAX\nJxuj9awMJJU5J5Ox/HeY2WsM2lEhhMNhXL9+HYuLi7BYLEIyWywWJZDEBcGgnVmhlJqrv3r1KkKh\nECKRCPx+P4LBoFT4sXR6b2+vL3PD3YaijuugBUtG7uXlZVgsFsGYsNlsAjiyv78vHa4qZsKgMRsk\ndFeosNxut7gM09PTiEQislA2NzelR4LPitWGvIZJK//UGgKPxyMu2NLSEjweD3q9Hra2tlAoFFAu\nl/syOKNcTGOchClIdSypNDjnBnWVDjjPazKYEeccGFHng+EEpDnKsmAV2MIog8xso2Lg72pzVCQS\nQTKZhN1uRz6fl5SqipRE14EWinpe43mSySTm5uYkvXV0dIR6vS4BVKY5VTfLeO1UEMOKl3g+9oGo\nVpDqfryqucZnoy4ev98vCpzPjaA7KgwaLRIAA6Hlxjk/LRUS6QYCgb7Saqa2VbdolPIZNBf5yudj\ntAgmkNdKYcQ5+5SCcRzUKj3mnGmRGBcRP6cG/4zHNDufcWdg2sxut/eZtqprwu8PmtAqbgNhy1QE\nJgapWDegRteNC1cFpjW6PpOM8dch6niquzd/NE2THdW4m6pR+Ze5PjUtqvbAAM97KlQlOcl9fU3y\nmiFqmBgDc0YtbZw0qu9GMZYYqxPVLCBnjA/wd+B5VoKxBLPrUxfuoCi9+nuv15PCIVY/qru2epxB\n12e8L+M5hsnXveGYRe1HYTBeRLkNEjUwOOicxo1i3GP+JuXvrFJQZZwHYZa2GhU0GvT+pA9+2OeN\n/1MnJ+MOk55n0vv6TYiZIrxoYO1VyCTP6LLLa9q41/JaXkufXCpLYVDwb1hA8KK7rlngb9C51c8b\nzfZhpiE/y6CY2bUPcjmM/zO7HtW1MMK2mx13mHsz6P7V6+Vnvmk736SixpOMcSGgvxaF8YxBRUqD\nnvNv0qoZJZdKKQDmEVhjuab6GQaYuDiIfMyKwUEL3iwIaPa/Qe8ZfXCzBW32fX6WFXBGPAC1AYfR\nbE46NR+tojibXdug845a1MZAnDFQ9jUHwiYSYxCYxUyapglepjFuMmnAj2OsAriwMlKN9agBXnXh\nqwrkVYpRcb3K4186pUDhzZopBLOoMwEsSd7CeoODgwOBajMef9A5xxXjZwfh4hmDipqmSfGVqhjU\nnYT3w048tTyaE1LX9YHpQbPfx703Y83Fq4rWv2phNSPTg6xbICp2o9GQsVNTo6PEOGZUNuoiH2bl\nqZWnPIaqUCYJPBqFzYBsmjo9PZXmtXEar8aRS6kU1FSP0Xw3/p/98pwMyWRScOtYu6+SY5jJRSe8\nmlLkxBxUYqpG9Fn2qioE1kOote/M+7Pc+vT0VPLugxSCcYzUa3mZXf5lgEC/DmHqkYrB6XQK4E61\nWsXh4aGgVQPPa0KA8QKq6udpfbAVutvtSj0Ey7lJqMMCI7p0ZinKiwoVSyAQwNtvv41bt26hWCxi\nZ2cHn3/+uWA6qKnRi8ilVAqAefUfrQLuCGyASaVSAkZBM45IxA8fPoTL5cLe3p4pGvEgv9GY+ybe\nIbHyWDDj8Xikq+3JkycolUoolUovsCjxPrj4OclIZhIKhaRGwel0ihLgBFOx/a1Wq/Tws2LOTFTe\nSvX+1ApO9T1ep3F8+MqJPokJfhFR07SD/h8Oh2G1WnH9+nXMzs4iFosJQxdRq3RdlzHudrsolUpo\nt9t9bsWwVndabF6vF5qmSVt2IpEQoB0iKpfLZYGZa7fbKBaLKJfL6HQ6Ui9BFKxxmqTMromb3p/9\n2Z9hYWEBBwcHaLfbAjWnuoffGjwFVQGYLV4K0YHn5+cxPz+PcDgslX5EvwWAfD4vQCgApG1WPZe6\nk6g/6k7k9Xpx7do1QfIlcCvbdFOplICXfPjhh32IQ+q5aPafnZ0JRiNxCMLhsJTsnpyc4OjoCC6X\n6wUwV5vNhmazCbfbLQAyg4BPWCJLE5vvc6z4Hs1OuixURpzAaq5dxSBQnw0notoroQZY+R5LxtmC\nTHQnY5UovztoAXW7XWlCisfjgh1htVpRKpWEKYzHZFUq/x6WquWcUKHYWEodj8exsLCARCIhGB6s\nL/H5fHA4HCgWi+Ie2u12IfhRx3BSxcANaWlpCcFgEJlMBqurq/jiiy+EXFYte34Zi+5SKQVOHLWC\nzug2cEGGQiE8ePBAFhFr6gnWwXZa7shm5wL6lYOKbUjwT/JIvvvuuwiFQn09B1QIyWRSOC+Jb6ju\n3lQIav29ruuC4BSNRpFIJATXIJ1OCx9Dp9ORuAKVFM1ZNfionosLinBrhHn3+/04OTkRMBS6LVR8\nXq9XxpCIVtyNdF1HPp83VQjAc/Qljh1RjclIRci7u3fvCigtUaSz2SxyuZwgOxuDxGbC/9FC1DQN\nhUIBm5ubSKfTokw1TUOr1RIFqcYHhjVCqUFeSjKZxNLSEubn52XjIa8jkcDOzs5kfOPxODTtvLKy\nVqvJdV9kwVosFvj9fty9exePHj3CxsYGNjY2UCwWUa1WJybOHSaXSikA5v6eGlgkBt+1a9cQi8UE\njYYsQM1mEwsLC/JA6aezEWaQqLubw+EQhl+iKJMo9eTkROjJrFYrpqampIyYiD/stTe7N0aq6YbE\n43EsLi4KulSj0UCxWESlUpFWWVoV5IdQG3o4edX74C5FXD8yRNHVcblcsnsSa4G9A+QrODo6wu7u\nLnw+H8rlMjRNkw5R47jxWdEKICt3OBxGMpkUszsQCOD69evSMXl8fIxisYirV6/iF7/4RR/Uu9Vq\nRb1eHzpXVLJZh8OBtbU17O/vo9ls9kGiMRZA3A2C24yDykWF7vF4EAwGBTWq0+mIEmI3YzAYFJeS\nWAi9Xk9IkAcxkY8jTqcTd+7cQSqVwk9/+lOsra1JVyutnlcV77l0SmGQUMMnEgksLS0JoMfe3p5A\np1ksFszPz6PZbAopJ1NTDBqZCZUBd7lQKIREIoG3334bCwsLCIVCqFarqFQqqNVqEtlOJBKCqguc\n4xeYZTtUa4dxCtKyRSIRuN1uOJ1OHB4eYmtrCxsbGwLKSQzBQCAgqM+kyVODYcax4s7CyRwKhQRs\nlvELkuMGg0F4yUC/IAAAIABJREFUvV6cnp5KM082m8Xs7KyQ/NJaGZS1UbtL3W43pqenkUgkcP/+\nfSQSCfh8PthsNsRisb4cfzKZRLPZRCqVwt7eHhwOh7hfZvEeVQGR4VrXdezt7WFnZ0cU9snJiezc\nnAsEzGGmQu10VcWYxiQoMJUsSWU3Njbw8OFDVKtViftwrnm9Xly5cgXtdhvhcFjwKYxKfBzRNA2h\nUAhvvfUWfD6fWFRqjOdbnZI0ZhtUH9/n82Fubk4mwvb2NtLptOAghEIhtFotpFIpAM/7FRjtV0UN\nrtGXttls8Pv9iEQiePfdd3Hnzh1YrVa02218+eWX6HQ6QgFOH7Fer8tOsL6+LnRhZkLF5vP5kEgk\nsPCsBz8QCOD09BSbm5vY2trq42Gky8Br5m4ej8cFhEUVuikMVrK5ipYTFUOr1UKpVEIkEpEeCUbt\nSWJaKpWESIUBs2HpYZvNJl2DPp8PKysrwr1AqHgiFZGzkghJhL+jJWQW0FTnBmncIpEInE6nBPYY\nSKTSYft7LBaThrBoNCp4nLlc7gWT3tgMR8j4eDwuqFwHBwfY2tpCpVJBo9GA0+mUueT3+8USZBaE\njNSj3BYzsdlsuHHjhmyE3ADp8r5quXRKQRU14BcIBHDz5k0sLS0hEAjg6OgI+/v7qFQq6PV6Erji\nQ2TrKt8bhHmgPnji4t28eRO3b9+G0+lEvV6XBcLotapMiMJTKBSwtraGfD4vaVCjqFiF8XhczFFN\nO0eL3t3dRbFY7CMpoVXBOIpq9hLz35gj52IlRmIoFBJTPBqNCmO32+3Gzs4OvF6vRLFzuZxQy7Xb\nbaFcI7q0Wbs2JyhJUWj++/1+oZhvNpvyfZfLBa/Xi1QqBV3XsbGxgXQ6Lc1bZrESo6i4kLTyGOWn\n5UcUZILtdjod2Gw2FItFdLtdRCIRlEqlsSgGvV6vBCqPj48FJo+bCQPBVA6apokbQUXucDiGInCb\niaZpCAQCWFpagq7r2N/fl7gXXTozXI2XST9fSqWgBstsNpuQtSwvL2N6elpQfhgAY9rI7/cLxDZ9\nOZr66mIxCgNhPp9P4gherxeHh4eoVquo1WqyODn4PF+328Xu7i6Oj49ll6epaLbTeTwe+Hw+IZkh\nrXqhUEC1WpU0GuMFLpdLshJOpxPHx8eC/MN7MqtJIIM1kYEIQ5bP59FqtSRtVyqVxM2iNUBXqdls\nwmKxiPUzLK+vZiuYUahWqyiVSnIs7qiqz53P57G7uyspY+A5e/UwCYfDmJqakoAlx4KbiMViQSgU\nQiwWw8zMDILBoFiEHL/T01M4HI4XYOWNwWePxyNoVxwjwrD3ej0pmGNtCeM/rBegglMzEOPKlStX\nBLTYarVifX1d4ih2u104UIyYFd+a7APQD2BBhqZEIoF79+5hbm5OdqR6vS7wW9TQHo9HTDRCkTF4\nNajyj8EoWgkMiPV6PYF3d7lcuH79ukSZW62W1Be0Wi0xQ3O5nKmVwAUOnMOrx+Nx+P1+Qf6t1+so\nl8ti3nNS0xSnm8H0FzH8zFp21eAj+SPPzs4k9VkoFARqTkVwIpuUyn3BNCGPNWgM1Uo/siS1Wi0h\njm00GgJoCkAQppnXL5fLAt6qUp8Nmh8Wi0Vg1H0+n0DIc3Pggp2fn0cymRQKAKYHPR4PAMjcMS5U\njqFaz0Glw7FxOBxIpVIIh8OoVCoyBxm3oGIHIBibF3EdXC4XFhcXcXJygmKxCKvVioWFBczNzYkb\nQWSpi9Q/mMmlVApUBouLi1hcXEQqlUIqlYLH4xHz2uv14vbt25J+ZNoNOE8TMc3FxWOWClLNzJmZ\nGYTDYTSbTXz66afiqwLnJnez2ZSsxMzMDJxOJ7rdLr788ksx+9VSU+NEY5CQVk8wGMTh4aGwPweD\nQfh8PmiaJkxXZIsmlV21WkW325UFNCiazfgBAVSZa9c0TYpuAoGABNB8Ph90XUe1WkU6nRY+RHXM\nzFLEQH9tCXfSbreLTz/9VCjhPB4Pjo6OYLfbcf/+fVy7dg3dbheff/45PvnkE3FZuJuO2uVYPxAI\nBCQ2MTs7i+9+97s4PDyUTFAkEkG9XkehUICu6+LnM/tCSHizTBFTwFzQ7XYb29vbfSX0kUgE3W4X\nc3NzEgPh3KULa7PZcHh4KIt2kqIiq9WKxcVF/PZv/zYSiQQymQx+53d+RxR4p9NBJpOBzWbDl19+\nOTGB7cDzvvQRvgax2+2IRCKIRCKYn59HKpWC0+kUpGEAEmjiwuaDoB/NTAHwPJpsNOm5u9Ef9Hq9\nwgBUKpUQCAQkj392dk4GEo1GEQqFhFGKvI7NZnPg/dDnZjaBO3Cn0+nLetBSIM24GrzjJCZ7Mmnv\nB0HCnZ6eit+p7nwk5AUg6NhutxvtdhuNRkPcBForaq5+UPZBVRw0lwkWQ/Pc6/XCZrPh2rVr8Hq9\n2N/fRy6XE0XHRTXKvOazpJtD+LpQKNS3i1ssFuFkYHaARDR85ixLN55TnSfq2AGQOA4tGjJbsT4m\nEonA6/WKMlazQ+pxRokaTPV4PDg7OxP8SYLhEoZ/lHU1qVw6pcAb8/l8iMfjSCQSQqPG6DJrAVhw\n43K5YLFYUCwWkc1mJSrMoM6oB0GfnZPh6OhIfEen0wmLxYJYLIbZ2Vkkk0lcuXJFIvR7e3uo1+tC\nOkJRJ5ZaQsxAIRubaLIDzxt81IlH4lKL5ZxToNls9nWBUtEYz6ueWy1/BZ5H10k8QpObpDaM2ag1\nD+MsWPVe+TtN2sPDQ0xNTWFpaQmdTgd7e3t4+vSpZCWMYzVMaNWsra3B4XDA5XKJgvV4PH1cDNwc\nQqGQKF5mqyqVytAgI5WrCg3Pfhv1+TDgyO8wW0SriVaH+oxGCS1m3l80GpXyaV0/p487OjpCsVhE\nOp2e2C0ZJpdOKXDA/H6/5LcBSE653W7LDun3+yUfXCgUUCqVsLOzg1wuJw/EDEZNPQ9w7uMuLCwI\nrwNNvmazKR2Y09PTWFxcFL80l8thY2NDsPeNCMVm59N1XY7LICkzEiyVVSvpuChZ3UdkZ0KWs7pw\nmC/JSDVBTX0+n1RJlstlrKyswOVyodlsShVlpVKR0nC1gtM4bsOEC4EFWH6/X3gtdnd38dVXX8mi\nNFpvo4TjuL29LbUDdCHV8uWtrS0cHh5KTYjL5ZLgMF2KRqMxNIDKSkhaPU6nE1euXEGr1YLdbpdN\niudhoRStWgLsMlMwTkWjGsc4PT1FtVqVNOrm5iYsFgtcLhdarZZA2L+qeAJwCZUChZOK2p8TgZOU\nOP+apmFvbw/ZbBarq6uCgMzJOMis4g5rsVgwMzODubk5CTrt7Owgn89LZJksxj6fD41GQzgeDw4O\n0Gq1XkDtNRO6ELVaDaVSCTabDaFQCMD5ou50OvB4PDg4OOgrPab5fXJyIiY+rRiKMfug+vgqMzXT\nhazGZCETcN4nQpOeCoLXNow/QxU1b85JzVbf6elp/OAHP0Cn08Evf/lLbG1tCVnKpEIfn2nMcDgM\nn8+HWCyGUCiETqfTZ+lFo1FRSlxozWYT5XLZ1H3gfdBNoQLm/GMQmM+Fi50WHutH6F6SS4PuxKgU\nqDrOrVYLxWIRXq9XArIul0vqWrLZ7NjKZly5lEqh1+sJww5TjiqM98HBAaLRqOTAHz9+jN3d3Re0\ns6oQjG6EOhGOj48xOzsruWir1QqfzyfsTDdu3EAoFMLh4SFWV1fx4YcfYm1tTUzfUQqBgT6LxYJ6\nvS6EpCx6Ylyh0+n0Ra8JF04a9WaziUqlIpFsTgSzDAQAIX7hxD85OUG1WkU8HofVakUsFoOun7NR\nFYvFPqZpKgPVHRk3963ycjDL8t5772FlZQVfffUVPvnkE2nguYjouo52u43Dw0NhwWLRGTM7JM89\nOzuTxjWa/AwKMz417J56vR7K5bK4q6yZCQQC4kr0ej1xY5lhYD0De3LIcD3qfKqcnZ0hl8shnU5L\nUxyrbR8/fox0Ov2C2/oq5NIqhWq1imKxKFRu9DvpKzYaDeE+zGQyUtqqKgF18ZhVfnGxMkBlt9sx\nMzMj6To28cTjcWxvb2N9fR2//OUvsbGxIZOSwTejAjIK32MREADhjoxEIjg6OoLf7xcFwcXOz9Os\npwXE61cbrczGkRgM9XodkUhE+jRYhtzrnVOpr6+vC4GpEbFKfR0lqtsTCAQwPT2N73znO7hz5w48\nHg9+9KMfIZ/Pj2x4GiUqbgDnBusVqtWqNLL1ej3huSD4SrVaFXbyUQG6Xq8n9SrpdBoAhIFKtT74\nzKho2u22EMByXNTXUUJF3Ol08MUXX8But+PatWvw+/0ol8t49OiRWAmvWi6dUuBiqNVqePLkCSwW\nC0qlkqTJqOk7nQ6ePHkitQTcyeiTqybVqDQQyWJZfRYMBrGwsCAls+l0Gh9//DEePnyI7e1tif4b\nC0aA0YhOvV6vbwcBzoNwat6dk4H19Kenp4KvoFZqqqlGdfzok/L/BAXh91hRGY1G0Wq1UC6XpWeD\nLheVnRqhH2cRs9GKNHh37tzB9773PczNzUlvh0pN97LC6ySgDlOqNptN+ERPTk7g8/kQiUQAQIJ0\nrJ0YFP8BIBtEvV7va/lmB6Tb7ZbvsdKRz0+lLuS4jlM9CTwPch4dHeHg4ABra2uSrt7Y2MDTp0+F\nR5Kff1Vy6ZQCcH6D9Xod+XwemqYhHo9L1Jh+NU1pNQJPE5k7t9qCPWjQmP9/+vQpgsEgYrEYAEhk\nt1KpoFAo4G//9m/7KMCMQUXVSjBTFOpnuVCpvJxOJ2q1GoLBIEqlkvizrLjjK81Vmt7MYpgpJWP6\ni+diwIzuSy6Xw1dffYWDgwNhv1ItK7Wke9CENi4iktAsLi7i9u3b0jj2+PFj5PP5VxoU45jqui6u\nEjsk6/W6BHK5Y4fDYWiaJu7DIOVEK4ybVLfbRa1Wk5Qgg8WsZOR5eUw1yN1sNscq3Ta7BrZdr6+v\nCz4Ig9uvCn7NKCMZojRN+18B/AcADnRdv/Psvf8WwH8GoPjsY/9c1/UfP/vffw3gHwE4A/Bf6Lr+\n05EX8YwhSt3xCHfFnZ+7smrujRvJVcXMxA8EAkgkEpidnZXJxAfPHd0IAjrJuTi5aMnws+ouz/9x\nd1aPpyo7HlONFVDRGL/DCju1jHtqagrxeFyU39bWllhcnNCqkqVZrCoEszFQayoCgQDeeecd/NZv\n/Rbu3buH4+NjbG5u4he/+AV+/OMfv9Le/1HC8WCFrNvtFleDVoRRjA1R6ubCcWEQnNkptdycY0ZL\nj2M6CvFp3Pt5CSXwyhii/jcA/xOAvzC8/z/quv7fqW9omnYLwD8AcBvAFIB/p2naiq7rE28NXPwq\nRRtgjlT8stLpdCTyzoetTpxx0WzUyL+ZSUpFwDiAccJxoqhgLOrC5yRU8//GOgWei2N35coVHB0d\nSZ1DPp8XXAT2R6iszKqbw/OPkwPnMyJVOmM9dIM2NjYE8+JV72yjrgt4nrZttVrQNG1kWbDxOfLZ\n8Dvqd1WEKfV5sK6BSnvStO6w+/k6ZaRS0HX9F5qmLYx5vD8C8K91XT8GsK1p2gaAdwD8apKL4gIZ\ntPMafzfKpIPOSa/uxnyAVE7DjmlWEWd2jWoEX13IasWj+hlj0RMns4rmbFacxffVlCSVEOs9zs7O\nZJEaAU7VyWzM2Awbd/7v8PAQT548wfb2tmApZjKZsTI1X5dQSaqKeFwxm4eDrFX1+Gpa9uvYzL4u\neZmYwj/RNO0/BvAxgH+q63oVwDSA95XPpJ+9N5aog/Uy5uU4g258SOPkjsf9n/HvSX3oV3HvfDWD\ntx9HzK551LiqyhUAms2mZI9+02Icl2H3Mun4f5MW/DhyUYSGfwXgKoD7AHIA/vtJD6Bp2p9qmvax\npmkfX/AaXstreS1fg1zIUtB1vcDfNU37nwH8v8/+zACYVT468+w9s2P8OYA/f3aMX7t6VRl+zIqa\nVDNe/dv4u/oZ1aQHMJYv/lr+botxHg2aT8b3JpFJP38hS0HTtJTy538I4OGz3/8tgH+gaZpD07RF\nAMsAPrzIOS4qahR4lNBnNgbq+D6DQ2rmw1iboPqPr+XXK2rGRv35TV0L4z4sQJvkWtTNR/0+fxgA\nZ0aISN3MfjAI/SrGYKSloGna/wngdwFENU1LA/hvAPyupmn3AegAdgD8589u6JGmaf8GwGMApwD+\n8UUyD2Nck+lOPUlk21hPoEaPx+3UM/7Oh2NWTz+JqN99FT4qA11mGZGX2YEui/wmrp1zUCXwYb+O\nyuKlZhwGzSvj9atzW/2dSkH9MfalqNbvRcdkZJ3Cr0MGuQ/GnDCbawhCwoo8XdcFQJUNLCrYidmC\noGYF+lub+TpqXIwPxxixZxpqzPuX7zOXDjwvOBrU6TmOcNx4HlpGnMgq+Qvz9qqVdFlF3SFZdQjA\n1Jp7WVGfD/C885TAsTdu3EA4HMbs7CxarRY2NjawtraGnZ2dvjoFs/E0KgCzMmjjHOOaUC1dNXVP\n69WYzscrrFP4jYjL5QIAQbjx+XyYnZ3F3bt3MTMzg1QqhWAwKJ/f2trCl19+iV/96lfY3d1Fo9EY\nmotW0XDVRhVi/Hk8HoEsV01BKhpOSGI5xONx1Ot1AXgd1M6qWgH8fjAYxPXr1/G9730Py8vLiMVi\nKJVKWF1dxc9//nM8efJEQE8nmeicvBaLBdFoFNeuXcOdO3fwne98B1NTU0gmk+j1elKSu7q6iv39\nfXzwwQdyTjOqvXFENaPZ8cmFTPQicmi0Wq2+StFRYrPZ8P3vf18Qs5xOJxqNRh+8WqlUwqeffop8\nPi8o0Re9D+Mz0zRN4O2Wl5dx9epVfP/734eu69ja2pLuS3XhGmMDg87lcDig689Rorxer3Bler1e\nKcUnAhd7Y9iNyXFl9S8wubV5aZUCgSs4admqSgxBts9euXJFyEbI1pTNZmVwBokxWMhdmpBpKk8C\n+SYIqcZyYE07r30PBAIAIDBkLHc1O7/RXKemDwaDCAQCArpC3D1SkV3EHeEiI9flgwcP8Oabb+LG\njRsCHsMuO7/fj+vXr8Pn88HlckHXdTx+/FgUwyTCnYwdn6FQCNFoVCw8WnMEclXRg0YJOy/v3LmD\n69evIx6PC1gqFxQbyLxeL95//32x2i6CY6guKLWyls+4UCjA6/VidXVV4AJJE8cu33GUneriEZo/\nHA4L3wTZxEhjQJQxXT+HpaOVrL6aBdLHkUurFNTgHnAOg9VsNrG7uyuMRZFIBNeuXZN++kQigXA4\nDK/XK52Ig4QaX8VtIL4/SUSnpqZEMRCTkYQfnCChUEjq6YvFIpaWlpDJZEZ2w6n+H9GCd3d3EQ6H\n8dVXXwnAC+HDaeZfJPJstVqxtLSEGzdu4ObNm7IQ8/k8CoWCTDqfz4elpSWBf3M6nfjwww8nVgrA\nuWIgTFoymUQsFsP09DTy+bwAvqjlzuPcF8dqeXkZb775JsLhMKLRqHAxHB8f97U5f+9734PX68XP\nf/5zrK+vC5/GpP622WeJxlSpVBAKhQSYhmjb7HcY51xqwx4/SxZ1NnIRU5MKrt1uS9s2W8XZ8s6m\ntGEI3MPk0ioFVcMSS6DT6eDg4EBKdUkdR8CQeDwuFsKowaDrwFfW7EejUdy8eRPz8/N9PAvEbiAm\ngdVqFdJRQn2xQYbBxnHvkU1Ph4eHePTokXT6ES04Eokgl8tNvDjpDnFnfeONN+ByudBoNLC6uoqP\nPvoIe3t78Pl8mJmZweLiIpaXlwUCz+VyIZfLoVKpTDS5aCn4/X7Mz89jbm4OiURCCF8IaKOWfI8j\nNMeJwOX3+6Wzk6XVrVYLVqsVoVBI4N/YPNdqtV7onbloio8/BE0hFoau6wKEM4ny4Tzk+GmaJnid\n7GEhczY3HSpzxjcajQZ8Pp8wk08ytqpcaqXAB0atnMlkxIyiyU/aM7fbLTBsDO4ME7Uc1el0wu/3\nY3p6GqlUCktLS3KecrmMcrmMp0+folwuSztrMBhEJBKBx+MRkpB6vf4CYcooIYhHNBoVshDS3hHA\ndXd3dyjt3TBxuVxYWVnBvXv3hMtic3MTP/3pT/HZZ5+hVqvBZrMhmUyiVCoJs3E8Hke73cb09DS+\n+uqric1umvOxWEzYrLLZLI6OjuBwODA/P49qtWpKaDNIaDlWKhVsbm4KH0ej0UAul0OhUBCeDJ/P\nhx/84AcAzolcpqen5flxTl00Q8RrJdsXgVo1TZPu2klcFfXe2WXKlCOVILt1c7mcUAy0220Eg0GZ\nO7zvs7MzZDIZ4VGd+NlN9Olfs6ganfEE7txerxdvv/027ty5I2zJpPJifb8xzWP8m/682+0W8/bu\n3bsIhUIy6Ht7e8jlcnjy5IkoJ4/Hg2g0il6vJwFJ0q7lcrmJ0HB6vZ4waRMJ+OjoCLdu3RJeiIti\n+hMd+ubNm8KMXSqV8Ktf/QqfffYZDg4OpM242+3C6/Xi6tWrspBJEjsJ/yF3OQaIp6amAJzD7m9t\nbQmr0/z8fB+FutlxzNJ0bGFeXV0VtidiI7TbbVEKkUgEi4uL8Hq9iEQiSKVSAo6j1phQJtnR1WAz\neTOnpqZwfHwsvCCDumoH3Rd/JwQ9eSoACBZjtVpFuVwW9Gt201IBE3dDJcT5VrkPqhg71DRNw9zc\nHB48eIB4PA5dP6fT+uyzz5DL5cbCrOMxqZk9Ho9wP/j9fokRFItF5PN5oTNjRJiMykThyWazyGaz\nEugZt7OQpnYkEhHo9VAoBL/fj16vh2w2e2HoMk3T4PV6hemZrE27u7vi89LiIlhtJpNBMplEMpmE\npmlYWFgQtqNxLSAqIwYu9/f3sbOzg0ajgatXrwp4arlcNs06mO3gahS/1Wrh448/Fro7xiao6DlW\nmUwGU1NTOD09FUg2gtUYW80nXTw8VywWw9LSEiwWiwCiDHJfB1kmxvoCWgnE0GDwknD4VEgEomVg\nmEpJZRC7yLz5RigFCgc1EAjg/v37CAaDOD09RT6fx+PHj/H06VNBKjI+lEEam9H5QCCAUCgkyDrE\niNQ0TWDQgeecFIuLiwiHw+h0OqhUKqjX69jY2BCIrElgt4DniEU+n0+aiDgRarXahR6u3W7H9PS0\n8AZ0u13htSAwCFOupJGn9XN0dCR8kExrjisE200kEmL6ksuSJu7R0ZHA6Jn59oMWKU1/gpxQGZCI\nV0VKqlQqwgdC9ClahyoU20UUAoOe8/Pzgk5FRKdBytPsPMZaGs5xBh8J1gJArp8wgcy22e12CXTS\nUrloChb4BikFug02mw1TU1OYnj5vviQDUCaTkayAUSObBZM4uNTMpEoHIEE/u92O2dlZsSAYDHK5\nXBLBPz4+xsHBgcC903QcVxhIPTg4kCwG03YUAs5M6gNzURMctt1uI5fLCSu0x+MREhtya5ABmteS\nSCQuFGRkxqZer0sQjjubw+HA7u4ucrmcfEd9HXU+FbCEc4IL9fT0VBYUqduazaYgWKsEsOrmMW7A\nkeex2+3C9OXz+QTOjuPO5zXuMSlOp1MyD5zPDJwSkpDuEIPhzKownkUavUlbxCmXUikYy29Z5ReP\nx/HGG2+IlfD++++jXq+j1+shGo3i6tWrqFar2NnZeWEXMOI0skTUZrNJRiGTyaDdbkulH92Ds7Mz\nLC8vI51Oo9PpCJLR0dER1tbWsLe3J3DvNNnGfRjMeROynPDvkUgEwWAQDx48QCKRwKNHj/DZZ59J\n7nsccblc4ndyghE7MRaLCYbgycmJQNxduXIFoVAIXq9XuBICgYDAmY3z7JhuPDk5kYVTKBTgdrtx\n584dXLlyBZnMeZ+cx+MR1wzA0DSeuquyToTvqxWOXq8XMzMz+MEPfoBisYhmsynMUJFIRHxzQtAB\n4zWvcS4GAgG8++67eO+99wQZ++DgQJQorZ9SqdQ3BwfVDfD6mfGxWq2y0/NZWa1WnJycwO124+7d\nuwgGg+h0OiiXy6jVasjlcmg0Gn0o6N8qS0FdUDQLfT4fkskkotEorly5glqtho8//hhutxsLCwtw\nOByIx+OIx+M4ODiQYhUeyzhAfDinp6eS8iT34tHRkVgRanDz9PRUUIoBSJEMadxVP24Sc5umJ2sg\nLBaL5OCZc8/n80LKOq5SYKpODYoRmpw7CoFgycFYrVYlB85deNzMh1rq3Wq1sLW1heXlZXS7XbHE\nyHhVLpelHF0tSQcm8++NJeKcJ2+++SYcDgd8Pp88Cy5gh8Mh7NMszhp1Tp6DGZWVlRU5Xi6XQ7FY\nlIK3WCyGRqOBWq3WF6A1VkfyPeB58RLRtrmxcGwYFwmHw1haWpIxLBQKogiYhmTtzaRjSbnUSoGT\nkoVJV69exdTUFGw2G7a2trC5uYnr169LTnx2dhbb29vC9cjdiqaiuhtwEjKjQEhutR+Ai8Vms0nU\nmsSzVAalUklQpo0QXaMi9qrZTABQBk0Z6AsGg1KgonbOjZvCOzw8RC6Xw+zsrPSNhMNh5PN5CfSp\nvQ80r2mG67ouNGnjytnZGVqtFj744APs7u4ilUrJs7h3757wNbTbbYkLqJmmUfdkHEMqBELKX79+\nHTdu3JBMDq0/KgSmrGluD4Kc4zhzzFmivbKygjt37kgalzwenU4HXq9XgpqM2zD4yYWqjqWqDFUF\nR1eWtRXcJKampqBpGmq1msScWNJ/fHwsblq73TZVQuPIpVQKwHMzlFWLt27dws2bN+FwOLC3t4dM\nJgOfz4dUKiUMw3a7HYuLiwIzxuAWH8ggOG+1BVXXdTidTnQ6HaFp48JIJBIv5I7L5bKQ2qr0auP6\nkgwuzszMwOfzIZ1Oo91uI5vNYn5+HjMzMwAgfuMkD5kThei/rNdn+Ww2m4XNZsPx8bE0SSWTScnA\nBAKBoSxbZtLr9YT302I5J3nd2dmB3W4XyjjWYqjo0ZMKFw9dBloFTA+6XC4pjuI9ksuDxMEHBwcS\n1DVTtOqCvXLlClwul7iw4XAYvV5PELHZL0PS40wmIxkkNrUBL/I+qM+TMReVKpEKj+ldPrfNzU1s\nbW2JRULHHCp9AAAgAElEQVQlznt+GV6NS6sUWD/A1NaDBw8QiUTENE2lUlhYWMC1a9ewsLAAj8eD\nbrcrLkStVpMeCTOcPJr4uv6cY4HuAYOJrIJTi0QYS8jn85J+YtRZbZMdtXjVHYFsVKxe466taZr0\nehBeHOhXOMOsBl4bg58OhwMejwcLCwvSa0A275OTE8zOzuLq1au4desWZmZmBBp93JQoMwPqTkgX\nhkG/RqMh5DQXVQjq+KkNbPTJmeNnfwJ3cRV3s1KpQNM0yRQNy3YwaMi4FlOFJJ2NRqOwWCyYnZ2F\n3+/H1taWEMXoui7n4oI1Hp/PUA1is5Gs1+shHo8jmUyKBfbRRx9J8Ravm8/XiMj9raho5MOmsLCI\nxUUkwKAbMTs7K3Rd3BG4ENRc9CDEY+DcRGOXHYlCGa0mbyXTlYeHh9IN2Ww2pcNPNTXHCfKoZbIA\nkEgkJH+fSCRw8+ZNxGIxHB4eit84KTT6yckJ9vf3sba2htu3b2NhYQHBYBA3btzA7OwsVlZWsL29\nLWMQCASkR4IFWaQmu6hQUahWlOprX6TM2Ciso2DUnm3hTOdRATI7QFZqlkSPYllSg9XsXmSQOh6P\nY2VlBT6fT+YNr4HVmsa5MUh6vZ7MpUAgIO4cM0FHR0fY29vDw4cPUSwW5djsDG02m31xiG9NoNG4\nsHT9OR2YrutiopHm7fT0FK1WC4VCAevr6/j888+xuroqhR7jEGb0ej00Gg1Eo1Hp3GP6ikQ0sVgM\nPp9Pyk0rlQqq1arApxtNzXF3VtXfnJ2dRSqVwq1bt5BKpeBwOPD48WPs7OxIJRvwIrDMsOPXajU8\nfPgQgUAAf+/v/T28+eabCAaDCIVCSKVSuHnzpuT1NU2TMlnWfnz00UdCNvsyomaRqNgnSdsNEip7\nFvGw3JcBYl0/58oksRBZvxqNxgtw+WbXrI4z40y0IGdmZoR/tNPpSEXr+vo60uk0yuWy8Jqq83mQ\nkAGMDXA+n096GSqVCg4ODpDJZERR08Xm/KGCUy2wb02gkTdydHSEcrmMnZ0duN1uSS3RzC6VSigW\ni3j69Ck2NzexsbGBXC4nrat8EDQTVTF74LVaTeoRmJpj1JdlzwySkbqOXXE8D7Ma4wYCyU5cq9WE\nINVqtUp14fr6OlZXV6VNdlLpdrvIZDL4xS9+IXR3d+/eRSqVknJgNtA0m01Uq1W0Wi08ffoUH3/8\nMdbX1yequxgknOQqIAjHaxLFoGYoqGhoajP2wyBisVjE9vY28vm8kAWzg5H1GIw1DBPOo06ng93d\nXWl6YyqcxMMPHz5EoVCQxi8WEamVhWabBTctpsZtNht0XZdUp91ux8HBgQQ1GXxkVoxKjelVlVbw\nInKplcLp6SlKpRI++ugj7O/vIxqNIpFIIJVK4fj4GE+ePBE6cnWB0mTlcYY13HBgWRBzeHiI4+Nj\naVX1+XwSLKpWqwKiwt2CD5QPhp1848rp6SkODg7wwQcfwG634/bt24jH45JdefToEfb39yViPsrq\nMRvH4+Nj5HI5/OQnP8Gnn36KlZUVfPe738Xs7CxmZ2fRbDZRq9Wwv7+Pg4MDNJtN7O/vY319HeVy\n+aXNe+B5Xcj+/n4fliFfx1WkxlgNsxpM5ZK8lqXnTPcCEKuAVPTGeWIUYwzq8PAQ+XwejUYDW1tb\n+OCDDyRNvLm5Kf05tCi42QzLrqjVjAxINhoNsZAZuyB2A+c5cF4kxR4ItU9imAIaRy41HNvXKWrA\nhyAd7Iz0+/3wer1iitJfY4cac/vqDqpCsT27pwujOavuyEUf7CSiLjQ1HfyqiFs07bwTNRaLYWZm\nBsViEdlsVvr/Jz2H8XpZy8I0IHsHqOS5W7ObFXheG/KbRtxW05G0pph6ZrqUbrAJvNoLx6E7pcZs\nlDk0Fhzb31mloPL98YHQbVD5F6ntGeihz6Zqf7VoRzWFXzWR6jdZmPL0+/3i179KglTVFVGtP+Nz\n4rV8XeSsk4qa+dA0TTp++T6zOaNqOdSMl3EzUT7/WikME8JhPzt/H04j3+Okof+mckoalQmAF+IK\nr5XCc1HH+utajMMqIlWloXZU/qbF6A6xaImiuoy8bmNK2viqWquGsf5mA7d+3TLpgjV+/rU1MJm8\nTDR80nMM+p/6/8uwGQIvXsek9IXDxvWi93hR2rjX8lpey7dU/s5aCq/lXF6mTkDFFATMI+tm7oLR\nRVOvwWgOj2OJmd3DqyiK+rsq3wqlYJxUr2oyGP09o18M9MNzXdZJaFycxusfVpI96p4GKQLGVEaN\ni6oYjO+Nc1/GwrFRn7+oC2FWU6GO6df57NUgIkWFhAcmY0cbJd9opWCMuAKv1lccJ39tDPpcVsUw\naCdWFYX6OVWMWBSqqMczWyTj+vl8NQZ8B4lZcNh4r2bnMzvOOM+MTXOqMCh4dnYmpeCvckMyHssI\ntGOWYRn03UnkG6cU1LQSy5HZ88/iJSOxyKtMeZkhIKkTe5KOQuPxjcd7FWLs+TDb2fm+cUdSlYWZ\nYtD1/lLll92teBymFM2ON8jlGPe8ZtbeKHE6nUgkEggEApLKJrIT+2yKxWJfmvWiYlSyAPrS5A6H\nQ+Y7SXRUCMJXYTFfWqVgXHgcGJfLhWQyieXlZbz99ts4Pj5Gq9VCLpfD3t4eNjc3JQ+udosNm7DG\nCcbuRbfbjampKWm6YhEMMRpYssta/q2trT46LzMhFZ3NZoPf75fcPcE2ASASiUi6c3t7G+Vy2RSh\n2njtZufiOBI2nLsbKeX4PwBS6NPpdF4A/TS6HOoz0nVd0INV1Cm1HmCQ4jAW79D1sFgsppF4HotA\nJF6vV6DfVKYpFcrM4XDIBqJpmvRFHB4eolKpDK0UtVqt+P3f/31cuXIF9+/fl54UAuDwfn/2s5/h\nww8/FFatixRFqS6KCi7EjuDl5WWhM2i1WiiVSnj48KHMEVU5cBy/VcCtxonH34mmTCjv4+NjuN1u\n2Gw2qeE3Tt5hPr9RIfCBOJ1ORKNRzM3NYW5uDl6vVzANVMo6ANJTzx1ELZ4xnosTn33+BOIgGnCv\n18M777wDr9cLXT+nEHv8+LFU/6n3ZfxdFV6DpmlyHuIysnGIDE6cgI1GA5lMBplMRtqpjUU+ZvEI\nFnk5nc6+3c34DFiVp+IgsCmJHAVc0L1eT1qBjfdFa4KAMV6vV7AfCHjDdnjyL5I0haA6fJZq8ZCZ\nwmUp8fz8PKLRKOLxOPx+PzweD4DntSm/93u/J7R/jx49mnhBmsVEOA+5CXo8HqGmYxFdMBiE1+uV\nlnTeg7FWYRK5tEqBopqwtBQ44ba2tqRdlOSaat33qMUzKGrNbr5UKoXl5WVMTU1hc3MT2WxWujNJ\nZgqcKwlaEaq2NxN+5ujoCJVKRZqEut2uIOecnZ3hxo0bcu+rq6sTdRSaZQWoGLxeL2KxmGABhkIh\nBAIBuN1udLtd6dDb398XLAIzv5Xn4e6rYhkQro6txrxn4jN4PB5h16JcuXJFOk/b7bZgXhrPx7El\npFogEJAmMioLtSXa5XJJo5nf75feAlpeKqrzoLEkwjeVH2HceB3hcBjz8/PQNA1Pnz7Fzs5OXzv9\nOGLmEtntduFI5bx4+vQptre3hWOUJd201IDniuqi7tylVwqqsL6dkymbzUofvd/vl88ZS0LHiUyr\nYrVaEY1Gcf/+fdy4cQNWqxV/9Vd/JdYACVKCwaBw9hGsc5gpyt1SragjjDzfIxRcJBKBw+FAvV4X\ncNlJui+B55BqBG2hclDJQugGBQIBnJ2dIRQKCRUeS2zVXdyYIuSCISAscQTpf/N8aqluNBoVyDIq\nDKIx1Wo1ZDIZaSOmmPnYbKOPRqPwer0oFApi2bC5SNfPCViTySQ8Hg96vR5arZZYR+yqHNS9eHZ2\nhkqlIqhRxK+kpeF0OrG0tCT4odPT030s5ZOI0RpjL4TH40G73UatVsPGxgby+Tyi0SiuX78uCpld\novz+y8g3SinwIVM7ZjIZIRhVgU/pz41aQIN8W6fTibm5OczPzyMSiSCTyWBnZwetVkvg1wmqQXIO\n44Ifdk7VxFN3c/rg5GtotVoCGfYyASwqn06ng0aj0UfVpmI/np6ein8OQMBEqFC4G1MxqO5JIBDA\n1NSU8FCmUikhSHW73QDOW+HJqMWuRirVXq8n7eiMywwCv9W0cxCSQCAAl8uFYDAojWr1el1wGYkq\nDZyD2EQiEdRqtT6YdzVYOmjsiM1RLpcFr5NAKlNTU7hy5QreeOMNYWgiS9M4KdlBwnHt9Xpot9s4\nOTnBxsYG9vb2cHR0hFAoBACyManPhMp3HJxQM/lGKQWLxSIdjKRuW1pags1mk52GO7bZgh/1cBhg\nTCQSuH37NpaXl9Fut7G9vS3Qbh6PB/F4HLOzs7Db7QJ+yl2e1sIgf9LMpeH1MR4xPT0Nm82GUqmE\nR48e9bXDGsU46Yz3agw68f16vS48jG63W9B72LZr3EH5XfU66MbRSlhaWhIYMp/PJxyH5NEggnS9\nXpedllygLpcLpVIJFotFgmZmMRn6+SQE9ng8QodH6j5modxuN05OThAOhxEKhcTiqtfrci+0lAaN\nLwFn/H4/yuWyWHJ0ZfP5vIyDGosqlUoXAjtRNydaQzabTZDDj46OBC+Syp3Bb3WMXsZa+EYoBS5y\nDhQRaRwOB/x+P6rVKvb29oR30czMHvZQ1Gi5x+PB7Ows7t27B4fDIfwAVAjT09O4ffs2FhcXX6Bg\nY7CNBCuT3J96DYuLizg7O0M2m8WTJ08mwjI0mqCc/Jy4xLJUg5sqDgVBP/m+Gs02jiNxJohreXR0\nhKWlJSGDITt0oVCQ38vlMprNJo6OjpBKpeB0OhEIBATItV6v93VRqkKMQ15DLBZDKBSSrANRjQnD\nRncoFovBZrOhUqlgb28PlUpF8A5otQwSuhsnJyeiEGipEr3Z4/GICwmcuxRUhsPGb9hcoKXA2Ilq\nAZOentmjRqPRp8Bp1V20LfwboRQoKtwUTTSajSRLHYZsM0yocGw2G+bn5xGLxdDtdpHNZtHpdBAK\nhRAOh7GysiKcAoVCAbVara+HXXUhLmI2cges1+v4m7/5mz5wTjMZFEBV/8eJppKPMrvByUwqOWIb\nMtahac9Rq8wWKXELSFTCYOXx8TFKpRLK5bIAzxJu/vj4WKLqNHGJiJ3P54em9Hgv3CkBiPnMGApT\nhV6vF8lkUmDRy+WywKKzPXkchctAMq0K/litVoTDYfHnySHBOACzAbTUhj0zs/skeU+z2RRQV9Ul\nIyK1ih7F87yMu/mNUgqqCcwJXCwWUSqVpFbATAa9b4z2MpLM1FKlUhEffGFhAdPT03j33XeFT4Dn\n5OIAMNBSGUc0TRMW488//xz5fP7C7b1maVbuHl6vt69Fl2xQFosFjUZD+CUZYCTSjzFCTr+VioVE\nOoS/Pzw8xO7uLiqViqQX6WoRCi4SicBisUjGQQWwUU1gNaYBnNdy+Hw+hEIhgfLnAmXWIZFIYHFx\nEZqmCdmPyqPJwOkov5vPUw2cer1eLC4uYmFhAclkUuYK06sq6QzToMZnM0rOzs5QrVb7MBb8fj9S\nqRQCgYCgdfN/xqzD16YUNE2bBfAXABIAdAB/ruv6v9Q0LQzg/wKwAGAHwN/Xdb2qnT/Jfwng3wfQ\nAfAPdV3/9EJX138dAM4nMH1WQmr5fD7Mz8/DYrEI0aaRmQcwL4el9mehiNfrFTiy4+NjmbiRSETg\nt0ulEtbX17G9vY1CoSCmHRXEpA9DTbMtLCyg2Wzigw8+ENz/SYWLFXgeDNR1He12G263W3aws7Mz\n3L59Gw8ePEAgEEA2m4XD4ZBiH5rXDASaCXfQZrOJfD6PdrsthLIWi0UKvQgtFg6HEQ6HcffuXSwu\nLsJms2F3dxfb29t4/PgxCoXCQB5EQvAzmEefmmnJN998E1arVbILoVAI0WgUvV5PoNnIo0mXaVyQ\nXWYCGIBeXl7GysoKZmZm4PF4JAjY6/UwPz+PYDAolkmv1xPULs7RUXOEbkuhUBDGMrfbjWvXruGt\nt97CycmJcIRwQzLGRi5qrY5jKZwC+Ke6rn+qaZoPwCeapv0MwD8E8P/puv4vNE37ZwD+GYD/CsC/\nB2D52c93AfyrZ68XFjV4YrfbZWLncjnB2wfOK/L4M2nhCBcDy0cLhQIcDgd0XUcsFpO6BAK87uzs\nYH9/X1h+eZyLCJUTST8+++wzZLPZPor1UQFFs3sCIAVCAMSv5/8DgQCWl5fh9XrR6XSEAIdKhSYy\nd1Z1t6Mws8HK0pOTEwEt5XV3u134/X4x7ROJBObm5iSTQ+BaVlIOuy+a8sRZBCDpTxLpMtXo8/lw\nenqKer0unJJcqHR5hvnd6pjbbDaEw2FMTU3h+vXruHnzppADkSD48PBQUrrBYBCLi4uS8UmlUiiV\nSnj8+PHgiYD+cnq1UMvlciEcDiOZTCIUCgmJDZ+vukb4c1Gsj5FKQdf1HIDcs9+bmqY9ATAN4I8A\n/O6zj/3vAP4W50rhjwD8hX4+mu9rmhbUNC317DgXEnWggsEggsEg7HY7CoUC4vE4jo6OEAgEBG67\nXq/37djDFpCaHuSkzOfzqNfrmJmZQSgUQqlUgtfrRTgcRqPRQLFYxObmJnK5nOD8qZV4F71HRpo/\n+ugjgXRXo9G8XjW6bPRX1ftSi324i9BK8Pl8QnADnGcj9vf3sbOzg2KxKOxSdCXUmgf1mmmmMo1Y\nr9dlFz45ORH8S5XFe3l5GXa7XRT706dPkcvlBGV5WL6d59vf3wcAqWTUdR3JZBI2m03ciZs3b6Je\nryOdTmNnZwf5fF6CjO12W57dqB2VCttut2Nubk4K2ggt1263xYLluJMpigHdL774Auvr68hms5J5\nMZ5DtVxVXkin04np6WmEw2HhuGBQWA0SG+fFRTepiWIKmqYtAHgA4AMACWWh53HuXgDnCmNf+Vr6\n2XsXUgrUhFarVfLSuq4jnU4jm82iUqng2rVrcLvdCIVC2N/fl0msRmOHDRCj6PSFj4+PEQqFcHJy\nIuxKc3NzEnQrFotCKqqeQ/XjJjHduIOGw2E4HA7ZZbmg6Jfys5RR98WJzJ2TKVer1YpUKoXFxUVY\nrVZUq1U8evQIT548wc7ODmq1Gnq95+Q6rLYcdj/sAVGVBtOaXBiapuH69etIJBKwWCyCiLyxsSHW\nhapYB90bMwyZTAbNZhOFQgFOpxMbGxuyaEKhEEKhECqVClZXV7G7u4tcLidWDbMywwh2eL+MD7AA\nihR/XLx+vx8rKyvynPisqCTq9TquXr2KR48evRCXMZ6LCogFSXR3PB6PpIypgBmAVCkGeIyLxrWA\nCZSCpmleAP83gP9S1/WGIQikaxPiLGqa9qcA/nTU53hj7BXQNE0g1plTVzUlNajaVjpKY+q6LgqA\nr51ORxqVaIEwh87JqFojatpUve4RYyCLPxQKIRKJSDUh/XGW0xoRno3nG3R85rTp/tjtdiQSCdy7\ndw8LCwvIZrN4+vQpfvWrXyGTyfQRvqr8AWaFOGqzGRmXGIjzeDzybKgQIpEIkskkgPMS9U8++QQb\nGxsoFot9XJzqmJo9q7OzMxQKBVFyvE+HwyFsXrQYNzc3sb+/38eXMKyfw0yomFl7wdQkA8wul0tY\nxw8PD+V9Xhch6Fn8NiqbpF4PU6sAJIsTDAbRbDalAlR1McfdCIfJWEpB0zQbzhXC/6Hr+v/z7O0C\n3QJN01IADp69nwEwq3x95tl7faLr+p8D+PNnxx+5gqgRGdRisIaUcvRdVYXw7Ngj748TjblranvG\nLvx+P3RdF4KWarUqiwTAC+caVyFw8TgcDszNzSEejyMUCuHw8BDRaBSZTEZSpTwfd1314Q8StUOR\nPqnb7catW7eE8erHP/4xPvvsM+zt7Ym1RGuEv3PhmxUTqWPYbDalaYfXzLqSYDCIBw8ewO12Y2dn\nR0huqtWqFDZRIahuySBpNBqiLPnq9XrluXEnPTg4QK1WkwpKjol6T6N2VS5K0gXu7OwgHo+LomWs\ni/TwJycnkqas1+s4PDzE2tqa8JMME3X+8doYPOV18n54LKfTKYoHuDjfA2Wc7IMG4H8B8ETX9f9B\n+de/BfCfAPgXz17/Unn/n2ia9q9xHmCsv0w8gZODA1Wr1RCNRhEOh3Hnzh3cvHlTCpgajYZMbKMP\nPmqhcoKwQIamr8VikYBSvV6XtJka/DMqg3F8VDVoOj09LSnPqakpnJ6e4osvvpCAGieyel/qdQ8S\nmsesKNQ0DfPz89JURvOdHAw8lsoZME5GhWPHSkF2QJKZ2e/34/r165ibm0O5XMaTJ0+wubkpjUnG\nNvNRu5zRSlJ3SVYBsv2caUg18GpUZqOeF+NFBwcH2NnZga7rODg4EPo9WhLFYlE2DXaMapommYdK\npSIBwmHC52axWODz+aSRjffKOAY5OXntVODA11+n8D0A/xGArzRN+/zZe/8c58rg32ia9o8A7AL4\n+8/+92OcpyM3cJ6S/E8vdGWKcBdn7QBbmRcWFuByuVAsFrG3t4fd3V2pwjPKuAOkNv5YrVYsLCxg\nZWVFNPTJyUlfYY+ZDDqX6gIwWu7z+RCPxzEzM4Pl5WUEAgFsbW0hnU6jWCyKYlB3ThUfYtR98Xo9\nHg/Ozs6kDqHZbCKbzSKfz7/AmM1X9RxmloLxXpk35yRmY9fMzAwSiQROTk6ws7ODra0t7O/vS5uz\nsbBnEotLdS+Jc7CwsACfz4dcLtdHbKsGXFVFMM4Ydjod1Ot1bGxsIJvNIh6PIxwOSwbl+PgY+Xwe\n5XJZui/VYrFarYZSqTQWWa8a72C8wGazwev1Sqry6OhI3GcVh0J1IS5qMYyTffglgEFq+/dNPq8D\n+McXupohcnZ2hmaziXQ6DZfLhVu3bqFcLgs92O7urqSd1Ik8ScDPaJXQ7Gbhzfb2NnK53As1EJOc\nixOewaS5uTm89dZbCAaDCAQC6PV6+OSTT7C2ttbnZ6sTmi7EOOdiOpKpPxbYdDodPH361DRjoio8\nY9OW8XO6rkvjFMeB183WXrvdjna7jUajgc8//xzZbFbo+WjKq008dJPGtfDUDIvH45GofKVSAQAx\nxRkYpJvI8uFRwtgIXRGn04m9vb2+mAF9f/ZFABB3hudrt9tjKzqmvhlbajabcLlcsNlsSKfTqNVq\nfaA/tNBUiryLyjeODEb1I9XJOClN+7DjM/jncrkQjUYxNTUlWYdSqdTXY6F+b5yxVBezajHw+9zZ\nXwWfBLMXLPhROxQJysGdaNC1D9u11T4Em80mPrbf75cWaoK6MObwxRdfCFEvAClu4qRm0NIYr1Gv\nRx1r9XnZ7XZJWdtsNmSzWXEfuPvyuKzWfBWM2oPGTcW1GNYkN+oYVD6apknnJ+e8mcU4ZB5++xmi\nJjEzL3JsBi2ZFuVu8DLpnkHnUl+Blw8WAc8zNmo0XLWERrkgo8ZXTY9qmiYZGmZQWKtPRedwOLC9\nvS1WgjqO3F3VGMawazMqV96r+sxUxmfVVVDBSF7FOA+SVz0/jbGQC8i3nyHq61Zoxrr4r+t84/q2\nkwrrL4D+HVn9/7jXNkxo/lN50iqgL86GJyoomvxq5kDNrkwSV1AtCjWFaoyJqIr3ZX3uceVVP89f\n1wb+jVYKX6dcBgvqZYW77st8f5gYFxcrCX8dMk5KVpVvw/P8dclr2rjX8lpeS5+8Vgq/RjGmMNUo\n/7AU56hjmn3votVsF5Fh53+Z+xp2PONxR43lsOv4dY7Vy8qv41pfuw8TiDEgSL91XN/ULG2pxhOM\nxx1VwKO+Dvr/RUQ9/yS1Aur3hx17UNGX+rvZedXPq2lIY1DS7Lvqe4OU2CRjNkopGUupJ5FhChF4\njqLN7INaqXnRc6ryWimMKcYdSn0Aw7gDhh3P+FnjMYYd6+vMvBjPP8mCGaT0jMcftWuP8z01JTrO\n9ZiNq1rMNOo4ZsdgcNXj8cDn8wnASqvVEoQnbhyTjKGqAJiKZNaELf6apkkTmpoiV/s7LiLfeqUw\n7oQetDtzNyLeArEhCULKMl0VxcfMcjDuKuNe0zjvv2rFYGaqD5rYZuNm3NHV91Q4M/5t3OXMzmU8\nFouiNE3rA4RheTFTnizuYWZCpXYzZiZGjYdxbNg96Xa7pQCt3W5LSTMAaeNnufmo86j4Fxxb3pda\nn0NFwQIptoGfnT3ntfzWYTQaH4TaEUfzCXie3+bn1MoyRt9pag2iclPLj9UHQ4DMq1ev4r333kMs\nFhM2nkKhIMQcmUwGnU4H7XYbmqYJnJgqZguH+XWHwwGv14tIJAK32w2XyyWLgvgCKvae1WpFpVIR\npUQE63HGlPdG5KJIJCI9GA6HQxYpdx+PxyO4hkbYO1UhGHdwLhbC25F0xu/3y3Nk52C9Xken05GC\nokwmg3Q6PRBbwW63491330UwGMStW7cwNTUFp9MpUPKEqedx6/U6Tk5OsLq6itXVVWQyGRQKBVlI\no8ToerDzNJlM4p133sG9e/ek/4YNU41GQ2o0Tk5OpHpzUDZIrbUgzL+u632Q8URfIoyA1+uV1vdu\ntytl8cR1vGgdxqVUCurupKL/EK+ftfWspydCsTrB2u12H1KQSkhiPJdaG8/dQ6XsWnjWrMTFSXxD\nXhPLZVWzzQw2XLUQuFuybZrgHdFoFPPz82KBsCNUhXwj/2G1WkWn05GFbHYudWejYiX03NTUFP7w\nD/9QevaJZ0DkKtYbUAGyV4HK1Uw5UOkQ9j0SiWB2dhY+nw/hcBi6rguUHkuh4/G4nIutxzSPjTEX\n7pYulwuLi4uYmZlBLBaTyk0iQB0eHqLT6QiBkN1ux/379xEIBPDll19KKTaVwiTWGzeM5eVl3Llz\nBwsLC8jlciiXy9jY2MDh4SFcLhfi8TgsFovAzg9boJyHbHpjc5dqqRK4mCxlZKzyer3Cc8F5Y+SB\nmEQunVIw20050bgbkCsgHA7LYLN3wOl0olqtChDHoAVKMTNRNU0T+PipqSmEQiEhGgH6B5pmMHcB\nM6fYxAsAABXnSURBVO2sKjn1PQJ0zM3N4Tvf+Q7u3r2LaDQqWH7ENSSMOrEeOAEGMREZFxMVkN1u\nFxq1+fl5vPHGG3jnnXfE/FRbl8nXSRi2qakpQTsadi4A0qk4OzuLpaUlIYgBznEU8vm8LFx2VJKj\ngWQwg3oSOL5HR0eyA9NtI3x8qVSSHZULyu/3Q9M0TE9P4/DwUPoHJhVNO0fIun79Ov7gD/4A8/Pz\ncLvd+NnPfoa9vT2USiV5NjwnIQIHKR11DI3NWmovCPsqaPXa7XaEw2F0u11xV1iw9jJZikupFMyq\n0Oi/xeNxJBIJ+Hw+IUIlRh93QPYpjIo4D7sGknokk0nE43FsbGzg4OAAfr+/D2qL2ltVBqr1Mej4\nPMfMzAzeeustfPe73xWknrW1NWxvb8NisaDZbMLv9yMYDMpu0ev1ZDGY+fnG++ZY0uycm5vDm2++\niXv37qHT6eDg4AC5XA65XE7cl0gkIl15vEeS0BpFVabcSSORiLS4h8NhHBwcYGtrC48fP5ZJzQ7C\nSCQiVsoglCc1TkG3ivgGANDpdLC1tSVAOTxGKpXCzMwMvF6vuDQej0eYsczGbNhzI3vXe++9h/v3\n78PhcOCrr77Cxx9/LFYqLS8S0XInJz6mmRjdS+OmAzzvFuZGSX6JbrcLp9MpMQUGYC9iJQCXUCmo\nEX11hyXCDZtuyuUy1tfXpeut1+uJT55Op+VYwHOEoHGF5/T7/cJlQJiy09NTcRssFssLxLbqfQw6\nNndtktgmk0nY7XZUq1U8ffoUf/mXf4lmsylKYGZmRiDRdf0c3v74+HjsZh5aCuQMuHr1KmKxGMrl\nMr744gvs7u5KcMrr9eLq1asAzolj6vU6Go0GSqXS0Cg9J7WKgMQFkcvl8OWXX2J9fR2lUqnvmRIv\nQIXI530NymJwDLvdLmq1GsrlskDzdTodafQioWwoFEK324XL5QIA2UCM8ahRioF9HW+99RZ++MMf\nIhqNYnd3F1988QW2t7f7FDRBfu12O5LJJE5PT02xGQeNI11VtmEzUEkl7ff7EY/H5ZxUqmqPy7hI\n1Ua5dEoB6I/wUiMSxz+VSqFaraJQKAi8FQNiHo/nBZIPVTFMMkA2m03o7um+eL1e0f40dbkDmAXE\nBt0PA0YLCwu4du0apqencXx8jM8++wzvv/8+dnd3ZdHQejg9PYXb7X6BAcmYelInt7pz0wednp6G\n3+9HqVTC2dkZPvnkEyGc8Xq9wqTNMSQeJVt1B1lfagCYu2QwGES328WjR4+wvb2NUqkkcR5+lvep\n63ofFsYwS4EmeafTETLaUqkkiERcSABE6RwdHUmDFAOMdrt9rBZ0Xq/D4cDNmzfxJ3/yJ5ibm0O9\nXsdHH32Ev/7rvxalynEDznkoYrGYxE+2traGolcZnyF/1L4VXdeFMpEt6ZVKRZQClQmf+zit4Ua5\ndErBqCnZ+ebz+bC0tCQak1yILpcL09PTiMfj0oVHLkIuGJq/4woHVNd1HB0dCYAmacrY4MPFop7L\nzGQzC/gx0JdMJmG1WrG3t4e1tTXhPaBpzRw46dbL5bLprqCey3gv3BnJgXnlyhU0m02BQuv1en2A\nL+FwGDabDaurq8jlckin033YDmbjRbHb7QgEAjJWmUwG5XK5T3HyvtjOTQAYXT/HHODYD3KLOAc4\n4ev1el+enunja9euYW5uDlartc90VyPzZkFaM7FarUgmk/jjP/5j3Lx5E71eD++//z5+9KMfIZ1O\n9yliZgroQvl8PqTTaTgcjhcUq5lCUhWC2qXLcZmdnUUkEhGr6uDgQGDf6Lo6HI6xs1Iv3OvE3/g1\nC3e7cDgsGp+TmIxOTHu1222k02nhFOTA0teaRMj/wOxGNBqVuAbZjIy7E025YQ+CloLKJUG+BT5U\nYkIykKQGOxlMY5R5GEQ5FyuzN36/X6j2eM0k1iFr9NzcHGw2G/b391EoFLC5uYlSqSQLaZiZTZ/7\nypUrgm9JbgbyIqopPb/fLy6Rpmli/rOz0iyIyd+NwC66rgsDM7EVrl692odpwHvv9c7RnlnTMEoY\neL1//z7eeecd2Gw2rK2t4Sc/+QnW1tYEnFZ1C8PhsFARkP5t1LnM3F0Gvfn9s7MzcYNoKVWrVSFA\n4lgYM2qTyKVTCsZUGn0jAOIaBAIBMfuCwSDi8TgAIJvN9gFc8hiT4h9w9zg+PhYwkmg0KgNeqVQE\nTZcm6TBloF4L3SGCkdDqODk5QSAQwMrKCsrlspjzkUhEIszEiGSKclChlDqWako3EAgI4rCmnZPB\n3Lt3D6enp/D5fPL5SqWCSqWCra0twRc0q5DjTqZaALwv4Bxc9fDwEE6nU0heaf1RoTPDsbOzIxmJ\nQdV46qJSU9QE9KVFR5fy4OAATqcTHo9HgF3///auLratsww/b5y4duIkduw4jt2ma9Lsp50mNk1o\nF1PvBmM3hbtdsQskbkCCCy6GdrNbkOACCSGBmDQQYjfA2A1SgW1CmkbpaNc2aZsmTeP81I6dOH/O\n3xzn48J+3n0+tR2na2cHnUeK7Jw457zn83fe7/373ofZA1LnOedbNbC9+0svvaSu1/vvv49Lly7p\nWLIFu9frRTgcVu5RABoYrjVH7Lluf29MH9suq4ggGAxqk9hcLleRIrav8aAZiJZTCrb7QM24tbWF\nqakpiIi27+7p6cHe3h5isRg6Oztx/fp1XLp0SQs57PPwvNXg9MGp7UkVx/x9V1cX9vdLzUlZ5CMi\nDXFH8hr8H/qJmUxG+wqyRyPTkdlsFh6PRyPnqVQK4+PjmJ6e1oBnrevamQBmK/iQkDeyv78fvb29\n8Hq9yOVyWFxchIgo98Pdu3e1eMgZn6n2fdG8LRQKqkh6e3u1wzZdIKaTyZuQSqUwOTmpRVgHdZ1i\nuvP5559HMBjE9PS0uhJsw0aez2QyqWnqs2fPIhAI6ILC+ZNMJqumjAmPx4NTp07h5ZdfxpNPPomV\nlRVcvHgR7777rs6F7u5uJBIJFItFtQKfeuoptcKuXbtWQQJbbQw5fiKiyiAQCODkyZOIRqMaV2MA\nM5lMIplMKkeIHTRlTOWRMUQ1A05TcXd3FxsbG5icnFSTzOPxIJFIVPRPZEDH7vd3UFrGVkDUzmwl\nFolEtDqORLOhUAj7+/u62ju7A9e7JzvYWSgUtPZBRJTfsLu7WyPlpB9jdJk5fDsPXe9B5f3ZLE80\nzVnYY6cFl5aWsLS0hMXFRU15OpWrc+z4yvHjgykiGlTk9bu6utDb26s/DPYxRuC0EKpdk2nFRCKB\n/f19ZZpi2zXWrbC5LvlAl5eXEQwG1W0pFotaEcj9CbXmB1OYXO2npqa0gIhKjkE/kvrEYjHEYjGs\nra1heXkZqVTqQLeSVp3f71dGMsZdmFlra2vD1NSU8ozancftNLlNJXfk3QfCNv1FRBmLNzY29EF9\n4okn4Pf7MT8/r01cq1GLN+ILc7Xr6elBf38/jh8/jkQigXA4jO3tbaysrGBoaAg+nw+hUEjrz52K\nx44SE05rZX+/1JG3r69PG23ShywUClhaWoLP58OJEyfQ09Oj5vz6+npFGzPbwql2b1RyVDA0cbkf\ngGzQ4XBYKdxYu1+LAq+a9UVZmLlob2/H7u6uln3z+owH0dJir0ibQ7LWtezvieXSOzs7WhLOWAQL\nvPb29pQPhKXGtCCZ0mPrtnqggqHsbAzMTA0VDVBiwh4cHMTQ0BD6+vogIpifn8ft27cbJpVlmpqK\ngZZOT08PvF4v8vm8zgMqfM4/KggGYA9i9aqFllUK9s3YXXZsPzYcDqNQKCCZTFaY1NX+rx6oEAKB\nAAYHBzEyMoKzZ89qxeTMzAxyuRxisZj6sqyzt6PC9rWcboktE1NvNp+hXXabz+dx+vRpLafe2trC\n3NxcBTHqQe4Q/VsWYZGjgCsaTfXR0VH09/djYWEBq6urOuGcbehquWG2m0J2Jrscl5V4TCGSHZxZ\nJcZlaEXVs0qMMfD7/Xj88cfV/WCNA+NOZKIuFouIx+OqAOyekaFQCMvLyxUrbL05wjEnS3U8Hsfx\n48c1U8JakkQigTNnzuiCMTY2punYRh5QOw0ej8dVAQaDQV0YJycndY8DFXGhUNAKTgBa8/KgaFml\nYMP5cHPDiN/vRzqdxuzsbAV3AXEYLcmim4GBAZw+fVpXIprUrBTr6+tT/gegssy5VsTXfs8JSzZi\nrgisA1heXobX68Vjjz2mltHMzIxyBlDxNVK27fV6VcmFQiF0dHRgZ2cHa2trupqz0zKJSkgwYp+v\n0XH0+Xzo7u7WQB9Tnh6PRynTqRxERMudGUeotzmJi8He3h6i0SgGBweVNm14eBgdHR3o7e1V9+vE\niRMYGBio4NAk0zUAXfHZLr+W/03rYGZmBs8++yzC4TCefvpp+P1+JJNJ3Lt3D6FQCOfOnUM4HNa0\n482bN3H58mWMjY0hk8nUVeQE3QEGhtmVulAoaGZtZmYGmUxGFzLWeNBK29nZqdgs+CDdqltaKVRb\naTkQoVAIu7u7WhTTSNygHmiSU1vzdXZ2Fm1tbejv79eNO4yq2/62LWu9GAMbjObzeU2dbW9va0nz\n1tYWotGockBks1lkMhl9cGptfHIeA0qTLBwOI5FIoL+/X7kEmMkYGhpCV1cX8vk85ubmlI+Bq+dh\nir3sMaDPTkuA8RgqwPb2dqyurmJxcVF3MFajPHO6DrwnZih8Ph9GR0c10MdAHMllfT6fbpLjhimP\nx4OlpSXMzc0hk8k0pPRIAjM+Po5nnnkGgUAAo6OjCIVCOHnyJCKRiMY4Njc3cfXqVYyPj+PGjRtY\nWFhQi6kWONY2oTFjM7RC79y5o4QynAfcQUllSZZwWqL/d1unnaCJymjv0NCQcjvWo4A/TKCFK+b2\n9rb6n/F4HF1dXYjH4/D7/VhZWcG9e/ewsLBQ8TlbORwUeORKT2YhanlGmEdGRhCNRtW/T6VSatY7\nz1/t/mwFRR81Eonog1csFvVYLpfDzZs3cfHiRaRSqYoKuGo+fb2xpL/OVHEwGMTy8rJSnvG7o0Uy\nPT2NbDaLfD6v57eDl9WUHXcdZrNZ3QPz2WefqdtCF4n8CIzOb2xsIJ1OK71gNptFOp1uaG7s7u5i\ndnYWH374IYwxOHPmDDY3N9HZ2YlgMKhZKWZSLl++jOnpaaytrVX0bzgIxWJRi5ECgQCi0Sg8Ho/G\nk7LZrG5c4yLGGE2hUFBLDMAD1eYQR0opsNR0eHgYQ0NDSKfT95m7zv9pFMYYpeK6c+cOACCRSCAU\nCiESieDYsWPIZDIYHx/HlStXtLeAs1ag2gpbbYLbSoHVhIFAALFYDMPDw+jq6sLq6iru3r2rRT12\nzMRuQ1YLvIZdO8DKzHw+j1AohImJCXz88cdIJpP31VxUW6mrjRsAdYnI6cBIeU9Pj+7q5E7G9fV1\nzM7OanWm3f+iXhxof38f29vbyGQyuHLlCmKxmAYMd3Z2NM7ABSSdTiuVWzqd1qK2nZ0d3SnJ89Yb\nR9aS3Lp1C9vb2/joo48Qj8f1Htva2rC+vq7WFq9Tb9NatTE0pkSEs7m5iYWFBezu7mrB3srKSsWm\nMbsHCF9pHRzUu+EgHAmlwBWEK83AwADa2towNzdXUazEzxIcrEasBdYOrKysYGpqSgc4Ho+jra0N\nk5OTShtnZwLsL7Ra5sF5H/b12H+hvb0dwWAQIyMjmiXI5XK6R5+Kj7nnw3BRkHl5YGBAV1HuFJyf\nn8eFCxcwOzt7X+bGGSitdl/2cU5oZjRSqZQ2cAmHw9jc3MTa2hrm5+eRy+WwurqqZi4Vvp1qrWX5\nsQ7iwoULCAaDutuR/TPolzPuw01rvDePx6OZinoWphMsrb916xZ8Ph8mJibQ2dmp3+Pm5mbF3gNn\nZuYg2J+hErD7WhSLRb1HO/3IkngyTzNYfVBhWz20LEOUbUay+IVBs2g0io6ODnzwwQdIpVI1q+AO\nm6O1r8lX+z0H+bAVks5r2ClQ5t252SoSicDv92vgb21tTYNxTn/7IBnYR4Bl4KSNy2azukqTW/JB\nJ5B9X+xPCKCi14M9XnbPwsOOox1X4PdxmECofQ4btkL/IqhXO9IInDUvtTI+jS46VXD0aePsScCi\nE9a3G2OwuLiI9fV11dCP8l4e1qRxmnxcJfkQ0SLi3nlntuEwE495eF6DvQzZz4DnfRgKodoxp6xO\ny6LWuWpZKzzXF334nPI+LKXwMODc7vygCu+LKIWWdh/sL4tBPa6YNP248jzqL/Rhnd9pjXDVtFvH\n2TvpbOXhVCo8Ty3ZnGZstaDoYWWv9j+1XDfnSndQDUK9AGq1azwIDoqNNBsHFYzVwsNUai1tKbhw\n4eKhoiFLwWWIcuHCRQVaxX1YArBZfj1KiMCV+VHjqMkLtK7MJxv5UEu4DwAgIp80Ytq0ElyZHz2O\nmrzA0ZTZhus+uHDhogKuUnDhwkUFWkkp/LrZAjwAXJkfPY6avMDRlFnRMjEFFy5ctAZayVJw4cJF\nC6DpSkFEXhaRCRGZEpHXmy1PLYjIjIhcF5FPReST8rE+Efm7iEyWX0NNlvEtEcmIyJh1rKqMUsIv\nyuN+TUSeayGZ3xSRhfJYfyoir1h/+3FZ5gkR+XqTZD4hIh+IyA0RGReRH5SPt/RYNwy7Fv3L/gHg\nAXAHwDAAL4CrAM40U6Y6ss4AiDiO/RTA6+X3rwP4SZNlPAfgOQBjB8kI4BUAfwMgAF4AcLGFZH4T\nwI+qfPZMeY4cA3CqPHc8TZB5EMBz5ffdAG6XZWvpsW70p9mWwlcBTBljpo0xnwF4B8D5Jst0GJwH\n8Hb5/dsAvtlEWWCM+ReAnONwLRnPA/idKeHfAIIiMvjlSPo5ashcC+cBvGOM2TXG3AUwhdIc+lJh\njEkZYy6X328AuAkggRYf60bRbKWQAGDzm8+Xj7UiDIALIvJfEflu+diAMSZVfp8GMNAc0eqiloyt\nPvbfL5vab1luWcvJLCKPAXgWwEUc3bGuQLOVwlHCi8aY5wB8A8D3ROSc/UdTshNbOpVzFGQs41cA\nRgB8BUAKwM+aK051iEgAwJ8A/NAYs27/7QiN9X1otlJYAHDC+v14+VjLwRizUH7NAPgLSmbrIs3A\n8mumeRLWRC0ZW3bsjTGLxpiiMWYfwG/wuYvQMjKLSAdKCuEPxpg/lw8fubGuhmYrhUsARkXklIh4\nAbwK4L0my3QfRKRLRLr5HsDXAIyhJOtr5Y+9BuCvzZGwLmrJ+B6Ab5cj4y8AWLNM36bC4W9/C6Wx\nBkoyvyoix0TkFIBRAP9pgnwC4LcAbhpjfm796ciNdVU0O9KJUmT2NkqR5DeaLU8NGYdRinpfBTBO\nOQGEAfwTwCSAfwDoa7Kcf0TJ3C6g5Ld+p5aMKEXCf1ke9+sAnm8hmX9flukaSg/UoPX5N8oyTwD4\nRpNkfhEl1+AagE/LP6+0+lg3+uNWNLpw4aICzXYfXLhw0WJwlYILFy4q4CoFFy5cVMBVCi5cuKiA\nqxRcuHBRAVcpuHDhogKuUnDhwkUFXKXgwoWLCvwPBQpz1kOXwhAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACtj0lEQVR4nOz9WYxkWXomiH3X9n3f3Mx3D/dYc6+sYhXJIjk93dBDAw09zKBHgDQCGqIeZjAQMA/NmZcRBDTQD9IAAgQIoqCBpgH1Bki9gFCLbLKnwComWcysyozMyIiM8H2zfd/N3MyuHiK/P47dsNUjkvQoxg8EPNzd/J57zz3nP//y/d+v6bqOt/JW3srfXDH9dd/AW3krb+WvV94qgbfyVv6Gy1sl8Fbeyt9weasE3spb+Rsub5XAW3krf8PlrRJ4K2/lb7h8Z0pA07T/maZpTzVNO9A07fe+q3Heylt5K68m2neBE9A0zQzgGYC/DeACwKcA/jNd1x+/9sHeylt5K68k35Ul8H0AB7quH+m63gfwzwH8ve9orLfyVt7KK4jlO7puCsC58v0FgB9M+7CmaW9hi2/lrXz3UtR1PWr84XelBLQJPxvb6Jqm/S6A3/2Oxn8rb+WtvCynk374XSmBCwBryverANLqB3Rd/30Avw+8tQR+FUXTXj4HXjX+pGnaxGvw58Yx1Z/x/+rfT7veTRb1GV/XvX9XSuBTALuapm0BuATw9wH8L76jscZe5ut+sZqmyT+TyQRd11/691ZeCOeJi9VsNmM4HGI0GslnXocyWPQ+5o2pKpBl7ku9h0kb83U+I59DndvRaITRaPRa1uF3ogR0XR9omvZfAvhDAGYA/4Ou61+/7nHUDapOGidHuZ9Xur7VaoXdbofVasVwOESv18PV1dVL43zXMumku2mivgturNepMCdtPlXhmM1mWCwW2Gw2WK1WUdyDwQD9fh+DwQC9Xu+l+7nOvZlMJvnHa1DZqRt02edTn0vTNHkuu90Op9MJTdPQ7XZlHQ4GgzElu+zzfCcpwmXlOu6AyWSCzWaDz+fDysoKQqEQLBYLer0ezs/Pkc1m0e/3AYy/nCXuCRaLBW63G5FIBOFwGBaLBZ1OB5VKBa1WC61WC/1+H8Ph8JVPAGp5k8kEi8UytsB4zdFoJAtuMBjIv2WfbZZwPNWMXvSZeEqZzWaYTCZZvFdXV7i6upJ5Uhf2YDBYWEmom0M9HS0WC+x2O4LBIOLxOMLhMILBINxuN5xOJ3RdR61WQ6FQwOXlJcrlMhqNBnq9nszhos/JsZ1OJ4LBIBwOBzRNk3XA+et0Omi1WhiNRhgOhzLGvGurp73FYoHT6UQoFEIsFoPf74fdbkez2USlUkGj0UCj0UCr1UKv1xOLa8Za/IWu698z/vC7cge+M+FE2e12eDweJJNJfPjhh9jd3YXNZkMmk4HJZEK73UalUsFgMJCJXXSz8PMejwfb29v44IMPsLGxgX6/j3K5jOPjY2QyGRQKBVQqFXS73Wu7I9wsdrsdXq8X0WgUoVAIbrcbfr9fFMLV1RVarRbq9To6nQ7K5TLq9Trq9Tra7fZSC5jmpHqvJpMJVqsVLpcLwHOF0+/35fQEZis4/r3b7ZYT2GKxYDgcol6vy9zz3dlsNjgcDrRaLXQ6nbljGBUA14HFYoHH40E0GkUymcT29jZ2dnYQjUbh8/lgs9lwdXWFSqWCy8tLPHnyBM+ePRvbKNyoi4jZbEYgEMDOzg729vYQCAQwGo3Q6XTQ6XTQ7/fRbrfRaDSQyWRQKpXE8lAPi3nvx2KxwOFwIBKJ4Pbt27h16xbi8Tg0TUOxWEShUMDFxQWy2eyYe6DO1bx3RnmjlAAnyWq1wul0IhAIYG1tDaurq4hGo6LZ+/3+2KRMChrNE6vVilQqhR/96Ef4/ve/D7fbjUqlAofDgXa7LS+7Xq/L3yw7Dp/HZrMhFApha2sLu7u7SKVS8Hq9sNlscpJaLBa0Wi2k02lcXl7KeK1Wa6biUU8XnphcNPwbh8MBh8MBr9eLZDIJm82Gcrksim7O6SLPQCXm8/nkb5rNJkwmE3q9HkajESwWC1wul5i1NpsNw+Fw7gZRhfNMV83hcMDj8WBtbQ2bm5uIRp9nwS4vL+WEtlgs8Pv9SKVSyOfzKJVKMj/8ushJbbFYsL6+jt/5nd/B7u4uvF6vWBi1Wg2tVgterxexWAyj0UhOaOMpPenaxvm1Wq3w+/3Y2NjAxsYG/H4/Go0GgOfKiOvDGCMwXnfec71RSgDAmJb0+Xzw+/2w2WyyKbPZLDKZDBqNxkuTsugpTSvg3r17+PjjjxEOh5HL5XB2doZKpQKTyYRoNCr/V2VeAMr4M461urqKBw8eYH19XdyaTCaDVqsFs9mMZDIJp9OJlZUVlMtlaJqGdruNq6uriWPxK01vbnSn0yn/N5vN8Hg8SCQSCIVCCAaDiEQiGAwGODg4gK7r6Ha7YjJPegaarLTKVlZWEIlExIqoVqtiGg8GAzgcDvj9frhcLnS7XZycnIj7MM8kpzWnPp/VaoXX68Xm5ibW19fhcDiQyWRwdHSEs7MzdDodOBwOrK6uYnt7Gy6XSywExgoWtRAtFgsikQh+7dd+DT/+8Y/hdDpxcnKCx48f4+joCFdXV3C5XIhEIkgkErBYLBgMBuh2u+KazhPVMuP7XllZgdPpRLVaxeHhIXK5HDqdjligPPSuK2+cElDNVofDIYGedruNi4sLHB0doVwu4+rqShbVJC07SzRNg8/nw87ODrxeLyqVCh4+fIj9/X34fD5Z7DQx2+32mCk2aZxpqS2ax16vF2azGcViEaVSCUdHR6jX6xgMBnC5XCiVStjZ2UG/30etVkOlUhE3YJJyUYNldrsd4XAYHo8H6+vriEQicoLQAvD5fIhGo4hEIqhUKjg7O0Oj0UC32x17NmMmxm63yz+PxyMn8WAwEMupXC6L2a4u6v39fVxcXCykqNW4jrpRaN24XC7U63WUy2UcHh7i+PgY1WoVAOD3+xEIBNBut2GxWKDrurhhNL8XsQJsNhu2trbwox/9CLFYDLlcDj/96U/xySefoNFowGKxiEJ1u93Y2NhAo9EQl4AuzyQxzoGq4K6urtBut3F6eoqzszMUi0U4HA5xFY3rfNp1p8kbpQR4cqr+Mjf7YDBAtVpFLpeTTWmc2EXHsNlsWFlZQSqVAgAcHx/j4cOHSKfTWF9fx71795BMJsU8bzQaY2mwRS0OXdcl4ksF0Gg0cHp6ilwuJ+az2+2Gz+dDKBRCt9tFNpuVMeeNYzabxTzd3d3F7u4uhsOhBJby+TwuLy8Ri8XgdrvR6XRQq9VEuXF+Zwnv0+fzIRAIwO12o91uo9PpIJfLoV6vw263y0INBoNYXV1Fp9OB3W6XOZuX6p30O26WcrmMTqeDYrGIs7MzlMtldLtdmV+fzwen0ymWjapITCbT3JiApmnwer348Y9/jK2tLfR6PXzyySf46U9/inQ6jaurK9hsNtjtdnEJ3G436vU6jo+PUSwW565BdSNrmoZwOAyv14tAICDxoEqlgl6vJ4egy+WC1WqFxWJ5Kc6zqLxxSoAnjtvthtfrxerqKlKpFK6urnB5eYlCobCUfzlpDK/Xi3v37iEcDqPdbuPw8BCZTEbMvXA4DJ/Ph2AwiJWVFVxeXqLX6y0VkFHjGy6XC8PhEMViUYJ9qv/s8/nEz87lciiXy5KZmOVn8vrBYBDJZBLvvPMOrFYrDg4OcHp6inK5LC6N1WoFAPR6PRwfH+Ps7AzVanVMCRitDjUFyJO13+8jn8+jXq/j8PAQZ2dnGAwGkmbVNA3vvPMOfD4fPB6PXIdfp/no6vdqNmEwGKDdbqNYLMJkMqFQKKDdbmMwGMBsNsPv92N7extra2vQNE0i67RwjOnlae/KZrNhd3cXH330EXw+Hz799FP80R/9kbx7buB2uw2z2Qyr1YpwOIxAICCu1zyrQ312m82GYDCIWCwmipLPTqVusVjQ7Xbh8XjGslTqYbRIGvuNUQJqEI0mbCgUwvb2NqLRKJ4+fYrz83MJQBllUZ+JCyeZTMLn8+H8/BylUglXV1cIhUJIpVIIBoNwOp3w+/1wu91jL1dN6c17HovFIj613W6Hw+EQX/Xq6goOhwN2ux2BQAAmkwlnZ2eyOTudjgScjKIGzkwmk8RPzGYzyuUyLi8vkU6nUSwW0e/3EYvFEI1GEYvFRAlcXFyMuTmThJuQp1Cv10M+n0e320Uul0M2m5VrdDodcbPoH/MZjKmxRdJ1jLYzZTscDmE2m6HrulhPLpcLt27dwq1bt+ByuZDL5XBycoJ8Pv9SendeLMLr9Yp7WK1W8emnn+Ls7EyUJBUpT2Wn0wmLxSJ/r76TaWOpn+FhF4lEEI1GUavVxBV1uVwIhUIwmUwYDAbodDqSzeF6WCTGQnljlADwwvTzeDwIh8NYX1+Hx+NBr9fDs2fPkE6nJy7aZWIBDP5Eo1FYrVb0+31omoZQKISNjQ2sra3JC3a5XLDb7eJfL7qAOZbZbIbT6YTJZEIkEkEymYTFYkG1WpVA2nA4hN1ul5RQOp2W381TbLwPZlN4YvZ6PQCA0+mE2+1GPB5HKpWCy+XC/v4+nj17hmazOXZSzsJacJOXy2XY7Xb0+33Z4Pye80jMAE9k3p/q7w+HQ8EVGJ/FOO5wOES324XZbBYTmcozEong1q1b8Pv94roxuMs55HVmvSee6mtraxiNRnj27BkODw/R7/dhsVhgtVphs9nkYKDC7ff7ksI1xjNmCdeh1+uVw07TNKytrcHj8QgY6urqCisrK3IYNBoNAbGp1/qVsQSAF+at3+9HLBaTDVkoFPDo0SN0u91Xuj5fOHP1jOoy0LO+vo5wOAwAcgIaN/6y+XqTyTQGdGHOu1wuo1qtYjQaodVqoVKpIJfLodlszgW38HcEqRBZ1ul0UK1W4fF4ZBHZbDbE43GsrKygWq3i4cOHMi7vD8BUi4OxkGaziVKpJO6L3++XzdxsNscyIQS80LpSMx2DwWBsg6pzNutZR6ORxD+YrYjFYvB4PKhWqyiXy8jn8+JTqzGcebl7i8WCUCgkAVUqUmIE6J5SmQeDQQwGA/HhK5XKS5tzERkMBnKic40Qe6HrOmw2mxxEg8EA+XxeXKFl5I1RAvQ5CaBYW1tDLBZDu93G06dPcXFx8crIOW7IUCgkpxsAJJNJWK1W+Hw+aJomqS4u3kWBJkbflymvbreLZrMpL5AR5dFoJEHDarU6FgxcxFzWNE2CgJlMRp6RaVWasSsrK3C73bi4uMDFxYW4VOo9TpPRaISrqytomoZWq4VGoyHuVCgUkp81Gg04nU7cv38fiUQCo9EIkUgEW1tbcLlcaDabqNVqoninbXq1LoHZAcYbPB4PAoEAQqEQfD4fXC4Xrq6uUK/XUavVUK/XX4IMLwLe4buni+FyubCysiLrMZFIwG63o1arybNbrVYJvnKNLLM+B4MBarUastksbDabKFpmbADIgeHxeNBoNHBxcYFSqSSxokWD4W+EEqA2ttvtEiVPpVIIh8MYDAY4Pj5Gq9WauTnmmUXqqczUI/3pSCQiLgBNeABotVqoVqsLKQFj0Iv/7/f7KJVK2N/fR71ex3A4RL/fh81mw+rqKsLhsEBDl8lpUwlwMX3zzTdyIhN+yiCT1+uFpmnI5XLI5/PiY6oKYFqASbUGOp2OnH7RaBRerxculwt+vx+j0QixWAz379+H1+tFq9WS+XS5XHI693o99Pt9uX9jcJABTACw2WyyEbxer0CGGYzTdV2yBHxHVqtVIMuznsv43mw2m2QSIpEI7ty5A7/fL9F7ui8bGxtIJBIAnoOVGo3GWAB3kaAg31uhUMDR0ZEo2lKpJEqA2JFgMAiPxwO/3z+GMOWzLSI3XgkYo7c8qbkpC4UCTk9PRcNP+vtFhUqApzIDO4S+UgF5PB40m008evQIl5eXEmmed0Ibg3U2mw2apknaL5PJCLjlgw8+wObmJsxms5jxy1o6NJPpnxNd6HQ6pcDmzp07sNvtGA6HSKfTYxkBdbx5Y9P0r9frcDgcODw8hM/nk6Irbl5df46rbzabaDabokgZrGs2m1PBL5w/BlQDgQBWVlawuroKj8cj/66urgRIc3V1JTEQj8cjeXf1+gxOTkpJMvhZKBRQLBbRbrfhcrmQTCbhcDgwGo3QbrdRKpVgs9kQDofhcrnErclms2PrYxHhvdTrdRQKBQGPEabOQ4KpbILnGJRU730RufFKAHiR6uBE8rQul8v45JNPXoK2qrLoRHDRE5hRLBblhKOZTs3f7Xbx5Zdf4uc//7kUKi3yknmSqKbrYDCQMTkOi0ZCoRD6/T7Ozs4mYh8WeSZuBNW9IYCIRVcmkwnlchkHBwdS9LLM3DFAZ7FY0G63kU6nkc1mJWbicrng8XjQ6XTE1aKLkk6ncX5+jmazKVbALIgt793v9wvKkhmjXq+HRqMhAUen04nRaCRAoW63K8qXlp5qJUwSBh4vLi5wdnaGW7duibIplUriQnU6Hdy/f18yOdlsFicnJ8hms+JezZpPI9iHwT7iNhjH6Xa7KJVKcDqdqNfrYlHRSlTThL9SSoAPY7FYEIvFEI/H0e/38fnnn+Px48dzU1nAYlHSq6srFAoFPHz4EGazGffv34fVahVQCxfa5eUl/viP/xgHBwdiOi+DC+Am9/v9uLq6QrlclsVvt9uRSCSwsbEBt9uN09NTnJ+fLwTamSScF3Wh8+RjME3XdRwfHyObzS4c3zAKF6zJZEKz2ZSf85k9Hg/MZjPOz88xHA5RrVZRLBYF4s3NuIglxRQa6xR8Pp/4+4VCAf1+X96Xx+OBy+WSClCmY7lpyHcw7bmpRAuFAn7yk59A13Xs7e2h0+ngyZMnOD8/R6PRQCwWQyAQgM1mQ6PRwP7+Pj7//POx4ql5wmenW8Q4yerqqgRaz87OxD3x+/1SXMZ6CGNQ8FciRUgNaTabJU1HGO3+/j6KxeJE/Pyk6yzymX6/j1wuh2fPnsHn8yEej8PlciEYDMJkMuHy8hJ/+Zd/KTnipTSuUvOwtraGZDIp0F8VYHLv3j2sra2hXq/js88+Q6lUeiUA1CThCe33+1Gv13F2dja2ea8jjA+owvlptVoolUooFAowmUxSOaiCjQBI7ntWhJt4EZ7Ibrdb+B6YBWG1XzgcxtXVFcxmM5rNJux2u1g/qh8+77l6vZ6kBY+PjxGJRJDL5dDr9aRwiuCycrks8N5pbuq8OWT+n0FFbvpEIiGZpN3dXUSjUVxeXuL8/Fxg5pPiKbPkxisB4PlLcjgcSKVSiMViGA6HyOfzSKfTL+H2gZdx2JRFJoWgi1KphJOTE1gsFolgA8+DPWoQ7zrmOYt27ty5A7PZLKhDAEgkEtjd3UW328VPf/pTfP7552g2m69NAaj4hHA4DIfDgUajgcvLSykSet1C85QFRawq7Pf7EmFnMGxW3b0x9UlUIOsuXC4XzGazuDR2u11M8VarJdWfo9FoLMi66AFBK5DAKAZZo9GoAJKazSaOj4/x9OnTa7831TUlFNrlciEQCGB7extutxuhUAherxfNZhPn5+fIZDISz1nWbXwjlAAAMVubzSby+byAPmZVUE1SCvOEgaBarYaLiwsJBhLQcnJygmq1eq3KLb4cBreoDFKplJjE3W4XxWIRR0dH+Iu/+Avk8/mFCCmWEebrfT4fBoMB0uk0KpXKxNqHZZXoNGFMgrBepnzdbjeAFzRkxDRMEhVIREy+w+GQGoF+vy9B3UajMcYqRF+afAxUJMuk7rj5i8UizGYzotGo5OlNJpMEDs/Pz1Gr1a5tvan3nM/nJUi4srIicOt2u41ms4lisYjj42OpnaAl9isXGKQWPj09FXM6m81KUE592Gn/X0YYDGRuvdFowOv1YjQaCYzYOO4i1+TpxWg/cedcyAySHR0djY3zqvgHVZhmowndbreRy+VeqhY0BqpeVehb12o1DAYDqRtgtJ6BOsYrpl2DbkKtVpMYAItoeIJyA3Ej8D11Op0xajiV7WjRdzkcDgWwVa/XJbaRzWZFERWLRUFcLnPtSfNFpVUsFnF6egq/349wOCw4j3a7jXw+j2q1OhaAXGbcN4JejCYsi23MZjN6vR663e61kFgL3pNE8p1OJ6xWq6TzOO6ymp4WgMPhEBSiy+UaS5sZzdbXbQGwNmJ3dxerq6sYjUaoVqs4OjoS3L9qsSwDhZ43LusgmDpkvp6Wla7rUiI9LVDHDMu0wp9Z96vOp/q56zybuiYZ7KVbw4j+6+Kh5FokroJxDVrH3W53LMYCTD0A31x6MZqBqi/2Ki9wmTFZEmvcEK+i3ZlDNhbMfNfPBLxgpBkOhwI+oQltPBXnLKilhSY4MyFOpxONRkOouXq93phJq4o6T8a8/nU38XX/ln9Hy67b7QoGw5jOfh3CZ+Zzd7vdMSVoHGvZcd8IS+CtvLqoUFsCTRiRZ4EPFe0ykeVZY3E8fiXIB4Bg4LmAlwXUvA551ee8KbKEQntzLYG38uqi5qB58s777KuOxfH4dZFU7l+l/CooAODVn+M7a03+Vt7KW3kz5K0l8DdIVNPcmAn4LmIRKsJP/QdgavzhdY79uq/7uq45LQVr/Iz6b1ZAc979zPv9G60E1EX1OlKDv6pCf5x19sFgUEgomFIjZ74Rnrx0kElZuDabTfoQsF6CNQQk22DB0HXy28Zx1a/8/6Rnue71jRv2VYKKs0TtpESCFMZPWP3Y7/clJTjpnf1KgoVUMaZnWDdP8IeRkea6L2tSKeubpmBIK06yi2AwKCxC5AIsFArI5XLCV3BdkAvTd1zE7N7E3HYikRASmMvLSymuubq6GmuKcp0AIVOaKr5h2jUWBUAZA5wqxz8xCUvl4xe4L65rBm8DgYDwP5Cjsd1uo1qtotlsjjU9WZZRiHKjlYDxparFKIFAQOr8df05Nr1cLqNWq42ROMyrh1fHYj6WL4ORbKM5xs8xTaRGuZclj/guhczMiURCipJCoRDW1tZgMpmQSqWQTj9vFs303HUBQpwTKgAuYvLwJ5NJuN1uIdlgGzdVYXPe6K7Me19GBa1mINTNqprUzH6oym7SRlbXnNrog/9YXWhUBPw67efz5o8KgAxaq6ur2NraQjAYlOrHTCaDbDYr7FMcb1G2JKPcWCUw6SUT6LK1tYX79+9jY2NDCB2y2SwODg6kRRjpq9SXOS3/rG5sdrRxuVxysnFB83RjsQp59cgJSAJNLrJpz6WKESuwiN9p/My02nsSsfB+fT4fVldXEYlEhFqM7c0GgwGazeZC1XzT5pCbDIAAV/g9Oym1221ROFSg6qmqmvWL3APHVrkn/X4/AMhYfFYV7MWGnpPKltV7YJ0Fy6FZuUcFxk0LQMYiVZrKCK3O6axn40HCUm9Sv/l8PtjtdqlapRCrQN6E61i+N1YJTHoQKoFbt27h3XffRSqVgtlsFo1cLBYRCoVQLBZfWljqV1WMFgBdDFoCLEXlIrPb7XC73XIiHB4eygsg9HVarp3j8HShn04WHNJS07XRdV2ux5pxMg+xAGZaU1KOz+ciykzXn+PQ1YacwWBQoNL1en3hbjmT3peaEmQVHCHRJGdptVqibNRNOGm+Zm0WdV24XC6kUins7u4Ksw+JS0jAabVaUa/Xkcvl0O/3X2rcoZ7aVKJOpxPJZBKRSERcKlY6ulwu6dcAANVqFbVaDblcDiaTCScnJ9JMhkpvlpWozgEPHBYKscsW54+VhR6PR0B017VCb6wSMIqmadKWaXd3V3q9cWJGo5HQKwHjQaB5viEVBqvb+DdsVkF8f7/fl/ZSAMYKUeb5sgzoMEjmdrvFpWG9ezQaFSuCtfk8zQEIa87FxQX29/elu+60slsqlNFoJNz0pP9iYJB02pFIBPl8/qW2aou8F4o651SE6vOwVx95BK/jUxs/yzkiFPrjjz9GMBiULsQMSNJFKBQKqNVqsFqtY5vS6PKx3Njn82FjYwO3bt1CKBSSegsyC5NpqtPpIJFIiJUwGj3vEXF6eoovvvhCOjpN4oVQDymuQ/bViEQicLvd4gaQgIUkLj6fT5S7Op/L8EK8MUqAE5NKpbCxsQGHwyHdZni6mkymMZLKeRFTo3lGk02FtzabTaF4jkajYgGQQYd9AIwc9saxeJqzLjwUCglZZTweRzQahd/vh67rUqDC+/J6vRJcGw6HePz4sSw0mrZG4T1w0dXrdXg8HpyfnwsleLfbFX6+cDgMt9u9tDk56bNcyCrO/+rqCv1+X6w2Yw3AdQOuVAKJRALvvPOOdAfK5XKo1WrQdR2BQADxeFw+XygUxF3kPBtP0OFwKGXKiURCCp5YuKRuRNY9kPQ0mUxiOBzC6/XCZDKhUqlI4dQkAhN1zVAZqPTlLG0/PDyUqlKz2Qyfzyddikjfls1mZS4XZR1+Y5SA1WqVZiOkA3/27BlOT0/h9XoRDAbRbrelrNPY7WXaQjP+TMWlj0Yj4chj3Xs8HofVasXZ2RkODg7G6KQXWci6rot/brfbsbm5Kb45q/na7bZ8lqcSux7Rn6YfPyl1xb+lQms0GshmszCZTGONS6iU1tbWxFLhiTkpJjNpvqYJlaXH45EqSW4AmtksHVaDWYv4zeo9mUwmxONxfPDBB9jd3YXD4cDFxQUODw9xcXEhlHChUAgOhwOdTgenp6fyvNOuy/shF0GhUJBNxaYtZrMZkUhENiEVOyP57FLFAjS1Xdistcig4ObmpjQivbi4QCaTQblchq7rEqMge1IgEBDCWPbfUAPjs+SNUAL0adlyzOl0olgsCtOvyk1HLUoNvchJM+2FMKDDzf/RRx9hc3MTBwcHY52JJvnj04RppuFwOMbpTxLJbreLer0uL5quwNramjT5ZHpIDTxNEm46tsZS/XTguXsxHA6FW4AsxJO6KC2qBDjfjN+wGWi5XMZoNBLsAFu9k2eAcQ41ODjLpKVy9Pv9ePDgAb73ve8hGAyiUCjg8PAQz549Q61WE7yCx+MR/549AlSLZNrpTAVADkgWXPX7femBSIYm8kNqmoZYLCaWpBr3mLU2+ExerxdbW1vY2NiA2WxGOp1GJpNBvV6X4iHiB5iG5VdafwDE2pn3zt4IJWAyPW/TnEgkEI1GMRqNBOjidDolTUjCSdaWL5OimTYuOeY/+ugjfPTRR8jn8zg4OJDehJMiy/MUDi0LTdNQq9XQ7/fRaDRQq9WEcJOfYy/Bfr8/dsKxD8EsXgMuCJrgrHHnvJGum6QpXIQ0LbkxeOIuWlzERZpIJKRdeKPRGONXJH+/3W5HuVxGuVwG8KKpCxXwpGvz3TgcDqyvr+P9998X3snDw0M8efIEuVwOLpcLbrdbFIDD4ZhIoz7NTWTAjYQdjUZDAqe0dDqdDnRdl1gBlUK320WlUkE+nxca91mkpmqWg5gKxqFIhkIrkpwaLHMn65DVapV7VIPV8+TGKwH1VKHpRd+K5hVbT1ksFmFfNW7+ZVNeTA0Gg0Hs7e3h3XffhaZpODw8xOXlpWy+aQtomqgxB0avmRJSG2bw+iTSZH+/hw8f4uzsTBbjvGgzg6dqxyPO5d7eHm7fvg2n04lWq4VeryeLjPPA05KBtHmZAy5k0m5tbW2h2WyKBaD2cGRQzeVyYTQaiak7KzipbpZAIIDNzU3pHl0qlXB+fo5utwu/3494PI7V1VUEg0GJ4FMJMkMzj5WKiDwAUlYOQGI0pG/nhuV7YRMZcg2qfSOmBQZVXAfdimKxKJyJVGoOhwNut1v+jm7dcDgU68vr9Yrymic3XgkAL4KCbHlNU5ibnT6Y0+mUYMzrsALou4fDYVEAuVxOfr9sUIsKgDnkVqslJBFsZW2324Vbjq2nSGH91Vdf4eDgQDr1LJISoiKgIiVP3ebmprDY0iJptVpyytCdYhCKTMvzzEtuUHZsdjqd6PV6onzoy7KzksPhkNQhA6LzhO4hW9FFo1EAz5vB2Gw2IaPliRqJRKSNPd1GxiYmUbfRbFezBDx4aB1Go1FpG8d3QLcjGAwCgPRTYPZqVtBVJV7xer2iiKvVqtCnMc3LuA0VTavVEteOcSx+ZhF5JSWgadoJgAaAIYCBruvf0zQtBOBfANgEcALgP9V1vfIKY4yZXgQClUol6TrECDsDhsDiG39ewJAsRgxCNptNCcYscjIar0kTs1AoyPXJltTpdASYxKBSKBRCuVzGs2fPcHx8PLM5h/G51Plzu92CPnvnnXckw8KuvmQ0ZiCrVqsBgNB3czOT9WjSHKqoPS5YNa5CxappGnq9Hnw+H2w2m+Ax1OYZzPRMejdkfAqHw1hZWRHAmN/vx+3bt6HruvQXIJsRn5XQaPWkn7Y5uTGtVqu4aPTD/X6/tBznOH6/H2tra4jH49L2jHNjs9mkCcqkdaHOG+MytCyoRGlxcE4JfqpWq7KOCJBjrGMReR2WwO/oul5Uvv89AH+i6/o/1jTt9779/h8uc0HjomJuvdvtolariQ9Zr9clVRIKhRAIBFAsFqdGzCeNo/qIxvF1/QXD7NXVlTDl6rouXYimmXjTRNd1KdThaURmH7vdDpvNhkQigXA4jEgkgsFggPPzc5ycnIxRSvNa856Pp2Y4HMbq6iq2t7ext7cHn88nJyMXDjdLu90WZFy/35fAYT6fx/Hx8cRx+JWbgvTf9FHpC/P0JSCLi5vdnUmZpV5XnTs18KjWjrBpKFmhGQilG6JpGsrlMjKZjFhRxs7HxmdyOBzSNZrgLo7L+2FfSnZ2TqVSsNlsyOfzkgVxu91j6NVJY3HeGOMiZoVowMFgILyCKrSYSFY+C9OwVFqL7IPvwh34ewB++9v//48AfoIllQCFL5dgD3a4ZQFKq9US/5KaWeXnU2WeCcuvakCRrMPki+MJQ1OW2naRTakGm+hj0j3gNWjWWSwWaXN1eXmJs7MzCS4t6+IQ9urxeLC6uir5cuILGFykH8+AXSAQkA01Go1Qr9eRzWZnjsXFTIVdr9fl/71eT4Kh3PhqzIGnJK2lWcFOZhTYGuzk5ESUCN8/35XH44GmPe+z+PTpUzx8+BCnp6diZs+DSHPzq6lTNW7DoDURhQyCEhTlcDjg9XqFYXledoAoUCoNKgWuE4K7XC6XKDiuGVp1dO0WJXF5VSWgA/gj7Tk92P9N1/XfBxDXdT0DALquZzRNi1334vQv2RGWpJQsfW21WmIShsNhgYQu2r2XC5LmGM0nRsEBSDESFzGDM7VaTXjtVctlniLgQlLLQjkWewEw0FWpVPDo0SOcn5+PvVRj5mPW8/GEIeiE8QY+t6Zpkl+mOX51dSW4BF3XJWvB1myTnovCOaS/CkBOOM43uyzpui6s0YTWqojNaW6aSsf96NEjjEbPOxwTxNPr9WCxWLC9vS2t0R4/fox//+//Pfb391+C8E4L1KlWpjo+CW8Z5GTAmuuBAV9aKmrDk1npaMaKmNJ1Op1IpVLCB8kDiJgHv98vFk+xWESxWJRsxDR04iR5VSXw67qup7/d6P9e07RvFv1DTdN+F8DvTvqdetoNhy8aaZpMJgSDQYG7Mu+bSCQkn/ro0SOBxc6bAJ5a3JBsAc2/o6kJPDdjCfUNBAJScWfMMS8SKKT/p5q1bK65u7uLZDKJfr+Pp0+f4smTJ5JGVOdlkZerRsLr9Trq9TqKxaI0uOQComJyOp0YDAaCIHQ6naI0WMU2KRahWjnMjdvtdhQKBdhsNunc2+v14HK54PV6Bb3I9md8xkkw3knj0U1j8w2ewlSUOzs7EvS8vLzEz3/+cxwdHUm/x1lzSAWgQoOZfXK5XBgOh5JWZaoOgMQBCoUC0um0ZASYErZarVPdT8aKarWa4AJu376NUCgEs9mM1dVVUSgMHDLtSyvt8PAQ2WxWlJz6bmbJKykBXdfT337Na5r2rwB8H0BO07SVb62AFQD5KX/7+wB+/9tJmHin1PpcXFarVRYoues//PBDRKNRdLtdnJ6eIp1OTzTzpi0q+lSMaKudiNnN5urqSnzOZDIp+XaV5129/rSxuNnopzMIaLPZsLOzgwcPHiCVSqHdbuPp06d49uyZmK2LgE2Mc8fnqNfrsij39/cRDAYl5kDXhsAqq9WKbrcrG7jRaKBareLp06fIZrNzU5I8pekKMMVJc5kEGeVyWZp8FgqFsXoCbop5VhXjNP1+H5eXlwJ9ZqGP1WpFq9XCs2fPkE6nX4J2852o86UKsflsMkJr1G63Ix6Pi5Jli7VKpSLYAALZ6LrM6q7En9HdPT4+Rjweh8PhQCQSQTQaFUtCBZipm5+ZKyJCl2ljf20loGmaG4BJ1/XGt///OwD+DwD+LYD/HMA//vbrv7nuGDST2u228ASsrKxga2sLOzs7iEajSKVSGAwG+Prrr/HZZ59JQ8plsgMkb1hdXZW0GfsAVCoVyUJYrVZUKhWUy2XpQ6cy4iwqNI/ZWz4ej2Nvbw/b29uCeycqkTUCi57+RqElRb+eEWa20aaJySAlrR+efNycx8fHgsWfJfRp+c6Yi+/1egJsaTQa0pG4VCrJ6XyduWT9hMn0vMOw2+2WprUulwuFQgEXFxdjlOrA4rBkRuLZsIVgHqvVilqthmw2i0KhIH0W2UmK+A+OswimA3iuCIrForSf29rawurqKtxu9xhDc7ValdjY+fm5QM7VCtNF5/FVLIE4gH/1rSa1APinuq7//zRN+xTAv9Q07R8AOAPwn7zCGGLypNNpac+8urqKWCwGl8uFSqWC/f19/OxnP8OTJ0/GgmeqTPsZT3wCLBhBJ1Irm83i4uJC2m2Xy2WpF5+2qKZNPqPMbrdbfH+CXaLRKHRdx5MnT/D5559LOlB9mcYA5iILWV2AjEEwQJXJZMaCmyqBhtfrFcx7s9mUQOwi49EXZRqXfR3pI6ut2I0KgNdYdAHzNGa8g9YHuwFRiatcD4tYAZw3Bhp5fYfDgUqlgkajgcPDQ5yenqJUKo31blDvjQFkHhiLKNF2u42Liws0m02cnp4KOxMVHRU7IcwEeqlEOsswRF1bCei6fgTgvQk/LwH4W9e97oTrSWtoouYIEGE2YH9/X3oTLkOIYazNv7q6wtnZmWDZ2f7p5OREGj6qGn1RZaP+jnDaBw8eYGdnB+vr6wL0+Oabb/D06VOcnJyM9bJbxg2YNi7TTJNEvTaj4Y1GQ0xQLsxFzUvOJV2DRqMxltpTg6PT+gEuaw0weMvOVOVyGa1WCycnJyiXy9fqDky2KrYcB4B0Oi10bJeXl6JkVFOfMR8VUKa6IvPG5XzzOU5PT8VN5TtUrcNJgdRl9sGNRwzytGbkuFar4fT0VHx5Tth1SBV0XZeJJvEFFyp9OJ4GXNTXMckpzE0DEB/T6/Wi3+8jn8+LMlNTkkbrYhGLY9bzzvu5GqlWT8pl2YbUe1ffiYrh4LO8igLg59nVqVAoYH9/X0rAC4UCMpmMEHEsem0qgZOTE1xdXaFUKol1kE6nBbU5iRdBfT41A7VMpSk/P6tSVP2Zah2q11hE3tgOROrEXNdfnnY9ynU32yxhjfrW1hbu3buH9fV1mEwmHB0d4fHjxzg9PZXiqGnjLuIGvIpMwk18l9dX5bpjqcAy1pIQ7EScgtESWiQmoNKLaZo2VgikKrBZ70pVApN+v8w9TfvbSfthgss4sQPRG6sE3mRhBRwbWLJegDTSr6uR5avILH/5dY6xaGxj2evy3yQltsjmV091+vWapr3ESTjrWioWY5oyneXmLTInqkLl1xmW1Vsl8Fbeyt9wmagE3rYheytv5W+43PjA4K+CGE02owls/Dn/r/698bMU/s0yAdG38lZUeasEXkGW9WW5YY3/VP9yXtpxkpK4CS7dLPmuA5lv5dXkrRJ4BZm0OY0/N/6O0WI1aKQWlqhBJGMASo34vq6o8qxnuo7wefgckwhfjSm17yID8VYWlxurBIwLddr3iy6kWafRLKw/v6r/Jt2P+vdGfjx146qtrABISotFKMx5E8DEe7u6uhKUopFFdt5zU4gIJFSYEGGWrna73TGMuzH3PWuOufkJNmK6jqm1WfPWaDQE7z4JG7GMGN/Tq15v1jizSDumWWrXfSaVHk5l0wYwho9R39u0tKRRbqQSMD4sq6fYTkvTNCGnGAwGghJTWz4B0/1q41jq79V8M7nb2ByEG5aoNwKISOpI9GG/3x+D2BqVCe+N12aHGT4n/46KgkCYSqUy1lprEXYhjkcuRvYiXF1dRSKRELrzTqeDXC6HXC6HfD6PYrEoACzmxJkimzQOa+7V6rtAICB1/ixUUqnOybbD1nEkTVmmcQbfFwk8WAdCnACVDDH9LMYywrEXSRvyOckuTLIVlcBUrexjWzfCmrk25yE31XVIzoBAIIBYLCbjklOQ8PZKpSKsU51OZyzlPO/ZbpwS4GmpsqrGYjGsrKwI3x4pqQjcINtQPp9Hr9eTF64uXpqmszYO88Eko2AFVygUEk4DkmLy5CJzTqlUEgpytvhS6//VDckTkxVppJUi0ajP55MFTRZblsym02lpRUVFMCkwqJ64rAcIh8NSrXjr1i3h5lN5BliJ+fXXX79UL6AWxKjCE5HPQ24/8iayDNlkMqHdbgvrsNvtlo3BTcN7X2RTch6pSFOpFNbW1rC5uYlkMikcCvv7+3j8+LE0qyGRyiJly+o7YyXp5uYmHjx4gPX1dayvrwuFOWnjMpkMSqUSjo6OpAmKWnk6CblodBlpsYXDYdy9exd37tzBnTt3hP9xOByiWq2iVCpJpefl5SVKpRLK5fJY+7V5SvXGKQG1JztbQK2vr0slFXsCctGqTS5J7HhxcYFCoYBqtToGvzVOhtEX1zRNTFiSWN6+fRuxWEy0PVmC7Xa79PFjzQFrHNQoP689iVCC5cQej0eaTnq93jF+QRbclMtlabbJHneswTeK0fSmYmNb8lQqBZ/PJ8U9JHJlPz9SnqmQWJ5exg2jWlCcP0K52bWH74cbPhqNChkouQpU7gbg5QyK8dmAF/364vE4Njc3sbGxgfv372N1dRWBQEDWyerqKsLhML766is5GUnLrb77eWNxQ/7ar/0a3nvvPbGk6EY1m03hO6RS0DRNrETyXxrHUunc+XubzYZYLIb3338fv/Vbv4V79+4hEAig1WoJcQhJTE0mk1g/7FzMWo9Z8R/KjVICqhtAbUhzstFoiH/JxpntdhuapkmbLhJLDAYD1Ot16T+gVlapMumls9Q2Go1ie3sbsdhzYiSWivZ6PWHljUQiYpZxDC4o48nM70kmQvPV4/EII24wGJROMjSnrVarcCkAkNiByoA7CQ6rbk5df9HslCb4/v4+0um0KMpkMon19XWEw2HE43FUq1UUi0Ux0XmdadBbzjOVMYtvaC7z78meFAqFEIlE8M033yCfz0vxl/ou5q0Vvi9u0Fu3biEYDArrUKVSERJXtTGH2vVo2lowjqVaAXfu3EEwGESr1cKjR49wcXEhTXBJmMqaE1KQ80SeZAUY74XQ8lQqhY8++ggffPAB3G43stksfvGLX+CLL75ApVJBv9+HzWaThqmkiCsWi+KyLhKDuFFKABjn4Ot2u8hkMtB1HfF4XIqIaB6PRs+bkNJV4OlM058Lc1I03ShqoCcYDCIWi8FsNuP8/BzVahWZTAbFYhFXV1eykGn6ctE1Go2J0XtjGpAUW2ywGovFkEgkxBXweDzSF5B+Ham/nU4notHoGEvQJB/TaI2Q8ddsNkv1WyaTkQo/k8kkRCP0Q6l4VLN5mlBBsOMRrYlqtTrmjrFpJzkbLi8vx/o4qOPMYjHi79krAXhOz00Tud/vw+/3486dO3C5XEin0zg9PUU2m124/boxpUt+P13XkclksL+/j88//1x4HzweD2KxGGKxGAaDgVij9XpdWoovEsfhAbG3t4etrS0hg/nzP/9z/OVf/iUymQyGw6GsQ5KpsNRYLWFeRG6UElBPG574KgMtm4vQ/OJLDIfDQoChtu9WJ90Y2Z60oGleBoNB+Hw+dDodlEol5HI5pNNp9Ho9qbVnH7hWq4V0Oi2ViAxSTisWoX9OEpNbt24hlUoJfz35/nmasGacz+XxeBAOh+WUq1QqU+dTXcQMbLLslTyMdK/i8bgoPpa9sjTXWNE4aRzjpmIFHAlENU0TH/fOnTvweDzSLoy9/YzBunknmcq2ZDKZpF0Y3bVkMimEKefn57i8vHwpC7Hoacn7J79ksVjEs2fPkM1mhVqca5VcgZ1OR1qHqXRf88YzmUwSdGy32ygWi/jiiy/w5ZdfIpPJoN1uixuZSCSEbp90/IxJfed8At+FqKkNbuROpyN88QwukXqZkVoSPFarVVQqFdH26qIyFuSoJ6WavmNkm3/DzzI7kUgkkEqlsLKyglarhUwmI+y1XGCTzE01is0uM7du3cLu7i5CoZBsTDLS0KTmS2Vgj118jCSl84Q+KhlwV1ZWhJWJCsnlckHXdZTLZeFQmERwOk2MaUsy5DJW4PP5cO/ePcRiMdTrdTx58gSPHz+W0ullTHT1vXKjkE3I6/UiHo/jzp07iEaj+Prrr/HkyROUy+WXxllkk6hWXL1eh8/nw2AwgN/vl3kjFRk5COv1ulhadAWWyUIMh0Pk83npAaH2crRYLIjFYtjd3cWtW7fgdDqlN8Xp6al0LVqUYetGKgHV/KQfxVOYlFgA5HRjwIU+GNOFqiZcZEExKzEcPu/kG4lE4HK5EAqFxNSPRCLS9+7g4AAHBwdC7sgFNin2wFgHO+fs7u5ic3NTiCQBoNPpiDlLphr28IvH4wgEAmLqMVaySB7YiBW4ffs2ksmkBM7obpBBJ51O4/z8fKzj8qJzOGlc+rh37tzBzs4Out0uzs/P8ctf/lLo4FQA0aKKjYqGGaJ79+5hdXUVyWQS0WgUbrcbxWIR33zzzUsux6KiKhtSegcCAUSjUSSTSVEMzEj1ej3k83nUarWXTuRFrACO2Wq1hOCGTUp3dnbE6t3Y2JDg6tnZGR4/foxvvvlmjEr9jW1NzkVAc5IBFjLykhOfDRq63S50XZcgoBqJBl4g1GZtFtUH7fV6QpLpcrkQj8fhdDrlPuh2nJ+f4+joaIxVVlVik4KOZEhmowoSSFLTn52dIZvNSnfidruNVqslTMRs4UV3aR6JijEmoOs6gsEg1tfXsbGxAa/Xi263Kzx57GaTz+dfiUNRHZ8u1traGt555x14PB5cXl7i8ePHwv47iUJtEWH8iPl4AEilUtje3obf70e/35dYDn3y6zwH8ByrQW5Jn8+HRCKBtbU1UaRMUWcyGRQKBaH8WpQfUsUIkD6Mpv/a2prEvYgvYW/Fi4sLsXQKhYK4bsvwUt44JQCMa1+2YuKCGo1GqNVq0pjR7/dLBJp+rtqSXL3eJDFuFJ4qHo9HGkaw9t9mswn//snJCbLZrJjvqqafNB6VG3vkRSIRmM1m1Go17O/v4/T0VNhi6UMy1cQ4BVuEkaNfbac167m4sGhF8Nq0Nmq1mgTY3G63ZEAWVQDGeTYCeFZWViR112w2cXJygv39faFQM15rGV+dgchSqYRHjx5JAxW27lLjStcVzl+9XsfR0ZG4N+zPoGmarLloNIpmswmPx7PwJpz0TOxfQHp4xpG8Xq+sm1wuh8PDQxwdHY25OsuOeyOVAIVBQl3X0Ww2JVDH1Fo8HkcwGEQikRAXgCbfolkBVWgJkKaKqa1wOCxWCDn8s9nsRMqqaZOvac95/UnB7XK50O/3hQ6LHIk8fbnQQqEQdnZ2kEql4Pf7hc7bSEU+aTz1q67rQqHGgCIXm9VqFXBNOp2eGM+Y9VyT8BZMtcbjcdy7dw/vvfceQqEQLi4uBJWokn9Oy6Ys8s5I//XVV18JSefW1hb29vZgt9uRSqWk+cky1zaO0+v1UCqVMBqNZC7dbrc8Ky22VCqFUCgkZDGLICCN96Xm+KnE2HaMVOtEdtIS5XWA5eoxbpwSMJqF1MLEBLDzUK/XQygUEpBLt9tFqVRCtVoVM2xZrUjXgR16CLyo1WrY29uTvgREtxkDgOpYkxYbT3XChGliqj4lN4bX60UsFsO7774rvRVMJhNKpZJ0m+H4sxSdirfQdR2VSgUHBwd4+vSp9AT8wQ9+IJF0NRYw7TmmiYqEdDqdCAQC2NjYwDvvvINkMolKpYJcLofz83M0m82xWoPRaDTGqb/Mu6MFNxwOsb+/j1arhWq1Cr/fj+3tbSQSCUmhLQNJVueQc9zv91Gr1TAYDCQfPxqN4PF4cPv2bcTjcXi9XiQSCXg8noXdEKMVRUqzRCIh8Q1ybKoYEbVXwyKW7yS5cUqAogaIjO3BGGALhULSQot54EqlIj3ZjSnCacJrapomzStp/tH/onKgGcYmm2oHHzUIOWlj0gyntaJ2NKrX63LPLpcLm5ubuH37Nr73ve9Jq+uTkxMcHR3h8PBQXIJ5vHW0KILBIKLRKGw2m/jhtVpNFhgblOZyOWQymYkUZ9MsDnUTs0EMFcDe3h7W19dRqVTw9ddf4/j4GMPhUGolmM9W4c+06JYRFRDGLBEBNUY04nWE7g1rHrhGmNEhzPfdd9+F3+9HOBwWy3ERUbEIBKslk0nE43G43W5pCDMajeDz+eTdLEsAO0lurBKgqGYtc+yE2RKfnk6n8ezZMwlmqafIrJPZKBaLBbquC2yZ/eW4cer1ugBOjNTj6rUnjcUFXqlUUCgU0Gw2oWkaYrEY7t69i2AwiHK5DIfDgVQqhd3dXYG7djodHBwc4NGjR9JQ08hxP0u4yQgtNZvNyGQyElNh1iGbzeLJkydjvRxVJTPtuYiaVGMee3t7uHfvHra3t2Gz2XB4eCjAK5PJJAuZpzO/0rfmAl9UqIyYMeL7pAk/rR/FoqLGONgElxZpp9OB2WyW7ICmaWg0Gi81PJl17zw41DT12tqagLaOjo5QqVSgaZq4G5w343r/lbEEgBebS9XCwWBQevZtb29LD0K1/di8hauKekJQm9PsZ9MHn88HTdOQzWZxdnYmLaaWFbV1VD6fh8fjgcfjwa1bt7C+vo7BYACTyYRQKCSp0GKxiOPjY/zyl7/Ew4cPRYFMwiIYn0vNVvCEoTsCPLdMmEtvtVo4PDyUNuxGK2DaPHLzMX8dDodx+/ZtPHjwAPfv34fH48HJyYlUCtLNGAwGgksAnm8yBkKvc7rRhHY6ndLbgcqtXq8LXPtVhClquqHpdFqa1/h8PqlZGA6HkuFZpEiJv1ctgUAgAL/fD6fTKTn/brcrJeCcc+MhpwZVF3XlbpwSUE1rTgp92lAohI2NDezs7GBvbw/RaBSFQgEnJyfI5/MvLd5FXzo1MNugRyIRhEIhRKNRBAIBiTKn02kcHx9PPFWM0XijcDO2222cn5/j4cOH0HVduv9yHG4qRqKfPXuGg4MDQaexGGURCCqF/Q663S62t7clgMWGrj6fD0dHR/jyyy9RLBaXbmNFayAcDmNzcxMffvihNNNsNBo4Pz+XZpnc6HQd6FJx8/OdLypqJoKl2Jubm7h79y6SyaS0lp8VRJ13fb5bbryVlRVJ0TEmsLW1he9///uIRqM4OjrC2dmZtH8D5mMsVNeXKE6v14tQKCQQ+WAwKDUrDJITzGXkr1hGbpwSAMa1Iife6/UiEong1q1buH37thRwnJyc4OzsTAo1jFFqYDHCEVYPEm3GfnY2m01aPrObjbHl8zxlQwXAaHypVMI333yDbreLRCIhhUNM3xGUQlx9qVRCvV4fa7CiPuc0ZaDOQbfbRavVQr1ex+rqqrTTtlqtKBaL+PLLL/HNN99IOfQiz8VnI/w4EonI8/j9fukO9dlnnwmqkvfO90pIOBUDo/CLttVWn9NqtWJjYwM//OEP8f777yMYDEpFaa1WW1hpqtdVr09Yt8fjkb4RTN+trq7C6XQKEjKTyYyBdRY9lXkg0bJh5ef6+rrUIFxdXSGTySCfz7/kFs47jCbJjVMCRguAOXryCnABD4dDyddPgoOqMm0xq6aoak6S7INdiS8vL6VB6CJ+3ixLgPl5bvbT01MpJgIgICG272KQbFKQc5oCUM1CSrfbxeXlpZiStVpNOBmOj4/xi1/8Aqenp2MNUNW5m6ZIGcgbDofSM9JmsyGfzyObzYoVwyAd75dMSax2oxXEOVoUCakqgGAwiPv370vZbb1ex9OnT3F4eCjB4usK748WldvtFlASn+fi4gK/+MUvJFW5rOVBC4gZiHw+L2hRWme1Wg1nZ2eCVG00GmMdiNX39MYqAeBFFkANTFEZDIdD1Go1FAoFwUqzTZgxMLLIZPDzxO4XCgXY7Xa0Wi1pzc22z7Q2Zpnis8biouBCJxiJ/wCIeaymONUXvKiFw5/T+iCMtFKp4OjoaIyZhrgDNai66DPpui7XuLq6Qj6fx9OnT6WDMxGcRuow3psRzzDvuYxjq/NB1OjR0RGOjo6QzWbx2WefIZPJzO0KPOv6tHZarRZyuRz6/T7K5TIikQjcbre4h4VCQWIfyyoBjsFrs8SaBxPnmSxJtAqMhVfq9RaVG9t8RHUJGBCMxWIIhUJwOp1iotdqNek6a8wGAItNBjchCU2YFaBpSgz4LF95HqBG/aqK8cSetRmMoJplCmHUU5MKh39zHZSZUWjCquncRWs3XlVoQhNZ6XA45N1Vq1VBdb6OcdR4hlqzz9w9Keau87zGd6TyCNJK4ntSUapLyJvXgUidEAbMmP7hiTmNqAFYnoFX3SDqRpmUclzy+caCnfNOPeNJry4O/s7oGtyE9wgsp3y/q/GvY1XcNFHXC/Da5nOiEriR7gBFTXEBEEqxv4qxvotr8/+LfH7a3990+eu+zzdprmbJX6Vyf9uG7K28lb/hcqMtgXkyzw+fZGbf9FPCGD/4VTnZXlWWAfoYTehZ6dxpJvd1gEXT3Lp5Y/11y41XArPynrMUwKQXcJMmXhXGPBjgYvwDwFj091Xq4X9VRN1Ik94zP8PfGzferEDstGtMGktF6Bnva9bPbqLcWCWgTr7xhQDLsdzc9BdhXLRqfwTjvV8HDDJLqHiIH2AqcVJK7yaIui6oPCdt9Fl/u8w46vfqWlQDxYuuxZu6Dm+cEpiUTptkIk/7/SQN/TruiZuFGHlWkhHcM62YaBHh8xCwZLfbpUZfpRVX25Opf3sdYZorEAggkUggFovB5/MJUpEUZ4vSiwEvvzM128K/NwZe1Wsu+iyqxQS8qLcn4tKYnlRTl6qSXSTVZsRlqM/F5+G11HWiivoZXvO7UATXve5cJaBp2v8A4O8CyOu6/uDbn4UA/AsAmwBOAPynuq5Xvv3dfwPgHwAYAvivdF3/w2VuyLjBv73m2ILiRPMkUAE3mqbJQiAq7boLjV/V+oVIJCIddjqdDi4uLoRhSK3tX2YcTdOEOYbcfypvApUBK9NeNYtBXoNbt27hBz/4Ae7fv494PI7RaITj42N8/vnn+PrrrycqgEnPpS5+1mAQb0EkJFO7xLkz00Ma+UkYjGll0iomgeOxJwXxALx33pN6OHBNML2sWj7TxlMPAYfDIRWKLA/XdV0sKt4LsQr8Z4R8zxNjWnjSJuc8qPtGfZZF1skilsD/E8D/BcA/UX72ewD+RNf1f6xp2u99+/0/1DTtHoC/D+A+gCSAP9Y0bU/X9YWRGsaHNp7CatspYt95erKYgwi4SqUiSLhF2V5VxaIuNovFgkAggPX1dWxtbcHr9UrLJxXUwfte5EXz2axWq7QIW19fBwDhHSR0WE1hvmoa02azYX19HX/7b/9t/PjHP5YuStlsVhSEuknmEZeoJKpsnJJMJpFMJqWfgtvtFnej0Wjg4uJCmp9cXl6O1UaoG1ZVPnwPqiIgtJybc9r8s5KSxKrcuKyTmDSvHIOWn1p6bbfbpSiJ1Z+cC5fLBYfDgXa7jXK5jHK5DABCvz5LEXCe1XGtVqtwIjBepK55UvFXq1WBnKvPMm+9zFUCuq7/qaZpm4Yf/z0Av/3t//9HAD8B8A+//fk/13W9B+BY07QDAN8H8OfzxgHGzXl1M7IvIYk/4/G48K2TmMNiscjJT8bhw8NDPHr0SDD/i5qzHJfgJC60eDwuJcyapkl1mgpZnqW1p41JKvN79+4hEolI9xx1oRIm+qokEmyg8cEHH+Djjz+Gy+VCsViUTUmUndrbYZa5rPZT5By999572N7exsrKivRn4ClttVrRbreRSqVwdnaG/f19mbdqtSpkIip0nPNEynl+r9aWsO0YlSrnTn2XPJGJMGVFo5GVl2NRCZB7UbUCHQ4HrFaroATZBEbXddm0ZAGap1CN3xvRq+TP4P9Jdcf76/f7yGazyGQyOD8/l56cszgoVbluTCCu63oGAHRdz2iaFvv25ykAf6F87uLbny0sKnsQzTC73Q6Px4ONjQ1sbW3h9u3bSCQSQippt9tlg3S7XWxubsJsNiMej4813KAmnidceNSyrGIMBALCa1gsFqUJKXkMKMsoAMYBtre3sbW1BYvFgkKhIBTnVqtVXvQkBbCsH2ixWLC2tobf+I3fwMbGBs7Pz/GTn/wE2WxW+i0arY9ZoprldJfYQJYsTRcXF1JBqGmakJvEYjGpyTfGOoCXg2pqrwX1cPD7/QiFQhKv4WEyGAzgdDrlZ2SGIn2cEZqrisp6RKaf9fV1JBIJJJNJYZ2u1+tSVqx2lgYgXAOEvnc6nZmbUg1y0vINhUK4c+cOtra2hMeAClXXnzMPsx0Zazf4PngPc9fE3E8sJ5OecBok+HcB/O6si3FCfT7fWGfWRCKBUCg0dsJ0Oh0xzYkh7/f7OD09hd/vF7dglhgj8KoJOhqNRBnY7XaUy2UcHBxMZcxdRHRdF/ISUkrTjWFbq0gkgvPzcxQKhYnXX0YJaNpzstP33nsPH330EcxmMx49eoQ///M/R7fbRTKZhN/vH4u3LPIMKh8AN1o6nZY2bqenpygUChgOhxKL2NnZwdXVlXTsVdugTxLVAqACYGfjaDSKRCIx5vOTbZifG41GYy26SPOm0sNRjMqGbEnJZBIbGxvSF5C1K3x+HhJOp1MqJFmodXV1JdebVvlpfL5oNIr33nsP9+7dQygUwmg0ktZupFiPRqNCTmM2m8eKtYzPNU2uqwRymqatfGsFrADIf/vzCwBryudWAaQnXUDX9d8H8PvfPvjYKqZJ53Q6EYvFsL29jR/+8IfY29tDLBYTLU1TLJ/PY39/H6VSCevr6/B6vfJi6D8tU0BCTUpLhAsnEolgfX0dZrNZOvQYXYFlAoNUWFtbW0ilUrDZbCiVSsjn89A0DXfv3sXe3h7+p//pf8L+/v5YRFqNlyyakdA0DcFgEPfu3RP+/7OzM1lQDGzRHF7EfaISprXCEliTyYRWq4WnT5+KtcQ54rvo9/vS/dho6UwymVklaLfbpbyc78Tr9QqFOv10AFLhx7kDXu6tOGn+aD3Y7XZhsyJXQqlUwsnJCS4uLtDtdtHtdsXCCoVCMi7LxVWym2lKWw1+22w2xONxfPTRR/j4449hNptRr9dRKBSQTqeFZozuCeMVZB9S62kWWRfXVQL/FsB/DuAff/v13yg//6eapv33eB4Y3AXwl8tcmJNB0/LevXv48MMPsbW1Bb/fL+WWDITUajWp9WeLLzKvqB19lvWl1Uox+tF3795FOBzG+fm5sNpOIuNcdEOyddXW1hai0SgajQZOTk5QKBSQSqXwwQcfSBBKJeTkqchA6DKWQDAYxObmJgaDAS4vL1Gr1eD1eiXewjEWLb1VNxQbtFSr1bFybAZwrVarbCTWxtMSUOMP3LDG5xoOh8IjqPL9qYSezKK0Wi0AkACd0+mUSD6DgeozGMcaDAZCKsogHLtdZTIZZDIZKZXu9/twu91jcQjGjNQKxlkdo9QAuMfjwc7ODh48eCDsTJlMBpeXl0I2ythANBqFw+HAyckJLi8vxxiUFl0bi6QI/xmeBwEjmqZdAPjv8Hzz/0tN0/4BgDMA/wkA6Lr+taZp/xLAYwADAP/FMpkBTgbLQm/duoV3330XsVgMw+EQhUIBJpNJqJUymYy0zOr1elhfXxffiN1icrmcLLJl7oG+IE+d9fV1hEIhdDodfPbZZzg7O5vYc2BR85zXX1lZwerqKux2O54+fYp0Og1N07C6uopUKgVNe97fnlwKRsIN44KeJWazGX6/X7gLq9WqkFawtwK7+SxCx6VuVHZFYo17p9OBz+dDKpWSaDxxCU6nE81mU05uY3pu0kZh9J4WGlmg6SO3Wq2xZqqcm36/PxZfUhXnNKtNtex4MtOlqFQq0kCVBwUAIaQlWS0PIRKnWq1WSVvPe0ehUAjb29tCMkvyUr/fLxkWl8uFu3fvYmtrC+fn5zg7O5PDbpaFM0kWyQ78Z1N+9bemfP4fAfhHc0ee/LdyQrIXfDweh9lslp4C1PR8GZVKRbrQskuPyWRCLpfD2dkZyuXyUoQSRp+TQafd3V04HA7kcjl8/vnnaLfbL/3dosJn9Pv9uH37NsLhsJxQ7EZ77949JBIJCdhtbW1B15/3vWP2Q+12u4gwvZrNZmGz2dBqtSTI5fP5xJyflGaaJqriU6nRSNBK2i21C9DV1RUKhcLUjThp4RIABLwIdlFBUzkyrkAFy7FoXZA1WnVJjEAe/ozzakwdci2RgYonLgOd7G+gKja6V9NQmOrneACSSITuTSKRQDgcFn6LeDyOnZ0dOJ1OVCoVpNNpYb1ifGZRC/HGIQYBiP8dCoVgsVhQrVZxenqKdDotmrHX68kpwlZX29vbiEajQsZJ1Nt1rAAuWnaejUQiuLq6wuPHj3FycjJmBqun/6KugM1mk3hHIBAAAGxsbMBut8Pv9+PBgwew2+2oVqtYW1vD7u4uhsMhSqUSnj17hkKhMBYgWnRMi8WCcrksvRR8Pp/42mQLXjaGwucejZ73ZigUCmJKE1/BU4xzG4vF0Gq1ZNNMC5ipQnNexW+o/Srp/1PZMEjI9LLT6US1WpVIPYFLk8ZVCULYEszr9WI0GgkNOBu6ABCrLpFISFMXFc9AZbKIYu33+6hUKjg7O5P3ojbCMZlMEn9ggNroCixqBQA3UAkwHhCLxRCLxYQj//j4WOiw+eJMpud93Le3t3H79m3s7e3B5XJhMBgIR5+xWei8sdUXR4XA3oGDwQBfffUV6vX6Sy/TaAnMGotpQTINm0wm2SShUAixWAxra2tCT+50OhEKheTZGSMAXgSwFknlkWU4Go0Kf+JgMECz2YSu64K78Pv9S2U41P/zeplMBs1mE5eXlwgEAkLVza7OgUAAkUgEwWBQ0qCcx2nviic0T/LBYIB2u41msylt1WjuE5F4dXUlJystMConNS1pfF7GRWgd5XI5XF1dSfaEATludrIA+/1+CXYSRERlNI9xiEHoYrGIX/7ylzg+PobFYhGWK6YY33//fcTjcQDAo0eP8MUXX0gz0uuwRN04JQC8UAQEg1ADkl5Zxb3fv38fH3/8MdbW1iSKWiqVkMvlkM1mUa/Xx1Im8yaHC7ndbkt6h/7e4eEhDg4OJNWoXpNKY5FgDNNqrVYL+/v7GAwGCIfD6Pf7YuL2ej3s7+8LVTd/1mg0kM/nhTZrkZgAfdJgMIiNjQ0JNnU6Hezv76Pb7SIUCiGVSokpuUwDT6NZr0Kca7UafD4f8vk8vF4vUqmUvLtQKCQntBpFnzYGANn83OQ2m00agNBK6Pf7Yg0aszx2u12UCDfmtDHJz9hoNKThDN1Apjvp87PqczgcClKwWq3KPBu7ZU96PioLIv8uLi4wGo0kRW02m7G5uYn19XXBqvzkJz/B48eP0Ww2x+ZpmYDxjVICXEg0XclLH41G5SRWmYfZhnp1dRUejwf5fB6np6d48uQJ9vf35TRaNjPAxdjtdqXfQblcxp/92Z9JdFY1/9XTaxEtrOvPm4OenZ2h1+vh4OAAsVgM4XAYt27dQr/fx/HxMX72s5/hk08+QT6fl0IiRuH5/SIvm/gAn8+HYDAoG+D09BSPHj0CANy9exdms3mM5HRZIJIxbUk/nkqTGyEajSKVSqHb7co7n2cm83Pc/Iz6u1yul5inut2ugMc8Ho+4JowZUEkwYDnN9SHuwWKxCDU6OwWXSiU4HA6JdwyHQwSDQfR6PRQKBTmEiIHgmpr1vvgcavyD68lisSAYDApWpt1u44/+6I/wySefTLRMl5EbpQTUE5UBMHLYv//+++j3+9LsMRQKSZT46uoKh4eH+OKLL/DZZ59Jt1b2C1xG1BQcUzUejweffvopnjx5IgU902QRnAAVTDabRaFQkAj9Bx98IMHAk5MTfP3117i4uJDiJABT02fzhFTZbJlVrVZxdnaGYrEIt9stKbBqtSqc+cuMYXQLaE3Q1GffRE3TUCgUUCqV0Ov15B1Ncq+M4/M073a7qFQq8lxqjpz/rq6uBHpL8A4Rfir8mkp8GoCn3+/LyVwqlQROzHoFbk6/3y9dpk9PT5HJZNBqtcbg19Oeyzhv6v3QPXU6nbh9+zZ+8IMfwOFw4C/+4i/wB3/wB9Il+VXkRikB4EU0tlaroVQqIZFIIJFIwOfzSQCQgR0WnxweHuLLL7+Ufm30dWcFfiaJatY6HA7JThQKBTx9+nRuA4tlTk7eF7MC5XIZ6XQamUwGvV4PX375Jc7Pz2XB8v7UhcufLfJc9KdZqENlEIlEsLu7i48//hiBQAAXFxeyMZdVNKp1pPYTUBc3u+2y1bzafFRF1C2iRAlCYgyDc0nTmdkdYglUl3IWQa1RCEenojGZTOj1etIvwu/3S1qQfSVUa2qZd6V+Tl2LW1tb+OEPf4j19XVcXFzgP/yH/4CLi4vXwqJ845QATeWTkxPp/U4optVqlTx2Op3G0dERHj16hMPDQ8ndqmCQZfwiCv3nSCSC1dVV2Gw2nJ2d4eLiYqb/vew4/BvVfG6328hmsyiXyygUChLtVSPn17ECuAmJOkulUvD5fPj1X/912Gw2aelGEBTjKNcVNb/OwJnL5YLL5ZJ+fQ6HQwK3iyxk4zNTgdKaYEZD118U8Kg9Hfk5WgmzIvWT5pfzTgXDE9rlcsHj8UhAmn4/U3XMhlx3LdpsNoEPf/DBBxgMBvjiiy/w9ddfvzbS3RupBNiA4fDwEP1+HxsbG0gkEjg/P8fV1RXS6TROTk4EU8+FxJeknkiLmGGqcOJZC1+r1XB+fi7a3ail1b8zjrmMEBRULBYBQApu1Fpx49jLxjkKhQK+/PJLeL1erK+vCybd6XQil8vhyy+/xKNHj9BqtZaOBaj/pxJgADcYDMLn8yGRSGB3d1cQg61Wa+zdqdDeSa6AUbhWGIxUU5AulwvBYFBiBjylCbZR73XZE5rvg9WFrGDkfTBFyJiWmrdf9ORmsNHr9WJrawt3797FYDDA/v4+Pv3009fiBlBunBIAxiOsNpsNo9EI5+fnAhIqlUoSfVb9LfVlLhvU4t9wsTHNxa4y9GkpqkluHHsZ4cKgz8lCE2OJ8nWvT2HxyZdffolSqYTt7W3s7OwgGAxiMBjg2bNnePLkiVg815k7YJzlh/7y7du3sbm5Kc1jGJTMZrNyahoV9rxx1OdSU8DM5DC7xBgOMyn8Xn3X88aZ9Hm6PESVqkHb4XAo8QJiMDRNW8i6UtPULpcLsVgMt27dgt/vx+XlJT777DMcHh4uXBG7iNw4JcDTnBVmAKQCrdVqSWHGvMj4MpvUCPYZDp+3lv76668BQIJJxmu86sakjEYvuuWwNZmu6y+x0Sxr1RiFLgE7I3/66acCeKFSvY4CmCSMqNMi6Ha7yOVyAup59uwZTk5OpIW3qggWyXaoX9WYBw+Nq6srNBoN8f8bjYZg+Y0kLYsEeo3fq+ul0+mg0WhIYJUuq5rRUZXdIs9FopmNjQ1sbGxA0zSJfzUajWu5F9PkxikB4EWuudfrSRSYvpbR3J8my57S6ufVFCG/n5VPfh1CRcC8M4Cpm+JVXr6u6xI3aTQaAF6d8069RypRptc6nQ4ymYzEB9xuNwaDgXRaVi2sRRSAMQvBr+omYwqw2+1KvT2xCzyN1cDxtHEmzQuDfQwAMg3NzAGxAYSrGwPAxmeYNqZaxJXNZpHNZvHo0SNkMhmpyHxdcmPbkNEk4mlCrbqoAriuj65qY2P+/60sJ+p7YJxAxQWohTzLKFgVj8B3xOtzzZD5h7EGFhNxcxm5C6a9X+NYwAsiFSMFGBURx2Fq1BgLmLeW1IInkuaYzWZRqioycEl583oRvpW38iryOmI2v2Ly5vUifCtv5VXk7cZfTN4qgb8CUc1gYwaDP5uWAlNl1jVeB2jkTZFJ6dJJ/5/kOr5VDC/LWyWwhBjzysv4spM2tPr3i8Q6+Hfq1+uK6kur36v/v6kbRr1PlepbJRmlT03fX62JUK/xKs+4iOJ+E+StEriGGANeqswKMBk3HRercWFOE25M48ZdNvuhfj/pJFXv9VVBUK9TjM9ABcDfseKONSW6ro9V96nAousWSany1z0fr0tuvBIwRmSp7bkAmB9etKLuOkIILLHiNO9ZIUfsAvAiXTXpPlSOAuMmVDHz08zXaa7EvHoG9Sv/b4ymc7MAL+aUm0VNW71qmtR4enMeFy3BnvY8JpNJqOkJMWeu3e/3w2q1CicgodkEm/Hayz6HMYPE+2DpL59pmXU5z9IzBjtfh0VzY5WAukjtdjtcLhf8fj+8Xi9sNpvANFmzXq1WpXnFNATadV40oZskFolGo7Db7RgMBmi1WsjlckI9zQVlRIepm04lL1Wr3HiP5KzjvTLHzEIbY6894gsm3fukja821GCnHLfbDZ/PBwDC3UCaMZ6eLKXl98vMofouSZJBvL2u6yiXy9JybVGrSL2+2hwkFArB5/PBbDYjEAhgY2MDKysr8Pl8qNfrODg4wC9+8YuxYqNloLzAC1ZmPhMRi0wXejweKWumollEEaipR6579bBjpSeAMUo19VnUuVvUyrmRSoATYbfb4Xa7EYvFEAwGxxqOkIONpZ6Hh4c4PT2VxatW3l1HuLj8fj/W1tawurqKWCyGSCQC4DmsOJfLoV6vj1GBqw0tjCe31WqFzWaTYhqXyyVsNFxY7N1HUE+/3xdQD9F+rVZLFhdRhZO66Kj/58Jibb3P50MgEIDX60UoFJJKPPZuIOBGfQ4qkHmbhs/PHoGk9+LGTCQSWF1dhdvtRq1Ww6NHj/Ds2bOxhbzIAuYYTqcT8XgcqVRKOCYJBqpWq3C73dK6jvX/y4K/VGXGQ4ksxMQi0Jqy2+0yd9yk80Td+OylEIlE4HQ64fV6hUmbBxCLr0ick8lkBPG5rNw4JcBTSu0Z4Pf7hYoKeK4Fi8UidF0XC2F3dxe6ruP09HRsc1w3gKZpz9mN4vE49vb2hPmXpyOhsCQ65WnAghFjoI2AEt5vMBhENBpFOByWhiZqEQrJULigAYhCyOfzwp846RlVX9n4c7PZPLbx3W630H5xDKOJOy+LYZw3VQGQd8/n88HlciGVSuHWrVuIRqMYjUY4OzvD+fm5MP4Yr2VUpEaXgCQzyWRSWIuq1aqwTF9eXqJarYpLN4lPYNpYk+aPazIUCmF1dVWagqhWQrvdRrFYFNo2430blZuqADweD4LBIMLhMNbW1hCLxWCxWAQ6DEACnYPBAOVyGZlMBl9//bXAsFUXZxFleuOUADCOBSe9eLfbRbPZFO73SqUCs9mMaDSKZDIpnHXn5+cv+UrGqP4iwsYgm5ubSKVS6Pf7Qubo8XjkPtjXTkW/TQqi0aRm37xQKIRQKDRGsknmnUajgW63K0086dOyUo4xEAAyL8axVFEXH5UsS3zVBahCXI10X1Qsi8whr+l0OrG2toYPP/xQXB6HwyGs0LquCwyWeHj1nhcxn8ntt7W1hWAwiG63i2fPnklfRZfLhWg0KoQqrM9QN+6ksSYpBVprXq8Xd+7cEU5L1l0Eg0F4vV7UajV8+eWXuLy8fCmmMy2jwHfBtU9S2eFwiHg8LpWddAO8Xi8ikQgikQhsNhsuLy8lvrMsEvPGKQGehHwAwjzdbreU2TIQx8aTNJNoLi/qg00TnmTsbuPxePD1119jf39fTEA216DrMesUMb5cmvnNZhNutxuFQkECjCx6oekci8Wk1TUtjG63K+YmU2HGOTQucJW6iky6VqtVzFUq3FarJT66+lxUViQAmfcOVaZm8kTm83lcXV3JxhwMBtI3QqWFX0Rp071yuVy4ffs2YrEYbDab9D1k1aDdbkcymYTNZkOlUkG9Xpf55b9phT1Ga45krXfu3BFrpl6vC5FNLBbD6uoqfD4fDg8PJ/ro04TZC5PJJNYlXY7z83NhRxqNntOdb2xsYG9vD8FgUOov1A2vlmXPkxunBIDxwhk+HAMjXLCqyRkMBuF2u6Vo5FWBM2Qx3tjYwOrqqhSEDIdD+P1+rKysoNFooFQqveRbTnrRqhl3dXWFdrs9xiA7Go3GTqjBYACPxyPPp45RLpfFpKXfrj6v0XRXLSHOmXpaMO7hdrvRarWkl4NqbVAhL2pNaZom/fusVivq9TouLi6Qy+UQiUQk0Foul7G/vy/9JPi3xqCm+lxqBJ4NO9kolLRe7BZN5iT2Azg8PBzrfKyenJOeQVWmFosFHo8He3t7uHv3LjweD6rVKs7Pz3FycgKz2Yx79+4JVwJrBuZZGHxXquVLl4z8hjz8KGRuZnaq2Wy+ZEmpczZPbpwSmLTI6AORPZbFISy19Pl8yGQyuLi4GDPN5113kvB0DYfDwi9YKpXQ7/cRCoWws7ODRCKBRqMh3XuN4xm/V9NEPIVJc8W/58bp9/ui2CKRiCiBZrMpASCWxLKgZFJxyqRUkrrYGMUOBoPS36Fer6NYLIoiVV0B/t0881INnjFKTwLYer0uzUgjkQjOzs7w5MmTMcIW3vcsS47KzOPxSNCYrck4v5r2vGOP+r7UeADfM//GKEZrymazIRKJYGNjA+FwGN1uF0dHRzg4OEC1WkUymRQXi2SnRnbheZuSn+X9MSbELsdU2nSD2HE7l8uhWCxOpaKbJzdOCahi3Ehms1m4Bn0+H9bX1xGNRpHL5fDs2bOJ2vA6YrPZEAwGkUwmJTXm8/ng8XiQSqVgt9uRzWYndumZNL7KEET3hpz07JPHttO6rssGpbnO2EO5XEa5XJbI8Dwu+0kpUi4kr9eLeDyOSCQydlrT4lE34bKWFeMOwPNIOQOn4XBY2sqbTCb84he/QC6XG7MCjPduFFXJRKNR6VFJ/AiVg9frxdraGnZ2dmAymVCtVqHrOpxO51gGBoCUFE8bk5suHA4jHA7Dbrej0WgIqxV/z2pFNbVqjKVMW5/qXBstIaYfTSYTfD6fdCK+urpCqVTC5eUlKpWKHCjL7oEbrQSAcY2m0jklEgmsr68DgJhQ8yZ4EVHdDJp0mqYhmUzKIjg+PkY+n5+4OWaNpbo3NEmZPmOjTra3Yj1+rVYTX50WAFNBVALznlmdQy4ol8s1lhUgr6HKpqyaxGqgdZZw4ZPhh7TfyWQSsVgMt2/fhsfjQaFQwE9/+lP0er2xuMa000t1a3j9VCqF3d1drKysoNlsigvn8/mkBdr6+vpYM1QyAeVyOaE3mxWs41ev1ytpO6vVin6/L4rBbrcjkUggEAhA15/jHkajkaSEVStwkQ2qzrUx3RoOh8X6GY1GorhpdRjf+yJy45UA8IKHnZFznpCVSkUonBiwU2MC1wkMcpGREjwajQpDLjn7c7ncGDvNPFE3Fc1qvjRaGsPhUIA0drtdmnrS/1X/RkUWzjoxZ7kGfCYGVEulkkSgpwWVFg3Y0bWxWCzo9/vSl3B7exvr6+sYjUb4D//hP+D09FQsPLbZmgfeYeqW7trOzg5WVlZQq9VE4QCQHpI0mdfW1qTzM98jm8yo78g4TwDEbXC5XEJ+G41Goeu6uKjkUSQzMVOSKvJy3nPNs+hIORaPx+Hz+aQprxpTmXetSfJGKAFuEp6AZBXudDpIJpPi25LBdtIJtohQAZhMJml9TtJR5vUvLi5QKpUmZgXmXZsmKxcEse61Wk168nU6HQHWABAlQVQgF6Su61OZaoy5feBF2o4bjqAUt9uNarWKer0+FvmfFFSknzpPjGa2yWRCMBjE7u4uotEozs7O8Id/+IcoFAoS5FUzHbMsOk17TlvOSDwRghQGiZleJcV6LBZDt9uFw+FAq9US5KY6X8Z5VJV0v99HsVhEOp2W1nHRaFSCs9zwpMGrVCpjnaquw0zFe+I6Y8p1fX0dw+EQmUwGuVxOGLDUNKP6HubJG6EEgBeBIgbRmCIiNpw+tLpgr2MJAM+pzAjC4KSmUim4XC60222k02nZNIuaYLx3lY+f9zgYDIRduN1uC5qP+XsGu4bDIaxWq6TceN1JKUKKqtiY56YLwoBTp9ORzaL+HYCx+1zU6hkMBsInmM1mEQ6HEY/HkUwmMRgM8K/+1b/CL3/5SwkIMvA4D4ugPqemacJKDbzobjQajcb4/ehGeTwe2YiMpzB4N4sAlAq70Wggk8ngs88+EyVDi1HTNKRSKUQiEXQ6HWkTzudTqxjnWVGq4lXngsHq9fV1uN1u4WgkPbwKEOM7WFTeCCVgnBDgRb6bJqymadduyGgch7DMTCYDj8eDRCIBu90uKS2iwRbt0mOMMhM9GAqFxBxWswaqD9hsNsXnI7ecehpPS2+pC4qBK0bQ+b3dbkepVMLR0ZFw4qnKxciDsOhJNhqNpBcfMRzxeBwulwuffPIJ/t2/+3diBfDztBj4/bS4ABVlsVjEN998A6/Xi3w+L++Nm00FPvX7feEabLfbyOfzqFQqgsmYtTlVK5QpSFoHfJdEfG5sbKBWq+Hi4kLSlLzGMhYj8CJ9ySBrJBLB5uYm7HY7Dg8P8fTpU1xeXqLRaIxZpMbU5iJy45WA+jD0j9VOvPRp1eDItOssEtRSOfBHo5GcmmzcwQ2zTJsudTNyg/t8PtmIpKc2ujCkXW+1WpL5UPP3POEXwfIDELQiOwEXi0U5UXg6qotJVSbqBp33rLxHk+l592X2z0un0/jX//pf4+jo6KWTahElQ3ek2WxKT4qnT59KgxG2AqOi47MTd9/r9aRZbbPZnIpJMAqDtGobeNWyYkpS0563WKvVakvFjPhsnAcqADanTaVSuHv3LlKpFGq12hhTs1rQpT7LMtbwjVcC6gbixBAo4vP5JGim9h00msPLjsWNqrawYlckdqdd1tKgz2u1WuX+nU6nRJTJwgtA0GFk5WVWgD0JjEi0Re6F+Aqfz4fNzU2YzWaUSiXp2UgrY9JJwjGXDYSaTCasrq7ivffeg8PhwGeffYYvv/xSgnGT/m7W++J1adLv7+/LocCaDI/HIx2rWKGpVufpui6xJdXqWea5AEw8fYkCvU5gWt28VJ5+vx/RaBQffvghNjY2oOs6zs7OkE6nx3AB6nzz669UYNCoAJjnjUQiWFlZQSAQQKlUegk6uUjOeZqYzWa43W7BuLvdbmkeqrofy1gCRgVjs9kkeEXsAwBJ/TE7USqVUK1WxcqhhaICeaaluCj8rMPhkI5DjNyrvfl4PTXzoG7MRRUq31koFMJ7772H9fV15HI5wQW8DiyHGmxTrSOy/jKLwOdnEJb/VAV63dgR54YuATMDjPssG5eiorLZbPD7/Ugmk/j+97+P27dvw2KxSKUsLRkGclUFPa14bJbcSCVgDJBwYohCSyaTSCQSiMfjUmihmmDG6wDLa2UG0Dwej/ihtVpNIvKT4hTzhJF9loeyjp+lqSxyIbqNZaJqSa8aQzDGByhcDEYzkQqD8FQ2ySBXgQoTNp5y08aaJjabDYlEAvfu3YPL5cKzZ89wcXExZlJPkmU3JBXKYDCQYipiAHhSMr07Go3GagdUC+e6ommaAIWYfWB6dBkcicovQVzF9773Pdy/fx+hUAjZbBb5fB6ZTAaNRmMMLj7tEHjjswOqaaNaAtFoVFpa2Ww2nJ+fi99srKW+zstVg0/MnzPKTeIQ9ZRcRNS0INGA/EdkHRdwsVhEuVxGpVIRnLuKOFR97nnCTc/xm80mstmsxFJY+MIIuVqWbLR2ltksXNBWq1W6DT169AiXl5dz7/s6WR3eG4vHGo2G4C2IISFfQqvVkkKzeYjLeaJadSwA0/UX5CJGf33WOLquS0FUKBTC2toaEokE3G63dK2+vLwU121e0dprdQc0TfsfAPxdAHld1x98+7P/PYD/DYDCtx/7b3Vd//9++7v/BsA/ADAE8F/puv6HC9/Nt6I+gLrhCO5g5JW46UKhID6zulivmyZkIOji4gKDwWDMf75u4wf6sQ6HA16vV/xil8slm5Adber1uvS2NxJtUCkShDIrqq2e4uzKS5CV3W5Hu90e6+lofC7VpF1U6anp21arhW+++QZPnjzB0dGRlMbO2wzXEVoqrIpst9tj1Gm5XA6apslcq6m76wqfk9YVAV4q9FdVqrOeTWUKIiiuWq3i6dOnkpk4Pj6WmIPqUqnrfREg2UvPMe+Dmqb9GEATwD8xKIGmruv/R8Nn7wH4ZwC+DyAJ4I8B7Om6PnOmtTnNRxhUU80lAGLG0qR9Ff9OFW40Ivh0/UXrrmUAQur1+FW1BBwOBxwOh+S2e72ebH5ucjXIpAa4jAt4kp+t+odqyomLk6g5I8HGqwpTkCoDFBXbq5rfi4hxAxozANws6oa5zoFhNpuliGlrawuhUEgySESV8r0sEgdRXYJQKIRoNAqHwyHpzHK5/FIwcEm5XvMRXdf/VNO0zQUH+XsA/rmu6z0Ax5qmHeC5QvjzZe50wj3IYlXptvi76/j9s4SLgyeLOtarXrff7wsFGk18trBW89tGba9Gt42/mzUeFz+VBq0JdTO+TgXA61GpsZfkX8XmV8efZCrPsmyWvTdep91uI5fLyZqkW8B06zJBUOIaGGAkWA2AKOzX/a6AV4sJ/Jeapv2vAHwG4L/Wdb0CIAXgL5TPXHz7s9ci38UEzBrrdYm6ENTaAcp13ZZFZJKCfFW+hUXG/Kt6T4vI6z4keC1ucjZ3fR3Xp5L/rt+RKsvnE57L/xXADoD3AWQA/J++/fmkHNLEmdE07Xc1TftM07TPrnkPvzJykzbMW7mevMnv8FqWgK7rOf5f07T/O4A/+PbbCwBrykdXAaSnXOP3Afz+t9d4c2fwBsskC8OY/gO+mwW8zDjz7vOvWmbhIdT0Nb8Cy88hP88YjZr9MY6l/m7avKg/N15rLqJ0qTt/MeCK8u3/HMCjb///bwH8fU3T7JqmbQHYBfCX1xljwfsQX9mYC18GKXgT5XU8g7oJjXNjDJRNGuu692C8tvF6xqDdpEV9005WNThttVol/cg5VQOv/Dy/zlMqwMsEMEaMy6SsjXpfwIu40bKySIrwnwH4bQARTdMuAPx3AH5b07T38dzUPwHwv/32Zr/WNO1fAngMYADgv5iXGXgVmeR7Ghe+8edviryO+1UXCq85SQEYfzctsLZAJmns6yL3N8kCWGSsZe7DmKa7ThCQm5/XImBLrbeYlJo2bm71Z+r11fmfZEWpymXSGjcqH8YrFkrr3oTNcV13wLigjRBa9UVcJzptrKJTTTL1+q9DJuWVeQ+qdjemt2YVTBkXFU8NtZYeeEFppbLvcgw1VTnLnOe9Gsc3vhPje5hXwTdvTHXzEOVps9kExUdWIRYekYVKBQpNU0S8f0KNaQlwrtT3wPlR524S1ZdREakQY6PypPJh2pDvjO9r0twwUEkFxazCt3K9FOFNE3UhGzcIq/FUYlK+HE7OvGtz4j0ej2D72VuOk8nUIWvYXyFvO2ZmEuXGMQAIUpK+obqImUqc9lxGBUluQbYAs1qtMjcqWQkLYfh8nU4HwDhG3SgqBoEbh0w8RO1xQRLiS2IYKhkjDHYaGGrac6VSKayvryOZTEqlJJ+pVqshl8vh4OBAUnoESU16f+qJb7PZ5CufiZaBy+USbkEC2PjVSHs3LSXJd2tUPna7XepXQqEQXC7X2P1xvogG5cav1+tChDsPpg28QUpA1fYul2us8SQ3DvncarWa1FmruXLmx6ddnxMfDoexvb2Nvb096XykaZpM8MHBAdLpNAqFArLZ7BiAY5mAlqp0fD6f9NJjR12+VL5w1kkY6++Nm0U9/fkZtXNOKpWSijvWxvPUIqcAC6Z4H9OwCbx/KmTy6vl8PgG8BAIBhMNhaJomjUby+bwURrFRKJU2T7xJJ6lxbKvVikAggNu3b+NHP/oRdnZ2EIvFYDKZZAMShLW2tiYKnNRtRsyEKrSM1M5R0WgUoVBIlCkbyHQ6HVQqFeEqUElhVSDbJBIao1WjFhGlUikkk0nE43HYbDaB0PP+SG9G8tlarYZyuSw9ORbpE/HGKAHgBRItFoshlUohGo3C5/NB13U5rSuVCo6Pj6WaSwXJTAt+8SvJK99//3386Ec/QiqVkuuzJ0Cz2ZTGqK1WS/rOqRHYRX1dWgHsonPv3j2kUilhslE7HpMQQz1xVTjxrFiIeqpsbm5ie3tbaMZZc0FlSf5G1apivfykuaMFw+9Z17+ysoKtrS2srKwgFArJPHFhJhIJaebKhU/ot3HOZq0Hr9eLu3fv4u/8nb+DBw8ewO/3o9Fo4OLiAsViEe12Gy6XS8rOU6kULi4uxAyf5McDLxSAWqYcjUaxvr6OlZUV4Z4khLvdbos74vV6BQmqFnpRqRljMnQtVBfK4/EgHA4LWWogEAAANBoNYRLiwUMWbnJUDIdD6ZFpfM5J8kYoAdU0I2HlBx98gHA4jFqtJqYZK8ZYqMKJn0dbxTGsViui0Sju3LmDzc1N+Hw+nJyc4NmzZ6jVamIlkMRS9QVVWcYSMJmetzvb2dnB7u6udFqiElC7B3OTqCfzLBYe1dJwuVxYW1vD3t4e1tfXpakF/WR2Jyafva7r0tii2+2K+W4UlSmYJjPLvFdWVhCPx6FpmnD+d7td+P1+xONxmEwmYVJSS5l5/7NiBXQ54vE4PvjgA3zwwQfw+/3I5/P48z//czx69Aj1eh2apmFjYwO7u7tCqUa2I2O8R30vqs/OdxQOh8UVUPtR0gUwmZ5TgrvdbjmQarWaxGB4zUmEKmr8ii3cqARImFosFqWMmEJXiBBtwuoZQ1gkFvZGKAHgRW/Avb09/OZv/ibW1tbEnNR1XchG2K+PptekoBXFqJG5sFjgc3BwgJ/97Gf45ptv0Ol04HQ68eDBA9y9e1dKl41Uz8u6Ai6XCxsbG9je3obP58P5+Tm++uorZLNZ2O12eL1eMW+58VkEM0+p8SstjXfffRf37t2Dpmm4vLzE5eUlSqWSlNZGo1FZUMFgEL1eD7lcToJhxhOF36uBRQBSdAUA2WwWjUZDWoCZzWbx2dk8xciirKZ9Z80dacvu3LkjltnDhw/xySef4OzsDK1WS7o/r62tSXyClZvqHE1S5OrJTYXFCkSLxSJVmCRLDYVC2NzchN/vF9Yo1k7wMKLFoz4Ln1uNdzmdTiSTSUSjUWngcn5+LpRiakyCriEzFiwUW3Qt3ngloJpHe3t7+K3f+i3s7Oyg1+vh7OwMuVwOoVAIiURCgnWMiqovcdapoi5muhaVSgVffvklnj17Ju3GmBumVqeLsAg+3Gh60kRPJpN499134fP5kE6n8fDhQ3Fn3G63BCi73a5QWc3S7rw2TxS73Y5QKIS7d+/inXfeQSgUwuHhIY6Pj3F+fi5wV4fDgaurKzm5SW0VCATQbDbRbDbHoM4ci6e4ap4y+FcoFNDtdoXOvNVqIRgMSlpN7b2oPtes6DfFZDJJl2PSf2ezWezv76NWqwkHgxrNpyXD98brTKv757u9urqS4ieWmdNKojJ2u93w+/2w2+1iHdGlItEJ78F4+KjPxBjHxsaGdE8qFAqoVqsSb+h0OsJMxfgRg4ZqleSia/ONUAIOhwObm5v4zd/8Tdy/fx/D4RCHh4fY398HAAmaAJCSXGNV4STKZ2OAhiZwPp+XGnGv1yuKYn19HfF4HFarVYg5F8V4G3120pft7u4ikUjg6uoK6XRaKKRpEvp8Pvj9filFVrvMTAtq8X7pBiSTSWxtbcHpdKJer+P09BSnp6coFotyavNvGFGna+D3+1EsFoXOXX1edcMyWMlyWpr5ZHwyUotTsZBIhYqBlsAiC5gKiD45uwGRtclsNiMej4vrwTQhgJk9K1UFxLJyVvLRJeP98hrkimSPSQZA2aVK13UpFZ6W8VCVNuMOVCBqOpOmP9eH1+uFzWaTnoQMEs7i3FTlRioBVTuSVvyDDz7AO++8A6/Xi4ODA+ltF4lE4Pf7EQwGUSgUZEEBL/L886ru1Bfe7XaRz+eRSCRw584dxGIx+VtOPrXxvFN50nNxs9F3Zt+EarUqfPg+nw82m01IQT0ej5xuxmjyNAXAzRAMBpFKpWQjsG8dWZK4uNTIfCAQkDQeLRaa0MaxjG4QT3VSqAcCAUmx0aVikFPtd6DGVmbFA4zSbrdRqVREKUajUezu7kqcgzEcdpQqFArI5/MSzJ0V0+EmZ4TdYrGg1+vJ3DIromka3G43vF4vTCYTarWauA3GVnXT3peqtLkunE4nBoMB/H4/YrGYWByqkmd8CoDEJxh/WZR2/EYqAQpNvmQyiTt37iAQCEgKxGR6TmK5srKCvb09qeVmtJ0aeVGziJq6XC7j4uIC4XAYa2tr2NragsPhEPOfRCaT+hAu81zU+CTFbDabiEajEmmn+5FIJMQNUN0cKpRZbgHxDqlUSrruZLPZMXIUBr6M7cqZX+YJPmveVL+WpnO1WpX3p2madIiy2WzQNE0YlFV+Q/VaiyhX9ZSmS7K6uopIJCLxHRXbQPYmjjkN36FuTI7DeVAp4mhB2e12xGIx+Hw+dDqdMVo49Z2raULju+L7cjqdYziO0WgEr9eLzc1N6aDEPhGDwQChUEhYlhkPYCD3jVYCapCEveyZqut0OuJLm0wmrK2tSVMLBtqYtqLZtqiQ3Xd/f1/yzNFoFMFgUF4iKc78fv9YB5t5C1ZdWFygxDmMRiO4XC7s7OzIZszn8xKsI5sSfVkupmkLWHU9SK3FHDPNdRXAojY3YWyACoGWlAqPnTSeagmwhyKfNxAISLSa3ZU4BypyUVVss5Sbujl5+lHh0JVhLIBZDabvVDpy3v80mXQ/dNO4SW02m0Tx2SeCTUdo8VFB0fUyKlXGb7huqSjVDlMqJqbZbEoKMxwOw2KxCH6EeAuVSXme3EglAIxH60ejEYrFokwsJ5NcbHa7HbVaTcgY1e5AiwZHAEhMIJvNotls4vj4GOFwGIFAQMgft7e3EY1GEYvFBJq6zPW5AAlqOj4+lgg28KLxyXA4FL+21WoJo/IiJrP6c5quZrNZgkYqQIgLRsVVEI9BxaH6wJPGMt4TfV/2jSQSkvx5lFKpNNaRiX+vch1OEjW2QF+f6TBiEWjGl8tluN1uJJNJyXr4fL6xIOs04bti5N1qtcLj8UiHajYp3djYQCwWQ7lcFitL0zRpSqK6XMbAIIXQYCoylZAFgLgktASdTqegCdkFiQp9FrJzktxYJcBFSpLPn//855I6YXCELZrb7Tb29/fxF3/xF/jqq6/EVKICWAbWqy4kbj6+nHK5jHA4jGQyidXVVXg8Hmnlvej1+VxsK/3o0SM5VUjM2ev14PF4EIlEYLFYkM/nUSqVZMMu8pL53M1mU5p18kThBqfPysXJmAd7L/L6/MykwKox68GvzBCo6T8qdbpqVHwq1Fs9eWdZWKqlyP4Qo9EIjUYDpVIJ+Xwe+Xwe5XJZgrkej0cQf2R3npdqpQIg2Coej0smIBwOY2trC6urqxgMBkin09L8hEAiugQ01aelPo2WItcgvzI7Y7PZEI/HEYvFEA6HxwKelUpF3hXXyTzAFfAGKIFOpyMMvEyhBINB7O3tyYt/+vQp/uAP/gCffvqpmGLGa11nbNVMbrVaaLfb2Nrawp07d3B1dQWv17vQJBvvg6cCcQ7qKcjFEI/HxTLJ5XLiYy5q2dBULpfLODk5wfb2trgyHo9HTjma/nQd2DcwHA6jVCoJ4SWDkupcGp9dzXOrFg/hz8zbq8pCBbSo15/3jNycRCMyeHp1dYVMJoNnz54hk8nIZlhbW4PX64XP50MikcDx8bHQj0/y0fmVa87j8WBzc1MyUcQ7BAIBXF1dCfqRjUh5TboftFqM2QFV2VFpErfB91MsFsXPd7vd0jvCbDZLU5yLiwvBZDAouKiFemOVAADhx89ms7BYnt+q3+9HIBBALBaD2+1GoVDAn/7pn+KLL76QVl2vKupmpSLgYj46OsLjx4/HfOtllIxqsqkts1RF4HA4kEgkBMOvLqxlLA42Vt3f30cymZRedn6/XxYRF6jD4cDq6irW1tYQCAQkkl4oFMZ8TPV0pnujblzVnKfpy/ZfrVZLzH/VUuO1VCUwL39Pq4Gp2qurK0HwsWUcQTW6rks9A+MejBsYn0l9LjUASxgve10wJsR6gXQ6PUbhTlExA7TAVLCQ+qwqzT2tMUq9XgcAwY0wS1AoFEQJkHV7Epx8ltxoJQC8aPc0HA6loi+ZTCKZTKLT6eDhw4f4sz/7M0lJvW5RNSpPBiN09zqiLn5gvKSUqSK73Y5qtTrWBn1Zt6PVauHk5ETMf6axyHjMa4bDYdy7dw97e3vwer04OTnB6empLCx14xvHUb9ygxJUpW5mLkpjYYtqti4aZGXsJJ1O4+TkROC6jD8wvRYMBvHOO+/g448/RiwWQ7FYlA23DI9fv99HpVIRN4Atzi8vL3FxcYFqtSonMN8h4zF8HuI8Js0hlWa9XkexWJTUqq4/TwtGo1GYTCYkEgkkk0lRJtVqFdVqdawLF+eRmZZ5cuOVAPBigVGbsylDNpvFl19+KZHRWbKoVlQ/r45ttVoRi8WwsbGBcDg8M8W0qHADqhFydive2NiAzWYbq0K7zvXpJ19cXMBut2NrawvD4RChUAgOh0OQiIxz2Gw2VKtVnJ2dSYvteQE04OX6fuBFaTfx7YFAAF6vdwxeTGUwLwYw6dm63S6KxSJOT0+xubmJYDCI1dVVAM9PzKurK6ysrODDDz/E3t6exJfY22Fe3wZ+5VjcdIFAQOJF5+fnSKfTUpYMQIqlrFbrWI+DSfOoPjOtQ1Yg0vT3eDwydwxsttttXFxc4PLyEsViUVw2Xkd9J/PkjVACwIu8N0s4G40GDg4OcHFxMdYabJGI+aLCDUrz/Dd+4zfwa7/2awgGgzg7Oxs7zZZVMuoYo9FIutZ4vV6pvFPN5kkyacxJpi1Tn7xeJBKB1+uV4JXX65VIdq1WEwXA5quLKljjomO1GxdzKBRCMBgUrgJaGCoPAe95noKlRVEul3FwcAC73Y5Op4O1tTVsb29jbW1NqgeDwSD6/T4ODg7w8OFDnJycyKk9a70Y3UJagJVKBVdXV+KHl8tlyZ5wjumG0L9nQ5RplgC/qsFwpgrZ1p3cBewkdXR0hOPjY3EXjdf9lYgJqEIlQDjvxcUFzs7OxuIAr3IqTxIu4LW1NXz00Uf4wQ9+gGg0ikqlIkGnVxF14xCvHwqFEIlEoGnPK+9YqDSroMZ4TeP3zHiwBqLRaIg1RbO90WgIzPf8/BwXFxcLm8xq7l4NCHIzM9PBQGq/35dmJOrzq18Xnb9utys1EOl0Gjs7O2N8Cfl8Xjbg48ePpThrURdLDaDWajVBXdI9IDJQ5ZMgLkGNmdAFmoZQpEtEchJCumu1GkqlEsLhsNQlDAYDZDIZZDIZiX1QCag1M4vKG6EEeErwhRQKBTGHGAh5nQrAaNqORiOUy2Wcn5+j1Wrh7OwMR0dHr9oN5iVhkK7f76NUKknaRx1nUbPZCC0muo44+1KpJJWXDodjDNNfrVbH2rrNUrK8/iQADhc3Tzf6y5VKRVqiG6G1y6R01efq9XqoVqs4PDwcQ9wR7KRuWrWV3Kxx+BmmdNkBiLgKgqhUa42ZH1YdMltCEJVRqRrfJ7M6/DwPHI/HI8qW9TGsvVDZrWZByqfJG8ExyPwywR4Oh0NQaawa/C6CgrQ+iE+IRqNwuVyoVCoS7V4muDRtDCo51oIT687ovurvUa773jieCoFVkXtMUxkj/rMWlWoJAOMNSZlTZ2ESawjK5fIYPRtl2VNs0r3wq1ExzXsO4zUAyH0zVUjXQKWtM2Y41Guo7EWq5cjP0W2YZAHR+uN7Uq9LBaTCyNVrqM+ozO9EjsEbrwSMpqZKPbWI7/ga71FeCl/+67Y+uGC46LjgVN/1uxhzmgnORb3oplQVjKpoVEps4EXGRwW0LIty+y5FnQ8VmaiSsPKeZ1lJk5SQ+j3wQglMkknKYdJJryIuJ13jjVcCb+WtvJXXJhOVwHXbkL2Vt/JWfkXkjQgM/irLdVOLN0WMeAr159N8XfWz0/zYaddd5F6mjXWTZZlgL8U4v6p7sMxzv1UCM8ToG3JyJ/l2r3L9aT65+jInjX0ThAvRmFGZl3bj71W4tHFBL5IupD9M7gS1qrPX6wnk+XXM3aTYFPAC7cng3zJBSF530vNO+pmRf9FInGPENywib4QSMG4GYPIEvY4Nom5MBoVYN848rpoWus6YakbAGNwBxjfGpCDktNPzr0uMeIdJwSyj4pykYNV3u8jcqkE7krL6/X7UajVJG76OgKq6FjRNE/oyIiIJuqrX65K2IyZgkXdlfLeTPsfxbTYbbDabrEmW2pPxGIAEkxddnzdWCUzTgHzpxo1CMWpiyqKmFl84IcrhcFgoqsjnXq1WhUJKJXacN5a6mNQadbXjEamwCSElXFXlFzQumteRHjU+v9Ecn3ayGTezeg3j9SYpB+PP+TxMf82aSzWbwu5AAIR4g+g8FYm4rDJQNx/ZfQOBAJLJpBRikVIsm80il8uNZQ3U9zVrgxvnUv2eSo5FTMFgcKx8ularIZ1Oi/Ij78Siz3sjlYB6UgIQ6C4bLBDmCkBqwql9iR0g4ELNd8+C36r/J//f3t4e7t27h7W1Nfj9fqF1ymQyOD09xcnJCTKZDFqtlowx77mYl+fC9fv9iEQiWF1dxerqKgKBgGj3Xq+HdDqNo6MjnJ6eolwui9JR73sZH9CYvlOvQeCQikwjGIW58UkoSWP6lNcnR4J6Wuq6LiAeXdfHuP7UQiOVXGXac6j8BIFAACsrK1K3X6/XxXrjtacRo8yaKyprjuPxeLC2toa7d+9Kt6hmsykIUrIqL+LiUYwulNE6tNvtiEQi0jiGJcx2u104MW02G87Pz1GtVl/inJj3zDdeCZjNZrjdbine2d3dxcrKCnw+n5SNNptNlEol1Go1VCoVmQzgRfPGRfxCjul0OpFKpfDhhx/i9u3bMlaj0RAOf9JlF4tFAPNNOnWjqDXq8Xgc6+vr2NvbE7grSTf6/T4CgYAg3tgtyHj9RYNKPDlZaUfKL1UpsUCFJ0w2mxW+QCOCkAvdqExo4bB0lgAotaW3utHb7fZYj0VyDExjBDauD9U893g80n9CReot0pNvltDn5j0TjqxpmrT/UqsnVZdm0YDdpDXDhjubm5v4/ve/j93dXXi9XgyHQ9RqNaEYW19flz4YLFVeJD4D3EAloAY+NO05nn51dRV37tzBe++9J4Uh7XZb0IImkwmBQED4+srlstR1q0GnaROiviRW8d27dw+7u7twOp04ODjAN998g2q1Kgy2LpdLyCUWiU2oJzDvh6SSsVgMkUhE2G4I6SUdVyKRQD6fh9PplI2hWh3zAmjqyc9Tk8QhqmvldrsF41+r1aTRBQlBJwGLiGQznl5UKjRhPR6PKB+2BOt2u8I4rBJkcrOpYJtJouu6nM6kfAuHw6hUKnI/xNW/CqhM7UfR6/XEGiyXy0J8o74HKspFXdJph4amvaDb/9GPfoS7d+/C5/NJpSFdD6vVilQqBYvFIpwErVbrzQ0Mqj6i2WwWHjc2YjCbzXjy5AmePn0qfG6BQACJREIWL/By1HrR05LMRaurqzCbzTg7O8PPfvYzPHv2DMPhECsrK4hEIgiHw/D5fHC5XGPNTynT0l1q7byu62ONTFqtFvL5PFqtFvx+P/b29qQCz6gcVfN7EegyT3u2cdva2oLL5UK9Xhc3g2NFo1HB5BspuIxzaOQCUJUKrQ6iBmllEdtPJc26AlKQqZbbNOH75QGglkK3Wi1pnGKz2eT0XlYJGN8XSWDodpI+Xdd1UXi0OJYZa9pnTSYTgsEgPvjgA7z33nsIhUJoNBpSu0I3IJVKIRaLybtjG7tFS9BvnBLgxHMxqL3Zy+Uy0uk0Pv/8c1xcXEhV18rKirDFkJ6J11mWsIK19eQuPDw8xNnZGcrlMjRNQywWk+aUpJnmJppnaVBJkGaKG5/sON1uF7lcDldXV9jY2MBgMBBfut/vjwW6VP95lqgbMxQKYXt7G3fv3oXD4UClUpF2ZLxPnsSMrrMBJu973ng8xdkbkvOvFkARfnt1dYVqtSrFRBzb6XTOHEMVUqbR9K/X66hUKmg2m9C052W4FotlLn/ALOFaUl1L9mFgPYTaw5F/w/lf1nXj53w+Hz766CN89NFHSKVSqNVqePbsGT755BNcXFxgNBrJuGR0Zp8KulyLyI1SApMizUx3XF1dIZvN4ptvvsH5+bmQKrICjj4rXYRJdFzz4gFUOuzJp/bK03Vdioii0ajQU5EdVu3iMy2lp6b8GPhjpSBrzXu9HsxmM/x+P3w+H0wmk7S6NroCkyLuk56JhJzr6+t499134XQ6pb/CyckJ6vW60Lax3p9xFpUvz2jeqmXDkyLbJDUlqQg79PBdZbNZnJ+fo1aroVarSZUhx5tn4dAVY6v6dDqNXq8nbEjhcBjvvPOOcACoVs11U7vkXyDBKV0EYhRIB65mr4zXWMQidTgcePDgAX77t38b77zzDlqtFp48eYKf/OQnePbsGdrttjSoITEM6eUdDsfEjlHT5EYpAeBlmqrBYCBMK9yQ5GanHxsMBoU+y1gGO21jThJuGAJMaD4zOJdMJnHr1i1p1sl7MJb5zns+nij0/wFI/XsgEIDP58PKygqcTqcw56hcf+pY0xa0av2ocY61tTWZTxJT2u12bG5u4uOPP0YqlcIXX3yBZ8+eoVAojCmBaS6PquQopNZyOByiNBnkZRu3XC6HQqEgOW71mdRswaz3RV5/Kn8Smvb7fSSTSTx48AA2mw1HR0eS1jW2qDPeu/F9qc+ouqixWAya9oI/oNfrCTP1JFdqUoxjkqVAE//HP/4x3n//fQyHQ3z11VfSHJeBP4fDIezQ5GpQg6/zYiqUG6UE1EWgnpbkclPJF5keCQaDCIVC4sNyAaj0X6oymKcI1M8zNsDgWCKRwMrKiiw2lf1XVTKzxuCpSeuG1kYgEIDL5UI4HEYoFILX60WlUpGWa1xQ6jiL4AO4MPx+v0SVuUB4ksRiMXz44YfY3t5GqVTC06dPcX5+/hKR6rTUlvo7Y8oxEokgHo/D6/Xi6upKmr1ms1lks1lR7KoipZJcJJND8AzdwdPTU5jNZsRiMcm2WCwW+Z70aQR80bVa5MSkReX1enH//v2XGtxUKhVhbGZ2RQ3QTUsPqs9kNpsRDAbx4Ycf4t1334XFYkE6ncYvfvELHB4eot1uj4GjEokEEomEUMWpKd03NjAIYOw0YASZjSqCwaD0HCBrDQOC9CsnBbIWRU+p0E+bzSZtwa+uriQSTbOdmlY9/RedePW043h2u12anWiaJulOttmaFNuYdYLx88xxm0wmAZIEg0Hs7OwAgGAi+v0+fvnLX+Lw8FC68KrjzFM6xnQYTWc2ySDYirEGYjkmKdFZJrtqCTGjQcuJ742gHmYhnE6n8EOm02kUi8Uxko9llEAkEkEwGBxbd8SK+P1+cR0vLy+FUGVebEpNT9NtY9uxx48f4+joCO12G263Gy6XSwKf8XhcLGH2mKBltSjXxVwloGnaGoB/AiABYATg93Vd/z9rmhYC8C8AbAI4AfCf6rpe+fZv/hsA/wDAEMB/pev6Hy50Nwbhhmw2mygWi2MAG0bm2babxI4MiFxnY/KzPJ37/T6cTicikcgYRbamaUKcSZ93lhugbkjjfalMOmxvZbfbMRwOxaejj6d2VeLfq1j5SaJaVjzZXS4XVlZWpM+hz+eDw+HA/v4+Hj9+LOSiRgWwiDvFz6tKXO17qM6hEWCkjrdIUGs0Ggnv5Pr6uoDJkskkNE1DOBwWWjWHw4Hbt2+jVqvB5/PhyZMn0uQVwFwgkfpszLQwGFksFlGpVCQ1yn6InDNafdOyOWo8yufzYWtrS7I3l5eXOD8/l8akRJbSuotEIvB4POKqVavVMbqxRWQRS2AA4L/Wdf2XmqZ5AfxC07R/D+B/DeBPdF3/x5qm/R6A3wPwDzVNuwfg7wO4DyAJ4I81TdvTdX1hCh715rmQ2L2FC4ebxWq1otFoCKkkobeLtg2flN5ixxf2uFObgeq6jlAoBLfbjVarJeAUFQMwayzjSUngEGGpJJngvbvdboTDYbFw1HSaev+z5pLUWGdnZ8LOpLa2jkQiaDab2N/fx8XFxRgoaZK/bxRVEanv6OrqSpqXENRDhcBn5TOo/9SfzbMGSFZKfkb6ybr+HJlYqVRQqVSk0Ss/53a7JY6gIhiN70v9P924Wq0mlszh4SEuLy/R6XRkY5IinG5HtVodu/YkU53MUmSaJtEsrQzGvoLBoACSwuEwYrGY0KsTw9BsNpfiv5yrBHRdzwDIfPv/hqZpTwCkAPw9AL/97cf+RwA/AfAPv/35P9d1vQfgWNO0AwDfB/Dni9yQ8RTg/0nAyHbZo9FIcPxXV1dwu90IBAIIBAISCV6Wq59gGqZ/mJmo1WqScvL7/WOUUfSvFwnCqM9FVB19zHA4LD47yVMtFoucZmqsAxjnv5u1WYg8LJfL+OabbwR+TXP5nXfegclkQjqdxrNnzyTdyfegWhKLBlbVhipcmNyodIGoOFWlyAwLsJj1xndzfHyMSCQirL7cBIQQ93o98ZO5ZujSLdKKTLVamIEinuPw8FAo74lUZOaIpLQul0vcPqPVZjyEbDYbnE4nLBaLxKIGg8HYe2PzkUQiIQ1JK5UKTk5OhET1O+tApGnaJoAPAPwcQPxbBQFd1zOapsW+/VgKwF8of3bx7c+WFi5Caj7VDCPve7VahdvtxubmpkAsOYlM08wKDKqLnRh3FdoKQF46A0DBYFBovIkWW+RZKFQ2Xq8XoVAIKysrwitIKm61VqLb7cLv9wtVN90kIw7CKHxW1gCUSiXoui6oR6L4qtUqnjx5grOzs5fIMBexBPg5nvaqRUb4LwCUy2UAL/jxVFSguhkWbepC8/fnP/85isUinj59inA4LDyGKpqT0ORsNotCoSCNa+cVKlHUkt12u43Ly0uxDHgKAxhz24wwaVp4xqwEf8dgM5UYU9DsNsS1HY1GkUwmkUgkYDKZkM/nsb+/j6+//hr5fH4ioeksWVgJaJrmAfD/BvC/03W9PsMMnfSLl2ZY07TfBfC7E34+djqo3xNvPxqNcHl5KYs2HA5LVJYPT6XBTcI04SShouBJQYZfLmyVrptuh9lsHmsUukzcgc/COgQ2OWWas9PpiFkLPN88bE1NRWhcPNOEz8YCK763wWAg5vnJyQmePXuGer0+kQ13lqh+PQDB8dOyYSMOpsxcLpfEJ3gvxopQnoqzTFr62o1GA61WC7lcDl999RXi8bjw9Pv9fjGfh8MhyuWywH3p8iySLQIwpnhpKdntdiQSCQEpMR3KGAvrV1QXaVqakBYbMyf5fB6JRALRaBQPHjxAPp+Xg2FtbU1AUMTOfPHFFxMDuovIQkpA0zQrniuA/5eu6/+fb3+c0zRt5VsrYAVA/tufXwBYU/58FUDaeE1d138fwO9/e31d+bn6GTntuGmYg1VPYeIGGDWlAiBcdZFTRdd10cJcKLu7u9KtNxqNAgDi8TgcDofEKjqdjvi582ICxkAbNzQbZQIveh2w8wzwPHpfKpXECqLSIbhmnqg4drohbKfV6/Wwv7+PfD5/rT4Kxo2rFiJZLBaEQiFp5sraDgbKVIWzrBJV/4YuRrlcluKeRCKB9fV1CaZpmoZ2uy2uHRXArKyHek8M4LZaLXnnfr8fiUQCTqdT4lLr6+sIBoOCV6HlprbTmzQOrYxarYb9/X0pXPP5fNjb20MymUS/35eswGg0QiaTwcOHD/GXf/mXODw8FNd4Gnx9miySHdAA/D8APNF1/b9XfvVvAfznAP7xt1//jfLzf6pp2n+P54HBXQB/OfdOpoi6wAihZbqOJmckEsH6+jocDgeKxSJcLteYf7nIRgFetCVnMKtWq8Hr9Uq01+FwwGKxoNVqoVqtCtJPjdbPEjUSTmi0xWJBIBCQZ2PE2efzjbUqZxMSlvSq87OI0BoiNmBjYwORSESaW9Bkn6fIVFEVgLohqXT4XORLoJlKmLQRtLPs+5p0PzyVAUjwmHOndutdBjmoKgoeSqx2dDqdSCaTAh1mJyTCsQuFgqAhZ8Wo+PN+v4+Liwt8/vnncDqdWFtbk+CzzWbDaPS8rVwul8PTp0/x+PFjUeIqQG4ZWcQS+HUA/0sAX2ma9sW3P/tv8Xzz/0tN0/4BgDMA/8m3D/O1pmn/EsBjPM8s/BfLZAaAlxciJ53+MnPDzNeyX7tam67ry5NJcBFVq1V88803sNvt2NvbQygUkmIUpmDYpqvVar10gk57yeri5qlCy4OnJyvtACCXy6FUKuHs7Ewq+mjS069WW6HNE8Y8EokEdnZ24HK5xnzjVxE1eKZpmgQz3W43HA6HBHYZyymXyy+Bn/jep52YiwjfYa1Ww8HBAXK5nCDqGCcAMEYfvsjaoLmu6zoymQx6vR6KxSJSqZQAlfiZZrOJi4uLsZ4RVAKT0oO8b77XSqWCzz//HIPBABsbG1hbW5PCJZZen56eIp1OSzt0VcksK4tkB36GyX4+APytKX/zjwD8o6XvRhE1ZaTrugS2HA4HvF4vUqmUvFzit6l1WfqqmsGLTs5oNEKz2cTBwYEEm1KplKSf2HikVCpJJyRjB5p5z8VF3mg0cHJyIg1ASRbBqDpjDpVKZey5gBcm8KJRe8Y36NrQrSoWizPLTlXFNSmFxp+p5BvcCADEJSMfAv1dKs9Jpviy72zS3zO+QwwJrSBjGnIZ4XwzA5HJZPD06VNRAoxjEJRFchv+3aR3Ncn97fV6yGazaDabePr0qQRwCYlWs0X89yql0jcSMagKNwxzzplMBrquyynD9tok+MjlcsjlcmNWwaKpEnU8goWq1Sr29/cFnqoWNJHIchEfTDWduZCGw6F0Gcpmszg4OBCOAkahVbINmrC8xjKmH5UAI9Xlclk4A9Rg0jQrZpYQzcjn4d+Q88FsNo919eVCNloBfK5XUQDqPZOMpdlsSjqW86kG+q5zXa5Jsk1Nwjqoa28Za5TxKa4/NQVNRaEqyledrxvbfGQSUENlkmFQzeFwiKXA3K8a9X0dC0p9sapc59rG6xjzxGq0fV5NwiJj8/pMS4ZCITFhS6WSnDiT+AsXubYas+G9E7mpFrFQQRhJWlU3aVoK91WEcRb2JuTGNQYmX4cYLQzjKf+6rq/Kktd98zsQTQIRGc3V1z3xf9Uyz/ye9rt511QDgzabDQCk+GVZa2nWGADGYgMM0KqR+EnKRo0HqN+/DjGCuV7FdH7DZaISuPHugCpv+gZfRGY916v4yPxb1kW8blHHuI5Ced0WgCpqvcVbeVnetiF7K2/lb7i8VQJv5a38DZc3yh2YJK/Td7ypYoRP/6o/7+sQY8yIwcvrpI3/usWY1iTM+lURl5Q3UglcF1H2Joox9aQqhNcV4JoUcAXezBgMNwmLd9j7gPUDzWZTiFWY7n1dzzYLf3BdpaMGWInDACAAtesgBI3yRikBTRtnH2a+XQ1Iva7mkxxP3XR/FaeHmg5lSpT/WEBEjgOCUZYJeqmLSsX6k9CENRDEQahdiG5KVH3aIWBs6rK2toaVlRWEQiEAQKFQwMHBAdLptHQKehVlqs4l3w1T1hTWDTATs0jRkqpM1O5bLpcLmqYJlFy95rT2e4vIG6EEuCnUqju1AQkfmqSkLMVcNo0GvFhIZG4lnRMAYeElc4uaa34d+WwuIrLnsnKQJJ0AZPO2220Ui0Wk02kh1lhkDBZi+Xw+4WckDyDbavV6PVSrVaTTadTrdeTzeWQyGSlQWfR5iBXgfQPjtSDAC0g4sQPLzKcRaEREZCKRwDvvvIP33nsPm5ub8Pl86HQ6ePr0Ker1OkqlkiAaja7WokKeP3I0xmIxoRxT+SNZsFSpVKTmhJbIJFHXIZ9nZWUFm5ubCIfDAiAiIpFoUmNV5CSswjS58UqAC4b88js7O1hdXRUsONFg1WoV2WxWylaXqYjjGBaLBW63GysrK9ja2sK9e/ewsbGBYDAIs9mMZrOJXC6HL7/8Ek+ePEG5XJZSYp4my0y+Or7FYoHf75cmGuymY7FYBJFH5CC7zFgsFlSrVbTb7bnAFy4q1g5sbm5KxRsVDyHZJP/I5XK4uLiAw+GQuZ6nXNWiqGQyKU1avF6vFHwRTcjmMYVCAcViURS4iieYJNPGZ5EZny8ej0vpOct/aeGojWSvA/hiGfE777yDu3fvIh6Pw+fzQdd1WX+Eg2ezWQwGA+E5oFU16/rqwRcOh7G2toZYLDZGn14ul0XZ8DC8zmF045UAAKGqTiaT2N7exvb2tmD2yQHvdruFhWUZ85jAFmrdjY0N/PCHP8THH38sC4muB1/AxsYG4vE4Hj58CLPZLGXNi9YPTHu+nZ0d6TcXCASkEKZYLEo5tdVqFReAmHi1GQnwcrCUnyGV9b1797C3tweXyyUFSuRLcDqduHv3Lm7fvo3NzU2h0FqEuJJjRCIRvPvuu/joo48Qi8UQj8fhdDrFpyXbUD6fl9Lfs7Mz6fJE+vFFRdd1UXArKytYX19HJBKRng0s6a1UKkLl9iqQW5LXPHjwAL/5m7+JWOw5n04+nxdriYqTSoHFYtMsqUmHB8vMaf2yuxLfE8lb2I7MOCeLWjlvhBLg4mJjRk3TkMvlcHZ2Bk3T8O677yKZTKJcLuPp06cLa3ejb2mz2cSX5ClGbD8r+Ej2sbOzg0KhgEKhgGq1+hK0eNGFRRTf6uoq/uP/+D/GD37wA+k3UCwWcXh4iGw2C11/waLL3xkZc2eNTSVHRer1enF5eYmHDx/i4uJCCEUsFgtyuRwsFgs+/vhjabU1K/ag+rAejwe3b98ea53V7XZRKBRQLpeF9380GolLAgDFYnEMeryMUImzxdrt27cRDoelxRo3I2nFaBVdRwiLTiQS+PDDD7G1tYVarYYvvvgCx8fHqNfrsFqtYsU1Gg1UKhUhPzHW+1MmvTNaAqSj73Q6KJfLaLfbSKVS8Hg8qFarODo6moou/ZVwByg+nw+pVEr8rK+//hrZbBZutxvvvvsu1tfXcXp6utQ1jdFvEnl2u13UajU5ob766itUKhV4vV7cvn0b8XgcvV5P6hfU4o5lxWw2IxQK4fvf/z5+9KMfwePx4ODgAD//+c9xenoqpyVPBC5sLqxFAk000VOpFFZXV4VZ+KuvvpKFy2uYzWY0Gg0xMfn/WVaA6uezgSybZ56dneFP//RP8ctf/hLVahXdbleU7TvvvIOdnR0MBgPxdVVuyEWFRCy3bt3Chx9+iNXVVdTrdZyfn0uLNfIP8v98b4v0OJg0Fg+KWq2GTz75BJ988ol0CSbRaSAQQKPRmEiFv4g4nU5xq2w2m7ifnU4HsVhM2K5VSLQaxF5Umd54JUDNm0qlsLa2hqurKwlSdTodRKNRaVfudDqXXkBqZoGmKHu+nZycjBE2bGxsoFaryVgkGblu/p7txn74wx/iN37jN+ByufD06VP8yZ/8CR4+fIharSZsuKQdp1+7KESXp6TH40EkEoHb7cbFxQW+/vpr4Shg+SuLjNiog/EVEqDMW1Q8jZPJJNxuNyqVCv7kT/4EP/nJT1CpVITBmE1WVPIXEmQuU+PP57Pb7bhz5w7+1t/6W7h37574yyyOohXFKD6rT0ejkZzOi45ltVoRi8Wwvb0NXddxdHSER48eoVAoCD08g6GsOp3HfD1JCfGdMSblcrkkI8SAJHtukEVLXfvLBDxvvBLg6UI6LNJUkS//ww8/xO7uLnw+31RTC1gMVEQNSppn9pVjf7ednR1sbW3B6XSKb6aWpi77XG63G3t7e/id3/kdbGxs4OzsDD/96U/l1KR5zoYXfr9ffE5WTc5Tegw6Op1O4RTkaTIcDsUspqsRi8Vw69YtuN1uZLNZHB0dSfBzkc1JEpHhcIh0Oi2c+Tx57XY7UqkUPvroI9y+fRtXV1d49OgR0un0tebRarViY2MDf/fv/l384Ac/EOLNXC4n3XrY01HTNHl3LNE1m80Ln9B0S+PxOBKJBFqtFjKZjLRyY9+AUCg0RoPHQOS0dOQkU57rmwHcer2O0WgEm82GZDKJWCwmPAM+n0/crOvIjVcCAGRy2TGYtNjD4RDr6+uwWq2S+jHy8dMsmleYQ3eACyQUCmFtbU3aXXs8Hvj9fknRaZomJvms1t1GoYZ2OBxIpVL49V//dWxvbwMATk5OcHFxMXb6M+WVTCalmw5To2qfwGljsfSazL9qG/JAICCdiTweD3w+H3Z3d7G5uYlyuYz9/X2xhBbBI3DOO50Ocrkc8vm8kL/Q9CYd3N7eHjweD548eYJHjx4J5dgywVV2pPqt3/otfPTRRwiHwzg7O8PFxQVyuRxMJhMikQii0Siurq4kbUn26GXiD5xL9iH0+/0YjUZjvRYdDgc8Ho90qcrlckJBp3IaLjKWxWJBMBhEIBBANBqFyWRCKpWCpmmS0RkOh9KL0G63j6XLl4mrvBFKQNM0MbX8fj+2t7fhcDgwGAykOxCDdCTj5MZc9GShEqhWq8jn8wiFQgiFQojFYohEIsL3Rxon+q+tVmvh/gZqDtjtdmN9fR17e3uw2+3CIKRpGlZWVsbyxMzhM9JNS2XeyclYgNrevNVqiXKh9cSONrQ4rFYrstms9CRcJDXIuSZ7EF2l3/qt30IikYDP5xP8QaPRkODu559/jrOzs6W4GjmXdrsdt27dwq/92q8hEomg3W7j6OhI0rcMzrXbbdmsVqsVtVoNJycnS2UGuDF9Ph/C4bB8H4lEcP/+fVkXavOaUqkkAeVlM0cqLobvJpFICGCIVgWVhdPpHEuvLiM3Xgno+nPyRfYYoCvArjzc8LVaDQDG6uXVzbmINUB+QebGVYSe2iHI4/Egk8kIGceymABu7lQqhUAggFarJT4lF66mPWfZCYfDWFlZwXA4RCaTQb1eH2M4npUzVwlYqDT7/b40aeH3xKLTvCTtmcphv8gzDgYD5PN5PHz4EM1mE+vr6+L/e71emSui3kh13mw2l2IUUk/Ke/fuIRaLodFo4JtvvsHnn3+OdPo5uTVZjDjXbrcbTqdT6LqXQQvSRHe73QAgrqLdbkc8HhelzDgAMy7XIWsBXqx7Bmh5cFCRs+0e4wIq89Wyac83Qgl0Oh0cHR3hz/7sz7C2tjaW249Go8LAaiy0uM7EMyX49OlTFAoFHB0dIR6PIxwOY3t7G7du3YLH45F+BKrWnTemimsncIYRePbFMwYb2QmZZjxNy1kLi5uE3Xr9fj+cTqfcHxUMIcLEQFBqtdpYW/JFF9Vo9Lwr1NHREer1ugBlyJirac97ODKvTk5IY0BrHhiJUNq1tTXcunULNpsNl5eX+Oqrr6R/gq7rKBQK0DRNUpF0iwhYmvdcqknNMW02GxqNBsrlsliobD7CA4LXXKYfoHHMwWCAYrGIr7/+GgAEEEfm5EgkAq/XC4/HA4fDIfvhOvJGKIGrqyuk02m0220cHh7Kg0ciEdy6dUv8dHLCk5p7Wb46mlI8aUk9nslkkEwmhWzUZrNNBLUsm2bSNA2ZTAbdbhf5fH6spx3BUeFwWE7nYrEopvm804VxB/bFI9UXGXFzuRz6/b6cJlQG1WpVNif5AhcVnqztdhuZTAb5fB7n5+fwer2S7/7hD3+I9fV1AM+xAUZFuohLpbpJ8Xgcuq6jWCwik8kIPJcnIoFYBNbQHZiVszcKA5q0JMgIzPgR3dLNzU0Eg0Fx265bnMR3US6X8fjxY+nAxbgX2bbJSs2AoGr5/kqlCIEX9Nzk3/f5fILrByCnMplzjXz2ywhPIp6UPH2Zk2drK/aJWyYeYHw5JpMJ9XodxWIRx8fHgtojGIVmfL1exzfffIOTk5OxMWcJ0WYrKyuyYBhPyGaz0teR7bt9Pp8EO09PT0UJLMvDx7lTC1uIDaAFx955uVxuIZzDJLFarXISEu6tWhM8GILBID788EM8ePAAfr8f6XQax8fHEohc5N1RCbANOPBcgWWzWQGKEXbtcrmwv7+PQqGwVDDQOIdc89lsFqPRCKlUStCj0WhU1hEVEolJl+2/CbwBSoAPxDw+gy+ktiZ2mhzv151443h88Qyq0ZRst9sol8s4Pj6WxqHL4hJYVVYoFAScw54Ko9FIOhJFIhHouo6nT5/i4cOHKJVKC51edIusVisCgQDW1tbkVCoUCnJScSMxeEgTlG26rtNeje+Kc8jnBV7QjxMJybTXoqIGxIhh6PV6sNlsCIVCePDggTBFm0wmhMNh3LlzB++//z68Xi+q1So+//xzPHr06CU3ZN64DDjTrWLTFnamdjqd8Hg86Ha7OD09RalUulZ1IufPyIjMsudGozEWmGQvAjVLteyYN14JqMIJotYjSIK+0qJpullCv131AVkQw+agFxcXOD4+fok2e9FnoKtBOK6u64KFsFgsWFtbwzvvvCOxgMePHyOfz89NCRrH4eb2+/3wer0wm824vLwUC8Pj8SAcDiMSiSAQCOD4+Hisv8EifvM8IarSZrNJy65ms4mjo6Ol3Q0+Fzd6Op1GoVBAKpVCPB7Hb/7mb+L+/fvodDrStdfn86Hf7yOTyeCTTz7Bz372M5ycnCxUC6GOSReOhWu6rkvUPh6PY2trC16vF8fHxzg7O5OU6nXmTk1Z89AZDocSFI9Go4hEInC5XLDZbNJ7wJgeX1TeKCVAIYKNhUO0BIz4/esK0zPcQKurq7h37x78fj8KhQK+/PJL6W2wTLwBeHGacZPRpGXemdmAeDyOQqGATz/9FEdHR4KmM443KZDGjcJ26pFIBBsbGwgEAtA0DRcXF1J8RQWRy+VwdHSEXC53LYirUVSMgtfrxdraGnZ2dhCPx6U913VcDT5vr9fD2dkZvvjiC3i9Xuzu7iIcDiMajcrYVqsVhUIBn3/+OT799FN88cUXogCWeT6a3cQ5MDZEpbC6uopbt27JWOl0+lo9DSY9LwApuPJ6vUgkErh16xbi8Tg6nQ4KhQLq9forva83TgmoJ5Pdbpf0IcEgwPUpx9S6dJvNhnA4jPv37+P27dvY2NiA3W7HV199hZOTE9HO6t8uEhcAIPn0XC6HlZUVRKNRxONxeL1eCeCVSiV8+eWXkqWYVho9bUxdf16uyzbciURCmqmurKygWCyKG5LNZnF8fIxCoSAuyaxrLyLMggQCAezt7eH+/fu4e/cunE6nFBJdZ+Hy8+xp+JOf/ATVahX379/H5uamcD8Qk/D111/j4cOHuLy8FAz/dV04Zh2IH9nb25NgY7vdlr6A6hy+qjAAPRqNxPIlOI7QaBUkNGmu5skbqQToE7IpI+GZwIsec8uKWsNNX3lnZwff+973sL29DafTiWw2i8vLS5yfn6Pdbk+8xqyJV0+yTqeD8/NzMY9TqZQ0T2m1Wkin0wKnJX5/GauDkObz83N8+umn0rGJJbW5XE4q+6gMaJ0w/nIdd0DlZvD5fLh79y7+o//oP8KtW7fgdDqRyWRQLBalluC6Mho9b7eeTqdRrVbxi1/8Qjak2jGaWA61FdiioqZTiYJ8+vQpGo0GUqmUZBrq9TpOTk7w8OFD4bR4FQWqjq/rutw/s0m//OUvcXl5iX6/j8vLy7Fg83UOwDdSCfClnJ6eStqL0NZXnXwGXJhzZbqLG/Pg4EDIHNQNsmwaktmMfr+Pk5MTaUZKBVGpVFCpVASss+zJwjFyuZwAaQg7VumpJqVSX8cckrKMhS6tVguXl5c4PDyULMd1WqGrwg3S7/dRq9VeKpp5Xc+jzmWz2RQ3kWuPrchY8PW6exzw4Ot2u7L5g8EgdF0fS4kuk2pV5Y3qQKR8XoJbPp8PANBqtcZOs+uKCrUNhUIIBoP///bOJ7SKK4rD3w8xEtSFVpTwFBvFjas2CzeKS/9kk7rLzkWhG4W66CLixm0L7bbQUkFEdKOiS0UEd1qVmERCmmgFrcFgXCR00Zb2dDF30uH55qnNy7t3nPPBMPNu5k0+zrw5c+feOzNLQ27zu9Pyt/h24mDJz5zFZwoWu9mW8yDJfPvFyxBY+YeG5j0Tvb29NBqNpcFBCwsLLC4uMj8/v3Q5UCWKZ9t8Xuz6XW4j6rv8/3yUYn4vSD5QqRjLNg7Vfw1Zi+8tdUNBZ947WKTYxlDc/krv6JwU9s1yyH+0zUmoE0/IrTPNDeDv8Zus/mvImin2Qa8EMV5d9SEdHHnbhNNZOn6y69iWHMepJKnUBF4Bv4d5ldiEO3eDqjmn6ru9VWESbQIAku61ul5JGXfuDlVzrpqvXw44Ts3xJOA4NSelJPBDbIH/gTt3h6o5V8o3mTYBx3HikFJNwHGcCERPApIOSZqSNCNpJLZPGZKeShqXNCrpXijbKOmGpOkw3xDZ8YykOUkThbJSR0knQ9ynJB1MyPm0pN9CrEclDSbmvE3SLUmTkh5J+jKUJx3rUprHPXdzAlYBj4EdQA/wENgd06mN61NgU1PZN8BIWB4Bvo7suB8YACbe5gjsDvFeA/SH/bAqEefTwFct1k3FuQ8YCMvrgV+CW9KxLpti1wT2ADNm9sTM/gQuAkORnd6HIeBsWD4LfBZPBczsNvC6qbjMcQi4aGZ/mNmvwAzZ/ugqJc5lpOI8a2YPwvIiMAk0SDzWZcROAg3gWeHz81CWIgZcl3Rf0hehbIuZzUL2wwA2R7Mrp8wx9dgflzQWLhfyanVyzpI+Bj4F7lDRWMdOAq2eBZZqd8VeMxsADgPHJO2PLbRMUo7998BO4BNgFvg2lCflLGkdcAk4YWYL7VZtUZZKrKMngefAtsLnrcCLSC5tMbMXYT4HXCGrzr2U1AcQ5nPxDEspc0w29mb20sz+NrN/gB/5r+qcjLOk1WQJ4LyZXQ7FlYs1xE8CPwO7JPVL6gGGgWuRnd5A0lpJ6/Nl4AAwQeZ6NKx2FLgax7AtZY7XgGFJayT1A7uAuxH83iA/kAJHyGINiTgru5n/J2DSzL4r/KlysQbi9g6EltNBstbVx8Cp2D4ljjvIWncfAo9yT+Aj4CYwHeYbI3teIKs+/0V29vm8nSNwKsR9CjickPM5YBwYIzuA+hJz3kdWnR8DRsM0mHqsyyYfMeg4NSf25YDjOJHxJOA4NceTgOPUHE8CjlNzPAk4Ts3xJOA4NceTgOPUHE8CjlNz/gUU7yPTEvyA8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1366,9 +1343,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorial/English/01-DistributionAPITutorial.ipynb b/tutorial/English/01-DistributionAPITutorial.ipynb index f16b3d1c..c2c5827e 100644 --- a/tutorial/English/01-DistributionAPITutorial.ipynb +++ b/tutorial/English/01-DistributionAPITutorial.ipynb @@ -18,7 +18,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -39,9 +39,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.utils import print_latex" @@ -73,9 +71,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal\n", @@ -126,9 +122,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -166,7 +160,7 @@ { "data": { "text/latex": [ - "$$p_{1}(x)$$" + "$\\displaystyle p_{1}(x)$" ], "text/plain": [ "" @@ -264,9 +258,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 50\n", @@ -295,7 +287,7 @@ { "data": { "text/latex": [ - "$$p(x|\\mu_{var})$$" + "$\\displaystyle p(x|\\mu_{var})$" ], "text/plain": [ "" @@ -359,10 +351,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true, - "scrolled": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Bernoulli\n", @@ -394,7 +383,7 @@ { "data": { "text/latex": [ - "$$p(\\mu_{var})$$" + "$\\displaystyle p(\\mu_{var})$" ], "text/plain": [ "" @@ -447,7 +436,7 @@ { "data": { "text/latex": [ - "$$p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$$" + "$\\displaystyle p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$" ], "text/plain": [ "" @@ -466,9 +455,7 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ "Sampling from joint distributions also can be done using `.sample()`. \n", "All variables and values are output in dict type." @@ -477,9 +464,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -534,9 +519,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal\n", @@ -609,7 +592,7 @@ { "data": { "text/latex": [ - "$$p(a|x)$$" + "$\\displaystyle p(a|x)$" ], "text/plain": [ "" @@ -646,9 +629,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_samples = torch.Tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085,\n", @@ -679,11 +660,11 @@ " -1.1435, -0.6512]]), 'a': tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", - " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", + " 6.5706e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", "tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", - " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", + " 6.5706e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", "tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", @@ -735,9 +716,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorial/English/02-LossAPITutorial.ipynb b/tutorial/English/02-LossAPITutorial.ipynb index 809a248f..d2671352 100644 --- a/tutorial/English/02-LossAPITutorial.ipynb +++ b/tutorial/English/02-LossAPITutorial.ipynb @@ -60,7 +60,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -81,9 +81,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Pixyz module\n", @@ -124,7 +122,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -183,7 +181,7 @@ { "data": { "text/latex": [ - "$$\\log p(x)$$" + "$\\displaystyle \\log p(x)$" ], "text/plain": [ "" @@ -204,9 +202,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -259,9 +255,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -287,9 +281,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -345,7 +337,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -372,7 +364,7 @@ { "data": { "text/latex": [ - "$$q(x)$$" + "$\\displaystyle q(x)$" ], "text/plain": [ "" @@ -407,7 +399,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(x)||p(x) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(x)||p(x) \\right]$" ], "text/plain": [ "" @@ -481,9 +473,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# define probability distributions\n", @@ -503,7 +493,7 @@ { "data": { "text/latex": [ - "$$\\log p(x|z)$$" + "$\\displaystyle \\log p(x|z)$" ], "text/plain": [ "" @@ -541,7 +531,7 @@ { "data": { "text/latex": [ - "$$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + "$\\displaystyle \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$" ], "text/plain": [ "" @@ -562,9 +552,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -646,7 +634,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -679,7 +667,7 @@ { "data": { "text/latex": [ - "$$mean \\left(\\log p(x) \\right)$$" + "$\\displaystyle mean \\left(\\log p(x) \\right)$" ], "text/plain": [ "" @@ -700,9 +688,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -732,9 +718,7 @@ { "cell_type": "code", "execution_count": 21, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# define probability distributions\n", @@ -761,7 +745,7 @@ { "data": { "text/latex": [ - "$$mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -800,9 +784,7 @@ { "cell_type": "code", "execution_count": 23, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -869,9 +851,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/tutorial/English/03-ModelAPITutorial.ipynb b/tutorial/English/03-ModelAPITutorial.ipynb index f3b9bf5e..ca816c82 100644 --- a/tutorial/English/03-ModelAPITutorial.ipynb +++ b/tutorial/English/03-ModelAPITutorial.ipynb @@ -29,7 +29,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -58,9 +58,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# MNIST dataset\n", @@ -87,9 +85,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -149,7 +145,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -162,7 +158,6 @@ ], "source": [ "from pixyz.losses import LogProb\n", - "from pixyz.losses import StochasticReconstructionLoss\n", "from pixyz.losses import Expectation as E\n", "from pixyz.losses import KullbackLeibler\n", "from pixyz.utils import print_latex\n", @@ -210,9 +205,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.models import Model\n", @@ -280,9 +273,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0, Loss 199.60440063476562 \n", - "Epoch 1, Loss 147.97647094726562 \n", - "Epoch 2, Loss 128.66696166992188 \n" + "Epoch 0, Loss 199.86109924316406 \n", + "Epoch 1, Loss 147.0438690185547 \n", + "Epoch 2, Loss 126.67538452148438 \n" ] } ], @@ -316,9 +309,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -337,9 +328,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 784\n", @@ -398,7 +387,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$" ], "text/plain": [ "" @@ -429,7 +418,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -456,9 +445,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def train(epoch):\n", @@ -482,9 +469,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 1 Train loss: 201.2876\n", - "Epoch: 2 Train loss: 147.1453\n", - "Epoch: 3 Train loss: 128.1311\n" + "Epoch: 1 Train loss: 200.3801\n", + "Epoch: 2 Train loss: 147.1353\n", + "Epoch: 3 Train loss: 127.9876\n" ] } ], @@ -536,9 +523,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorial/Japanese/00-PixyzOverview.ipynb b/tutorial/Japanese/00-PixyzOverview.ipynb index 0f2fe132..1ad2df1c 100644 --- a/tutorial/Japanese/00-PixyzOverview.ipynb +++ b/tutorial/Japanese/00-PixyzOverview.ipynb @@ -16,9 +16,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", @@ -76,9 +74,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -119,7 +115,7 @@ { "data": { "text/latex": [ - "$$p_{prior}(z)$$" + "$\\displaystyle p_{prior}(z)$" ], "text/plain": [ "" @@ -154,9 +150,7 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -177,7 +171,7 @@ { "data": { "text/latex": [ - "$$p(x|z)$$" + "$\\displaystyle p(x|z)$" ], "text/plain": [ "" @@ -245,7 +239,7 @@ { "data": { "text/latex": [ - "$$q(z|x)$$" + "$\\displaystyle q(z|x)$" ], "text/plain": [ "" @@ -297,22 +291,21 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'z': tensor([[-0.6079, -0.7846, 1.2765, -0.3821, -0.9420, 0.0777, 1.5994, 2.2155,\n", - " 0.1996, 0.9858, -2.0728, 1.2941, 1.2161, -0.4586, -0.0948, -0.0760,\n", - " 1.4566, 1.2481, -0.8031, 0.9527, -0.7847, -0.8508, -1.3487, -0.5012,\n", - " -1.4542, -0.3763, 1.3999, -0.4546, -0.4076, 0.1047, 0.5448, 0.1752,\n", - " -0.8120, 1.0687, 0.0830, 1.2167, -1.1726, -0.1918, -0.4043, -1.0663,\n", - " 0.0234, 0.5099, 1.6090, 0.6881, 2.1337, -1.0029, -0.5225, -1.5429,\n", - " -0.4918, -1.0038, -1.8796, 1.0947, 0.2360, -1.1022, 1.0402, -0.4413,\n", - " -0.3261, 0.7704, 0.1552, -0.3254, -1.0160, -0.0348, 0.1891, 0.7731]])}\n", + "{'z': tensor([[ 0.4864, 0.3463, -0.2116, -1.6100, -0.2685, -0.1989, 0.6314, 1.5996,\n", + " 0.7684, -0.5182, 0.3968, -0.0385, 0.4360, 1.4288, -0.9017, 0.6699,\n", + " -0.9554, -0.1915, -1.3265, -1.1500, 0.4051, -1.3572, 1.4759, 0.0580,\n", + " 0.9901, -1.1862, 0.5636, -0.1690, 0.5339, 1.5087, -1.0795, 1.3426,\n", + " -0.7732, -1.9224, -0.7196, 0.1051, -1.0382, -0.1006, 0.3543, 0.0793,\n", + " -1.2374, 1.7611, -1.1313, -0.4561, -0.0943, 0.6199, -0.4136, -0.4324,\n", + " 1.7052, -1.8582, 0.4568, 0.9151, -1.1936, -0.2273, 0.7298, -1.6876,\n", + " -0.8267, -0.2455, -0.4563, 0.5264, -0.4206, -0.4246, -0.4605, -1.2385]],\n", + " device='cuda:0')}\n", "dict_keys(['z'])\n", "torch.Size([1, 64])\n" ] @@ -345,9 +338,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -374,7 +365,7 @@ { "data": { "text/latex": [ - "$$p(x,z) = p(x|z)p_{prior}(z)$$" + "$\\displaystyle p(x,z) = p(x|z)p_{prior}(z)$" ], "text/plain": [ "" @@ -408,65 +399,68 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'z': tensor([[ 2.2384, -1.0707, -0.4891, -0.1355, 0.4479, -0.0879, 0.1832, -0.3299,\n", - " -0.8800, -0.2940, -0.0861, 1.1714, 0.0833, -0.7101, 0.1362, -0.4973,\n", - " 1.3692, -0.5415, 0.8587, -1.9445, -1.3895, 1.6289, -1.3554, -1.2403,\n", - " 0.0165, 1.9608, -0.1071, 1.0146, 0.1568, -0.2603, 0.4761, 0.9154,\n", - " -1.2763, -2.5424, 0.6092, 1.0490, 0.1421, 0.9194, 2.5584, 1.4599,\n", - " 0.4122, 0.6989, 3.1160, -1.8118, 0.8004, 0.2597, 0.6849, -0.5289,\n", - " 1.8026, 1.8868, -0.1989, -2.4792, -0.4740, -0.2468, -0.0199, 0.4975,\n", - " -1.2804, 2.2369, -0.5309, -0.6830, -0.2585, 1.2927, 0.4489, 0.3921]]), 'x': tensor([[1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0., 0.,\n", - " 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,\n", - " 0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0.,\n", - " 0., 0., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 1.,\n", - " 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0.,\n", - " 0., 1., 1., 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 1., 0., 1., 1.,\n", - " 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 0., 0., 1.,\n", - " 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 0.,\n", - " 0., 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0.,\n", - " 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.,\n", - " 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 1.,\n", - " 1., 1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1.,\n", - " 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0.,\n", - " 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", - " 0., 1., 1., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0.,\n", - " 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1.,\n", - " 0., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 0., 1.,\n", - " 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1.,\n", - " 1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1., 0.,\n", - " 1., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1.,\n", - " 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0.,\n", - " 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", - " 1., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 1.,\n", - " 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1.,\n", - " 1., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0.,\n", - " 0., 1., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 1.,\n", - " 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0.,\n", - " 1., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0.,\n", - " 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 1.,\n", - " 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,\n", - " 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0.,\n", - " 0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0.,\n", - " 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 1., 1., 0., 0.,\n", - " 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 1., 1.,\n", - " 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 1., 1., 1., 1.,\n", - " 1., 1., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0., 1., 1., 0., 1.,\n", - " 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0.,\n", - " 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1., 0.,\n", - " 0., 1., 0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0., 0., 1., 0.,\n", - " 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0.,\n", - " 1., 0., 0., 1., 0., 1., 1., 1., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0.,\n", - " 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.,\n", - " 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 1., 0.,\n", - " 0., 0., 1., 1., 1., 1., 0., 1., 0., 1.]])}\n", + "{'z': tensor([[ 1.1201e+00, 1.5677e-01, 9.0874e-01, 6.8709e-01, -9.9205e-01,\n", + " -5.7528e-02, 6.1494e-01, -1.9103e+00, 8.4818e-01, -6.3063e-01,\n", + " 2.8868e-01, 6.5235e-01, -3.6048e-01, -2.1075e+00, 7.3561e-01,\n", + " 1.2284e+00, 9.4420e-01, 1.7631e+00, 4.1081e-01, 5.3408e-01,\n", + " 8.0302e-01, 2.7640e-01, 2.5316e+00, -1.2926e+00, -1.7300e+00,\n", + " 4.1832e-01, -8.8950e-01, -9.4023e-01, -8.7823e-01, 1.3775e-01,\n", + " 1.1756e-01, -7.7565e-01, -1.3138e+00, 1.3475e+00, -4.6472e-02,\n", + " -5.3134e-01, 3.1117e-01, -1.2415e+00, -7.1469e-01, -9.1732e-01,\n", + " -1.6107e-01, -8.3936e-01, 7.6674e-04, -4.5140e-02, 5.6405e-01,\n", + " 7.1174e-01, 9.7647e-01, -1.0728e-01, -1.2635e+00, 6.5263e-01,\n", + " -8.2264e-01, -7.0210e-01, 1.9668e+00, -2.3719e-01, 3.1376e-01,\n", + " -1.1728e+00, -2.9765e-01, -3.0023e-01, -3.3129e-01, 3.4532e-01,\n", + " 1.8916e+00, -1.2801e+00, -4.5738e-01, -6.8942e-01]], device='cuda:0'), 'x': tensor([[0., 0., 1., 1., 1., 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 1., 1.,\n", + " 1., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., 0.,\n", + " 1., 1., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 1.,\n", + " 1., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1., 1., 0.,\n", + " 0., 1., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0., 0., 0.,\n", + " 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 1.,\n", + " 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0.,\n", + " 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1.,\n", + " 1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 1.,\n", + " 0., 0., 1., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1.,\n", + " 0., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1.,\n", + " 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0.,\n", + " 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 0.,\n", + " 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 1., 1., 1.,\n", + " 0., 1., 1., 0., 1., 1., 1., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0., 1.,\n", + " 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0., 0., 1., 0., 0., 0., 1., 1.,\n", + " 1., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1.,\n", + " 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 1.,\n", + " 0., 0., 1., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0.,\n", + " 1., 1., 0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0.,\n", + " 0., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0.,\n", + " 0., 0., 0., 0., 1., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,\n", + " 1., 1., 0., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0., 1.,\n", + " 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 1.,\n", + " 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 1., 0.,\n", + " 1., 1., 0., 1., 0., 1., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 1.,\n", + " 0., 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 1., 0., 1., 0.,\n", + " 0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0.,\n", + " 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1.,\n", + " 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 1., 1., 0.,\n", + " 1., 1., 0., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.,\n", + " 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,\n", + " 0., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 1.,\n", + " 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1., 1., 1.,\n", + " 1., 0., 1., 1., 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0.,\n", + " 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.,\n", + " 1., 0., 1., 0., 1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 1., 0., 0., 1.,\n", + " 1., 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 1., 1.,\n", + " 1., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1.,\n", + " 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1.,\n", + " 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 1., 1., 0., 1., 1., 1., 0.,\n", + " 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 1.,\n", + " 1., 1., 1., 0., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 0.,\n", + " 0., 0., 0., 0., 0., 1., 1., 0., 0., 1.]], device='cuda:0')}\n", "dict_keys(['z', 'x'])\n", "torch.Size([1, 784])\n", "torch.Size([1, 64])\n" @@ -535,7 +529,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$" ], "text/plain": [ "" @@ -555,14 +549,12 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$$- \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + "$\\displaystyle - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$" ], "text/plain": [ "" @@ -574,8 +566,7 @@ } ], "source": [ - "from pixyz.losses import StochasticReconstructionLoss\n", - "reconst = StochasticReconstructionLoss(q, p)\n", + "reconst = -p.log_prob().expectation(q)\n", "print_latex(reconst)" ] }, @@ -589,14 +580,12 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -628,7 +617,7 @@ { "data": { "text/plain": [ - "tensor(551.3825, grad_fn=)" + "tensor(549.2543, device='cuda:0', grad_fn=)" ] }, "execution_count": 12, @@ -638,7 +627,7 @@ ], "source": [ "#Todo: 何をevalの時渡すのか\n", - "dummy_x = torch.randn([4, 784])\n", + "dummy_x = torch.randn([4, 784]).to(device)\n", "vae_loss.eval({\"x\": dummy_x})" ] }, @@ -662,19 +651,17 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Distributions (for training): \n", - " p(x|z), q(z|x) \n", - "Loss function: \n", - " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", - "Optimizer: \n", + "Distributions (for training):\n", + " p(x|z), q(z|x)\n", + "Loss function:\n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)\n", + "Optimizer:\n", " Adam (\n", " Parameter Group 0\n", " amsgrad: False\n", @@ -688,7 +675,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -710,9 +697,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "dummy_x = torch.randn([10, 784])\n", @@ -726,24 +711,22 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 0 Train Loss: 551.311035\n", - "Epoch: 1 Train Loss: 530.207153\n", - "Epoch: 2 Train Loss: 495.100922\n", - "Epoch: 3 Train Loss: 439.676208\n", - "Epoch: 4 Train Loss: 335.509460\n", - "Epoch: 5 Train Loss: 177.766815\n", - "Epoch: 6 Train Loss: 58.066925\n", - "Epoch: 7 Train Loss: -124.772110\n", - "Epoch: 8 Train Loss: -366.819397\n", - "Epoch: 9 Train Loss: -660.886353\n" + "Epoch: 0 Train Loss: 551.915894\n", + "Epoch: 1 Train Loss: 531.631287\n", + "Epoch: 2 Train Loss: 497.277496\n", + "Epoch: 3 Train Loss: 432.524139\n", + "Epoch: 4 Train Loss: 331.488434\n", + "Epoch: 5 Train Loss: 181.967743\n", + "Epoch: 6 Train Loss: 14.416910\n", + "Epoch: 7 Train Loss: -127.738548\n", + "Epoch: 8 Train Loss: -382.702911\n", + "Epoch: 9 Train Loss: -599.516968\n" ] } ], @@ -777,9 +760,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", @@ -844,9 +825,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -865,9 +844,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 784\n", @@ -934,7 +911,7 @@ { "data": { "text/latex": [ - "$$p_{prior}(z)$$" + "$\\displaystyle p_{prior}(z)$" ], "text/plain": [ "" @@ -974,7 +951,7 @@ { "data": { "text/latex": [ - "$$p(x|z)$$" + "$\\displaystyle p(x|z)$" ], "text/plain": [ "" @@ -1015,7 +992,7 @@ { "data": { "text/latex": [ - "$$q(z|x)$$" + "$\\displaystyle q(z|x)$" ], "text/plain": [ "" @@ -1046,7 +1023,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -1059,7 +1036,7 @@ ], "source": [ "kl = KullbackLeibler(q, prior)\n", - "reconst = StochasticReconstructionLoss(q, p)\n", + "reconst = -p.log_prob().expectation(q)\n", "vae_loss = (kl + reconst).mean()\n", "print_latex(vae_loss)" ] @@ -1080,11 +1057,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "Distributions (for training): \n", - " p(x|z), q(z|x) \n", - "Loss function: \n", - " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right) \n", - "Optimizer: \n", + "Distributions (for training):\n", + " p(x|z), q(z|x)\n", + "Loss function:\n", + " mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)\n", + "Optimizer:\n", " Adam (\n", " Parameter Group 0\n", " amsgrad: False\n", @@ -1098,7 +1075,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -1119,9 +1096,7 @@ { "cell_type": "code", "execution_count": 25, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def train(epoch):\n", @@ -1159,9 +1134,7 @@ { "cell_type": "code", "execution_count": 26, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def plot_reconstrunction(x):\n", @@ -1183,9 +1156,7 @@ { "cell_type": "code", "execution_count": 27, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def plot_image_from_latent(z_sample):\n", @@ -1197,9 +1168,7 @@ { "cell_type": "code", "execution_count": 28, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# functions to show an image\n", @@ -1218,20 +1187,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 1 Train loss: 199.5469\n", - "Test loss: 166.5198\n", + "Epoch: 1 Train loss: 201.0661\n", + "Test loss: 172.5077\n", "Epoch: 1\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4m9WV/79XkiVLtiXvsR1vibOT\nnSQwSZMAoRCWBChhK+2PKX1gmEKGGX60BNpSupDOMFO6MASe9NewZHggKVmgTNgKZDotgZAQQxI7\nm504drzEq2RLsmRJ9/fH63tyX9nGsq3Fce7ned7HlvS+eo/ue++555577rmMcw6FQqFQnP8YEi2A\nQqFQKKKDUugKhUIxRlAKXaFQKMYISqErFArFGEEpdIVCoRgjKIWuUCgUY4QRKXTG2ErG2FHG2AnG\n2LpoCaVQKBSKocOGG4fOGDMCOAbg6wDqAHwG4A7OeUX0xFMoFApFpIzEQl8E4ATnvJpz7gfwGoAb\noiOWQqFQKIaKaQTXjgdQK72uA3DJV13AGFPLUhUKhWLotHDOcwY7aSQKPSIYY/cCuDfW91EoFIox\nTE0kJ41EoZ8BUCS9Lux9TwfnfCOAjYCy0BUKhSKWjMSH/hmAyYyxCYwxM4DbAbwZHbEUCoVCMVSG\nbaFzzgOMsQcAvAvACGAT5/xw1CRTKBQKxZAYdtjisG6mXC4KhUIxHPZzzhcMdpJaKapQKBRjhJhH\nuVyIPPzwwwAAq9WK2bNnY82aNfTZc889hz179gAANm/enBD5FArFGIVzHrcDAB/rx5YtW3gwGPzK\n49ixY/zYsWO8uLg44fJ+1TFlyhQeCoV4KBTia9euTbg8KSkpfMOGDXzDhg08GAzyvXv38r179/KS\nkpKEy6YOdcT42BeJjlUuF4VCoRgjKJdLlNiyZQsA6NwrAHDkyBG8++67AICJEydi1apVKCsrAwB8\n61vfwvr16+Mr6BCYN28eQqEQAODMmT5LDOJOQUEB7rnnHgBAKBTCxRdfDAC4/vrr8eyzzyZSNMyf\nPx/bt29HaWlpROdfddVVAIDKykrU1tYOcnb8WLVqFd544w2sXbsWAPD8888jGAzG5d65ubkAgK1b\nt+Ljjz8GAGzcuBGnTp2K+DscDgeWLVsGAHjnnXfQ09MTdTlHM0qhR4EFCxbgpptuoteHD2vRm6tX\nr0ZLSwu6uroAAGazGZ988gnmzJkDAMjMzIy/sENg7ty5cLvdAIDt27cnVJacnBy8+OKLCZXhq7j6\n6qthsVgiPn/16tUAgLvvvhu33357rMSKmKysLADAhg0bAADPPPMMAGDTpk3wer0xv39GRga1G4fD\ngaamJgAYsjLfv38/cnK0FfILFizA8ePHoy6rjN1uxy9/+UvMnDkTAHDllVcmtBMZtQp9zZo1ZI3V\n19eju7sbAPDKK6+gsbERJ06cSKR4OvLz88EYA6Ap86uvvhoA0NDQoDvv4YcfxowZM+j1f//3f8dP\nyCEya9YsrF27Fi+//HJC5finf/onAMCNN96IRYsW9XvOsmXLYDAY8MUXXwAA/vKXv8RNPpNJa0LX\nXnvtkK7bt28fAOChhx5CSkoKdZyJQli148ePBwC8+uqrAEDtLpZkZ2djy5YtZOBs2LCBRghD4Uc/\n+hEmTJiAf/iHfwCAmCrzO++8EwDw5JNPoqjo3IJ5u92O1tbWmN13MJQPXaFQKMYIo3ZhUXV19YD+\nyM7OThqeRUJdXR0A4KmnniLLKNqUlJSQbG1tbf2e88UXX9DQDNCGZx999FFM5Bkpa9aswdatW3H5\n5ZcDAP7nf/4nIXII/63w5csYDAbdZzU1Wv6i2267Dfv374+LfF//+tcBAG+//TaeeuopPPbYYxFd\n99BDDwHQ6mR+fj6am5tjJuNgWCwW/PWvfwUAmpe47rrrAGi/K9ZcddVVuvvk5eUNqTwuuugiAMDB\ngwexY8cO/P3f/z0ArS3GgsLCQhw4cACA5qqSdeiWLVvwwAMPAMCAemCYRLSwaNS6XO655x7yNVdU\nVJCrYt68ebjssstw6aWXAgBqa2t1Qx4ACAQCAIDm5mbk5+fT+6dPn46ZQhfKpD++//3vAwCmTJkC\nAPj00091f0cjP/jBD1BTUxOz8oqEXbt2kdLuDzG07erqQklJCSZMmAAA2Lt3L4xGY8zlmzVrFrkm\nqqqqhjTBLXzoo4HZs2eTIge09hMPRS4mQW+++WYAwHe/+10AGLIy//Of/0yvd+zYETNFLnj44YcH\nnP+67bbbsHLlSgCaO+aZZ56B3++PqTwyyuWiUCgUY4XzcWFRRkYGv+KKK/gVV1zB7XY7X7Fihe5Y\nsmQJX7JkCc/JyeEtLS20OOZ73/te3BcEXH/99dzr9XKv18uDwSBvaGjgy5cv58uXL0/0QoV+j9LS\nUl5aWspDoRA/cuRIQmQQ5VNVVUWLsXp6enTHM888w1etWsVXrVrFly1bxp944gnd5//4j/8Yczlf\ne+01erYLFy6M+LrMzEwuCAaDPCcnJ6HPfP369dRGQqEQf+utt+Jy382bN/PNmzdzzjnft28fT0lJ\n4SkpKUP6jvvuu4/k3rRpU8xlLikp4U6nk+pleXk5f/fdd/tdQNjQ0MDz8vKide+IFhaNWpfLV9He\n3o4PP/yQXn/wwQf9nnfzzTcjIyMDBw8eBAC89tprcZFPZsGCBTCbzfR6y5YtCfNHR8Ly5cvp/0T4\ndUtLS+k5ZWdn6z6rqanBtm3bAAA//elP4fF4dJ/de6+2j0pOTg6eeuopJCcnAwD+8z//M+qhZGvW\nrMG1115L0VafffZZxNf+8Ic/JL//7t270dHREVXZhoqIcAEAv9+PH/3oR3G5r/A9h0Ih1NfXR+ya\nsFqtNFfxve99j77n7rvvjo2gEnPnzkVaWhr+93//F4DWXpKTk/HNb34TAPDoo4/SOpO8vDy88cYb\nuOaaawBE3afeL+elQh8M4ZvbsGEDDAYDfvaznwGIT4HK7Ny5kxaQAMDLL78ct8YyXGbNmkX/P/XU\nU3G/f1JSUh9FDmiTsrfffjtaWlr6va6mpga//OUvAQBPP/00bDYbyf/mm2+iqqoqqnLecsstsNls\neO655yK+Rkzy33nnnTTZ++STTyYsbnnx4sW6vwDgdrtRXl4ed1muu+46vPfeewCAjo6OAct1+fLl\nujk0AHj99dfjIiOgTSBzzvHrX/+a3uvu7samTZsAaB39xIkT6TOPx6N86AqFQqEYOmPSQr///vsB\naEPv9vZ2HD16NK73F5E1ixcvhsViIavyF7/4Ba0aHY383d/9Hb7zne8AAA4cOID3338/wRKdW4Bz\n9913D2idC958U9sw684778TChQtjIo/D4QAAshDFyspIEC6h7OxsVFZWAoDOdRhv+iujoYw4Rspv\nf/tbAMAVV1yB/Px8cv0wxgaMAmKM6cIEq6urIw4VjQZ33HEHgHNhnTt37tR9vmCBPrLwk08+iWub\nH3MKfcmSJVi3bh29vvHGG3Ho0KG4yiD8vGI59X/9138BQNSH/dFmxYoVFI71zjvvxGWVYH/IoYqX\nXHJJxNeJ1boGg0H3HT/96U/xrW99KyqyieX948ePH/KcjPCtAoh7newPWfkIP/7zzz8ft/uLtQKz\nZs3C3LlzKdzv+9//Ps3fvPTSS7prNm/eTCuCAeDjjz+Oa7t69dVXsXr1auoMp02bhlmzZlHqj4yM\nDCrLjIwM3HPPPZQmu6KiIubyKZeLQqFQjBXOx7DFrzqefPJJCmN6//33eVJSUlxCsMSxevVq3t3d\nzbu7u3kwGOQffPABT01N5ampqXGVYzjHH//4Ryq7m266KSEy/Md//Icu/HAo165du5avXbuW9/T0\n6EIdy8rKoiaf1WrlVquV79u3j3/xxRc8MzOTZ2ZmDnpdbm6uLqTt/vvv5/fff3/CnvXXvvY1HggE\neCAQ4KFQiJ88eZKfPHky4XVwsGPixIk8FArxzz//nH/++edxD/nMzMzkbW1t9BxDoZDuub777rt8\n0qRJfNKkSfzIkSM8GAzy559/nj///PMjvXd0whYZY0UAXgYwrveLN3LOf8sYywSwBUApgFMAbuWc\ntw/2fbHEarVi5cqVNKv8k5/8JG4RBMK98thjjyEpKYneLy8vH9V+c0ALrwKApUuX0nzDjh07EiLL\nqlWrhnxNTk4OZsyY0ceXKobt0awDIvNgVVUVbr75Zkqw9vTTT/c5V6R5KCsrQ0lJic73G8+UG/2R\nlZWlc0uNhvmSSHj88cfBOccjjzwCIP6htW1tbbj11lspskbMqYjslI888gi5Krdv345169ZRsr6y\nsrLYu4cisKrzAczv/T8NwDEAMwA8BWBd7/vrAPxboi30xx9/nIdCIb5r1y6+a9euuPbc69ev5+vX\nr9f11tu2bTsvLPN169bxdevW8VAoxF944QX+wgsvJEyWo0ePDtlC/81vftNn4VFVVRVfunQpX7p0\naUzknD59Ot+6dSt3u93c7XaTtSsfjY2NvLGxkTc0NPCenh7dZ8LST1Q5b968mUZjbW1tfOHChUNa\nHBXv45ZbbuG33HILD4VC3Ol08vnz5/P58+cnTJ4rr7ySX3nllXzTpk386aef7ncUbrVa+Y4dO0gf\nvPTSSyO5Z3R2LOKcN3DOP+/9vxNAJYDxAG4AIGYsXgJw42DfpVAoFIrYMaQoF8ZYKYB5AD4FMI5z\nLhJ+N0JzyfR3zb0A7h2+iIMjQoh+/OMfw+Vy4ec//3ksb9cvInuezAMPPDDq3S3AuUyRgLYK93xh\n165dAICpU6f2+ayyspJW88WCyspK3HrrrZg3bx4AfQSLQF7w8tJLL1EObQBx2TRiIAoLCyn8DtCy\nkQ5lpWsiEKstAeCtt97C559/nkBpQAnB5MRg4Xi9XmzZsoVCMC+//HKKIovVIseIFTpjLBXANgD/\nzDl3iRAxAOCc84FS43LONwLY2Psd/Z4zErKysvC73/0OAGA0GrFr1y7s2bMn2rcZFpmZmf36b51O\nJwDNtyv87cIXl5GRAQD4l3/5F901wWCQ/IbykvdoIPut33rrrah+91BhjOl8u3JD/v3vf6/Lnhme\nPlfm+uuvj6GU5xBpVMXfgaiurta9FityRVqKeLJ48WJdGb/xxhtxl2GoiHrg8Xjwq1/9KsHSRM7W\nrVtJod92222UWlesXo82EYUtMsaSoCnzVzjnYi+yJsZYfu/n+QDOxkRChUKhUEREJFEuDMAfAFRy\nzuWp/DcB3AXgX3v/xrWbF/mu33nnHcqDXVVVhR//+MfxFOMr+fLLL/t9/49//CMAbYu6ceM0T9Vt\nt9026Pc1NjYC0PJ/RIulS5eSDKOB5557TpdDRowYhBXenzUe/l48F8dECmMM8qg2EZa5QERkiZW3\nYsXmaOW+++6jOnr27NmEu1uGQigUovp8ww034Cc/+QkALVHgsWPHon6/SFwuSwB8G8BBxpjI2vMY\nNEW+lTH2XQA1AG6NunRfgfBZyon5H3rooYStxhT+3BtuuGHQc2+55ZZ+3w8EAjrlJJayi+XvYleZ\naHLjjTdS53jgwIGEZ4Lcvn07bQgiNvsdjObmZlRWVtLS+vC9XEcDUqRXwhEJ406fPg3gnAtwtHLf\nffdR2Ykw0bS0NACai1L8jtGKSHb2+OOP49///d8BAOvXr8e3v/3tqM+lDKrQOed/BcAG+HhFVKWJ\nkJKSEsrMBpzbESiR/t9vfOMbALSdfuQ4dODcFlnhVvimTZt0u5pv376dcnzEA5vNptvc+PXXX6cs\ngImipqYGt99+OwCts3nwwQcHvebJJ5/Es88+G2vRRoRI5QvEZ+Pl/hD1ctKkSTo5ErlL/VAJBoO4\n8847aY7p8OHDuOuuuxIsVWS8/PLLtIH1N77xDfzsZz8bcBQ/XNTSf4VCoRgrnI9L/+Xl/aFQiC9Y\nsIAvWLAg4YsfzrcjKSmJf/zxx3znzp18586d3GazJVym8GPlypV85cqVfPv27bynp4dv27aNb9u2\njV999dX0WXFxccLlHOxobGzkLS0tvKWlhT/44IMJkcFoNHKj0cg3bdrEQ6EQf/HFF/mLL76Y8LIZ\n7CgvL++z1H7jxo1848aNvKioKOHyDeUoLi7mxcXFPBQK8VdeeWUo10a0sOi8U+hLly7lLpdLKXR1\nnFfHn/70J9o2MdGyFBQU8D/84Q8JzycT6bF06VL+4Ycf8g8//JA/8cQTfNy4cdxsNnOz2Zxw2YZ7\nvPfee7yrq4vPmDGDz5gxI5JrxqZCf/TRR3XK/Pjx43zatGl82rRpCX9I6lCHOtQRyWG32/nJkyf5\n6tWr+erVqyO5JjpL/xUKhUJxfnDebnAhktyvWLEi7nuFKhQKxUhwuVy0fiaasHjGxsZi6b9CoVBc\nAOznnC8Y7CTlclEoFIoxglLoCoVCMUZQCl2hUCjGCEqhKxQKxRhBKXSFQqEYIyiFrlAoFGOE8zYO\nXcAYGzVpSQfCZNKKmTGmy2Yop8o9H35HojEYDJS10GKxwOfzAdDKMRgM6nKmx7ssRa5zsRNQUlIS\nZTFMhDznO6I8RR558WxHWzmKHbZEvWSMUb0UbV3IHA/ZlYWuUCgUY4Tz3kIfbT22wWAgK81oNMJk\nMsFisQDQem+TyUQbR/v9fp2VLv+W/nbmuRCRLTWTyQSr1QpA2+AgEAgA0PJ5d3V1kUUUDAbBOf/K\nXY5iIZ/8NxAIjLq6eb4QPlodTZuDAPp9bxljMBqNMJvNALS6Ju+HIOpovDjvFbq8rRcQfwUvHmhq\naioAIDU1lbb4ys/Px5QpUzBt2jQAQEFBAdrb23H2rLb96v79+2m3lZqaGrjdbt2mA/H6LaJyJicn\n02bVVqsV3d3d8Pv9JI/YXSUUCsW0osrKUeymZLFYkJGRQZsrL1myhGRzuVyoqqqijZg7OjrQ2dlJ\nZRkIBGKycUd43ZM7c/nz8KH3aEHIZzQa6f+kpCRYLBZkZ2cDADo7O8E5R2trK4D4KCjOeZ8OMvzz\nSBHXj7TsZXkMBgO9Tk5ORmpqqs4V2N7eDgDo6urSGRbD/Q1DYdQqdLmXDt+PETjnlxZ/Aa2QZMto\noL/h/w8HWdGkp6ejoKAAADB58mTMmTMHgLZTUVlZGSl7k8kEv9+P5uZmAEB2djYp9M8++wzl5eWk\nhOTfG6uHLypnSkoKAK0Dmjx5MgBtay+v14uOjg4A2l6O9fX1ALQty2Ll85eftdFopIaSm5uLxYsX\n45JLLgGg7bojFLrT6URJSQny8/MBaFvQnThxAnV1dfQ9olxHYu3JsokRg7DGTCYT1QlAU+5y5zyQ\nHz0UCvVp8LFW/OJ3iLZjNptp5FNaWoqioiKqzy0tLSgvL4fb7QYAeL3eqHSO4WUpK0nOua5jNBgM\ndM/+ykq+bqA2Ppz6Ks+LiGcrRonp6ekAtG0S7XY7MjMzAWgd3okTJwBonaHb7SZDKBgM6vzr0dRH\nAuVDVygUijFCxBY6Y8wIYB+AM5zz6xljEwC8BiALwH4A3+ac+0cijOiVxdBV7hWFjyopKQl2u516\nyNLSUrImGhsb4fF4cPToUQCadcE5J5+1bFmI3lz0wkPxs8qugKSkJNhsNtjtdgDAxIkTMXv2bADA\nhAkTkJqaSueKTaDFPSdMmED3raqqQlJSkm40EW1LLXwYazAYYLVayc1SUlJCo4vJkyeDMYba2loA\n2gbVwkIf7PujZm0YDFSuc+bMwbJly2h/1qSkJHqeKSkpOisuJSUFTqcTjY2NALS5ClG3hmNdynMi\n4llarVZYLBbajT4vL0/3rN1uN5WXy+UCY0znvhJl1NXVpZtLCQaDUR39hEeLAOf2FhVzO1lZWSgs\nLAQArFmzBqWlpSRrZWUlqqur+3UlCTmHIqs8shb/WywWatfiMzGqDQQC5P4DQG5AEUEUCARIVrfb\nrSvb8FHRUOQM1z9iU2qz2YyCggIaDU6dOhXZ2dk0wvF6vTTira+vh8vlIheM2+2m/4UrRvZCDFXG\n/hiKy+VBAJUA7L2v/w3ArznnrzHGngfwXQDPDVcQxhhVNKPRiGnTplElGjdunC7VZHZ2Nj3gmTNn\nUkXo6elBc3Mzpk+fDgA4ePAgnE4nbcTc2tpKFUFW5kOFc06KQUzIiWGV2+3GmTNnAABNTU0wGo3k\nd/T5fPD7/SguLqbv8ng8AACHw6FTGNH0VQ40tDUajQgGg3Qvj8dDZZmeno6srCy0tLQAOKeU5DII\nJ9pKKDk5GTNnzgQAzJ49G1lZWfT8WlpadI2jra2NhrNWqxVms5kUltvtHpGbRQ5FzMjIAKA9rzlz\n5tD8iLiXmB/p6Oig35Geng6z2UxK22azoampCYDW6FtaWkgpRUuZC7lFm5IVeigUgsFgoPvI5Txz\n5kwUFBRQZ1hYWAiz2axzJ4XfJ1J5jUYjKTuz2YypU6cC0Np3bm4uufuEvx7Q6qTRaCTXn9/vR0pK\nCrmAurq66LPa2lo0NDTo2vhwZBVlJ567XJfy8vIwffp0jB8/HoBW14LBIDo7OwFodU2UVVZWFqxW\nKz2DpqYmqrP9EY3nHpFCZ4wVArgOwJMAHmJazbgCwDd7T3kJwBMYgUI3m830sIX1U1ZWBkCzZPPy\n8uhczjlyc3PpM9FQurq6YLFYqPCTk5NRVVVFldNsNut2OA/31Q0Fcc9AIAC320052U+fPk0jAp/P\nh56eHqpwJpMJDoeDzi0oKKDv8fv9CAaDMZm8EwirQPxm8VoowkAgQOWck5OD5uZmUujd3d26Scb+\niJaVIRpEaWkpjXbEXIR4lidPnoTL5QKg+So9Hg9ZdaFQCJmZmfTa4/HQMxmOLHJ9EqPB4uJiLF68\nmIyH+vp6NDc3k2Jubm6mcrLb7SgqKqJydjgcZOGJyWbZRxytjlGekBOdtyAYDOqUtDAyHA4HDAYD\njdrq6urg8/noWrkjEK8jGd0aDAakpqYiJyeH7iPad1FRES6++GLYbDYAmvEg5pk8Hg+6u7tJN4g5\nKyG7y+WiOmE0GuH1enUTuOEWcCT0N18nvsdut6OwsJBGF21tbQiFQtTGW1pa6DmnpKTAZDKRkQSc\n6/DFSCLao/BItdlvAPwAgHhyWQA6OOeiZdcBGN/fhYyxexlj+xhj+0YkqUKhUCi+kkEtdMbY9QDO\ncs73M8YuG+oNOOcbAWzs/a5+u6Nwn7nBYCCfOaBZLcKH1draivT0dHJVnDhxgoY0gUAAPT091COW\nlJTg7Nmz1LuL3jFMvqH+JN11wi8uvtvhcFBv7XK5dK6KjIwM3fCxp6eHZPd6vSNyA0UiazjCXyss\nCtnPm5aWhs7OTp3bIh4ha4wxel6XXXYZFi5cCEBzWxgMBvJLHzlyhEYPIppAhNrl5+frwkeF6wsY\n+lyJ7Aq0Wq0UzXDppZdi5syZdE+fz4eKigqav6mvr6eyS0lJQW5uLiZNmgRAK1vhlpsyZQpaW1tp\ntBEthPUnux9kC112wVgsFvKh2+12MMboOqfTifb2dqoj4fNOkbYfEUkjLP/k5GQapcyaNQs5OTlk\noXs8HrrfyZMn0d7eTmWZn5+P3NxcmkPLyMigkdjp06dhsVgGdA0Opa3L5wYCAYq2yszMREpKCj2v\n9vZ21NbWwul0UpnIrjar1YqSkhIAwL59+8jXLlxG0SYSl8sSAKsZY9cCSIbmQ/8tgHTGmKnXSi8E\ncGYkgoRCIfJDM8bQ3NyMoqIiAFrhivA+u92Oo0ePoqGhQfsBJhMN46ZMmYJAIECVwe/3w+VykSLq\nrwKOdNGJeIDie1taWqgxMMaQnJysm6ybPHky+d/a2tqoYQt/f6xD1uRhePgkaVpaGrkQcnNzdcNX\np9NJyn4gGaMR62symcifu2TJEpoE7ezsxKFDh3Dy5EkAWkcu5D579iwCgYBustdisZBCT0tLo7ol\nT55GIo/BYKDhdVZWFs3lFBUVweFwUEOuqKjAvn37cOTIEQBa3RNGSV5eHoLBICmF9PR0XX0Rk7ry\nfaPpdgH6LnSSjaZJkyZRfL/FYkEwGMSXX34JANi9ezfq6uoGbEORlqXoCETdKygooOeTkpKCUChE\nda2+vh779+8HoE3KejwecrGmpaWhu7ubnonVaqWO3Waz6dwj4SGNkRIuq9FopOtTUlJ0cwqtra2o\nra2lc5OSkshtmZubi+LiYp2xJ0+wx8K9OqjLhXP+KOe8kHNeCuB2AB9yzu8E8BGANb2n3QXgjahL\np1AoFIqIGcnCokcAvMYY+wWAAwD+MNwvEsmVRO/l8XjQ3NyMv/3tbwA0a0JY4e3t7Th8+DANedLT\n03WB+8nJyTQM7urqgsvlop5fDuaPpiUsT27IS3/FEF24EGbPno2cnBzd8FWEBba3t+uGa7Ek3FIT\nQ91JkybR6MFisaC5uZk243a5XDGdsAU0yzQzMxPXXHMNAM0KFuXh9/vR2tqKw4cPA9DqiPgd4n9h\nLdvtdpSUlNBzqKysHJbLRYxmxO+2Wq3kzktOTkZPTw/Jc+jQIVRWVlK9DAaD9NyDwSDcbrfOChfW\nus1mo2E4MLQRxFAIX2RjNBrJbbF8+XJyJRkMBlRUVOD1118HABw7dqxPiorhICZ/hau0ra2NFn5Z\nrVaMHz+e3Gl79uyhEUJTU5NulFRVVYWsrCySl3NO7ovOzk7dBPNIknrJ53u9XrpfRkYGjhw5QgEC\nbW1t4JzTa5vNNuCz9Xg8ukR9sWBICp1zvhvA7t7/qwEsipYgcrSFGHKKBlFZWUlhXsnJyfB4PBQm\nJGa9Ac2HdvHFF5OCB4BTp071yfERC8T3mkwm8g3OmzcPdrudXtvtdtjtdopyqaioIPdMMBjUZRCM\ntesFONewRaW75JJLqCxDoRDq6+tp1ZuosLHEZDJhypQpmDhxIgBtiCrKp62tDVVVVVQ+IqIB0Pyz\nnHMKKczJyUFJSQl17J988gkpe/E3EsL90C6XixR6RkYGOjo6aD7kyJEjujkGOWRQVu6AVmdl37Yc\nSQPEPjujcAUuWqQ138suu4zu39raip07d2LPnj0Azi39HymhUAg9PT1U9w0GAxkPYv5BuE5qa2up\nXAOBAEwmE5WX2+2m6DFAM+hEKKDT6YxaZyi7JjnnVD7t7e1ISUkh/SOenVDiOTk5FDEk6qN49kaj\nUWfsibocTUbN0v/wVLI+n4+6PVYCAAATsUlEQVQelNVq1YWAyRMqmZmZ1Hvm5eXBZrORJbR3714w\nxkgZxSpJE+9NOQBolqSweDMzM5GcnEzWIeccDQ0NVFlTU1Pp3NLSUgoRA2Kby0UepSQlJdGkTWlp\nKVkQTqcTn376KTXAeCS4Ej580am4XC6yvo4cOaILVeSck7UnQsPEnMuSJUuoUwC0yXExBzPUMFX5\nd8uKORAIoK2tjUZ/QknKi2VEgx43bhwcDgd1BikpKbqO22636xq9bNzEAsYYsrKycPnllwPQ/Nmi\n/p44cQJvv/02hXlGsw76/X76vqSkJAo3zM7ORjAYJIvd4/GQArVarbDZbDTxWVBQALvdTp83NTWR\nEnc6neju7taFKo7Ehy6uEQvwAK2DMxqN5CcXuW9E0EZRURF9lpaWhtTUVHqW48ePp/rS3d2Nzs7O\nPosdR4pa+q9QKBRjhFFjoYcjR700NjZSD8g5p6EaoFnsIhRK9JbC2uGcw+v1kvURy2GssOTkhRaN\njY0IBoO65c5NTU0UXeD3+2l0IcIdhfUurzCNJaFQiMovLy+PZDt79iwOHTqkW4gVC+Q0Cjk5OUhP\nTyerpauri6y4ffv24ezZs7rwMCGbyHYnrPLS0lIa+QDaakd5lDQU5ORZJpOJ6qTH46Fl6YAWepeR\nkUHnZmdnk1WZlJSE8ePH00Iar9dL8nm9Xvh8PqqzYg5msIiikWA2m7Fw4UJcddVVADQ3pvBf7969\nW2f1RpOenh6ymL1eL43+qqqqdJEkaWlp1N5NJhOys7Np1Gaz2ZCXl0dW8NGjR8n90dHRoZuLC4VC\nw5o7AfqmshbtsqioCOnp6fS8TCYTCgsL6VlnZ2fTvTIyMmCz2agdZ2Vl6VxrSUlJUd+4Y1QqdDnU\nCtAatlCKTU1N8Pv99MDb29tp9d7UqVNRUlJCQ3FxbTwUujzME6GIx48fJ7cGoPknU1NT6bdMnjyZ\nQre6u7uRkZFBcwVyrpJYu16EQg+FQuSeevfdd9HY2BiXSVo5Z4bD4SCl6ff7cezYMQBaWZ49e1aX\nw0NOTzthwgTyY4qJXnFuVlbWsFcEA6DvaW9vR2VlJQDNpeJwOGiy3ul0Ii8vj9w+cv4RALqVqwaD\nAVVVVfSd8m+RO7hYYbFYcM0111CnEgwG8dlnnwEAtm/fHlP3mqjTPp8PNTU1ADS/eFpaGrmoAJBh\nkZ2dDc45dXB2ux0mk0mnCIU7zeVywe/369ws4XlnhoNsXAaDQZ2LzGazwWazUYfj9/tJ3wgXnXBf\nyak9zGYzZV8VKJeLQqFQKIhRaaEDfYc8clRLMBikXA92u52sdWEJC4tKbHQQ691/5NWEHo+HhpJO\np1M3ZPf5fOjo6KDePTk5mYZg4ncIi0/OIherqIdwa7C9vZ0sqOPHj8Pj8UTFwhlMBlF2YkJbyNTU\n1ITjx48D0HKcy5Nq4QuJRM5x4Fw9EBOop06d0i1aGyqiTDo7O1FeXg5Ae5aTJk2iBS8OhwOpqam6\niTR5YtFms5HF7vF4aCTm8Xjgdrt1u9zEakJcWL0i57koi9bWVnzwwQcAtDKLZXuR24LA7/fDbrfT\nezabjX6/y+WCyWTSrU61WCw0WV5fX08WugivlBfORSNMORQK0ahfZMeUR1uBQIBcVh6Ph9yCZWVl\nMBqNpKvkBVEiSd5IsoD2x6hV6MC5hxAKhXTKTYQyidciSmPGjBkIBoO0/LqioqLfDS+iiViVKBRz\ndnY2uVGCwSD5SOXzxcMzGo00zLRarcjLyyNfXUdHhy4ZVqz86Q6Hg8KskpOT6f4itjvWLhdZgff0\n9KCzs5OU3ZkzZ6gMLBaLTqHLjUEsrxYrTC0WCzjn5H8/fvz4iCKdxDVer5dWKBsMBrjdblo52tPT\ng4yMDGq8LS0tOn86Y4w6lebmZvqNbrcbjDFSGLEKrTUYDGT43HHHHcjOziYFf/z4cXITymUcC+Q2\nLW/2IL9OTU2ldtHV1QWr1UqpCcaNGweLxULld/jwYQp3DE94NVIjRNYbwkg8ffo0ioqKSB8ZjUa4\nXC4y4jjnug2j5Y1EnE4nGRnynJu4Lhod6ahW6AL5ocjL6gF9BjybzYYzZ85Qj93R0RETRSiHQ5nN\nZqSmppKllpmZSRM2wWCQfP7AuRSrYiI0JyeHsgmKBi0vf5b3LYwFJpMJRUVFZG3U1tZSo+rq6orb\nbvXypGP4dnGiIR88eBBer1dXFsKqnTlzJhYtWoQpU6YA0DrAuro6HDhwAABQXV1NCn0kllAwGCTr\nKxAIoLW1lba9y8jIQGZmpm77MdFRZWZmwul00lyF2+0mC7O9vR09PT1U7m63W+dXHSmivEwmE3U+\n8+fP18l64MABWiAlh/3FElmB9fT0IBgM0u+WFyDZ7Xbdwp2uri5dnHpDQ4OuYxD5icLvMRLkCXin\n04m9e/dSioycnBzU1dVRhyinhxC520U7ljtL0YkNtBPTcFE+dIVCoRgjnBcWOnDOShdWj/BDy0l+\nvF4vmpubyfIQmRAF0fQDy7PVZWVlJMOECRN0Qz7gXO8rFh2J8Lqrr76aQtlqampw5swZ6s1lV1Gs\ndrFJTU3VDffr6uooFYFIeBWPZGHiHt3d3TTvIOQTfuiysjKcOXNGNywXI7OlS5di4cKFFGlQUVGB\nAwcO0GrH5ubmqEQMyQvIOjs74fP5yHL0+/1oa2vTZafsL783oNVTYaGLCA7hjvH5fFGx1sQoUtTT\n4uJiWkiUk5ODnp4emp/405/+RG0mXqMyoO88mdzG5ZW0cg7/9vZ2uN1uSnglR5UA50Z54jujUZay\ny0XUUWGRd3Z26jKqdnZ20ihObKwirpVXuIpRSbTdweeNQpcn55KSkshNUFhYSMpdbHQgFJTws0Zr\nwqG/0LK0tDRMmjQJF198MQBNwYtGbjabddvTpaWlYdy4cbTLzfTp03XbgAEghSrLLCZeovUbhOxi\n2b8oS3nbNqfTCbPZrEujECvkxiCvtpTTKHg8HuTn5+vWHIjUusXFxbBareSuqq6uxkcffURzKdGM\npZd9wD09PbpNvVNSUnQhsuJ3BINBdHR06FbAyvMo8jxLtBQqYwxms5nKa/LkyVixYgXJ1tLSQpkh\nT548OSw3T7SMDHkiWX4t3pOzG4ql//KcgyhnMdcUyw7J5/PBYDDoNn6R55oyMzPpOYvQVXm5v7wN\nodymoyWzcrkoFArFGOG8sNBlq1JkvJs7dy4AYNGiRWSFeL1e3Qay4rpor8YKnxS12+2U6Ag4tyBq\n7ty5NDECaG4iOVQxJSWFoiZOnDiB3bt3U75vsRIxmnIL2UV5FRcXY/r06WSh+/1+cmNkZ2fD6/Xq\nNl6I1hZzMvKiEeEGEFE3paWldK/09HRkZ2froonE/4wxOJ1OHDx4EIDmQjhw4ACNLmIVhidPlonM\nfiJyREQ6ANpkuMlk0m1WLofYdnZ20vdEbXLMYEBWVhauuOIKAMBVV11FycpsNhv8fj+5geQRTDwW\nkg2EuLe8AEdEvIhytVgsMBgMVGfEYjSg76RoNJ+7PDKTJ8e9Xi/sdju511JSUqg92Ww2mM1mmjj3\n+Xy6oINoTdrKjGqFLj9g0Xhzc3Nx0UUXYfny5QA0pSk+O3HihG54Jscqh3/ncJSS7O+S07rW1NSQ\nv3bx4sUUxSJm6OXlzvX19TRMr66uphTBH330Eaqrq3V7lcqVKBowxmC1WmlIWFhYiEmTJmHevHkA\nNJeHWAnpcDjQ3Nysi7SJhWLk/NxOOl6vF3V1dfj0008BaL9bdDDTpk3Tudp8Ph/F/jY1NaGhoQFv\nv/02AGD//v20A1SskZ+RvLONHDvtdrvhcrlIKYnXgOYTjpbrQjY0bDYbsrOzaSPmiRMnkkIXHY+8\nolowFJdPtA0keV5KuCkLCgqQk5NDKRZsNhu8Xi91iIO192gRvh5DtAXRgYSvhQHOxZ2Lcj59+rQu\ndUUs6ueoVujy7h6iodjtdkyZMoV65Y6ODiqYpqYmlJeX65baivSkQPRifOW4+I6ODlRUVOgar8g1\nk5eXh9TUVIpRPXv2LL788kuywt1uNy1tF0vAZaUZ7UnQpKQkJCUlUYhlWVkZSktLSb6DBw/ScuyW\nlhbU19dHPawqHFmhd3V1obq6miYMm5qaaCf44uJiZGVlUWfY0dFB5VhVVYWOjg6S3efzxWwhVH/y\nA+fSDQjFk5qaqsuHLi8Ukxfv5OXl0e8ARu6XlsMU5YyPaWlpOj95c3MzhXV6PJ6ojxCGIquY6xLK\nMC0tjVIoOBwOOBwOkr2xsVGnuOX25XA44Ha7dRPg0Zg/C9/STv5OkXdG3jJT1NGWlhY0NTXR83U6\nnWR8+ny+mIRUKx+6QqFQjBFGrYUurwSUE8OnpqbCbrfrlmOfOnVKd43ozYWvUvhS5RC5kSJ610Ag\ngJqaGsrl/Le//Y1m3e12uy77ovDxiyGY3++PeQIu+buDwSC6urpoNxi32409e/aQC6axsZH8qmKl\najwyPgr5/H4//H4/Wei1tbW01F7kxBbnilQQ4n95QUw8rcxwl4uoe11dXWS1ORwOBINBcrPIuwWd\nPn1at9R/JLLLroDOzk7U1NTg6aefBgDs2LGDFl6dOnWKkp2Jc+NZZuEYjUbaKB7Q/NByJJbP56P2\nn5ubq1tO73K5KBJKZFuU3SHRQG6b4jvFc25vb9dlx5T3NA5f+SzPSfl8vqjqIwGLV8wpADDGIr6Z\nPMwxGAzkcsnNzcWyZcvoc4/HQ8PcUCiEw4cP08P2eDzo6uqihxAP5XQ+IfJJyHMD8awPYwnhAxZK\nSd4UIScnByaTidwfqampFB565swZuN1uGqZH280myyNnp4z1doKDIbfvcJeLw+Egt6WYnBdlV1hY\niNbWVl0cv+wmlFNmxKMui9QVopyTk5MpH5OcrgTQOhzZuBxiJ7qfc75gsJMistAZY+kA/h+AmQA4\ngLsBHAWwBUApgFMAbuWctw9Fwq+Cc65LeSpbPocOHaIHKufz9vl86OzspOu6u7vJf6noSyKtsrGG\n8K32twONSEMspwUQdTJaC4n6kwdA1K3VaCG3bzEpKpeJiPPu6OiA0WjUpd2V5wLq6+vpXDm5XLwQ\ni5fkzlJemyBGGPK5sSRSH/pvAbzDOZ8GYA6ASgDrAHzAOZ8M4IPe1wqFQqFIEIO6XBhjDgDlACZy\n6WTG2FEAl3HOGxhj+QB2c86nDvJdIx4Diexl/YUQCj+cvPGyQhEvZPdVuMsQ6Gs1K/rHZDKR+yU8\nK6HVatUl64rHSuahEh46GSXXT9RcLhMANAN4gTE2B8B+AA8CGMc5b+g9pxHAuOFKOhTk3AgKxWhC\nbrj9TaQpIuOr0kWPRgUeTiLnoSJxuZgAzAfwHOd8HgA3wtwrvZZ7v7+CMXYvY2wfY2zfSIVVKBQK\nxcBEotDrANRxzj/tff06NAXf1OtqQe/fs/1dzDnfyDlfEMlwQaFQKBTDZ1CXC+e8kTFWyxibyjk/\nCmAFgIre4y4A/9r7940I7tcCzcJvGb7IY5JsqDIJR5VJX1SZ9OVCKZOSSE6KKA6dMTYXWtiiGUA1\ngO9As+63AigGUAMtbLEtgu/ap6x1PapM+qLKpC+qTPqiykRPRHHonPNyAP0V2oroiqNQKBSK4aJy\nuSgUCsUYIREKfWMC7jnaUWXSF1UmfVFl0hdVJhJxzeWiUCgUitihXC4KhUIxRoibQmeMrWSMHWWM\nnWCMXbB5XxhjpxhjBxlj5WKxFWMskzH2PmPseO/fjETLGWsYY5sYY2cZY4ek9/otB6bxu9668yVj\nbH7iJI8dA5TJE4yxM731pZwxdq302aO9ZXKUMXZ1YqSOLYyxIsbYR4yxCsbYYcbYg73vX9B1ZSDi\notAZY0YAzwK4BsAMAHcwxmbE496jlMs553OlcKsLMdHZiwBWhr03UDlcA2By73EvgOfiJGO8eRF9\nywQAft1bX+ZyzncBQG/7uR3ARb3XbOhtZ2ONAID/yzmfAeBSAPf3/vYLva70S7ws9EUATnDOqznn\nfgCvAbghTvc+H7gBwEu9/78E4MYEyhIXOOd/ARC+bmGgcrgBwMtc4xMA6WKV8lhigDIZiBsAvMY5\n93HOTwI4Aa2djSk45w2c8897/++Elul1PC7wujIQ8VLo4wHUSq/ret+7EOEA3mOM7WeM3dv7XkIS\nnY1CBiqHC73+PNDrPtgkueMuuDJhjJUCmAfgU6i60i9qUjT+fI1zPh/a0PB+xtgy+cOvSnR2IaHK\ngXgOQBmAuQAaAPwqseIkBsZYKoBtAP6Zc+6SP1N15RzxUuhnABRJrwt737vg4Jyf6f17FsAOaMPk\niBKdXQAMVA4XbP3hnDdxzoOc8xCA3+OcW+WCKRPGWBI0Zf4K53x779uqrvRDvBT6ZwAmM8YmMMbM\n0CZz3ozTvUcNjLEUxlia+B/AVQAOQSuLu3pPizTR2VhkoHJ4E8D/6Y1guBSAUxpuj2nC/L83Qasv\ngFYmtzPGLIyxCdAmAffGW75Yw7TdIv4AoJJz/rT0kaor/SE2Bo71AeBaAMcAVAH4YbzuO5oOABMB\nfNF7HBblACAL2kz9cQB/BpCZaFnjUBavQnMh9EDzc353oHIAwKBFSVUBOAhgQaLlj2OZbO79zV9C\nU1b50vk/7C2TowCuSbT8MSqTr0Fzp3wJbee08l5dckHXlYEOtVJUoVAoxghqUlShUCjGCEqhKxQK\nxRhBKXSFQqEYIyiFrlAoFGMEpdAVCoVijKAUukKhUIwRlEJXKBSKMYJS6AqFQjFG+P8nx+FQZZ/x\nxgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABK4klEQVR4nO29eXCc1Z02+pze9721WJK1WbYs78YYGxtjMBBIyCSTQJJJ8lX4birUTC7MUHcmNwxJTb6aqluV+ZJhJpVMTUFuMjMJyYUkJAWEYTV2DDaLF2y8W5KtXep935f3/iH9DqdbMtbS3ZLw+1R1Sepu9fvr857znN9+mCRJkCFDhgwZyw+KxRZAhgwZMmTMDzKBy5AhQ8YyhUzgMmTIkLFMIRO4DBkyZCxTyAQuQ4YMGcsUMoHLkCFDxjLFggicMXY3Y+wiY6yPMfZopYSSIUOGDBnXBptvHjhjTAngEoA7AYwAOArgLyRJOlc58WTIkCFDxtWwEA18O4A+SZIuS5KUBfA0gM9URiwZMmTIkHEtqBbwv00AhoW/RwDc9FH/wBiTyz5lyJAhY+7wS5LkLn9yIQTOZnhuGkEzxh4E8OACriNDhgwZ1zsGZ3pyIQQ+AqBF+LsZwFj5myRJehLAk4CsgcuQIUNGJbEQH/hRAF2MsXbGmAbAlwA8XxmxZMiQIUPGtTBvDVySpDxj7CEArwBQAvi5JElnKyaZDBkyZMj4SMw7jXBeF5NdKDJkyJAxHxyXJGlb+ZML8YHLuAp0Oh0UCgUYY1AqldBoNFAoJr1VqVQKhUIB+Xwe2Wx2kSWVIUPGcoZM4FXAl7/8ZTidThgMBnR3d2P37t2oq6tDsVjEU089hQsXLuDixYv44x//uNiiypAhYxlDJvAKoqmpCV/96lfx2c9+FhaLBUqlEiaTCQ6HAyqVCpIk4c4778S6detw5swZvPvuuwiFQsjn84st+jQwxtDQ0IAHH3wQK1aswAsvvID9+/cjlUotmkxarRa33347tm7diu3bt2NwcBAHDhzAoUOHEAgEFk0uGTIWCzKBVwgrV67E1q1bcc8992DDhg3Q6/UoFotIpVIIBAIoFovQarVoamqCxWIBYwwdHR04ffr0kiRwhUKBhoYG3HzzzWhtbcXRo0ehVCoXTR7GGAwGA2644Qbcfffd2LFjBwYGBhCLxdDX17eoBK5UKmE0GtHT04OxsTEMDQ1d839sNhuKxSIymQwymUwNpLw29Ho9rFYr1q9fj9HRUfj9fvh8vppdnxSerq4uxGIxRCIRhMNhpNPpOX2G0WiEUqlEOBzGx/3ISLkbYYXw2c9+Fg8//DB2794NnU6HYrGIbDaLgYEBvP7663jxxRfx9ttvI5fLwWKxoK2tDfv27YPZbF5s0WeEQqFAZ2cnjEYjstks/H4/CoXCosnDGIPb7caOHTtw0003QZIktLW1YdOmTdiyZcuiyQUABoMBq1evxr/927/hM5+ZXTeJdevWYc2aNXC7pxXXLRoaGxtxxx134MUXX8QjjzyCXbt21XTTNplMWLduHX74wx/iL//yL7F37164XK45fYbZbMbatWuxceNGqFS10U8ZY1AoFDzOVUvIGvgCoVAo0NPTg1tvvRU33TTZSeDKlSv4wx/+gN/85jfw+/2IxWIoFoswGAx45plnsHr1aiiVSthstkXVaj8KSqUSa9euhU6nw/j4OF5++eVF0xS1Wi3q6urwT//0T9i0aVPJa0tBw7LZbNizZw9MJtOs7+fOnTvR0tKCQqGAb33rW4u6OQKAxWLBHXfcgUceeQQqlQpf/vKXUV9fj5dffrkmslksFjz22GP43Oc+h8bGRkQiEZw4cQJjY9NqA2eESqWC3W7H008/jcbGRgwNDeGv/uqvMDIyglwuVxWZSdt/6KGH0N7ejkwmg0ceeaSmFvWSJfDu7m60t7fD7XYjkUigUCggEAhgcHAQiUQCsVhsSWRxMMbgcDhgMpnAGIPH48GvfvUrHDp0CJcuXUIqlUI+n4fT6cS6devgdDqh0+kQiURw6dKlJWM+i9Dr9WhsbMQtt9yCeDyOixcvzsmMrSQ2bdqEtrY2rF69Ghs3boTVai153W63o7OzEzt37kQgEEAoFKqp2c8Yg9lsxsaNG6HRaGb9f+FwGB0dHWhtbYVWq0UqlVrUzailpQVtbW1obm4GAHi9XkxMTFSdjIgEv/SlL2H79u2wWq14//338dxzz+H9999HsVic1eeQu6+7uxt9fX04efIkwuFw1Taf9vZ2rFq1Cjt27MAnPvEJOBwO+Hw+6HQ6JJPJWcu9UCxJAlcoFLjxxhuxe/dudHV1IRAIIJfLYWBgACdOnIDf78f4+DhisdisPq9YLCKfzyMajSKXy1V8oSgUCgSDQVy5cgXDw8P47W9/i4GBASQSCf4et9uN22+/HQ0NDdDr9fD7/ejv71+SBG40GtHc3Ixt27bh4MGDOHdu8ToE79q1CzfccAPWr1+P5ubmaWaqy+XC+vXrIUkSLl++jN7eXkQikZpt7lqtFk6nEz09PchkMrO+LsVFGhoaoNVqkclkFlULX716Ndra2mAymQAAly5dwvnz56tO4BqNBk6nE1/4whfQ3d2NbDaLAwcO4Pnnn4ff75/VZ6hUKrS2tuLuu++GTqfDqVOn8MYbbyAUClVFZqVSiY0bN2Lv3r24//77UVdXB6VSyWNcw8PDNduQlyyBP/zww+jq6oLFYil5TZIkxONxjIyMIBKJzOrzwuEwBgcH8bOf/Qznz59HMpmsmKyFQgEHDx7EmTNn+O4bDoen7cD19fW45557YDAYwNhMfcCWDsxmM9ra2mAwGHDq1Cm8/fbbiybLN77xDU7QM6GzsxMdHR349Kc/jYmJCfzpT3/C448/jg8++KAmhLh69WrcdNNN2Lx5M5544gmcP39+Vv9nNpvR0NCAjo4O6PV6bmXWGowxaDQafPnLX8b27dv58++99x6OHDlS9evbbDasX78e27dvh8FgwAcffIAf//jHcyLflpYW7Nq1C1/96lfx0ksv4aWXXsJbb71VFXkpuP+1r30Nt912Wwk/OZ1O/MM//AN++MMf4tKlSyUKXLWwJAm8WCziJz/5Cdrb22GxWDA6OorGxka43W6sWLECPT09aGxsRENDA4LBIJxOZ4nvsVgsIpfLIZFIwG63o1gsorOzE4ODgxgdHa0ogRPC4TAUCgWKxeI08r7ttttw1113oaWlBQqFAh6PB2fPnsXZs2cXzTXxUejq6sJ9993HrYTZZFVUGg0NDfjbv/1bNDU1QaFQzEjg8XgcmUwGxWIRbrcbbrcbd955J1atWoW77rpr1hbafKBQKNDa2oqvf/3r2LVrF0ZHR/HMM8/MmsC3bt2Kzs7Oqsk3W2i1WnR0dGDNmjWoq6uDJEkoFou4cOHCrL/LfGE2m9HR0YFbbrkFKpUK//3f/42XX34ZoVBoVpuZSqVCc3MzHn30Udx8880oFAo4fPgwhoaGqraudDodvvjFL2LVqlUwGo0lrxkMBuzbtw+tra344IMP8MYbb+CPf/wjMplM1bTxJUvg7733Hq5cuQK9Xg+Px4O6ujo4HA7U1dXh8uXLaGxshEqlwvDwMNra2qBWq/n/5/N5pFIphEIh/Pmf/zksFgsKhQL0en3VtN+ZTE2FQoH6+nrs3r0bN954IwwGA7LZLHp7e3Hs2LGq+ujmC51Oh8bGRqxduxbpdBqxWAzxeLymMphMJjQ3N2PHjh3Q6/XTXk+lUhgdHeVuKkmS0NXVhba2NrhcLpjNZnR1daGvrw/RaLQqMqpUKtxwww3YsGEDrFYrDh48iL6+PoTD4Y/8P8YY1Go1Ojo6UF9fv+jWmFarxerVq2Gz2aDValEoFDA+Pg6/31/1+7527VrceOONuOGGGxCLxXDq1CkcPXp01m4bcp1s2rQJbrcbV65cwYkTJ+Dz+arig1apVLBardi9ezdcLheKxSLi8TjS6TRMJhOMRiPcbjfMZjPnnDfeeAP5fL5qrqglSeAAcOHCBVy4cGHG16xWK1pbW6HRaHDx4kWsX78eWq2Wv57L5RCLxRAIBLBr1y40NTUhl8thbGysahHpmaBWq3HDDTfg3nvvxebNm6FUKhEIBHD48GG88MILSyIIWw6n04mmpia0tbVxH30tx4wxhubmZqxfvx5NTU28AKpYLPKfHo8HL774Ig4fPszdaDt37sTXvvY1tLa2gjGGO++8E4VCAWfOnKn4JskYg06nw+c+9zm0trZibGwMP/7xjxEIBK55Lco+6urqQn19/az9vNWC0WjkG6UkScjn83j//fdn7Z5cCO6++27cdddd2LFjB06dOoVTp07h9OnTs/pfhUIBo9GIDRs2wO12IxKJ4LXXXsObb75ZtbiSwWDAihUrcOutt8JoNCIej6Ovrw9+vx+rVq1CW1sb94V3dnbCZDLhJz/5CTKZzPVH4B+FaDSKM2fOgDGGQqGA9957r0STkSQJ9fX12LFjB5xOJ8LhME6dOoXnnnvumhpSJaFWq7Fp0ybY7XYolUoUi0W8/PLL2L9/P06dOlUzOeaCTZs2oaOjA5IkIRgM1nyTWbFiBb7xjW/gvvvuQ0NDA3eNSZKE0dFRHD16FG+//TZ+8YtfIB6Po1gsQqlUYnBwELt27YLD4YDZbMbf/d3fYc2aNXjllVfw7LPPVnQBtbW1YefOndi3bx9isRh6e3tx6tSpWW0UbrcbDz30EOx2O8bGxni2RC03SREigReLRUSjUfzgBz9Ab29vTa5PLkev14t4PD6r+6TVarFnzx7ccccd+MpXvgKn04nf//73ePTRR6uaFOByudDd3Q2TyYS+vj689tpr+O53vwuNRoMtW7Zg586deOCBB7BixQrodDo0NzfjiSeewL/+679i//79VXHpLUsClySpxKdUvnD0ej06Ozvx1a9+FQaDASdOnMDrr79eU5fF1q1bsXfvXnzyk5+Ey+VCKBTCuXPn8Pvf/x6XLl1acq4TQmNjI5xOJ3K5HF599VWMj4/X7NrkXrBarXA6nTzjhILQTz75JK5cucID2DSGhUIBExMTOHToENRqNfbs2QOLxYJdu3ZBrVbjwIEDs9KOZ4v6+nps27YNRqMRR48exfvvvz+rzzYajWhqasKePXug1+tx8eJFvPzyy8hms4uSQuh2u7Fq1SqsXr0aGo0GhUIBqVQKfX19NXGb0XdmjGHt2rW4//77sXbtWqRSKRw9enRarIqyo7q6urB582asX78eDocD/f396Ovrq3qbB5VKBa1WC8YYjh8/jnfffRfxeBwKhQKnT59GLpfD3XffDbfbzd9Hrt1qpRUuSwK/FtxuN9asWYNbb70VSqWS+8ZqlbJHRTB/9md/hi1btkChUODy5ct466238M4779TEPJ0rGGPQ6/VobW2F3W5HPB7HkSNHam7iKxQKaDQa7hJLp9MYGRnBO++8g2effRaRSGSatkqZSSdOnEBdXR3PaOjo6EA2m4XJZKrY5q1QKOByudDT0wONRoPz58/P2ux3Op1ob29Hd3c3AGBwcBBHjhxZtM3c5XKhtbUVDQ0NACY3yomJCZ62W21EIhFEo1EUCgU0Nzdj79696OnpQTKZhMlkmqaxWiwWrF69Gps2bUJLSwvcbjey2SxOnz5dE4tBp9PBbrcDmMyT93g8AMAtCI1Gg1wux8lakiTEYjGk02nZhTIX3Hrrrbj99tths9kQjUYxMTGB0dHRml3f4XCgvb0d69atg0ajQTQaxdmzZ/Gzn/0MoVCoZkn+c4FOp8PGjRtxzz33wO124/z583jnnXdqHsAsR39/P55//nk88cQT19xMTp48CZvNhptvvhmbN2/mGnwlA4UGgwFNTU3o6ekBYwyHDx/GwYMHZ/W/W7duxSc+8QnYbDZcvnwZ586dw/vvv18x2eaKFStW8EwYSZJw6dIlPPfcczWbn6+88gpUKhU2b96M+vp6tLa2oq2tDQCwd+/eaVZJ+X3M5XIYHR3FU089haNHj1Zd3vb2dtx+++1gjGHdunUYGhrCG2+8wV/XaDTo6enhgfdisYgzZ87A4/FUTXn8WBG4SqXC+vXrcf/99/O0ou985zt48803MTg445mgVcF3v/td3HLLLbxq8J133sGbb76J4eHhJUnewKTbaceOHairq0M2m8Xg4CBP0as1GGN8sT766KM4fvw4gsHgrP+X+lIoFAq43W5885vfxA9+8ANMTEwsWDa1Wg2z2QybzYZXX32Va2Gzgd1uR319PQBgaGho0QOYK1as4PGORCKB06dP15TAr1y5gl//+tc4fPgwuru7sWbNGvT09ODTn/40r1Q+e/bDQ768Xi+OHTuGJ554Ana7HZlMBidPnsSVK1dq0szsypUr2L9/P+688060trZi7dq1aG9v51bVpk2bYLFYeFGWVqvFZz/7WVy6dAler7cqSuTHjsC7u7vR3NwMrVaLkZERHDt2DCMjIzUJxmm1WqxYsQKbN29GS8vkec9jY2N4++23ceLEiUULVM0GGo0Gra2t0Ol08Pl8uHjxYs1Ne8YYuru7uZkKAMPDw/B6vbP6/8bGRjQ3N8PlcoExBkmS+GZUqbGnFNVoNMrdPWq1+pqfT0Gt9vZ2MMYwOjq6qB0U6+vrsXr1anR1dQEAMpkMgsEgRkdHa+aPz2az8Pl8PGNscHAQFy5cwMjICBKJBMbGxkoUr3g8jvHxcRQKBf7666+/XrNGa36/HxcuXEAmk4HD4cCmTZvwwAMPoL6+Hs3NzWhsbMTExATeffdd2O123Hjjjairq0NPTw8uX74sE/i1oNFosHnzZlitVsRiMZw8eRL9/f018zlbLBZs374d7e3tsFqtyOfzuHDhAvbv34/jx4/XRIb5QqPRoK2tDSqVChMTEzh27FjNtW+FQoFbbrkFTU1NcyIROvlo7dq12LBhA+/nUSwWEQ6H8cc//rFiGQBEdGNjY3zROhyOGS0EpVLJLQKKy5D/e3h4eNE0cIVCgY6ODmzcuBE9PT0AgEQigUgkUvP4DJFxX18f+vr6AAC/+MUvZnyv0WhER0cHgMlWBGfPnsWzzz5bs8yyQCCAixcvwufz8VjLjh07ePplNBrFoUOH8O///u9YtWoVmpqasGbNGmzevBk+nw9vvPFGxdfUNQmcMdYC4BcAGgAUATwpSdKPGGMOAM8AaAMwAOALkiRVp/nALKBSqWA2m7F3715YLBacOXMGjz/+OKLRaE2IyGg0YvXq1Xj44Yd5BkUul8PZs2fh9/uXZM8TgtlsRnNzM2666SYEAgGetbMYBL53715OwLOBwWCA1WpFZ2cnHnjgAWzdupW/lkgkEA6Hkc/nK6ZVZrNZrqnec889+M53voN7770Xv//976e9t62tDXV1dVxDW7NmDX+tPJOq1rDb7dDpdNxVdfToUfT39y+aPLNBW1sbHnnkERgMBrzwwgv45S9/WdNNMJPJYHh4GN/85jfx7W9/mxfnMcZw9OhRvP766/jnf/5nJJNJxONxvPrqq1i1ahW6u7sRj8fR2tqK4eHhigY0Z6OB5wH8rSRJJxhjZgDHGWOvAXgAwH5Jkr7PGHsUwKMAvl0xyeaIVatWYc+ePejs7ITX68WZM2dw7ty5mrV2vOGGG3D77bdjzZo1UKvVGB8fx9mzZ/HMM89UxPdaTXR1dWHHjh2w2Wy4cOECJiYmFs1XT1rrbLF27Vrs2bMHn/rUp9DT0wOj0QhJkhAIBPDaa6/hjTfegM/nq+g86Ovrw+9+9zs4nU40NjZi586dPPgmgjEGlUoFnU4Ht9vN+2ZIkoT33nuvZrnW5VAqldy8LxaLSKfTeOutt3Dx4sVFkWc2WLNmDXbv3o3bb7+dZ3csRjZXLpfDiRMn8J//+Z84efIkNm7ciFQqhddffx0HDx5EIpFAsVjElStX8Nvf/hbbtm3jnQu/8IUv4Mknn6xok61rErgkSeMAxqd+jzHGzgNoAvAZAHun3vZfAA5ikQjcarVi3bp1uPXWW2GxWPD222/j3Llzsw58VQLr1q3D9u3b4XA4AEwGqd5880188MEHS7LfiYj6+np0dHRAq9UiFApVrfy80lizZg22bduG3bt3Y8+ePZz4i8UityTeeuutiucHe71evPfee+js7MSWLVvQ2Ng4rc0tAIyOjiKVSoExxk/gIYyMjCyKC0WhUECn02HTpk1wOp28HPz8+fOz7r29GGhvb0dPTw9WrlzJx66WRXkESZLg9Xpx+PBhjI+PY2JiAolEAu+99x7Onz/P73E4HMaZM2dw6tQp1NXVweVyYefOnfj1r3+NSCRSMQVpTj5wxlgbgC0A3gVQP0XukCRpnDFWd5X/eRDAgwuU8yOxdetWfOpTn8J9992HZDKJl19+uSS9pxbYsWMH9u3bx/8+evQofvrTn1alcValYTab+ckniURiSW04ojZe/vtjjz2G7u5untlBkCQJQ0NDuHDhQlW03Fgshlgshn/8x39Ee3s7GhoasGLFimnvO3jwIAKBANRqNX70ox/htttu40HDbDa7KPnfWq0W9fX1vJNeOp2G1+tFb2/vrIPFiwGKH0iShKNHj+LUqVMYGBhYNHnIZ//qq6/O+Dodp3jw4EGsX78eK1euxJYtW+ByuRAIBCrGC7MmcMaYCcCzAB6RJCk6WzNXkqQnATw59RkVdfoplUpYLBY88sgj2LJlC/L5PP70pz8tCX+eTqeDzWabMTuBzkEsFApQKpXQaDTQ6XQAJn26zc3NuPfee/n7qQfI008/jf7+/opns6xZswY7duwAMLnxLKYpTUE/ml/btm2Dw+GAwWDAY489BqfTyYt83G431Gr1tOOsCoUC/vqv/xojIyNVl3d4eBhjY2MztkagjZDaAIg59e3t7fD7/TUnTYfDgS1btvDjxqLRKF577bWatD5dCNavX49169YhmUziV7/61ZJtRSEin8/jlVde4ZlHO3fuxOc//3m88sorePPNNytyjVkROGNMjUny/pUkSRSt8TDGGqe070YANd++6+rqcN9993Hfp9frxUsvvYTx8fFFPyh4y5Yt+OY3vznjwhgZGYHH40EsFoPRaER9fT1WrlwJYDIbxGazYcOGDSX/UywWMTIyApVKhTNnzlRMzqamJjQ0NPDUvXQ6vWhNtorFIk6ePMm7uQGTZ42GQiGo1WqsXbsWRqORlycTyYvBwFAohPPnz2NiYqLqpdUAZt1pTgykMsYQjUZrIl85aH5RkN3v9+PgwYNL1lJUqVTYsGEDVq5cCbPZjHQ6jb6+vpq6RxeCeDzO3Sg7duzA3r174fV6cfr06Yq4gGaThcIA/AzAeUmSHhdeeh7A1wB8f+rncwuWZg5QqVRYsWIFvv71r6O5uRmhUAi9vb149dVXF8W3mMvlkMlkuGazbds2bNu2bcb3nj17Fr29vQgGg7DZbOjs7MTGjRunvS+dTqNQKHBTm9KRKkXgjDF0dXXxU4LoOyzW5idJEg4fPsyLIxQKBT71qU/x18T3EagZUj6f5yfU79+/f0nn3AOTKWnV7Fd+NWg0GtjtdjDGkEql4PF4cOTIkSVL4Gq1Gnv37uWdKX0+H/c7k7W2VPsKEc6dOweLxYJgMIgbb7wR/f39+NOf/oRIJLLgTKTZaOC7APwPAKcZYyennnsMk8T9G8bY1wEMAbh/QZLMES6XCx0dHVxTPXz4MH76059iYGBgUdKzzp49ixMnTuCWW2655nt7enrQ09MDSZJK/LqFQqGkj8KBAwdKCgBOnz6Ny5cvV0xmhUKB2267DW1tbcjlcrhw4QKOHj2KK1euVOwac0GhUMD+/fuxbds2bNiwgRPNRyGVSiEcDqOvrw+PP/44Tp06hVAotKT8+ASal4uZPuh2u/lp8+FwmFuCS7VCWKfT4S/+4i/Q1NSEQCCAAwcOIJPJQKPRQK/Xw2KxwOPxLMnWzITR0VEcOXIEjz/+OL71rW9h+/bteOihh/DII48glUotaOxnk4XyFoCrraJ9V3m+amCMweVy4YEHHsDdd98NAHj66afx4osv4vjx44u2OH73u9/h3LlzuHjx4rRUOMoDps2GMYZ4PI4333wTgUCAm+HvvvsuPB4P14aCwSBSqRQno0QiUTGzW6FQQK/XY9u2bWhoaEAymcShQ4dqljd/NXi9Xjz77LMYHBzEjTfeiDvuuGPasXoiTp8+jddffx3PP/88BgcHEY/Hl6T2rVareUvhSualzwUKhQImkwkrVqyAQqFAPp9HNptddHfjtSC6yorFIm655RasXr0aq1atgsfjwc9//vOaxDsWgnA4jFdffRX33XcfPwKuubkZw8PDC7J+ll0lpkKhwOrVq/lpKMBkE6OLFy8uamny8PAwEokEDAbDNAJ3u91oamoq0Z4TiQTeeecdBINBTuDHjx+Hz+ermW+UTlRPp9OYmJjA22+/vejBrEwmgwsXLvDyar1ej5UrV8LpdKKurg7hcBiRSAQTExNgjOGdd97Bu+++ixMnTiyq3B8FxhhWrlwJg8HADwFYjMIuxhiKxSI/4iudTvMTjZYDdDodWltbcdddd/GTb5ZyfyER2WwWAwMDOHToEPbu3YtVq1Zh48aNCIfD1xeBq9Vq3HXXXbxnBnVRWwrFMsFgEH/4wx8WW4xZQZIkFAoFRCIRfijBCy+8sCRcD+Pj4xgfH8exY8dw/vx5bN++HXv37sW+fftw4cIFnDhxAi+++CIYY9wnupShUCiwZ88eWK1WDA0N4Re/+MWi5TBTk6itW7ciHA7D5/PVXI65glyLDocD+/btw6233opjx47h0KFDeOqppxa9KdhsUCgUEI1G8S//8i/IZDLo6enB5z//efT29s6pIVo5lhWBu91urF+/Hg888ADcbvdii7OsIUkSkskkvvKVrwAAb+a/1HD06FGcPHkS//Ef/wGNRoN8Po9cLsd9nmRWL2VIkoTTp0/jxIkTePfdd3HkyJFF0cCLxSLOnj2LH/zgB5AkCePj47h06VLN5ZgLEokEvve97+GLX/wi3G43zp49i9/85jfwer08H3+p338RdKD5+++/jzvuuAMvvfQSfD7fvBtdLSsCt1gs6Orqgt1u583Tw+Ewz9aQMXcs9apLci8txc1ltsjn8/j5z3/OLYvFtHJSqRRGRkbw1FNPIZlMLvl0vHw+z0+70ev18Pv96Ovr44ckLCfyBj5Mlf3lL3+J733ve7BarbDb7dcHgRsMBjQ2NvLjn8LhMD744AOEw+El3SxKxvWNYrGIl156abHFADBpacViMRw4cGCxRZkVisUixsbGlnSZ/1zR39+PWCyGz3/+80gmkyVFaHPFsiJwEWNjYzhy5AgefvhhhMPhZbcTy5Ah4/oEnST0iU98YsGfxWoZgV5oKb1er4fNZkNjYyNyuRzi8TiGhoZk94kMGTI+7jguSdK0ysBlReAyZMiQcZ1iRgKfv/NFhgwZMmQsKmQClyFDhoxlCpnAZciQIWOZQiZwGTJkyFimWLZphDJkyLg+MFNHyuXSv6XakAm8ymCM8QcwWZhwrRapi31i+VKGeGJPsVhcEi1aRdC9ps6Dy6HUf7FRflQe3V8aR51Oh2KxiEKhgFwuV7I+xPbL1J65FnNCXNd0eLVSqQQwmectyjXTz0rJJxN4BVF+U4Hpp6yXk474XnqOGk0tFVJaKhDHSvx9qYxT+X2UcW3MdE+JwOmoPHFNKRQKvobKx7h8LQGVvQ/lcooy0UOSJF5Z+VEbd6XmrkzgFYB4I1Uq1bS/aWcWyZkmoTgpxNcBLAqJl2tDS8kaKF/cohZervEshmwiaNzKtcKlBHHuiT/LZa2WRltOgvScUqksuc/iWhHnpCjP1Q6/rpTc5bKWkzcpasVikRP5TNe/mpzzlVEm8AWAbiAdTKzVamEwGPgNViqVMBqNMJlM0Ov1MBgMkCQJqVQKqVQKiUQCarUauVwOyWQSjDEkk0n+GvAhEVTTDBfNQJJfkiRoNBqkUil+AAFtKHSMWa1IqVw+jUbDF3yhUODNrki+8vGqtildLqf4PC3qpQSat2q1GhqNBiaTCYwxqNVqqFQq3leoUCggmUzyY/bEE6MWinLNWqlUljxI+VGr1Xws8/k8751dfnoVfa9ypYM2gPnKXW4JKJVKfpC2SqWCVquFRqMpuXY8Hkcmk+GHZZRv5vS5ojt1vvNEJvB5QqVS8Qmm1WphMplgMBhgNBqh1+uh1Wqh1+vR0NAAhUIBjUbDD0+gRaFQKBCLxZBIJBCPxxEKhUq0cyKlQqFQNS1OnJRmsxkOh4NbESaTCel0GplMBul0GrFYrOSEoGpqluLEJvmsVitaWlrgcDhgNBp5EzN6pFIpLmsymUQ2m+VjVylrZibzudwPSqfd0KYn+kQBlCzkclTD4pnJx0zz0WKxoL6+HgqFgs9Z8jOn02l4vV7eQVHUxOcrozhWNF5qtZqvIzq5SKvV8gdtHplMBpFIBJlMhq8LcVxF14qoaBDmKjdtJnR8m0ajgUajgcVi4Rug0WiEwWDgigQA+P1+xONxxONxTuJkVYsykhJCspLiNBcZlyyBX22C0/O0cAgfFSwof8/V/p6LbCqVit9Qk8kEi8XCf5rNZuh0Ot49sVAoQKVSwWQyIZPJwGAwIJfLQavVIhwOIxaLQavVIplMIp1OcxIQXS8AFqz1zjSmoqaj0+lgs9m4lms2m5HNZpFOp/nmks/nq975USRvtVoNvV4Ps9mMVatWcQI3GAwIBoPIZDLI5XJIJBKIRCJIJpNIJpPweDxgjCGbzVZMayz3d9LYkSYmElAymUSxWEQul+Mbcbkc5dZCJQNcM91rUX69Xg+j0QiLxQKHw8EtRLISc7kcYrEYP7m+/MzJ+fpwxQ2Z1o9Go4FOp4Ner4dOp+MKkUajgVqt5veY1gZZhSKJzxTkpOPrSNa59Eyie6vRaLgVTTI6nU4up16v55se9alnjEGr1UKlUiGdTpeQeC6XmzYXRM6a6xqfNYEzxpQAjgEYlSTpXsaYA8AzANoADAD4giRJoVlf+erXmfYQ/V+0a9FCKTebys1oMk3oBouYLyGKLhOdTger1QqLxcK1GYvFwrUKMrfo9Gz6u1gscpdALBaDWq2Gz+dDPB7nspMmDKDEFJvreH7U87SYdDodNBoNrFYr6urq4Ha7odVqUSwWkUgk+JFx6XS6RHMo/7xKbTC00E0mE9xuN1pbW3HvvffCaDTycYnH43wOeDweflo5LXj6vEwms2D5RM1V3GD1ej1MJhNcLhffuBUKBYLBIN/8yHKhe6hUKrlWTprlTFrjQmQt/7s8LkOKhtFohNFoRHNzMycprVaLaDSKQCCAaDTKx/tqvty5arVEigaDga8hk8nEZXG73bBYLHztipaVzWZDLBbjpEivZ7NZvukQCoUClEolJ/G5rHdSHAwGA1wuF5fXZDKhoaEBDQ0N0Ov1fC3Q+aI+nw8GgwHRaJRr4uROofVDZC+On+hCmcs6n4sG/jcAzgOgE2YfBbBfkqTvM8Yenfr723P4vGkQJ5jT6QQwecNdLhefWGRSkVljtVqn+b30ej13QeRyOQSDQfj9fgwNDSGRSPAbT6Q6lwGja+VyuRLTz2w2w2azwWq1Ip1OIxqNclNPqVRCpVJBp9OVTFa9Xo9IJFJi6gOlOzGZavPtuCiaaiR/eeA0l8txs1Wn08FisaChoQErVqxAIpGAx+PB0NAQP1zhWtH1hWqPNAdI625vb8fq1avR3NwMg8HAyTsYDHLt1+12w2azIZVKIRgMIhKJYGBgoMR3O98NW9S2aXNWqVSoq6tDe3s7GhoaUF9fz2MY8XgcRqORu8rEA0do/GlBRyIRfrC1+J6FuHzKfa1irIaej8VinEjJVWA0GuF0OqFWq7llSPOY3AOitng15WAmkNVKa0aj0aCurg5GoxFarRZNTU0wm80wGAywWCxceyatltYP3W9xE89kMkgkEgiHw1zLJdIun+/Xmp80TiSjXq+Hw+GAy+WCy+WC2+3myo0kSchmswgGg1xOImayvvP5PHeTRqNRfgYmbd4zyTKXNTQrAmeMNQP4FID/B8D/NfX0ZwDsnfr9vwAcxAIIXDRZ6CBb2gXXrl0Lq9XKXQqxWIybeyaTiefcFgoF7ssDPszHHB0dxeDgIDKZDLxeL19Y8zWtiWBJe6KgpEajQSgUQiaT4T4w2mx0Oh3MZjPy+Tz/nqIvkDYTkkkk87kulpnkJZQH2UTNr1AowGAwwOl0crLM5/N80ZFmW+2AKlkmK1euRHd3N9rb29HR0QGbzcbdJR6Ph2vgyWQSiUSCa79kEZnNZiQSiRJtba6gBU0bnKgpkmwul4tbUuV5ynTv6Z6TBRaNRhEKhbivOZlMTjOhKx1jEMk3m81yzTCbzXIiLRaLSCaT3D2RTCb5Pb+aBn4tiH5vUemhMSEriywYtVqNSCSCdDqNdDqNVCpVkolCspI2TwF/+j70HeejnImWlvggl5PZbIbZbOZHEAYCAXi9Xu4aIQ4i2Wh9q1Qq5PN5PmfL0yHn6z6brQb+rwD+bwBm4bl6SZLGpy44zhiru8qgPAjgwWtdQAyiULDKZDLBbrdj+/btsNvtAIB0Os3NFFErJ/8s7dCi/9hisUClUvFFTybMfLRacRGQXy6ZTCIajaJYLJaYcvScTqfjmo5arS7RuGcicJGwZ3L9zEdmkbDLiUEkcdLCGhoakM1mufauVCo5gVcj0AZ8uIAoUNTR0YG1a9eipaUFjY2NMBqNmJiYQCAQwMjICA8EA5OBI7vdDovFAqvVCpPJBKvVilQqhVgsxt0ocyVF0SokjZU0srVr12LlypUwmUzI5/PcuiPSyWazPNBFxE9kHggEuCuF/k/04S4UV4sB0f2n9ULrgNwZ5DIjeUSLtfyz5kLi4kZI2i39bjQaYbfbYTKZ+PogrToejyORSPA1olAo+NqntU7fhwLsZCmK37n895lQ7mYSA61E5JR1QudxejweTuCSJHGfuOiCoc9MpVL888i1Mxu5PgrXJHDG2L0AvJIkHWeM7Z3rBSRJehLAk1OfNaOUdHNp0TmdTrS0tKC9vR1NTU3c1CLtIJ/Pw+fzwePxQK/Xl5i1AGCz2aDX6/muV1dXh2QyCbvdzhe86Medz+DR4DPGEAqFkEwmeRoh+TuLxSL31edyOWQyGb7hqFQqFAoF6HQ6rvGQH4x28nJ//kIWtvi/M2mixWIRGo0GTqcTdrsdRqMRGo0GHo8H6XSaWxPXGq+FyqhSqeByudDZ2Ymbb74ZGzZsgNlshkqlQjQaxeDgIH/EYjG+yKLRKHw+H9xuN1atWgWn0wmlUgmDwQCPxzMt6D0biAuaHjqdDg0NDVi3bh3Wr18Pl8sFYPKEqGg0iomJCQwPD/MgqtlshlarhdVq5QROhE6BOp/PxwlKdAdWkshFy05MBNDpdHC73VwZUqlUyGazSKVSCIfDiEQiJfOwXBmY7TiSG1HMl6ZAv5jFVSwWEQwGEQ6H+fUzmQwPINpsNphMJv5ZlBECgAfbCaLbbDbWlygnbQK0kdF3Jat7bGwMExMTGBkZQSQSQbFY5Jo1ad507ylOkkgkuBVOmVzl63KuVuJsNPBdAP6MMfZJADoAFsbYUwA8jLHGKe27EYB3TlcWIO6QWq0WK1euRFNTE+x2O7RaLRQKBeLxOFKpFKLRKPr6+jA6OopQKIRcLsfNMLvdjpaWFu5e0ev1nEjj8ThPOyN/1UJ8jMCHN5M0J9K8RJDZSJkUdXV1fDGTyyUUCsHn8yEajXLNjTQkkcArgfLvLAYzDQYD93273W74/X4AkwfhTkxMlATirvW5cwURi8FgQFdXF2688UbccMMNcLvdYIwhk8ng8uXL6Ovrw8jICPx+P3dBkDlK7hSPxwODwVCSU1zu95+rXLQgV6xYgdbWVrS3t8PhcPBU0LGxMZw+fZrLlslkeA5zOBxGPB7nc9LtdvPAZSgUgslkQiQSqZplIwb0xQetmxUrVqCzsxNqtRqpVApjY2MlBzCXuyLmI2N5MgLdF9rcisUiD/DR5kHjRhaoQqHgLhJyxZBvnDZFlUoFSZJKrIbZjqto9YrWGsXSyEIeHR3F+Pg4fD4fgsEg4vE4TwQoFAo8s4cyuujeGgwG/vnihli+yc4F1yRwSZL+HsDfT33BvQD+TpKkrzLGfgDgawC+P/XzuTlfvfQ6JUSYSCR4doZOp+O7cSAQwIULFzAxMcF3Z9qJXS4XtFotmpubYbPZoFar+WeFw+GSgMzVynHnIu/V8k7F/FaTycTzbSnIKWYrkHZLG5Q4Ua52oxcK0cdKPymIVVdXB6fTyTe/cDjMybKa/m+SweFwoLW1FV1dXaivr4darUYymUQoFMLAwACGhoZ4tkkikeAErlQquUZOWh1ZROXBrLlAHCsxpcxgMPC4QDgcxsjICEZHR+Hz+RCLxVAoFHicQ6fTcSKkzBVJkrh1JlqDC4l1zAXUY8RsNqOhoQFOp5P7vKkmgQLslSjaKldESAsX858zmQx3R0aj0ZJYFQXyxbUrWkflWTEz+ZWv9R3K1xpZw+QmJRdNKBTifCLmx9McEe+rmNtdLte1/p4NFpIH/n0Av2GMfR3AEID75/tBNFi5XA6RSAT9/f0wmUyIxWKIx+NgjOHy5cvwer0YGxvDyZMn+eBRap7JZEI4HIbNZkNHRwdcLhdUKhVisRh8Ph/Gx8fh9/tLtMhKTEoAJRkkRETk22toaOC7cX19Pex2Ow/UUBQ9Go3y9DcKuImmW7U0MwKZfWTB0NglEgkMDQ2hv78fPp+vagROC1GtVqOlpQXd3d3o7u6G2WxGKpVCKBRCb28vzp8/j76+PgSDQU7cYtaA3+9HPp+HxWLhPlXR7J+r9i2OO2nhlOtNn0Vuk97eXoyNjfHiDYqzEPmQpQZMkid9rhjMoutUA+LmQERjNpvhdruxcuVK2Gw2hMNhpFIp+P1+vmmLKY4LuTaRNZEiZeLQWEmSxBUtr9fLrWVyJVL2WXn+N90HMcdaHMtyRehactKDrpXNZpFMJhGJRHjw1O/3IxgMIhqNIpvNlgQrTSYTgA8rhImjisXitMSJ8kSC+WBOBC5J0kFMZptAkqQAgH3zuuoMKBQKPCUonU7zAphwOIy+vj5Eo1EEg0GMjY0hEonwhcIYQz6fh0Kh4D50MaJOGShDQ0MIBAIlJmElQAtDXJA6nQ4OhwP19fVckzSbzTCZTLxogjGG8fFxRCIRBINB+Hy+knzWuUbQ5wsiJqPRiK6uLp5Rkc/nudY7ODiIdDpdVe2bXBR79+5Fd3c3bDYbGGNIp9MYHx/HmTNn0N/fj0AggFQqBcYYD2BJ0mQmh8VigdFohEKhQHt7OycLl8vFLa/5kDgRBi1Qh8MBt9sNSZIQCATg8Xh4oJQe9L+kXFCdgNlshl6vBwBewEXaMG3elc4+EceZAnI2mw3t7e3o7u5GW1sb9Ho9kskkVCoVBgcHeU1CpVomiHEdCvYD4BYTpdlFo9FpxTdi8JPcUFT0YzQaEYvFOOmSa4U2yblY2qLWTeMlSRLPQqFAJKUNkttRtPYoQ4nuOW1O5cRdvlHPV1FbMpWY4uDlcjmEw2EeqSUtjPIpc7kc19gA8EVis9l4qg/lso6NjXECJxKqFinS55I7ggpQbDYb19zUajWP/sfjcR41J22hGi6TjwL5nd1uN9auXQuz2cyJ8/Tp0xgdHeWBrGpCq9XC5XKhsbGR9+ZIJpMIh8MIBoMIBoNIJBIlwSIxO0CtVnPfY0NDA/erZrNZ2O12+Hw+HjiaC8R7USgUeBANALeeyIIieWhuGgwG2Gw2uN1unlljs9mg0WhKNNty620+JdXXQvk1XC4XWltb0dbWBotlsrQjGo3yDTsWi1013jFXiD5e0kxJ6aK2A+SeIOWFskwo2Cmm8VFGEMXHqH6B4h6in52IfDaWjeg6IcuI5E0mkyVrlxQIWtPkJhWD0/QdaY6S3GKBHt0TkdRr5UKpOGjw8vk8rwDLZrPcJyeaWxQtpoG0Wq1wuVw8gwIAQqEQRkZGMDY2VpLqUy3Zy7VwyqghfynlAFOzKtqMRD9gNTeYmUB5tS6Xi2tiwGREv7e3l1sG1ZSJ7qHT6YTVaoVGo+G+x0gkwgNaZHGJGRuU8kXaj9VqRX19PdfOKQZBaWvzgbiwdTodVywoT5kC4kQ6ALgmRnNA1MJ1Oh3XbssLTkQCqiTE+0dFSE1NTWhqaoLBYOCb5cDAALxeb4lvt1LXn8mNIkkSXwNE3hQ3oPtLWi5lcxB5kyUrbuLlmUNKpbLExTkbOWeSNZlM8s8Si/PI2rfZbJzAaSMpFovcUqD+SOVxDzEjqCpBzFqCtJxsNotQKIR4PM53aNHXRZkdtKNZLBY0NTWhs7MTGzduhMViQTqdxvDwMN555x309/fzEvVaabUUfCVfqFarhd1u51WCZFGQH2++N3ChUCgUcDgcWLlyJVauXAm9Xo9UKoV4PI7e3l5eEl5NUAppS0sLNBoNt07i8Ti8Xi8mJiYwPj4OACXd6WiuSJLE86xJs8zn89zEFvOG5wpxzqhUKu4PFTUpnU7H89QpK6Kurg52u51bie3t7WhsbITT6eTZR6TZlRN4teYCaaJqtRrd3d1YtWoVmpubodPpeE7zmTNnEIlEqqLsiBamQqHgud7RaJRncDDGeOMoImm6f0TSpLCZzZNlKfF4HAC4hS1u7FRYM5cxKm/BQQU45KYBwF05JpMJ9fX1vMra6XSWVNW6XC7o9XoolUpEIhGMj49zBYQyZhZi3S4pAidIkoRIJFLSVlIszBGT+snv5XQ60dbWhrq6OqhUKvh8Ppw9exZXrlxBOByumDk4G9k1Gg0A8LTCZDKJYDCI0dFRXkhEZiQFP8o1h/IIerVkVSgUsNlsqKurg0ajQbFYxPDwMA4cOACfz1f1xlUAuLYSiUQQi8V4Hj/JMjQ0BK/Xi0Qiwc1m0dSmoLDoOrNarXxxkIlOGvxcQQs3Go1ieHgYjDHkcjnuGqM5F4/H+aZBVaPk83U4HFz7zuVyPLA+Pj7OC74o/5g0vWqA/PgNDQ3cnZPL5dDb24vLly/D7/eXbCjV0sIzmQyi0Sh3c1gsFp4PbjKZuLVjMpmg1Wp5HQW5sWhjpuwtKvghwibrfT75/wRSEJRKZUkPIMoio3kn1nWMj4+XKGxi4RJjrCSQTZbmQjbrJUfgtEPT5CcyIy1cND2IzMldQT1TgsEgxsfHMTAwwCPF1QoK0c/yHgpEShRgoZ2cTDEx+EqbU/nnielS1QxqkcySJCGZTMLn8/HWA9W2CsTc22w2i0gkwsmXMhJCoRD3j9LYUDoZLQAyTQFw7TEWi/HANeXWzwc0/5LJJMbHx/m9owVJAVgA3BdLmwy9j3zj9DmUFksberWzUOizVSoVDwLSRkG1FWNjY7zfdrUgbqqUNkitMdRqNSRJ4oQNgK8RMRgoul7ETBbSjoEPW3OITc3mKqe4blOpFHebiFlNALgM5AbKZrM8E4rmJ20GJBtxAPno5xu8XnIEDpTu1ETY9LuYDyrmWTudTrjdbqhUKkxMTKC/vx/9/f28lWelIZKtSIRk9hEhhsNhACjRAskcFP2fov9cNDOrTeJi3irJS1Wu5cRSTUuAgtehUIhnRIRCIXg8Hh5EpUVA5q1o5lJePfChqR4IBDA8PMwzluh/5itfPB7H8PAwzwum4JkYTKVxpEZVot+cyr0p8ygcDvPArFiFV604CPVzsVgs3ErMZDIIhUK4ePEiRkZGSnq9V2MzKSdwCv46HA5OauT/JiVOVMBok6YNmVowl89VMVZCmMscLg9eJ5NJHpAUc9GpWRUFN4nEieiJ3Km6lb4D1ajQfJkvRy1ZAi+PXNNNIbeDeJrIhg0b0NPTg5aWFkQiEfT19eHMmTM4e/ZsxbVI0dVBf4vat9VqRUNDA9xuN+/fQo15qKsa9azW6XS8MhQA19LEnhiillnprASVSoWGhgY0NjbC5XKBMcZzganbGqGa5E0+xqGhoZLqykAgwBsVUeYG3UvSsEwmE+rq6tDS0gK3282r3WKxGPx+P8bHxzE6OjpjOtdcZCTyHRsbQzgchsfjgd/v564Rm83G7xtdiyr0XC4X4vE413qHhobQ19cHj8fDXSaiX78aBK5QKGA2m9Ha2oqbbrqJWwyJRAKjo6Ml1b/i964kRA06k8lwkisWixgYGOBjWSwWuRaeTqe5a0mn06G+vp67U8S0PtrkyQ1I82ohca/yzDiyTqifP40ZrW2SizqpkstHPGyEFBCDwVBSTj8XP72IJUng5aAbQJqomCdqsViwevVq1NfXo1gs4syZM7hw4QKGh4d5qlalQGQtknZ5b3CDwcAnIhUSEUmTS4hyvEV/HQVkaUfWarUlecGVKj4ikDXT1NTEic/v98Pr9cLr9SIQCJRUzVUTtNgymQwv31ar1QgGg7wbHvBhAQzNA51Ox4OWTU1NcDgcPK+aelVMTEwgGo1OK/KYj4xU7k1aYaFQQCAQ4A3YxIpKIh7KZ6dsKgC817a4sYsHAizUL1oOmq9UuNPa2soDqX6/HyMjIwgEAjygSv7cSkN0l4matZiFRdo0uVPEJnUAeH91cpuRZktrXbQcxKZ1c1074nvFdEIqNqQccIohiIV3dBAKxb9EBZQ2GPq9vE3vXLEsCByYPqA0AHa7nR8DFolEcPHiRV60U+lJKGrf5T2DKVpOnfAoaEE3nW4UmV9kztFnUZUfaQ9iOX2lzVn6DjR+VPxCrQpCoRCi0WjJmFfThQKAB7b8fj/fwKhvMrmoKOgDoKR9Alk8NpuNu4EmJia4/1xsLraQ70AbjVjsQYFV0rZpg0+n07xohzoViuY/HVVHC5+C2jO1bl0oKPNEPDGK+gvF43H4fD5ueVU7jVW0rEW3R/lBJ+T+kKTJEnvq8EdkTYQubnblHEHrbr7fSZRVzEghYiY/vNiegwhd9M/T9Ykz6F6LxUbzlXHZELgIMkEo/Q0AfD4fvF4vjh8/zku/ywdloSRUTt5iEx3qQV1fXw+TycQDVhQNz2az0Gq1PJotdimkBUZmbaFQ4KX180nuvxaIvKn4iTSZQCCA8fFxeL1e7tertDY4E8QAr9frRT6f542JaIzJX0hBLbGxFGUf2Ww2TExM4PTp0zh58iQikUjJwRoLHcPyjVU09UnLIqsM+NDUpnL7VCoFtVrNi5HEzCoag/n2Lb8axE6fdGoQEU48HkcgEMDY2BjvqCluItWC+H1JRnIvKpVKXgNCJE5Vj3RQitPp5FYZcQH1TgLAXR6i5btQWUV3CpXYA+DXIPce9ZQRy/7pJ8W+qHgP+PAkn/la2MuSwIk8Kf87Go3C4/Hg0qVLuHLlCs9aAEqDgsDCSFxM86NGQHa7nef3Wq1WWK1WTohkRhuNxhLCpowLasRFJjiZj+TfE7uwVUozIpKhs/0ok4JKwKnoiVK8qpFOVg4iRspCEQseaDzJD6rVannP8paWFn5ij1arxcjICIaHh7lbIBaLVbx1AskrEhAFWCmQSRsyfSfSBCkjKRwOc3nIdVQeiKsEygud6NCEdDrNT9yh9hTiqUHi/9O9X6giIc4hCj6Lr9F6JRnI1UCuRWp3S1pr+eENYtYJra35tqOYKSOo3I1CjdNojRAn0KZDFiMwmZkEoOTgZlrTYpLCfLCsCJzIhw7fpUKJSCQCn8+HiYmJkmT+8klTievTRKFNhNrYkgYo9vulQxCoWou0CZq8tOuSNkFmn3hmnqgBVEp+sUCCJhNBzOQoT2esJmihid3nKN+WzGVy99AJLvX19XA6nVAoFEgmk7zvzejoKCfvalXfkrziwhaLM8iXTH8nk0luTlMXRXLJiKe5VFJWIhGyVsVUPbEZFHVsBEqzT6oVxC7fEESLRhxPIkiyxCjfWgxGi+4LCjSLJ0eJ8bPZ4mpcId5zMUuFlA2xpJ4e4tqi1gBibcJCex4tGwIXyZMq7lwuF69wIt8tkaJYjABgXjfyahD936SJ22w2OBwOGI1GfvIGZZWImTSUNkaLWvSVUWk2+UeBypzIQxDzgKnUmxYFaRJiSTL9j/h7Lfzg5GKgc0NJs121ahUv9KCDZhmb7JkSCAQwMDCAK1euYGRkhLsDqrn5iAu6PBVQHEsA3HVGKWlE2CKBVyNwSfPT7XbzLBiSnSwFIppKBsmvJtNHfX75eAKla420V/F94ulB5IYrPzmqUsqPSOxiQoOYSkqKJfXMEd0pZIGLaYWi6+Rj7QMXJ2NzczPWrVuH9vZ2WCwW3nxHPAFajO5WalKKATS6mXQDiGglSeIBF9IOlEolT3eik6nJzBNlpiyFYrHId2cyvxf6HWjCqdVq3imxvr6+5PzIQqHAzTyDwYBgMFiymKrtRiFT2uPxQJIkfuhFc3MzWlpa+AHWlK5JmnY4HMbJkyfR19eHiYkJ+Hy+qpO3qCCQlkjP0zhThW15cI2OeSOtvFrkTQ217HY7v9fUp4PaHVManJgNI6YyVnr8yrVb0S0pnplJ1gv9LdZYUI44rQ3qLVTe718c04W4fsqzzij7RGwha7PZuBJXV1fHTxeiYwCDwSDv7UMHt1Ri414WBC4G3dxuN5qbm7nWQI2uqCii3HQSU7sWqoWLaU1UUalUKnm7VTqwgfzKFCiiLARy84gLVzzDT3SbiHnLC13cIsnQxCMXkEKh4Of7jYyMoL+/nwe1FuJHnA9ofGmzo1PlyWcvdshTKBR8Yfj9fly+fJm3QBVzmauJcjIymUzc1Cf/J41bKBTih21TO1zKYKJAdqX932JnQ+DDQ38ZYzxY7fV60d/fz0+WmekEnkqg3JUpErdYV0HvI8tLrFQm16S4XshlQg2myL++UM2WZJxJ8xbdO2azeZqlSDEl4gA625PqGqjzojjOH0sXCg0e+cAsFgvcbjc3BwHwXY3MUhHlTYEqkYUAgJMMPUdaFVWFip0FyZQnUgoEAnwh0UQTi3XoMytp/omgDJdQKMRNP8r7HR4exvj4OLcUqlVUcjXQmFH2jdfr5TnUqVSKNzwiuYLBID+Sjg6srtQJMh+FmXykImGKhETfi7r70eZOWma1YgziWMZiMYyPj/P7To3iJiYm4Pf7MTExwS3BSmfBzISZxk+0YsXrE8nRJiemB1Khj/i3mMmzkPTB8gpOUUa6BrluRHeYGEBljHErm7JkqHKUXIULtXSWNIHT7iuSd2trKxoaGnizo2QyCb/fz0tdZ9rRRc27EiROuyqZwqFQiC9IcWEyxngrViJxMWBFG04l/fNXk5kWAsnh8Xhw+fJlfiA0yUq9YxaafjVfULEMnYTi9/u5/5MOKgY+zN6gqlYxh7nSwcCZUK4xi1aX2MJUJB+xTJ3aBZTnfldCbpG8s9ks74tPpj8F3cRjwqrtciK5COUJBjRGRHpUmEPZPZRWK55CTxo4ETm5UcVTreY7prTZiooUzStS0MTAs2gt03uo3Qe1TYjFYrx3PCVbLHTMlyyBi0FL8jFRcKChoYGnQ/X29pZoD7SziZNDjBxXAmIhDplLomko4mobSK20WlEOImQyA4kAZwoe1Vq+clCqZS6XQyKR4Bp5ORZjTOmaNI6ULkgn2pBrjWIJZrOZzxmaz7SoqQS80uRJGwfw4ZxMp9MlLoFq+bmvJRfJRAoFzUtKn6Ue8KQMkRJHMTCRmKn7ZCKRKNkQK1FGT3KW3xvqckjWK7UXpr7gDoeDb9h036kDJSUu0Hdf6NjPisAZYzYA/y+A9QAkAP8HgIsAngHQBmAAwBckSQotSBoBRCjAh+0bAfCDEChoEQgESlqykp9RLEKplokq7tLXeu9Sgii7mGa31OQEqm+dLATl95+0WLL+SAukknFSSsiFQaZ0tYulltoY0toW+wkBpU28KJOELFnK3iBrRfwfGkvxRJ9KrPlyv734vOhOoSZ15CajOAPJTxu8WJdQKStxthr4jwC8LEnSfYwxDQADgMcA7Jck6fuMsUcBPArg2wuWSACRL5kj5Msj85MKeMRqJ9GNUm7WVAPlN3mpLJLZoNba18cRRMz0u+gaAzDNQgNQUuJdyxjDUkK55SRuhKLbCfhwbYmbIbnSaBMU+8hUcl6Xu31II6fXxHx6USZ6XaVScVeWWFpfKbBrfVHGmAXAKQAdkvBmxthFAHslSRpnjDUCOChJ0pprfFZFRlU8WYV8jUTclQgMyJBRCZRnLyw1TXipoJyoy4++K+/8SaCAZi03wZnqI8r/Lq+bqJBFcFySpG3lT85GA+8A4APwH4yxTQCOA/gbAPWSJI0DwBSJ1y1EurmgPE2MNO1qF5rIkDEXiHNRnpdXR/nG9lFjJZLmYihpHyXjTNk1V3tvpTCbJrQqAFsB/LskSVsAJDDpLpkVGGMPMsaOMcaOzVPGWUNeJDJkLH+ImR/lD7Hidamt96vJXE3MhsBHAIxIkvTu1N+/wyShe6ZcJ5j6OT1FAIAkSU9KkrRtJvVfhgwZMmTMH9d0oUiSNMEYG2aMrZEk6SKAfQDOTT2+BuD7Uz+fm8X1/JjU4P3zF/ljCRfkMSmHPCbTIY/JdFwvY9I605PXDGICAGNsMybTCDUALgP4n5jU3n8DYCWAIQD3S5IUnMVnHZO18VLIYzId8phMhzwm03G9j8ms0gglSToJYKZB2ldRaWTIkCFDxqwxv5M0ZciQIUPGomMxCPzJRbjmUoc8JtMhj8l0yGMyHdf1mMzKBy5DhgwZMpYeZBeKDBkyZCxT1IzAGWN3M8YuMsb6pnqnXJdgjA0wxk4zxk5ScRNjzMEYe40x1jv1077YclYbjLGfM8a8jLEzwnNXHQfG2N9PzZ2LjLFPLI7U1cVVxuR/McZGp+bLScbYJ4XXrocxaWGMHWCMnWeMnWWM/c3U89f1XOH4qKqnSj0AKAH0Y7IsX4PJ3io9tbj2UntgsnOjq+y5/w3g0anfHwXwT4stZw3GYQ8mC8LOXGscAPRMzRktgPapuaRc7O9QozH5XwD+bob3Xi9j0ghg69TvZgCXpr77dT1X6FErDXw7gD5Jki5LkpQF8DSAz9To2ssBnwHwX1O//xeAzy6eKLWBJEmHAJTXDVxtHD4D4GlJkjKSJF0B0IfJOfWxwlXG5Gq4XsZkXJKkE1O/xwCcB9CE63yuEGpF4E0AhoW/R6aeux4hAXiVMXacMfbg1HMljcEA1Kwx2BLD1cbhep8/DzHGPphysZCr4LobE8ZYG4AtAN6FPFcA1I7AZ2rTdb2mv+ySJGkrgHsA/J+MsT2LLdAywPU8f/4dQCeAzQDGAfzz1PPX1ZgwxkwAngXwiCRJ0Y966wzPfWzHpVYEPgKgRfi7GcBYja69pCBJ0tjUTy+AP2DSvJtVY7DrAFcbh+t2/kiS5JEkqSBJUhHAT/GhO+C6GRPGmBqT5P0rSZJ+P/W0PFdQOwI/CqCLMdY+daLPlwA8X6NrLxkwxoyMMTP9DuAuAGcwORZfm3rbbBuDfRxxtXF4HsCXGGNaxlg7gC4A7y2CfDUHkdQU/hyT8wW4TsaETTbZ/hmA85IkPS68JM8VoDZZKFPR4U9iMoLcD+A7ix29XYwHJrNwTk09ztI4AHAC2A+gd+qnY7FlrcFY/H+YdAnkMKk1ff2jxgHAd6bmzkUA9yy2/DUck18COA3gA0ySU+N1Nia7MekC+QDAyanHJ6/3uUIPuRJThgwZMpYp5EpMGTJkyFimkAlchgwZMpYpZAKXIUOGjGUKmcBlyJAhY5lCJnAZMmTIWKaQCVyGDBkylilkApchQ4aMZQqZwGXIkCFjmeL/B8r6/xg+ZxUOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1243,32 +1214,36 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZVl63/e/b57HGDMru7sINLkx\nYS4IyQsvZAg2bMMAd4TlhSlDADf2Xtx5y60BA4a5ECwtbEsbQVoYHiBA8MoAYS8IusHqbrGqOjMy\nM+LFm4d48/Ui6vfF927d+96LyCp2dDkOkIjIiBf33HPOd77h/01BGIZ6GS/jZbwMRurX/QIv42W8\njOc1XpjCy3gZL2NnvDCFl/EyXsbOeGEKL+NlvIyd8cIUXsbLeBk744UpvIyX8TJ2xvfGFIIg+A+D\nIPgiCIJfBkHwJ9/XPC/jZbyM73YE30ecQhAEaUk/l/TvS3on6c8l/b0wDH/2nU/2Ml7Gy/hOx/el\nKfwtSb8Mw/CvwzBcSvqfJf3B9zTXy3gZL+M7HJnv6bmvJb11/38n6W8nfTgIgpewypfxMr7/cRuG\n4emhD31fTOHgCILgjyX98a9r/pfxMv5/OL4+5kPfF1O4kvTG/f+zb35mIwzDP5P0Z9K3NYUgCBSG\noX2N/sw9Q0l/x+/jfvbrGn493/c80u5a/b4x4t4l7h2T9pD/J/1NdK5j1h+da7vdHpxr37sfM/i7\nXwdtxJ1L3Gei9yDud0njsev6vpjCn0v6aRAEn+ueGfynkv6zxzzAE4H/Gf+in9lut4kMJI6hHPsO\nce8RJaBjN33f5+LW+alzJa2Xn6dSKaVSqZ15Dl24fc+M7n8qldqZy69ts9nYmXF+fn3R9zjEVKLz\n+O+ja4t79mPHd31e0WdH6Te6f+zhp84VN74XphCG4ToIgv9K0v8mKS3pH4Vh+P8e87dxxMcmZDIZ\n26BSqaRqtaq7uzul02mt12tJ95KFf3d3d1osFo96dzY/k8kolUopnU4rl8vp9PRUk8lE2+1W6/Va\n6/VaYRjawSwWC3uHYwfr4vKkUikVCgW1Wi0tl0s7+CAIlE6ntVwutV6vNR6PtVwunzRXJpNRJpNR\nOp1WsVhUo9HQZDLRZrOxNbB/qVRKi8VCm81m73M5L86MvfP7l8vlVC6X1e12bQ+3260xhEwmo/V6\nbetK0jyitMHepdNpmzubzapcLms2mymVStlFzWQytp+z2UyLxeJRF4k1ptNp+5rP51WtVu1svHBi\nH9nXY+Zibel0WqlUStls1r4Wi0U1m00NBgMtl0ujvTAMjakuFgstl8tPYhDfi0vy0S/hzAdPZIVC\nwYgLQpakQqGgSqWis7MzuyxczOVyqWw2q+l0qslkoru7O41Go29x1cj8yufzymQyyufzqlQqqlar\nymQyajQaKhaLev36tSSp0+loOBxqNptpNptpPp/r7u5O0+lUm81G0+nUDihprmw2q1wup3Q6rWw2\nq3w+rzAMValU1G639du//duqVCqazWZ2wXq9nrbbrd6/f69ut6tOp2PripsDSQ1RwXQymczOHhaL\nRS0WCy0WC93d3Wm9Xmuz2SiVSmm73dq+zefzHYJnHi+9K5WKMYF0Om1nlslkVCwWtd1uNZ1ONZ/P\njahhCJvNRpvNRplMxt7DS92ohlIqlZTL5YwJQBu5XE6FQkH5fF71et0uZj6f13K5tEt6c3Oj1Wql\n29tbrVYrScmSNp/Pq1AoqFgsqlwuq1ar2ZoajYbK5bJyuZzG47Gm06nRw2w202QyMaYLjUTPyo9K\npaJyuaxSqaR6va5isahUKqV2u61KpaJsNqvVaqV+v29zTKdTrVYrLRYLTadTrddrzWYzE1JuXf93\nGIa/n0ic34xfG9AYNzxDyGazdtipVMoIoFAoqFqt6uTkRK1WS8ViUavVygh4uVxqMBjYBe/3+wrD\nUJPJZIdbe2LmuZVKxQ6jWq2qXq/r/Pxc9XpdJycnms/nKpfLtvm9Xk/X19dar9cqlUqaTqfK5/Na\nLBaJjAHpgtQuFArKZrOqVCpqNBq6vLzUmzdvlMvltNlslE6ntVqtVCgU1O12VSwWVa/XNZvNFIah\nxuPxDqH5PfQXxkts1tput5VOp7XZbHR3d7cj1ZbLpSaTiSRpNptpu91qtVrtaENRra5Wq6lUKqlU\nKtm6OAcYVL/ft/3xl3Q6nUqSlsul0um0ptPpjjYUNU8qlYo9M5fL2VfO7vz8XO12W+Px2LSF+Xyu\njx8/KgxDnZycaDwea7VaaTQa7dW8EAzFYlHtdluNRkO1Wk2np6eqVqtqt9uazWYaDoeaz+eaTCbq\ndrv68OGDVquVVquVlsulSqWSZrNZ4nlJUrPZVL1eV6VS0enpqZrNpprNpqrVqtFIp9MxpjCZTNTr\n9dTtdtXv9yVJ8/nczumx2qv0zJiCH6VSyRgChAWXfvXqlVqtltrttpbLpfL5vLbbrXFHVOT1eq1q\ntaogCEy9Y3ipUC6XValUjKhQ0169eqXz83NVq1UtFgulUik1m01NJhOTpMPhUNlsVsvl0iReOp1O\nZAr5fF75fN4+J91L7Xq9rtevX6vdbqter5u0zmazmkwmqlQqGg6HCoJAq9XKJAgSPm4Ui0VjPEjs\ndrutk5MTnZ6eql6vq1Ao6O7uTqvVyjSf1WqlbrerfD5vF6dQKJjqHSdRM5mMLi4uVC6X1Wq1VCqV\ndHp6agwJpo12s16vNZ/PNZ/P1e12lU6nNZ/PJckYhr+ofs50Oq1SqaQwDJXNZlWr1VStVtVoNOzC\n1mo1FQoFXVxcaLPZmMmFOblcLlUoFFQqlezSxo10Oq1KpaJ8Pm/S+uzsTGdnZyY4stmsZrOZSfn1\neq16va5ut7tjtnkTJrquMAyVy+VM82i1Wmo0Grq4uDAaxGzJ5/NqNpsql8t2rtDBYrGwPfdm9WPG\ns2MKHlQJw9AkTrVaNUZQq9XUarXs4mezWW23W1UqFTtg7Eku7775wAY4sFKppHK5rGKxqNlsptVq\npcFgoPl8bhcWyYsk9pjGvrmQjLlcTpJM8ymVSsrn8yoWi3ZxIPzVamVMAqaQz+c1mUwSPQgeP4A5\nnJ2dqd1u6+LiQmdnZyoUChoOh7bHMA+kK3gNe+hBPD8ymYxOT09VLpf12WefGUMtl8tarVZmLqzX\n6x0TBibEeYGjSPdmANqQH+BJy+VSrVZL2WxWFxcXZvIhPNgvSXah7u7udHFxofV6rX6/b0wu6cyC\nIFAul9N8Ple1WpV0L8kxRabTqabTqVKplGazmVqtlpm90+nU1omGtc9URxteLpdqNptmmtTrdUky\nbebu7k53d3eq1WqmMYVhqGKxqFwuZ3jNp8ACz44pSLLLDrAYhqFxbMwKwD5sXVRVGAEMBZUqyfZG\niqHKepBtMBgonU4b8WL75/N5SfeEy+XDptzHhFKplDEPJAdqO2AR5sB6vTapls/nDbvgokyn071o\nfC6X28EVkKi/9Vu/pUajoUKhIElm4xeLRUmyz2JmTCYTk6Jx6+KSchkbjYYqlYrZ9ewd5gDSGa2s\n3+9rMBhoMBhoPB4bxjCbzWLXlc/ndzAAmCaYEnvF+Z2fn5uACILA6AYJi9YWN6ANzKnxeKxer6dM\nJmP4AM+E8WLmFotFm4t3TafTiUw8k8mYibbZbOy85/O5Op2OgiDQcDi0d2XufD5vdAgTWy6XB4Xh\nvvGsmAJEzAiCwOz4bDZrtmqpVFIqlTKAhc/UajWtViu7LHd3dweR2DAMjQFNp1PlcjnTNricd3d3\n9kzs9EKhYKqadG+7QaypVCqW0DxSvFgsdpgYEsm76xaLher1uhHXcrk0G/Xu7i7WhcgeQqBoUc1m\nU2dnZ3r9+rWy2awxmNFoZOAijKJcLisMQ11dXe1oKnHrwYsBUXuinU6n6vf7Go1GGo/HWiwWury8\nlHQvvdfrtTE3/kHI7GV0XWhpPB/zB4wBJrvZbHRycqLhcKhisWgmpn9HGG/S5WF/F4uFBoOBSqWS\nCRlv7oRhqNevX2uxWKharSqVSun29tb2gfPcx8T5OfSGGdLv9zWfzzUejw2AbTabGo1GqtVqNgfr\ng1l4zfK5xCk8aUR9vaj02+1WuVzOuGI2m1UQBOYuKxaLpt6tVivzOnBoXLa4uZjPq/+g516Sp1Ip\nlctl1et1k0bz+dzATbSVKDHHzQVRekbDJQalL5fLhj+gWrMuPBxxxBznysV9e3FxoXw+b5pWv9/X\n9fW1eXna7baazaaBs9VqVR8+fDDNLU6VZx6+h0kDUvb7fd3e3trlf/36tdnNnA97vVgstFqtzGSJ\nzsXattut/W0qldJ8PjcNKpvN2jM5Exg44NxwONRoNNJsNjOGv++8kLxcvkKhYMIjlUoZ3nBxcaFS\nqaROp2PAJsAtYHjcXJ4hov3CqNEYvFszCAK1Wi0Do/E88Luo5+ax41kxBenBD73dbk0ioOZ7EM/H\nClSrVUPQca+t12tNJhNTW6Mag/ete+kNp57NZuYbXq/XBiJ5AoYZYFYgUaNSNTqXJDMZMCOKxaJO\nTk5UKBQ0n8+Vy+VMI1oulxoOh6a9QGzsQ9yAaYATNJtNtVot07Devn2r9+/fa7FYmDcik8loMpns\neH28DzzqkuR38/ncvCNcUukeM8BNx4UolUrmqlwsFppMJjuXgH2MOy8/kPJBEKhWqxnTqFarZlsT\nr7DdbnV7e6vhcKibmxstFguNRqMdsyZ6Xn5AWzD06XSqdDqtWq1mWizALc/s9/u2Bug06r2Jmw98\nBbwCEzIIAgOXAXLT6bQ6nY7RXalUUq/XM9PhqdjCs2IKXB4uFVLXS1E8BbgdIWAf5TUej43DgznE\nqW8QtVfZwSYgMIgNV5sHN/mc1yySOLT/OfNy8UDPz8/PlclkNBwOjeBubm7s4g2HQzMjILiotsAc\nSKblcqlyuayLiwuLiWB/IDSYLgFGq9VKvV7PANd+v78TfejXId0HzKAdpFIpVSoVdTodZbNZM0tA\n1zlL3g8Twp8RzHbfeYEj4JKWZO5ImAKmJqr8YDBQt9s1/74P1kqiR94LGgM/wAsGdnJ5eWn2PNIe\n85Jn7DsvT4c+TgQabzQaKpVK5lErFoumwazX6x0NOiqAHjueFVNAtfLIMaoam4qUxjuADxwtgcsN\nPsBlTdok/zMuuSRDf9lgGASHB9KNhGs2mwcDl7w/Ohrx12g0DExtNpumuUgydygXBgJlz+LWBdKf\nz+fVaDQkyUwQmN/5+blevXqldDqtVquls7Mzu3BI8JOTE3W73b1+fI+5BEGg9+/fq1arWXxHPp83\nF2Gz2TQzy2s/XHCY+Hw+T1wXqD6MnyjPk5MT0+qIBRkOh+r3+/r48aNJ4MFgYLQUVef98B4XzyBS\nqZQuLi7UbDZNQ2BN7BsMaTKZ7MSuJJ0XNI8JtNlsNJvNDCsjeAoGvlqtlMlkLKYB2iD2ZDabPZkx\nPCumwAJYuJfG2HTr9dqCm/g86nY2m90Jy42zTeMGF5/P41biggMqwflLpZJFAoLUgwvsuzyAZbx/\nLpezqEIPbiIpuRiAmWAsvOe+uAFJBkouFguTjABSaF6DwcDcWSDxMAHWi4njzyi6JlRr1N9KpSLp\nnhHBQHO5nNnXYAfe7kaLiMOA/Fl5HIZ9IDDKmw4IBL+vHs/xYc/7Lg/0BxNB8yEKlngV3JNRbwDv\ndCjknr3ExU2sAeC5j8EJw9C8PKPRyPauWq2aFvXU8ayYgpd+ED8XDtea9ABmsQGg6XByj5ZzIEkI\nuqQd9xQRh961CdH2+32l02mdnJxIkhEG8QW485IOBWYgybQcmBk/H41GkmRaB0xhtVrZWiCWOLeT\nl9gw0clkog8fPpjamcvldqT/bDZTo9GwOQFRMb88M0saqL1cPswDPBpcfsCxIHjIP/Dv7Nd26LzA\nXPz+oIGkUinzingp713aYFRJ7jsuNrTHOeNSDYJAd3d3hpvwzmirxWJR4/FYhULBzJR94fYwFNZH\niDo4DXQFTrTdbg1bKBQKxqwGg4GB4U8Zz65wKxvGJfUBIHBLSQa4IZmi/lsPUh7SFnyAD/55zBOI\nDteddK/CQuwcEgd66PKAhuOnZ52EOuNtIM4A0wGiRXtCsicN3mG5XFrgy8ePH3V7e6tOp2MmFjkV\nzMOlRlNA7fVaXHSwv1yIxWJh+SEAdJh3rGU8HhsQTJg4mJG3i+PWxSXA3ELrgaH4C0wYM/iKP3OC\ntvYNn3fDnMRlcCFR3YfDoXldEGQwEJhxEm1w+REyhULBMB8YIGAl+RXQIzReLpeVyWQsivcYLTlu\nPCtNQdp10XBZkQjdblcnJyc76qxXoyWZqwlVjcuUxJ09KEOAT7FYNCZDhOFgMNhRSYvFoklWCGwf\n0Mi7FgoFZTIZtVotC80F0JNksRUg1djG2PqYTzC9fcMnyVxfX1tkZqvVspBjzAmvIo9GI4svAE3f\np5KizcBciB4EDPZmAUCnJJPWzE8UoxQfbMYeAvo2m02l02mVy2Wz4SuVioGw2PjeXw8mgJ2P0Ikz\nIYIgMK2RGBkiGhuNhq3l7du3hvTjtu71eqZ1skbeK2kuGBsRvNAEe0PIu08AI/NUuk+mQqv1+Ndj\nTYlnxRS86056kEC453xIMfYgUo3gI0/EuA33Da+yevQ3GnvgczBOTk7s3QhxJcjkUBSZJ+p6vb7j\nXvLSGoYoSd1uV4PBwHzREBiXOGkPQfcnk8kOXkKoLIAtcxIPAROczWYW3r3PxocAvWZD5CF4BiYc\nUYu8B3jAdrs1jW8fMMza0OYwifAIYJL5M8StiwkJluHjSpLmkh60M0LSYYA+1wAXNi5lhAXr8Ge1\nby40BuZjrT7UHbokCxTNCNOJs/9BAI0MTxTgCqiD/J6Ng4ve3d3p9vbWLovPld8nvaVdbQI1MZVK\nmWRm03kHngcDgeg5+H1zeQI7OTkxzQRJCnrOO4GeA0R6wt7n/uQrgB4agwdvcad5TWc8Hltocq/X\ns33cBzR6VyG/964+Lgl2rq8V0Gw27fOYGofchB5zajabKpVK5tYFR0GqFgqFnbyKTCZjOBSg9CGN\ni3kxcbD3fXIXTJz1kzcDLsMa99EG+4jwKRaLxhgkmdaYSqVUr9fNNOHZvV5PYRhaYuAPIsxZ2mUI\nHo1l0wlIIbyVjR8Oh6Z64zcHlCOL8BDCjEoG8XCI6XRajUbDAkfCMLTY9w8fPlhgjI913zcPh14q\nlYwx+Oi75XKpXq+n2Wym29tb3dzcWJgrBIakjXu+38soA+PSZTIZlctlk7bk4H/48EGj0cjqAGA2\nHLo4PvvPe4/YDzQ8wFl+Vi6XjRERg7Hv8njPQ7VaVbPZtDR6gNxUKqXRaKTRaGQBUgDRPqfEB1ol\nzYV2ygVE0yNCE/ok2hEhwbx4JfCC7BtRLxuh/bgfW62WxuOxYS94PmazmTqdjt69e2cA8qd4IJ4d\nU2AA1Eiyg8aE4KLCDBaLhW5vb9Xr9dTr9eyyICHZoDh1CsYjPUTJ9ft9u7jRXAsOfDgc6u3bt3r3\n7p3Nd4igJRkRBUFggBHqLvZ9p9NRp9PRZDLR1dWVhsPhjvkA2n4orwNzwc+Jagn4VSqVdgBbwL/B\nYLCj0h5DZB409VGRXH7csGhUXEoftcc+Jg1APc7Shx7jy/cMcDweWyKTBz65UPw/aVAHwQsnLmmp\nVLLgLC4nc9zc3KjT6ezUqdh3XjBrtDuyMD2AiGcC8Lfb7WqxWOjDhw+6urqyNPdDGNCh8ayYgj9o\nNIAwDC3h6fr62nIPttut3r17ZxKUbD584EjIqPobHaDwaB3j8Vjv3r2zGgfSPZgD2otEpQaBL95y\nqLzXZrOxyk3dblfNZlN/9Vd/pUqlYvZhGN4nIkVBPh8Vx7OSTAcuPio9di8eHAi51+up3++bWQY2\nMpvNTPpB0Pv2EE8Q9Rl4Him+3k0H48WtjJkCHjQcDr8VTu0HrmEYKVmE1WpVZ2dn5v24vb3VX/7l\nXxqTYw0eszhkOnDRYYrL5VIfPnwwcyUI7iNdcUni6fDuXIDhQ+o84dMAwN1uV7/4xS8MuITRwlxg\nDOBDaEXSg3B66niW5dgkGVgFOhyNW+AySw8hvahePqTUJ5FI8SYE4A7Dg3X+d1GvB/NCbPuI2c+F\n+ot5w7N5f/9cj3f4ZycRmNeGkG4+8CZqiuVyOVO9kdDz+VyDwcBCkD2ziz7f/7xWq5lGgvkAw8Ms\nOj09Ne9DNpvV7e2tzTcej3eqBvnz8mZREASWMMZzkKSSLMLR56J4k5TBRd1HGzwfcDG6rzCXaJ6I\npwd+vg9gZLAG/67QIHPg2uRnmBt8jTIgN+9vZjk2BhIKWxvCBCuISw31mY7RS+oZQ3RwqaMhrRy4\npB0XoI8b8BL8GAbr1URMIEk7uQz7kP5jwCNP5DwPm5535R2Ipyf2wuMyAHFJphdzsfbpdGrZqj7B\nKZoDwL4iUbvd7qMKqYZhaJ4LNAbccNjuMFy/X15oHMPAGV6wQFs+RV/STug5P4sy9mMGDIy5kv7e\nu9KZy++5/9xjBf+z0hRYQPRSeKmNZJV2QUncTnEbeEhTiM4V/eo1B37mi2c8dfjn+UP20pELdOw8\nUaAxOof32vBzEmlI5ImbL44xxDEv5kHikUTGuYDQB0Gg29vbbzGCqEYSpylE50M4cDGjzBXme4gR\nPIY24miUr4/JTty3rijNsW/eHX4omzTys6M0hWfFFF7Gy3gZ3+s4iik8uzDnl/EyXsavdzwrTOFv\neiSpbtGxz5b2KnX0eb8OLezYNX3KiK43zm6NmoJJ5kfSHsUBg3/T49h1HfN3x/zuuYzfKKYQRaD9\n91EC+tSN98/HZuVnHmT8ri5h0tr8fJ/y7ChO4b08fh7mOhbUjM6xby7m4zM+2CnqBXjK+SXZ+Z/C\nXKLricOX+BqHg/j9/C6Y3N+E4PmNYAoeJANQol1XtKqxB+aIJUh6phTfhsy7nHzYM3UAfRIPIGe0\ncu8xzMIDYayPpBu8LCDK3pvi6wIcM/B0BMFDeDDuwrOzM/OPk0zji9DijeA5cWuIag5+LvaQjk0k\nPHl3G0g+BUoeQ+ieubGHPgdBUqy34VDcQJxW4wE+/hEC7+kQzwd0QOzMY4dnqmTh+ijRqNsxDJOL\n7D5mPFumACoOUXm/MLH6p6enO5fPx7PP53MLJCEJJ6pJeI6P3z6dTtv3m83GUnPz+bwFSZHb7rMz\naUpDBNu+4TPz+D/+ZyICyRPwiT2g6NRVSOr74PfQr4u1EadQr9d1enpq4dNUJiI/gVqE0n0ps0PE\nRqw+sRA+Q5LyctVq1RKs8vm81T7o9/vWsIWWbvvWxh5Ku5ocDC+dTlu9Dc/UkN6s6xgmRGarL+wS\nhqHFR2QyGWtMRF4K+RVEiobhQzevQ+vCQwTth2FoNE8iGPSczWbtnCaTieXhjEajJ2sRz5YpcLgc\nON+zMfV6XZ999pkdLuG6RIQNh0OrzxcEgcbj8U5QjGcm9I/kAtXr9Z2uUfRIJB+ALEUYDynIk8lk\np7pQ0ro8949KnGq1qtPTU0kPNSQIB95sHtq7kba9jwlRGwJJzd5Vq1Wbp16vG7MLw3An1NmnUler\nVYve9HvotSLKrBOaS72DSqWik5MTtdttK2GHRtdsNtXr9RQEgaUBNxoNa6KaNJjHuyJ94hrZjDAX\ntAWkNmcYBMG3sluj2g/r8kFfmUzGaIZwZzppEctAeDqahKTYQrF++AI/uHWZq1KpGHOF7okDoQI3\nGaCVSuVgecCk8WyZAtxZeijcSr48XaIuLi5Mg4DY6J60Xq81GAysgUy0K7Qn5nq9boyAGgck2dTr\ndfM9kxVHi7Xlcqlf/epXymazVm8BYk8ClPiM9FAuDu5PO7ezszPrzuTDg8fjsTVE5flJsRlBcF9H\nkqhF0ovpTXhycmJrnkwmptrXajVNp1N9+PDBOhKRb0KSmN9Dvy6vacG4OSc0EzQELuZkMrE9m0wm\n1u9gX1JPEARW5IYoV9LRG42G1YGEDmAI1KjsdDpaLpdWYIX5ouuC4dBfgSY6XE5qIxJlS4Qloccw\npel0ak1oSfWPG+yNJDMVaLJD39R2u61isWjVt4fDofXUIGycEnAEoT12PEum4MEoqhR56UajTVKM\nIRCk9Hg8NhU2l8tZjr8f3hZFRaPwyevXr/WjH/3IPkdeBD0cYRxUY6KeA+pidC4/ZxSzoHHo5eWl\nTk9PraIzZdkoM4ZtT269D7lNmitqixJHD2HRDwEmw54RKeij6bzKHbemUqmk7XarWq2mbDarVqul\nZrNpRUfJFYBh+lJj5AwEQXAwyIiLg2aRzWZ1cnKiZrOp8/NzK4KLICDAJ5O57zpFsRmyCcGEktbF\nxT87O7N+n5Tt42w4y3a7bWn7dHOK1vXwgGR0Pt+MhwrOZETSiRomAZMhUrVcLmswGEh6KAKbRBuH\nxrNjChCnDymW7iVCvV43uxsCQoIBCKJCYXdTaTiaIIKmgBRE0rVaLZ2cnJitRqLVYDDY6ftQKpUU\nBIGp1lQaIpQ2bnCpyFLEzqeRbbvdtnp+ZMP5Sk9ee/KVq+P2kMIlmDE8E4KTZIk8Xrr43AjMB59M\nFJ1HkhUr4SIyn29o4vMkOFeYEpeHc/Fp69Hh7XpvDn322WemLaCC8y4kttEGD6FBvkx0D/26CKEm\nuzOVuq/9SDETaBBzBUYShqF6vd5ODc59NTDYH/YY7QaMid/d3d3ZejyGwjNYD+/+lPHsmAIDyUS5\nbP7vEV68C3BZDpMsS8AzH2brR9StRJ0BDoFqSt1u16ovBcFD85FsNmsFWPl77OW4uTyD48BrtZpe\nv35t2k+xWNTPf/5zswdpfY4Kyjw+fThuLuageAtViZDo5JYMBgO7HCSg8beYJ6ydZzNn1AW53T50\nbrq7u1O1WrUsQ8wE1k99CjJeKWjj057jPAAeP/B1IbC5MRmoCcE8jUbDWsj5pCHvhmV4EJp3oEAN\nJiS5Gpg7NLWFcTMXTM+nRcedG/sLXuT7OnDWpNkjLMA2AL0xaaGRp7qynxVT8JcJzoi7DyKlpkIq\nldJwOLRsuUajYbY36j6FO/yFjrrPUF+91wH8AdDSJy2hHnsCYfMxXw6tEWmYz+f15s0btVot66JN\n+nIYhtZejSIfvsgqYFbSHiLrz0RwAAAgAElEQVSRfAVlCLZcLu9IaMAy+k34eHqI2f/zc3lGDBF7\nLASXHJ+n1iEdwieTiQaDgYG4vlFN0mC/oQMYHqYPqekwOJgpWAZM1fexjO6h30eYjBcepNJjanls\nCxdvp9Oxtm8wRcyO6EDQodGBByyXS2Nk0GatVrPanuAjaHwkmbE3TxnPiilEI8U8QgyhhWFoFW4g\nci4qxTSotIP7MErofj7MDSrlTCYTIy66IVMCvVQqSbpnJFRExn0Ht066rMy13W53XJBoONlsVrPZ\nzGpEoBL67s/sDfhCXD0AL8W9G5N29z6DFFCWXpMUTl2v15a45LMq4xheND5kPp+bZoYGAtNZrVbW\n7CadTps0p9YhadrUXIg7L/ZvtVpZY1lK/BcKBXU6HfV6Pd3e3urk5GTHVJtMJoahUFwlCkBH50Ij\n9VrgZrMxwcDlwxMRhqEmk4lub281Ho81GAw0HA53sIU47Q76QOLjLaKnA2AnmlI+n7ciQ9TFgAFB\n70+JjZCeGVOQdtN9IWpcM95DAIhEjT4uKCXMfCMUnhudB6wBDu2bgcKAPEgGqOkrJ1FsFEkRNxfD\np8KGYaiTkxMDLbPZrBVVke67MtfrdbPteVekmK+5ELeHqKySTAvypg/MAi8FjJU4iOVyqWazqZub\nG9MW4tRsv67o2nHvcjkBIolVwLShQAhVmKI1EPzwjJDq27hAMV3ootVoNNRoNAxfQpvx5sO+jFBv\nZm02970aYUSYfh7rKpfLBj53u131+31LQfdCI25dnin42gwUrUGLpfNWLpfTzc2NhsOhbm9vd+pF\nck4/qDgFJIy3ITEj4Mh0+AVYubm50WAwsAo4RM5FAS6GVwUXi4X5mgl4okhnrVbbCSjhcqbTafOx\nS7LD2ycNkDCpVMoQc8wDvAO/8zu/Y5IHF95kMrGGpdvtfQOQ4XC499BRNyWZyu7B1M1mo7OzM2M6\nNFKB8TQaDd3d3andbu8EACXNxd74wCwff0GhFUws1GskMWCkP5ukPcQcJDaFTtww18vLS4VhqHa7\nrVarpcVioU6no9FoZO67TCYT65VioB3BIDwuUi6X1W63DeAE00CNf/v2rZUHpKCMp8O4dUUZKxec\nBsD1el2vXr0yITgYDPT27Vu9ffvWYh+iPUKeOj6JKQRB8JWksaSNpHUYhr8fBEFL0j+V9BNJX0n6\nwzAM+499djSklMuEveSZhT9c79/mb+OkjgeTfBUkwCnUOKrcICmwwXEboqJVKhUrjf7N3ux1q0n3\nhIDLCYmDFMdsgBgBTmE4uKKOmYf1+hZmxC5AeN61SPlzXLpcoH1zgZPwdx5x965MX6CVOAUkKFF7\nd3d3RtxJmhCS3GNG3oNC7wTvYer1esb0Je1oS/sYrC+gwrzj8Vjtdlt3d3cmNBAIeCWgQ+912sfw\neL53J3tciLMA/IZufXQtf/cpjOG70BT+vTAMb93//0TSvwrD8E+DIPiTb/7/Dx/7UJ93QCw7TVO4\npIBKuAyxUSEmNA3p281F/IVB8hN+e3d3Z/bhaDSyd8HLMZ1ODbTCtsOVh4aTdCj+klCnkPUiRcEX\nWMPt7a3Z2zAGH9GXRGC8N1IcBogG4eMvJO3EQ3iknIjIpEAYnus7IcHs8vm8wjA0Cc07+VqNmF6e\nIe6L4We93kSSHkKWqSaF9tHr9azuZVytxmOYAkKJi0mosd8TanwOBgPbO87BC6kkMJp38ftBjA6a\ny2Kx0Gg0srqMPrSaOXzuxXOJaPwDSX/nm+//saR/rUcyBbg7Pmm6EUsy6Yi6lE6nzdOAaul93F7D\n2DcfjCYa307RVg7LMwSIComLDZpEaPwMEwRVk4g1iIzAFTQXSr774rSYWEkDhgERYueenp4axoB6\ni4rvI/9wwUkPkZdxKL1nvrhn6dDtTS7WTL4DCD2mhDcVwWuS9pBBEd33798bIwFv8rkPhBvDFHzQ\n0r499IwUZoUAwevg3wczD+AULQEtjQu6jwkhNNh74k3woEB33qSD9qBZ5npq8dZPZQqhpP89uK+c\n9N+HYfhnks7DMPzwze8/Sjp/yoM5EDr+cOgcpvQQwINqjX2JlAGlBsTZR2SLxcKIiIg032vQ23eb\nzcZ6PnrAD5/8Pu7MRUCqpNNp/fKXvzR7cTQaWdQkZkMq9dDHAObHoe9T56PAJpF8mFSz2Uyj0Ui1\nWm1HDQak5eImAXIMPAy+5TwmFngDFbMrlYp5hLzGJ8lMh0MAGXEUXAyqOyM1yVVYr9fW/g73J/Y3\n+3dM9CTrQ2OF2RJAtd1uzQuASxUzAhA0qaOXnwsGCmPw0aXMT4Hbm5sby4fxdOBD0X9dQOO/G4bh\nVRAEZ5L+jyAI/sr/MgzDMEgotRYEwR9L+uOE3+2ougBfRJVx0VF16YngcxIkmTfBJ4+4d9uR6N52\nQzICmnGhfG1DpBFaQqfTMemQJAn4OaotcRY+u02SpYQj1d6/f2/9C1jfPncTxMi7E/rdbDZtblyA\nXhVH+8JcAcBLSrrya8TEIHmn1WqZycfl82HVaHdgDNjK0XePG6j/mG3EBhDdiOuTXBEAaCR4NIJy\n3z6yNrRXGhHBLDAVb25u1Ov1dlLQJVkwlddK9jEGTCjwHUww3nmz2Zg24hkcf+81maeOT2IKYRhe\nffP1JgiCfy7pb0m6DoLgMgzDD0EQXEq6SfjbP5P0Z9L+Go1hGFryhySz4TEJSLeNNjDxB8GlTxo+\njsFjGEhUUHMiGOlrwOUlrdjbqkkAGZ9B+tIRmUzNWq2m1Wpl5c4nk4nevXtnGYrHRKr5ub1Zg//c\nM0Pi+JEwBOl4VxoSfZ8Xx7eiq9frdmbEEPBePu2cDs1RwC8pfNuvz0ci+nD22Wxmkvn9+/fm5qWl\nmv93yHUX/XmtVrM2f7gjoRtSlQEcS6WSaS6c9aGz8+8GzUn3WM9kMjFcB1og3kLa7UHpn/OU8eQa\njUEQlIMgqPK9pP9A0l9K+peS/uibj/2RpH/x1DkkGbBTqVQsEg9i22w2FslFUxhfKIRNicMTosg8\nh0WSC4dSLBatCSwZhmgxSN1Op2Op2fvUUT+83xw026u3BE59+PDBehjQE4HnH5rLay2oy1x8AD4S\nn1B5fVMcWuF5Zpc0h8eBSN5pNBoKw9BiEwhNxjzDFenNvlQqdbBRL4weKQ2uQ/Qfe7NYLKzHKAFI\naE7eA7RvgPCTkn1ycqIf/ehHZuIR9IXWSJwB2anssy+OkjTQSDCXa7WaYU2YZ5w5Zqz0kHnrvRtP\nDVySPk1TOJf0z795iYyk/zEMw/81CII/l/TPgiD4B5K+lvSHT3k44BduKsAoNhqOSWfk4XBo7ibc\nZ36D9kkDPgvX5/BokkJmmg+wWa/Xur6+1tXVlV0kr5YmmRCeo3uuDrBXKpV0dXVlktP3kfRup7iY\n/ei6vPeBfcCl61VjvAOTyUTdbtd8+jyfde3bQzQKmAw/x3TziVzj8diCewgA82Av0u8YQA4Q0OdR\n8A7T6VSj0chMMTQUn3x0jNZFnAceFdKY0bKgl+l0utP5nHB0STvg4765ME18rgraK4w3DMOd6EwY\nq8fbngoySp/AFMIw/GtJ/3bMz7uS/u6T30gyu2y7vc/2ovvx3d2dxuOx4Qq/+MUvLNMPlcofNMR6\nyHTAY8H3ZD6enZ0Zmu3dld425d1gUh7UjNkb4/S8EyogEXmEVSO10R78M3nPQ+vyqLQki/is1Wom\niQBkAT+n06mGw+FOabRDxTrW67WZJXhV3r9/b3UNULPn87m+/vprc6n56EWf57IP1ORMffEYJGQq\nlbJs1X6/r263q/F4bPN5wDSqTcaNzWaj8XhsJutsNrNgId9Vq9/v65e//KUBt2h/CIhjTQefp0Is\nAnuDJjocDi1hDsbgBRnC4qmmg/SM+z6A7PrcAP5P4hC2vA/e8JcOaZAwp6QHiYqXgZ9DZPjfCa7h\n3fBsIH355y9vkg2OluDnIEkIex4CJyWZ77kUh9bl3xMVmPnQSLwv3AcQAcp5DCAK0jKXd0tSqQoE\n3adig/tEz0vaLYQbld5J9AnGg2ruMRk0H9/pCoaDnX+sqRcEgTFRTALwEpiC11BhbpyPxxSOiRmg\nBb30oC1TOwEzGQbLHkYF4Z55fvObweAKwtZC6kXdcdGvnlvuQ3qjc/GPv/XBQWAbYbib7+/Le/m4\n9n2qr7e/ISKeTeBJ1B/P10MSx/+dZzqeUP1l9rkcXBykXDTmg8H/o2g6mZ8+14Bz80zHn4v/fVIe\nQtI6fa9RmB2XhII07CnPJvfhmD1kbvACaGC9XhsICFbh0/OhAzQG9v2Yu+bXhevVB7vhXYjSt89m\n3TN+85nCN7+zrz6KT9KOtEF1PRZ1jVPv+Tlz+cvjXUpI832S5th38O7XaIwD75hUcu0x6/Lr8XUp\n+D8DabdvDf5C71uTjwSNngvn5TWe6O+POUs/n8dKvH0NM/gUN53HYJjLCxBPJ34Pk9Z17JzQhn+W\nF5CHzMjI+GEwhZfxMl7GdzZe2sa9jJfxMh4/nmXq9A9teLPDeyc8KBmnVnp36SGNLmpexP1NdM4k\nIHTf331Xf3NoPOXvnjrXy9gdPwim8DdJDJ8yVxS1j4KCgHA+ScfHI3iw8Nh3jfuZZ0RRphRN6Ipj\nYknMK+qhiD7fzxmHx8R5OB67Vh/Y5Jnfpzx733yH1vV90KU/1+/j+b9xTCEKlkUBHb9hn+Kv9USG\nW8/7gv2ckvb61uOejRcDl6AkcxWenJyY+85HYxKU5WMIomv2z48yHQ9a4TLE3endg/5CESATXW90\nxDE8wE3choTrcnnYXxhhkrdj3x76OSTtuHd93IhPDmNdjzkzvzaf2kw/C1/Bi8H/KfzzVI2Jf74x\nkfe4+ViFQ9Ggx4xnzRR8+m/UE0A4rfRQHxAXXzqdthBa8hqOmQsJ7V2REDRlu/FxwyTIwSBG4VDz\nDbLmiLcgSo5ItlarpbOzM3Ph0fKOegS+0CnhyvuIjag7fPr410ulkjKZjOr1upWzx/2Fi5XIPJqo\nHLpElCP3NSNw5zI3FYo4Jx9hSGQjc+0bvkQ+IchheN+7w/dIoGIVvn2YAyHcx3RRInbARxqmUvcV\nok9PT60fCcFEhHHzr9frablcWjDSvuG9a97b5vt2fP755xaqTewFgX0EapGt+ZTxbJmCdzFFpY6P\nDcenWyqVTBL0ej3zWyMFk0qkReeSHtxO+KdLpZLOz+8zwEnR9eGlk8nEMgBhSHFuqCAIjMCIU6DT\n0OnpqfL5vD777DOLd59MJrq4uNByuVSn07GoPNxeZFh6Se7nIviFC8nlIaGnVCpZYg/Pgxl1u11r\nIefLpsXNxfcE9TAXocdoQGS5+nBtMjgHg4HVzQjDbzcHjs7Fc0lSK5fLlrDUaDR0eXlpeR7kQRD9\n+vHjR9VqNdOCosFgUVMIpk2HsnK5bF22Li4urMIT6eLU3ICZU/AX7WUfY4iaIwhAuntdXl7q5ORE\n6/Xawv8J5yZwjFSAxzbrZTxbpkDQkiQL5ICoy+WyisWiXr9+rUwmY92iSH6RHtKm4fBIhkNzcYFQ\nQel09Pnnn9tFWy7vm6De3d3p/fv3JlUhDAJkGF7VYy5K1ZfLZTUaDbXbbV1cXFjX6cFgYGnAXO5f\n/epXFg5N05hooo0nAl+X0ffgpKQ8WgIpyEh5iqrSOq5arUrSt9R7P5dfE8ymUqmoUChYSDB1MDGX\nCCn/+PGjstmsdVWil0KS2QKzgWnD5M7OzvSjH/1I9XrdLieNeu7u7lQqlfTu3TtVKhUzzQg6Soor\nYF3QH5oePR35WRiGVq4vDEOrMi09dGwic5LcjrgRxXiCILBmyp9//rnevHmzU/KOHhGpVMoyKWHQ\nT43NeLZMQXoIMfUlyIlSoxhopVLR+fm5cU3sVmoPeJMgaaCmITXb7bZKpZLVBLi4uFCj0ZB0LzVW\nq5W16SJ3wXdB8kky0Xl8sIsv1AFxrVYrvX//XpIssYfqO7VazToTMUdcgI+3Q4MgMCZK67NWq7XT\nciydTluB2lKpZCnNlP7yNnTS/hGKS6emV69eqVKpSHowIShOQ5eq+Xxupee/+uora7ASBWGjc3HZ\n0HpOT0/1+vVrtVot0w5JM4ah5vN5jUYjNZtNq+rEu+3TIAkvhpH4jk3r9X2/UkLeT05O7GzJaA2C\nwDSSQ2YKggnagCGdnp7qRz/6kU5PT1Wr1SxZjr0Cu0AjprRA0h4eGs+SKfgKNRxAKpVSvV43iYwa\njTSCS1OF2ZsPSR2ipIcsQa9ywxiwgVHhPOhWLBY1mUx2SpUheeK4s7/ISEHCZguFgqVL+3Bcypr5\nTs1IdEyVpNqTzIXKjmRtNBo7mownfGoBlstlzWYzq5HZ6/VsrjgGhOTnd7wjOQ9oUuA+nB3Vl3u9\nnjXZBZOJOy8PKIJJcM40l+GCkrPBPqDBwICZy4Oe0bkwdXwR1tFopEqlYrVBJVmDW2jXt61Dhfch\n33HDA72EMYOb1et1NRoNVatVFYtF9fv3dZCXy6VVN+dvwbx8huZjx7NkCtIDcjuZTOzC+8w2kl2k\nB/OiUCjoyy+/NICMGP6kiyrturBQ6yA4QlkBptj0ZrMp6aGACRWgqAcQPQzvCcDFuFgsrNYjEm08\nHhtoyrNRQ3FX8nnwBS5e3FysBeLkcvJzbHpqR6BVUDSWd4h6OqKMwUslWtSR+IS3YTqdmuTzSUMg\n+D6r0NdtjHNbwlSWy6UajYZarZYxToA3n6mYSt2X1EdzRNuELuIkqjeRoEOYOBgS6eK+dgIl5SnV\n5/NVvLCLG/yOz1Kr8/z8XGdnZ4Yl0PilXq/vFLDxXaU+ZTxrpgASTkpxNps1jk0iDyBTtVrV+/fv\nrXgml4cKP0k+fogM4sEUoPBnKpWyVObLy0vrEn17e6vNZqObmxu7dJJ23HsMf2l8SjNqNZIEhgLD\n8Hn8INsQPd2cokTtVW8YEJoJHYV8Byc0iVKppHq9bnsEyAhDQKr6EZ0LBjSdTnV7e6tGo2HZg2S2\nrtdrMwcBhSlKy5yov9G5/JlRBBaBgNZAPQPSkAE9+RnaHlhK3Iibi8EaAZxpB0AfD9Kc8XZwSTHT\n9qn0HkiV7jWQs7MzvXr1yoBTGh1Vq1W7A9Avlb4x/35Q5gMXFenrqxeD3K/Xa7NHM5mMBoOBrq+v\n9fbtW3W7XSuu4cukxQ2fwbfdbs21NRwOzRThECSZ2jmbzXRzc7PTj4GLfkxaM1mBAJtILiSPJJNA\nEBX/h3GgUewLJqJoCeaPz2RkLkBBtI5er6fhcKjFYqF+v79TFzIuMMdrP91u1xgRzI96CjTihdlf\nXV1ZizdcrABxUW+R14AwI3w9BlynfG61WpkZmUqlDItBM8JD5IPD4uZifZhvPEOSdaDClUzzV18R\njAsLMz9UWxONDHMZ0LZYLGo0Gqnf75tWXC6XFYahtTVYrx96XEbB08eMZ8kUpF0AyBfhIPimWq0a\nEEhJtH/zb/6NPnz4YADgsfUMfao0DAdbHzURO5TuTKPRSL1eT9Pp1NTdfYwHLQDzAE8EczQaDVNn\nYQDNZtMAJySQt0v3ETTvggbE3uEapK9FtCw7hEUZdt+30qeG+/k4G5rn0F7N2/Ae8OOShmGojx8/\nqtfrGciIezBOzeas/MXEFQ0YiElJHQ7Ohuf6tGcPNu6jP4+V8Pe4BwFxOSuKx0TrM0aDp+Lm84N9\nRFPI5/O6uroyLObk5ETlctmqckGjfs6njmfJFPyBoPbjZwZt/t3f/V393u/9nsbjsd6+fau/+Iu/\n0BdffKFOp2NVmI7x0fqDQlVE/W2328rlcvrxj3+s8/NzI4rb21u9fft2p8a/lExkXmrjQQE4gtmA\nyKMO+y5Yd3d3qtfrVrKtXq/vdMNOWpMPfMEG3263ajab1pbu9PTUPjeZTHRzc2Ol0ijiiiaTNHyk\nZxAEGo/HtlbMu5OTE2tsQrGQ6+trC8ai8GlUSifRBi5Ozsx7Y8BaGHhXUqmU+v2+bm5uVKlULFhq\n31z+DHlWoVDQ2dmZXr9+bZ3BgyCwYisAgMS+oJkk4SR+eO2t3W7bc1arld68eaPXr18bXcBIvUa4\nzyw6djxLpiB92x5iM7fbrfmmCfDpdrtG8NGS14xjgzgAbIhAw3yYTCamwvm5UAfjAMa4QdwALlYY\nApLcR2CCnZTLZUOcpftGu1dXV6bd7PNAoPGAUZTLZUO1aZTqYwII+OGCwaRQn5P2kYvq/eubzX0H\nL/YNDwj7RG1L1svvDl0e/168M19970bWBkNA8wGLONbm9kFEnB1aHYwcbAT3LJ4pPEus7VimIN2b\nqqenpzsVmDzYjHeN8/N7/ynj2TIF6dtx9EQxYusDnPX7favt7+1p/vbYw/BFOVD3qDdIHwGkHGHH\nUTvw0BxeM6hWqxYth1sQN1q0wxDzcBFyuZwBaNHB52EIhPxiJhDsxd7AEOjD4M0pGAtmSFIAGPNR\nZZtn4GEZjUYWy4Cp4cuXQciEj+8jbN6LuA40K19HM5/P6+7uzjSTUqlkF47ybJTx30cbzEVreCpT\nVyoVM5OWy6V+9atfWTVp9pVQdhiH9O32hdEBIyFyEkZK7MN2uzU632w21nEaN6SPy9kXg7FvPNt6\nClxoJAJSM5PJqN1uS5KF/oLKA7ZA0ABSx1xWT4TY1R4vuLu7U6FQ0Gw2M7MBENSbOnFBIx4gQ0Kj\nSuMy5QJJD5fTaz0Adh6ERNpFvQ98RRMBrIJJeFsZdReGR7n17XZr6i+YgH9+3PpgWBCyD+ZCk8pk\nMubh8QlfXquJPjduPo+F8K7QClKcZ3GhCcH2zH8f8/GM1ffGhCEAzvrK12AO7IWPi/Brixs+Oa5Y\nLGowGFjxXoLkKJALZgaADIYB8/ZJU48dz5YpSNq52CDYZBGi1g8GA6va64FF/s5rAMfOKckuPAQt\nybwbzIVXBCbEiPMG8GwkPF6TUqm0g5x7dJqisdiJUdfqPtwEgiZuHglNR2ck8mAwMKbA87mwMKoo\n4BY3l2cgnBcBNKxBkvWzYF7vMeDS7CNoz6R8otXHjx8twctnnRLiTXi4z7vwDWiS5kKLI9+BsHdC\nuheL+zb3lHTnb2A2zO/dkUmMyGslvNOHDx9M8NDKIAgC84AB2vZ6PcMt9oHex4xnbT5IDxvlXTNI\nza+++kpffvmlrq+vd6oOe9sW0+GYwd9BxNj4BNwAYnotwtv1+ySPt0u9f90TDQzGSzQYHRcMs8WH\ncMe57mCKPqmM1ntcCOk+lBnTixgDvBowqWhwVNza/P5xYYlH8O9Bk1ekGmeMF8k/JynSEJMHOxpG\ngY3PpSQcnTwIArFms5l1jNqHX3BmaArkjsBwR6ORuZUlGdblY13AVrw6nzSX/7fZbFQsFnfa9kE7\naA7Q5M3NjQmWJPPuMePZMgV/UPjVURknk4kqlYo1SgGc47AgaOlxhUm8XUxgFEQ4HA7tInpgh/fk\n0OMIOYpi8371et1cg5vNxmxiVGJJ5rf3vSWwKf06kwbvSUoxDAmpRt8CAoYIb6Y/I0S8by5+xz7A\nDEga8q5Yzsm7XsPwoecB0m4faMt+SbKkMhLNorEYaFsIDc4SLeUQoOk9OGBAMHSClAikymazhpV4\nsxez8hgbn70kMc1nwqJBrFb3zX9vbm70xRdfGENnTz4VbHy2TEF64NTZbFatVkunp6dmk3NYbJYP\n/OHSchDHumiYCxdauVxWu93W5eWl+v2+aRGe4USJKkm6+d8zD9yfd8b2RQOAGKbTqfr9vq6uroyg\nYSL7mBBSkDgH6gH4SwphE4HH5UEj8czpkKmClkMjHdx1BJzRNRtzCPNJeshq5b0PnZOP1gRM9eYS\nocjgQHSi6vV61pnqGMnKWTAHGgNRg5iEPMtjAMSzgA3ty470Gh5MBPN1MBiYlpxKpfThwwf1+319\n9dVX6nQ6OyHVjB+k+eALaGDPXV5e6uzszOoocMF8Si+RdJKMaRxyFYIbMFelUtHFxYUuLi50fn6u\nYrFokgwTgiw43kHSDqYRNyBi1H80D58TgLREbSQys9PpqN/v22Efio7zUs7nGgCYwjCIo6d/JN8T\ne8Hf7ZuL+cATuEDsHXY5KndU6wGog8Eeaq/GesAIiN9AmgfBfeowxU1ms5m63a7evXtnfSXRfg7F\nsyyXS9XrdZPQMGm6jbO/g8FAYRha0NfHjx81GAx2Ijr3MVbowwsQ3KhoGJzN27dvNRwO9fHjRzsz\naN4zzKeOZ8sU4JbY9tPpVFdXVyqXyyYtv/jiC93e3mo2m5ndFQ1GOnZzPMiDr/7Vq1fWQu1nP/uZ\n9Vnk4D0D8ipt0liv17q6utLHjx9VKpX05ZdfmqvQewao/YDEwS/tE4VIWkrCTHBdoVYul0t9/PjR\nSnrBIK6urkxqonn4f5LskiYR9GazsWhGzBEuy9nZmUqlkhU4+eKLL4wZTKdTe340NDppEMh2fX2t\n0Wik0WhkhXBOTk5MY1ytVur3+8aAWZtvH3fITNlsNhZUNR6P1e/39Ytf/MLiO2C8hIPTBQuGzVow\nGQ/RBwwHWhoMBlaPAsB2PB7r/fv3xuzAsryX6qleB8az7vtA9B8qIe6gXC6n4XCo6+triymPgm18\nPXZ9BIgAWuXzeb169cqKdDAXki6qhew7DO+ZQMX1QBoSncvNc/hMFK8AaEsyW3xMgy+RRmSjT6KJ\n9lj0DIb989J0HygHqIhNn06nzW0XhqFub29N4pFGzdlxQY8JTee8eEcPdKL18fwotsQ5wRSOoQ+8\nHP68PE6wXq93JDTn5r8/lhZ9KL8XjASQATBGtYE4+o8ZP4xmMF6K4pcFJ0CljQIsxx52dPh+gcRF\nAL7xvOich1RCadfFBgPwqj3vDeGAWnsQk+GJOco8+N7vBTYvz/DZmEl5E/zeX6K4EWUQmA7ejYq3\nCByEkF0PAGOPew3v0PCM1IOcfl8AMaOMLqk4zb65OJPofuzDl7y34TH0yFxRRpx0xl4IHhg/DKYQ\n+dzOhnk7dF+03RPeR1cbie0AACAASURBVJJ26in4udASHkNUSfP4f9LuxfRM7tCF2Sdd/fORPjwr\nKmmjKrUnvH1IvZ/Lz4Nr1V8etB80Bj+Xf84x+xt1h/p39b97LCNImss/M254jeS7GH6+6LsnuW33\njB8eU3gZL+NlfNJ4aRv3Ml7Gy3j8eJbeh32q43f1u2OCO6L22mMDQp6DFvZDGXFqdNSsSbK19/0d\nI2paxD0r7vz3zRV9hv+buPUdQ7vHmlWfMp4lU9i3wdJub0YPNCU9I+7/SSNqk/pgEp4RRZM/9ZD8\n2qI2a3Rt3yVBxF2075rgoucXB8Y95ln+a/RnUbrweFD0vPZd9ENz+jmin/FAZBxziNuD6Dslze/x\nGkaSB+JTxrNkCgy/Cd7dhIuyVqtZJxzcgx7R9xFrjwEFg+AhO9Mn1OAXJkLNu53whjyGk3PQgHGp\nVMpKsePrZ13e40DU4VP2k3/p9H1TnXa7be+Om9K7vI51EUbnYS+lh+rOFHT1yVJ+jfwsSZJK35a6\nuHd9b5BisahGo2HBSz5GAPchsR8ebE0SJEl0SCh8rVazZDKeGY3zOIY2/O98CjQMjorUhKJL367q\nRX2FT2EQz5YpBMFDeizFQShxXSwWrasSQTGDwUCz2cxaqa3Xaw2HQ0myWo375iKJBgLAy4GLEtce\nl4bPElmJT54kmX1z8TxCnL3btVar6fz8XJ9//rmV2iIghoQe8jvI+9g3fHq1d60RxNRsNu2C0A8B\nt6UvvnJMtyFckURo+i5YtMNrt9tWj4LKxAQX9fv9ndwOP6ISl/qFhG5DKz6mhTR3isFyYcl5oPht\n0iViPtysMFK8UqVSyUrOSdJ4PDb68LUdYPa+Zmh0Hn5Gwpr07RZyJJVdXl7auZdKpZ3IXgLWer3e\nk13zB5lCEAT/SNJ/IukmDMN/65uftST9U0k/kfSVpD8Mw7Af3K/gv5H0H0uaSfr7YRj+P8e+jFe3\nKG9NdmS9Xtf5+bmazaYRGcU/SF2dTCbq9Xq6ublRp9OxZBJauiW5LH26ry+FRqYfEXP+Gbi5CAAK\ngvtyZmgUSXMRvASzId++Uqmo3W7bWslVQAuaz+e6vb2195vNZlbkI4kJwXg8g2NdlUpFJycnury8\n1HK5tEIdFBylEjFRhhD4PiLj8lDnAOb96tUrnZ+f66c//amKxaK63a5VXbq9vdVXX31lUZ5oYlEN\nJWrW0cOxVqup2WxaOjN9QAqFgm5ubnR7e2sMj2K7SHX6hFAoJW4uSfZM+ktkMhkraXdxcWEdyAgP\nJ9pwMBiYwIFJxPXk9BqJL6rDuXkNiNRt6IdzZl6iK6lC9RSN8hhN4X+Q9N9K+ifuZ38i6V+FYfin\nQRD8yTf//4eS/iNJP/3m39+W9N998/Wo4W0+uD/hqycnJ3r9+rXa7bZarZbC8D7Wvtfr6fT01DYI\nCUpsOqG3+2oqkEzDhaG8O004qNgLp0eKrtdrq3w8n88tUy+anOIHxEUyUCaTsUKcJycn1omKMu7Y\nxWg9BC8REo1kSloX0sXPWa/XLa/jzZs36na7lgTV6XQsRBgTJgxDKwiTRGTkjnhJWi6X9dlnn+m3\nfuu3rDsVn1kul1YrgISpfr9vjGxfxF42m9Xp6am1v4MmKHHH+cxmM6tOdXt7a23bfIgz5ktS0pxP\n26eseqvVsjNDcPjQ8el0quFwaGo9fR59Bero8GYd/4cea7WaTk5OVK1WjQESdQvj6vf76na7ur29\nVbPZtMza74UphGH4fwZB8JPIj/9A0t/55vt/LOlf654p/IGkfxLen+D/FQRBIwiCyzAMPzzmpbgI\nlFaHmLHdO52OqXyU2iK7MQxD6/3H5iflB0gPLdnJUMQebTQaJg04cCIdwzC0Pga8JxltPDNueAlE\nOHCj0VC9Xle73TYiImmKQ8eU4mL4CM6k4QkMZtVsNlWv1/XZZ5+ZmcLl9fgG+R5cGFKtYXhJc61W\nK2POlUrFitNiY1PBuVqtWnYjlZC73e6OTZ6kzqfTaes2Tir4ycmJ6vW6JRCh4VBRGuk7GAwsUcqH\nVUcjCDmjVCplhVOhsVevXllKOAzMp09jZqbTaY1GIwtZJm8ljjbYe8wQ6Ji2iGdnZ9bQ1vdTDcPQ\nmvKyfgrn+KIujx1PxRTO3UX/KOn8m+9fS3rrPvfum58dzRQ4DF8GjUSQSqWiq6srU9vDMLSqOGTJ\n+U3nOWSpxc3lqxJR5rxWq+knP/mJSbAwDC2Tj3lgIrQdh6Cl5OhCX2iUTEVJRuTb7X23Z0+c1DXk\nbyBwTJYkxuALk/oyZc1m08AxSZa9J8m0K88kvF28z0zxSUbsBeulMzfqc71eN20KtX42m+2YOnF2\nNxoPKL8nehrJgCstFoudzldkunozKqnupN+3MAx3itZOp1O1220z23yPijAMDXyk87QHuvftIXOB\nI6CBtNttMysxYyihR+g/9NFsNq2P6qdE+H4y0BiGYRg8ISIxCII/lvTHSb9HpUOF5TKSPTibzczE\noAALaidE4+sqJLzDDnq9Xq9NNWy328bZ5/O5hsPhTmw/5b3IcSe9mMsRJWwIzaf9+hoQ8/lc+Xze\n1FveJ5VKWf4+BMpc+8qWcVGp+Eu/h2azaaXDwzC0ngtBEJh9Pp1Ov7Um9jRuIFkBQtGkuJDsIQyI\nJCzfQq5QKFhJefYvbg5fxJQswn6/r1wuZ02AyIx8/fq1mVo0mOU9/b84UBNQVpIxL5KiSHmHKdzd\n3VlBHprM8p6YmT5pKmmwRmpNoKlgQmAWUBl7Pp/r/Pzczmc2m+0UkHmqB+KpEY3XQRBcStI3X2++\n+fmVpDfuc59987NvjTAM/ywMw98PXdilJwTcY6vVyopIDAYDs8kgOtRUpBspwEgin93mn++/hwA8\n+k/B09VqtdOsJAjuswGjNQm9LzxJgjMnkme73ZrKCPDltZvT01NdXFzsEJjHK+Iuj9tf20P2Ew8O\nlZ28mYC2td1ud9K4UbMPzYUZxbuHYbhTxox6hp5Z9Pt9ffz4Ud1u1+xf3je6fx6JZy5KyVGjk2Iq\no9FIkqzYKq5Q/vkiv1Fa8P9n/ZgieEkwXX1BVcyzWq1mDYRgflzSOMkdncvvMx4tqn9TvRwTyReo\n6Xa7Gg6HGg6HVjPCe9MeM57KFP6lpD/65vs/kvQv3M//8+B+/DuSho/FExhIRVRLmAOEBfjSbrdN\n7YdLetUSLh2H+PpDx1WFTUh/SIpZ4FGAqKV7QoUj+5oA+8Ad3sN7MpDM4CBUK6JVHTUE0A64PPsA\nTX+hfdckmMV0OlW327W6iMRjIO2R+OxdEkAmfTt4BxME0BEXIWoxdQ3evXtnVZA8eBvnSuO8WNdo\nNLLCM/P5XKPRyLwj4ECXl5eGxeDepQcDa0kCT9knSeadoSaDL9obBIGB4Y1Gw7Q631nL72HU/ek9\nDz4V22NYpVJJqVTKGuiQbSrJCtbQwMh74p6qLRzjkvyfdA8qngRB8E7Sfy3pTyX9syAI/oGkryX9\n4Tcf/1907478pe5dkv/FY17G29JIOVR/KjnX63Wru18oFKyfJCqdL33tAau4zYERwKHT6fsW9GgN\nvmgman69Xrd6AVwUahZ4rCNuLh9owt8B9FUqFdM2crmcIfWYRPRT8GDkPkzBmzBIbV8p2BePLZfL\najQapvZKMkwAIk0C/1gbaj9eCAgXsHa73er09NR6MqCOo9KzP/7yx9EGajgFTZrNpjE2+iVwHrjt\n0F7QENDyYA5JKeSYF74LE0wYrRJGjQYGvVAq35tdPtgtyhigP86VGAxiIaBVH3RGS4DhcKj379+b\nW/RTGIJ0nPfh7yX86u/GfDaU9F8+6U3c8JKeTV2t7jsFt9ttNRoNawrDpUmn02q1WtpsNrY5uNH2\nAS6+5x/gGzYkdjZlw6kVWS6XDWiC+3OI+wKXYAqSdsqU4e8GmQfxxhXJ3PSxPGZd3l6mhgEqN8VQ\nPvvsMwNM6WQ0GAwsfsJf8EO2MAMz5+7uTp1OR/l83qQbF5k9LhaL+ulPf2qt6jwYuO+8pIcYjOFw\naMBvpVIxnIkCq+v1eqcgbqVSMbSe9nZJeAn7C3MkOAicgtgIX2sSWgXjQsDMZjPbn7i5vODhbyWZ\nSUT5+mazaTTjtYPr62vd3t6aefNUz4P0jCMafXindL+ZlUrFJDE2Hggsks8j9uVy2YJyvO0WHUh4\n+h/QbAaACs6OOyifz+/YsMc24EACsS6IiYhNAqUABwEyfegqkpyGJ8cOGJ2vVIXXg/WByoPJRLWN\nfZoJZ+Y1u+l0qi+//NJUXKQ86j1Aq6+wxWXYh8t4TQI13Ut1QEWwHugB4YH7GqAwOl8cxgCwCKPh\nPIIgsM5MXPZMJmOMCK2SknWcf5I2iSbgwXGAYq/1eZcqJhRmIkF9Tx3Pmimg7oK+wkmpyZhKpdTr\n9axQKJKNv0NFjyvZ5oe3vQnBxTTBvsZc2G63OwVH0RZ8ifkklNkzA9ZVKBQs+Ip3B1Tlb+hZABH6\nMGnsz6Th1W4Kf+K773a7Zg6l02ljRL4VHWs6pC1wXuAtkgwlHwwGhhNw6cknYV6P1XibP254xuq7\nMWEG9no9STKpCyDIWjAtfJetJAbEP8Bef37+3GEYRJ96jAB3MBpb0lw+AMy7KHkucSC1Ws0iFgkT\nhyGwb/uYz6HxLJmCd0Ei8VHvsY1xbeGewg5DGqBic3hJm8QFJoovl8vp5uZGmUxm5/mz2czclJvN\nxpgH7eMgjqSEHtbl+0ogZbjoYRhaeOxisdgJmqJKEZ/DnozrJRmdE9fiaDRSv983acO7FItFbTYb\nC3HGzeYLxe5TR7k0XFDMHy4dATbL5dK8HEQBTiYT+6wkq2YdN4d39XmvEpoil4/3pqYmayUHASFR\nrVYtijLOzvcJXcztwUP6mZKrAdYBjUgys8z3/YxqJf57GLbvyTkajcy0lWSaJDEeaKu+2xYM6CmM\n4dkyBRJACLTBRwuWsN1u1ev1zGbj4AgPLpfLBmbtC3H2aDLNYzFP2u222YO1Wm3H3cklIyELSbwv\nqxD1z2dibjYbdbtdO3SafNTrdevYLMmYz3q9NtfhoYSXKJFPp1NdX18bdrHZbCzOwxdQheB8dOEh\nwsKuB4OhdyVnhST1mYWNRsO8SuAtEPW+AUMkV4WLxx5ylpw7uEm327X/12o1dbvdvfEX0kOCEowL\nxg1gCrDHWRL5iPkF4IrpkASgesFAch4Mod1uW55GNpvVYDBQv9/XcDi0uAU8dEHw0GfyewMa/6ZH\n1Ob2QTjU9PcuoWg2I4fn3Ul8H7dJSBz8ykQn8iyCjLhUPjkIXGGxWJh03ae2QaT4rjELptOper2e\nSU5csR7VhxGhtSCR9u0jw/vo8bVzOX1XIwBCGsQArh1KP2cuknYo657JZAw7IBKvVqup3W7rxz/+\nsaVsE4xGgFaSvc3eQg8wVzQH724kQpIQb0k78Rc8M442/FwMD3bzPN6XM/F4jA9CwzN2iNmB62BW\nApqSf4FmN5lM1O/3TSiRCIUG4wXhD8J88NIUxkBQCNoD2V+VSkXpdNqaw3gigaClByQ+aT4OHMIi\niy6TyRiKLT1UcgZ7YB649DESlffhPWFEoOE+/BYThkYj4BeHXK1+bX5P2ZPFYrGTEo7JM5lMdi7m\nY4BM1kN3rcvLS3NRopFst1tdXl5a9isenNXqvpuSP6dD+8i5oS3ghia+AmmLqzCfz+v09NSCf9Be\nDtWL8CCrL+S72TykR5M+T9Soj0jEpYtGuo9G0DbweoGTESxHzsPbt2+NEXQ6HcO6vOvzmD1MGs+O\nKUi7UV4eVEPdJHsS6UcHav6GSDmI7ti2cVwOvvrAFnzbHDDNP4hUQ5ruwxSi6DYaz2q10vX1tWEI\nMBpyK/A7I1HBIY6NbffuXVTgVCpl3bu50ABX/r14530Xh2cHQWBnc3FxYSbKmzdvzAzDnCAfYjKZ\n6Pr6WoPBwFTupKQrviKpuaSEucMkMB2pF4G5AS0QyYlJFjcX6/ZeMJ/3ghuaoCvvkva2PZon53XI\ne4MZkc/ndXZ2Zl4p1oFLdDAY6ObmZifN3Mex/OC8Dx51BWzhUqAxSPeHNxqNNJlM7PL0ej19/fXX\nBpQlHbwfaCVcfAgNAgQhh8vzbIAegCFfzSdpeBUSzQROz6VB2gHQjcdjffz40TpHQWCHiAzTCmQf\nMBA1GlWbgBsKn7A+9tkDZ0ljuVzuuFLn87mlNqNtrVYrff3119ZW7ec//7l+8YtfqNPp2BwQd9yA\nYW+3W9MMOTN89x6wxAuF2dXv9/XhwwdjCGSjJtn5nLf3FOH6rtVqO+5DUpUxgwi/RkPwwinJvGTP\ng+Ch6E+5XFar1drppD0YDKwnpi8qBB2jnfygNAUIdDqdajweq9frmTRoNptmF3qAD3819j0HAOK7\nzx0JgUkPGMPd3Z3lCGAjYrMi4SAKyrRxufatC+JnPgiIgCKeh5RGSwBn4LAPMR+vlcDoKP5Rr9ft\neTCaxWKhq6srDQYDI2L+HWKqMO13797p+vpaX3/9tf78z/9cp6enOjs7U6VSMWn21VdfaTAYWLs/\nPAG88z5MgfMiLBo3KOG/XJ5qtWq9P7/66isDBmezmd6/f2/S1u9n3EWFUYMVDAYDY9Lz+dyYBBcV\nMwiXNWcHQ9inRW42G/PEANBCx7i+x+Oxbm5u9LOf/exbPSQxSb22+9TxbPs+cOAs1PuMPXbgMQRs\nSw4ayZPkF/ZzERqLZM1kMmaPggpTiw8CB/kFNIxWJkoCG3GdeUALEMlHIXLxvZ9a0k647YF9tbl8\n4E61WlWj0TDTIZPJmIsVwBUGd8jmjq4t7h28z96bhoCoUcmc9GzP6Ii45N18LACBSpSawzNFWTvi\nCzxY670Q0XfE3cl7oHnh6sSk9fks5M7AVH2cx764CPJeSJ32TA6AkepNCJcoze3xSv1mNoNhwzwx\nScm9Ev1nvP3rw3yjf8f3fnikmrl8W3hCgbfb+0afBMTQgTouOGofgQNeemDV27Hed+6lwD5Gl7C3\nOwAZqrbPZAQMxExC3d4H0CbNxdd9a4+OfRpC9O/4DIzbMxYfiARYB31474t32Xl6SGIKmCk+GxaE\nH6ZCdKgkezaSnM/4ueK+Z52EwBNzQQs+mIzXCLxHhn3Ys4+/mUwh4fc7BCftHhgjyiGPte2j83Dg\n1EqAWHxTU1xB/l2OZQrR+aIaj/QgGUnyOnRpjhnsFUyCd4QJ4d34FNWTkbS//vvHMre4n3ngkXND\nK/LaWFyV46Tz8ozFazdeS/XFYPg/38NQ456/j2FG1+oxLdblPQswxCRvQ8xcPxym8DJexsv4TsZL\n27iX8TJexuPHs/Q+xKlYUZXuU595jP0bN7w6ecxnD80VVVGTAKhDfxe1h5+6T8eMY84mukePMRPi\n9uOYPf/UNT9mrk8dfxMa+lP341kyBT+idmj0HyMJrIrahsfaedHnRwEybzMes/FRTMQP702JfpZ5\n4hD66AWKrivpPeLm8aDmY9blPxd9L79n0TDfqB3svz6FmD0wHT27x2BNj5krun8828dZPBYziaPD\nuLn57DEYyWPHs2MKcdKGjfDt1Uqlks7Ozizc2PvVORhcUIy4TYr+DELGO4D7qVwuWzWiaC4AEXpJ\nsQNRcNTPRaAUc1HX0JdD894HHyjzmEP3SVi4RX16eNRjw7uSK5E04hiTB+OYi0hA3GnSbql69vXY\n0Grm9cVv8RDQH+H6+nrHA8CzfbYj8z9mD/HekBH6+vVrmyea+0A8SFLKNCOJDv1ekthFeLV3x/I9\n3qNPYXzPjinEERj56yDKuVzOugM1Go2dZBrCTiHkQ372KOPxOfZIHpBf76/mM0QFEtG4D3X26+KQ\nIWQyCPEMEDjlg6+8XxrfN7/btz7W5TP+IO4gCMzVSv1L1sR7J63Lr817g2AGfM85+BG9/GEYWum0\nfcFSXmj42gi4lMmsDYLAeiOQPcjfcl6s7dBgXQQVwcjphOWL/NK/wntzKpWKxX4cM9g3oid9unwY\nhrY+hIQvJU9UKQl1TxnPiilED9yHsuK3LZVKFnxzcXGhbDar0Whk3X/W6/tmGERElkoli0BMCvjx\nVZuYm0tDAdVXr15ZuG6UM5Oi/eWXX+6EnkbXxQWkgjNx+oToErFJ56HpdGoBTRTn7HQ62m63evfu\nnRFaUm4HkgWi5vKQWFMsFlWv162eAgyHwBuiNrvdriaTiRXGjTuvIAisjBgaCV+5vOwxlxINyNe2\nJLJvX3ejIAhUr9etUAv/KF0P3Xz99deWPUikKyHYMFVfNyJpLgLYYDicU61W09nZmVqtlp3P5eWl\nhTsT3Uja83g83tGU4uY6OTmxi44GWS6XVSgUrEmRLziEJtLpdHRzc6PFYqHRaKRisajhcPikHIhn\nxRQ8Z4PAwjC0JB66N52enur09NTKs8EcyI8IgsAOhqIaBH7EcU+ks4/6KxQKqtfrarVaOj091Y9/\n/GOTFj6Ixee2N5tNI0B/GF77gQHxj36L5+fnuri4sCKq8/lcp6enllNAs9QguM/3oBjqvmKxpC1T\nEMRHyZ2fn6tQKOjs7Mzej5BuTK90Om21LjOZzE7jmOh5pVIp6yXhq2X5YqrsG8yE94aBbzYbI+ik\n8GpMDbo0VSoVtVoty8z0oekw0zAMLRT+9vbW6nCgGe3LtyDFnLMi7+H09FSXl5dqt9sWEZrN3vea\nHI/H1kGK9VHsh+IpcYPYmCAIrEwfCWZ0EEMgVioVSbLMWgQjVcIozPMbzxSkB3UX+9ZX80E7qNVq\nyuVyFlNeLpctdRa7lcP24dJxw0cO0juiXC5be7V6vW6twmAa/F0qlTINBqmzD7n2wBuqbq1WszZu\n1IbcbrdWmtwzKV8roFAoaDAYJJpGXMDtdmsFT0hOarfbyuVyarVapmFhSpDHEYYP/SPBN5JAMBgC\nDC2Xy+nVq1dqNBpmtvA+k8nEagOE4UOlqX6/r+vr653en3GAIxcHZtpoNPTjH//YeizCEObz+U7t\nAzAh8gt8QFhclCVzobpz3hRPPTk52ek14vEmMjY5SzCGfWYsONlqtbIGsqyJugw+DB/6IKy/XC6r\n3+9LejDNktZ1aDwrpgCRQUCE3kIYlUrF1Hpq0rHZqIzYs9ioJE3FHQjPYh5UslKpZA1MPVeezWY7\ndQRhCKivb9/ed8xLMlOQEmTW5XI5Uwl9qzYuvkfsibWv1+uazWZ69+7djsYSXZcPbUbbIu+BYih8\nDmmKmoumgDYDiBZdFxoGl5T3KxaLpl1Rpo5zgqDZDwqJLBYLK5nuvS5x6yIVmoK3tVpNr169Mk2m\n0+mo1+spDEPLnOScqGkIuMo64miD9RNajHlTr9fN7KE2A6X8YCAeFI/zIkXngqGg4fjMYJ6Bxkzu\nBvPwWc4jCcc5djyr4CW/Yd5mR52ixwP2L1WCKB1GWjAbjAlxCHDx9pkksxmRqrVaTdPp1BqoUOcQ\nO917H5IOwks9CqlgE0PkEE6v19NoNNJgMNBoNLLDBmiiwAfFWOLcVt4cgtB8yjQZfmASPi0bkwXm\nFGXOfrAHqM7ZbFaXl5d68+aN9XwAX8Csoj8oGhnl2dkDBELcumB2MPF2u22Zs4vFQre3t3r79q0+\nfvxozA4TA/Xbp8j7hKi4M+P3pCZDh0jq1WplKeeYVpxnLpezPItDeSSe6VAOgAY3JEJB65hyCBGf\na0E1K36+T3NNGs9OU4j6l8k3QCp4VZSyYkgLMta4sN71lbQ5mBgU/6T8d7vd1vn5uTVDHQwG5mZq\nNps7qcyk5sIYPNItfVuNW61WBh6hdnMRcKOyBhiBL+HtcZZ9fm3sct8Nmd6E5FT4TEy8EOAQMAwI\nProuvmev6YvBpeGMer2eOp2O7u7udHZ2tlNxmzWxLhhrHEPwc2azWevHQRl8mEKv19N6vbYeCaSl\n1+t19Xo9M91gqtGcCNbJXNCIJNXrdcNlAEWHw6EkmRfCP9PXDk3SEpiHz8HQPROEiSIc6vW6lRiY\nTCbf6gyF6fQUTOFZaQrSbnce6YFDwwhQBSEcbC3y2j1X9lVuD/luvfngy7vRVZoyXh7zoD7BYrFQ\nr9ezHPcoAXjmgFkDsYET+PfGRqXeHheHebkA/F10rug/no3kAkxEk+I92OP1em1qKwwPj0CcuxUJ\niXYGQ0HTubq60sePH3V9fa0PHz5YYxRUeAgX9yuMKG5dMHiAZfCJfr9vbeTYPy4T2qMk87wgBLw2\nELeHXNj1+r7rd6vV2jk3aM431eGZmFRc8Djw1DN21kerRF/yja7TFMYFjL25uTGGMBqNrCI3FcGf\n4pZ8VpoChxBVV5GqVOFFHV6v14Zy+zz3+Xxu0hCQzKPefj5/EdE6QH3Jy8dzAcNAY5nNZup2uxYn\ngTSPqonMCRhKOmyr1TKMwre+g3mgeqPucsg+mClpXTBTpDwMAbco+wQj4PLAQCgUQrVln40XPS80\nKNZOo5XtdrtTXNQHEHkTELcdjJ6/9etiLo9tFAoFK7uP5iPJNBEkOjgT58rlkmTl2eNoETpk3biN\neS57jDbi6SYIAisJF439iJuLn3NGBFiB2YA90ZUKjwPVxvr9vjH8Q4V2D41nxRSkh4sKgAIBw4Xh\nkJLUbrftkBjT6VTFYlGDwcDsxn3177nsHtWm0g7PRe0mYCoMQ1PVqNbr89mjc3l7EeZFL0xUb1RU\n/3t6CfriK8zh8+nj1uVLwcNUwE18qTLmYp+o8MMzjtlDJPNisdhp/YYpBIaBK4/eD/wt5+b3KmkP\nfRGdUqm0E+dAhCbxJNQ45GJS7g5fvy9/Bu1FaQPGgInqwTwYD5gIpgOmXbvd1nw+t1Z1+4aPE/EM\n32sc5+fnhtvgXkWD3eeafux4dkyBweaCJRC6yiG8evVqx2RAKiJ9IBoPICZtGMg0riAazdze3tql\ngtggBspkffz4Ub1ez9TaJDcQRE0PwkajYaHUNArhPWlN56v7UApsNBpZ4BGX99AeYnL5oCHeg+/p\nk9Dtdq19HpebH+2xTQAAIABJREFUv9kXTIRGdn19bYAetvvr16/tAtMyrlqtqtfr6cOHD/rrv/7r\nHYmNqr9PghN30Ol0dHFxodPTU9XrdZ2dnZkgIT6gXq9Leii9l81m9ebNGwVBoKurq720gbkHhkAB\nYR+E5jErqiSBBeGRARRPYqzMFcUzYK7eBT6ZTKzMHHQDQ/B7t2+ufePZMgVwArQD7wNH3UKFQnJQ\nncZLVC5GtNIOA6InYo3D9ertdDpVu902DYbakb7hB63P9iG+SBjATE8EBCgBoi0WC7NPsbF9YBGa\nxb6DB3PBdo4GX43HY9XrdZPS4AfeC+HLmf1/7b1bqG1pdt/3//Z9r/t1X86pc6qqW8qD8IPcBFsQ\nIwSGOBKBjl+MXyLZiCgPMonBgbTtB+vRCbbAASNoY4EUbCkG21gEh8Q2CSYQyW4LWa22UHel6lSd\nfV33tfb9Ov2w92/sseaZc661d1X1WadYAw5nX9ae3/xu4/ofY+AA88TYAIXOz8/VbrftMkkybzkX\nRZJFV4bDoZkeSFNMhzRiLBCdlPvHD8Ra9Xo9bW1tGYqQ6t7MAY0payzWkH1Cdeds4NcBn4DWyP54\niPXq6momXsFrivzDPEZ7pWbpaDQaEyS+0Mw0a5hFM8UUPHcEUoqUYwG8utdqteyiwSl9IU5s+ElJ\nNqjQHH5/QLmQ2OK06cLJSNSBzeH9kux8OD2SC8x6CMEajZycnIxJJtbFh7TY8LhUia8lDIGoDIk5\n3mYnlEuMH2aB38Y76OJw6riqf3FxoX6/b2qvxyXAlChbhgOXhjrUhOR5/vlJY15eXlovTMBdnA+e\nCaSZc4ATmDPhfRxp59HnvkTRXfuARqNhl57K0BTdBbXIPkVRlBo6ThqL/fJ5D0DtyQ0BtIcA5OzD\nvOiY9dQy7zPFFHyoi8sON7++vtbh4aFevnxpGw+0kwuVz+fHLq137mRJU2w5j91HugBCKRaLJhmQ\nDt1u1zy+PhMvSxLArHCERlFkbdixX/3BwAnqu1HxLyv2zQH0FxMHImg5f2hZM76mCxWUNS/mhrYU\nRZHhKHK5nMGdfcYg0t63PJM0cV6STGqChEQi1+t1RVGk0WikTqdjnn+0Su8wvbq6a/s3aSx8W0Dl\nT09PdXBwoFqtpii6Q2T2ej1tbGzo8vLSbH4kOmvq5522X/iYfL9N/COgQ4+Pj62HKeeF9cfpiZn4\nVBNippgCB9mrxR6PAHKMpinSQ9em1dXVsVZadHHy2YRpY8IYrq+vDQLM5fTmh9dYBoOBbRBcG6ir\nD6lK4/Uk/bzwV6DphPCQlstBhzEwH2xppESWqcJh4LIS5yYiwUVFfSeph+fjK+DrOHnzh4sGM0Uz\nIoqC5kJoE40EQNPCwoIxV+9si88JxywJW69fvx773O3tXVl27Hfffo+CuyTMwSTSLg7vgBbE3E5O\nTsb6MPA5HzLm/ciLYc+zziGaAojTSqWiRqOhZrM5pi3CFLx2h3mCtvTYtHBPM8UUPGfDL8Akfb2C\n0WhkoSvpoU/EcDgcaxfPhvLsrHAQNjCl3XHA+cy4Tqdj6L/Dw0OzZxnTPyttfh6TQIISqiibi/bD\nJSIV9vr62i4S5krWQWNMGBwOUrQS1HzU6pOTE4vzR1E01huTZ2Wtn3f4gg/xZda5+DgwcQjDqFib\nSWMR7+fitVotw0jgKJYeHLZcSC7NycmJZXxO0iKZFxdyMBhIemhuyznx5gO+DnxPzC3LfPBRjaWl\nJTUaDcv6ZA19KB7hg5bsnwETm3Q20mimmIL0Znce6cG7e3l5aeoiWYKAeIjXnpycaDAY2IUFgJTF\nMeN2GSEgYtqFQsEcmqiLXFR8DpJMuqfZwfzcvw9FQZgL4UEOL4hAHHMgKzkQfs3ic0J6I2WQQOfn\n56rX64YoRLJxUbzzDImPZpJGcQ0IRsfe8b445MBAkMDG7+KgpSRCA/HMxztpfaQATWwwGJgG0W63\nLa05S4uMa2JoVIRtiXJwmdESer2eYQcAEXGps+bmU6Xz+bw100EwMS6MA/AXvjAg0Jg6T6WZYwoQ\nmgD/fLtvHGMAbJaWlsxp1e/37cAhGbMSQ9hQrypKd2AiYLSLi4saDoeGmmu32wZa4oJ6NGCaKirJ\nDvFwODRQVhRFlqhE+LHT6ej6+trGhSF4NZVDluaQw0krPeDxGQMpCTO9vr7WaDQyQAyXzDtfsw40\nphEHFrCZ95FIskIjeM8xJ6SHBqtZjMH/nHmfnZ29kWyG9MRjf3l5aYhKH8r1ez5pbpLMv+Odtfig\nAGKNRiMdHh6O5ZNknQ3o6urK0IqcDRjE0tKShTrRhPFxAG2GQJQ+xXSQZowpsMksOOotSTSSDEBy\ne3tr3J5NImEE54tvapJGcH8AIScnJ4YDIER5fn5uLdH29vbG0H6+OEuWysa8UMmHw6G9J+nL5XJZ\n3W5X7XbbmEAU3SVI0b6MeU1SD+O4CT57dnZm3ZHxIcB48FuAnWed05LKPDNCy4IRAU3Hc+5DnJ1O\nx9br5uZGxWLRIORpqD+/jozNPJHCKysrYz4ZmC9SlFZvRGP8uiQRFxnGgQ3v29xjGuB7If/i+PjY\nhBd7kaWV4DtjTtwB0LmLi4uGy+CMwLx9GHwaSP8kmtj3IYTwq5L+S0mtKIr+2P3PfknSfyOpff+x\nvxZF0T+//91flfTzkm4k/XdRFP2fE18ioe8DEofDyeHm5xwyr7ISpfChO8+d/SH2aiGhHyQbh4tY\n8e3trVqtlkmxuH2IaeAlNz9PG4t38em1fM7b1V5a8zwOi38+c/ZjgcRDaoLWBKEJAAu1F5Xb29rY\n6knziu2hgbvAfSwsLBiCkYu5srJiph1AHJg+F9eHYpPWUBpvzMPvGRuTAYASjABAGmaoHyttvxjL\nF4jBacplZW19SJWIA8wkfm6y1tCnlnsmi5bi81fipin3IeVefzHNYEIIPynpWNKvx5jCcRRFfyv2\n2R+T9BuS/oSkZ5L+paT/JIqiTKAATMEvGFKOBYnDen0MPYk8h3fj2PfYpfwc7y0psVwQnxLrTQze\nLy5NPPmx/DvACHzIlPdhXvF3hXy+vX9mElOQHhgD6jsOTux3Pu+1NBx/HLy0ecXNFmC/AKTIN+Cz\nFxcX9j1+CkxDJJ5/vqekeXktiDVkL0MIqtVqFtrFOQt+IavNX9JY7AnrEU8lB+LshVTcN5M0VpxY\nM+aHUxHmAmPyjID38s7uFJqKKUw0H6Io+tchhA8mfe6evinpN6MoupD0SQjhI90xiP9vmj/2k/Fm\nBJsU33R/ETjISWGsJLs7/nUUPaQnI3U804mPBYBkklqdNJ7HOjBW2t8iddIYXFo4zY9FeA5mhAPW\nP5N5ZZWti1OcOXDBkaRocz7N20dNfOu9tGdmzQvUKXPzEF8iHTyH8CO/j1/8x4zlzyNjeadvGjOd\nhm5vbw1h6v00nhF4DTLpbECT1jCNPo9P4S+FEH5W0nck/ZUoivqSnkv6bfeZnfufPZniavPneU7W\n9/GfZTknHztWHLMQpy9yrKx5cSl8DYMvgpIYLJf9qWNNK1m9+v8YBN80foussb5Miu9X2vmYNN+n\n+hWeWk/hVyR9XdKPS9qX9Lcf+4AQwi+EEL4TQvjOE99hTnOa05dAT9IUoig65OsQwt+T9L/ff7sr\n6YX76Hv3P0t6xrclffv+GWMsLS3ENkldfoy6lJbNmPa8JJXTk/+993vMIj1VrZzTF0/xMyO9edbi\nDle0sazz6Omxe/0kphBC2I6iaP/+2z8r6Q/uv/4tSf8whPDLunM0/qikf/OUMe7HkfSmAyhu2/EZ\n7x32DpnHjukdifzM26seScnP4u/yeeiLfJZ/nn/P+Bp6W/WLHDvpPb6MZ8efnzTeND6Yx4wVv7je\nEe3HnYbi/qL4197v5J3kSdET//20jMPTRKYQQvgNST8lqRFC2JH0NyT9VAjhxyVFkl5J+m/vX+J7\nIYR/JOk/SLqW9IvRhMhDwnhvTI4DjFeboh3vvfeeRqORpIdiHXh7wajz87TNYeH84ofw0D0JqOzq\n6upYiMl76XH4+BqKj50zTGhlZUX1et3qC/iYNYzvMXFoL4l4Pg7HUqmkFy9eGHiJtGk/P0KVj51X\nfFxS4XHO+gQrD8h6ytpJD5cG4BR4Fr+GOAFB/D3WGejD4jg2KeyCk9vX1+RnJIc9dix/DhcXF60j\nGu9N5IuQ5+3trTUi8g76x9LEkOQPg5LMB4iwJPF2IJ+VSkXPnz+3Re92u2NhNOrcgQJMMkf4B2Mg\n9uxBMDAGQDJEHYgccABCCDo6Ohoba5L5wJgcMA/2IRri8Qg+PyCtK5R/ttd4fMybgrHValUvXrzQ\nxcWFut2uut3uWDl3wDqTAGBJY/s54Skn1u+zBeNa4KRszPg4XEz2jmzZYrFoEpVkL0kW46c696R1\nhJgPOAJQmlR24myQc+OjU0Dik1ChSdoNzJv5sGfFYlHNZlPSQ5TCp4uTtMX/kBvziwlJ/jDJawlg\n2KktQNXjUqlk3ZS2trYMnru4uKiTkxP1ej0dHh6q0+lYdiDAGK9qeRUsl8up0WiMlVz37cjo9gO0\nmkxFvvdJMpQmSztscH/i5xSSyeVy1uHo5cuXdsDY7MFgoHa7rdFoZPUeOOBJaxhF0VibOABLpVJJ\njUZDm5ub+vDDD7WxsTFWTpyUdI+ag1lMurAkjsFI0Q4KhYI18fElxECFeuYHg52E3Sd3g7VDijab\nTT1//twK8oAMPT09VavV0uHhoXq9nu0XqM60eYUQtL29rVwuZ81Z8vm8NjY2rDlRPp839CRw5729\nPe3v76vVao3te/wcxsci94W1I/+mXq/bP5oC+/J5w+HQKoD1+31DVT4lsjVTTMFzUQ6yrxxEV6PN\nzU1Vq1WL4YMHpzcil4lyXKQ9x7Mm+Z/eARTebDQa1giGIq0cXuLf3W5XFxcXOjg40MLCgobDoQGE\nskJFXBZvDnFpuKRAkNfW1tRsNnV4eGgaEcAbYv/xi+rXEOnJIUMCwVDpWwhQC1QedQhGo5GNBX4j\ni8rlshUwhdFSE7FSqahWq1mi0MHBgbrdruWrxHEbWSnv5FPAxOnF0Gg09Pz5c9VqNZXLZV1cXNg5\nkaRKpWINYAGJYdKkhU5JWCMfgUSlZrOparWq9fV1S7ojIzOEu+rL7fYd4Je6B+A2suaF5sjZ4Mw3\nm001Gg0rtgK8nopWaMfHx8eWwAf47rE0U0xB0phK7+0iCrQWi0VbgH6/b1l30ngJKq+qZaWtwnQk\nWRntly9fql6v23usrq6a7wKVEYgu2Y0hBOslkIW0lGTPXFxctLqCW1tbxlTI8iyVSpbqXCgUNBwO\nTcPBBk9bQ9bDQ2E54CTdkCtCyXUYLKZSHF6dRWSWbm1taWVlxaQ1qeEUDaGyNAlTnU7HqljzzpIM\n7Zk0N3IKqAcBMyengcItURRZWrP3OXg7PIsYiyK+Nzc39t6Xl5fqdDrqdDrmP6BCNAwHZCPmWJaW\nBeO+vb01hkBtUHppAO0ejUaG0owzERjFU/0J0owxBe+cQnKAxaeKD4lR3W7XDiv+BjQGX5HGN9eI\nE0Ut+Dw2IwcZiXV6emqc11dG9huytrZmjCNLPeT9ODBRFBnXX1hYsLZmQFrRcJDiSNJJktszBlTy\ncrmsFy9e2OHq9Xra29uz8X1RGYqNksCVxRyYP1mOSMVCoWC5Ezc3N9rf3zekIyZav98fg2CzDmlr\n6KHlOO8Gg4E1Vz08PDSGS5k9/g773pd+Y32T1o/3oFHxzc2NrRHri3ZDIRnyPnyiFHtNunPSWFxo\nX+cCAeQh3eSHkEKdy+Vsb3yNhTgU/jE0U0zBh1A4XDT1IJtxdXXVbECfBEWyD5cJTzObkHaBWEgv\nFfkZVYiQpmROooZjz8KMvMqbNh7vjFq+vr6uer1uNQBwmqKdhBBUrVY1GAwsPZgDN8lbzxqSUkxF\nbN/PwmegInko3ME7eY960kGDqZBbQLMVUnthCiHctVpfWrrr3Hxzc2Nt8TxuP+tAw6Cur6+ttBx+\noxCCVabGW39+fm4MDgbJGF6LyhqLepIwBNaT/aYwz9XVlSqVimXtkvNAtCAr2uFDpqw/z6XYD74W\nNFQf0aE6GGv9eaIPM9UhymsKXGpJYxza/7u5uTEVCwcNB8r3WkyTBIzjNxCmQxjLMwU2Du+zL4TK\nu0zDnf3h9JEVQpxoN4VCQY1Gw5gblYJ9vD0rNo9EI6LxwQcfqNFoqFwu2wXGcckhurm5sT4JOHip\nHZgW9+aSIcUoi0fNhOFwqG63q+FwaCYGPSR9+TWvQSWN481K6lJgBiA8cPAuLi5ai/r19XUr20/E\nAZXeJ4XF15D9RlvkHPA/ac2+oS5Vs4g4cD4mhQnRIokmEDL2dT0wDa6ursx/xj75qE5ag5tpaaY0\nhSQiTx5aWFgwzsklpkCJz7TzrepZME9eHfYbQnEKH2mAKREmIvyIgwpm4G3ISRLBO9WOjo6sSerl\n5aWazabNTZIV67i+vjaJ4C9Q/PmovpLMNq3X69YXE22AtYVBEma7ubmxsuIHBweJRWg88S5XV1dq\ntVo6Pz9XtVq18u2DwWCsZLn0UEsRpuRj72kFTv3YfB6HLXMuFosqFoumjdBnkjRxKlH5Qrtx34Jn\nfggN353r7OxMa2tr5kDF7kegnJ6eajgc2nqxPlkNiKUHJo42iVMRkw7NlagcUQ/OG9EN6aGuwlNo\nppiCl4AcAK+qr6+va2trawwHQEyayjQ06PAFSXh2fCykACW6KQbi28BToBPcAhcK04aviZDwXmnz\n86orPgqkwe3trTnRaGSDV5xDzCGZBLzBhsVs+PDDD/Xs2TOrYegZE2FEIgeEeqvVqtrttj7++ONM\nWLgH0XAZj4+PjXkXi0VJ0sbGhpaWlpTL5dTpdCyUxkWNR4bS1jD+GWx5cBfMaXNz03wCvtxbnMEl\njefVeS41e0OHqWfPnlktxe3tbUVRZD4hzoY3h9Kcw96pjhaJY5FWcZiWmBTlctmcnlSSwtnK+Xqq\ntjBTTEF6WCDvLfZlveINQjlwl5eXVsGHeLivWcCzIQ4h6iYbf3R0pGKxqKOjI1PNKJlG+IkLQG9J\n1Dk8wDw/jW5vb8fmhOTi4jNHHFPE/6vVqlqt1pj5lLaG0kOI68WLFxYVwHmLWktl7FKppFqtpq2t\nLTMfKF1eLBbV7/cz5+NrQdIA9/r62g6vJDWbTW1ublqR2NPT0zGtJsu+j8/Nfw7py1lBwuZyOSuc\nCuXzeR0dHb1RPzKLMfhoDxcul8tZeByNjmrWXHC0o2nG8k5kok30yMAHhDMTXAb+B8B8/X5/rIDP\nU2nmmAKXiQudy+VUKBRUq9X0/vvvW1swVCccTCxctVrVycmJisWiKpWKAY2yForLCAJyYWFB5XLZ\nNon4so9VU6lpOByaZ5+yaVnhQuYm3R2EwWCg58+fmx9jcfGu6xUHifeg6g4MAsdZFgF62d7eVqVS\nsTb0x8fHyufz2t7etvLtNzc31isTJohNTrQii7xZdHJyona7bXBjAFMccrQSX80asFVWbwTG4XL5\nKAAhUe9o3tvbMy0Q8NFoNDLVG0TgpHn5sXBgckGZz+vXr61uBS0ICfnm83mrNpXFgIiGlctllUol\n1et1bW5umsMXpCs9TdbW1gwoh08LjIhnfI+lmWMKbAKhHZwtADeQ1oSWer3emH3lS2zhwUVCpo3n\nvcPYtxQDxS7m8OZyOVPpAY74ysQwkTTyeRzSQ/gVBoeaOhwObXyckEhcxkFqpdHS0pKq1apdTJqq\n8u5IvqOjIwNMHR8f2xqD/PNhxixfiZ8PjsyTkxPzgwAkyuVypsYTWmXN0LSyGAOfx18CFgGHXqfT\n0fLyss7Pz833hP/E589M8pXE98u3MiQKRUgV5CImBp8HS8F8s8LVCwsLZg77don4y87Ozgw8h0YA\nLD2OT+A9nkIzG33wHZfhkFwGHHvkO4Aow7kYRZFKpdIYxNc/3xOquPSghoJcRHrh5ImiaAwS6zcA\nDzA2YdYcfU6Fl0SAsDymPYRgc/FmA8/I8mbzXnjnwcP7UC7qNQe9Wq3autBgByk2zf6hMZyfn+vk\n5ESdTsfAWL1ezyIOMHCfR+KdhlnzQov0uBG0EhCjRCeOjo7Gwrn4qDyMftJeIVjQEAuFgsrlskWN\ngIhT1BVNC5To+vq6SqXSVGP5OpqsE4yTBsMIr3go0vuJfF/Ux9JMMQWIjWfjwAL4y0rs2MerwRpw\n2HjWJBUqKWbtG8vQ+clzfMwVkGoeUJSFoOSdOPyLi4vq9XrWIBXGg+ZSq9UMmIMK6jWESU65i4sL\nA0PROwLVE2lDeAtoNzZ/t9u18GJa6Tk/J2+DE8YjFwAfwtnZmfr9vmVfeg+5BxJlYQf8pQbliuZE\nt+nDw0PzT3Ghvb8Kh20WsTb8faFQMHgz5uPV1V0jW5jg8vKy7aXHsngAUlq4lbA72owvrAtj9s2F\nfQjdh1phGE8FL80UU/D2IqoektEDhDjobLDvb4CXmWKgHkHmD5p3xvmDzAZw8LyUJBxKzBiOTe4D\nlzlNzfaakEe5LSwsWLMZX0UaE4r3pb5/vHty0ji889XVlYbDoVqt1lhjXMb1yURgBy4vLzUYDLSz\ns6PPPvvM1nrS3vE/n4WREComycv3qowz2WnJa1tcQsr0o1Gh6RUKhbEuW4Qip3VsInDILPXVsLl8\nRIbwm/B3ALuQ3D6y5gmtEKczfgOfaek1SDQYelYOBgNrmTgJ1DaJZs6nII1DdFGFuLTgA0B0MfmT\nkxNrLIqEQs1OknLx8CF2MBoKKiNqIBcUvwbh0MvLS+3t7dkzsy6rvzhoC96HQg4CjqpSqaTl5WW1\nWq0xrcjH0dPGQZUk85F0Ya9CU3PgxYsX1jmq1WrZnD7++GN1u11zkD1m//iHv+T8/FyVSsW0KS4K\n3aLY60lOWmm81oBvlgL2wSdMAbwC44HTlGekXVI/ljcf2H8kMpoO+Ah8GzjDfSu7rJoKXstCu0GT\nQthgPksyhzSmGeff4zeeSjPHFOJhIDQFnCm9Xm/sMuEHwKl1cnKinZ0dyyv3wJMk8ihIsAgrKyuq\nVqvmk/DprISCOOhcOrj4tGXKfbEY8vErlYqpmVxaGpQivZH2XiKnEdLx7OxMu7u7evHihVZWVgxa\nnMvlVK/XbX273a5CCDo4ONB3v/tdffzxx2/07UwjLpjXUtBGUMN9xiumECXhfeXlSVIOSekBZcCm\nseE9A6YhK70dfbu4SWYRGglJcLlczvxHlHVnX/P5vF3k6+trS2cmPDupiC3zX1hY0OnpqWFXaByE\nMEI4+K5o3W7XUqW9j+EpNHNMQXozB4J8AGClUXTXZo3IwOLioqnvh4eHY6XDfapqkroYRQ8FQPgc\njIL232RmIt1oP9/v97W/v29OLY+gTBsLPwLfIz2AyyLxhsOhJJldv7e3p36/b5/P0kh4Nqo7NjbS\nGvPEh++QTEdHR/rkk0/08ccfm+aShdD05J2AXFZwAzCgYrFo3nmcZ2gvrP8kZnd1dWWJQph5mA2A\nfpaWltTpdHRzc6NWq6X9/X3t7++/sYaTUH8XFxemAfj0e84NrecHg4HlJQyHQ7169UqdTsfwIGm9\nJuLz8oV00A59khW1NUij7/V66na7Zn5y7qbdsySaSaYAAIbCKRwY2n7BBLj82FFeYhOewf5OWyDv\n2EKrAEoKcAjbEVDOzc2NedXRGmjSOk1cmE1H+iPZ8MxjH7569cq6KoOH8M/IIu+wBARFERpscEmm\n2lLk5OjoyDJQWZNpkq+kB1XbO8xyuZw2NzetdoNvzBu3kbNqKPh5+bwFfCYwBx/ZaLfbOjw8tLoX\nAItwDk/CRPjPwFwJ01KCTbpLdedi3tzcWJ4HZwnmkzU3BArwenxJPhxOx256i15dXRmD8FWt2LOn\n0kyWY5Me6uDhMLr/3Ji65p16/mvPzT1D8NLbe56ROP73jI9dKt1VaMLmJcbuzQhwBnF/RcJ8x9Rt\n3sfPzTtAMZP8vKaV3H6tkn7n1X0uso/GILmmGQ+NC+84pdHAmEjS9va2jo+PrXclFYIm2dxxwkPP\nGvPuaCC8g89tgCGwHtOuI5gEH4r20QRUfs4e5pbXfNLGitv+voAK88L/JN1pbWi1fo6MyznxZ8+N\n+8W0jfthUEhpG+dVbRY26WL7hfWMIS7d4pfeMwsOtPcxcBjg1r5iks+iBEASZwLTAHDSGJaPVMSd\nUI9Y17Hv07ze/rOeWaCCPuaMsGb8DdB0mM/m5qahKL3K/ViPOXsGA+Bi+nl6wBU/47OPWUfPsP05\n9GPBjPwcYKZZaxjfIw+qipu9vHN8LL5O0+jeaaaQ8rvE/+O/l95sKz7Jq5z2cxiRh/d6bIEkC29l\njfd5LrCf7+dRBZOeF2eU/n9/gONM+CnjEc7jefEsyafG0uNjea0o/g6TokKPHcc/Oz4WkY7HaHNZ\nY/l/nhnx/zRjfeWYwpzmNKcvjKZiCjMFXprTnOb09mkmow8/DEpTp/3Pnqo6Q29TC0uawzQ+hiRb\nNa66JpkfTyX/3LTfx99v0t8m7d2kfU4aa1r6vOfkbT8/Tu80U4gfkC/qmTit4g5Mf3i8feq//qI2\n8PMeVP+MLPuX770TjZ/FbdhJFzhp/LgDE/Keer5/6vziX3vIsKTEeTHmtPNK+lx8bklOxcc6T9OY\nYNxvEnc+PnasLHqnmAKL4tGF4Aa855X/J4XSkqQoBwovuofM+loJ3gsNAu0pKDK/ycyLmL0/aHj0\nmVeW8zHtADMvSVZjAJix9IAB8M+g1mXWu8cJb73vfkVi0enp6Rv7xfwA7/CzLKcyRMQIcJEHToG3\nYM8gyrw/xoHrBYWv4k2lKs4EYWr+RVFkSMNJZ8P/nrH8mKRT+wrR8WiKX8On0jvBFAg/EYeWZGXS\nfH/C+GUgczGN4mqmT5Pla39RqbJEWSzCleTBPyamz7x4tsfkk1zjU7HBD3DAfVuwtHlBHr/vk60A\nGZGTQBJcBbPaAAAgAElEQVSONF4JiEw9np00D88gmYuXoB4o5JkafxfCXfoz65tmFvhwp2cErKHX\neqgpkBQq9oVyp9kn1pBiLmtra6rVaiqVStre3rZuVK1WywBLJORFUWSArawx/FqwjjA8j4sgO9P3\n5vDQctKtn8oYZpYpcNFIm6ZiM7Xxnj17pnw+r1arpXa7bTkCg8FA/X5/rO5BFEVvbIhnBkgx6QHI\nxMUB/Ud2nC/WQX1HpOnBwYHh7NOYkYfixg81cOBms2mFTk5OTrS0tGQVkT2CjYOXZr4AM+Z9qZlA\nuS9KfkVRZOXdJVmeADByKvxQeyEpDs6lZo78I0WZd4HJcdhhPhxwqj9TV9HPy49FXU7qFNJ3giS5\nEILVf2R9OQcwChLGfM5KfA1DCFbtC62gXC5b68JGo6FGo6Hj42P1ej3Ld6ADFoVvEVBpYVjeuVAo\nGE4BeDMp2HTgiqLIqokBfWa9yDw9Ozv7arSN8wQToIwW5amePXtmZcLgjmtra6pWq/roo48kyRpl\nkFrN4qXZXz5NmsO7tramRqNhtQt9QVW4+c3NjUGH44ctjSmUy2XlcjlJsoQaEnroSvX8+XOFEFSr\n1awQyvLystWNoMoTl8mP5ecFQ2U9KQRKXQC6blGhCNjw2dmZ5UKcn58bGhGQVhKFECxhx2sivkQ5\nPTkBiFH45Pz83CDjQNbj1Yj9JQ0hWA5HrVZTPp+3edE5CaaG5sVYZBYCG0az8/OKq/FkV1JSfX19\nXbVazZLm0G5g8lEUWdIU8/PaRprGQKEdtDrWrFar2Txph4f2gXnS7/ctWZDWBpOqR6fRzDIFODu1\n/La2tlSpVCxPwBefoHtPs9kck3g+0cbDVCE2CuZCqfhyuWzSwOfII424zJRLJ+kmrjqnqW8kW8HM\nUOm9z4Aqvr6aTy6XswMddzz5OUnjFaUoEFKtVlUul9VsNs00gMn4kmbUOlxbW7OS9zwzba9IDELr\nos5gs9k0xhDCQ+NY75OhSC61KSVZklPSvBAW9MR89uyZ5SKcn59bVW8YPLUWRqORMSbKqCWtoR+T\n3BCK/CA8Tk5OdHBwYJpQt9u12plcRFKr0USywFNoxpTQW1xcVLPZVKVSUb1et9qLvlkPQmIwGJj/\nB3/Dzc2N3YPH0kwyBS4yCUohBGsN1uv17PdsKDX/yFXwHmCyKNMuqFc30RgwURYXF40hoDZ7u5h6\nBzAAHFtpfgUuHRKZCynJJI13mvE73pHnLiwsjDUWTSLPZHgeDA/GGUV3qehoCTCJxcVFK4ZCs14q\nT8UJDQG1F5PvvffeM0bO+GtraxoMBpYliTRlHWACccntCS0O5lapVPT8+XOVy2W1220z3ehURQFf\nNLBXr17ZGEjwND8JgoTkLca/urqywrRI/evru16S3iziOdJDhCqJMfizx/dketL30zsU8VNQvo+0\nbgQBQvApWoI0o0wBdR91T5KOj491fHxsF4W6gvV63S6IXwjv3Y57n/040t0BQa2jzh8LHkV32Yu+\nVReqvfSArycLMStNm3mFEMy2DCGoXq/r5ORkLPcin8/bwcSZihTk0iRVK/JOJ2+vU1LOO7R8ExZU\n17W1NR0dHdkYMLC0y8P7+aKmpVJJGxsbxlhh2tQzIP2dw35+fm6l6Fi/OLPzzM37YN577z1LbaaG\nBl2s2UMY/dHRkVXd9k7bLIccTlI+s7a2puFwqHK5bHuIn4R38pmYZC76/Ug6hz4BkNRwtK7b21vz\n65DeTgMa+p0gKHz0YdrqUnGaSaYgyaoBLyws6OjoyDoWhxDMiUhBjUqlooWFBUtdlcabebAZfnF8\nKJDxeA7lu/F09/t9HR8fmxOSnpKoaTAMNjRNHfUS0DcKwf6T7nwOODgp1T0ajdTr9czRhwqeVMbb\nzwutBCmPIwoHpn9fyr9HUTTmXyAVl79LmhOMB0dYs9lUvV43xkaK78HBgR141poUdd6Fg51mFuGR\npyU8Zg/FRg4PD6361urqqvXphDEwb3wPWcJCeqjfSZiYELX3VSEk0EhIWff7jSabNRYalG9QxHn0\nvTI4G1SAIiSO/4Jye2nncBLNJFPwajqOp+vra3U6HZNmS0tLevnypRVCwVlF/0JpvFZCmseX/xcW\nFqwICUVH0QoI12E/ItUkWRUfipFeXFxkhoOYC3Y0hwZGsLy8rM3NTfNVjEYjtVotY0w+RTstycfP\nC4cajrbj42M71BStwSFZKBSsUhPzoGZFWpEQDj5dpnBe0qLu+vpa/X5fr1690mAwMDWZHgW+zgCS\nMA0bwdoxr263a/6djz76SAcHB9brwRcrQS1nbqzJ+vr6G81imFOcuVJWDeYgyfxdV1dXqtfrY01h\niPhQSDYNX+LNXMwoIjmsO+ebMoNoEDBvoiwwVOo3PCYV3dNMMwWkKCoYoUkcgo1GQ4VCwWxjHC3Y\nVFK6ysbGX19fj1URZsHpq4gEZ6N8WfGLiwvrT8jYvpFo0gWSHtqXS7LPY7KUy2Wzw8/Pz7Wzs6OD\ngwN1Oh3z/nunVVp4ENXRS3gkMxWbUVcpMeb7bmIKAchhP+LzIjxGVEa6aw8H1uL4+FjtdtsK6dLH\ngFLmhAm9DZ5U/IR5UQAH6b2+vm57QFgOm97Xg8T88CFKfDVJF8drmh4XgVP1+fPnhpWRpM3NTXOa\nsrbUjxwMBpmFamAYMFHpoSsUFabwH93e3qpcLluJQNaKylMwgq9c5SU2xF9cpAjt09AYFhcXraEn\noRi4twe6pI2DTX17e2sdlvFPeAARZkO9XjcpjroH0tEDjJLG9QzK+znQVFZXV61h6dXVlbrdrlqt\nlhXnhCFM2mzmBRoOswdJxfcg5MBgcDBhrD7KEb8gnriQOF+5PFxSVODl5WU1m03VajULU2LywZyh\ntLGorISz1MfmfTFaTAcf9kXrBHzmG/JkMQY+46uGF4tFA6x5nAs4Arpv0bhlUtk3X4HKmyXHx8dq\nNpu2pvV6XbVazfwxtDrwf5PE0B5DE5lCCOGFpF+XtCkpkvTtKIr+TgihJul/k/SBpFeS/lwURf1w\nd+r/jqSfkXQq6S9EUfS7j30xrwJfXl5qOByaRxw1ngN1dnZmwCaAJHDdNLvRj8NhKpfLppl4z269\nXjfJBoOgduLBwYEVHeWgTYMm4/eoeTSzqVQqur6+1uvXr/XRRx/p6OhorAoSDCRNwkkPh5yD5HtM\nEDGhXiIVp/CiLywsWKFYwlqYHllz8Wor0QqiEr5LOJEDwqutVkuffvqpRSV4z6z1g2m1221Tu2Ey\nL1++tA7QhK/L5bL6/b46nY729/fN5l5fX7dQYxZ5dGE+n9eP/MiPqF6v2zkERHZ9fa1isaiNjQ2r\nzo3af3h4aEVws0xLmALNezY2NswBTqEf+kjAuPG/XVxcWHj+85Rkm0ZTuJb0V6Io+t0QQlHSvwsh\n/AtJf0HSv4qi6G+GEL4l6VuS/kdJPy3pR+///UlJv3L//5PIq/6gtKjdiISCY7OgxIu9zZ7GGEII\ndoBwIKKFSA/xfu8QgzkRw0eKe8mcNh4XGpWez7PRIQSNRiMrMIrDk/+lBwyHx74nzQsJiUaFLQ/w\n6fLyUvl8Xu1221Trfr9vBx0chveMpx00mDBOUaQqGpEvdc4lAqF5fHxsPQvQ3OIhUK+tIO1PT08N\nE8HewXxub281Go2sAzY1PTHzYJbsW9q8YAj4SZrNpu0t2iv+LtaJM8ue+uhMVpjQ+zJw+MIooiga\na3q0srJimgiwakljkZAvLSQZRdG+pP37r49CCH8o6bmkb0r6qfuP/Zqk/0d3TOGbkn49ujupvx1C\nqIQQtu+fMzV5ZuBtZA4FLbhB5BEu9L0a/AVNij6wCdjVPCMeqpMeuDhoOSQ8h4oNmKSSMh4MADAU\nvR4A8cDpfW1G5sNz4vBcPy5jcCAJm2JWYHfSMYqCoUCcWUMuRRZKkzHp/kRno62tLTPFAEN9/etf\n1+Lion328PDQ1pM5Z3nN2f/T01OrYHxxcaGtrS3TjHCKEgpFmwT45TtPTzqDHruBxkRXbs4Czl+6\nNdXrdWM8gKg8k0wby5/vm5u7ArD0mcjlclYWv1KpWIieArFU3pY0UbObRI/yKYQQPpD0xyX9jqRN\nd9EPdGdeSHcM47X7s537nz2KKfgLCzwUdWltbc28sHjEkfRsBhcCDSJu03lbERuc5y0uLqrb7arZ\nbNqFAOhCMxZJJuW8cwfpnbJ+kh4SeXyh0ZWVFYMe09uBJi6esTE3vk+6qPFwq3eqEeMGAYhTjIQd\n7F8cWB4Jmqb2ItnBWhBLR4vDn8AlpEz52dmZhsOhaQlEebIqHzMWDsxKpWKhunq9blBkQnqEJqki\n7TUR+l9kmZc+D4ZekuwDzKXX69l5xWTC+Sk9JKTx/mkCw2uAURRZ9AcHN+YV2cFHR0eSZA7uNIzO\nY/0KUzOFEEJB0j+W9JejKBp5jhdFURQeWVIthPALkn4h4/dj0pwFW15eNi7P4QHKymZLGvt9lu2N\nuoc0wTFF7JuQJyYCEQC4NglRhLsmbYQ3AVBLvbNvdXXV1GryKWBIMI8s5uOZKVKHi1YqlSQ99NLA\nFMK5iBfbg2CQupMguqj0PD+Xy5mpt7CwoHK5bIzj/Pzc8Bej0cgSrzykOinKwbzQStB+yuXymI8l\nn8/r9vbWLhQamTfriIZkAXxYc/4Wn0i4xyLg6OT8kDXJeqBxUsreY2iSyDvY4/kLp6en5i8A94EZ\nhhDhd7G7mbpvaTQVUwghLOuOIfyDKIr+yf2PDzELQgjbklr3P9+V9ML9+Xv3P4svwLclffv++Ylv\n7kNBqHAewuk7AHupQOtuDmSabQVXJg59eXlp4UCcjRya29u7Bi0whX6/b44/OLi38yesp/kpqtWq\neeNBbw6HQ4P8olUgsfDSgxDMOmAeGks6OJ/HYQvT4TB5TYi5Y3OnOTf9OuI05WB6HwaX+fj4WN1u\nV4eHhybVgO7GwWdJYxH54d1Qncvlsj0HKY0GCKITbVJ66A6V5bRlv2DIkgyVSTTDJ0qxtpyn4XBo\npifvn0Z+z1gvmAmp8svLy9Z7AiwJQszv2ySkZhZNrNF4H034+5L+MIqiX3a/+i1JP3f/9c9J+mfu\n5z8b7ugnJA0f609wY485uTzWv9lsamNjQxsbG9ra2rIkH0wGnwE3yb7ytjvhRa9GS7KuUNjLOHmQ\nfKjhWZoJcyK8BS7h2bNnFkIDxx5FkYW3cEQS8oTpTIoI8A+tiUuB1oM0wwShpTpaAkAf6QGBmTUv\nfAKYNkjS29tbU5/RDDAf+DyH2HvN434lCOEQ97nwXMw6fEQIEmL+/B4GMmle3p/AenS7XV1fX5vP\nBqEFlPvs7EyfffaZ9bXAwZlFMA7pocgK+BGYjm8Swxn0cHTPGJ5K02gK/5mk/1rSd0MIv3f/s78m\n6W9K+kchhJ+X9KmkP3f/u3+uu3DkR7oLSf7Fp7yY9yUsL9+1HS8Wi5ZGnc/ntb29bSpdp9Mx3Hu/\n3x+TXJMkN5oBiEY6Q3FYLy8v1Wq1TIoOBgNz7niVl0uWRRwgtBzSfRuNhjmUCoWCut2upcYCJmKs\nhYUFU/OTiPdB7eWCsh78PT4JMk7xzg8Gg7HcDHwPUnpOBweaMf0+cnlpc3Z7e2t1ITCRvLmTFtL1\npoU3L70Ww0XF5PHmGqFBjxdBi0wzIYjQ8HvCoDi4c7mcmbA04+31evr000+1u7trWswkU9afD19D\nYXl52coIoO2Bwux2u2PmHnOdFs+SRtNEH/5fSWnu4D+d8PlI0i8+6W0ced8Azj4uRaFQMJUwhKBP\nP/1Up6enev36tbrdrqQHSOyksAwXhTGOj4+1tLRkDrkQHlBqeHux5ZC+3ieRpbZFUWSxbUwCJMzF\nxYXy+bz1qETFJlORTcZc8WnFnrwZw/r5eZ6fn5s2Qs0BPPm+pRsU1xiS5gbz9A1f8boXCgXrxYkD\nEhwEKj2Zm6zdNCq2L1Lj0a++pgNwchgblxmwkwe3pc2LM4TZAxPikgJXJwqA/d/pdIzhwVQnaXaY\nGR41S3YrCFs0jr29PWPgl5eXb6Azn8oQJM123wekBzZWfJGodUD2IJh2pETWBfXqqFfNMFNQ8TkE\neKoxJ7wNx1hewiH1ksb1YUIkK9KIsdBQkGr+wkwzL8wOpI30kEzk4/loI16yInGZu1dLvUSNq/f5\nfH5M0uGJJ7ZP3kW32zUYNPY3YB18Nn4eSeNSqIYIDvNiD0nQuri4MBwKvhOYO47G+PPjhAnr7X38\nGfyt79pEiNdjB6ax8TEXfBm29fV1lUolFQoFM2/J0/HOVpgPGkmKdvzVaAbjGYP/XpIl4fiN8LZV\n1ty8lED9JfTDxeMgIFX8QnMouLxJqmHW+CQlkQTDxfWh07jk9NpCGvnL5B2aHm/hw7t83s8PyYp0\n9eOlMQVJJvVheDA75oG6zTMwtXxafNoaxj3q1GPwl5VxpYd6F55JSDKbH21omvPvz1yaKQrj8Gvv\nHb3T3jPPyHkOjI8Ln8/nzTHscRhoYxljfTWYgvuMpDer/3hu/ZissPiB5mdcJL/JksYujL80cfKe\n42nexY/p4cs8wye5TDuv+CXmf4+49O/o1zBNzfXvFH920ny4oLlcbiwXxZsz1D/g+UljJo3Fu/Bz\n9soXvOF76aFFXXwdk7SQLPJj+r+L/3waM2iacdgnTCW/X4ztS+Ql7VGMvlpMYU5zmtPnpnnbuDnN\naU6Pp5lMnf6qUVzdzPpdkuaW9ndedZ0Udv0yKU2195RmfvjP+88kORr936S9x2NNgvg7pj0v6Z3T\nxpr2HWeV3immkGbDSuOp1l/Uwse96/zvw3OPsUfTLoyPu3uvNkzC/0t65uedl39Oks097bOSng1h\nB8ftbj+PNFvdPy/Lp+H9Jv733sb3+zeJ0i6/f36SryvJWfoYP1MSpa3Fl8Fg3gmmEL8weGSjKBrz\n1vsNI3X0sciu+FiEKPP5vI6Pj+1QxeP2PiElieJMS3oAaPkQVC6Xs45NHj9PFESShWAfOy/WhbkB\nmuL5hCWJiFBePq1ASBKDY17sEU5AStQPh0PzyHvGQCZlFugmSRqzhiQqLS0tqVAoaHNz0/ABPBf0\nI3iUSTkdjBlnApw9xgXI5NOVAcR5Z+BjL7A/7+wXxXC8oPDryHn5PDTzTIFN94cZAuzBAYtLPfo/\nPsZzz0YDIpEeUlHX19ffgO1yaIC4ZqmNnsiJx0NO2IkwG4lPvrCK79HwGIbH+jEv/lFAFSAV4DAO\n2vHxsQaDgWUBTkMefEPIVZLVL8zn82PAJcYKIViatc+dyCKPWQGjsL6+rkajYd22Li8v1W63x0qx\n8zVgrWnNEfAQfM+FpfqSJEvdZ40JHZI895iIlAdoLSwsWBlCGA31LnwYnvWbVOkpc12f/JdfMnFQ\nJY0xBSQPv2eT6O8XwkOhVYArJP2kSXJqGnDIqNhDWzW6D7GxhO7Oz88t048CoXzGX1ivdsLtOTQA\nfcrlstbW1tRsNtVoNGweMAVAWd1uV7e3tzo8PLR4e9oBAPzCAaZuA2Xlnj17pm984xuSHvo78ux2\nu629vT0rn356eprY8sxL0mKxaMyLxiagJ6m4RJozeSxRdJfODWqTGgXx/Yqr7iQhAWCjtmWtVtP7\n779vpdioEUF5u+FwqP39fRWLRfX7/bHej/Gx+JqLzvfMcWlpScViUZubm2o2m5JkTVuAdlO0dXd3\nVx999NFYs5gk4gzzfAQFkHhqbrC/JPMBxuJMkH/xFF/TzDIFOvlEUWSQWcAoXGBUKSrv+MPbbrct\nuYniImmbUSwWTUKTylwqlax5KBV04PrUW6AMGwlYSLp4PQAvHZiLl97FYtE6HZHb4VNnLy4udHZ2\nZpDdwWBgWouvyxcnmI/HXaysrKharer999/Xy5cvVSqVDKI8Go10enqqSqWiwWBgeQtAh1HFkwjN\nA1MBxlOr1QzqLMnSqVG1z87O1Ov1rPAKWa1xc8zPL66N+PTsFy9eqFKpWDl3X2ezVqtZ8RUyHT1U\nOsnE834Dvl9aWlKpVNLm5qYajYaePXumRqNhY6HlXV5eWhm4jY0N7e7uJgLC/LPRqHg38h62t7et\nuAv3A4EH5J3MYITcNOZREs0kU/DqU7VaVbVa1XvvvafFxbtKukg07KxcLmebQimzlZUV7e7uTqzm\n400SVE46DiHtsCGx+dFaqO9HTnvcmebHkB6cUVEUmSSoVCra3NzU9va29a6UNFZ1mOo7IQSTBhzA\nrHlxkX1NATIzYYJg+nk+f8NatNttM5/SDnIIwZ4HA+ByVqtVRVFkzWW5NDBQsllhEAiCrHnBoH06\nMkly5AeQe4CgwMz0SWIeIZo2N/YeYNTq6qpqtZo2NzfHumD5/SADFk1iaWlJOzs7CiFkriMoRt+p\njLqjlNSjLD5IUfJKvMMdQREH+k1LM8kUsA/pAFWr1azb72g0MpuTTd/Y2LAipFR6ljRWOy/N/vbl\n3ZE8SE5flQgmBBQa9RfM+9LSkknBNO8z9jW23+rqqkqlkp4/f27SjZJe2Iz0EOBA4vQ8PDw0ezyJ\nPGyZg+gTblDVqY9I3gbZpajzy8t3vQp57yTy1YiolUj/T6oxkW7OBZNknz05OdFoNBpz2KVdHJgG\nzJ4cCi6lz52ggGzcRocpUQ8hC7rs1xMnJhrJxsaGnj9/rmKxaFm61PlAI6zX67q6utLe3l5mtIhL\nzd9zZmhbCHNinU5OTuzMU6If+Pq0JQPSaOaYAhsP97u+vjYuiYdakknm6+u7Zhj0MKSCECo3ByQt\nOYmxbm9vrdirLzVOlV4w59Ti41Dxt948SdoMz8mROmtra1YTguShKIrU6XRszKurKzUaDUsfRyLz\n+zSJygVnzRgTKYR62m63x3pbUE3al09PU0Nhbvwt60wHI9aBpKfj42MrFkOmK5WKW63WG0wsifx7\n4HRlbSjgS8IQexdCULValfSQP+IL4/ioQXx+kqyA6tLSXfPXDz74wOpgUJSHrMWLiwt97WtfM4nP\nPiGYsjQg9ozCKdJDKjrzIHWaCuMrKyvGkBAkWdrPNDRzTAFis4ggdDodKyyB32BhYUG1Ws0q7SIB\n+T3dmyg9ljaOT2qivgCdouKFU2nE4WsB8DXaS5r54L/O5XJqNpva3Ny0XhILCwvq9XrWQl16OJBo\nR17apUke75TjQOJPwNGIucD7orpStwEHGRV/shgdWonPOETF5937/b75K3DgIolZR2pUJJlF/nuk\nIIwNJ6OvmEwYkjH8pfLRHd497lxkHM4HIdVarabt7W1tbW0Zozk4ONDR0ZEVEiYTE60MDYILm7Zv\n/iL7aIL//Gg0so7o5XJZZ2dnpm0xb/paIPAeSzPHFFgYVNjd3V2zS+HE/K5UKpm0x3Y8OTlRt9vV\nwcGBer2eVQpOcpD5sUII1lTj8vJSBwcH1jBVkl2kQqEgSWq32294zWEiaQ5NNhh1r1qtql6vj7X/\nosAJF5Wio1RhqlQq2t/ft/dPysCDocZBM5SupxPz0tKSOUsxhSigSiyfaEpaMVWejVrvqzr5Opb8\nT9Vlio/iJ5FkDrNJERXmhbaFP4maA1xAX9Eb7UiS1eFk3vE19GFm7wPBdwVDw8v/gx/8QDs7O1Yk\n5+Liwi6sJHU6HQ2HwzEBk0Tep8PewmjQgvGf8E40QvL1NNFaJ9USSaOZYwrSQ+UY7Hk8yahSpBqj\niq6vr1sBjN3dXX388cfqdrtmx2Z5YLEpOYQAonxvRx+VkGSHvNfrjZVjT0vH9dwfTz6NWH0vANQ/\niq4gzai1wIEi6sL7J0keX4cB/wVt9zY3N1WtVnV5ean19XWbH92UUYVRW9M85lwe9grNALOAxqiS\nLMqSz+dVq9Xs0lE0xM8hKw2d0mrY+GiK+GfYT48bgFkgPX05f9YqiRAWaFsbGxtjNSPwx6AVoE2U\nSiXd3NxY+3pMJ5hC2n75uVIvAgcq2JRKpaJGo6Fqtarr62vDYBAq9xWevlLmA6gzLgCqIH0EubDl\nclkbGxvmYDk4OLD4PRVppGy4rnc0UUYb7YFiJH6z8dh78BCX2vtCksbkcBF1YC4+3MdnkDq+YAnM\ngi5PWaqoNI76Q1riL4FZYIYg6bHT8/m8hsPhmNMvPhZqtnduoUmxTktLSyqXy7ZGdIGGiVB/EDBT\nVkTF72UIwTQehIN3VKLG45ilyzV+hlqtZpc2aQ29Y5YoGKYjGhHrxc/QJjm7AMAoc+cZddK8eAef\nMu0ZRKVSUS6X08bGhoXFwXVIsjD2VxbRiCSRZHYTh5fYcLPZtAq+1MX7/ve/r93d3TEJlVUKK37g\nsQd5LqobZgTOMrg+EQoftssaiwgJXmXf8YqSXtSIjKJI1WpVhULBvOlECQjp+TnEx0KighvAK06L\nMXwIVCUipBdFkbrdrkl7KhJnESaLJLuY1J9EQwFbgOZCkVUAWYTZfGOTpHFCCAZSKpfLqtVq2tjY\nsN/zGcwEcCyYhoCqYGBZTCiEoJcvX+prX/ua6vW6jXF4eGg+K9oWVioVaz04HA61t7dn7Q59DcUs\n4tyzfvV63Sp+N5tNra2t6eLiQp1Ox94bf4wPoWbhVybRzDIF6QEKzEZ7mw6pROu4zz77zOx87331\nIJQ0p5wPWcXVOCQY9fi83ewdVaizSZqCl9h8/vz8XMPh0JxlZ2dnZopgF8OIfHFRuhGhRmd5szG3\niAYQEbi5ubG+AZKM+QE+ov052gN7kBUV8Ha4dKcprK+vm7rNoT0/P1ehULAu2kQ+eBcPRkpzblLM\nlK5aNJUl9Im2R9iOiA/Pi6LItBPeLY3QSPD7sHe3t7fq9XqmeeGvQfOk+jeNbzCRJhGaCSYPjll8\nQITZLy8vTZB488sDsR5T8cnTzNZTYHE43FwCr2aen5+P9SEEZcjm+2o8WeQ5LOXVPV7BO+LQDrx9\niEnAgc4ah8uF7ec7SvsQlk+SAu8uacxx5/M9kmhtbU2lUknr6+uqVCpj/RcwjQhTEjIjvo6mBcPD\n/uxxL+wAAAs3SURBVI6Td/r5vhS0aOMCERXyDjEiHT5KMGm/eJdarWYdwlkHEKc8m/fy9SY5W0hv\nnJFJESLmRIk5HLHUR8TRd319rWq1agKFn11dXZmmgORO2y+/hqB1EQz4Qmi1R4SGdeMs+aQwzvNT\naGaZAs4/PKmXl5emMoEYY/M/+eQTdTodK8SJRIO7T6NGIRHZHMwEJHu/37cuyT6rEPJ49Cwbn7/l\n78/OzqycO1oGnaNAB66vrxt0G8QmqmuaWo/6TPcpVHifwYhnG58F/xMaxOxKs4MZh7UmLImD99NP\nPzVfCV2NLi4udHh4aNINBoGjl+zQrPHAa3BRYT6YJTAqfCMUPsVTT/iQiFHWfjEGzsMoirS/v2/r\nv7y8rK2tLWNUrMfu7q51+gIzM0lyw6DQOqPorqS8B2zt7+/r8vLSyscjMBFSHrT2VJpJ88FPDK5K\njJ0egaurq2q323r9+rX1ZPBhGDio59Bp5gNj8nuPkJPupBeXJIS7lmHei7y0tDQWiosThxSVmHAf\n2X0eHu0dmxxI+kt4pjAp4w4NplAoqFQqaWNjw3wjaAzAnUkCAynJYU5KTEoitCpsW7QDmClaFhIW\n1ZY1BbkJQ+D94/NjDeOZrDjmgEnTQIWemYQJMdE4L/F8B79ffjy0t2q1aqA5NNdcLqdqtapisWhM\ntN1uq9vtml8GR2AWee2Es0uUpNfrjfWy6Pf7Go1GWl5etkQozj4o36eGI6UZZQpsCptBjf3b21tT\n066v71q3eSmLE4mN5CBmSVSIS+67BBcKBTsEOBRBttHcEyk6DViEQ0gYzjsyYS7r6+uWBMPPqWtw\nfn6uVqtlc5rWkYQNvrGxoRDCWIiu0WgYlJpmKWA7vL2fFOKK4yBQmVHlaa4DAySCRH8L35MBqe07\nfqeFJTEjWQNf34D8i9XVVVWrVWPihAW5rGQTemEQJ54J3Ht5ednWCx9JoVDQs2fPTDtqt9va2dkx\nTcJrgH6tksbif0wBIgsLCwva2dkxJuAToEajkc2BaAnn7CsVkow76ZB4m5ublkK6tHTXgIOwE4cR\njsoBJfQ1DXGxuZgkE4E1B2eAVuBtPd47qZiGv7zeLMJ3gdmCuosHm85Q3W5Xe3t7arVapo5y8eLr\n5Qk1dHV11ZgM4UGY7dLSkvlk9vb2tLOzYxcHlRc7PWlejI/ZBBNDkh4dHZk/gnVD46IzcxwglcVY\nWWO/BpgvvjUe64eWhdnyySef6PDw0DSatG5UfjyceZVKxWoasOekuZ+dnemTTz7Rzs6O2u22BoOB\nhVwxGydJb84TUQqygXu9ntbW1gxpiqlEVis+Kg96+sppCqhtPg20VCoZnJVwHouB1EUVxavMwZi0\nQKij0kNKKtmEmCpeuvf7faulQFKNl5Rpc/KORt4VlZcYOMwIh2m/39dwONTh4aFardYYtn1SNECS\nXToQoICisMn7/b7Zv7u7u9rf3zckqMfsZ4VZmZdX79kfHKiYE5R1xw/Q7/ctqgPBWNOiOOxDp9Ox\nOeIPWV1dtYtO05nhcKhut6v9/X37GRrepJg+56vf76tUKpmGBVYE7MP3vvc9tVotHR4eGirV41dg\nDFkMCDMLsxGNkCY57MVgMLDoio9AMNY088qimWQKqEFEIMD7s+moumyY9+AjtfwByiKkDJKaC4Dq\nTJINzTyHw6Fl9WErgsxLkqZ+HJ7L5weDgTnocC6CUDs6OlK/39fCwoJev35twC0OVpr/wq8hnabw\nU1xfX6ter6tQKBheYWdnR51Ox1TeXq9nTkCYXVZePp/DU878wVp4GxnEJk4+CqCsrKyY78LPK8l8\nYA1hkDA8NDqEyeXlpfb39y0nwPthYKyMl7ZnPm/j4OBAt7e3evbsmYWl8/m8RqORer2eXr16pVar\nZQydyMC0DIG58Tc4rmknCLAOIUHVKD+WT857qukgaXb7PiwsLJjnHfQiWWqoUa9fvzY7lb+BoSRF\nCNKIMBcIMtRd1GtMBNRotAHUcL8ZKfOzr9F+pPFwHu9AaM5HMfAwc5hJevEOsaRLy4X0Epfn+3Ad\nFMdo8HeTIg/Mz7fD43D7QiggHFkvL63RsuLZn36O8XnFf48PgOd6sBBfM66PAvk5J82Rbl7SQ5q4\nHxMVnrXy4/JZ79fK8gVxDnlnzEuYAkzTJ1d5H0zWfmnKvg8zqSlIsmQQ6UGd9MAN3z/Sq+bxxZt2\nLC46UobxvNNSGoejwt0nOTL9gUaqsuFexeSd4xEJ3gfN5zGgFA9ySroESZEZ3neacfzcfCai19o4\nqB73wWHGxEuqtBRnBH7dPRya9+SZkGeIfN6vc1Yo0o+FR395eXms87eH46dhD5Kcpllryhry914A\neGcixH5+Xufi2HvPqqYQ+/1YKIpFw5EId86CMz/iXewf0o7F5mu839Mynbhk8d/7uXFx+Rmf8Y5J\nT3Hv/2PeI+33j2E4/jlJ8/JgLi/R+ZdUeTgu+ZPGmjQnz+z8zyatU9bv/PM8kjT+zKQ1TPKLTEPx\n8eJrM41ZEqN527g5zWlOYzRvGzenOc3p8TQrPoWOpJP7/98lamj+zl82vWvvK83uO78/zYdmwnyQ\npBDCd6ZRbWaJ5u/85dO79r7Su/nOnubmw5zmNKcxmjOFOc1pTmM0S0zh22/7BZ5A83f+8ulde1/p\n3Xxno5nxKcxpTnOaDZolTWFOc5rTDNBbZwohhP8ihPBHIYSPQgjfetvvk0YhhFchhO+GEH4vhPCd\n+5/VQgj/IoTwg/v/q2/5HX81hNAKIfyB+1niO4Y7+l/u1/33QwjfmKF3/qUQwu79Wv9eCOFn3O/+\n6v07/1EI4c+8pXd+EUL4v0MI/yGE8L0Qwn9///OZXuupycM/f9j/JC1K+v8lfU3SiqR/L+nH3uY7\nZbzrK0mN2M/+Z0nfuv/6W5L+p7f8jj8p6RuS/mDSO0r6GUn/h6Qg6Sck/c4MvfMvSfofEj77Y/dn\nZFXSh/dnZ/EtvPO2pG/cf12U9P37d5vptZ7239vWFP6EpI+iKPo4iqJLSb8p6Ztv+Z0eQ9+U9Gv3\nX/+apP/qLb6Loij615J6sR+nveM3Jf16dEe/LakSQtj+4bzpA6W8cxp9U9JvRlF0EUXRJ5I+0t0Z\n+qFSFEX7URT97v3XR5L+UNJzzfhaT0tvmyk8l/Tafb9z/7NZpEjS/xVC+HchhF+4/9lmFEX7918f\nSNp8O6+WSWnvOOtr/5fuVe1fdWbZzL1zCOEDSX9c0u/o3V3rMXrbTOFdoj8VRdE3JP20pF8MIfyk\n/2V0pyfOdCjnXXjHe/oVSV+X9OOS9iX97bf7OskUQihI+seS/nIURSP/u3dord+gt80UdiW9cN+/\nd/+zmaMoinbv/29J+qe6U1sPUQPv/2+9vTdMpbR3nNm1j6LoMIqimyiKbiX9PT2YCDPzziGEZd0x\nhH8QRdE/uf/xO7fWSfS2mcK/lfSjIYQPQwgrkv68pN96y+/0BoUQ8iGEIl9L+s8l/YHu3vXn7j/2\nc5L+2dt5w0xKe8ffkvSz957xn5A0dKrvW6WYvf1ndbfW0t07//kQwmoI4UNJPyrp37yF9wuS/r6k\nP4yi6Jfdr965tU6kt+3p1J1n9vu68yT/9bf9Pinv+DXdeb3/vaTv8Z6S6pL+laQfSPqXkmpv+T1/\nQ3fq9pXu7NafT3tH3XnC/+79un9X0n86Q+/8v96/0+/r7kJtu8//9ft3/iNJP/2W3vlP6c40+H1J\nv3f/72dmfa2n/TdHNM5pTnMao7dtPsxpTnOaMZozhTnNaU5jNGcKc5rTnMZozhTmNKc5jdGcKcxp\nTnMaozlTmNOc5jRGc6YwpznNaYzmTGFOc5rTGP1HIc9Xq0LJi8UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACgzUlEQVR4nO39W4hs25rfB/5n5D0zIuOSl3XZ+5TPKVN6KBksC1H9oMaUEe22haHsB4lyQ3c1FH36QUJtcEMd2Q8WBkF1066mwWB8jIVLjaVSgS1UNMKyJCxEg2SpZGRJpWrZZenc9l5rZWbcI/IaGbMfMn9f/GOsOSMi9+XsWLVzQLIyc0XOMccY3/gu/++W5Xmu5/E8nsfXd1S+6hd4Hs/jeXy145kJPI/n8TUfz0zgeTyPr/l4ZgLP43l8zcczE3gez+NrPp6ZwPN4Hl/z8aUxgSzL/rUsy/5JlmW/k2XZd76seZ7H83gen29kX0acQJZlG5L+J0n/G0k/kvR3Jf3beZ7/4y98sufxPJ7H5xpflibwM5J+J8/zf5rn+a2kX5P0c1/SXM/jeTyPzzE2v6TnfiTph/bzjyT9r8o+nGXZc9ji83geX/64yPP8JP3ll8UEsoLfzV30LMu+LenbX9L8z+N5PI/3x/eLfvllMYEfSfqG/fyxpE/9A3mef1fSd6X11wSybMbTPiuGwjPyPC/8ftXB/FmWvfesH/dg7vQdnrKmsvfmGdPp9L250r/hd5VKZaV9KPvMU96/7DOrnsNTzmvZ+3zes/+ymMDflfRTWZZ9S9Inkn5e0v/ui3gwG7KxsaGNjY24CGzEdDpVnufK8zwI6LPM4V9bW1va2dmZm2cymej+/j6+mHfV9y+aJ8sybW5uamNjI959Op3GvKzp/v5+bt1PZSTMValUtLm5Ofdsvmctq16qdF38yzlVKhVtbGzEXrEGP6Oin4vmKpuHNfm60nPhd5PJ5Elr9H3zeTY2NrS1tRVrSvcwz/NY61OGr61SqQRtbG9vS1K8P89n3z7LXF8KE8jzfJJl2R+X9FckbUj6M3me/9ZnfZ5vBAe+s7OjnZ2d+Mz9/X18P5lMdHd3p9vb2ydtCvNAuGx6o9HQ0dGRKpWK7u/vdXt7q+vr6/h3PB7r+vp67mDS59rezK1jc3NTW1tb8e/u7q42Nzc1nU51d3enyWQiSXGBJpOJxuOx7u7udH9/vzIDYG08q1KpBHPzuVIGOp1OV2Jwvq7NzU1tbj6Qlq+tUqno+vpad3d38XfMgxSHuS6bz+fa2trS9va2tra2gjbYL/aJS5vnue7u7nR5eambm5uV6QO6gCaYd29vTzs7O7q9vdXl5aUmk0nsGft2d3enu7u7JwkKzgiGxly1Wk3T6TTozdcIffAOq9L9l6UJKM/zvyzpL3+eZ/hm7OzsaHNzU1mWaWdnR4eHhzo8PIzDvrm50e3tbRD0aDRSlmXBEJZpBVz8ra0t7e/va29vT1tbW6rVanrx4oVOT0+1s7Oj8XisTqejq6srXV1d6fLyMhjU7e1tMJ5kL96TWtvb29rZ2dHBwYEODg6UZZn29vbi542NDQ2HQ93d3c1Jk+FwqM3NTV1eXsaFWnTYqdTa3NwMBsAaJ5OJLi8v5yQnF4a/d2mzaA9hAFxILv/W1tacJsO+SIpzlR4uG2dWtC4+t7m5qd3dXe3u7qpWq+ng4CAYDhezUqno9vZWNzc38dw8z3V9fa1Op6PBYKCrq6ul9OHntb+/r1qtFgwbpn13d6fBYKDRaBTvznzQsDPassFebW5uamdnJ/bx4OBA9XpdBwcHur+/13A41HA41O3trSqVSuwrP8MMVmEEXxoT+LwjyzJtb28Hoe7t7QUzODk50evXr9VoNJRlma6vr3V9fa2bmxv1ej31er0gyJubG93c3Ojq6qr0oCuVira3t3VwcBDcdm9vT/V6Xa9evdLHH3+s4+NjSVKv11Or1dJwONT5+bl6vZ4mk4kqlYqurq7ifXwul9aVSkUHBwc6PDxUtVqNuXZ3d9VoNNRqteKgLy8vJSmkzHA4nJN4lUpFl5eXCy8M0h4i5t9ms6lWq6UsyzQcDoOxFWlR/C69LL6ujY0N7e7uqlqtqlqtant7OyQmDHwymWg4HGowGMSFQDuZTqdxUW5vb4OpFtnplUpF1WpVrVZL1WpVh4eH2tvb0/7+fgiHvb29uJwwguvra/X7fXW7XWVZNqe6+x66mQVzbjQaajQaqtfrajQacXa7u7vK81yXl5fqdDq6vLzUeDyO+dAYr66udH19LUlzmpDvJQKuWq1qd3c3hFG1WlWz2dTx8bEODg50dXWlbrerfr8f811dXenm5ka7u7sx76qmyNoyASTywcFBEBIH/vr1a71+/VqHh4dBmHd3dxoOh9ra2tLd3Z1ubm7iwiDtbm5u3psHlZJNPzw81O7uro6OjvT69etgANiYqFxZlun+/l5XV1fxfpLi/52onKB2dnZUq9VUq9WCkI6Pj1Wv1+MCwby4tPf39+r3+8qyTJeXl9rb2wtpuojjb21thQTZ3d3V9va2Tk9PdXh4qKOjI9XrdVUqFQ2HQ/V6PQ0GA11fX6vb7Wo0Gmk4HOr+/l7b29u6u7vTeDzW7e1tPN8vzd7enk5OTnR0dBREzF5ubW0pyzLd3NxoOBzGc9DgIFpUWi6/XxbmqlQqIf0PDw9jL1utlprNpvb397W/vx/mCFLy9vZWk8lkzqw6PDwMlRqzy+eSpJ2dHTUaDZ2cnKjVaqnVaunVq1c6OTkJ/AYGjQTmYvb7ffX7/fic00fZebGug4MD7e/v6+joSKenpzo6OlKj0QhhU6vVNBqN1O12NRwO1e12NRgM5s5nVaxqLZkA6ut0Og3VaH9/P6Tkzs5OEMlkMonLcnd3F9KHDXCTYtFcqG339/ehpu/u7oaahyouSTc3N3GQMAcuPZfdRwpm3t/fh4RuNpuq1WrKsixUUw6Ni5vneTAzV3mRLEWHjCoOYe3v7+vjjz9Ws9nUyclJqOl3d3exp61WS9fX1wE+IU18nxwcdUnpF6RWq+n09FTNZlNbW1shCcfjcTAwVPXxeKzz83N1u13d3NwEwHdzcxOakO8jZ8kebm9v6/j4OEwAVGXOAoaxvb2tq6srHR4eajAYxB7u7u5qNBq9t38OxKGON5tN/cRP/IRqtVrQwWg0Ck0NPAKTC+yBi8naiujDTSfMjqOjI3300Uc6OTkJJoJWu7W1pWq1Guba9fV1aIV+XquMtWMCLAoE9/LyMsyC6XQaG7+9vR0AyN3dXXD+yWQSoImkOZCmaC6IGvUbZB4p1W631e12g8sjGZn75uYmbF20kiLuywVCEiABLy8vg2nxN/v7+3ERIUIOFAJapOY5OMd7b2xsBL6ByeJAEgxnZ2dHw+FQFxcXcQ5FXgPG5ubmnCSu1+tBvFy48Xisy8tLZVkWkhpG/vbt2zksBVOqSFpyXvwfQgDN6+LiIv7WNRDWxfvDgG9ubgpdjszFpcULBdOvVCrq9/u6uLjQaDTSdDqd03wQDIPBQDs7O4WaYdlc7mXY3t7W/v5+aEa9Xi+AQIQDZpikYBTMUXReRWPtmADDL+ZkMtHW1pYODw+DEO7u7uakBpfj9vY2zAE2j2eVzQPhXF9fa2trK+aE40Io2KrSw0Udj8fxLny5WulzOOp+c3MTf7u9vT3HpCAiZ0bYtti3SNYiEFKa96bwbDwOSODRaKTLy8t4vgNRu7u72tnZifU4YaZjY2ND+/v7c2DW4eFhIPTYyqjL9Xo9zK9KpaJGoxE2OgQOwFt2XoB7CIPz8/OQiqyRi8V+oZGwP9BNit+k+5jn+Zzmh+Rvt9s6Pz/X7e1tMFDer1ar6erqSnt7e+p0OsGo3LVbNJekMF1gVqwJgQF93d/fxzkxV7vdnnNdr+oiX0smUORn3dvbCw4Pl8cM4ADOzs40Ho81Go3igCUVSuZ0PrflmYNLAXHilkSKcKjupilzEXLIAG3j8Tgup7u5+B6bcHd3N56PWwvPAMRSJM2YBxtyOBwGo+NZ/X5fGxsbOjw81Pb2tqrVahD81dVVSNtF2hT7ixrq3oRer6d3797pzZs3AVrt7+8HYOnaDcQPQ06Zm18c5ru8vAyQFCZ3cHAQ+4iKvbGxEXgEHh2A5DItIL2oV1dXwTgvLy81GAw0nU5jbgA8TBJnCs5EU1pM1+XeEzwcnAPm2c7OTtAnjA06SGlxlbF2TMAvUdGF2t/fV6PRmLuouNO63a663W5IyZubmzl/97J5+QwXsV6vx4VHpXakm7+BiF1yFj3f57m9vdXGxkYc2MHBgVqtVlx8MInNzU2dn58H+MS/gGtFajOMCS3l8vJS9Xo9LjdaEj5obNDt7W212+1gFO57LmMCPPPg4ECXl5cajUYaj8fa3t5Wt9vVxcVFMDwuozPLlNG4RrWMcaMR1Wo1TSaTYGR7e3vh1kPTYs8Gg4Fubm7U7/ffi+9IadAvMEwDU86FAuYqjAeGmAZ6FTE35mV/+JwzU94Ds9EZHOYIjJX3LaPDorF2TEAqj+Da2dlRvV5Xs9mcc0PhGnQJmQadlD0z/T3PdP8zhArX5+9ub2/V6/Xid247F82BquoXCvvdXV7Yedvb22G7Q3i4gzAFyhiOS5StrS1JmmNmeCJgdnt7e3MqaXoRivbPTTYQcfYfPzbgLq5RtDhiA5wJ+HMX7aGbSkg/SeF2RdvgvBw3QCNYFizE2pzh47XJ8zyEEGvCk0U8BoA1Kj1nXURzrMvPDPsek5E5MQMQELVaTbe3t8GEfI4PVhOQimPqOUhp5vqCcOHwqEZsqPt7yw469T/DZf1g+fsUwJtOp+r1egHeFamR6XyOrPMMuDh+dkfuIXrXNvh7BzbTwXPdlQkDAcDChUoshqRggB6SXTYHawLjACfpdDph2+/u7mpvby+QeJj33t5emDOYAL7/q+yfS1nO3FFxt+fv7+/jchIzgrQtmytV3/lbNCdcyuyfx7ZgwsLkF3mo0rkwAXh3Lr0HfEkKLTjP83BVQzvLaNHHWjKBdMCVsfMBeyDw8XgcAT8Q0KobAaFDgK4iE+UmKcAZ3EXSgwvNMQrcf4sujTRzFaYRdazHLwbvhyRLXaDL1uag52AwUKPRUK1WizmlBzDVg4kwA9yluUw1v7u7iyAWVHC0KkwcLgE2rYddu7rL2ZUNpLwzX0kRKQrYV6lUwjRwz4xfzEU04kwHk2B/fz+0KFyrgL0wcv97XJfQxyJQ0LVWgtyw8fkc/wcmtrm5GQwApr5s/9Kx1kyAy+nx/Pf39xoMBpJm4aYQecoAnPOWqUeuNnIJ/HDxvfIFEg5RQYwAfK7SFc3FPB6dWKvVwoWFNgMhczGw4bm8MIFVbL88z8NfzWV1lyjSGtCMICEuCJKpDKyDCeDO5fOo507IHgiEBofG416NRfSAj7zZbEaoNTERHh2aZQ9RhwTZwGDQQji3ZfNxxvwt4COeFhj0wcFBeKowHx3Ec8GUYhCpZufYCHuG4MuyTLVaLYLf3FxxWvTAoUVjLZmAE4O7uhztJTdgd3c3gngcEEOKL7NrOWS4NX+HSox9Ox6PY3PZcA99hZEUJfXws5sZqJK4PgloweyBGK6vr+PvMYNgXJKWHrRrA51OJ+Y5ODjQ9fW1Njc39fLlywjUQdvK8zz2mz0sI15JYXKgcrM32O/kWLRarVBfe72e2u127Dd4SRlNsIfVajUiE8mzIK6eC4NmyJmgNoPe84XwKHLtOtOBgWPruwC6vLwM+sQ+RxPZ39+PSNZlDM738u7uTv1+X41GI+gC5oz26WHdjiXgDv2gzQEulaTgbuQOeMIQHJdDhmBR6Rf5t6XiQya6jssAsWJLY4+hCeCGxJSQioEfGNPBwUGEPxOHjs0MDsAXB84B7+/vx7OQFmXDpTT25s3Njc7PzyN6jucTyUdgimszHmuwaC48HsQeuBni5sfe3l7gN1weJHSlUplLBCuaZ3t7OwKSTk5OQt0nnHhzc3POHODZMG7sd9deFtEGTN+1MDSe6XSq0Wikfr8vScHw2HsYDthAmZnoWgD7geni4Co5CdAaTAWmC/2tmonJWEsmwCay6QcHB2o0Gjo8PJSkCJpgEyAcOKWkkNTLYgTcHHDfNS5GzAESigALCYAhmxBVu8wUkGZYAOHCJKTU6/WQVFxWDtWZXJZlcVFXyRJz6e0eAycmV6F5ntvNEOQitNk1LTQX9n88Hoek998BHKJqg9xztmVah/vlj46O1Gw24/8JTkI4uPbg2iEMhsvD3xfRRrpOvoj1wMxCm4DhQEuo87gYy+byOdwlC+4EHcIAYEy4LLkDbr5+8EwAqU8iEYEYcMy9vT1tb2/HzwRy8HdsAipa2YZw6eH6HvdNgA32O4TcbrfV6XQ0Go0iO4z5ytxbvCfRcnt7ezo+Po6EEUmhVUBQqM0cODYul2SZhGZu/x4J4++Bv9tz7yXNSeRlBOUmg2cigq24VEVLQLUnZ2LRHvqAeW1tbanRaIQpd3V1FWAhz5MUDBXtDYbt0XVla2KP3SWLlwZ3oTN3TCLXRB3kW3Revm4PmsLkA2Alo3FraytMN1yfLoiW7WPs59JPfEWDy7y7uxuxAah/xJ5nWRaRXEg3P+BleIA02ygHIF2d4nCxxa+vr9Xr9XRxcRHBSUQoLpPO/h5wc5gb0sTj/ZEixD8QIOQekmVqOnO5WUVoL/H+jUYjpDTqJ0TuQVFl63JV18Fcj7kAUSc9lrNzYJeLsij+gUvh0ZoAuaDj4ERoauAV2NmkFOMyXaS9OY24d4G9dzyJKMFer6ebmxt1Oh1dXFyo0+nEXi4yTf1L0hwzQXsESyKIjUxFUrRZzzIt0cdaMgE2Ck3AI7M87py017OzM11cXGgwGIS96Smiiw6Zy8aFw8/NxuPywYakcIQfMFFnZbaY2/D460k1JSgJqUFIqjMX1HVPsoExLDN10D7Sy3h0dBQpqxsbG3PPTKskrSJRHF+B2YCkY/LABCTFZcdk4+IvYzi3t7fq9/s6Pz+fqxlQr9fjnPwcu91uMFI3e/CElNWZcPOJ92SPWB+4Ff/2er3Aka6vr/XmzRu12+1I0V6korPmFAzHQ0QkJIFDvV5Po9EohBFCEDpcZgb7WFsmwAUmGhB78/DwMLwBw+FQ7969i41GPXcsYBFA4pKFeQF72u12bPru7m7YmUiX4XAYGgjzLeO++LGZ6+rqShcXF6HmIRGHw2FIKg42VV9Tta9oD91N6kAmWgT2OReEMF/2cRXtRlKYEDAbmLWkUNsd+fYIPtcEXLspY6STyUSDwUA//OEPQyujuAfaIVK43W5rOBwGUyvaw2UXk3fk6/b2VoPBILRRsBw0O1Tz6+vroEt+XhSd6BGQ0H232w1zgt+xnzCkdrutXq8XQgMB+MEzAaQmC7m6utLZ2dlcpSFJc1ISVTLdgFVsWf4GtBgAii/UW9BmJ2KIqCxk2AcXH/Cv0+mEFMH3D3Gm9qpHlKXzlaHOMAJALEyKfr+vTqcTxT+oTTAYDEKtBGBaFofgqrKHT0P0XH5caYeHh2Fj53kel5TQ4zITx21lj3P49NNPg8lwEXl+mtrtoKC0vCgnNMH6uJhOGw46prgDAqksxyNdnwOwmC4XFxcRyEWUJ9opzHM8HkepsVXA8HSsJROQ5u1nUNfRaDSHort08b9ZlQGkc6UH4eiwh6OiqqWXcZX5YAAQCkTDZeUZRT5eB6pWWR/r4f2zLAu3HFGWxL+DXKPpkHy1DHhkcEkw4fAs3N3dqdPphBsSJgsDaLfbevv2bTCDMgJ2RudAHe/Ne/rf+x66rZ0yhkXDNTzOyWmPvQWkxk0IA0FYrEIbDpqmWkUKLEOLnl7unpynjC+lF+FTR7ak7wAbnkZV+f9Jn63cctFcDnKlczghPZXZFD0rBYPSdaF9FOEai7SAsnVBSCkABXE/pQJvEaPi+UhGciFYC8Fek8kkVFgnen+O/65sLl9H2R4SW+J7WKaWL5vLvUluw/tn0lTeRXMVjSKAsOw9VpnLxt/L8/wPvDffh8AEnsfzeB5fyChkAl9aa/Ln8Tyex4cx1goTcLWuDB0uUtV8LFORv0rN5/Osi7HMXnY1ctF7rPLcsoH9/UWc17L5P+t5rWomLfr7L2oU7QPv5pmF/rkyc9T/tmyu9G+K8iJ8rBUTYPhCfDPYME/YcbDIATpcLqsCdunwywQo6M9PbdZVALSyS+Fx4J6NyHOL1vZUPCJdC/vHHvqe+Zyr4ANlQJx7VdJkJEfqma8IG3jK2nxOcAifz+nhqQi6z+VfzOdgrT/3KXOlYGPRHnrUZfps9tDfZRVmtpZMgMEiyP32HHz8wmyC+3NBZD0KbdUD9033jXeAziWhx6EvmseZhjM1XJCAaYQne8ipX0iCmtLDXrYmL2xBlBsBPRAPc7mrFfT5KWChewjwa+OF4PleH5Hz8riIp4CdrAlXHUFRPNvdrXgs0j1Mn1u2LqdF9tXBQDwIHt+/iuvOGSlMjMCrdC89xkGaAZ+SIpflgy4v5tLfE3s8H9sj0jgw4sO9esx4PJ6rHrxoU/yieBsrimJQxozgmlSSeVLPslBez1MguIZcdZhApVKJKEHUOZgCueJF/ueUgNk/5oOh4W+mjgFJSzyD9FXOwKs3p+vxudJCIl6Ek7JfxHdIM+Y5Ho8jAYh1L2IEnHWlUomgHZgbNRq4gOPxOM4FJuoZmymDSyVoSocEJblg8mfDnHBnI4zY4zKTTlIwMeiA7FJnAnmex/m7JjKZTGL/2cdlIdHSGjIBd7uQdy9pzg9LUc5qtRquEq8ew8GPx+MI7iCaquwAINTd3V0dHx9Hx6NqtaoXL15oc3MzIgl7vV5UNeaAuSgkLPnmpy5OpLDH1m9vb+vw8FAnJycRPUjATpbNGpMQSky0Iqm7ReuCoXldPwjaOxMxV61Wi2ehBRB3T8qtd3FK1Vfv4EQZMRJejo6OQhOAoTDveDyOPaGFnPdhLDovtCaKtJCN2Gw29eLFCzUaDeV5HrklzEUMBEE2hPi63Vy0LgqJECkozRJ6yN8nvd0vJusbDAZzSWBFJtTGxkNvCArp1mq1YNzejcs1RPJM/JzYQ0lBH4vG2jEB6WFjPMMNyURFmVarpdPT07n4bYg8z/OItOKA4PplBTjooNNsNiM9lYYatAurVCoaj8eqVqs6Pj6OkNTz83MNh8MgAMyFIp+0q6toF3t7e5HMc3JyokajoY2Njbnw5yzL4tJvbm5GtqQ08xOX7SG9DtkfmmSQlEX2oFccmkwmUUMB6UJBDS8KyrqQxmR70lSV9G8qDKFdMEelUon8CelB06nVasrzPLSqonVxKWAC7CdJZq9evdLe3p4kBaNmfYPBIBqroEmUBdlAdxR9YU6akhLF51gG0X2EmF9cXLwnxb0OhAs9aIG6hZ667nUG2Rven1BqGA2aA5Gby8baMQEuiseeI/2r1arq9Xr0vKPgBhKWLC6Sizhcat8VDThtlmVqtVpqNBo6Pj7W8fFxEMhgMIi8e7SD3d1dvX37NpJuiJ9HRUvXJGnOpkQVPz4+jtRQipYQacbaPRZ/PB6HtrOoZh2XEsbJZWE+KjaTPAQmICnSYc/OziJTDiIumsuDg5D+FEyhLyDhvl4nsVKpRLSig4dofUXDU5IxPxAMR0dHoXFwEakA7CnmOzs7ur6+jmel5+XrQsuo1WrRvxEtznMmsiwLJgjdUCfBw7cpjZfOhZaxsfHQzAUmzRl6QJek+Lw0y91wk62IDsvGWjEBB5Wk9yUNFXnIqPJYfgjfgcN+v78wkxDCYB7CM2nU2ev1Ir7fVUIIBGkDETiAV7Y2aZYgBXHu7+8H4yJHHZUc8yKtY+iodzqQlF5vYXNzU61WS8fHxzo6Ogrb1hOEICrehV6MZZLZVV/2maKXJCtxARxIm06n0c33/n5WFQpCd7ylaA/5zGQy60PJxQSQI6fEwUe69LAn7g0pmstzIVDlyYz0LsNuw6PCY37Q78HzKIr2kJ4BvBeSHoyLMG/uQgr03t7eqlqtBjMv28OisVZMQNIcEQCqYF+x2Vwauujwf7QqB2gCHFyWTsw8V1dX6nQ6Ib36/b5ubm6iUIXXHySlU5qBW9jR6eaDEkszd5ir8RAAf+eFMg8PD9VoNHR9fR1MJ60ElA7Pc9ja2orCKPv7+4F3ONBJTgZqNRcTm7YMbU7BNEwuClxwGdgrVFee02w259KjSSTypjEpbbCHMAH20JvIgsZ7MlitVou+j3iOihqPFM3n2ZfUWwBj8kYnfLZer2s4HGp/f19nZ2fvpYKXgZAwr5ubG+3v72swGITnAYHAxZceNMt6vR4Vh7yCEdrpKmPtmAAMgMXDkZH0VJgFAEFKerovGWmdTidyvMu4orveSFEGUEPy8Q5++ZnHk0TKmE0qATxTkAuL1MZFJmkODKLnXtpGK12XuyJ5TyQkKbe7u7u6urpSv9+fa6jpEgZpxGUpImAnXhgbeAXMxAFJVHiKmrjEBqgD+FwmxTgzLgAgHWvjgoPoM7goq7jSPL4ARumpvXmeB5PlGZgckqIhDq3fKa2eAo8+F9qUa35oJJLm1kQtCNYEwwajSucqG2vFBNJAEi864RVcJMVB53kepbsBY7rdrjqdjjqdThQZKfIMMA+2PF1fseU2NzejIAaoN5z73bt30fIMzrvIRehrw2aTZskhnoYq6b2YASded6OlTIc1TSaTuRJXPA/bEcSalmF4Chio0F7JqAit96AlJCb2cp7n4bJDm6Ok2M7OTtRiYD0g6Yvm8r2FNgCAEQRgJpLCU4GW4iCoNyYpmos1gVm4OeLeCXdno2l0u131ej2dnZ3p/Pw89jplcK71wthwl3qpcipboaXBTAH/KDICY6cmxAfpIkxTZVGBQF3JHceltLOzo6OjI9VqtSgs4kUWvJgDUpLhDAfpi3txc3Mz3E2g6HB5r06D73dRRReP6OIgvfgG4N3t7W3Y8gcHB9EoFMmCtHWto0iV5RIgZUC1IWRpBkZNp9Nw7VHLfjQaRdyFB9mUrcvNB9R+7Fyey/8jtdEKWBfMBjNpGSNlLuiBgrSSogMQzG1nZyc0Hmm+mlRZAA9SmcF7wXiYD9MRwLhSqczRIC7lReXFOFe8WAgGaNbrW0oPAoI9Zd+oB0EtiKcEeK0dE5BmIbiAHu4K4fe4aHDXcDmRJtjVAEXL5vLorsvLy5AqjmQjwTkobHS47TLVy4E81GQYE3NUq1VJCiYHoISkcG9I2XwO5DnghvrsLko0KTQdCMfdeG6HLlsXjMbBQC/Txpo5S3AWN72WrS2di9/xrgDHvodpiLRH9ZWNVCChGXFhd3Z21Gq1grFBo5iqlP2CDp0JF83lZ+vnzVwEx+Eux9xzLIa5yjxHReNzMYEsy74naSjpXtIkz/M/kGVZS9JfkPRNSd+T9EfzPC/2z5UMDsbDT6VZxRqkDO6h3d3dUJUJoMGO9zzyZVwRicSGDgYDnZ2daTgcBpjG5vr3MKpVEVkPS3bXW6rt8FwYHI0ytre3gxhT7cb30L/cBYgERdXE0wGRIpn4HKDTKucFM+NZXHppFmbt/48k46yLgNWidcFgUnWad3EMB63IowVR21c5rzImiFvUS9XDPEej0VynLJ5TtB4/Q86c4e5l5vDLDdOhmxSmGB6zHxcm8K/keX5hP39H0l/P8/yXsyz7zuPPv/SUB7oLjggt1C6kCGAaKtFoNAoAhhJV7pJa5iFAMjDwMJyfn0fZc6QlFxTOTTy3NN+OumiAbQDCpW2teIa7EWFs7m5z+3PRwBYHQyC+APvcpQ72KMg3z17kT/f/R8MA+MPHDVbApcUbAkqfxghwdmXnxecBHL3kuIOPuNkQDqnLEsa9KMvOYy7If3BTzc0gTERAQPYPJg/dlrmroQcCvDA3CEhiPZ474Pkx0qzhCdrKKuPLMAd+TtLPPn7/q5L+hlZkAnAt1B82YX9/P+L/kX6SAhDqdrtzXW3wk3qBS2K608vJ5edCoD04MouEIeKNS4q7EKIFiEkvpktCkH40AG8XzmVlLggGnAKAChW/TL1MVUpKU79580ZbW1sRBwH4eXR0FIQEIx2NRnOYTJF6WXReBwcHqtVqc7asg3VeK5+LA4C4t7cXv/dchrLzYv1e8j3LZiXUqJ3owKO3WMM8gFEW0QYxCHgepFlDVegB9yB2OZ4OSbEmhBCxKG7S8A7EwnjHbW+PJ820LhiOx2Og2cFgXQtbND4vE8gl/bfZQ2Wg/zTP8+9KepHn+ZvHF36TZdnpUx6IZGUBHu8uKWxaLihIKAcAA/DIMqk81ReCkmbJNp6nwHM2Njbi2Xt7exF5RgIO9tkiuy9VKyE8EPrd3d0g/uvr69AWkPh+Id21VLaPuEyvr6+1tbWl0Wiks7MzXV9f6+DgIBgleQGYTl5l2F1xqK5F5wWSTaIQIBkMjUYuLh25HKixuGUX5Xg4w+Zn3LsEdUmzIpx+HgC6nLubEkUDhg3w565owEvOgZBkav9Pp9PAd4i3KDMHmIvwbhgOOAN77MyEOdgrmAUAptP+svF5mcAfzPP808eL/lezLPv/rfqHWZZ9W9K3/Xdc3lRy7uzsRMcVAlBQkW5vb0MTgNsj9V1zWKSiSwpC9NbTcFaPMWeAERAh5pmKZQRcZKO5Sk6RTy7b7e2tdnd3NRqNdH9/H2tb1niEOXhfknUIREFygEEgTQhrpdw5++vqZupd8YvJJaGhiUdC4tGQFBcXxgIzwj24zGzz+dlDzw2BkaN9gBchMDwHIs2DKDov5iR0HYbAWWNuYIqSRwKdeOBOkYfKGTt7CViLqYjGxDly/ph1/K2nnoPBLBufiwnkef7p479nWZb9RUk/I+ldlmWvHrWAV5LOSv72u5K++7gxuf0+FsRmIWVQw5DMk8lE/X4/mnUMh8PgzKiGfL/owvBFdl2j0QgmAB5AjACqH+4v9/s6Up2sde5nPg+3pjy1PwO8gbgH5uEyuRRbNJ9LcuIDcE963IWDWQ4OcnH9whTtobtysWchTnd7uXvO3beO45S5CNPhALETPutDUg4GA52fn88xMgcRy4DV9F+SrzAF8K7gVnUmTYdkf0YZLpWeoZtSLvh4b++jwN+CfbF/fnbLxmdmAlmWHUiq5Hk+fPz+X5X0H0r6DUm/IOmXH//9S099NoxAmnX79csP4V5fX0eTCbLeiOLzS7IIBXZJBmJ+enoayTwEm8B0Njc353yyNApxH/eytcGcXJLd3t7OuQw9tJXAD2rLp+Wly7AOt9mLsA/caFzC4XAYmIoXEwGkXOa7Zw43q6QZio4NC9Mj3RvQzuv0l10W1sa+OaAmKRgQ2ANZg97MBU1o0boYbrPz/FarFbEC0JjXk4AOuPT+VbaHfm7ugfJ6Av48j3PwDFAY64+FCUh6IekvPh7IpqQ/l+f5f5Nl2d+V9OtZlv2ipB9I+iNPeajbPRw2XM59u/hiPSLLi1VIsyCMRQUqsJ+4NB7BB0hDOjONO/ABv337NpjPKlVxIAIIgQuBnYztDzPjC3clqq2HKRdpAuxj0aXE3vQwazcDvCMye7LssqBlEFkIw/JnUAuByDlvOAID9RDisrlc4rM+vD8E0KAy93o9tdvt6KoEYu+MbVFADZeNPXZfPsDt3d1d0AX751GGuLVh5EVh3pLC9OJsHRdiH12bw6xhLtaV/v8q4zMzgTzP/6mkf7Hg921Jf+hzPDcWu7GxESoW4Jb0QAij0Ujv3r2Li4hNzgE7Mr7ooD08GcnxySefaDgcqtFohFQB3CEfwQuLcGjLpArzgGCTq3B/P+thj2sS9dLbc/G927RlDADAjS+AVaSH7w3eBy+uAfN0zSMdrrUQmwHhe3ELCJjuRt481guM8C6LGCkX3i9Fr9eL/yPak9wIzEXXAlxSLzsvCsbQ5ef8/FyTySRQf/oBvnv3LgBqGD1fvCd7W7Q2zsDdv9PpNOZHkxoOh9ERGxPK6c/dhmUCIh1rGTEICAZokue5Op1OqK+TySQuIpLDwUDn2ssuJkTM39zc3EQhCNBa99/jb/dYdHcZLppHUsyFZD8/Pw/7HCbAhXDzwi+KM7qygT3MZUEKIoFHo1EQGuuGCQyHw7g0XtykbE3sCwRJBiGuTOl9SQdj9vBnzmzZPnLGSDua0rKP7HMKbHJmfkGX7SESnbwS+l96EBeALutzQI6zcoZTZL5B86zx9vZWnU5nLj2as/M1QfO+nx4y/ONwEX6hw4E1IqFQuYbDYTAFiDPdaGk+0GbV2GmPkHNUleah0syVmBKs/7xoXelcvDdrRoKmZo8TlGs60vtVmYvWhUblGXBgKdi1ZMIBcnlfwGVeCObl2awPhgZQBTODqfv7u7nh0mvRuvxvAVBhOOke8nlnMssYAAN3XHrBQOK952KKjzgWkK6raBCsxfd4bqSZyeW0wmA9aASrro2xVh2IijbHQ2y5iH4Zpfm4/zLUtwy5L3iXOXsz/T3ff5bN9mextvT79J3h9OlcZRelKErM4y2yLIsyVQ5MQli46co8D9L7fQfK1pXuoQ/chI7YL0Lpi0bqwktjNPx7Z0Sr0EB6YR0zcm9IKnE5r0V4jb8DTDGlL8yCdC7/e3eNOgPi/x1veBzPbciex/P4mo/nNmTP43k8j/fHWmECv1uHq8dlmleRKbTMNuYz2J/p84piB1YBi9ZBOywbP651lZ3HKkDbonnTGJGnjkW08FnHB8cE3A70DUk3ZlX3yKrzuA2d2l7L5vODd4JNg148kw6wJ/VyFAFNRaPookjv5/unFYRT99aqdnTZmtN9TPfKz3AVjGWVdbGXRXYyX2XhwquuyQOwilqeOabi5/VURpLSIK5ef17RvE8ZHwQT8E33QwY5Z/EpuOauk1UHAKTPw5dfDA7SPRSrhLs6AyAk1NOKG42G6vV6uJXwo+MWIkTV4/mX7R3r8vRbqtNQ6w9iBdAiWhHX4qrEVbRvvqe+TwCW7IlX33nqXMzhST+OzkMXHkW6bK4UHPT943sSfSTNuT7xJhAe/ZRKP86k2TfoxAvZOCiJC/SpeyitORNgA5yg+L1XinG3lNcc4FAWubl8LjY9zWLE582z8L87Iyjy7ftw5gShej4EOQqtViuKi5IuysES2lupVCI9tqgWX7ou5iNSkBwJ+ixwYehW4+Wqsiyb84Evm4vQa2I6WK9LTJiNp2oTVedRkYvmKqonUKlUYl95Lm68VOMgsnDRupyBehEbfPckmxHVR6Snx15QQwDX9ip7yOcpaZdls74EBK9Bi3jGEBDEd3hE6bKxtkwgy7K4JNKMkMgjqNVqkV7pgR+4njh8Yg0WSU7monAkySEbGxvR64DqOjwzz/O5iC2X2mlbK2mmAZAhxkX3Mli1Wk0vX76MNFwPeCEngn6FvV5PWZZFtp+vxbUN8vz5O+Y+Pj6O+onkQxBp1u/31e1245INh8OIYCyTZoRZ0z0n7XpEXwA+C3O6vb2NUOydnZ0INMJVWXRWWZbNFZzx/H7aq9EajFJznE+e58E8icZLmWnqZqQbEFmE1Gw8PDyMJjh5nkctQRgokZ8UPCG8vKxKE9qht1XjDGq1mo6Pj6OcGVpGlmVzWhv5LF4qfhkjWFsm4NVc4Ppcznq9rqOjo2hwyeYRQERSEZeLcN8yCU12mLd7ojch1Ya3t7fnYtwhLqq7EtwBY0jjFfw9neEw99HRkY6Pj+M9PIQWJtbv9+OdYUJ8huEHTm46JdgwN46OjnRychJ9D13STCaTCJO+ubmJ8NhlWs7Ozs5c1yEYj/da9DRZpPdgMIj4ep5NFd2ysF46HFGBhzqTtVpN9Xp9riMxEaVczna7HTElnoGYXhbOjH4WhJDTMq5Wq0XGKZGXe3t7EchGoxMyKNEmXWtM9xCVnzgOhESz2VSr1dJHH32kZrMZ9ICJCrN5+/ZtzOVxGB8kE0CCVCqV4OpwYUpYk+4rKTKtNjY2NB6PdXh4qCzL1G63Q1sAUPHBxlPpp9lsand3Nw4ZIkYF9NLTtDbDJKF1l6T35oIBoP46UaDV0P8QzYeoNOxeCmZeXV0F8Ra1BWM+N5+Yn/JYMFZsVVePpVnaLJgLBFkWiOQAo3eJovovEXdoVrRcQ7M4ODhQt9sNLY+zLJoLJrq5uRmYBq3VyL9wAK3VagXDpBWdX0LW7gMGwBlJs+YmjUYj+jewh0hm3p9ITEwTLy+/KHjK6QdhBGN9+fJl0Mh0Oo0wc2l2X9BoYCRFe1g01o4JFEUIZlkWDUKRJKhlXCiaXWxubkZhUAqQYi6kw8E5DodCIY1GIwiFS4Q6i6lwd3enXq/3XsmsIi7PeqT5xBRvXcXv+XLwjPx8mMSipB6IA/CICjtI1uvra52fn8/VSWB92L+ozpLmzK2i+UDiyUbEXsaM6ff7yrJMzWZT9Xp9Li+DPAXW6XUgivbQ8xFS0wDthWelQGiePzSrhUF6nknRHnreA6YeNIrqLSkunHeqohNSWo+hbA89PwVNEm3YG9Cg/nP2CClMVJ7zFHBw7ZiAu+ModHF4eBhSi7ZPJMV4TvnBwUFkE3KRkDZFF4aL6Vl1ntXGgXh9Py6m58p7zfyiPG53DabouKf6UhMRUwOV9cWLFzGXuwp5RtFcfE/SEBmZNzc3IU15d89lOD4+jgInq3bq4W+9tt5kMlG1Wo3EG6pDgUlwYUlbhqlhbjkTYi3QB+u/urqK4h3+jvf393MME+zg8vIy3K8Ax6k55XsI6u4Zfkh66AcAmXLtMIGrq6tYl6f6LsuQBGPyWpcwAkmRjs1ajo+PA6gG3AUn+mC9A3BmiJzMKsARNptDQXJ7gszFxYUGg4E6nc5cLHzZXGw83JSCmRwE0glV2usKdjqduCiONKcBIn453ZVI63O0GkpgUWTEpTOFI7z7UJHW4etjT9CmptNp2Ol8HrW1Wq2GRkMas/fsK5KY0sxNShUfMusODw+DkAHSANg2NjbmajNQURkmXBYP4K7My8tLDQaDMKOyLIuzdu2N2oWcsXdxKpKYaUwD9IbWgarvkh8wFC8BblZchLhZy8Bp6GM6nc5VhGbfarVaYFAwdccOwD7IEP1d0YtQ0tzmoV6yOdjM7i4cDAZ68+aN3r17p/Pzc3W73diMogILHLB7D5Ceg8Eg6rtNp9MAf1BH6VgM53Vms6iYg6t+YB0QFpKQNVMZGD80UsfTmIuAHwckHYiCmdDKG9NgY2MjGJwjy6jzEHNKVKmkhkEhxZGQlGs/OjrS4eGhptOH1OPvf//7+uEPfxhp4TA/9qFoXawDRrG5uTlXNs1NSQeT6U4FSOgaThltePYmmIYX8gT7cC+PJHW73dhD97os0wT8vPI8D88Hz+YsYEZUdabWgQu+D9pF6AEd/FsUYAJqjUvq/v5e7XZbn376qdrtdhzEInTU7XdXs6+uruK5XnkYLAIi5PIv0gJ8TQ5CbW4+lPoGuacLbaVSCVWdgp0pKIjqx/6k0t81D94Freng4CCei0pONV1JgR9AjMuCavxi+vmgPW1sbOjw8FCvX7/Wq1evQts4Pz/XxcVFFGnxqjxFdjpze+CPNKtlQNchBEKlUgkEn/3xC7msDyFz+c+YEVk26xZdr9fn8ABUcb5g1m5eltG8g4YejFStVkODOzw8DMAcLAAzzIvQfPDBQq7OoSKh6tzc3KharQaYBtB0eXmpd+/eqd1uq9/vz6mUTjQ+nNgAVVAZIUjUSUfksUFdIqeXrmg46nx4eDjHaFDvcCPh0gMDAX0GzCQ4pghEc0aE5uEpsEgWLj9IOkg3fmppPhx30bo8vdhjJ7IsU7Va1YsXL3R0dKTNzU29fftWb968CU2N2gWOcRTtpZuK0AmFPTgD+lQAzqHB+cUGAylbl5sCjt0gydEM8VihgWDKuBnn+MKyPfQzA+uCmQC2cm6Yc2AxaDfQ8bLgOB9ryQR8OFFBMNiaXEpALxBb7FoOb9GGsPkcOCAfKiaXUJrVykfqQ7weq77soFHlaHJKgxXvQOReC0eE0TQAEsvcTen+pWGu/jNEDmF7bDrzLItK9Ln88hLFyaUE6EVlRduAyIu0qPT5fl7M4ZLXGQVRiZgGMADWvizMu+hdXCty1Z24BHc5o9V5abFF9CHNwEYG5g6YB5GlPBcNMfWwwLRWGWvLBJwbSrPy3BASYAx22tnZmTqdzlxkYFnST9Fc7imAGVxdXanT6UTACKXN2HRv/ex+3jKNAKAKIBCbEjsZgvQ8BVRWbG3URg8KKVuXg1YgzB526vawR1+CcvuXm2VFw0O8wR4ITgLMpflJt9uduxRF+7/ocvJ5mBfny9nc3t7GnGh3Hn7NZeEyl2E47ipkrz3wiYpXzpycwbAPRftdtoceMERcDDgVOAHnATBKqTrMTc/VWKadSmvMBFJC5wJ4QAsqX6/XC1TaA1Pcf70oZNiJClQXUMf7zcF9cdEQg4CqzbulBw33x21FBWNQ3UajEXMT9YhEQcqwNoApD+Bx6cL3fhGJccfdBOMEGCMuwLvrQHC4Ez0CreisXGvJsiz6Eb569SoiE7mgHlY9mUzmkG40Lcc8fF1u3njgFhIa8DjP84jyTKsYc9FgeosiIT13hMvsWhhMAFDQsQpyGVDdvU5kkfeDfcBT42HpeD4Ahz0E2bVED9xa5tZlrCUT8APmMrMJ0iwBh41qt9tz6Dx/j/RapILBNeHkTohpYxH69HmXFxgEUqlsLtaCxHVAbTQazbnZ+B5GQeago+dlxAvT8MQakOR6vS5pBq6Nx2Pd399HowskMB2PeAYaQJlEwcxwVXh/f38ujBjzikq5fiFhTDAaSRGrUHReabBQlmURT+IBYjAALh4XmHXgX1+mSTlDxR3tZipYAF2pYAD8DXMvUs/5PPvB99fX1+F69PcH5ATDcu3JMY1VxtoxgfQSAYhAVGAAENb5+bl+8IMfRNlxNgIblIu2aC7HD0B6XQOQFG5D6senoaDehiwdMBfXTtIeAtIsnJVnogJSvpskHi+0WkTEznAAGIm4pD2XZ7ixPklzjVRcXU6Rcp/L1VgQ+Vqtpo8//linp6fh1sT96OcESInURjNI1+UAm+MCjp0QLEPMCLgDTAIG427monVxXm4OeJISpmmv14v9cbeku7DT2hBFZqlronyPJ8CjFomK9FZxw+EwvhAY7jX6YF2EzuGxw2AEJIugXkK04/FYeZ5HU09/xiIp5qgt6p+rwahzlUolfLRc9u3t7bkknzJwi9/xLjAA6UHiMT9aDAk0Nzc3arfbkZGWZoeVrQsihvHABFBLUR3xeOB9oIkGROTRj8tcTuzd9va2Wq1WfKFhYL+ORqNgcLRyc7efd9NZNFKm7fgIocKu2XGuKbMuw4pSpB5th9gRNAHMJswGvEXgBr5vy+aCIXM2AIuYCewvIHin09HFxcWc94J1ffAuQmk+Vnx3d1enp6dqNps6OjpSq9XS3t5eNJnEHZi6j9zFuIyAfa56va5mszmXMQaRAixBSPiC3Q9cxOmlmXsK6T8ejyN2X5qphDyTXvdkENLw0vselJk7vItrIACTMBtiDugO1Ol0IhW11+sVNjsp2z830ZrNpj7++OPwgICae+9DtCH+5T34edFcaEoe+wDYSpqvh55jP2M+uS99kYfAJbQnsWESeL9F5uOs8GTR1AXmvyhi0CU42i6eI/ZvMnnouUGcBbkXHtXpmscqYy2ZgG8ECTb1el3Hx8c6Pj5WrVbT/f19ECudZjhcaXYJimLDfR6kBZtMUk2j0YiEF+ziPH9oGoJq7hIZ9HeRdObiAvKhTrqLEKyA9FBQbW864TkKZQzOOwh5jjuSi3e6vr6OrjYwAOZlnkWFN7hoaEOor0hfd3tyHsPhcK5tGYzM8+LLmLZjMWhrSGgyF2E0aE+j0Sga1nqvxbKoOmfajjExJpPJnBtQUuA2nCt0yfk54ylbl19gmAVzgR0Nh0O9efNGn3766Vz/Tf7GNbgPWhNgMW5LO5Lb7/c1HA71gx/8QG/evNH5+fkcMMiXB3csmssvEmoVoJLHmhMqzPxe3ccvZdHgsrg9LClQeRB47HVsZ/eBe5LSouo7MBLMF7SYfr8fbifW7G6mlGDZm0XMTZpl2fEskqtIcplMHrpHn5+f6+zsbK6Dr3t7XEtatC7/woxBRYcZ+ftg5nhvR0/qKVsX0hsvDg1wxuNx+OoBM/l/YveR0K5J+VrTAW1XKrMKRefn57q9vVW1WlW/39fd3Z0uLi4i0Mr3kLNa5bzSsZZMwFXE8Xisi4sLSQo7SJLOzs50dnYWRT1ubh4akXrY6SoqEcSHJEKjoNswFwYphWTh4DnclJkUDSQhB0WmGTYstjlr4JkQmv/tIvXc9xDiAjjiiz1iPpceDgq6mrpoXVRw4vt3796FicBFRW31Mls+zypzsS7pgWF3u93oB0j0njRzj3mbOv71M1u2LvIgOC/XQHDXIbXRugAoYTIupcsAO/ad308mE3U6nfAwsG7iU9I99Oc/BQ+Q1pQJSLNwSKTjxsaG2u12FPegTbdLDr7K4s8XzQWYKCm4MUir1xQEtPLL4wdQNPzQ/bOuOaAuux3vgKX/zSKNwz8LA3ACQ7ty+9PfLwWxViWoyeShhyEaS61WC6TevQ3sgY+UEayyLnfv7ezszJU/Aw8i2hFm5/hNmbcjHdAGe8/eoZ26OVmmhZZ5BdLBe4IhkJaNt8PD01PAcZU9LBtr34EIIoXrIjXZYEfkP09rMOZyuxZ3JM93lyEHtcqm87yiudyLIc3XA3DvhhNt0XyL0PR0jkWxDKn29GSCMreaNF+zwaWgr+uznJczbPYR2uC93Y73KrzL1uVMMT0LnulM2v9fUqlNvuo6/bx8Xt9DPufA5grPf25D9jyex9d8PLchex7P43m8P9YKE1gU3rvoM0/RZlb5rKusRX+/LBJr1Uit3y2jLGqxbA/TsW575ar9os9Iq9FD0UgxnUXPSN/li96vtWICZcNtII+EAzR0QKQILPmsc6Xz8awU6Enn+qx2NPN5Kqn7jj/PuormJDjJbWfs9FXBLN4pfbb0fmswz5twgIu5VgXrytaTntkiwOzz4BAesOSYh/TZz6tsD31tzOWfT/GAJ+ADMdaeCXjEm1eOxUcL4JMCMQCFiwJq0uEb7bHg5BJ44g6cOw2xfcpcEJODn8T6+xqk2eVMIxSfupcOftLxaG9vL5BpfOi4RBdFuRWtiXnc7cm6iH13BN/XlOYsrLqHDtYRd7+5uTlXqu0pQqJIC0jXxLq80IzngfhzWd+qIGhKh9CJ90lw5pm6KZ9Ch9KaMwFP4/TkDa/cAvFQSESaqVYcnJetKhp+MTxzjN8xNxclRfVJeuESLTtsn4vYfVxaRL1lWRY1/ty1RkAJBL5sLicoCJaqOC9fvtTLly8jRZpISEJeiTCEyJbNw97R55B9o1gmtRIJssL9RvCTJ2cti3jzdfnlJN7etQHv+MPZQR+LwoYZnkrseQKsl3P0zEdH9PksEZyr0gZnled50Dz5HwgjSXMp8zDuVfYw1rfsA1mW/RlJ/4akszzP/4XH37Uk/QVJ35T0PUl/NM/z7uP//UlJvyjpXtKfyPP8ryx9i4JBbDaFOAkN9RLMeZ5HeC0+fQ7ViSvLsvi5YH2RpESyhqeP0nUGTYBgE3LyPbSWYJJl7booIOkaDUVFj46OVKvVJCl83xyul13nZ/5/0T6SCOXdej7++GP95E/+pF6/fq0sy3R+fq52u612u63z83NJs7oIEFVKwG73Z9msYlK1WtXx8bF2d3eje06r1dL+/r7yPI+Q2tFopH6/HyHLfrFhEmWSmr0jbNjTpplnNBpF7gU+dpeQXuijTNtBY6IWJJWZoEm0NmJXoLFUQ+S8oMWikWXZXMIaAiLP88jMpIGsNKvcxHwERnl05CqMYBVN4L+Q9B9L+rP2u+9I+ut5nv9ylmXfefz5l7Is+2lJPy/p90p6LemvZVn2e/I8X02ftM1AelBumdx0JAy1+Dy+nktK2CbdWODIZRtCEor3z/Oefc1mc64asDSLJut2uxoMBhH+S9YcgR7puryxJNydtdIajKKf9DugkIkX5Ew77xatCy0GVZyciG984xv61re+pW984xtqNptRIk2aqa5k+3kFXy4NwzUvEq9OTk5Uq9V0dHSkZrOpk5OTKIrJOVAm/uLiIjIxib70tmeu3fkg+7DZbMZe0tmIuozsGSm3XiiGNGykp/+cnpfnkXhRWMqckyrs2Y9cdLQpGLf3sCyiDTcH0T6oR0nynNcW4G9geGScYqpAh5+bCeR5/jezLPtm8uufk/Szj9//qqS/IemXHn//a3me30j6Z1mW/Y6kn5H0t5bN45vhudu0mPLKvJKiIg4EwIHe3t7q/PxceZ7HphN5WDSXFxClySlMB8bDheWyeHgsWX8eRVYWHJTiGiRH0euu1Wqp2WxGnfzt7e0oWsGFJ14cFbRoXcwH8AZBcPm8YnK3251joqjJ/H+qShfNgwpL8BYFTA8ODsJ0GQwGc/uUZQ+1B6+urubSbqVZafWigSZYq9V0cnKiw8NDvXz5MpgP0X3X19ehiRDNSI+D8/PzOYFQdl5U+KEhKdWFEQoOPk6n07miLdPpVGdnZ6FhQBuj0ei9tUEbSH6KrJCxyFobjUYIP5KzYKL1ev09rGU4HBbu4Xt7utKn3h8v8jx/I0l5nr/Jsuz08fcfSfrb9rkfPf5upeF2pRfFpMDC/v5+ZIZJiguMOr+xsTHXCMRLLxdxeQeR/HdsOtl9Xj0IhkEabq/Xm4shL7MxYTg8i88guaiezHMwb7xCEJcQrWZRbgSEhqQjhh/p0O12w6yhMk6WZYEzUHWIy+KId9E+snYq4bhJBvNEcsGEJIXJhmTDxCg6M0yparUaX81mU9/85jfVarXizDHHYHqbm5tRNPb6+loHBwcaDAZzsf3pYC7Om3/RTgFPMYeQ3Pv7+6pUKhHjT6KXhzSn+8ffu2rPOikGgwaCMAInqFQqMWej0Zjr+7AqcPxFA4NF7LtQF8my7NuSvj33QbMvuQhs3OXlpbIsizJbXKY8z0OFPDg40GQyiaQfxwjSDfG5+H+qukJAbLSrjDc3N1HGygEfNt8LnSbrlaTIg0C6X19fx/vy73A4jPk4fADItGTWooOGECi3lZb2ph4jc2GPej1Hz3wrUyv5P9KVYZaNRmMu3JW1XF5ehi19fz/rWeCegrI9dDs5z/NoHLu1tRWYBl2r0BKZdzKZxLyOsJcxAYQD+4zWB+MCD5IU9JDneTBc+hHCmIrWBR2mniYamYJTwQCooQGdv379Ovbm8vIyqgx5abxl47MygXdZlr161AJeSTp7/P2PJH3DPvexpE+LHpDn+XclffdxATkLST4T4FetVptLx2SRcENyyLksFO1Y1tYKIoBbo25JigQU7FVURFBu5kA7Wdaui4PmWc790WRIdYUB1Gq1uPxeW8CBrpL9je+5XGg5h4eHMTfMk4vY6/XmvBGLmICfl6f1bm1taTQahVoLhuMl1iuVSgBY7K9nxpUNzot350JKD51/Li4uNB6PA1SGkUsKpg3DcTwlBTz9vGCUo9EoNE/W6pfaexAA1N3f34d26vkmRXOxHi89h/mD6UQKMQVcKBJLK7fBYBAm3qqu3c/KBH5D0i9I+uXHf/+S/f7PZVn2K3oABn9K0t9Z9aFsBIdDxZudnZ257sIerMEhYT9TeBHCSlNX0/l4JhISDQD1VFJ4BABtyFojD9/TZD3bK12XB3JAnJg/VAP2gBC4P5WNvVovjG3RpUnfAWmFbQuQitS7urpSu91+rxPQqgEoaEq4NW9vb8N+p80ZFY3H43GUH4dgnREUEbBfkqurq9h7kPmzszMNBoM5bYtzhEkRN7DIM8C6+QwaDhePGARo0WM+dnd3Q5vx0vScYVmjVb7HpMLcdE0XLXg6nUYFJUDcXq+ns7MzXVxchLds1X4Rq7gI/7weQMDjLMt+JOk/0MPl//Usy35R0g8k/ZHHRfxWlmW/LukfS5pI+mNP9Qw4l765uQmk9OrqKmxj9wsDQKF6OTF55lgZA4AAuPBsvEeE0QcREA+7jEo8MAAPTOE56Xw+uOze5QjsYGtrK9TpXq8XhJUWw1im8jn4xX41m02dnp4GUs3aSdX22IWUeRU9G0AQ1V6aAbetVit6EHoBVS5q6q5b5O2A6WFKAVpSYg4MBaaK54CyXA58pmtIBwzNYzictnATcvkxPXgvXIIwgGXBZB4tCX4CrWOielel09NTNRqNqMTUbrfV6/XeKzW2yljFO/Bvl/zXHyr5/J+W9KdXmr347+cIQppVrsE2Akzz8sxUluGgkJQuWYsGc3hKMtV83ReM2gxDQPpj60nzMedlTIfhICAqN+uQFExhNBrNAWX+DAfSivbR1XWwj0qlEpiGo+JXV1fhDnMkfdEczMOX4x4ePech3l4hCUZ3d3enXq83x4jL5nImQD0/96sTj4AXhIaexHBID/TkMQmL5oJJQlcUT0H40ADHm5LwWTQ3116L1uZn65GCaD7OdGAKrVYrzBQvCQd9ON61bKxlxGBKVKDbXizTA3tAcT2oBZwAW3iV+bD1AAIhlrRXIOYBnN5dZMuAOuf0qMxoLd5j0MNTnTGuOhfz+SWGyCBmD0HFlw3C/ObNm/BmoFIXMYIiogZjARCjvh8MF2YH3oGqDQazyJZlLzAVLy4utLGxoXq9HqYatjIm18HBQQgF8AMA32X752vmQgLUYt7keR5nx34hIJDornWWzcV+wqwcZ8FtTlPc/f39iO7sdDpR0AX6YJ9WGWvJBKQZOgsXRg3iYoOqI1FobuGACmogl65ssPGOOjsgBKoM7uDlv13F9FqIZUAaEggmwOc5RFyjEBmahhfkZK5lnN7ngymyJuxFNC7s3bSJSLovZYzA8yz4G5gLfnnWR0dfpDQBVHT05b3KBhKSop5eoxFwFVW6Xq8H0yPQCvpCQ1m0f3wWwJm9hLZo7Y4ZQyFV1xAxJTwXoGwP3R3p/RTACnCVgxF0u111u93AGlxILNPiGGvJBPxS8jUajdRoNIJAkGq4tCg3RjFI3G3uo/YNcdWTjZNm4Zej0SiirTj8arUaoa7eRAONhGcWhSf7XD6fF76UZjhBtVoNVBkGx3swFxK3bK70iznYP3raEwwDHpCqyylz8zn4F0kI8wWshVHDyOgQhHcE1yhmHu+2rDw3lyJlcFyO7e1tHR0dhWt0OByGeYNwgQmUCYjUZMCDhLsR1R+NCg8A80GHDjCnc0GTDiwSDu0mCc9BEFLvEo2Ds3U6XBQO7WMtmYCXiEKly7JM3W5XeZ5HWO39/X2oklmWqd/v6/7+Pkpqe93AMm6Y2oVZls0hu+7TR1p7hWG39xZtuBOUX0yIlnwBadaJFmLnUvhzfE1F3J53QjpwQZHIt7e3evv27VwIMgAUkpP9WYY7ILHAaAAfkc7+9/4+YDu4Dg8ODgLMXbSP7r1BEr9580Z3d3fhfiTXhOYuae7DxsbGworNThvulYI2er3eXIcgb7HuPSpZr6+/aA89LiEN0+YyE7yGCeABSe6hKHJ7LhprxwQcXHOACQ4JkRJoU6lUwnOAbUaZaGkWT1CE1vtlSgmazby+vg71i7LcfuBsPLbsMqbj83MxJYXGglQhvgEA0qP6kMplZke6l0QduhqJhkHeBEj627dvI1jJoxLLUG2fg2cR4lqr1bS/vz8XF4HNTqyCNN9xmq+ydfnvXAXHW0MQDSYisfswVfbd+zou2jvHIFylx/9PFCJaGR4XtAzceOzlMmwFzQvMxE0y5u31erq4uIjAKPaAO+EeqlXG2jEBP3zAFGLu8zyPlF0OgzRe+s65vc3BlUXW+UYxp6uHEC5qKwyJiCyiutJS0csupZs7rIH3A/xh7fQ7YL1ecXYRo/E1sH8wSC5AtVrV0dGRjo+P1Wq1IvHKiXpV8NGZQKvVih6EJGNJs8Sfo6OjwHbYW69GXMZwfF3QidvL2OneKgwGnecP0YVelXgVSekMF4mdChBppup7UBm5K9DhMvXc8ycQep6HgUngTVUwO1J8aBHjTsfaMQHXBJwoICY4pYfsstHYnl6b3ePfy4Y/kyi9w8PDiN3GH+whrZ6z7T7oZRvvMfSorGRGkrQEcyEtFFdTWkNgUdiwMxtUb7wbk8kkYh5arZYODw81nU51cXGhH/zgB9E52JtbLlsXc6Hek9E3nU5VrVaD6SGlp9NpBFu12+3wILDOZVIzZdoAap71R+bf/f29+v1+aBvEWqxyUXg+6roHjAFqwsg5Fw/UIbgHpl4mjHxtBI3V6/UAAkligwHQdcvb1ada2xcWJ/DjHv7y7ruXZokVHtPNZWHDKU6Byr4scsptMoAsKu6QpFKpVOYuZafTCfegc/ZlDMcJN82H9zxysu46nU50W/YEFEf1y+ZyrYgLSMAKa0WrwsX0/e9/X5988onOzs4CiHTCKhswRzwPaBuYVtjOSHwAyU6no7dv3851JfLzWpVx410g2YYkH5gQdjwMJg0XLjM7HD9A6GDSkJqN3Q94i1sUD4HnGRAzUHZe7uOHxj15DHcqtR+olYArkruDxvrBYgIQuFfQoeqNNItE43DT2HP8x54/XsbtmYsNl2aMh2hFpGG/3w+JhXfAs+R450XRblxid7nBXOg2y3szX6/X02AwiN9z+V19LhpIHrwCZM3d3Nyo0Wio3+9Hht3d3Z263a7evXundrsdEgaGtkhasocwSNbf6/UCE6BxJ2o7tRFA7LHbl0UMMl+q5Tjw5iYWZ+ch3d6CbJmG6G5Nzos9BDiVNNc2jjMkko/AM9/PsvPyrE5wIUA/NFv6EIIHpEzNzeAPlglIMwkvzVQ/mmYSJOQEw/cQPCCaq5Zlg4sI0kyI7nA4VKvVikvifeaQkqDLfC1TLWFceT6rdUDcN2aHNGtnxZzMBUNzjWDRcFsbT8m7d+/CD01MAPvmRUycYFcBOSFckHPPjwfc4iy5oB7ctQrQyVxuKvi+IwWvrq6iIhRuPdKnvdnqsosC06hUKqFhgtMQqQr9wOA4I753elzGtHEtDwYDvX37VuPxWOfn5zo4OAjhBvNEu2DdaKRuFqw61pIJSPOtwabThzTOwWAwB9Jhpzmx8nerqkT8DZ4GCIsgDL+40szbABE5J15l8DzWBaqNzeoBQa5dwOieAvi4usv7sacpGs3nVr2M0rxtzlowO/gde5rGY/h8aR4Ez1zkmgSpn0wmUd+Pn3u9XsQ+sGeEQtPefZkWwMAL4HtGA1Q0A2kWEOSCyZnAKpfSacMFBQl07tL0i+4/r0obPtaqA1GRSyMNrkHdc7WQv3WkfpGtV/IOc4SaZdlcWijzMVAvU8J9wprnYhQAg/wCMJA0q0rmRXOm6/D9kxYj86s8n3+ZK43BcOZTpD09ZW43CySFlsjeui2Nvb6Kmlx0DtCF159EIPH/DO9jWbafi5hCGlMCpgO9+fml5tOStT23IXsez+PLGs5g1+FOlYznNmTP43l8WePzamlf5VgrTGDVCKdVR6r68rsf91gWn+7vWSRNiqId0+etikl8qCMNtfbfS+VnvaqEzrLsSXu46Ly+qFFkvvlYhp2sOtaKCSxasPR+VpxnS7nt5aDTF2HfpvkFDobx81PQ2HQ9bsfylQJ1PndqAz6FeZaty3EU37PPsq50Hj+3dC5+9t8vel5K+KnNzr9uQ6fAI+t6Khbh++xBRGmWZQqsrgKyls3l++cRi+k7O00+da61YgJFxOzRWvxL5BYZb16YA44O4r/MRZgOP1yCNgjkgei86QMegkX18coAT1xnXhvBOyt5HD2MDp/xsrz7snU54eLGg9Gwh060HjC0ykhBLQ/qSRF0n4t9fUryC8+FLnB9UnwDRN1LijHXqm7dsnX5/u3t7c3luaRIfRqctOpcHlruTM49RbxLnucRY+AVrlYZa8UE0uEXgxBNb9hBfLiXlyLJgmos7vdeNHyjQX7xEBDwAhf2rC380FzcVS4nUWd8kfnmKcmswRkOv2dd7iteti4nIoiMS4Nb1C+kS1h3ia6yh944A0bqORgwTdaEVCf+Y5EP398L2nAGwNxZlkWItNeUcO3LoyiX7SF750VfXBghdNI0bP/7ZVGekuYYJkVLeAZRi3meB62xv2gglDf7QmsMflWjUqlE3bb9/f1oBba7u6vDw0PV6/WQLFTIJSiDNGCi8Cg0sSj3nmcjmfkdXXXq9XqYH15F9vLyMkJ/CUQpqvQKoW9ubkYk3e7ublTBgTEgxTzM1O1OIiT7/b4qlcpc8YqydXmhD89uo4sOa/Firi45CeiByMvOi/f3nn3MRXCNF391FRbNB6ZNhF26HmnWWo0Yfr4QDru7uxHUQ1KRn4H78Yn8K6sBwcUn7yLt50iuB5GQBJJ5CDlMlj1MGYEzeWjdOxGxXoq+wHC4+ATXke9BxWeiWpcxgrVkAlmWRbAHyTzE89MdqFqtKsuy6APAhSAphQHhIxGK5kLaQ7hkcNXrdR0fH+v169eq1WpBQESEXV5e6uzsbM5MgTGlLbTwmXuCEkxgf38/iAkpxvvC6e/v7yN5hOAVaT7SLB07Oztx0TE9kFx0Ozo4OAgmwAUkWpGS2hBZikeke0hVYRgBUXswc9blQS/MRds4mHie5++10IIZUkj08PAwahEcHh5Gh2U0JS/zDQ3c3NxoNBpFhSjMrDLaoCOV7yNJX3SOIliJCM/0C5rhQrK+dF07OztqNptB37VaLYQTjMgLvIB73N7eqt1uh4bjRVhX0kwX/u9XMNh4LgOX5PT0NApVePYg+f5wbGxLl66kGxehqB6IBAFxKb2XHnXqMAkODg7mKrxwiBBc0bo4UBpzcDmazWZIGCIGubRecwCNZzqdRhecslZTripDTPR1JEOSlmdeCRdG2m631el0QoOCGRWty9XxRqOh3d1dHR8fRyi0B/Hc39/r6OhI29vb8f70bxyNRpIUBO7nBdODYVer1UjyOj4+jjZhMADKnbt6vrm5qXfv3knSXB4+CThF66LwCem8zWYzshQ9iejm5ibaoBF+3ul0JCm0GjSyMpongcwZDDUfOXf2mvZo3qiWedg772uxaKwdE8CWgjvzL5fby4hDXKiBJGAAmGAHlnkKHNlFSniXYE8cIQvNy1iBP8AYyuL64dA0SHHQEcZGaCvEAkPjIntVoMlkMleFuGgPYTgOpNIhmAw7TCrPSfAqx5hTpDCXSUu3+Zl7f39fzWZT0gyx9uxJmIOkSNZaVlMATYa/xTR8+fKlWq1W1JXgIlYqlShb5ucMmFvkffF1uXkD4Fiv1/XixYu5Woy8K5ec86PWIZe4LJUY+pDmgVKEChc9z/MoqErtBq9fCDP1UOUPGhPg8tNybDgcxu/u7+8jkxBul+d5dH711F+v01/mT2XjuQwQJzaapChsyeWo1WpxsK72FalfXAAG9iLqcaVSmePiHCCmzPHxsSQFwTFPWdEPZ24wT34PAVGmCkzh7u4uQEoIGZV6UVKKo9OeZ5Gi/qwXDWc6nYYp0m63Y38XeT48GYnv0dio/0ihDeryUcKdugLkFiwyA9J1QTMwAtqDk2jmNMlnJpNJXOI0yaxsPkw7ytpx5mRZOkBdqVSi7B2ZtWg2qWdp2VgrJuC+YE+uyfN8rhiFu2kozHFwcDDHBQGg+CobHIrnHNzf34fKjvsHe45DZh7y4JFAZTaz+3ap4Qc+kGXZXGUaDtmr6EoKLQim45mWPlLACECORCxcq17h2Eu3o/l467MiKea4BASM9BuNRnHx3Ib1IicUTwHspBhM2WWBqbgHAo0NYIzUawbgGtoQ/8flLGJu7h1x9+n9/X1oh+AoXteSM0MwsedeLboIFIQBOM1TNLdWq0VilqQ5zRe6ubm5ifZkKS1+cOaAc102HqLCzsO2hQBgAjs7O3rz5s17rZ+8KGh6Of1iQuRcODabfgYwHVQwimKACANsISEWrQsPA5KYv6OFFdoBzM9jEfr9fjAebMGUiB0B52e0G3dljcfjqN9I004uPkizN9JM99CDY3gu2hkAIN9zAZCu29vbkZYN4XJeZRmgbiIiCFDBLy8voyLSeDyWNJOuMFNXj4t8+L4umJozmHq9HvEHALXuqqMXITTgWhsMvEhLZG6YNuBvo9EIWgQ/AiNDm7q4uNDFxUXUnyDNeJX0ZcZaMQFpRsAgnx5lJimAGe86401GUCvTjSgzAzwri4uHSwa0G68Btu5kMlG73Q7CTTvOFs0FUYEjSArClBTlo3AB7e3tqdlshp/Yy6Z5kcwyiYn6zf9jttze3kbdAtx6jrQPBoNQqSHyRUE1nBfajgdRoZIDVG1sbASAh6RkPTCAsvNy7ZB3QltjPuZGO8CVjOeHS+2u0rLzcrceZ4WXBvUbPARvBa5f9t7fexEmwFy4htEsrq6u5sBJaJ/mJzQgJUW63+8HY39KgNdaMgG/mNJ8kRFMAFxOMAv+jmd4nbpl8/lw28wvKBpAlmVqt9tBsBDkspGChoCEvDuqJI1HYDhOeDAcGFVZTgIXk/2CuLA3cXdhYiFhMAO84YnvS9n+ORMgroDCG+4OpST5/v7+nLmCpISJLJrLzxUtCYaIdwKGjeuQGBOXzniOCP4pWxcX2tfla4F5ext0b3nmIDXnVaS58V6cmdv30oNZ02q1wiVJ/4uihriLzqtorB0TYDhBpMg76qI0A3BSIAfbd1WO6MSHCjcej0PjQIL48zioFBxbtCZJIT0khVkDE6CYKhoOnhIv/MnfFLmbfC5X19EkYCTY5GABEC+q79XVlaT5GvhlwKqvjfNBoqPNEQ6NlOYye7su9ncRmOV7TLwGYCcX3gOVYDqAsACXHkRVNF/qVYIeBoNBBHgxD5oj3gQiOUH0oc9VBJJjEQ4qcgb8zvtgcm7uEVtVC5DWlAl40APE7mHCHKQDhG5/wQRATN1GK5vPLzrhrdh9k8kkLmeWZRGJhZRIOX2R687nAMfADqfuvyP6jlNQXhqACJwiTWxK52MgxbDxB4OBbm5uosIxjI0uyx6GLc3MpFXChtk7Z0DgA4TXwpBooME+OhNfdGF4Jt4LgskAcTkHpCjz93q9wC2Yr2wP/RygH6QtHijPWYAh804EJLEv7rouY6apu5Uv8Bw8XsSmuGcHnATwHMbxQWIC0nzwBBWAp9PpnP/cYwVczXMEHNs3z/OIVS+ai4vv0t5BI7rcZFkW6pf7Yj3m39W6orkIRYZop9NpdJYhmAYGxztjO+O14HfLJIz/ngrGmDW4sQCa8BZQzhoTB0YqzerXlc3lNjagZWrKYcs6IAjBEq6N5C0KFuI9QNExn46Pj8NPzjMxHSn6ic3s7sFlsfzSDM+5urrS+fl5vCe0AiPP8zz6RNAIRZppfovMUxiAexfAA8CmAB3ZH0BvtADXbBaFyadj7ZgADMB9rkhNkGdpVnKLLjpcZEfCXQUsGw4SwdVR8zx5p1KpBGjGxeO5/K2khRsPc0JFRGUlsMUP2W1/JLN3RuJCLbqU0kx9hhFSBBTtCs2Gr6L21u5FKZqH57kEB8O4urqaYyQwN5gEDMCZ+yJMgDWjSbAfFBclvuHu7i5yFvDAUHFZmnlJFmWZpuYhFZXxENBPgXdiPS6xGWV+e+bApOBfz4jE1Nnb21Oe5+r3+3NNSIkg5DloqZh0y8ZaMgGkioOAjUZjrnCkF2+8u7tTtVqdwwkA1JYdss8Hooz3gfBk/OwQDhITRuQZYmUjNRf43n3zHhkJ0aFCu10uaU6tLSMsdz2BQbBf19fXajabyvM8TADUZdZKxOAquIozCs4OzcYLkNLKDSLlYm9vb79XtDV126FpgAUMh8NgvqwZjYnPDwaDOY8MzInqwYs0xHQPsce54GAOMFjOzoPU+J1rHem63JxE+qMp0h0KM4tW75h0ksKDdHBwEKbqKhgEY62YgNuDnr3FhqCue9AGrhVUI4AnJGmlMt/mKx2eagu4Qw84bw6CRPHqwA7i8CyvTJyuy+1LLgZBJjACzAmIeTweB6FzCSDGMj9wmcT22APPmoSouRxI9tRFuwwUZIBbcIaupXmikrvCHBAsm4vfO3ALTbh717WSnZ2d6AKEjQw2skr9AqdJxyI8+AoJ7dGjvJdHUC4bjlPgSm02mzo8PJSksP89ASnLssjQdG+JNPM8LRtrxQS4VM4ZUVs9cxB1H64rKWxaegPAET0yrGykWgcHwJwE8aDGenx6yuGL0O1UpUbSU9Mee1GaqakwNVRfCIx1LooT8D100wPbtVqt6uTkRK1WKy4hHhcPEfbnLyJkR6VdmlWr1YhDIOfCGYv3bfBK0cs8BOwT78yX+9V5H2xmcAiPS1hWfMP3EBpxTwchxGmQENoUEZSrrMsZAIKHTE9wAjQBB2C9vLuv6SnFdNaKCTBcLWTjHNGFwyIxQWRx4XgvQqR3mWThAvNcpKMXMUEi93o9vX37Vufn50FUXBak06J4bYgdtw6EK836yvO7fr8fLqY0FtwbWyw6aPbLM++Oj491dHQUDCDLsrB1QbQ9Ndml7zJNINXeALSwnbkcYCt4KrjQXKJlTJu1pepu6mGAjmDYngzldFU2l2ulgHvUKyAGgViO6XQaNAje4fvHPGV7CA25t8ETpsCOoBG0trSvAfkXCI5VxtoxAVeX6enW6XR0f3+vwWAQG4LLxu1zgCjnxMsi+fwCexoojAbCubi40Keffqqzs7NoC+bx4KiKiwgKzQVbFWQb9TzLHkqHYW5g0niMO5LGJUzZuhzwJJMOrYDLf3V1FT0Psddd5faIwbJ1+UXi0vC3MOI8f+i2RBs3GLWnwnqMfdlgLjdT2FfPI/A9cR8774RvvQzI9XUB4MKoWSdAJmAx9ArzZg9cwyoTRq7VsCekIjuA2+l0gga9lwJM2lvjrWIKSCswgSzL/oykf0PSWZ7n/8Lj7/6UpP+TpPPHj/17eZ7/5cf/+5OSflHSvaQ/kef5X1npTWyg+rJxVAnCZwrgxGI5TI8e8y+3n9KNcZCR556fn4dXAmbApruZ4c/3r7KRIrb39/fqdDrhnnTNxtVjiBiihGExdxEABGHxtxQiOTs7i3fJ8zwuI3kQMBl/h2XqOe+UZVnUCLi7e2ib1Wg04h1g0qzRNSM0gGUaB4zQQTjU/V6vF4zVA7LwOFH9h/wCwNVF8zkoy567CYI9jseAPphoiuzjMu0mf/QIwVyI23jz5k2YGry/543wjqlbe1UGIK2mCfwXkv5jSX82+f3/M8/z/4f/Isuyn5b085J+r6TXkv5almW/J8/zJ9fDhkhRhzmINGrPAyIcWFvEedPhmwbQmOd5uLb8AFMTxdW9VdeFtPUUULdfJcU6WSNzu+2+yrqotUh6Ks/vdDpzaiTakwN3i3IG0oGLzP38BB/BnGG0HtcBI1hGvM7APRgGIBONQ3qgA0wgSXGeaFBeAm7Z2lgLLmHoEeHkWX2sk/gH4vhXSenlApP8dHd3p3q9HueH2xFTzZ/pjMBpctWxlAnkef43syz75orP+zlJv5bn+Y2kf5Zl2e9I+hlJf2vVF3LJhgTzqC53s0kz4kAFLdqEMmnpA40AhiNprtBDOp7CZNJnuLvR3Wn+Obez0wvpn1llXe4Sy7KH3AePpvRQU29J/hRCghBdMksPzTU9AMvfN5WQi+ZL98X9/OyhVz6CoUE77g14ykXhc5yBA44pGAqD8zZkT7mQCAaSt/r9vqRZLAvvDlgpzeIPVtnDsvF5MIE/nmXZ/0HSb0r6d/M870r6SNLfts/86PF3K430oPl+VSm7yrOXfcbnWzXiatkoktqolctGkQnz1OF4gqQwDZyRSp+NgJbNVeaH/yzPLRp+RosY4uddGxeU4etK5/2iz+vLHp+1Ddl/Iumfl/T7JL2R9B89/r7oFAp3JMuyb2dZ9ptZlv3mZ3yHr8X4Ii7msuc+VX1c15FiM6vgNF/GvB/a+EyaQJ7n7/g+y7L/TNL/5/HHH0n6hn30Y0mfljzju5K++/iM2LkyqYTkKgPB/O/KpOcXIVXXfawSKVZkTvn/eSRi0bO+CM3sqcNR+afQho9V7HKet0q03ar0lO6vNNtDX1fRZ1dd1yKaX3Zen4kJZFn2Ks/zN48//luS/tHj978h6c9lWfYregAGf0rS3/mMc7z3O2ww/MFuA2LfloF1n+Xy8w7YlW6uFOEOn2WkLifsW1+Lz5l+X/a8RWsBg/CEqSJg6YuSbj43IzX9VpkjvTA+PPITd54/lzWCXXxWM5O52UP2k5HGA6wC1vl60rX5PJ6jwvOKAtVWoRMfq7gI/7ykn5V0nGXZjyT9B5J+Nsuy36cHVf97kv7Pj5P+VpZlvy7pH0uaSPpj+WfwDKS2qkcPkrFHNRwGMe6exPGULiy23vcuJElF7inwr/QwnjIPvnyYGsEoqRvQo/hWzX7zebwSMHEJVK71qj4e5+77+VRmULSPOzs7sVepRyf9fdEokqieAerluJvNZgB1eZ7P0QPBNF7FqAgjSdeTZpvisiYblL2T5pmOx5SU7WGqhXiMB+5OIj6dDjgrB5tX9R7F2tZBPcYcSFV6534U2CBck5BeatgRUguA44S9LGCIuSFWsv1gAIS/UuPP/cspAa9yOdNLj5+ZAhgUQ+n3+3OFNwGLILYi33OaG+/rgQEQ8Ubteo/ic1TbA36csBZdVLQ1cgY89JtEFy9e6lLMXYdFKr9fTl8XWaa4BanAQ4CN+9Xp0EPhFI/HKDMHoAPmImkI1yCeFqoyQWfOSHG74mZ0c8DnQovhyzMLqXAlzWoLwHQ4K4/xKMhb+Ht5nv+B9MzWLmJQmm2MX0aYwObmZrQGo/OQ51QTbUWFFz/wMu6YZVkcKKW2CBZqtVrRLKPT6egHP/hBRPM5g0nDh8suSvYYIcglJEW0Vqvp6Ogo2p2Nx2O12+1gOvi24fQQVlkSkTSrIUiTDOolkh9BXDoBPvjaPVOOKDii/hYxAM+HJxV2Z2dHh4eHevHihWq1mu7u7qIgJkyH9XhR0nQP3T5O4/ap70dDkuPj40jqIaKULEkanHDZ0ApcY0wvJe3GCIOmJgOh2GSREgkJQ/AzgpYJJvJ1+feEXDvT3tra0uHhYXSMImaBsHXC0GEAfl6raMJrxQT8ELwENmYArcFev36tly9fhmrERaDhQ7/fj8qzJK4sUpFQjZvNZjTooKsNNe3v7++jE1G73dbZ2VkQFWGiBKWUxaPDbCDWer0ezTNOT0/VarXCFKAACGHMpI/2+/2QsJLeM0O4KOwhLbNgAo1GI5p1VKvV8KHXarW5XHgi8IhWQ/soYwLU2fP6hVzQFy9e6OXLlzo8PNTt7a0uLi7U7XYjhLjb7Wo4HM4lU6GuF9EGmZ6e5NVsNnV8fBxZd2AdfpmI8UdjdJ9/6o7j//f393V8fKzj4+Ng2pSiR7shxqRarYYmxZoIQSdVmr1M/fqYajAW3ps0+kajoVarFaXSPNT67u4u5qPCc5bNunN/KcDglzXczgMQQa2EwF69eqVXr17p6OgoGkGiBUiai8HHni1r/yTNOgRvbW2p2Wzq6OhI3/rWt3R6ehpgoHNUJDWX0BM4PGuvKAbAbTwSbD766COdnp6qVqtFBBzaC4yQ52LmkGjiQVRFe+j17yj4+dFHH+nk5CSi6SCStJoy9rQXMykDHbm8MALPgIMpeKm4ly9fRn+9SqUSkXeE6LJPqRTDViaGnzVSWxDpT/UgLhufRdJ2u925QKl0D1kT6j+aW6vV0unpaWRFsj8wE7QRCn6S2k5EKOdSRPeefu3aG8leVKNCW6KMOpiDh5S7Br3KWCsmIM0KgrgrhYsKYaGuS/NBN160ExTVAbyiuTzqi/BQUofv7u7U6/WiVJWXl767u4sED5+nzCWTEhufoVqtN7QkMo1DR/XkslFRpgysc5RcmlWtefHihU5PT6OBpksSN7lQ4VFriVwrUys9ivP29va9ugwAVn4+1WpVV1dXuri4iOdgRyPFUgbAOaFtud0rKfYQhuxMwxkLc6VIfrom7HEYMJoF2hN1Crhw3rKMgCzHuYrOizXB2BxLwMwhdd5xGp6DCeaNWPzufCHegR/3YCNYwGQyCWl4eHioo6OjwAJQKSG8V69ehRSbTqdhSy/CAuCW2G8AZKhYo9FIk8kk1DQ226vaggcwFuEBrAkThsq/l5eXUcp8Y2MjauUDQOX5Q5s1mpIuSrl1IuB76tbXarW54ihEvpEA02g0Yn3sgefUp9qAX0ywBPAY7FbP94B5Q7zUTEwz+tJ1+fyeHnx9fa1ut6udnZ3ItWfdmF/8y2WDwXtxkHQuXxchwzc3Nzo/P9f+/n5kIqIx0LXaQ4hhOuBGzLvItcz6+B5shQpTnB05Lq1WS3d3d1Fr0+tcsI5lY+2YAAOi4lDTVtDtdlsXFxeRYcghI41ooAEyXHYx3d0yGAy0ubmp8/Pz6AYLYWVZFl19sclSVyHPW8R94fRkwCGRidm/vb2NWgZe6xC70y//IneTu1V3dnZ0dHQU3Y9ZFzX3vLbi/f299vf3wwzg4iARy+aDMZEcBdDqufCsywuCepy9J8Wk5+XEDG1QRKTRaOju7i6YJcwdkG1nZycAO89YLMM5nNnxWdrheS0LfnbXJA1cpFmpMwRMEbDq2oJ7f/I8n+uwhfaBtwjTC4bT7/eDsUFTq7qR144JoDK5RoBkqtfrAZyBlud5HsCQp3yyGSSOFMVh83wOio2n3ffV1VXUewO5hyP3er05t2SaXbhobUgXwMROpxNE7MVVAZN6vV4Am0gKdxsWSRNpptJSKYnL523GptNpSGrvZ+C17ii0UqTO+nrZBy6pg5beTZhnkWXIxXSpXLSHvn8ew4A2wYXh79lLys156rXXm0iz/JypwcCgk1qtJmm+QzI4CGYHPSqRzC6dOfeidTFYO8/knDF/JEV8gscH5Hkeqe6uDSwba8UEHOF2PyocnU3B3qJjz8nJiU5OTnR5eRkElhapKNoMZwLu76d23f7+frhmjo6OQpXtdDpzLit/3iJpyf8hXQDfsKGlGa4BBiApGqA6QFfGbNzWrVQqAS69evVK1WpVvV5vTr0HkKK02vHxcZgCWZap2Wyq1+vNRWemo8iVx76jDRweHqrVasUlpedAGgeRouYpbaDqA45y8TyADBpAknL5vCmJM+6ifQRk84AjvDUwVlyHXofSMyOhP4+zSJm202ClUglhBWPDNLy9vQ0BiNaxv78fdRtSE/opNQXWigkwkE6SgkA5bFxEVGHlosLd3WePXbfIRcL/oUUALnm1V9xQW1tbkRq7u7urw8PDOXBw0UhdhwCRVBRGbacCkDSzCVnf9fW1Li4u5sKn0+EMArDq9PQ03KlcgLQj0O7ubjC7/f39yIcHhV7kHXCGlGpjlcpD0UzXRjxugwu7aoSbo/0MTBrXNiTN1frf399XvV4Pr4sDwkXr4p1g1nh8rq6uArDFG4AGB/NLn8O5FHkhfF3soWtknBlnQByG1x3kDHnXZXOlY62YQHoYXAw2mYPHheIhvdjLqHkcHK6nRcO5Mapco9GYA/GGw2EQhkeOAQR5zvyywXOZ6+DgYA44Qk0nfmF7ezv8vylDLHq2u6O8aQUqPv5t9sdteMwd9hCAa1WicoDQqzD5mvFGePUf6f0+B2XP57Ne78H3xk0mSXP4BCYC7uVFtMHFdA+B4zGOGzhzco3NG48sAupYF1iOMyj2z5kDdwKh58zqKeclrRkT8E2C+8HxsO0c8ZZmattk8lDrjTp5aAKU7UJCLRs8C40A0AWUudlsxgHf3t7O+eMX2bMMDpcoMzwZXP7BYBCfwdZk3aj3xDVQXz59PsOTW6bTaWACoPLsJb7lPJ/5nN1GT/d80XA3F9FrnU5nDt9hn1PTBcJ11bbo+Q7GeYMOPEIeV0/AEsw63UPmdtqADv0LjZL3BNdxs5C+lZw/AoN3Y91lGhyeBmgtLaeHIIAhgGl4xKPnUazKCNaKCbA5ftAQMQCSAyXYRlza29tbdTqdiN9GRaL45LIB8RGa6xItyzI1Go24HBw2B+XBQWX2GAfN4VQqlbmyW1yc+/v7uKj39/fhKvQkGSRC2eV0/zSg0Xg8nsMm3N/sbjG0KgBTD7pZ5fx4toezEulYr9fDDILxSQppC1NM8RUXDuyBV4NGI+TZVDbi85T/khT7t7u7G/tTtA6YqPc28EpGeDjyPA83NnRB1SgCmHhmWmSliOa5wOydlxvf2NiIgCQYuGNfaAmUJftgXYRsuKvpV1dX6na7oZ4REslCXf30mv3SYrddalvD2XHHQCSoYgRwSDNigiiR7GXzuArvUubm5iZARxgPwSLYgjCbFBwsWxeMhurF7XY7tArWhQaC1sXzCZAi3r7b7S6Nt+C8fA/BBZCYuHNhmA5Qesj1IsJlrz3C0YO77u/vI/GKFujQE2o7e+mRn0VzEmjk32NaATSCA7ipmGWzsHeYO7kRZcMD3JxJA4KD4WCquSCheQv09JRkNmkNmYBfDrfD8vyhe403g0QKkDhBM0iq3WLPu7RbZX44uvuwkVAwFI/O2t7ejjmfgsr6XJ5l5q7ALHuIT+j1evFcGF3ZpXSVlSAkgDEQZhgIaiwXA2nHPtKgtMj08JECYK7F3dzchFYGwXrKKxfM36vIO+ARkFxgLibMlLgQ3Hu8C/vLBeYyFWTazc3FfgJIAzqC03hqt/eOQCJLmkPvfa98LjeFYFZuMpIsxD7xN5Tdp3+Dt0BbdawVE3BbTJoBM56mibSCa9Ks8+LiQj/60Y/muumsGsDDcAbEM7Ism8suJE8d96QHhywDtdJ1eqIHf8tlrNVqOj09jUAX3se1nKJ1QdDY9Ujzer0e62LQSRfTo9frSVKkTF9cXLwXD7HK/qEueyQh6jqXA3V2d3c3VHf+tiimg+GgGSYRlwUGABBI/r3XZoDx+HoWaYl+ST01Gs+HvxNAnQPWrq1Cy0X0wHAA0UE/mI/b+iR5OWbgsRkftIsw5ZTS7EDG4/EcAkxV1rdv385FCDqS60Ei6cY400EikTCCy+no6EhHR0c6OTnR6emprq+v9e7du7A/CeUsu5jpcNOANGJJAWDhFsQ1CLd/9+6dLi4uIhBlUaAQaioA58XFRSDVSHUHHdEuJpNJdFo6OzuLsOwyf7qvR5ol3sA4Sbw5OTmJ5CukG2YJ0tmxgKI99EvLxURdd4zG6yZIiuhIN28IDfdaE0UjLcYCY8EUhClAN5PJJJg2FZ69hXjZXL5uaDvFIarVajBVksx6vV70w8CE9WCyVcZaMQEuqRO3SxPnjNj/3W5XvV5PFxcXsQn+vGW2EQTl7h389YQqn56eRrwABEvHnsFgMBcgUrbx6bqwIVGBIVq3JSEeLiXpot5speyygJlQB5823peXlwGqoTJnWRaNR25vb2NPmWtRfQQfXMp0/1qtVuTiS4pLiHbnTKZsD90d58zdU59xE0oPEpWLPplM1G631el0gk5cbS5ipO65wJPgxVk8rBs6IyoRjwiMx3s5pGtLtV6+l2bJcWg8/D1mL4yAHBDXclZJIWasFRNwLoi04JAuLy+juwzZW/1+X/1+P1RWD83kEngdgUXShcuABCVQ5uDgYC47jfz+H/7whzo7O4sCIxDbIi0AwkWt55nk85Mx5n5pbPrhcKizs7PIs192MVmHNGOGt7e3Ed+AO8svFwwWNJ92a451FK0P15mbAsxHIhEXgaIib968UbvdjqjBsoi69Jw4X1fPcUUiqQHvptNpeI1YD6DhogQihjNa1oPpR1IZGggMlCIszMd5sY9leAd/DxZFXQynYUBqem7yObQ4MCVnbiuZwavaDV/myAqqDWPr7e7uqlaraXNzM9ByQCZvyOjdYVC7nKjKzAFp5goCbATsA0yjqszh4WEwgXa7HRLTCXjZ8Lk8xRWsA7yDSwXDQLWEMMu0gCJACzMAu9Vz+yXFmj04BS2Ar0UZfpybI+isicIsJMGA3pP8xdqWmVKpK415PGzY3ad8jkvERcHkSelDmhcIDOIQYJysCxzFU3dhdoTyOsP2iwxTZj2pOQrehLbBfHk+K47Dc10bQktKtUTb08LyYmvFBFL0mcPlUCFoB1jcVeZAohNViiuUvENcTj7HITshIDmww0C7V1W9HHx0RLiIGNzlAzEvuyxpgIiHGDvhMacj+WleQpnGsQgbcF93nucRpcfZbWxszNnIRTX+Vl2Xg2Sg6Qx377EeN7/Q2pw2WJfPxZq85BdApwOH4AEusQFUF+1h0bqckQEWS5oLgEvX5Zff6cPXpQ+BCSS/i39dbfVQ0fSzXBb//1UYQDovOARc3l15PAeTY9XLXzSPM72U8FJPRZHEKhplUWKpP9wZj68x1Z7K1P9la/M9TLUTnsHlWPVc0p/9vfM8n0t39vWyh6lJU6SWp3PxvQcOSbMKVnzGGRAaatF8jgHw3JSWU3pzmvf3QVOEoaUuSBeQj+PDYgLP43ms80iZko8f151aVbDZ+HCqDT+P57HuYx2E5xf1Dl9bJuCqXJmLKOX2qdpW9nfp5xdJjS9qFJlHDoYuewf/TBmI6v+f/n4ZoFf0nk8Zq+zhZ5CMc8PPi68va12Oz3zZY9m7fVBMwO1oD42V5jGARfZs+ryiy+PPd7BL0py9zPdPAQaL3oH53BZkpOspSq5Z9uzUxnW70/cgtc/TecqYSco00vlYkwOhRWtZdV1la0z30M8nffai8ypiAOmacE96wBLzOK6yagDZsnfxqMUiMPwpdJ+OD4IJpGGb3pPA68QBbHEIq7Z+kt53TXpwCO5Bd8EAbOGeJFbgKUCXI/P8Sygy7+3FUUCaPcBm0dqccCEe1ketBp7r+ff+zFXdn84A3CPhpcr29vYCzCoKbCkC75btoa+HM8ONjO/cgVXQ/GVzFYF1XgOBeag8hauOTFDo4u7u7r2WZ6usy2meIDaPLmUP2Te+PPZhVWaw1kyAS0L2nhfgpNIPwSeky7o7DVR4WWCNHzDRbsxFW6tqtSpJc8Ue2XTq3KeocNlwPzeVabyyEO4h/PPu4qO4pvu8i+ZKNSaPDXDXK9qU169L3W5+aZedlxMuxMyFcZcd6+I9CJNNg2NWoY00go/EHXd3Mq8zKGcGy9bl/nvOiGYutVotojGHw2EUnaEacpbN+mAURSgWrcuzJWEClBSrVCoRkzCZTOYaoGxsbETA0AdZY9BHpVKJYB1Cd+k4Q5eZSqWifr+vTz755L2IMPK5aUxS1q4LYiAmnH/5/vj4WCcnJ9EchLJbxPMPh8O4TBQoXVSxhhhwmmVUq9WI3iMoiRJjFIyUFGui6AjBMSRQ+Xr8e8qzQVRcUApkwkh5Z2cASBVvg7ZoXV75xmPqd3d31Wg0Is4CKSnN3LpeFQofe5k0q1QqUdOP/ASCefDnTyaTiCb1CDr86khuDy4roo0sy6L+IvMxz+HhoU5OTiIcejQahZDgvKCPra2tqD1QluHneRcwThjbwcFBlH7L8zwYDEyTfSWT8vLyMnIYPkhMIMuySNx58eKFXr16pdPTU7169Sri0KmTD4GPx2N98skn2tzc1MXFRai2cFZ8+0VzkTBE8Uhq9J+cnOjFixdRi386nUbnoF6vF3Hqrm4WBWwwYDYwMZKUyFDkovBcDxAajUZ69+7dXM15JKhLFzcD0GQouw2BIcFIWPKKuxRgIayZC0natudm+B4St+95+phSR0dH0cYrVVkpDw8z87TjtNiHnxft4o6OjubK0Xs5836/r1arNVfAxIN4iCJ03CAdFH2lniBFU09PT3V0dBTJRGT60VQFQYE5J81XwSrbQ09Q4vxoj0exW87BBcRoNIqy4zBiEuyWjbVkAh5S22g0dHR0pJ/4iZ+IdFhPmKDaCpcY9QuO76BUEdjjdfa8sQhSmUtBDDxBKZR7JtmH33sYqQ8O2ctjY+PRyMRj7mGE1E+cTh8ad/T7/bhgaZQc80iz4htcRBJ46KVHshK59h56S2KWg3mUUivbQ1RXahfu7++r0WgEI202m9rc3IzLCOO8urqKdFhy4r1WQzoXl7JarUYPx+PjYx0dHYXpQlMQmBJq/2AwiOYt3uugqAKPr4t/YditVkutVivAYg8Xhg6q1epczwqPcCyiD8xBZ6bQNEV16cJNUhPaLncAUxRz4oOtLAThYRNicxOP3el09Pbt26jsQtVfv2DYfpLm7MEi11aWZe+ppC5lSRjhMzAoNtsvD/Z1kdkBEUB42PY06SRZCFszvVTgG6xtUbINTAJiQCX3dF6YkqT4DOYBkoo9QeKU7R/ME8KjZdzp6ak+/vhj1Wq1qPIznU7nwFCaobj3pSw3gvBcbHPUcsqpj8djvXv3LiojYZuT8wHjBi9yE6EMCOSdOCNi+sF/RqORKpVZuq9HSCLJ0Z7KvEjQEPNhmkDbpBBjSlAcBQ/I7u5uZId69+hVwcG1YwLSfImvwWCg7e1tfe9731OlUlG73Y7a+c1mM7q0YoOm6K+jzkXzSLPU2/F4HC3B6vX6XDy2I+RoHkgtadYfflFBDMwFDmw6fahYRGVjzABKUVHWbHt7W/1+f44I0ISK7MvUnw8BoUrzuzS19fb2VtVqNbAE7OayEGn22rURLjnNVuv1eqjkdHG+v78PyYpUYw8XAauuuUkKrQ2mRhEUNAuv19doNHR//9BZejgcznkmfM98XWiUZPixH47IO/2wb5g9MIdlwKoDv+6lccZMrUKvfM1c1N70RKlVQUFpTZkAm3p7e6t2ux0cDamB6o691Gg0NJ1O1W635zIIXaKlww8dW40502qtZLl58Qh+7wdcxnnd7wwBYS+6+wdmJs2aTuAJIHecbEKXCIsGhIU9jKmB1gMBsV6kEu415kXCFO1h6rPGXKL34d3dXfSNvLq6CgmNqo2NOx6Pl+bds48ec0AhFLI7aRCSeiq8p4PTWpEmUPSZ6XQ6V84MRs2Fp4Oxg6K8X1n9h6I95GzRqmB0g8EgAFO0PeZBKJBevIrXg7G2TIDLQg+4arWq0WikjY2NqPADaJdlmYbDYeSng5qmX0XzONf3Ah+uMlOXz1NVx+NxqOVoHs6AiubxdXGYdJcB3Nrf3w9GgzvIC1TQYxHG5DUU0/0DNByPx/FciAs8hXfd2NgIswpkudPpRK0Gt3mL5vKLsrOzMwfSDQYDvX37NjS4g4ODACVhpNPpdA60Sy8M++emAgj51dWVzs/P9e7duzBd0uAlN/fSoKEiFT2dm8+g+cGwKXLKpaQfBiYHOE8ZI0iDfPgsz0PlR6ug8jUeLFzTnlLsMQqrBLGtHRNgI/xS5nmu0WgUNf5ev36t169fB6CGBEkj5LgIRRLaVWX+xebEp015r62trdAQPM13PB4HmAOBlmkDDlRCeA7u4QqtVqtzQUP4l72YqtcZLGM4zHV7eztX9Zb1wNQ2NzfD9YoJgK3r5dqKpBg/c8HYd+82nGVZMBswkFarFa3OIF4vasL3KTDotjnzwUgozU1/CvaP2AsYNozcAboUL+J7zgZTyvsyAkKDPbh7EkYK+OuVlIsuJefo7+OuQQehaRxDc1wC1Xg+GsEHW15MmleLuDAQJa3B6vV6lOimqgy9+qrVaoB50vspu0Xz8TlXi72OPL/z8GEYBbgA3oyyuXxdzOeHj/qPNOai8oU96Ny9zAvhmoCrzbhUUcdB7IlbQMNB40DbWLaH7oVxBJxKOfv7+zo5OVGWZeF52dnZ0XA4nLv80nz9gyKm4xL9/v5+rqrTxsaGGo3G3GXBQ4IWhCT3uImitbmGg63PJU8LmnjEJ1okwimNaizbRxhEGi3o3gtiTBwr8L/zs/Kvzx0nkGXZNyT9WUkvJU0lfTfP8/9XlmUtSX9B0jclfU/SH83zvPv4N39S0i9Kupf0J/I8/yvL5vHhFwaNwDkc5ZexJyeTiba2tlSv16MiMY0o/MKUbQYH5f5VLp1LJS4UsQkcUMoEyuaCoHgWn4O4JcVl8LBnr0oMwfn+lO2hNPO2QCwQF/5oQCcq10wmk6j6g7trmavJJSlr4pIyF/gGjBwmhQ3rc6U1IXy4dnd5ealutxvSlsIvBNt4YBTPQk13N1oZTfA3eFfYe9ytCA43K1nnYDAIld5bxy3bQxgp5y0p9hGNBnORz0I3vM+yPUzHKprARNK/m+f5/5BlWU3S38uy7K9K+j9K+ut5nv9ylmXfkfQdSb+UZdlPS/p5Sb9X0mtJfy3Lst+T5/lqKIXmkyawqdwH/ObNm7kLV6vV1Gq15sJHUaGWuUkgCIJovLa814aTFO/ijSB4hkuDsgvj/mLPTUB6Yu9BLEhTZ0T8rTRzW7pJAKPh75mH9+cdcWe6W4rS7dTGA+lf5N/2wTMBIWEGBDc50wOrACz0kOVlzBQGiXmE9OWieU4AwgB8CVdeWhqs7LyQ6gR24e4E72DPr66ugqGivSEkHKBcxAg8ZDg9O0lhejgjpOYgNMrfs0erjKVMIM/zN5LePH4/zLLstyV9JOnnJP3s48d+VdLfkPRLj7//tTzPbyT9syzLfkfSz0j6Wyu9keaztPgetxLMAJBlf38/gBAu8MHBwVwUXJHE5GdH5+HaHiQDweKPvb6+DjuNd0wvdhkBY2a4OolkwQzg8nDYqORE0vF+HvKagmD860SFOQBhoKrzLoCB3W73vcuCJCrbQ7dlCdd9+/ZteAg4A4KfiD0AzPXekVyYRZcTBH08Hs/lfMDQAF13d3eDWRBFKCl6EXjlqHRdSGVPSCJwjDP3IqrT6UPHqLu7u6ATtDr+dpnm4WsHB6M7VZbN8g/oMI05RMQgTB0zAXPic5sDyYt+U9K/JOm/l/TikUEoz/M3WZadPn7sI0l/2/7sR4+/W3WOOQaAKoYt5N1mJIWdC1JLhJxLIUJEfbjqxeWF2+/s7Oj29jbALd5LUtjTGxsbYdMuO2D+3hNpUFuxxflb1FUvUAmhImmcUMouC4TqgBQXjwKg/N6r27oEw0xZZKO77Xl//9AAY2NjQ2dnZxFUA34znU7jbIgHwJvj9ROLYhJ8XTA03I1gQI1GI6ISWQfoPbgDIClBUUUgJOuCCXjUHxIWyQuGQkYr+42XwwWQm30pbXi8BdorIdVoI4CfMD72yDMUHdT8woHBLMuqkv4rSf9OnueDBZy66D/eY0VZln1b0rdL5goiRrKnLhHcKHx2b29PjUYjQELiCRZlpPlBI5XT4Ay3iR1wkhQureFwGLHcaQFLnwutA0ZCIA3hoLFZ+ay9d57n0R0ZrwEEmHo4fC7OB7QfxgWxEyoMIyN2H+ItwiaWSWdJoZGB3SCNCUJCesKQuEScFedVxHTSy0SEJefPhXH8hBBl9ty1AmilbA/97DGXYI6o4e45wWxKQUsSilKtrWxtrM9NK/42y2YxHpIix8N7LHh+wheFCSjLsi09MID/Ms/z//rx1++yLHv1qAW8knT2+PsfSfqG/fnHkj5Nn5nn+Xclfffx+UVMIqQ0rkFXwT2l+MWLF3OoN5l20qwzzTKgjgvvTUDcVQMOQIimu7dc8pQxHB+o9bVaLcpxA4BmWTbHxT2uH2njKn5RFJ9/z7PQfPz5EBkqJaotQVnu8ixibOnguYRFD4fDyJR0rWQyeWgGcnZ2Fs9M8+3L5vJncEFA4pGQjinAeJCgDiYvik70ywhTxE8PPXA2MNjp9KEXhnel8joTjuQv2kMHxjFrHTDEVKMJCRc+rZGwCgOQVvMOZJL+c0m/nef5r9h//YakX5D0y4///iX7/Z/LsuxX9AAM/pSkv7PS28zmDMJHbT4+Po40SrffDw8P9eLFC+3v70fjzMFgoG63G/EDi3K42WyI1G3l+/v7sGP5bJZlkbF1cXGh8/Pz6Ay0yD/L37oNS4AQ7bq9MzHAnEsR0mwhjLL0aN9HJygAUN4BgmKP6APgJcE9HmEV9ZKLB7OGadVqtWBi9NDjgrgGwLuWnZczbWdyuFQlhSuPFOOtra3QdIhC5fIsmsufD+Pxvb+/v4+GOGgH7CV4R7/fn+s/UBZv4UzLgXFMX3Il0BjRZLrdbuA50Im/8ypjFU3gD0r630v6h1mW/f3H3/17erj8v55l2S9K+oGkP/K4oN/KsuzXJf1jPXgW/thTPAOSYqMcSb27uwswDXcJOAHx1N1uV59++qm+//3vR9ceV9F9cHAQBtybVt7SDDSUZhfz8vIyAmm63W4cctoEpWi4ve2E7IFImAI83+sXAEAhYfg5XZc039iSC5kCkkg579XHJXXPA5JwmZcFaQWDpoMT6a/sNQyU/XLzz989HS7d/LLwf2iH7pZDegOeeRuyZZobEZd8XV1dqd/vBw7EZ3hvGCf4CnvqEXxlOA7n6CYuNAIuBiOGRvv9fphUHknJmX1hTCDP8/+viu18SfpDJX/zpyX96ZXe4P2/jQWhqqJqDQaDyOve3d0NG5B+b2/evNHZ2ZnOz8+DKy6SzNK81AV17vV6c4UqAOo4XBgGDAGCWlTODJuX2H8INcuyubRe7PPz83P1er05yezpr8s0HJfebq+jGsO06KTkRSjczPEEIt83XxeaFAzHC4vARLGdr6+v1W63Y9/cRenEu2hdrrnxTMLLuUB8Frcr6jkNSWnftei82GdH7cFXwHYoJMNeQQNcVLQdaKTsYrLn4A9gCp5fsbGxMUeHCAcwMABW94ytMtYuYlCaVbVhY+jIC7qO/Q+gh4pMmKvbs8viBHyu6+trdbvdOZcOh8ABotJ5Ag5zLcMDnOHc3T2kRn/yySexLhhFeqhIYnd5lqnnXATmwLVE5hxgHS4uQE3m5T2L5uXZRYwAMA+Cdy2LugwQNxGJYAdc0EVM1M+LwBikPBGlvV4vzDfAXRgC50seBkJi0VysgXOhPgBMDnewNNPAYJYIMMcTFklmzotnVSqVcNli3rhZAhMHQIbmPZlt1bGWTECamQS+Oc7pcfNgu/M3EO8y25LhSCxMp+hv3IXDRXDbK3XRlA13I5EqjEqZZn65FPd5Fl0UVzVZjwfx9Hq90DhSCe9rcGa3bF0O1kG8t7e3Iak84AuGyrsB7qWg1qKBlPazQWPq9/tBGwB2rBdEnwzJZfTh9MeeuDnCZ2AMbp5wTp60tGxdRUFfrEXSHEDooG2avPYUBiBp/TsQpbaf/wtDANkv8pcuem7Rz45DpL54n9NVuzJEOyUYHx4fnuezlmc8k7kB11y9K1Nf/e/SNXmIaRqW6utzzcbnKdMC0j10nzcEjIcmtXXTyrjLnl30O48pYX3u3uP/HFBdhDmwX+lwW90vaBGo51GcMJJ0+DkXzeUYidNGeh+cNsr20H733IZs3UdKEKtcvC9qLp/zQ51rkevty5iv7B3WeA+f25Ct+1jCxb/0ub6s8eOaax0E2od4XmvHBNzWStXxslGmdvvG+XPL5kq/X3U8Zf5Fvy967qrv+FVdgM+6b6t+Pt3bRZI2pZen7onPVUSHRXOU/X3R3/nzyly7n2Us28tl+7B2TMBtrHSk2IBv8io4QNnwudLnS5qzz9J5UgByEQ5QNJ/P5basNPOXL4ra+yxMy+dz+zed4yl7uui8/Kvs2aviOOlnivAakHupvDXYU+nF1+cAcZpd6ZebORZFdabPLpo3XVv6bD+3z3IH1o4JFIFxnq3ngBpAFoecElyRe8vnkd6/tFxCLyTigScg9H5RcXWVpS6XSUtfDyHSVIyRFO429/26++6pROx7x7qoAoxnhb0C2V7ktiu7+L4mD1TKsiy8Dp41yFgU1+Fn5XOzHvZvZ2cn+lVsbGzEuZCjkLaNW3Rx0vk89oH1kb2YelNI8MnzPM6wLHmIuYpow9O/6U/BfDzTvStezn3VsXZMQCo/YC/+yQCp903jM1yYonDNVOPwtFHKlnn0G7kEuJd4Tw4ZgltUcTjVLPyScCmJgfDElTzPw83mwSvLwoaZ0y89REvuwsHBQayLCETcYtTvL7ucRYTLnpGenXomYDa4LvGOENbsxWOWrQu68OpB1WpVJycnOjo6isy7Xq8nSVFdiJRiGMIyJufrIk7F6ZKAKPaJtHfmoFisRw2WzcV5pTQPXVK0BEZGyLQHNjHPsj1krBUTSAmKjL20+AYbhJvJ87a5PBAx9efS3mzpXIeHh/F1fHwc5aRo3EFm3GAwCM5OGDEJSxw2QSJlayS+wbk8BEynnizL4mLmeR4MjbUwD/UGyuZiHbu7u6rX68Hg6GhDDny/34/4+n6/Hxl6XEzm9bmKzotcj2q1Olc7AYbgBUdggATWeHi05+OnA2ns5cO4nEdHR9GpCibAexFIxt9QRdkLrqbryrIs/t6zTMnDgGY8noVBYNRgMNDZ2VlUayrT4qANL2HmSXT0PSTQq1arzcXGQOuscxEd+lgrJuADSUXrJ1RX4qgJAPGEH6TN9fV1EDKJFmx+OrIsi6ajR0dHUQSTDWd+zAvKmw+HwyieAaEh9TyOW5qXmKiQXpp6d3dXzWZTL1680MuXL4PheNw6ueVE+HlOQ1kFGYgWE6PRaOjly5eRwtxoNLSxsaHxeKxqtTpXqafdbkdBCzQJ8haKzJ2trS3VarVo5cblgBlQ4QemxRnCdLrdbjANr2VQNBd7SBkxZ6AfffSRXrx4oVqtFmHDfJa0bxcWBC2luA5aIvTmVac4L5K/vLGKx0FAe5RTY01FZoGkoAXKpZFAd3BwoJcvX6rVaml/f1+S5tR+IiZ9Dz2l+YMDBiXNJYJwKU9PT+dKQrGZpHLSWefu7qHGPX0Jt7e340B8cNCuVdCNmMN1yYX9SrMTuC/Zi0hdEoR8ON4AkVPcYnd3V8fHx3r58qVev36tZrMZEXBe9IIuPXB+pFlZIRMHkUi5pgciRMmejEajeH/21InZMZKiwXo2NzejajJdgSjywYCZc17ee5DLQXj1onW5qbi7u6tWqxUXBcbF5b67u4ukM7Ia/e/L1uUhwtAG6d/Y555GTKo5+Adpx1xUcIlFc8Hg0DROTk7UbDZ1fHwcFaFvb2+jToM0qxJF7gd0v6x8GmPtmAAXBTW2Wq2qVquFik7oJ+DL3t5etLxyqej/lqHKEDtSF3v/7u5Og8FgrrLL4eHhXAUjDtfjvRflcnPIRJzx/rVaTS9evIiuy5Smcjuc+bkw0izhpsgUcMANAiTufTqdqtvtxt+SIwEegWZ0fn4e+7YoB8Ptemd2xPAPBgMNh8MoNoI2x7+bm5saDodhllC4o2hN6bpguNjL2OqoxuQV8O4Aeq5pFGEdzJPWbAC4hXmQb7GzszP3PpVKJaoc8ft2ux1nX7Q2zyIFU6DsHKXoCTHH/pcUgoCcEDo8LUvE8rF2TIBDYvPu7x9KepMNNhgMIoEEgiBO/fT0VKPRKDgiwA9EnLqoGGR9jUajQMq95Ddqp5eqcrWf90yruvhwFJi/xU4/PT0Njk9GHKW+Njc31Ww2Q2vALClDm32gvpON1ul0lOd5MEhUadxpWfZQtPXNmzchpd0rsYioHLe4v78Pc6zb7QZghbYFmEofxoODA11cXMxhHunanMl4Ig2VjMFvSMSC+dBsBdPH07Xx5qTSMnVj4teHcW5tPXRoQmJDa5PJRAcHB/r444+Dhjz5bBFOxBwIFkyCer2uer0eAgiTkOfDPEkwIh/jg84idJ8uNt3FxYWur6/VaDQi5x0i3djYiBbRbCTlliiaCSbgw/3WbF6n0wnCPzw8lKS5xp70PMBMABgEzHJNJNU+UqYjPajpx8fH+sY3vhEgT7vdVqfTCfUfoI1npIVFFrnTWBu9GQC4JpNJqKysq9lsBrPFVpcU6PkyouLdKLVNIQwwBMdAUKthGJwRVY6L2qul8QCsmwv+0UcfqVqtSlKUTMe7wfth0/vFLPLjc3Z8keHojBe6wFRDY0PbAlBlDwGTy+I6nMHxTggJ3IJ02KJ/gnuR0GC9HNmqbsK1ZAKSotgFAAfSU5oluoABSApkvtfr6d27d3r37p36/X7k5BcBWvwMlwYlphJNvV7X0dGRTk5OAihEXadoCUAdqicqbdGF4XccHG2nAZb6/b46nY663a4kqdlsRkFQgEAu6DJ/MISMHxnX0Wg0ii5AIOxU/alUKjo7O4v6DKT4enWhsoEEGw6HIV0haCQ0ZhTFWvAGXFxcxFmhyaWutDR2BFPu4OBAJycn0drM6z1Mp9Oo4EQNCt4BbWCRhuPzsXbOFyzJeyd6EVi0U86UzMoiE45L72e2sfHQ9NZLycFk0aiazWaYyDBe/1pVG1grJsBmcLEB5FC/cNd4xVgwAz4PA/j000/V6/XmMtWK5vI03jzPw+e6ubkZpcsoXwbIyIFQuYh87kW53Gl0FxV/0WAqlUowIW+5jnsPlRrAzgOhyuYqCkRB+2i1WqrVamGfVyoV9fv9OVOMi1KUVchw5kC8BtKTuIRqtRoqLZ4DAlt6vV5cFC5wGXNz6QyQeXR0FBWbsc3RNjY3H7orgapzybrd7lzTEJ6XmoqYffzO6xeCaUA7kgIs3NnZ0c3NzRxTBxcpYqR+XpwToCOMCzc09P/ixQs1m83QCNFC3CT7IDUB54RO7B64gipJ8UoAk7u7O11cXIQ6jSRIo9J8Lul9Lsx87vbiYCWF+o/GwN94amiZKeBMwHvXcfF2dnbUarXUarXmmIAzKFT4NFw1HUVaD/tKBWfAKw8wAZ2G4aX7VTRc8kszt+Xd3V3EWRwdHQVqDaPHT0+RkUXptX5WSFvWAHMBJMSORv3nDDlbMIS0BkDRutgDGBqaDGuG0VQqFdVqNe3t7c0VS+l0OkFPy+aCTmFo0IZ7QJrNZpgJYA7ehxOTC9xslbFWTICR2mnYOtRZcw8CB4C/udPpBAbAhhCiWiY1fbNc+iHRBoNBoPLYWg6ocVBFXgFpnuEgUVBLsSshalRAvAm4hPBc4LJDFX3KnvLF3yO1HeXe398PTQuVd5kp4Ot0FRrG5f5/rzAEfkPPPvZw0VycF5ebdwa8xWTzegJUNuJsPL/AY/HTeVgHc7k5A0PxCElvDENVINdmoaGydfFuXH72i3gPAoUwp1IvhzQLmCtzexaNtWICqd0HAXmUID3zXH26v7+P/vS9Xm8ugAgVqQgBdrcTRIEkBODx56UFLHjuzs7OHOEuitJiLdiNSAD/PdISBjEcDuM9wBvcNCgb7upCA4CQkcRIbWxa6QG4dF8z60lNAj8viBcmQnNVJC6MlYsDok4fQhgq+8f+F60JiU/EYLVajSAa9pBYDvYQ88MZGs8q0t48WKher0eMBSq6o/loVh4xen5+HvUxveZi2eVkPujcA8k85gN6RjtMW9XDPJhvFea9VkzAGYCrpXA8D6Rwfy/Re6DLeZ5HpyI4dhpV58SLpOIAKE0F0IM9TmciCNQJn1BOj9QqWx/Sdzwe6927dxFWC/LPOiFk7EsAOy7fIiYAgbs6iTmFdPeQWSQOJg7rxc4ucn36eXEZKdBKDAT9IpBYfiZ4YgDB8FqgPhetyQUCv/PmHKDjzEWbOoBIQq3BndgjX5uva29vTy9evIhwblB7DxAiuI0isqwLV2dKt2VnBk0j2AhR5wzQBD1gDpcybkPWtGqgkLRmTIDhrhYOHUJETecQx+NxgC/eCZbNBEsoU9M9QQgphlqO+gXXxRXEJQI8pCEJ3Los2g1uj81I6W0ATrfvarVaHKakYHTuHlyE/romhLoKgAqB0AcQbMUj5GBMjmiXEZUXgCU3wSUYmgchulx8Lu7BwUGg25xJkXRmD2H+YEXD4TAYMYDt3d1dgK4w1F6vp4uLiznAeFG8hYftEsnpICJ0Vq1Wled5SGM8TeBIvueLzot1wUDG47Ha7XaAxXhNoBXpQTsDmPbw51UDhaQ1YwKu5kqzum4QJCgwn6GkMzXsYQzY0p6EUkbAqGs8H78s7heYiQOGksK/TnQXmkbZxkPUqKPexmowGMz5vb1pJ6h9p9OJgBqk3SL3IHvna0OV5fKQMMR6UNn5W6TdIu+Am1RZlgUjYD5MgclkEkAg+APgquMBvhdFDMAlKZIXAI41uJSHlkajkdrtdqjpnlSWzgUdehSfpIgWlGYmC3EHaflvtE9ow8+raF0pUA2wilcAbAtMhUjWwWAQnpU05XzVsVZMgMEmeVAN6C9Ek+d5+JjxZ8OVHdSDM5fZs0g/kkKI3COTC/DN1SuY0P7+/lzUmduJRd4BvveL3Ol05kBC1EYG0gtgMG3euWjwTm5DQ2AQCeYPDA3PR2orFzGBFFdhDWQrEpyENkGcAkx1Y2Mj1HUHZBe5CKGL6+vrUPGRlh49h8cgyzKdnZ1FqXECsRbVf/D50ARhWN5ZGVpACyCj1BkEJoFjEkVr4ntwE86i1+sFBkEiG/ei1+up3W6Hqca+uRdqlbGWTACicsCOwB2AJg4QlRhVWtIc0ZURsGsGbtvXajW1Wq1obw4Qmed5uB3dBYQ6ilSB8SxS/fz39/f34c1oNBpzodDgHO12e65WvpctX6QNwAC4EPjMWXu9XtdkMom1O1iInYkEK8vo89+5mwvXIDEXfuEAsPAKUDOfC7MsEpL34W9Go1EwbMBM1jKdTnVxcaHhcKhOp6NerxfntSj/gnlQ7ckIJLCK9QIeX1xc6N27d4HZgE05KJl6vVI69N/5XtJ0B7rCXOh0Omq326FdQR+L1lU01o4JpJfWASpAJ1cJkS6eb89mOSiYBoQw2FBAJdccsIkBZbyWPh1mAILwd8MofLiqx8/O5FinR6CxrouLi+jWwzOQPmXcHoni6if7waVM0eazszPd3t6q2+0G0xkMBnP5A2VMzQNUYFKkIcOg2XvsV0BP7+rr1X/K5nIGQLYhrmPMndvb20i2wdwiKMnDd9OU76J1ca69Xi/okJDy6XQamsibN2/U7XbnGBoaHc9ZZML5WUIvXoUJDRLTgmhVzonzcW30g2QCLJ6FQ8iemMOl7Pf7evfuXYRkwoH5GwiSQym7LGwqTTmkB/uRVlMQKyGgXqeAaEEn/iIbk+FpuhwSTAhGA5HiEUDT4JlcZFTURXPhhhuNRup0OhHzQIAV+wQ+wLqYdxXJLCnmwTcOkxqPxzHPYDCIYC5/NmfD2YLtFDE4V5elGQo+nU5VrVYDSWfOu7tZhyLOyrv1eDxIER2CY7jLEeYGkxkMBjo/P9fZ2ZkGg8F75iFrA9AtY9y8D7QBbY7H4zn3NAKHcHXXDtFGHRNYxSRYKybA4FJtbm4GJ97aemg8ur+/H8RGQgUXB2knaW4zFm2E28G47CAk3FCuUXhcthOSNB8RWDQgCCRilj3knO/u7kZBCMA4GATSwyvFeEmsMg0nxUSurq7CDYqN6RLHM+H8Iq5iX4JQ8/3V1ZU6nc4cQAuTSG1x/nVmwO/K1uW5DLhsvcQYajT2M8/mAjkTLRMOSFT23126gNWo4LhueaYzADcJluEPDmJXKg/1Abx4CvvrXhb3DkCPTvOLzFLG2jEBDgAu7ujsxcVF2JLEYjsuwN87uJKqWUUb4viCN0CFiJCCzqWlmU1YdFnK5uJZjh0MBoMAPLGX0UpcKnBZnXgX+YJ9b1wyuMvUvQBOtP7zKtIEace7YqJ5SDLrda3C1df0vIqGg4POVLl47HvqK0+xhEVz+Z46toRg4v0RDkXmH89w1XzZPnJefC/Ngst4F352mvP3WCb0isbadiBiEwnm2N3djZ+R+GwKaLbbrqk7psguT/8PrIFLws/p3zBnESEten66Pp7PReTvHXGXNMfQFqHmC/Z37oKkTMDfz23JVZ5btIcp1lH03sv2sOi80rnT9/e/cTezr2sZluLvnM7j5+Wma/o5X6+v29fF759KG74mvwerrEu/W9qQOTGn48teC/OuomJ9nufzPWMdzuizjvQy++8/5HVJxWv4smkjZRpPnOt3RxuyVdXTL2tu//fLev6XOcePeyyygT/08eMURF8m7a0LE7iQNH7890Max3p+5x/H+NDeeV3f958r+uVamAOSlGXZbxapKus8nt/5xzM+tHf+0N539aTj5/E8nsfvyvHMBJ7H8/iaj3ViAt/9ql/gM4znd/7xjA/tnT+o910bTOB5PI/n8dWMddIEnsfzeB5fwfjKmUCWZf9almX/JMuy38my7Dtf9fuUjSzLvpdl2T/MsuzvZ1n2m4+/a2VZ9lezLPufH/9tfsXv+GeyLDvLsuwf2e9K3zHLsj/5uO//JMuy/+0avfOfyrLsk8e9/vtZlv3hNXvnb2RZ9t9lWfbbWZb9VpZl/5fH36/1XpcODzf8cX9J2pD0v0j6SUnbkv5HST/9Vb7Tgnf9nqTj5Hf/d0nfefz+O5L+b1/xO/7Lkn6/pH+07B0l/fTjfu9I+tbjOWysyTv/KUn/14LPrss7v5L0+x+/r0n6nx7fba33uuzrq9YEfkbS7+R5/k/zPL+V9GuSfu4rfqenjJ+T9KuP3/+qpH/zq3sVKc/zvympk/y67B1/TtKv5Xl+k+f5P5P0O3o4jx/rKHnnsrEu7/wmz/P/4fH7oaTflvSR1nyvy8ZXzQQ+kvRD+/lHj79bx5FL+m+zLPt7WZZ9+/F3L/I8fyM9EIak06/s7cpH2Tuu+97/8SzL/sGjuYBavXbvnGXZNyX9S5L+e32ge/1VM4GiPNh1dVf8wTzPf7+kf13SH8uy7F/+ql/oc4513vv/RNI/L+n3SXoj6T96/P1avXOWZVVJ/5WkfyfP88Gijxb8bl32+itnAj+S9A37+WNJn35F77Jw5Hn+6eO/Z5L+oh7UuXdZlr2SpMd/z766NywdZe+4tnuf5/m7PM/v8zyfSvrPNFOd1+adsyzb0gMD+C/zPP+vH3/9we219NUzgb8r6aeyLPtWlmXbkn5e0m98xe/03siy7CDLshrfS/pXJf0jPbzrLzx+7Bck/aWv5g0XjrJ3/A1JP59l2U6WZd+S9FOS/s5X8H7vDS7S4/i39LDX0pq8c/aQz/ufS/rtPM9/xf7rg9trSV+td+AROf3DekBX/xdJ//5X/T4l7/iTekB3/0dJv8V7SjqS9Ncl/c+P/7a+4vf883pQn+/0IH1+cdE7Svr3H/f9n0j619fonf/fkv6hpH+ghwv0as3e+X+tB3X+H0j6+49ff3jd97rs6zli8Hk8j6/5+KrNgefxPJ7HVzyemcDzeB5f8/HMBJ7H8/iaj2cm8Dyex9d8PDOB5/E8vubjmQk8j+fxNR/PTOB5PI+v+XhmAs/jeXzNx/8fbIrQbcGZXsMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 2 Train loss: 145.1598\n", - "Test loss: 135.1738\n", + "Epoch: 2 Train loss: 148.8094\n", + "Test loss: 136.5518\n", "Epoch: 2\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd8XMW1+L+zu9Ja3eqSmyQbGyMX\njLEJwQ0DAWPAVIOJIbyQByGUx3v8SGJSCCnAe7yEFF6MP86LAxiCTeJGiB/FtJAPxb3gJltylWWr\n97Zlfn9czfiuLNsreYssz/fzuR9pd+/de3buzJmZM+ecEVJKDAaDwXD244i2AAaDwWAIDUahGwwG\nQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoOhj2AUusFgMPQRzkihCyFmCCF2CyH2CiHmhUoog8FgMHQf\n0VM/dCGEEygCvgYcBtYBd0opd4ROPIPBYDAEy5mM0C8B9kopS6SU7cAS4MbQiGUwGAyG7uI6g2sH\nAodsrw8DXznVBUIIE5ZqMBgM3adSSpl5upPORKEHhRDifuD+cN/HYDAY+jAHgjnpTBR6KTDY9npQ\nx3sBSCkXAgvBjNANBoMhnJyJDX0dMFwIUSCEiAXmAG+GRiyDwWAwdJcej9CllF4hxMPAO4ATWCSl\n3B4yyQwGg8HQLXrsttijmxmTi8FgMPSEDVLKCac7yUSKGgwGQx8h7F4u5yKPP/44AHFxcYwdO5bb\nbrtNf/biiy/y2WefAbB48eKoyGcwGPooUsqIHYDs68fSpUulz+c75VFUVCSLiorkkCFDoi7vqY4R\nI0ZIv98v/X6/fOSRR6IuT0JCgpw/f76cP3++9Pl8cu3atXLt2rUyLy8v6rKZwxxhPtYHo2ONycVg\nMBj6CMbkEiKWLl0KEGBeAdi1axfvvPMOAEOHDuWGG25g2LBhANx1110888wzkRW0G1x00UX4/X4A\nSktPCDGIOAMGDOC+++4DwO/3c/HFFwNw/fXX8/vf/z6aojF+/HiWL19Ofn5+UOdfffXVAOzcuZND\nhw6d5uzIccMNN7Bq1SoeeeQRABYsWIDP54vIvbOysgB44403+PTTTwFYuHAh+/fvD/o7UlJSmDp1\nKgBvv/02Ho8n5HL2ZoxCDwETJkzg5ptv1q+3b7e8N2fNmkVlZSWNjY0AxMbG8vnnn3PhhRcCkJaW\nFnlhu8G4ceNoamoCYPny5VGVJTMzk5deeimqMpyKa665BrfbHfT5s2bNAuDee+9lzpw54RIraNLT\n0wGYP38+AC+88AIAixYtoqWlJez3T01N1e0mJSWFY8eOAXRbmW/YsIHMTCtCfsKECezZsyfkstpJ\nTk7m2WefZfTo0QBcddVVUe1Eeq1Cv+222/Ro7MiRI7S2tgLw2muvcfToUfbu3RtN8QLIzc1FCAFY\nyvyaa64BoKysLOC8xx9/nMLCQv3673//e+SE7CZjxozhkUce4ZVXXomqHP/2b/8GwE033cQll1zS\n5TlTp07F4XCwZcsWAP7xj39ETD6Xy2pCM2fO7NZ169evB+Cxxx4jISFBd5zRQo1qBw4cCMDrr78O\noNtdOMnIyGDp0qV6gDN//nw9Q+gOP/rRjygoKODb3/42QFiV+dy5cwF4+umnGTz4eMB8cnIyVVVV\nYbvv6TA2dIPBYOgj9NrAopKSkpPaIxsaGvT0LBgOHz4MwHPPPadHRqEmLy9Py1ZdXd3lOVu2bNFT\nM7CmZx9++GFY5DlTbrvtNt544w2mT58OwMcffxwVOZT9Vtny7TgcjoDPDhyw8hfdcccdbNiwISLy\nfe1rXwPg//7v/3juuef4wQ9+ENR1jz32GGDVydzcXCoqKsIm4+lwu93885//BNDrEtdddx1g/a5w\nc/XVVwfcJycnp1vlMWrUKAC2bdvGihUr+Jd/+RfAaovhYNCgQWzatAmwTFV2Hbp06VIefvhhgJPq\ngR4SVGBRrzW53HfffdrWvGPHDm2quOiii7j88su59NJLATh06FDAlAfA6/UCUFFRQW5urn7/4MGD\nYVPoSpl0xXe/+10ARowYAcAXX3wR8Lc38r3vfY8DBw6ErbyCYfXq1Vppd4Wa2jY2NpKXl0dBQQEA\na9euxel0hl2+MWPGaNNEcXFxtxa4lQ29NzB27FityMFqP5FQ5GoR9NZbbwXgW9/6FkC3lfmaNWv0\n6xUrVoRNkSsef/zxk65/3XHHHcyYMQOwzDEvvPAC7e3tYZXHjjG5GAwGQ1/hbAwsSk1NlVdccYW8\n4oorZHJysrzyyisDjkmTJslJkybJzMxMWVlZqYNjHnzwwYgHBFx//fWypaVFtrS0SJ/PJ8vKyuS0\nadPktGnToh2o0OWRn58v8/Pzpd/vl7t27YqKDKp8iouLdTCWx+MJOF544QV5ww03yBtuuEFOnTpV\nPvXUUwGff+c73wm7nEuWLNHPduLEiUFfl5aWJhU+n09mZmZG9Zk/88wzuo34/X751ltvReS+ixcv\nlosXL5ZSSrl+/XqZkJAgExISuvUdDzzwgJZ70aJFYZc5Ly9P1tXV6Xq5efNm+c4773QZQFhWViZz\ncnJCde+gAot6rcnlVNTU1PDBBx/o1++//36X5916662kpqaybds2AJYsWRIR+exMmDCB2NhY/Xrp\n0qVRs0cHw7Rp0/T/0bDr5ufn6+eUkZER8NmBAwdYtmwZAD/96U9pbm4O+Oz++619VDIzM3nuuefo\n168fAP/zP/8Tcley2267jZkzZ2pvq3Xr1gV97Q9/+ENt9//oo4+ora0NqWzdRXm4ALS3t/OjH/0o\nIvdVtme/38+RI0eCNk3ExcXptYoHH3xQf8+9994bHkFtjBs3jqSkJD755BPAai/9+vXj61//OgBP\nPPGEjjPJyclh1apVXHvttUDIbepdclYq9NOhbHPz58/H4XDws5/9DIhMgdpZuXKlDiABeOWVVyLW\nWHrKmDFj9P/PPfdcxO8fExNzgiIHa1F2zpw5VFZWdnndgQMHePbZZwF4/vnniY+P1/K/+eabFBcX\nh1TO2bNnEx8fz4svvhj0NWqRf+7cuXqx9+mnn46a3/Jll10W8BegqamJzZs3R1yW6667jnfffReA\n2trak5brtGnTAtbQAP76179GREawFpCllPz617/W77W2trJo0SLA6uiHDh2qP2tubjY2dIPBYDB0\nnz45Qn/ooYcAa+pdU1PD7t27I3p/5Vlz2WWX4Xa79ajyF7/4hY4a7Y189atf5Zvf/CYAmzZt4r33\n3ouyRMcDcO69996Tjs4Vb75pbZg1d+5cJk6cGBZ5UlJSAPQIUUVWBoMyCWVkZLBz506AANNhpOmq\njLoz4zhTfvvb3wJwxRVXkJubq00/QoiTegEJIQLcBEtKSoJ2FQ0Fd955J3DcrXPlypUBn0+YEOhZ\n+Pnnn0e0zfc5hT5p0iTmzZunX9900018+eWXEZVB2XlVOPWrr74KEPJpf6i58sortTvW22+/HZEo\nwa6wuyp+5StfCfo6Fa3rcDgCvuOnP/0pd911V0hkU+H9AwcO7PaajLKtAhGvk11hVz7Kjr9gwYKI\n3V/FCowZM4Zx48Zpd7/vfve7ev3m5ZdfDrhm8eLFOiIY4NNPP41ou3r99deZNWuW7gxHjhzJmDFj\ndOqP1NRUXZapqancd999Ok32jh07wi6fMbkYDAZDX+FsdFs81fH0009rN6b33ntPxsTERMQFSx2z\nZs2Sra2tsrW1Vfp8Pvn+++/LxMREmZiYGFE5enL85S9/0WV38803R0WGX/7ylwHuh9259pFHHpGP\nPPKI9Hg8Aa6Ow4YNC5l8cXFxMi4uTq5fv15u2bJFpqWlybS0tNNel5WVFeDS9tBDD8mHHnooas96\n8uTJ0uv1Sq/XK/1+v9y3b5/ct29f1Ovg6Y6hQ4dKv98vN27cKDdu3Bhxl8+0tDRZXV2tn6Pf7w94\nru+8844877zz5HnnnSd37dolfT6fXLBggVywYMGZ3js0botCiMHAK0B2xxcvlFL+VgiRBiwF8oH9\nwO1SyprTfV84iYuLY8aMGXpV+Sc/+UnEPAiUeeUHP/gBMTEx+v3Nmzf3ars5WO5VAFOmTNHrDStW\nrIiKLDfccEO3r8nMzKSwsPAEW6qatoeyDqjMg8XFxdx66606wdrzzz9/wrkqzcOwYcPIy8sLsP1G\nMuVGV6SnpweYpXrDekkwPPnkk0gp+f73vw9E3rW2urqa22+/XXvWqDUVlZ3y+9//vjZVLl++nHnz\n5ulkfcOGDQu/eSiIUXUuML7j/ySgCCgEngPmdbw/D/ivaI/Qn3zySen3++Xq1avl6tWrI9pzP/PM\nM/KZZ54J6K2XLVt2VozM582bJ+fNmyf9fr/805/+JP/0pz9FTZbdu3d3e4T+m9/85oTAo+LiYjll\nyhQ5ZcqUsMh5wQUXyDfeeEM2NTXJpqYmPdq1H0ePHpVHjx6VZWVl0uPxBHymRvrRKufFixfr2Vh1\ndbWcOHFit4KjIn3Mnj1bzp49W/r9fllXVyfHjx8vx48fHzV5rrrqKnnVVVfJRYsWyeeff77LWXhc\nXJxcsWKF1gcvv/zymdwzNDsWSSnLpJQbO/5vAHYCA4EbAbVi8TJw0+m+y2AwGAzho1teLkKIfOAi\n4AsgW0qpEn4fxTLJdHXN/cD9PRfx9CgXoh//+MfU19fz85//PJy36xKVPc/Oww8/3OvNLXA8UyRY\nUbhnC6tXrwbg/PPPP+GznTt36mi+cLBz505uv/12LrroIiDQg0VhD3h5+eWXdQ5tICKbRpyMQYMG\nafc7sLKRdifSNRqoaEuAt956i40bN0ZRGnRCMHtisM60tLSwdOlS7YI5ffp07UUWriDHoBW6ECIR\nWAb8u5SyXrmIAUgp5clS40opFwILO76jy3POhPT0dH73u98B4HQ6Wb16NZ999lmob9Mj0tLSurTf\n1tXVAZZtV9nblS0uNTUVgP/4j/8IuMbn82m7oT3kPRTY7dZvvfVWSL+7uwghAmy79ob8hz/8ISB7\nZuf0uXauv/76MEp5HJVGVf09GSUlJQGvVUSuSksRSS677LKAMl61alXEZeguqh40Nzfzq1/9KsrS\nBM8bb7yhFfodd9yhU+uq6PVQE5TbohAiBkuZvyalVHuRHRNC5HZ8nguUh0VCg8FgMARFMF4uAvgj\nsFNKaV/KfxO4B/jPjr8R7eZVvuu3335b58EuLi7mxz/+cSTFOCVbt27t8v2//OUvgLVFXXa2Zam6\n4447Tvt9R48eBaz8H6FiypQpWobewIsvvhiQQ0bNGNQovKvReOf3IhkcEyxCCOyz2miMzBXKI0tF\n3qqIzd7KAw88oOtoeXl51M0t3cHv9+v6fOONN/KTn/wEsBIFFhUVhfx+wZhcJgF3A9uEECprzw+w\nFPkbQohvAQeA20Mu3SlQNkt7Yv7HHnssatGYyp574403nvbc2bNnd/m+1+sNUE4qlF2Fv6tdZULJ\nTTfdpDvHTZs2RT0T5PLly/WGIGqz39NRUVHBzp07dWh9571cewM2T6+ooxLGHTx4EDhuAuytPPDA\nA7rslJtoUlISYJko1e/orahkZ08++ST//d//DcAzzzzD3XffHfK1lNMqdCnlPwFxko+vDKk0QZKX\nl6czs8HxHYGiaf+95ZZbAGunH7sfOhzfIqvzKHzRokUBu5ovX75c5/iIBPHx8QGbG//1r3/VWQCj\nxYEDB5gzZw5gdTaPPvroaa95+umn+f3vfx9u0c4IlcoXIrPxcleoenneeecFyBHNXeq7i8/nY+7c\nuXqNafv27dxzzz1Rlio4XnnlFb2B9S233MLPfvazk87ie4oJ/TcYDIa+wtkY+m8P7/f7/XLChAly\nwoQJUQ9+ONuOmJgY+emnn8qVK1fKlStXyvj4+KjL1PmYMWOGnDFjhly+fLn0eDxy2bJlctmyZfKa\na67Rnw0ZMiTqcp7uOHr0qKysrJSVlZXy0UcfjYoMTqdTOp1OuWjRIun3++VLL70kX3rppaiXzemO\nzZs3nxBqv3DhQrlw4UI5ePDgqMvXnWPIkCFyyJAh0u/3y9dee6071wYVWHTWKfQpU6bI+vp6o9DN\ncVYdf/vb3/S2idGWZcCAAfKPf/xj1PPJBHtMmTJFfvDBB/KDDz6QTz31lMzOzpaxsbEyNjY26rL1\n9Hj33XdlY2OjLCwslIWFhcFc0zcV+hNPPBGgzPfs2SNHjhwpR44cGfWHZA5zmMMcwRzJycly3759\nctasWXLWrFnBXBOa0H+DwWAwnB2ctRtcqCT3V155ZcT3CjUYDIYzob6+XsfPhBIRSd/YcIT+GwwG\nwznABinlhNOdZEwuBoPB0EcwCt1gMBj6CEahGwwGQx/BKHSDwWDoIxiFbjAYDH0Eo9ANBoPhDOmc\nHjlanLV+6L0V+4476gEr19BOUbOGECGEwOU6XpX9fj9+v9+UsyEsdG7jUsqoZylVmBG6wWAw9BHM\nCP0McTgcpKSk6M2CJ0yYwJAhQwAYPnw4TU1N7Nu3D7CiW9euXas3YGhtbcXr9QKYEWUQ2EdGTqeT\n2NhYABITE4mJidGjJJ/PR0tLi948wOfzdbnTkcEQLHZzin0/VrBm3uq9aM/AjULvIWpT56lTp3Lt\ntdcyePBgwNrMQk3/3W43QgiGDx8OQG5uLpmZmXpD4c2bN1NfXx8F6QNRldHhcOB2uwGIjY3F6XTS\n3t4OQFNTU1SmlfaG5HQ69U41GRkZTJ48GYDBgwfT1NSkO8pjx45RXl6uNw9pbW2NiELvtHH6ST93\nOBwBU3ZlIoKut9iLBPY64HA4AjrHc53OzysmJkYPJtxuNz6fT7fjaG8WYhR6D3C73ToPQ1ZWFsnJ\nyeTl5QHQ0NBAWloaYOVrEELohx0fH8+gQYOoqKgAoKioiIaGhij8gkDsNn61s05hYSEpKSkcOHAA\nsGSNZuOOiYkhNzdXl/vUqVMZP368/qypqYlDhw4B8PHHH1NdXa07o3DJbZ8xqE5cbefn8Xi0chZC\n4HQ6dWfpcrn07kFut5vW1lba2toAa1d7r9cb0VGey+UiKysLgAsuuAAppd42rba2NmKdjOrwlF3a\n/r/9tSpP+zVgdYb2Z32mZaiebUxMDHFxcQDk5OTQ2tqqFboQAp/Pp2fazc3NJ3TOdjnC/VyNDd1g\nMBj6CEGP0IUQTmA9UCqlvF4IUQAsAdKBDcDdUsr2MxFG9bZOp/OEnky97s5owd7ThwIlX1JSkpaj\npaWF4uJiPcLyeDzaHLN161aKi4v1qCEpKYnMzEz69+8PWHujVlVV6euihSojp9NJYmIiYI1EBgwY\noH9nSUmJ/o2Rwj4Sy8nJYebMmUyaNAmAoUOHalkTEhJoa2sjISEBgC+//BKHwxHW0ZCSTY204+Li\niI+P1yN1uylNSklcXJyWNy4uTl/X3NwMoEfvLS0tIa+3p/oNAMnJyXzta18D4M4776S5uZkFCxYA\nsGbNmrDeG6x653K5dNnZXQAdDgd+v1+PiF0uFwkJCXrEbJ8BV1RU0NbWFpIZhZIJrDWa5ORkwDJF\n9u/fP2CGEBsbq9fNysrKdPbXhoYGPB6Pbv+RmOl0x+TyKLATSO54/V/Ar6WUS4QQC4BvAS/2WBCX\ni9TUVADS0tKIiYnRDeDYsWNamUgpaW9v16YBh8NBU1OT/szhcOjr4uPjqa+v1w+8ubk5JNPvxsZG\njh07BlgPtKysTDfM+vp6LU9dXR1SSl0ZCgoKSE1NZeDAgfpztSl0a2tr1BdFhRDaXFRYWEh2drb+\nXdHocBwOBzk5OQBce+213H333WRnZwNWI1ONvqmpiZqaGt2Rjh49mk2bNlFZWQmEx+TicDhITk7W\nnXNWVhYJCQnU1NQAlkJQ5jS/3x+wiDts2DBdn1taWigtLdXXRUqZw3Ez0QUXXMB3vvMdwFqPKCsr\n0yaEUGJX1PbOMCUlhfj4eN2p9e/fX//vdrtJSkrSnbXb7SYrK0vXi6amJnbt2gXA2rVr2b9/f8Bi\neE9wOp04HA79vBwOh9Y3SUlJ9OvXT8vT3NzMyJEjdbupqqqiuLgYsPTWwYMHqaurAyKzYBqUQhdC\nDAKuA54GHhPWU7kC+HrHKS8DT9FDhS6EICUlhYsvvhiAiRMnMmTIEF0Q1dXVuoJlZGSQmppKRkYG\ncFxpgzXyaWlp0QtnQgiqqqpYsmQJAJ999pnuPXvysO22ZqW0KysrOXTokN5B3ev1Bny3veImJiaS\nnZ2t7ZW7du0KsLNGS6GrRuZyuXRnM3nyZDIyMvj444+ByCp0Zbvs378/d911FwB33303ubm5emTU\n3t6uZWpoaMDn8+nX6enpjBgxQs9+ysvLezTD6wpVVjExMaSnpzNx4kQAsrOzKS0t1XW2paVFK22f\nz4eUUiuB8vJyCgsLtexer1cPECJVB4QQeuAzd+5cRo4cCVh14PDhw+zduzek8qj1BvX84uPj9f2H\nDx9OSkoKo0ePBqwZg30E7Pf7tZLOzs4mJSWFQYMGafmGDh0KWMr92LFj+twzkdXtdutOJSEhgfj4\neMB6lk6nU9eDtLQ0EhMTtTyjRo3S1zmdTmpqamhsbAQi48kWrA39N8D3ANUa0oFaKaXqxg8DA7u6\nUAhxvxBivRBi/RlJajAYDIZTctoRuhDieqBcSrlBCHF5d28gpVwILOz4ri67JzVCV1Nkl8uFx+PR\n7n5SSt1DDhgwgNTUVD3acTqdekTc1tZGZWWlnh7Fx8fT2tqqvR3a29v58MMPgTPrLe12sba2NqSU\nXa5oq1G3MgVMmTKFyy+/XI/cVq1apWWLJnYb+mWXXQbAiBEjqKmpoaioKOCcSKCe7cyZM/nGN74B\nwJAhQ3A6nXqm5vF4tFfLvn37aG5u1t5DAwYMYNy4cXpktHHjRj1yPlPTlhqZJSQkMGrUKG3Tr66u\nZuPGjVqmmpoaPWMQQtDW1hYwy1R1Ii0tjZKSkojHIwghdJvKz8/Xs8i2tjaWLFnCkSNHgNA+d7vJ\nxe12azNFTk4OF1xwgZ4lxMbG6tnVvn37aGtro7y8HLC8bkaMGMGAAQOA4+7DYM3o7BHDPZ31qshP\nNVNsb28PeHY5OTm6vbe1tWnzG1i6S80YpJQUFRVpmSIRDxGMyWUSMEsIMRPoh2VD/y3QXwjh6hil\nDwJKu3tzu5tSU1MTmZmZAGzfvp3LLrtMu05VVlbqAktPT2fYsGHarJKSkqKVYlFREV6vVy9QjBw5\nkoSEBEaMGAFY02R7AEBPsfsNd/4tUsqA/2NjY/X0+qqrriI3N1e7Atp9u6NtPwfrdw0bNgywpr21\ntbW6YUcKl8vFuHHjAPj2t7+tp7IqcEiZzD7//HM+//xzwFrT8Hq92p6dkJBAeno6Y8eOBaxy3r59\nO2CZxHpqPrL76RcWFjJ9+nS9OLdp0yZ27NjRpUlP2U7VexkZGdq82NbWxrp160JSL7uDlFIr8fz8\nfF1nKyoqWLNmTcjWHextvLOLoeq409PTiY+P12bMvXv3snbtWgBtzlRtvKCggOTkZN2m7de1t7fr\nNR/1G3uCel7KjJqQkKDt6YMHD8bhcOg1j/T0dADdOdn1WGNjI1lZWXqg6vV6wx5vcFqTi5TyCSnl\nICllPjAH+EBKORf4ELit47R7gFVhkdBgMBgMQXEmgUXfB5YIIX4BbAL+2N0vUD2ow+GgtbVVj1yr\nqqqorq7WvVhdXZ1e6IiNjWXUqFEcPXoUsHp+NR1rbm4mNzeXa6+9FrDcAr1er17gqaqqCtsiZFff\n5XQ6SU1N5ZZbbgFg0KBBeDweDh48CFgzj84BFNHE4XAwatQowBoRV1VVUVtbG1EZUlJSuO666wA4\n//zz9YjY5/NRUlLC6tWrAcs1UUWGer1eHdgF1ugnIyNDj56GDh3Ks88+C9CjQC67Z4ZayLvgggsY\nPHiwnkVu27aN6urqk45sVYQhWKN7NeOsqKigpaVFT+kjWQeUPGlpaXoRsqWlhbKyspDJYW/j9tft\n7e26rFpaWnA6nTpFxtatW7XnSkVFBe3t7QGBW9OnT9cecS6XS4+WDx8+HJKgLCllwGjabsZRphg1\nCs/IyMDv92sTUWZmpjb9uVwuCgoK9Ai9oqIioP6FY5TeLYUupfwI+Kjj/xLgklAI4fP5AqZLTU1N\n1NfX66mx1+vVFcLv91NSUqILwx6RB5Yt86qrrtKvy8rKdMMvLS2NaMNxuVxcfPHFXHrppYDVgKSU\n+qE2NjZqe7+aNkaT3Nxc3VCklGzdujUs7msnw+VykZ+fz9VXXw1YXkGq0R86dIhXX32VlStXAlYn\nr8xu2dnZVFZW6ml5eno6hYWF+lqn06lTM5SXl9Pe3h7087ebClwul7bzjh49GpfLFeCidqoGardZ\nDx48WJuHdu3aRX19fYBXRyQ6dyGEtv/by7m4uDgs0cv2dSawFLrqrFtbWykrK9PeakeOHNEDCfWs\n1DNITEwkIyNDe7m1t7ezdetWfV2oomyVZxIQ0AaEEOTk5Oi619zcTEpKiu7o7R16Tk4OOTk5ei3Q\n/j2qjO2ec6GgV4T++/1+2tra9ENrbm4OyL9hT4bTVQpa+yjAHsbs9/upqKjQvX1DQ0P43YZseR/S\n09O55JJL9Guv10txcTH/+Mc/gMBRW6Qacleoci8oKNCKprGxkbfffjui4f7x8fHcfPPN2nXS4/Ho\nhr1o0SIWL16sG31sbKwuu8OHD1NRUaFH5FlZWfTr10+/rqqq0t+5cePGbpezen5JSUk6f8yYMWNo\naWnRHXFMTAwulytgBqhQaynTp08HYNy4cXpUWVlZGbBYpgJpwk1MTIwe+MTGxmp78bvvvhuWhXq/\n3x/QOfr9fj3LTktLC1jbcLlcem0CCIgtKSgoID8/Xz+TmpoaPQOvqanp0imhJ9h1jBpwqv/j4+O1\njjl27BjJycnaxt7U1KQ7qmPHjpGVlaUtCMnJybo9eTwe2traAoKOQtH2Tei/wWAw9BF6xQgdTpyS\nnez/U/W6DoeD1NRUPR3yer1s27aNdevWAcddDMOBPa2rGuVeeumljBw5Uvfu5eXlrFu3Tq8VuFyu\ngORO9t8ZyZG6mu7feuutetR74MABnRUyUvcfOXIkkyZN0jK0trayYcMGAN566y2qq6v1CM8ewOXz\n+aipqdHl7Ha7SUlJ0dGEasZ2jqi7AAAQZElEQVQH1si0u+kjlKkkKytLu6QlJSWRmpqqTTkDBgwg\nLi5Oy+R2uwNcEXNycrjtNsuHIDs7W9tcGxsbA8LVI/XcExMTGTNmDGCVv5Jny5YtYZPB3nZ9Pp92\nJa2traW2tlZ/NmTIkACXwX79+ulyzc7OJiYmRj/PpqYmSkpK9Ln2VLY9nel0NoP4/X59v9jYWO1F\npX6Tfabd2tqqz21oaKCioiLANGj/XSrqXRGKUXqvUuinen2qz1QhxcfHM3v2bL2wV1FRwfr16ykt\ntTwqwxleb8/zkpubC1iLcVJKvQi6fft23nvvPb1I4nQ6tR+tMjkpJWC34SnCJbtyH/vKV76if8f+\n/fsjtiCqpqvTp0/Xi01gNda///3vgGVWUSH0YJWdajgej0dPYcFqGP3799fl1dTUFBBq3x1UpCIc\nX0RU/wshuPzyy/U9Dh8+rGXKzMzUdlKPx8O0adN0vbQr+yNHjtDc3KzNDV0993Dgdrv1wqzf79d1\nVK0JhBsppX4Wx44dw+FwaLOYEEKv5TQ1NeF0OrUJJi0tjeTkZF1GW7du1Wtk6vtCbZf2er2686mq\nqqK9vV0vfLrdbtra2nSHaE9FUFdXR0JCQkDaANW+GhoaaG1tDXChDYXJ1ZhcDAaDoY/Qa0bowdK5\nB7NPd8aOHctNN92kR0lr1qxh3bp1AUmSwoF9IdTpdDJt2jTA8maoqqrSJpY1a9Zw4MABvcBjH6Er\n7xcle0tLS8CmA1LKgARlocLu7ZCfn6/LaMuWLRHJ3+J0OvUCU2pqqh6ZgVUGamTk8/kCTFR27yYp\nJS6XSweUXXzxxfTr10/Lv3//fh0g1ZNFXnWfhIQEbQJKTU0lJiZGBxJlZ2cHuOLZF/bcbjeXXHKJ\nXiwTQuipdnV1NY2NjRE1uagRsN00qRYWVXmHA7UwqlDP58iRI9TV1elRrtvt1h5vPp8Pt9utI0Nz\nc3NJTk7W565du1bPeJXpKtQul1JKLc/evXtxOp26zTidTkpKSvS5jY2NerbjdrtxOp3a9Jeenq6/\nJz09PcCTL1Qzs7NOoXfG4XBoF6Z//dd/JTs7W0cQLlmyhKNHj4bVU0MlHVKNd9iwYdrk4nK5WLt2\nLVu2bAHg6NGj9OvXTzdsKaX+f9CgQQH+9na7qtfrpaam5oRNp0NBTEwM999/P2AlN1MdyieffBKx\njQ1UR5Wenk5ra6vu8FpbW3VZJiUl0dDQoBW6vQHExMQwYMAAbrzxRuD4Jg32Rqg8Dbpbdj6fT8u3\na9cu7ZOckJBAQ0ODLqODBw9SVVWln2d1dbV+lsOHD6e9vV2bi5qbm3Unf/jw4bCu7XSFEII5c+bo\ncm5ra9OmrXB34na7tLqXMpkpjyF76mOn06m9YMCKLXE6nXo3qnXr1mnTYLjMVXYvl9LSUpKTk/nk\nk08AS2kfPnxYdzB+v1/XO+UNo0xbMTEx2vzSr1+/k3pFnQlnvUJ3u93MmDEDgK9+9au0tbXx5z//\nGbB8l8Ptdqd2M1GKZ/To0domXV9fj8/n0zMIlWFOPUS3262vU7Zj9dmRI0e07LW1tQHBJ6FUtAMH\nDtQZA9W9IHK2VPsuM2VlZcTExOiGHhcXp8P3t2/fHvA829radEM5//zzmT17tv4dKSkpeL1e1q+3\n8sGtXLlSN7ie+NWre9bV1ekUAnv27CE1NTXAX1rljlH3sWfkq6ur07+rqalJl69yW4ykQo+Pj+e6\n667TnWN9fT27d+8GIpt6QJWrECJg1yb1Hhx3HFCyJiYm0tjYqGdKx44dC3v6DPvaVmNjI9u3bw+Y\nydTV1eln7/V69ZqQ3+/XqYHBqpf2vC52n/nOrtg9xdjQDQaDoY9w1o7QVY9dWFjIQw89BFg94N/+\n9jcduBPO6aMaQcTGxpKfn69dwCZMmKDdFsvLy5k0aZJ2dWtpaaGyslJPdWtra/WGDXl5eWRkZGiT\nx6effqqDaI4ePUpcXFxA4qFQ/YYrr7xSjyD8fj/btm0D0HbJcGM3jezZs4e6ujptmkhKStJRttnZ\n2ezZs0ebMRITE7XNPC8vj+zsbD0zamxs5JNPPuH5558HrKRtoQiW8Xg8ulzUxib2kPbOMyc1Gqup\nqaG+vl7b8cvLy9mxYwdg1YlIjYpVnZ08eTKDBw8OSK2hPMGiwam8UlS5qmhLla9deZI0NzeHvfzs\nyfhUEJhKU6ACwexBUfY1l4KCAt3eY2JitD29vLw8IJjqnLahOxwO7Qf64IMParPFoUOHeOmll7Qi\njFRDcbvdnH/++YDlQ6vsZAMHDqS9vZ38/HzAclWy24Grqqp0dkO1C4ryqc3IyAhYyPN6vSGP4HM6\nnQwbNkxXwOrqal580dqjJJJpfZWS/vDDDxkxYgQzZ84ErHUF9WwHDBjApZdeqpW/y+UK2EjA5XLp\nafCWLVt4/fXX9W5QobRRd+WjrOi8ubHqmGJiYigtLdWNefv27drtLZIbQqvyuueee4iLi9PKZN26\ndQFb5vUmHA4HSUlJeuG8srKS/fv36w1BgLCsLZ2MznlelL1fmVXtO60NGjSI7OxsnRnS7/drk93+\n/ftpb28P+TqVMbkYDAZDH+GsG6GryL2bb74ZgAsvvFCP8N555x127twZkYRS9qxxyvUMLK8Few5v\n+wazamFMuVG6XC69EKRc4tRK/5YtW3TSocbGRurr60M+AlGLN4cPHwYiGx1qR41SysvLWbZsmTZf\npaSkaA8mFeGpvInsmw6oPUU/+ugjAJYvX87atWu1+SpS2JNIOZ1OPVNLTk6mubmZTz/9FLC8ZewJ\nsCKVjEu5/o0dOzYgGd6f//znqGf67Ix9I4yhQ4fqmVpdXR2HDh3SuXCigX1B1+/343A4tLzx8fHa\nejB69GgmTpyoy72qqkrrKrWBdKjdVc86ha42DlamCq/Xq6fWr776qt6YOVJ4vV6OHDnCihUrAMs0\ncOGFFwKWC6Pa8FqdW1RUpE0ptbW1ehpeVVVFZWWlttHW1NRoVzu7jS6UCCFYt26dNq9s2rRJe4NE\no4F7PB6Kior45S9/CcDtt9/OJZdYCT2zsrICEldVVVVpe//mzZspLi7myy+/BAKzakYK+y71EOiH\n7vP52Ldvnz7H3rBD5a52OhwOh17bOXToEImJibrz/vLLL3udQlflmJycrF0VwYr+LikpCYgKjqbs\nysZvT0Oh1qTcbjepqananHXw4MEAn/lwmNvOGoVu77GzsrJ0L3jkyBHWrFkDEHaf865QG9gqN7TO\no1yVMheOuz/Z81mohTOPxxOwnV6oczx0hcfjYceOHToQoqKiImK+512hFki/+OILAHbv3q1nN3l5\neaSmpmpFXVpaGrCQV1NTE5bAq2CRUmpbPlj11L47TV1dnQ4iU+6sYI3k/X5/2DsgIYTuYKqqqjh4\n8CAbN27U8vQ2VDmmp6fTv3//gEAsh8NxQsi8nWg9f7DalJr5JCQkUFRUpJ97TU2NrhNqJh5q+7+x\noRsMBkMf4awYoQshtD1y7NixTJs2TY/QN23apN0UI20zVdhtavbIwt6Ox+Nhz549AdnpIj3D6Qo1\n+qqoqNDeIMpNrKu9W6M97VbY64HdK6muro7W1la9VlFbW6s/67xBS7iwu9otWLAAIQR79uwBCLk7\n7JnicDh0e8/OziY2NlabqLxeLxUVFV0GIUWzDtjXc5QHzqpVqxg4cKD2eqmvr9fmYft+D6GkVyt0\nu11SbcI6duxYJk+eHBC2rBRAb2jUZxNKAfUGJX46omkKChZ7x2LPpNfc3Kx95MFq9PY6G4l66/f7\n9dpNpDf+DhZ7dKgasOXl5XHeeedpG3plZSVerzdgh6dot3v7M/R4PDq/T1tbG62trRQUFACWOVaZ\nt5Q/e1Rs6EKI/sD/AqMBCdwL7AaWAvnAfuB2KWVYlp779esXEERSWloakFdYLTqqh2wwRAv7+og9\ntN1uI+8tM4rejFJ8RUVFxMfHay+yvXv3ah9uiFy64WBRu6/B8a0z1W+x73AVrviDYG3ovwXellKO\nBC4EdgLzgPellMOB9zteGwwGgyFKiNP1EkKIFGAzMFTaThZC7AYul1KWCSFygY+klOef5rt61CUJ\nIfSq98CBA5k2bZoe/WzYsEH3iKWlpWeN/dpgMHSN2hsYrFgJu4dOQ0PDCZG/vWmE3pnOe8ueARuk\nlBNOe78gFPo4YCGwA2t0vgF4FCiVUvbvOEcANer1Kb6r95a8wWAw9F6CUujBmFxcwHjgRSnlRUAT\nncwrHSP3LpW1EOJ+IcR6IcT6IO5lMBgMhh4SjEI/DByWUn7R8fqvWAr+WIephY6/5V1dLKVcKKWc\nEEzvYjAYDIaec1ovFynlUSHEISHE+VLK3cCVWOaXHcA9wH92/F0VxP0qsUb4kcnNevaQgSmTzpgy\nORFTJidyrpRJXjAnndaGDtqO/r9ALFACfBNrdP8GMAQ4gOW2WB3Ed603o/VATJmciCmTEzFlciKm\nTAIJyg9dSrkZ6KrQrgytOAaDwWDoKSaXi8FgMPQRoqHQF0bhnr0dUyYnYsrkREyZnIgpExtB2dAN\nBoPB0PsxJheDwWDoI0RMoQshZgghdgsh9gohztm8L0KI/UKIbUKIzSrYSgiRJoR4Twixp+NvarTl\nDDdCiEVCiHIhxJe297osB2Hxu466s1UIMT56koePk5TJU0KI0o76slkIMdP22RMdZbJbCHFNdKQO\nL0KIwUKID4UQO4QQ24UQj3a8f07XlZMREYUuhHACvweuBQqBO4UQhZG4dy9lupRynM3d6lxMdPYS\nMKPTeycrh2uB4R3H/cCLEZIx0rzEiWUC8OuO+jJOSrkaoKP9zAFGdVwzv6Od9TW8wP+TUhYClwIP\ndfz2c72udEmkRuiXAHullCVSynZgCXBjhO59NnAj8HLH/y8DN0VRloggpfwH0Dlu4WTlcCPwirT4\nHOivopT7Eicpk5NxI7BEStkmpdwH7MVqZ30KKWWZlHJjx/8NWJleB3KO15WTESmFPhA4ZHt9uOO9\ncxEJvCuE2CCEuL/jvWwpZVnH/0eB7OiIFnVOVg7nev15uMN8sMhmjjvnykQIkQ9cBHyBqStdYhZF\nI89kKeV4rKnhQ0KIqfYPT5Xo7FzClIPmRWAYMA4oA34VXXGigxAiEVgG/LuUMmBXa1NXjhMphV4K\nDLa9HtTx3jmHlLK04285sAJrmhxUorNzgJOVwzlbf6SUx6SUPimlH/gDx80q50yZCCFisJT5a1LK\n5R1vm7rSBZFS6OuA4UKIAiFELNZizpsRunevQQiRIIRIUv8DVwNfYpXFPR2nBZvorC9ysnJ4E/hG\nhwfDpUCdbbrdp+lk/70Zq76AVSZzhBBuIUQB1iLg2kjLF2469lr4I7BTSvm87SNTV7pCbXAa7gOY\nCRQBxcAPI3Xf3nQAQ4EtHcd2VQ5AOtZK/R5gDZAWbVkjUBavY5kQPFh2zm+drBwAgeUlVQxsAyZE\nW/4Ilsnijt+8FUtZ5drO/2FHmewGro22/GEqk8lY5pStWDunbe7QJed0XTnZYSJFDQaDoY9gFkUN\nBoOhj2AUusFgMPQRjEI3GAyGPoJR6AaDwdBHMArdYDAY+ghGoRsMBkMfwSh0g8Fg6CMYhW4wGAx9\nhP8PPLhbsZMXvNYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABG+ElEQVR4nO29eXBc132g+53edyyNxr6vBLivIiWKorVSXmI7lp3E8SvrPVdcM372jOoledHYqcnUVL0q5znRJJVMpSyPnYkt59mOZZdla7RSpEVREjeQFEESJECC2NcGutGNbqC3+/4gz9EFSIogAXSD5v2qUAB6u6fPvfd3fvsRmqZhYGBgYHD3Ycr1AAwMDAwM7gxDgBsYGBjcpRgC3MDAwOAuxRDgBgYGBncphgA3MDAwuEsxBLiBgYHBXcqSBLgQYp8Q4oIQolsI8exyDcrAwMDA4NaIO80DF0KYgYvAY8AAcAz4I03Tzi3f8AwMDAwMbsZSNPAdQLemaZc1TUsAPwE+vTzDMjAwMDC4FZYlvLcC6Nf9PwDc91FvEEIYZZ8GBgYGt8+EpmmBhQ8uRYCLGzx2nYAWQnwV+OoSjmNgYGBwr9N7oweXIsAHgCrd/5XA0MIXaZr2PPA8GBq4gYGBwXKyFB/4MaBJCFEnhLABfwi8tDzDMjAwMDC4FXesgWualhJCfB14DTADP9A07eyyjczAwMDA4CO54zTCOzqY4UIxMDAwuBNOaJq2beGDS/GBG9wEh8OByWRCCIHZbMZms2EyXfVWxeNx0uk0qVSKRCKR45EaGBjczRgCfAX44he/iN/vx+VysWbNGnbv3k1xcTGZTIYXXniBzs5OLly4wG9+85tcD9XAwOAuxhDgy0hFRQVf+tKX+MxnPoPP58NsNuPxeCgsLMRisaBpGo899hhr166lo6ODI0eOMDU1RSqVyvXQr0MIQWlpKV/96lcpLy/n17/+Nfv37ycej+dsTHa7nYcffpgtW7awY8cOent7OXDgAG+//TbBYDBn4zIwyBWGAF8mqqur2bJlC08++STr16/H6XSSyWSIx+MEg0EymQx2u52Kigp8Ph9CCOrr6zlz5syqFOAmk4nS0lLuv/9+ampqOHbsGGazOWfjEULgcrnYunUr+/btY+fOnVy5coVIJEJ3d3dOBbjZbMbtdtPW1sbQ0BB9fX23fE9+fj6ZTIa5uTnm5uayMMpb43Q6ycvLY926dQwODjIxMcH4+HjWji8VnqamJiKRCOFwmFAoxOzs7G19htvtxmw2EwqF+F3fMtLoRrhMfOYzn+Eb3/gGu3fvxuFwkMlkSCQSXLlyhTfffJOXX36Z9957j2Qyic/no7a2lkceeQSv15vrod8Qk8lEQ0MDbrebRCLBxMQE6XQ6Z+MRQhAIBNi5cyf33XcfmqZRW1vLxo0b2bx5c87GBeByuWhubua///f/zqc/vbhuEmvXrqWlpYVA4LriupxRVlbGo48+yssvv8wzzzzDAw88kNVF2+PxsHbtWv7mb/6Gf/fv/h179+6lqKjotj7D6/XS2trKhg0bsFiyo58KITCZTCrOlU0MDXyJmEwm2traeOihh7jvvqudBHp6evjlL3/Jz372MyYmJohEImQyGVwuFz/96U9pbm7GbDaTn5+fU632ozCbzbS2tuJwOBgeHubVV1/NmaZot9spLi7mr//6r9m4ceO851aDhpWfn8+ePXvweDyLPp+7du2iqqqKdDrNn//5n+d0cQTw+Xw8+uijPPPMM1gsFr74xS9SUlLCq6++mpWx+Xw+vvnNb/L7v//7lJWVEQ6HaW9vZ2joutrAG2KxWCgoKOAnP/kJZWVl9PX18e///b9nYGCAZDK5ImOW2v7Xv/516urqmJub45lnnsmqRb1qBfiaNWuoq6sjEAgwMzNDOp0mGAzS29vLzMwMkUhkVWRxCCEoLCzE4/EghGB0dJQf//jHvP3221y8eJF4PE4qlcLv97N27Vr8fj8Oh4NwOMzFixdXjfmsx+l0UlZWxoMPPkg0GuXChQu3ZcYuJxs3bqS2tpbm5mY2bNhAXl7evOcLCgpoaGhg165dBINBpqamsmr2CyHwer1s2LABm8226PeFQiHq6+upqanBbrcTj8dzuhhVVVVRW1tLZWUlAGNjY4yMjKy4MJJC8A//8A/ZsWMHeXl5nDx5kl/96lecPHmSTCazqM+R7r41a9bQ3d3NqVOnCIVCK7b41NXV0djYyM6dO3niiScoLCxkfHwch8NBLBZb9LiXyqoU4CaTie3bt7N7926ampoIBoMkk0muXLlCe3s7ExMTDA8PE4lEFvV5mUyGVCrF9PQ0yWRy2W8Uk8nE5OQkPT099Pf382//9m9cuXKFmZkZ9ZpAIMDDDz9MaWkpTqeTiYkJLl26tCoFuNvtprKykm3btnHw4EHOnctdh+AHHniArVu3sm7dOiorK68zU4uKili3bh2apnH58mW6uroIh8NZW9ztdjt+v5+2tjbm5uYWfVwZFyktLcVutzM3N5dTLby5uZna2lo8Hg8AFy9e5Pz58ysuwG02G36/ny984QusWbOGRCLBgQMHeOmll5iYmFjUZ1gsFmpqati3bx8Oh4PTp0/z1ltvMTU1tSJjNpvNbNiwgb179/L5z3+e4uJizGazinH19/dnbUFetQL8G9/4Bk1NTfh8vnnPaZpGNBplYGCAcDi8qM8LhUL09vby/e9/n/PnzxOLxZZtrOl0moMHD9LR0aFW31AodN0KXFJSwpNPPonL5UKIG/UBWz14vV5qa2txuVycPn2a9957L2dj+ZM/+RMloG9EQ0MD9fX1fOpTn2JkZITf/va3PPfcc3zwwQdZEYjNzc3cd999bNq0ie9+97ucP39+Ue/zer2UlpZSX1+P0+lUVma2EUJgs9n44he/yI4dO9TjR48e5d13313x4+fn57Nu3Tp27NiBy+Xigw8+4B/+4R9uS/hWVVXxwAMP8KUvfYlXXnmFV155hXfeeWdFxiuD+1/+8pf52Mc+Nk8++f1+/vN//s/8zd/8DRcvXpynwK0Uq1KAZzIZ/vEf/5G6ujp8Ph+Dg4OUlZURCAQoLy+nra2NsrIySktLmZycxO/3z/M9ZjIZkskkMzMzFBQUkMlkaGhooLe3l8HBwWUV4JJQKITJZCKTyVwnvD/2sY/x+OOPU1VVhclkYnR0lLNnz3L27NmcuSY+iqamJp566illJSwmq2K5KS0t5U//9E+pqKjAZDLdUIBHo1Hm5ubIZDIEAgECgQCPPfYYjY2NPP7444u20O4Ek8lETU0NX/nKV3jggQcYHBzkpz/96aIF+JYtW2hoaFix8S0Wu91OfX09LS0tFBcXo2kamUyGzs7ORX+XO8Xr9VJfX8+DDz6IxWLhf/2v/8Wrr77K1NTUohYzi8VCZWUlzz77LPfffz/pdJrDhw/T19e3YveVw+HgD/7gD2hsbMTtds97zuVy8cgjj1BTU8MHH3zAW2+9xW9+8xvm5uZWTBtftQL86NGj9PT04HQ6GR0dpbi4mMLCQoqLi7l8+TJlZWVYLBb6+/upra3FarWq96dSKeLxOFNTU3z2s5/F5/ORTqdxOp0rpv3eyNQ0mUyUlJSwe/dutm/fjsvlIpFI0NXVxfHjx1fUR3enOBwOysrKaG1tZXZ2lkgkQjQazeoYPB4PlZWV7Ny5E6fTed3z8XicwcFB5abSNI2mpiZqa2spKirC6/XS1NREd3c309PTKzJGi8XC1q1bWb9+PXl5eRw8eJDu7m5CodBHvk8IgdVqpb6+npKSkpxbY3a7nebmZvLz87Hb7aTTaYaHh5mYmFjx897a2sr27dvZunUrkUiE06dPc+zYsUW7baTrZOPGjQQCAXp6emhvb2d8fHxFfNAWi4W8vDx2795NUVERmUyGaDTK7OwsHo8Ht9tNIBDA6/UqmfPWW2+RSqVWzBW1KgU4QGdnJ52dnTd8Li8vj5qaGmw2GxcuXGDdunXY7Xb1fDKZJBKJEAwGeeCBB6ioqCCZTDI0NLRiEekbYbVa2bp1K5/85CfZtGkTZrOZYDDI4cOH+fWvf70qgrAL8fv9VFRUUFtbq3z02ZwzIQSVlZWsW7eOiooKVQCVyWTU79HRUV5++WUOHz6s3Gi7du3iy1/+MjU1NQgheOyxx0in03R0dCz7IimEwOFw8Pu///vU1NQwNDTEP/zDPxAMBm95LJl91NTURElJyaL9vCuF2+1WC6WmaaRSKU6ePLlo9+RS2LdvH48//jg7d+7k9OnTnD59mjNnzizqvSaTCbfbzfr16wkEAoTDYd544w0OHTq0YnEll8tFeXk5Dz30EG63m2g0Snd3NxMTEzQ2NlJbW6t84Q0NDXg8Hv7xH/+Rubm5e0+AfxTT09N0dHQghCCdTnP06NF5moymaZSUlLBz5078fj+hUIjTp0/zq1/96pYa0nJitVrZuHEjBQUFmM1mMpkMr776Kvv37+f06dNZG8ftsHHjRurr69E0jcnJyawvMuXl5fzJn/wJTz31FKWlpco1pmkag4ODHDt2jPfee48f/vCHRKNRMpkMZrOZ3t5eHnjgAQoLC/F6vfzZn/0ZLS0tvPbaa7z44ovLegPV1taya9cuHnnkESKRCF1dXZw+fXpRC0UgEODrX/86BQUFDA0NqWyJbC6SevQCPJPJMD09zXe+8x26urqycnzpchwbGyMajS7qPNntdvbs2cOjjz7KH//xH+P3+/nFL37Bs88+u6JJAUVFRaxZswaPx0N3dzdvvPEGf/mXf4nNZmPz5s3s2rWLp59+mvLychwOB5WVlXz3u9/l7/7u79i/f/+KuPTuSgGuado8n9LCG8fpdNLQ0MCXvvQlXC4X7e3tvPnmm1l1WWzZsoW9e/fy8Y9/nKKiIqampjh37hy/+MUvuHjx4qpznUjKysrw+/0kk0lef/11hoeHs3Zs6V7Iy8vD7/erjBMZhH7++efp6elRAWw5h+l0mpGREd5++22sVit79uzB5/PxwAMPYLVaOXDgwKK048VSUlLCtm3bcLvdHDt2jJMnTy7qs91uNxUVFezZswen08mFCxd49dVXSSQSOUkhDAQCNDY20tzcjM1mI51OE4/H6e7uzorbTH5nIQStra18/vOfp7W1lXg8zrFjx66LVcnsqKamJjZt2sS6desoLCzk0qVLdHd3r3ibB4vFgt1uRwjBiRMnOHLkCNFoFJPJxJkzZ0gmk+zbt49AIKBeJ127K5VWeFcK8FsRCARoaWnhoYcewmw2K99YtlL2ZBHM7/3e77F582ZMJhOXL1/mnXfe4f3338+KeXq7CCFwOp3U1NRQUFBANBrl3XffzbqJbzKZsNlsyiU2OzvLwMAA77//Pi+++CLhcPg6bVVmJrW3t1NcXKwyGurr60kkEng8nmVbvE0mE0VFRbS1tWGz2Th//vyizX6/309dXR1r1qwBoLe3l3fffTdni3lRURE1NTWUlpYCVxfKkZERlba70oTDYaanp0mn01RWVrJ3717a2tqIxWJ4PJ7rNFafz0dzczMbN26kqqqKQCBAIpHgzJkzWbEYHA4HBQUFwNU8+dHRUQBlQdhsNpLJpBLWmqYRiUSYnZ01XCi3w0MPPcTDDz9Mfn4+09PTjIyMMDg4mLXjFxYWUldXx9q1a7HZbExPT3P27Fm+//3vMzU1lbUk/9vB4XCwYcMGnnzySQKBAOfPn+f999/PegBzIZcuXeKll17iu9/97i0Xk1OnTpGfn8/999/Ppk2blAa/nIFCl8tFRUUFbW1tCCE4fPgwBw8eXNR7t2zZwhNPPEF+fj6XL1/m3LlznDx5ctnGdruUl5erTBhN07h48SK/+tWvsnZ9vvbaa1gsFjZt2kRJSQk1NTXU1tYCsHfv3uuskoXnMZlMMjg4yAsvvMCxY8dWfLx1dXU8/PDDCCFYu3YtfX19vPXWW+p5m81GW1ubCrxnMhk6OjoYHR1dMeXxd0qAWywW1q1bx+c//3mVVvStb32LQ4cO0dt7wz1BV4S//Mu/5MEHH1RVg++//z6HDh2iv79/VQpvuOp22rlzJ8XFxSQSCXp7e1WKXrYRQqib9dlnn+XEiRNMTk4u+r2yL4XJZCIQCPC1r32N73znO4yMjCx5bFarFa/XS35+Pq+//rrSwhZDQUEBJSUlAPT19eU8gFleXq7iHTMzM5w5cyarArynp4d//dd/5fDhw6xZs4aWlhba2tr41Kc+pSqVz579cJOvsbExjh8/zne/+10KCgqYm5vj1KlT9PT0ZKWZWU9PD/v37+exxx6jpqaG1tZW6urqlFW1ceNGfD6fKsqy2+185jOf4eLFi4yNja2IEvk7J8DXrFlDZWUldrudgYEBjh8/zsDAQFaCcXa7nfLycjZt2kRV1dX9noeGhnjvvfdob2/PWaBqMdhsNmpqanA4HIyPj3PhwoWsm/ZCCNasWaPMVID+/n7GxsYW9f6ysjIqKyspKipCCIGmaWoxWq65lymq09PTyt1jtVpv+fkyqFVXV4cQgsHBwZx2UCwpKaG5uZmmpiYA5ubmmJycZHBwMGv++EQiwfj4uMoY6+3tpbOzk4GBAWZmZhgaGpqneEWjUYaHh0mn0+r5N998M2uN1iYmJujs7GRubo7CwkI2btzI008/TUlJCZWVlZSVlTEyMsKRI0coKChg+/btFBcX09bWxuXLlw0BfitsNhubNm0iLy+PSCTCqVOnuHTpUtZ8zj6fjx07dlBXV0deXh6pVIrOzk7279/PiRMnsjKGO8Vms1FbW4vFYmFkZITjx49nXfs2mUw8+OCDVFRU3JYQkTsftba2sn79etXPI5PJEAqF+M1vfrNsGQBS0A0NDambtrCw8IYWgtlsVhaBjMtI/3d/f3/ONHCTyUR9fT0bNmygra0NgJmZGcLhcNbjM1IYd3d3093dDcAPf/jDG77W7XZTX18PXG1FcPbsWV588cWsZZYFg0EuXLjA+Pi4irXs3LlTpV9OT0/z9ttv80//9E80NjZSUVFBS0sLmzZtYnx8nLfeemvZ76lbCnAhRBXwQ6AUyADPa5r290KIQuCnQC1wBfiCpmkr03xgEVgsFrxeL3v37sXn89HR0cFzzz3H9PR0VgSR2+2mubmZb3zjGyqDIplMcvbsWSYmJlZlzxOJ1+ulsrKS++67j2AwqLJ2ciHA9+7dqwTwYnC5XOTl5dHQ0MDTTz/Nli1b1HMzMzOEQiFSqdSyaZWJREJpqk8++STf+ta3+OQnP8kvfvGL615bW1tLcXGx0tBaWlrUcwszqbJNQUEBDodDuaqOHTvGpUuXcjaexVBbW8szzzyDy+Xi17/+NT/60Y+yugjOzc3R39/P1772Nf7iL/5CFecJITh27Bhvvvkmf/u3f0ssFiMajfL666/T2NjImjVriEaj1NTU0N/fv6wBzcVo4CngTzVNaxdCeIETQog3gKeB/ZqmfVsI8SzwLPAXyzay26SxsZE9e/bQ0NDA2NgYHR0dnDt3LmutHbdu3crDDz9MS0sLVquV4eFhzp49y09/+tNl8b2uJE1NTezcuZP8/Hw6OzsZGRnJma9eaq2LpbW1lT179vCJT3yCtrY23G43mqYRDAZ54403eOuttxgfH1/W66C7u5uf//zn+P1+ysrK2LVrlwq+6RFCYLFYcDgcBAIB1TdD0zSOHj2atVzrhZjNZmXeZzIZZmdneeedd7hw4UJOxrMYWlpa2L17Nw8//LDK7shFNlcymaS9vZ3/+T//J6dOnWLDhg3E43HefPNNDh48yMzMDJlMhp6eHv7t3/6Nbdu2qc6FX/jCF3j++eeXtcnWLQW4pmnDwPC1vyNCiPNABfBpYO+1l/0LcJAcCfC8vDzWrl3LQw89hM/n47333uPcuXOLDnwtB2vXrmXHjh0UFhYCV4NUhw4d4oMPPliV/U70lJSUUF9fj91uZ2pqasXKz5eblpYWtm3bxu7du9mzZ48S/JlMRlkS77zzzrLnB4+NjXH06FEaGhrYvHkzZWVl17W5BRgcHCQejyOEUDvwSAYGBnLiQjGZTDgcDjZu3Ijf71fl4OfPn1907+1cUFdXR1tbG9XV1WruslmUJ9E0jbGxMQ4fPszw8DAjIyPMzMxw9OhRzp8/r85xKBSio6OD06dPU1xcTFFREbt27eJf//VfCYfDy6Yg3ZYPXAhRC2wGjgAl14Q7mqYNCyGKb/KerwJfXeI4P5ItW7bwiU98gqeeeopYLMarr746L70nG+zcuZNHHnlE/X/s2DG+973vrUjjrOXG6/WqnU9mZmZW1YKj18YX/v3Nb36TNWvWqMwOiaZp9PX10dnZuSJabiQSIRKJ8F//63+lrq6O0tJSysvLr3vdwYMHCQaDWK1W/v7v/56PfexjKmiYSCRykv9tt9spKSlRnfRmZ2cZGxujq6tr0cHiXCDjB5qmcezYMU6fPs2VK1dyNh7ps3/99ddv+LzcTvHgwYOsW7eO6upqNm/eTFFREcFgcNnkwqIFuBDCA7wIPKNp2vRizVxN054Hnr/2Gcvq9DObzfh8Pp555hk2b95MKpXit7/97arw5zkcDvLz82+YnSD3QUyn05jNZmw2Gw6HA7jq062srOSTn/yker3sAfKTn/yES5cuLXs2S0tLCzt37gSuLjy5NKVl0E9eX9u2baOwsBCXy8U3v/lN/H6/KvIJBAJYrdbrtrNKp9P8h//wHxgYGFjx8fb39zM0NHTD1ghyIZRtAPQ59XV1dUxMTGRdaBYWFrJ582a13dj09DRvvPFGVlqfLoV169axdu1aYrEYP/7xj1dtKwo9qVSK1157TWUe7dq1i8997nO89tprHDp0aFmOsSgBLoSwclV4/1jTNBmtGRVClF3TvsuArC/fxcXFPPXUU8r3OTY2xiuvvMLw8HDONwrevHkzX/va1254YwwMDDA6OkokEsHtdlNSUkJ1dTVwNRskPz+f9evXz3tPJpNhYGAAi8VCR0fHso2zoqKC0tJSlbo3OzubsyZbmUyGU6dOqW5ucHWv0ampKaxWK62trbjdblWeLIW8Phg4NTXF+fPnGRkZWfHSamDRneb0gVQhBNPT01kZ30Lk9SWD7BMTExw8eHDVWooWi4X169dTXV2N1+tldnaW7u7urLpHl0I0GlVulJ07d7J3717GxsY4c+bMsriAFpOFIoDvA+c1TXtO99RLwJeBb1/7/aslj+Y2sFgslJeX85WvfIXKykqmpqbo6uri9ddfz4lvMZlMMjc3pzSbbdu2sW3bthu+9uzZs3R1dTE5OUl+fj4NDQ1s2LDhutfNzs6STqeVqS3TkZZLgAshaGpqUrsEye+Qq8VP0zQOHz6siiNMJhOf+MQn1HP610lkM6RUKqV2qN+/f/+qzrmHqylpK9mv/GbYbDYKCgoQQhCPxxkdHeXdd99dtQLcarWyd+9e1ZlyfHxc+Z2ltbZa+wpJzp07h8/nY3Jyku3bt3Pp0iV++9vfEg6Hl5yJtBgN/AHgfwPOCCFOXXvsm1wV3D8TQnwF6AM+v6SR3CZFRUXU19crTfXw4cN873vf48qVKzlJzzp79izt7e08+OCDt3xtW1sbbW1taJo2z6+bTqfn9VE4cODAvAKAM2fOcPny5WUbs8lk4mMf+xi1tbUkk0k6Ozs5duwYPT09y3aM2yGdTrN//362bdvG+vXrlaD5KOLxOKFQiO7ubp577jlOnz7N1NTUqvLjS+R1mcv0wUAgoHabD4VCyhJcrRXCDoeDP/qjP6KiooJgMMiBAweYm5vDZrPhdDrx+XyMjo6uytbMksHBQd59912ee+45/vzP/5wdO3bw9a9/nWeeeYZ4PL6kuV9MFso7wM3uokdu8viKIYSgqKiIp59+mn379gHwk5/8hJdffpkTJ07k7Ob4+c9/zrlz57hw4cJ1qXAyD1guNkIIotEohw4dIhgMKjP8yJEjjI6OKm1ocnKSeDyuhNHMzMyymd0mkwmn08m2bdsoLS0lFovx9ttvZy1v/maMjY3x4osv0tvby/bt23n00Uev21ZPz5kzZ3jzzTd56aWX6O3tJRqNrkrt22q1qpbCy5mXfjuYTCY8Hg/l5eWYTCZSqRSJRCLn7sZboXeVZTIZHnzwQZqbm2lsbGR0dJQf/OAHWYl3LIVQKMTrr7/OU089pbaAq6yspL+/f0nWz11XiWkymWhubla7ocDVJkYXLlzIaWlyf38/MzMzuFyu6wR4IBCgoqJinvY8MzPD+++/z+TkpBLgJ06cYHx8PGu+Ubmj+uzsLCMjI7z33ns5D2bNzc3R2dmpyqudTifV1dX4/X6Ki4sJhUKEw2FGRkYQQvD+++9z5MgR2tvbczruj0IIQXV1NS6XS20CkIvCLiEEmUxGbfE1OzurdjS6G3A4HNTU1PD444+rnW9Wc38hPYlEgitXrvD222+zd+9eGhsb2bBhA6FQ6N4S4Farlccff1z1zJBd1FZDsczk5CS//OUvcz2MRaFpGul0mnA4rDYl+PWvf70qXA/Dw8MMDw9z/Phxzp8/z44dO9i7dy+PPPIInZ2dtLe38/LLLyOEUD7R1YzJZGLPnj3k5eXR19fHD3/4w5zlMMsmUVu2bCEUCjE+Pp71cdwu0rVYWFjII488wkMPPcTx48d5++23eeGFF3LeFGwxpNNppqen+W//7b8xNzdHW1sbn/vc5+jq6rqthmgLuasEeCAQYN26dTz99NMEAoFcD+euRtM0YrEYf/zHfwygmvmvNo4dO8apU6f453/+Z2w2G6lUimQyqXye0qxezWiaxpkzZ2hvb+fIkSO8++67OdHAM5kMZ8+e5Tvf+Q6apjE8PMzFixezPo7bYWZmhr/6q7/iD/7gDwgEApw9e5af/exnjI2NqXz81X7+9cgNzU+ePMmjjz7KK6+8wvj4+B03urqrBLjP56OpqYmCggLVPD0UCqlsDYPbZ7VXXUr30mpcXBZLKpXiBz/4gbIscmnlxONxBgYGeOGFF4jFYqs+HS+VSqndbpxOJxMTE3R3d6tNEu4m4Q0fpsr+6Ec/4q/+6q/Iy8ujoKDg3hDgLpeLsrIytf1TKBTigw8+IBQKrepmUQb3NplMhldeeSXXwwCuWlqRSIQDBw7keiiLIpPJMDQ0tKrL/G+XS5cuEYlE+NznPkcsFptXhHa73FUCXM/Q0BDvvvsu3/jGNwiFQnfdSmxgYHBvIncSeuKJJ5b8WSKbEeilltI7nU7y8/MpKysjmUwSjUbp6+sz3CcGBga/65zQNO26ysC7SoAbGBgY3KPcUIDfufPFwMDAwCCnGALcwMDA4C7FEOAGBgYGdymGADcwMDC4SzEEuIGBgcFdyl2bB75aEUKoH/hwk14hBGazGU3TVHWhkbtuYHD3Iu/xhS2PNU3LWoMwQ4AvEZPJhNVqxWq1YrFYsFqt5OXl4XA4cDqdFBUVoWka8XicyclJkskkkUhEtYaVrUVXQ6/ouwnZzF/+LWsBjPkzyCXZFN5gCPA7RgoQq9WKz+fD5/Phcrlwu91UVFRQUFCA3++nubmZVCrFxMSEapM6PDzM2NiY6vctd5WBq6XDuRJCeutBCkf9JhO5Ro5Lv2gKIVRjLnnz6H8Mbo20DqW1KK1DYw6vZ6G2Le+XXClgRiHPHeJ0OvF6vQQCAdauXUtjYyPl5eWqStThcOByuVS/7UwmgxCCixcv0t7ezrlz5+jq6iIajaobRi/Is3xe1E1cWFhIXl6e2ki4u7ubiYkJ9R1ygRyf3A6sqKiI5uZmysvLmZ2dJRgMcuLECeLxOMlkkmQyqca72oTQwk2bpfWQKwFgNptxOBysXbuW8vJy/H4/7e3tjI+PE4lEiEajOal01rsh4ebzoheeH/W6pY5F7p6lVyJMJtO8RW+hNa1//0LuoIvmDQt5DA38DpA7ydvtdmw2Gx6PB4fDgRCCcDhMXl4eNpsNi8WiGuan02kSiQRmsxmLxYLZbMZut6tm7nrNO9s3sf54c3NzJJNJNE1Tmq7FYrnl1mYrhclkwm634/F4qKqqorW1lbq6OlpbW7Hb7UQiEbWze39/P5OTk0xNTZFIJLIivBfGPG52DvXXjMfjwWq1kk6n1WIju+tlMzaiH3M6ncbtdlNTU4PX6+X06dP09vbOWwhXchzyvtC7I+XuRdIKlEJUL0Dhw46V8rXLdd7l/OgFtbwe5Q5L8viJRGLeYqJfqOU4M5kMyWRSKWo32pT7dln1Avxmq9fClTeb41moRaVSKbXJqlyNHQ4HFouFubk5TCYTmqaRTCaZmpoiHo+jaRpWq1Wd3NVg9usDrHLBAZbULW0pCCFUTKGsrIytW7eydu1aampqqKmpAa62w/V6vYRCIaUpzs3NEYvFVlwQ6i0Xq9U6T+OXC6B8jcViweVy4fF4KCwsxOFwkEqlmJ2dVRsS5KotsryfbDYbPp+PvLw8hoeHmZycXNGFW38v2e12FTfKz89Xlom0qKRg1s+n3BZubm5u3s9yWrFyfNLFJBUvh8MxLylBLsjyXl+4kMtFUr8QLYcMW7QAF0KYgePAoKZpnxRCFAI/BWqBK8AXNE2bWtJoPjzWdT/6le12TKaVEox6rXpiYoJoNKr2PJSb8WqaRiKRUNq41WolGAwyNTVFKpXKqWZ7IzKZDOl0Wm2aEA6HSaVSORXgHo+H6upqtm7dymc/+1nKysrweDzqunC73Xg8HhKJhFosE4kEU1NTpNPpFV3o9XEQr9erLBcpvG02G2azWQmA/Px88vLyKC0txePxkE6nicVizMzMKAG1UJNbSfT3htR65TgLCwvxer0rOnf6xa+goACXy0V+fj4tLS3Mzc3NUySk5irPr1R+pqenicVixGIxpqen1f6eS7UaFsaD5Pm02+1YLBalhS90p9jtdnX/yAVFLkLy3C48v0s537ejgf9H4Dwgd5h9Ftivadq3hRDPXvv/L+5oFNeQGpfL5VJuCL0JL0+43W5XZkgymVSbO8zNzWGxWObdOE6nk2AwyMTEBBMTEyQSiSVpZtJ3FY/HSSQSRKNRwuGwCqilUillWgkhcDgc5OXlKe1LCIHL5cJmsxGPx+ftn5lr7VsKzMrKStauXUtxcTHHjx+nu7s761uASS1r/fr13H///Tz66KM0NjbidDoxmUwkk0ni8ThCCOx2O4FAgI0bN+Lz+UilUgwPD88zVZd7buW16nA48Hq9lJaW4nA4lNmfyWRwOp1omqauS4/Hg9frpbCwkMrKSmZnZxkdHaWoqIh0Oq162mfrOtDfU1VVVWzcuJHdu3czMzPD0aNHV8x9og+a2mw23G43gUCAhoYGKisrqaysRNM0otEoU1NTjI2NqbFYrVYKCwux2+1KmI+OjjI2NqYWRLkoLfW864W3xWJRssXtdpOfn6+UB5/Pp1w/LpeLubk5EokE8XicUCikrBkpexbKnxV3oQghKoFPAP8P8H9de/jTwN5rf/8LcJAlCnCLxYLD4SA/Px+/3680loKCApxOpxJ0Ho9n3kmSJlYqlSIWi+F2u5XATKfT9PX10dPTowIyS9XIpdmkDzxKQay3FMxms9pANpPJ4HK5KC4uRgixKvaeXIgQgkAgQHNzMzt27EDTNM6fP591K0EKx+LiYrZu3crGjRuprKzE7XYDKGEnUzFnZ2dJJpP4fD5KS0upqqri7NmzSvtZifGZzWZ8Ph/l5eUUFRVRWlpKJpNhamqKqakptchLgZ5KpbDZbOo6kC4Xp9OJxWJR12/WsxiufZf6+noqKyvxer0kEglisdiKBzBNJpO631tbW6mqqqKoqAi32008HicejzM2NqaC6JqmqeQAmUQg3ShSGVou9EFm/WLt8XgoLi7G4/HgdDrxeDzKwpYyIC8vT7mAbDYbsViMeDxOJBJZ9iypxWrgfwf834BX91iJpmnDAJqmDQshim/0RiHEV4Gv3uoA8kKSQcHCwkIqKiooKyujqqoKr9erNNy8vDylGZjNZqanp5V/KRgMUlBQQEFBASUlJUxPT+PzXTUazp8/r7S2pU6e3t+ZSqXmaTPShLZYLMo8lTeq3++fl7OsF/i5RI69oqKClpYWNm7cSH9/vxIu2c6KsdvtVFdXs2XLFlpaWvD7/dhsNubm5pidnWVqaopgMEgsFlOLodPpxOfzUVJSgsfjYXp6ekXmVVqBRUVFKvvI7/czPj5ONBpV2tdCl4rFYsHr9SrzO5PJYLPZAJTZnQsrzGKxUF1dTUlJCVarVdUqrOR+k3prurCwkIaGBoqLi3G5XCqmND4+Tl9fH+FwmLm5OWW9SqtH+sxnZmZwuVzXxZOWMraFv/Wad3FxMQ6HA5vNhtPpVAuvvE+8Xi9Op1Mt2FNTUyu2deEtBbgQ4pPAmKZpJ4QQe2/3AJqmPQ88f+2zPnJW9dFnr9dLY2Mja9asobi4eJ52kslkiEajyu81OzvL5OQkk5OTmEwmpeHk5eXhdrtVpoIMPEg/2Z2iD0zoAxJyYdD7jIUQOJ1O8vLyKCoqwmazEY1G1Q2uD2zkEpPJhNfrZefOnWzZsoWSkhJ6enoIhUKEQqGsjs9isVBUVMSnPvUpNm/eTElJifItxuNxhoaGOHjwID09PcpNVlFRQVFRkXJh5efnEwqFiMfjy1rkYzKZ8Hg8lJSUcP/997Nu3TrlAjl37hyDg4MMDQ0Ri8WUyaxpGjabDSGEUkSKi4uZmZmZl6onA2DZRAYQi4uL8fl8pNNpOjo66O3tJRgMrthx5X3jcrnU+ZXa9Pj4OO+88w59fX2MjIyoBVq61ZLJJF6vl5KSEpxOp5IbcjHUH+N2uNliL12LJSUlVFZWUlRUpIKWsVhMWYSpVEqlDUs3cCqVIhgMMjk5ecO01mwEMR8Afk8I8XHAAfiEEC8Ao0KIsmvadxkwtpSBSOEnzZVYLMalS5cIh8M4nU6cTieJRILp6WklvKPRKGNjYyQSCRKJBKlUCp/Pp050SUmJilbbbDYlwJdbK1uYOiT9exaLBafTSVlZGfX19axbtw6bzcb4+DgzMzNLXkiWEznvLS0t1NbW4vF4MJlMyrTPFiaTCZ/PR2VlJffddx9+v1+laM7OznLmzBlOnz7N/v37CYVC2O125feWlk5BQQE7duzA7XZz+fJl+vr65gnTO0UuxuXl5WzYsIH169dTVVVFKpXixIkTnDt3jrGxMRVM0x9PBrKEEJSXlyszW2qRcq6zjc1mo7q6msrKSvx+P8lkko6ODhUvWm4WBi9lnEumUqbTac6fP8/ly5cJBoPzqpWlYiSVDb/frzRvaQkvZVw3G6eMqdlsNlwuFz6fj0wmw+zsrIqD6f3bgUBAuXoymYySOzIut5zn+pYCXNO0/wT8p2tfai/wZ5qmfUkI8R3gy8C3r/3+1VIHI4OSMzMzhMNhMpkMk5OTytRKJpNMT08zMzOjIs+Tk5PzUozi8TgTExOEw2F1Ac7Ozqq0suXOSJHH1f+tvzjz8/MpLy+noqJCmaiJRILx8fGcu030SLeFLOSxWq0q5TGbgsVsNlNdXc26deuoqKiYJ9wmJyfp6uri3LlzDAwMkEwmcblcCCGIRCKk02nlq6yvr1c31fj4+DwL7k7Ov1ycXS4XRUVFVFdXU1FRgcViYXJyksuXL6tsJJkxsdA9JotmZNBLX/0ob/5sa+AOh4PW1lYKCwuVv1ZuuruSaZiaps3zG5tMJmZmZpiZmWFkZITp6Wnm5ubmVQLrA+3SlWKxWFQett5ltZzzKDPIpDJosVhUnUEmk5lnbUl3i8PhUAqFPNf61ONlG9sS3vtt4GdCiK8AfcDnlzIQuYLOzMyolXhiYgKTyTQvoV+mFcnAlT5IJScpFAqpGzoej6tIthRGK5FSCB/eqPpodWVlJU1NTdTW1lJYWIjP5yMWi6lMlNUixE0mE263G5/Pp4KF0gLKpgC32Wxs3ryZxx9/nEAggM1mU+l1vb29nD59mo6ODiKRiJo/aXqbzWYVvJbvtdvtdHV1zcsLv1MBLl0zpaWl1NTUUFFRwZUrV7hy5Qrnz59XSsON5kvOrwzMy+tafjfpTssmQgh8Ph8PPfQQfr8fIa4Wop09e3bFfLYSGb+SMSOHw0EwGFRtJvSLoP7+slqtlJSUKCXDbDYra1wGje/k/OoVMekNkJ9jNpuVIIYP023l+ZJBykwmo/L93W63SjeUgl9+tvyRx10KtyXANU07yNVsEzRNCwKPLOno8z+bZDKpAoLDw8Pqiy/0OesF+kLh6XA4qKuro66uDqfTycjICJcuXaKjo4Pp6Wl1YawkFotFZURs27aN1tZWysrKKCwsZG5uTlXjlZaWEg6H0TRNVWSuRM76YpDCT7orYrEYnZ2dyhLKBiaTieLiYhoaGmhqalLadSKRIBKJcOjQIa5cuUI8HleVmcXFxRQXF1NfX091dTWFhYWqUEZmKZSVlTExMbGkIKHUrGpqamhqaqKxsRG32004HGZoaGie0Fn4Pqk1btmyhb1799La2srU1BR9fX10dXUxMTGhspWyid1up6SkhCeeeAK3283IyAg9PT2MjY2plMblRn8vy9xoaXXLOACghLuUB9IKl5k/0qKV97S+iOdO76GF1rQMTMqUYbPZrKpoM5mMsvDtdrtakOR1Id0tyWSSvLw8ZXUtjJctzFy73XGvqkrMhSd3YbmpXltd+EVlQUUgEKCmpoby8nLsdjs9PT309fUxPj4+r0pruZEnxWQykZeXR1VVFY2NjVRXVytfmKzAlC4dOWabzaYuhlz0Q5ExgrKyMlwuFwAzMzMreiMvRN6kDQ0NlJeXq8yhdDpNOBxWmq5cUGR1pt/vx+/3q8wjGbi22+3k5eXh9/spLi5Wefd3cv71qWRlZWWUlpaSl5enCrfkdarXrPTfyWazUVVVRUtLC01NTTgcDmZnZwmHw0p4Z7vPjAyk1tTUkJeXB1xtRXD48OGsZMNIRUwK79nZWRUIdLlcyrdttVrn5dGXlJRQWlqKz+fDYrEQjUaVxa13ky0l02yhwihlj9So5Y904bjdbpUlIxU1j8czz9Wiz33XpzIvlGu3y6oS4PDh5OlLTvXoVy/9Y1IIVVRUUF5eTmFhIZqm0dvbq3xqK3lh6pP+pQlfVVWlyoLlhZpKpQiHw0xPT6vCBGnq68emv6GXy9y6GTIToaKiAofDoXz0sqdINpA3SF1dHYFAQBXBJJNJgsEg3d3dDA8Pq4XP6/WqfGC73Y7T6VQ3vt7/6PF4yM/Pn1cMdifzKM3okpISioqK1A0qz53T6SQWiykhohfeLpeLxsZGamtrKSsrw2KxMDs7SyQSUW6XbAtwk8lERUUFjY2NqqdMb28v7e3tKz6WhZa01J5l1a+s45DzJ+dYv2hLAS+VIWnBLPUeWagV6z9T+r9dLpdKr5VVpFK2BAIBfD4fDodjXrBS31dI33l0qSnNq06AS26UI73QvJFI7cjr9XL//fdTVVWFzWZjeHiYCxcuMDIyMi+IudzoI9ZydZbCRBYgyBW6p6eHixcv0tfXRyQSweFwAFd9v6FQaF4wRv/58nuvBGazGa/Xy9atW3G73QwPD3P48GFltWQDuYhs2bKFiooKbDYbqVSK6elpOjs7ee211xgZGUHTNOVLnpiYQNOu5tnrtSTpG5fBZJmitlBDXiwy+FhRUaHcNlLLr6qqIhgMUlNToypEZdqg3h+/b98+mpqacDqdAEQiEZWiqRfgK32uJXa7nV27drFv3z6EEHR2dnL8+HGOHTuWlR4ygOp1kkgkmJmZUa4HGZSUQUxZP1FUVKSKfeQ8ys/TZ3/B8rZllosNoCxVOXaZDy6zZAoLC1X9RyaTUfe9LFiS1oTe3bYUi3vVCnA9+tXwRjeg2WxW5bjl5eUAjI6OcuLECS5evEgwGFzRAJFeWLhcLlUS7PF4mJubUzer9HmGQiGlrTmdTpVy6Pf7lSkZjUbnndiV7OvhcDjw+/1s3rwZm83GyMgIx44dy2oLWdlXXbo7pFDr7e1laGiIaDTK3NycWvCkdSC1L5mjuzD4ZDab5+UR30lu8MLPlFkJJpOJ8vJytXDInOVUKqU6VMrAek1NDfn5+artg1yo4fpmYSstvIX4sOK2ubmZTCbDoUOHOHPmTFYqhOV9LPOnI5EIk5OTALjdbkpLSykqKlKVttXV1TidThXXkBkz+iQGuThL4blQk14qUuuWcTqv1zuvUE9f9SvL5mW/I9lqQaZmxuNx9Xpp4erHeTtjvisEuJ6FX06etPz8fFUKHIlEGBwcpKOjg6mpqWUzr26GNI9kipjspa1pGuPj46oXS19fH/39/UqzgA8zZ6Tm6HQ6SSaTWK1WlQMrc4pXQjuT6YNer5eCggLS6bQKsGWrAlPvApNBa5ltFA6HCYfD89ryzs3NEQwGVSBb+rf1GSBCCGWe63PA7/T7SG1Kas2RSESVUefn59PY2EhRUZHKjnI4HPPaxepTyNLptCrgkQVd2UwhlLGG4uJi5fo5f/48g4ODWc2EkedYFjTJ8y8bW8mqzEAgMM8HLa8D/fmVCs5KIDPkZLBUXk9S69d/H1k0mEwmlWIJqFxy2S9HLjBLcevBXSjAFyIFUGlpKc3NzbhcLoaGhujs7KS9vV1tmLCSvm99Ux6/369SnObm5ujr6+PKlSuqmZa+qlFq7Q6HQwlRh8OBpml4PB5VKi4F+Upo4LIfhfQpyw0ShoaGsiZQ9HMo0+nkzT09Pa2Kt2QsQZbTyxxij8ejbjD9jSz7T8i01DsRkvpshJmZGQYHBykoKFAl+1LLKi4uJi8vb55mPTU1pdJZpUYmF4Lx8XEmJibm5TtnIwNJuhs3b95MaWkpQgimpqaUAM9mJoycC2mhyuvb5/OpuIJ0ScpgoMlkUvOVTCZVUZ98fjkrm/UKk0xVlLnqMltLBqTj8TixWIzh4WEGBgYA8Hq9pNPpeemSsqJYr3nrf26Xu1qAy1W5sbGRLVu2sH37dmKxGGfOnOHUqVP09/evmPDW+72lf6uoqIjy8nIsFguRSIRYLMbAwACDg4Oqn4PUGgHVK8HhcFBaWkp1dbXKEZ6YmGBsbIzR0VFGRkaU6bYSN7nP58Pv96NpmroQZVe3bGG1WvF4PMq9JDMjJicnVatemcol50CmEra0tFBTU0NRUZGyfGZnZxkaGuLChQtcuHBBlTzfCTJbYnJykmPHjjExMcHg4CB+v18FqmKxGFNTUyooHY/HCQaDymcvfed2u52RkRE6Ozvp7+9Xge1sat8ul4t9+/ZRWVlJLBbj3LlzqmFUttAHMWV7hEgkwsTEBP39/dTX16ssD6fTqdJvKysrVS+ZeDxOb2+vWqQXLtRLzUKBD4W4PJfxeBxA1XTk5eVx+fJlpWiNjY0RjUZVK4+1a9eqoGxZWZnq23SjNhp3fRrh7SL9S9u3b6e2tpZUKsXp06dpb2/n8uXLK551In2hDoeDkpIS1ZtBXkhSO5DugYU9wG02m8ppra6uprW1VeWYlpWV0dvbq1KRZPrccpu4JpOJQCBAdXU1AIODg4yOjma1sZJ+MdRr4HIRlPMmb1zZ2rOpqYn6+noaGxtpaWlRPmZN0xgZGaGjo4OTJ0+qdgtL+T5SA+/t7VUVodLlJG9I2RFPLjKJRAK73Y7f72fr1q3q5pWuNOkTzeZCKZUF2c9jamqKAwcOrHjl5UL0gUFN01SMQy6AsVhM+b1lJ1KXy6VcJ7JWYXx8nOnpaWWlrkTwUmr6Mid8dnZWWazSZSutQv2iLX3m8pqWcRPpkoHrg9b3jACXrpOysjIaGhooKCggHo/T2dlJX18fwWBwRS/IhWli+fn5FBQUqCCbPLZsQQmokybNfLfbTXl5OTU1NdTX11NfX696LFgsFkKhkMp2WKnNH2TjKH3wd3JyMut9WmRhhDRTZTBXH9yU1XB2ux23201bWxvV1dVUV1dTXFysgkqzs7Mq26erq0u5MZZyY8uURtlZbmRkBLfbPa+gTJ5XeW3IcwwoV8Hs7CwjIyNMTk6q4pVsIcTVZlp1dXXqmpyenubs2bOqRiGbSAEps7TkhgeyN4oU3nLrQlmjYLFcFVvxeFy5oBbGEZbju+gXGWk9S01fjkuOSWbNRCIRVbCzMECpL0zMWi+U1YoMXO7cuZPa2loSiQTDw8N88MEHqjhiJZEauMvlUr3LfT6fCkTKFDKn06l2oJfBOkBtINza2kp9fT0NDQ2UlpaqzopXrlxRF6Zec19OIS79x7W1tSoboa+vj9HR0awKFrlojY2N0dvbq9p1ypayXq+X2tpaXC6XKqCQDa/y8/Pxer2YzWbl/gkGgxw4cIAjR47Q1dW1bFWOUnOSi5usntWjT3mV1oJszyrTHnt7e7PuOgFU1szDDz+s3BITExNcvHgxJ5WgMD8nXM6dzM6IxWKqXF7eU/K+ltaa3DVqOQX3wvFJV4eMv8zMzCjrW/YCl5q21L6lK08uPrJ1sFx8FrpQbpZhdyvuSgFusVgoLy+npaWF7du34/F46Onpobu7W6VyrfTFqA9ElpWVYbfbAZQm7na7cTgcKnNhenpatZWUQcPy8nJaW1vJz8/H6XQSj8cZHh5mcHCQrq4uTpw4oUxEecMvp1VhMplobm5WKY+hUIixsbGsls8DSgMLBoOcPXuW/Px8XC4X9fX1rF27VvUN0W96K6P6cmGbm5tjamqKK1eucOTIEd58801GRkZU9ko2v4seuciPjY2pc5htF5UkLy+Pmpoatm3bhslkYmBggMuXLyv3SS4EuJ6FqXTSR65P5cxkMoyOjqprQqa6flSV9kqMTb+JjKzI1bQP+7vo42J2u10pKDIgLzX6pc77XSfAhbjagKeqqora2lq8Xi/T09MMDQ1x5cqVZWkbuhjkxSVLomXFmDy29I3K9EBpaskcVofDMS+fVa7sPT099Pb20t3drQI7+lSp5fpe+gBsIpFgcnKSZDLJ2NiY2jkkm0gNR/bj8Hq9BAIBlVIm/d76tpz6901OTvLBBx/Q0dHB+++/z+jo6JICl0tFXxtgtVrVblFSs9QX7mQrVbOgoID8/HzMZjPhcJjBwUHV1THXwnsheoEsz7l0n+m3LNRvn7iwb9JKoP9cKQP0C4g+pVhWCsvnpGzQd57UB1t/57NQpNuisLCQ2tpaampqsFgsKnLd29ubtdxluQrPzMwwOjqqtEFZti2j5g6HQ/WB1u+4LS8+6Z+NxWJMTEzQ1dWlBHgwGFQLkr6t5nKg99OGw2EGBgaIRCIMDw8TiUSW7TiLRbonxsfHuXz5Mna7nZqaGuX7ln2j9UUvsr/M9PQ0ly5d4t133+X06dOcPHlSzWsu0PdOkQs7MC+PWP+6bGAymdQ+jjKNsbe3l76+vpxs5XYz9HMi86yl4JZCUb4mnU7jcrmIRCIkEol5HR6zsTDqffj6+0k/Xrl4L2wNslxju2sEuBR4brdb7dRTU1NDIpHg8uXL9Pb2MjY2llVTUJ6YK1euEIlEGBgY4MyZM0royKpMfbbKuXPnVBGA1WolFAqpPNKLFy8yNTWlChv0aYPL/Z2kPz4cDtPV1aW2r7p48SKTk5M584eGQiEuXLhAMBhUpn1TU5Pq0yK1r2QySSgU4ty5c5w8eZLf/va3av5y0RxKog9iut1utaer7PMhX+Pz+VRb5JUWNnp/fCKRYGRkhGg0ytGjRzl16lTWt8y7FfLalHvkFhQUqPoKv98/b/NnqSxJN9xKVizrWehSkdq/vmWDyWQiEomoa1b6v/WxsKVyVwhwqXnLwFVTUxMFBQWYTCai0ahqdJTtlCyYb8KHw2FMJhPj4+PK7Dtz5sy89LeFwQuZxSD7fsjA5UKNe6WCM/JmlhVu+g0JckEmk1G+YplKWFpaSkVFhWoxq2ma0rq7u7u5dOkSg4OD83ZGySWyr4vMHgKUJi53UpdjzMZOPHqBEYlEuHDhAtPT04RCISB7XS8Xiz4vWlq1JSUl5Ofn4/F4VHWrXPyk++RG/W6yIcj1gWtAWQLRaJT+/n7lWpXWl0xM0L/nTse56gW4PEFut5uioiJqamrUJscA4XCYYDCY9ZQsPfLkyPHKZH85dv3uK4ASzvo8WL0wXwmNeyFSgMsydZkSKXt55PKmlpbN6Ogos7Oz9Pb24vf76e/vV2makUhEZcyMj4+vaLOyxbLQ/JcuAOn+uZFmmK3xZjIZIpEIQ0NDKl1THydYLUJ8oUDU+5Tl1oqyE6BsFKUnWy6pWyFzx4PBoPKDy66Ly6kgrWoBrvclBgIB6uvr2bRpE42NjZjNZiKRCCMjI/N2rc4V+kDEwpOjF+4Lb5Rsagt65IIRjUbnjSXXQhA+XFxkRejIyAhCCI4fPz7vNfpg0GpDKhNWqxW3263SHGdmZpZt9/TFIq3E/v5+hoeHVUsCfcuC1TSH+rQ6ff9s6UbV+8AlMk6kdznmIq8dUNWlU1NT2Gw2PB6P2jkoFovNCxovdZyrWoDD/E6DZWVllJeXq3xQ2bVPNjLKteZ4K240tlyONxcX+Z0gx5mt3uR3ipxLWZQ0OTmp0iM9Ho8SnAMDA8pVlS3tV1YG32zMqw2ZtSPz7icmJnA6nbjdbjKZjBKGMoak74WTC8EtFYq5uTnC4bDKTovFYso9OT09rbLKlqtqdFECXAiRD/wPYB2gAf8HcAH4KVALXAG+oGna1JJGcwOkNpZIJJiamqK7u1tVCoZCIbq7u9WE5dr3aWAgb0hZdi21MZlBI32jN9s7MxtjW+3oc8A1TSMcDhOPx1UqqXxOdiPUC8NcfUf9mGVHShlUlZtPSIG+nN0nxWI+RAjxL8AhTdP+hxDCBriAbwKTmqZ9WwjxLFCgadpf3OJzbnvEJpMJp9NJZWWl2u9Q7tYSjUa5ePEio6OjSgM3MFgN6FuF6n260o222q3F1YI+o0OiF9TS7ScfzzX6gKqMgci+KAs7Y94mJzRN27bwwVsKcCGEDzgN1Gu6FwshLgB7NU0bFkKUAQc1TWu5xWctaYZlQAjIasDPwMDA4HbQx7b0hTxL4IYCfDEulHpgHPhnIcRG4ATwH4ESTdOGAa4J8eKljG4xpNPpeS0vDcFtYGCwGlmYJ75SLCab3AJsAf5J07TNwAzw7GIPIIT4qhDiuBDi+K1ffWtyFWE2MDAwWG0sRoAPAAOaph259v/PuSrQR6+5Trj2e+xGb9Y07XlN07bdSP03MDAwMLhzbulC0TRtRAjRL4Ro0TTtAvAIcO7az5eBb1/7/atFHG+Cqxr8xJ0P+XeSIow5WYgxJ9djzMn13CtzUnOjBxebhbKJq2mENuAy8L9zVXv/GVAN9AGf1zRtchGfddzQxudjzMn1GHNyPcacXM+9PieLygPXNO0UcKNJemRZR2NgYGBgsGiWpyWWgYGBgUHWyYUAfz4Hx1ztGHNyPcacXI8xJ9dzT8/JonzgBgYGBgarD8OFYmBgYHCXkjUBLoTYJ4S4IITovtY75Z5ECHFFCHFGCHFKFjcJIQqFEG8IIbqu/S7I9ThXGiHED4QQY0KIDt1jN50HIcR/unbtXBBCPJGbUa8sN5mT/yKEGLx2vZwSQnxc99y9MCdVQogDQojzQoizQoj/eO3xe/paUSzsn7sSP4AZuMTVsnwbV3urtGXj2Kvth6udG4sWPPb/As9e+/tZ4K9zPc4szMMerhaEddxqHoC2a9eMHai7di2Zc/0dsjQn/wX4sxu89l6ZkzJgy7W/vcDFa9/9nr5W5E+2NPAdQLemaZc1TUsAPwE+naVj3w18GviXa3//C/CZ3A0lO2ia9jawsG7gZvPwaeAnmqbNaZrWA3Rz9Zr6neImc3Iz7pU5GdY0rf3a3xHgPFDBPX6tSLIlwCuAft3/A9ceuxfRgNeFECeEEF+99ti8xmDAijcGW6XcbB7u9evn60KID665WKSr4J6bEyFELbAZOIJxrQDZE+A32uvsXk1/eUDTtC3Ak8D/KYTYk+sB3QXcy9fPPwENwCZgGPjba4/fU3MihPAALwLPaJo2/VEvvcFjv7Pzki0BPgBU6f6vBIaydOxVhaZpQ9d+jwG/5Kp5t6jGYPcAN5uHe/b60TRtVNO0tKZpGeB7fOgOuGfmRAhh5arw/rGmab+49rBxrZA9AX4MaBJC1F3b0ecPgZeydOxVgxDCLYTwyr+Bx4EOrs7Fl6+9bLGNwX4Xudk8vAT8oRDCLoSoA5qAozkYX9aRQuoan+Xq9QL3yJyIq7shfB84r2nac7qnjGsFspOFci06/HGuRpAvAd/KdfQ2Fz9czcI5fe3nrJwHwA/sB7qu/S7M9VizMBf/H1ddAkmuak1f+ah5AL517dq5ADyZ6/FncU5+BJwBPuCqcCq7x+ZkN1ddIB8Ap679fPxev1bkj1GJaWBgYHCXYlRiGhgYGNylGALcwMDA4C7FEOAGBgYGdymGADcwMDC4SzEEuIGBgcFdiiHADQwMDO5SDAFuYGBgcJdiCHADAwODu5T/H1Hb9AMIOpsjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1280,32 +1255,36 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvUmMZOt1JvbdmOc5IiMys7Ky5vER\nFNlkg6QgtdSyZRsGtBPc3rSNBrhx71s7A15pa8CAYS4a7l7Y3Q0IQvdCkGU0RYkU2xDHR76qeq+G\nnDNjnufxepH1nTpx60ZkZFYVmcXOAyQyM4b73/v/5z//Od+ZDNM0cUVXdEVXRHL8um/giq7oii4X\nXQmFK7qiK5qjK6FwRVd0RXN0JRSu6IquaI6uhMIVXdEVzdGVULiiK7qiOfpgQsEwjP/KMIwvDMN4\naRjGn3yoca7oiq7o/ZLxIeIUDMNwAngO4L8AcATgRwD+iWmaT9/7YFd0RVf0XulDaQpfB/DSNM0d\n0zRHAP4NgD/6QGNd0RVd0Xsk1we67gaAQ/X/EYB/uOjDhmFchVVe0RV9eKqYppk+60MfSiicSYZh\nfBvAt39d41/RFf1nSPurfOhDCYVjANfU/5uvXxMyTfM7AL4DvNEUDMOQHyvWYffaIjJNUz5vGMbc\ne7PZTK7H37PZTP63+4712vr7Z93HFV3RKrSMv628qT931vcuwoMfSij8CMAdwzBu4FQY/HcA/vuz\nvsSH15tUCwqn0wmv1ysP6na7YZomXC4XZrMZZrMZJpMJptMpRqMRTNOUz+prAnhrYklOp1O+x0m1\nEzK8HwqV6XT6LvO1dD4AwOFwYDabXVjQ8FoOhwMOxymUZJqmXJf/k/jcFxnvrPnUY+k5/tB00U3y\nqx5L89iiA05fX88x6V2e84MIBdM0J4Zh/HMA/w8AJ4B/aZrmk1W/ryfF4XDIb4/HIwLC4XDA7XbD\n4/HA7/djOp3C5XJhNBphNBphMBjANE20221Mp9O3Tna7k54bnKT/1szMz2lm5z1Np9MztY1VSV+H\nf3NDn0cIWQWsaZpzGpPD4YDL5ZJnnkwmts+wCqPxetb5sgoZ6+9fBV3GsaxCUa+R9UCz8gN/W3lB\nX+MiwumDYQqmaf4FgL+44Hfh8XjmXtMP6ff7EQ6H4fV64fF45Kff78PtdiMYDKLT6WA4HOL4+Bjt\ndhuDweCtTc4Jdjqd8pr1FOXYHo8HLpcLDocDXq8XLpdL7nE6naLVamE8HsM0TQwGg6Wb1noSOBwO\n0YKCwSCuX7+OaDSKSCSCcDiMyWSCyWQCp9OJk5MTVKtVHB8fo9VqYTQaLRxHb04yCu87HA5jY2MD\n8Xgc0WgUgUAA/X4f7XYbk8kEo9EI9Xod9Xod+XxehN0y8nq9c4KLz+Tz+RAOh9Hr9dDtdkWbA4DJ\nZCKaFl87j/agmd76jPF4HD6fD8FgEJPJBJ1OB6PRCL1eD71eT7RLzReL5lGPpQWp1+uF1+tFMplE\nMBiEx+PBYDBAu91Gp9NBq9Wa4z3rWNZ79/v98Pv9CIVCCAaDiMfjyGQyWF9fRzqdFl5rNBooFouo\n1+vodrvodrsYDofodrsYDAYYj8cX1l5/bUDjIuImIVM4nU44HA74fD54PB74fD7EYjGk02k4nU64\n3W5MJhM4HA5EIhGMRiP4/X7MZjP4/X4Mh0MAp4vBv4G3NQVeixoIF4uLFA6H4fP5MJ1OEQgE4PF4\nMB6PMR6PMRgM4HK5RBBppreS9dSmoAkGg4hEIshkMnj8+DE2NjaQzWbhdDoxHo+xu7uLZrMpz+hy\nuRAMBmGaJsbj8cK55FgUZsFgEGtra8hms7h79y5yuRzS6TQGgwEGgwHq9TqazSbq9TqcTiecTidq\ntRr6/f7SU4eaXDgcRigUQjQahc/nE+Hm8/kwHA7RbrfRbrfRarXQbDbRarXQ7/cxHA5Fg1nldFtk\nXrrdbvh8PgQCAXzta19DOp1GKBRCvV7Hq1evkM/nMRwO4Xa7MR6P4XQ6l64Xx+DBQWHAcYLBIEKh\nEB49eoRoNIpQKIRyuYxXr17h4OBg7v74fS0YrGZAOp1GOp3G1tYW7t69i/X1daytrSGVSiEajcI0\nTfT7fZTLZRwcHODg4ACff/45arUa6vW6zN94PH5rrFXp0gkFfdKQKBi8Xi/8fr9Mvt/vR7fbRTgc\nxnQ6xWQygcfjEQbt9/tyUvV6PVvpqbUAp9MpGz4QCIhGkEwmEYlE4Pf7EQwG4XA4EAgEYBgGarUa\narUaisUidnZ2RECR2RaRNkOcTiem06loGrFYDH6/H4lEAg6HA61WCz6fD41GA91uF41GQ0wiMrfd\nPFr/d7vdiMViuH37Nh49eoQbN27I/DqdTsRiMYTDYWE6r9cLt9uNL7744i3txnptn8+Hzc1NRKNR\nbG9vIxaLIR6Pw+/3y9x2u100m02YpolarYb9/X0RajRZ9Nzw71X4hc9ALYH38+Uvfxmz2Qy7u7so\nlUqoVqtwu91zhwXNvmXX1xqIz+eDz+cTwRwKhRAKhXD37l0Eg0EEg0EUi0URJBors+MDktvtRjQa\nRSwWw9bWFh4+fIhUKoVEIgGXy4XJZIJ+v49OpwO/34/t7W0AEL5ut9twOBzCR5fOfLgoaVWeD8PT\n2+v1IhqNyqna7XYxGo0wHA4xm83g8/lEfacK1ev1ZANZNwo1EjK/1+tFOBwWBshkMvD7/djY2EAk\nEsF4PEYgEEAgEEAmk8F0OkWn00Gj0YDf78fJyQmGwyF6vd5CTEGf3mRInpBUozudjgg2p9MpauHx\n8TGOjo7QbDYxm80wGo1sBY9VpQZOGS6dTuPevXv45JNP8PDhQwQCAXz22WdwuVyoVCpwuVzY3NxE\nJBKBy+VCt9udYzB9/3osnsxUda9fvy7aApm51+vJXHs8Hni9XozHYzFZBoPB3BotY2Q7AUXB4HK5\nxFyJx+Oi/YVCIbjdbuENzpsVR1o0lpUfKShM08RoNMJ0OkUoFEI6ncZ4PEYwGJwzT5ZtUC00KJzX\n1tZkzFqthkqlgkKhgHw+LxoFtbG1tTUcHR2JhvCu2MmlEwqGYby1ifl3IBBAKBRCPB5HIBBAo9FA\np9PBdDqdMzN46vJHn8pWMk0Tk8lETlKOGQgE4HA4EI/HEYvFAAChUAixWExsVKrv7XZ77pTt9/tn\n2nOaSWivO51O+Hw+jEYjOBwOtNtteDwedDod5PN5NBoNUb2n06kw5llE8+TmzZv47d/+bTx48AAe\njwfVahXPnz9HpVLBeDyG2+1Gt9vFxsYGotEoHj9+jJ/85Cei+nMttMBxuVyyXn6/H/F4XNRWl8uF\nVqsl2MRwOEQoFEIikUAoFEKj0RAhwROO97vM02L1HHEOtY1PLc/n86HT6aDZbKJcLqPf74tQoFmw\nbBPpExeAeLaIY81mMzEfuUkJ1pL/rG5w6/1r4rqWy2UMh0OUSiWUy2UUi0Xs7++j2+0iEong+vXr\nuHHjBoLBoOwNh8MhGM27eD8unVCwTpjepLFYDLdu3RLwrVaroVqtwjRNhMNhRCIROTG0FF/EYHxt\nNBrJidxsNuH1egEAmUxGJHUwGES/35cTOhQKyWbmIlAQUECdZc9pZtPelEAggMlkgsFggE6ng1qt\nhna7PScE+XOWSgqcagmZTAbf/OY38ejRI6RSKZTLZTx58gQ/+MEPRDMJhUIy15ubmxiNRrh///4c\nxmJ1e/F0I7jWbDYxnU6RTCYFEDs5ORHz7fr164hEIohGozJPXKOLeGwWneCcm2aziWKxiN3dXRGo\nes4WzaH1GQGIIBmPx3LPAET4aB7q9/vodrtneqL04TCZTNBqtXB4eIjpdIpEIoHBYIB+vy/3PxwO\n4fV6MRgM0Ov14PV6he/ohreu03npUgkFO/DI5XIhEAggnU5je3sb4XAY0WgUjUYDtVoNg8EAwWBQ\n7DyCjO12G+PxWCbNip5b1cLhcCgaBu3bUqmEbreLTCaDwWCAeDwOAKJRcOFPTk5wfHyMfr8vJ8Sq\npEGmSCSC7e1tpFIpeY58Po9Op4NyuSynrTYZzlJ9ed2vf/3rePDgAdbX11Eul/Hs2TP8/d//PfL5\nPGazmeAqw+EQgUAAfr8fkUgE9Xod8Xgc9Xr9reeyukhrtRpGoxGi0ShGoxHG4zHK5TJarRYAyNzG\n43FEIhEYhoFGo/GW4NYeoLPmTrtYuTm41hTk1BL4DNptvMqJyutrtyoBR94rza7RaIRarSb8oE2H\nRWtEms1mIrSGwyFGo5GYV9Qeo9Go7IVsNguPx4NWq4VOpyOC96JYAulSCQVgXjsgmhyNRpHNZpFK\npZBMJtHv93F0dIThcDgHFBIk7Ha7smBWRiFppuApxZOA6li/30csFsNwOEQ4HJ67z9FohG63i8PD\nQ+TzedRqNTQaDdmw540j8Hg82NzcxI0bN3Dnzh3U63VZ6JOTExQKBXEXrmqjEhBdX1/H48eP5fQ/\nPDzEX/3VX+Gzzz4TYJRzQiR+Op3C6/UilUrBNE8DxOyEnQZKy+WyCAPtEYhGo4KzJJNJ0YR4omoV\n+7ykNxxNQI/Hg2QyiUQigdlsJrY4hYIO1lpVKOhxKPiplQaDQWxsbMDtdmNvbw/Pnj3DycnJuccy\nTVOwF5oCoVBIzFiv14t0Oo1PPvkEqVQKPp8PzWZTPDrk8VXduYvoUgkFLYXJVAT/MpkM4vG4AGDt\ndltASZfLhVAohEgkIqoVBQrtTeBtd5BWtTih2h1Ke5d4AYA5/KLb7SKfz+Pw8BDdbhedTgcAlnod\n7MjtdiMQCGBrawtf+tKX5D4LhQKKxSIajYbgFNqvftbiu91uhMNhfOUrX8G9e/fg8XjQbrfxs5/9\nDLu7u8LYmhh7QdWXrjeNpOt50z8MGKNQSKfT4koOBAKYTqfi2q1UKqjX6+j3+289g1bZVyHNMw6H\nA7lcDg8fPkQwGMTu7q6As3R78jv696rj8PPEUcLhMK5fv454PI5Wq4Vnz57h5cuX6HQ6CyNFrdfU\npPEwmnThcBi5XA4bGxtYX19HMBgUE7nf78Pn84kw14fcb4ymQKCF7sd79+7h9u3buHHjBsLhMAqF\nAhqNBuLxOD755BP4fD5EIhGJWxiNRkgkEjK5jNQD7FVtK/ij1eHhcIjhcIh+vy/BJE6nE+VyGYVC\nAS9fvpQTqNPpiNmx6mLwJA0Gg9jc3EQ8HsdkMkG1WhXtgPdN82aVUGeeStvb23j8+DH+8A//ENls\nFtPpFD/60Y/w8uVL0SKIlgOnwUdOpxOtVguVSgXr6+soFApzJ791Dvk/555Cy+l0SsyCBiHX1tbQ\n6XTwy1/+EsfHxxJzwWtRICxzE9rNI7WEQCCAx48f41vf+hYODw/x05/+FM+ePUO1Wn0vyDzHo3vy\n5s2b+J3f+R2Uy2X8/Oc/x5/92Z/h+Ph4zsVKOsujonEpar4MMrtx4wai0agA0HSJEnzPZDKoVCoS\nT8Jr/kbEKQAQ5DqRSCCZTCIUCsHr9WI2m8Hr9UqMgsvlEtRXxypo04Auy0VIPSUu8Aao4kSORiM0\nGg04nU7E43EMBgN4vV602+25KLJFkZKrMKDT6YTH40EwGESr1cKLFy+Qz+dRqVTg8/mQy+XQarVQ\nLBbFbWeHvtuRw+FANptFNBqdC9bx+/1wu91wu92Ix+PyHF6vF5FIRFyGg8FgDrFf9jw6Yo8uyFqt\nJl6VWCwGn8+HeDwuXhViFzzpdRzJeYSCJpfLJWtQLpfRbrff6dS0I+IJ1GC3t7dRq9VwcHCAwWAg\nn1vkbVhk8vGQIN92u12JSzg4OBDX+Ww2Qy6XQyAQkPuhpkwTSbtcz/vsl1Io0GyIRCIIBoNIJpOy\nWcfjsahLBOTC4bCcdvV6HQAwHA5FhbObGDIOQ3FpFlhNiMlkgkajAZ/PJ1gDI8eoHfBkczqdc4DU\nWc/I7zAgBgCOj4/x5MkTeDwe3L17F16vV1yw9DzY+c7tiG45qpb8vMvlmhOqPGGTySSuXbuGdDqN\nSCSCXq+HUqmEdru9kotQA3dE4RlZmkgkYJqm4D8M+IlEIjBNE51OR+bkPOaDPhUZTOT1ekWQkW8u\n4tmwG4s84/P5kM1mce/ePYRCITx79kyARSuAedbYGlRnbAo9Oq1WS9zSDGlOpVJotVrY2NhAMBiE\n3+9HNptFuVxGtVoVDfeiOM2lFAqUxFSnaFM7nU70+32J96/X6xLkw2gvqt/VahWtVgvdblfUbr04\nWjuwuhfpYqJkDoVCoqoRcKtUKpKTQHWZmsYie1Xb7zp2Ph6PIxwOi0bw4sUL3Lp1S4JxIpHIXAyF\npmUngc4pmE6naDabcj3eQ7FYRDgcRiwWw6NHj4TJh8MhqtUqisWiPOOy8bRdz3kkeq6jQJlXwbB0\nugl19qaOWViF6M6liRIMBgXj0YFKdrRMq7NubAoEv9+PZDKJ+/fv48GDB3C73cjn8yiVSnNCgdfV\ngguwB6F1iDZD66n+0/tQLBbR6XTQ6XQwHo/Rbrdx/fp1idBkvke/30er1bqwhnTphAIFATf/dDqV\nyMXxeCyumtFohEwmg3T6tJCMaZqo1+s4OjpCPp9HuVwWF9kyW5zMRAyDdjGj9BhByYCY0WgkEXhc\n8GXx7NZnAyCYidfrRSwWE49KvV7HwcGBgExEmMvlsgSn2F1z0cI3Gg2USiU0m01xcQIQrwLzGxKJ\nBB48eIAvf/nLSCaTGI/HaDabODg4wMnJyZzpsKoGBGBOYDJX5PDwEIPBAMPhUDxEPCWpcWlAcJWx\neHInEgmJBDw5OZEkNWIWVgGgN+sq9j6fIxwO4+7du3j48CG8Xi9KpRIODg7EnqcJo4FGapHLxvB6\nvchkMgiHw3MaAzd5r9eTiFlGm3o8HtH+EokEKpWKCJTfGKEAnE7QYDBArVbD0dGRnOJer1fsrMlk\nIuAZ7XsuTrlcFrR5NBrNMSpJ4w7pdBqxWExstHa7DZfLhXQ6jUQigclkItGKzWYT1Wr1retrG26R\nPUzGpz2dzWYRCAQkYrDVamE4HCKTyeDhw4e4ffs2xuMxPv/8c/T7fbn+WWYDmb3ZbKJSqQiwOBwO\nxZNAEyyXy+HatWt4+PAh1tfXEQ6HZQ6Pjo5QqVQkKGYZk1k9EfoeqcXl83kxLRwOB3q9HgaDAQKB\nwFzK9rINpO9BhzZTS2ASHDMhmZWp5+UipE3NWCyGXC6HaDSKTqeD/f191Go1cZFTc9Fhzvz+ouei\n5hiPx5FKpSQj0jRNiTgdjUYSTp5Op5HNZsWdTWxGR7qeJYgW0aUUCqZpSuouw5apatLlZZomfD6f\nmAftdhv5fF5AM+Y+WN1nJC4efecbGxuCkvf7ffj9fsRisbkci1KphMPDQxSLRRmH98NrLkN8uVB0\nFcZiMcRiMaRSKclvmE6nePz4MR48eIBYLIZ8Po9msyk+b+spt0iVB4DBYIDnz5+LQFtfX5fYCzIT\ncxUIXA2HQ+Tzebx69Qp7e3uSwHTWevE3mZJMzo00Go0ETCVWQ5CYbkmGTJ+Vtcjn53eYYkzNCjjV\nABuNhsRHEC+yS4hb5TTlWKFQCBsbG7h+/bq4x6vVKhqNhqjwvB4PDZ3PY/dcvD+aWNFoFIlEQty4\nTC4j/6+trUlkKEHhTqcj7xPsXMVTZUeXSihohudm40nV7/cRDocxHA5F3Weo53A4RKVSkSxCjSNQ\nGNip3jQT3G431tfXxVTgqajVv52dHXz++ediljCykKq+BvMWCQVqCrQZg8Eg1tfXkUqlJBLQNE38\n/u//PgCg0+ngBz/4AZ48eSKBS3oDLjv5aIY1m008efJkLvJOxwvwVBoMBjg8PEShUMDTp0/x7Nkz\nqQWwislg9cXrjEVmqno8nrkcCppufr9fTA2e6quccBQ+9KJEIhHZKIwj0Qlzi2hV00Gnn1NLoQZH\nITccDudOaJ3HsUjDIwBLDS4SiSAUCiGbzQqGRYFCTY+aiGmaqFarODw8lBoOZ/HhWXSphIJmcp4m\nLIpBacv6An6/X1yDTByhQLADxhadPLPZDJFIBIPBANevX0csFkMoFBLsoF6vo1ar4ac//SkODg4k\n4kxHFjIq8Cy7m8/HhJpgMIh0Oo21tTUApwlXBDP39vbw9OlT/N3f/R0qlYoEE2k6a7MyWadareLV\nq1cSSxAMBuUECgQCknDDXJK9vT2p38Aoz1WeC5gPUaZgZ4EYCglqef1+H7VaTQrj6DDxZdoWf2vP\nCT04TEriBmEuhg6D1vO3bA6154J4ArMtqQVQK+UJzWuy0A7/X4Zr8TOz2QylUgnhcBhra2vi9qT2\nwD1QLBYlnJq1G4rFouwBBtFdREsA8GGawZz7Jl4XbiVDWTEAehh4qrO2ATUA2qa9Xk8ASTKVNQrQ\nmrHmcDjwe7/3e7h37x5yuRwMw0A0GsVgMMDnn3+OJ0+eoFQq4fj4+C3tQ93/nBtzWURZKBQSVdTn\n84lbjtl1hmFIhOS7hABzfL2JyNhUgwlk0WwYj8dS9EQHYq0CMpJh9Vh+vx+BQEDU3XQ6jUwmg1Kp\nJHUoarWamEcUQmcBjTrxiaZYLpfDrVu3kEql4PF4cHR0hO9+97uSOn/hU/O1Fww4jfaMRqNYX19H\nPB4XrxU9RoPB4K08jlUwIH6OKevkJ2pR9EoQq6KrcjabzWV9ah5fIIB+YprmPzjrmS+lUADeBKGQ\nqCYyPZpMqE9rCgQrjqAZwuolAIDt7W1sbm6K7/no6AimaWJ/f19UaJbUWnZa0uQ4y81lVfutLix9\nn+97faxuWf5ooWanVa3C1FaNgad4IBBAIpGQSFMm8FCQE0fghlolaEnzCoVdIBAQ1Z3xJatsyFXH\n0t4OhtATZKYgu8hYWoBr4arfXxSev4gWvPdxCwWeBlp91TkR2ieuJ41BSLSptY+ar/FvAOLViMfj\ncm2qsMQNyKiL5sqqMn9sZBVSnFO+fp5AIqt2ojcRtTvGdwCYU7G1SXbRsbRwPm8Oyqpj6ddJF9VE\nFo11ke9psmoqr+njFgpWQUAftn5IZueRqTSDEAW3MpkVa9Dj6JLt+j09hvX+rKS/dxnm9iKk7/+8\nTGrVRKwAL1VgLUj1Gr3LnFkxqQ9JF928H+Ka1vUiXdR8uFRAo520vWhF2rO+a2VCXU14FbqA6vbR\nkNWT8C7fXXSCvsu6rjL2h6YPMdZFr/ku62VHH6wV/RVd0RV9nHSpNIVfJWlVbZHKZTUx7N6zu+bH\nbj6sStZ5OytiUCPxq5hf/N/uGlf04eijEQo6iIRExJy9H3SRifNEc2nhoMEqjS/o+yDj2sUmXFQg\n2AmpZV6J8xDvkwE4dHUFAoE5b4OOqmRC07Jn0fe7DISzzp+uocmALmvS2iLBYSck3sdn3oU0LmXF\nnt7HOHb3T0yGWNsyU+28dOmFgt6grAHA8NlgMCg5+PRUEHWme0sXs9RkBxrqTQ68cXdamX8RKm89\nCc/DEFZGWvT983o6eL8ej0f6PrA3AStju1wuKbza6/WkSQtDxZe5Y63C7CyhaH0uXfGKAp9FXVZx\ngy4bi7TqvZyHtOAG3u7RCcyHGZ93w+rDx8p3iwQwP/OuXrBLKxR0gIouu8aAm3A4LBFy9FHrcGN2\nOjIMY2ELLU4m05J5egYCAanlEIvFJMOPMfy9Xk9qKTB4qlKpoFarzQWRnJe4qCxCy/BgZhoGg0E5\nvYvF4lyhTjti6Kzb7ZYQWkZRZjIZbG1tIZvNSmXsRqOBw8NDyQRkkRIK12WCQTOkdR2pVTFtm1Ws\nWMmKORHNZnOua5Rd9SKOtwrjWzcSeQd4A4KuEhJstwn5PCwAlE6nJdOWtTwMw0CpVJJQ/FUC0XRM\nBIUCo0F1Zi2Dp3T5wZ2dHam5wOzgi9ClFQqcFC0YrH5vhrcytZmbhG3IgDdx+NaFty40Y9pzuZxU\nK2KFJyaoAEC1WkW328VsNpP8dhZsZUgtx131Ofl87EmYy+Ukvl4XSgmFQhIoE41GcXx8jFKptLBD\nFDcOeyKEQiERoCyNRuHLxjKGYaDX64nWwI1jp8Lq16hlLQr0Ybgu259RY+H9+f1+0WZo/i2LDdGb\nXddh0LyiqzAxKlZ/j9WNzhLk1hObzxQMBpHJZIRvKBTK5bIU4dHfMU1zqRC3PpMei0WHWFAllUpJ\nXQzm/jCojyYZcDEvz6UUCovsUebfk4FY/EQnh7ArFGPuF6Ux64X2eDyIRCKSd8DrsrAK6zUOBgMp\n4trtduH1eqUIibXDkbXGwqLnJPP6fD4kk0msr69L7UnWTGSlXm6WarU6V1bN7kSlUNBZi8zzYHam\n3+9HsVjEyckJAEh0IetZ6DyEZZGaVlVXd2qidsL4/Uwmg42NDdH0OBYrDfV6PQCQtn+LeIO8oGsZ\nas2IQpTFd5n3wUazjKikabTqenFMFt/h+jkcDinuy6I/mg+1ibXswLAKU/JBJBKRcv3k/bW1NSmt\nbw2Lfxd84VIKBeBtu4yRisQUKBj4GZoWlP46OQVYbIfxb14jkUiICm+aptQZrNVq8Hq9qNfr0kfS\nNE3RJLrd7kpJUdZ7YDhwLBbDxsYGHj16hFwuh0ajgWq1CsMwJKOx0+nIXDDpRRem1dfls/Pz3NRU\nP5mA9Pz5c3lG3j+b4fAEXRZybcVhtJpO7SeRSCCXy0lPROaxBAIBwSyo0QGn5lyv13tLoFvxJZ/P\nJ1W+4/E4EomEgKh8bq4RtaRut4ter4cvvvgChUIBtVrNVgs6a92ohbBLFGtoMuGLB4WOij3rmpxj\njSnpZ/V6vXA4HGg2m5L+zr6VrOX4LmYD6dIJBTsUnuovmZppuEwOYcw7C5Pq71nVKZJ14ln8BICY\nIAQsDeO0lDZVUDJ2IBCQDE6eSLpw56Ln0sRcjkwmgy996UvY2tpCPp/Hzs6OqJ+RSAS3bt2CaZrS\ndYnp5ItUbKvrj3O3vr6ObDaLRCIhjXGbzaakHzMcmc9JbWuZpmAHkvJEjcViyGQy0riE9jULyrAi\nFNu2U5jYrRnvg4KU2YSZTAa3b99GMpmUNOzpdIpCoYDBYAC/3y8p4r1eD8fHx0gmk2g2m8JHq4CV\nmi+Ju7BaV71el2I8AMRc0F4xrUna8YaeXx5SDodDQGHgtAAQgLnmRR6PR6qR6dZ7FwUbL51QWObO\noY1NVZG5DQQYdZIUP88EmWW9ljMSAAAgAElEQVSaAsuM93o9tFothEKhOWyCwBeltt/vnzNjeE9k\nhLOeSxMblzx+/Bg3b95EJBLBn//5n0tpdbbCY7o4G6h0Op0ze1ZaTSSWr8tms/B6vVIcZDKZSMlw\n3aBVd+rmfFkTc+wKv+j5p7lCwX1wcIBYLAbTPHUl0zSjQNfl86xrpsfRpexu3LiBXC6HZDIpmkC5\nXMYvf/lLmKYp5hLBTbZb067rVTwRGvhjmjsPlEajIfxBs0gLm2UapN17/JvClaYczR2aWePxWDTj\nRet0Xrp0QsFucaz2KrtGlctl+Hw+pNNpuFwuFAoFQed5LTvmshI/Q2bjwjJvncxP6W11c7IyciwW\nmwMbz3pOfuf27dv45JNPkEgkkM/nsbu7O6eKhsNh0ZBYaowqt10lIevftIFTqRRSqZRgItyArENA\nnIE1KlgHkKCfdSyrC866XlYbv9lsiuaVSCQQDAal8nC9Xkej0ZA0YOvpbfUk0PxIpVLI5XLweDxS\njq9YLGJnZweVSkUKr/AZWfCU5dpWwRKsz0YQkBprpVKRFHQCxCyhZic0Vx2HP6y/QTwkGo3i/v37\n2NzcRK/Xw9OnT6VsAL9z3ufSdOmEgpaaWp3iJiLIwveY485Nq5umkCgcrKRBQZ6QbHPfbDbnsi3p\nOuOEaxCOrjaqvqucOtw0bAMWi8XQ6XTw5MkT8dN7PB4kEgncvHkTiUQCR0dHUsDTau8vejZuJpbC\n56nd6XRQKpUQDAYRDofFrHA6neh0OqI58STnPNitFcfQjExhQJNMe02y2az05Tw5OcHBwYEUCGEt\nQqv7TjM755jPwnJkhUIBe3t72NnZQblcBgAZb21tDZPJRHpqcNMSBFx1AxG0pTeF6jorPIdCobnm\nQNZkr1W0EeBNTQTdxo8H3rVr13Dt2jVEo1HpY6qLyfA+f2OEAvB2EBB/yNSJREJOuXA4jGAwKA1l\nucCclFVchARycrkcUqmUtGX3+/0AAJ/PJ14NmigaZZ9Op9je3sZnn3221ITQtiNVUC5uKBTC8+fP\nUSwWBTSNRqPI5XKIx+MCLvI0XRRQpIWpvk+e2ixEyw7GkUgEmUxGnp3zzIAmtpOn23IR2XkkCI7x\ntGPzl7W1NamvyW5bNIuoAS1LezZNU6oS0UvBEuiFQkGqVPn9fuRyOTx69AgbGxvS5m93dxfFYlEC\ntM67eWiGsHoy7f1kMilrwsNJz81FomzpjqS2x87r2WwWw+EQe3t7UnFbHxKLYjxWoUspFEjav0zb\n8c6dO4JOf+Mb35DCrgSuCMzQFqa0XWSf0u5Np9O4du0aQqGQlLniqcWSZhowop8/Go0ilUrB6XQK\nrrFIU9AgXDQaxZ07d/DgwQMEg0G8fPkS9Xodm5ub2NzcFO0jnU7DNE08efIEBwcHEiexrLyX1oA4\n1ubmJm7evAngtMpzrVZDKBTC7/7u7yIYDMLtdgM4ZVy/3y/A3RdffCHl4KghLRqPJzljSFhlyuE4\n7VQVDoelTd3z58/x6aef4vnz52i1WnNYwiINiM/rdJ62fG+32ygUClJ2jY1SMpkMhsMhHj16hG99\n61vIZDLodDr48Y9/jKdPn8p3NI+syo80XSlcNzc3ce3aNVlz4jR2HafPs0mpGfPQc7vdyOVyiMVi\nePDgAY6OjvCDH/wAP/nJT4Q3LzqWld5JKBiGsQegDWAKYGKa5j8wDCMB4N8C2AawB+CPTdOsX+Da\ncz78SCSCzc1NpNNpjEYjaUHm8/nE9nc6T9uTscgpgTJeZ5Gtz82XSCTQbrelOOtgMBAgjl4F5g+w\nZh4LsDJqcJH3QT8XowvZG5C2ORvkckHX19fhdrulQSpPNh2FZ2en8nUCs0SvWcKe95pIJKQxKu1s\ndm5iYxGegrp4jR3DUUOiJ4brxpqJ9G4AkP4cenNqQaa7f9tpIPxss9kUNzFjIvj8sVgMX/3qV6UN\nwO7uLp48eYJyuWwbYbhq/AC1SuBNB65oNCpYU7fbnXPLWitJLRvHqknS9c7I2ng8jq2tLQQCAelt\nokvX6YKx5IGLCIf3oSn8nmmaFfX/nwD4j6Zp/qlhGH/y+v9/cd6LWgWCDo8lhpDJZKSZ52QykWrB\nfr9f7GJOMG1aTZywUCiEGzduSDdkRvTx9OH16T4kwGStKHSWHac1HwYeMRpNh2hfu3ZNqkGxzTjD\ntjWgdBaDEfwKhULSb5NgG/3cHHcwGKDf74tXhyHdeiPQHWYl3dSF88PoO6q/2iTodDool8tzQKYW\ncGeddjyB2b6PeA/rGFKgsT08a22+evVKqoMzhmDZOPpedEAR4yyIx9ANGQgEcHh4KDgTr23ncrQb\nR4PpDGv2+/3SvfvatWvY3NxEt9uVsHSaysCbTti838tkPvwRgH/0+u9/BeB7OKdQ4OSQGRkjz+AN\nus9KpRJGoxGazaacilxwTYtOcC4A7elYLIZisThXqZcmBPAmR4L5Fgyv5qLTll2FydhrkQ1B6Vqi\ne/STTz6B1+vFixcvpJ06S8tbE7XsiExMDITI9WQykbDcbreLk5MTGXc2m8HtdiOZTMoJpOdhmQCa\nzWYSq8HfDLqixuDxeNBqteSU0ziQ3jRk6EWeKGqBs9lMmtWGw2G591AoJH1Gi8Uifv7zn+P73/8+\nTk5OZK51qb5lm9Xq+aJmxzgJh8OBarWKRCKBXq8n+IYOWNKA7Fnh1Lw+cSBGtTL83jRPm8Ps7e2J\nGWn10nAOf125DyaAvzJOy6n9H6ZpfgfAmmma+dfvFwCsnfuiiiGYpMSS7qzWO5lMpMtvrVaTaC7a\nplpS2tX912o3VeRYLIZsNovj4+O5BabG4ff7BQDMZDLiJjQMA7u7uxKOvIw0FtDpdHByciIBMEw+\nWltbk4CUWq0214Fo1Xb32janGsoNxWhN3YiUp2smkxHXZ6PRQKVSkVDkZQzNE5pgMOM2+DOZTKRX\nZqVSEbNBr4cGmM8iCmryAs1DmkCbm5solUr40Y9+hB/+8Ic4OjqSnBUtVFdxF2rPFw8YalZOp1PU\neCbHWRv66jU5iyh8eADSTc7O4fV6Hb/4xS/m3O+8d5pwZwmfs+hdhcJvm6Z5bBhGBsD/axjG5/pN\n0zTN1wLjLTIM49sAvr3owrTFWECVwUTcrNVqVUwHlrvWCS4MPNLgoOXe5k7tUCgEn88nHZs4jmEY\nwmhk+O3tbYTDYaRSKQQCAWlv12w2AZztDprNZpKWrN1wrVZrrh1etVoVdx2FnZXRrKepfk7OR7fb\nRaVSwcnJCTY2NgBAMu7i8Th6vZ4AaGzOWq/Xsb+/j+PjY1FTOW9WIpagey9Eo1Ex+5jJBwAHBwfY\n39+XpiX6nnW8CAWJ3VgUbnpDdzod8WwkEgmEQiG8ePECf/u3f4vDw0Nxry4SBqu4CvW9AadmULfb\nFf4jBkUsy+77Z42l3yOGQwyDbfz29/dRrVZlDrT5oDGJX4tL0jTN49e/S4Zh/DmArwMoGoaRM00z\nbxhGDkBpwXe/A+A7ALBIcNB1RjWq2WyiVCqhXq9L9yO61igdqfKyaQsnyi7IRyPGJycnyGQyiEaj\nuHXrltiODBS6ceMG3G430um0xEqwjPjOzo70vASWnwi8l9nstGa/2+0WfzlBK7Yapw1slxikr2f9\nn89FRi0UCnNhx+yDyHoK0+lU8BoK2YODA7x48UI0hUXx+8QlSMweZB6C2+2WgKRms4kXL16gVqvJ\nd/n8VoBsmcZlGG96d9J9THBxY2MDmUwGk8kE3/ve97C/vz8XIWmNG7CbQytZtQuaIMwZmc1mqNVq\ncojRC6VNo1XG4Vi6WBBNiXa7jX6/L5mx1EzoqqS5p7WEX7n5YBhGEIDDNM3267//SwD/C4D/AOCf\nAvjT17///UWuz8lkFyE9+eyNWK/XxX7jhAwGA0kc0nUU7HIfAEj02cHBAbLZLNbX17G+vi4mCz+X\nyWREGwFO+zR2u10cHR3h+PhYsIHXc3OmlGZexXQ6FdXQ5XJhc3MTwWAQR0dHKJfLsilXVatJFAwU\nnpw/0zRRKBSwvb0Nt9stmlWr1RLXYLVaxRdffIFyuSw9Eu3G16etTtphtCHnj0zd7XalMa8u8W7F\nSFZ9Vj4TMxY3Nzdx//59wUQKhYIAs8vWZBXPAwPj6AJvNpviLmbtCYbJWyMZ7eZs2VjkXZ1F6vF4\n0Gg0pF8kQ591jojWUDk3F6F30RTWAPz5a5XIBeD/Mk3zLw3D+BGAf2cYxj8DsA/gj897YW1b8rRj\n96BAIIB6vQ7DMOayIanS0fY9K5JMAzKtVguFQgFPnjyRFvculws3b97EYDCQkzCfz4s3YDY7TWGu\nVquo1+totVpy7bMYTGsudBlubGxgbW0N2WwWg8EAxWJxTk08j2DQqupsNpPQXoKNqVQKL1++lN6V\n/DxPwGazKYlSOqR7UQq61hQCgYB4HNgwhZukWq3OBQzZaSD6RF80f/pvpk6vra1ha2sLGxsbCAaD\nyOfzcmhoF66eG97/MgBVv8/oTgZZDQYDJBIJzGYz6fBN8NQaCr+qMNCmLrWORqMxh2XwsCPfa6HN\n5zxPoNRb93LRL75PsjMfrItPNYrIr1XN0uqnFdw5a5Myd4HIr652RNcSVXiNXOsMOL0oWoW3kq5E\nRHAvl8thY2NDGPr58+d4+fIlTk5OBJA77zotGt+KpBPU0hWJtBqszR2+r6+l5zCZTCIej0toMbMS\nm82maD37+/tzJ6nWNqzzuOi5uEb8fePGDTx+/Bi3b9+W0OPPPvsMf/mXfyknt14XHbNyVoakdbMS\nO6H3gVGvlUpFvFYX0eyAN633uC66AhjzROjO1etj5bklY398fR80aabW2ACAtzbJeSSy9fqmaYo2\nwIlttVpvnVbWMRZtOutJZPc+AIllp9+cjULpatVq9kUE96J7tGMa2qfccFZ0fhGT6TEYVFUul8Vr\nwngRJlfpfP9lqrWeQ7v7p0eF0aisbcBIwnK5jJcvXy7MP9A1IM+aW6u2yfGpMQBvMI5VXMXLiF4z\n7Z3ScSzMgXgfYy2jSysUdP4CSZ/KyzYe8Lbqd9bn7Py9dqciSb9HgaKjyBbdn5XJJpOJmCA8jezs\n7IvSMuFF0kCcPv01YGl3Pb1xCZwyR4RCRmtU1nRiu/s8y77X481mpynL3DBerxf9fl/iP+xObf1c\nFyFt+mlz6n1uTq312iWhLeKLd3muuetcVvPB8j6A5Sc0P3cRNdtKduPoe9A2NF9b9v+yca12JF97\nn+uyqttNf1bTKvOt1Wv9OgWmBnytQsVuvLPumcg7r8/6ixSqxEd0GLNV+7zMZDVbLqIN29DH10vy\niq7oij4orSQUrtrGXdEVXdEcXVpM4TeJtJ1+liq+qgn0HlXKj4KspobdPK0K/lrNwlXxp/9c6Eoo\nnJOsdvR5GMnKjATj6Caj7a09IfqzrA2xSqHRdyGO/15AqzME4XnsfDusQeMxGrnne/ysLnMPfBiQ\nUAseDT6/L+Kzkh/09d+nULsSCiuQ9aS3xlCc94QH5uMVmMhimqakzLJ0OL0wLP9GkNPaT+B9ktXb\nAFx84yz7nh0jnyVE7P7m/NtV2dIbSOdScP4vGuRjdy/6OnYA57uslR5PN0biWMtidc5LH6VQ4EQz\niIRx+6yn4HA4JHPS6qdedk3tVWCQSiQSkXh6wzDEzcXqRdr/vkokGcOZWVMhEAggnU5jc3MT4XAY\n165dkxZkTOxqNpsS9szoy0KhIMEy73Ia8bl1JWefzychyp1OR6L0LiqErCeoPvGoJXFTc/Mu04bo\n5WBwmS69zxT66XT6VrcphkQDp2HqzJE5KzhM14ugAKLwZjh3NpuVilOM0yAPMvlLp2ufh3QwUywW\nwze/+U2pJN7r9XBycoJCoYBKpYJWqyUxMBcVDB+FULD6zsnEkUhEyqLlcjnMZjPU63VUq1UpskLV\ncVnZLataxmQotgVLpVJ48OABQqGQlH5jYg9jJ3TloUUxDxQ6uu3d1tYW4vE4UqmUhDlns1n4fD7J\nr3C5XKhWq4hGo5IgRmF3VryG3Tzyb62VsAuRzmxkhmWpVEKj0ZA8iVXWiHPJH+0y1HMAnNbAZH4C\nhQ8T3axzqL/LTcncEUY5sv4GS+KzNwLrbkwmE0mj5ia3FuCx8gYjQPWBxHnz+XzY3NxEIpFAJBJB\nrVaTDNhOpyP8xzlfVTBwLGaw3r17F/fv38dXvvIV4QHWm7Sao0w0u4hguPRCwcpkZAin0ylNTe7f\nv494PC6lyfP5/NLS53ZjAG9X0mXOAIuDslYkW46xlRwDdFbxK1NlJU2nU9kwDocD7XZ7rsgGpf7a\n2hq63a6ciDz9KIhW3aycP7fbjUgkguvXr8MwDKTTaUSjUSlTziCkk5MT1Ov1uU1hp/LrGAUKVfbH\n0BuIrc+4Ufv9vpQyYwMe5mno007HPTgcDqnizOrbLI3GkGCeyrlcTupGsPkra0r0ej0JGltUlITz\np80BmnZs7Mqs2e3tbRiGIcV2LqIVWMfl9TOZDB4/foxvfetbCAQC8Pl8yOfz0v+j0+nMtf3jNX6j\nhILdA1FlZHqujg3nb/ZM4ImzymlqZwtSMDBP/+TkBM1mE51OB7VaTVRqBsqsYp7oKEViBew/wI5F\nzWYTu7u7CIVCUjaesfosvHFWmKsV+9CnNuduY2MD9+/fx82bN6X+ot/vRyQSkRObDUd2dnYkWtBa\nJ0ALbZ7efr9fKmaxRybrPrKgy2QygdfrlSYwbOLC8G4dvUrSVYmYMhyPx0WrC4fDMresFs2eCRQI\nDodDwpw13rBozcgfulaBrvvJwCm2q9PdrZjApM2u8+JPrDt669Yt3LlzBz6fT+pRsF4Gi8vo9gbn\n0SCtdGmFwiLXEqv7RCKRuYXqdrs4Pj6WDDbdPUmrrWeNxc2mGYcM6/f7JSNS24ncnHZagnUczewU\nDIxvDwQCcqqVSiWkUqm5jENW/mFhUztTRT+PFgw0uQKBANbX1/HVr34V9+7dQyQSEXyCacbMEiWx\nDJ3dBuKzcCMwL4FjsYs2+1qwPgXxIAobml80abjh7Mbiqc5CIhzTNE1pGzcYDNButxEIBOQz3NCc\nM92XYhG/kSc02k/tTPe+XFtbQywWm+M/XZqNAk0DomcRtZJoNIoHDx5gc3MThmHg5z//uRQqnk6n\nktBnFxZ9Ebq0QoFkVRuZs89qPq1WC5VKRRqC6Fbx+hqrSGarq1F/hyZLr9eTFGBrco9mmkXX5nV1\nGzBqGqxwxBoGrVYL6XQakUgEiURCVEndUn3VWnxkZJ/Ph1u3buHGjRvIZrPY3d3Fzs4OhsOhnLy6\nL4PVDbpI6Om5Y2FYVkJiq7bJZIK9vT2YpimdotPpNADMVZ4iDrDoOagp9ft9tFotJJPJueY8FDzE\nRNhHw+v1SpUpCmhqQ4sODS0Y+Dl9CFD7Yiv6YrEoVbhYR1IfSucBhdkb5O7du3jw4AHC4bAUv3G5\nXMjlcjBNU/AYYlbvoiUAH4FQ0MQFYboqgLnejqPRaM4ToJl4VduKn+WJxC5NiUQCyWRSQEyi13an\n8qL75ud4cvH7BC8dDoecMFrlJ9LMU0YX19Dl0c+aO1Y95nw1m018+umnaDQa8Pv9kvZMoK5Wq6Fe\nr6/Uoo7Px56XuvFpo9GAaZrY29tDtVqd68HJ067RaMxVz7YzU/ibgkdrJxSshmGIGTKbzaSBLfAm\nC7HT6cz1GD3Lq6KFADCfrEdshgVXWPZO18Gwm69ViIJsa2sLyWQSTqcTpVIJ/X4fGxsb8Pl8cDqd\n0p1cJ+SdVRJwGX1UQoFSmaWuCO7kcjnUajW0Wi3JjtNC4SKACyeUdRvv3Lkj0p/IuF3e/FkCSPvU\ntXmjuzuzHyHtZmpGLLnOzcANtYqmYBinNQ9Yv5AaVq/Xg2EYCIVC2Nrawu3bt+FwOLCzs4NXr15h\nZ2cHpVLJNsNRawecM5oBBMMo3A4PDwWAIyBIsI/FXGu1mlRqXpZNqcejGUFQluYX55mmFj0djPXQ\nguQ82pb+m27CW7duwe/3S9s6VmHS4LMdRrLKmrE2BT0ppVIJyWQS29vbiEQi0gSJgpv3dlF3JPCR\nCAU+INu/k8G3t7exubmJUCiESqWCarUqKpt1gs4zSVxwh+O0Z+DGxgai0aiUE1u1ZZvd61rt54Yn\nek77kPn6rHV4/fp1+Hw+KQxLwbhKgRD+pumVSqWkT+R4PJb+mLdu3cLdu3eRTCbx6tUrvHjxQk52\nXc1q2ZzxBAUgABv/Z0MY1qGkp4Ol3huNhngg7Kpv6+dkDUTyAzEglnlnjw/eA92uBBuphejKy6sS\nhQjXIZvNYmtrC+PxGLu7u3j58qV4T6w8eF6h4HA4xE3tdDqlulcikcD6+rqYK7rj9PsQDB+FUNDu\nSNqT29vb+IM/+APU63Xs7Ozgb/7mb/Dq1Sv0+/2FwNt5x2N3nnQ6jXQ6jWfPnqHRaEiwjR2dtUmJ\nCcTjcWxubkrHH/arpE2cSCSQTqexvb2NdDqNTqeDYDAoG9qq0i4jmkHUNjqdDtxuN7a2tvDJJ59I\nJet2u43vfve7+Ou//msUCgUBzZaVlbeenixF1m63UalUJH5ge3sbDx48QKFQEJfo3t4evvjiC1Sr\n1TkTZREuQ62AgB0F42g0Qr1eF5cmNz4/z4KuwKkgYJCPrii9KpE3CNh+/etfx6NHj/DixQt8//vf\nF8/AIpNkVcFAUy+TyaDdbuPZs2fodru4fv06PvnkE5imiefPn0tJQgLD5zWX7eijEArAGxeh9rOz\n8Qu1hIsGaywiBpq0220cHh6iWq0iEAggHo/LZuGpo8ddtPCGYUgJr42NDSQSCQl+4UYYDAZSej2R\nSCAQCAhewtOeQTpaFV5EuuQazSpWmur3+4hEIqIF7e7u4mc/+xny+fxcezrr8y0ah9oCIwUbjQYA\nIB6PwzRNiSGIx+PodDrSnZnFcFfV6sgDDodDkH6v1yut76ihUKgzpoGeJMMwxPzTxXbP2sQ0XehZ\nicfjYgaxjLwWWna0ilDgdxmty74gyWRSvDb1eh3pdBqVSgWRSATVanUueEnjC+elj0IoaHcY0XAi\nrv1+H/l8Xmrvk1Y9Re3G4m+ecqwMbJomIpGI9IGwCxZZRi6XC6lUCslkEtlsVlrhUdi1222MRiOk\nUimEQiGk02kpu65dTsQVloUec86IS3A+6KZjFGE2m0W/30ej0cDTp0+xv78vTW3Oe+LoICAGfgEQ\nj0I2m8XDhw/FDcrAm2UVmezGYNASg584L2xhb5qmgJipVAqRSETiQCgcF+Ej1rH039rbkE6ncfPm\nTanyXS6X59bGGl5/lltcE6+h40b8fj9SqZTMJ3uA0qNE16rVTL0IXXqhoCeTqDMbs5TLZRwdHeHo\n6Giuyo51gXUQyqpjMgiFANazZ88keIguNtqoegz+bTeWx+PBtWvXkEgkkM1mEQgE0O124Xa7Ua1W\nxd1GlZc2Mq/NKEqiztbMP+szaN84Nys1hEQigVgsJq3mnz59Kh2mF4X8LiMdK0CAjw18OG9cu/F4\njFKphFqtNleif5U14tqwqatpmhKkxM0OnG4cdmwm7hAKhZDP5wVcpYayaM34mlUgRKNR5HI53Lhx\nA5FIBKVSSex9amY6poPf588yk4VrzchValjRaFRyKhjC3O/3hQfpyXofWZkfjVDgZLKhSTqdRrFY\nfKunnhURB1bXGjR2wQCc2WwmSUgMc7Ym41iFziKwkfkaLEXO7tnlclkAL7akS6fTCAQCcLlcYm9T\nYyC6fhYDUNWlcOH1GC25sbGBer2Og4MDPHv2TMyG82Iyeo10UI8OiyaoyhLyR0dHF9JIKOjYtq9U\nKmE2O+0pacV6ksmkdPXy+XyCk/DzqyR48XrkB7/fj0wmg/X1daRSKWnQQtOBmqU1KYlRqQzpXuUZ\niaENBgOEw2EUCgWUSiWEw2HE43EBVRlpqs2vi2rKwEcgFID5SWI4qcPhQKFQwMnJyVumw3kEgtVm\n1B1/6elot9til3s8njkEmottNV3snoFMQ+Td6/ViNptJ1ymqvcxHME1T+kxUq1W0220p+a5DbRcF\n+hAQYyt6eh+2t7dx584dpNNp7O3t4Xvf+x4+/fTTuU1qN2eLNCC+psvFcwPwf4Y+N5tNPHv2TNyP\ni+ZtmY3PWAg+D+M6qHXRJcrndrlcKJfLKBQKKBaLUvWZz8rQcbv50yYBw+optBn8VCqVJC6D0Zge\nj0e+T+GzSis3vaHZ3evOnTuoVqsoFos4PDzE7du3Rdup1WpzmZ7LDqZV6aMRCgxSojpoGAbq9Toa\njYa4Y3RMgnVyVrVX6XvmJvL7/eh2u1JKPJlMolarScix9fvLxjJNc65HZSwWQzAYlNDiyWQiobet\nVktahbHRCDs20ftwlpuQpzbxiXg8jmw2i1wuh3g8jtFohL//+7/HL37xC+kixeewnt5nMZl+dp6q\nXDOebD6fDycnJ2/1xrR7hkWClWO1223BFjKZjJhzNGNCoRAymQym06nkqxDHYOl08s2yOdR8xbbw\nyWRS1o0Nc5gURzc2zTSrWbWKaUawlpW+9/f3EY/H50rxA6feGK0l29WTuAh9FEKBjEbENxqNwuv1\notFonBnRdx4cQat6TCGOxWLSiZlJScyx0DH1eqxFpymxg0ajgXq9LkFJzMHnCXtyciKdmZvNJvr9\nPtrttvikGVO/Sqw754zg5vr6uuSNnJyc4Ic//CHq9bqtX33VOaTZRRCQSVFMayZ+kUwm8eMf/xi1\nWm0uN2VV4qmuW6ZxHG50un1jsRicTicajYacsvV6XQKoVql9obEECjmaXjrehLEeVPXpFrerYL2K\nzW+apgicVquFly9fYmtrC6FQCLdu3UI8HodhGNjb2xOPC02V9+F9u5RCwQrwkNnIWJFIRFqgnReo\nWjSW/puLSEApGAzC7Xaj3W7j+PhYQp3JYKtuILZ3f/r0qQTphMNhdDod8UIMh0O8ePECJycn0nGb\nLj5qGdoNuoix6T0h0ysxEO8AACAASURBVOZyOdy8eVNAv0KhgM8++wz5fH6lFmfL3Fs6boARoLqz\nEV13nU4H+/v70ndzmaazTLBSU2g2m3JI0CNFN6Xb7cbTp08l4IzzR1vfWqnIjjRgyDgACiRiLwT8\nGo2GRBfStawDo8ijqwKBdB0fHx9L9y2anbPZDKVSSQ4YFlZ5HwIBuKRCQdvswJt+iIPBQIKVZrMZ\nisWiTPxFUVd90lNto81ZKpWkpfp0OkW9Xke9XhfJfNZJQ+KGarVaeP78OQzDwH/6T/9pzrOiVT/r\nBrVT5e1e10TVmFmY7OFomiaOj4/x05/+FE+ePJFT7aznWPY+7W4yrcvlwvb2NpLJJJLJJGazGSqV\nCnZ3d+eCjOxwoLPupdVqIRgMSkJauVxGKpWac9cyRqJarYqbku9bazMuA+UYM+JwOMTD0el08OLF\ni7k09n6/L3Eyy3hx1U1LLWM4HEoexYsXLwTc7PV6qNVqAtYuCy67CF3avg9Wlw5tY51uSzzhQzyD\nDgThPXDiVxUGJM1wPHGsSLGVyKiL7Hrre3bXYJ9Kp9OJ7e1thMNhAMCLFy9weHiIVqtlGwF6ETIM\nA9lsFoZhIJVKIZPJ4MaNG5LNWqlU8OzZMxweHtrGCVjBYbvr679DoRBM05RALl1pyBqzYMUuFo21\naFzmc/B/zRdcvw/Fh9qEYdAWx1zWgm8BffzNYOz8xNQgaMP9qu5/mfq8yndJZLBFMRVnXYfC0rqh\n7E4nh8OBRCIhdjZVXwYNWU/rdyXa1l6vF9FoVMDa4XAoXpRms2nLyOcRCgCkUIvmDasgtRai4fva\nC0CNatG4wPwBtYg+Bj7Eb4JQWPBZ+fsy3PsqZD3lNK2q9mnPih0TL7qGBgEXYSfvi7jhGFDF4jCG\n8abgrS40u2wtl2lJ+rn4XbtnJG6gPwe8MRmtY15E+/tYePA1fdxdpxfRR7YIAFbbvKtc4yJgqkbB\nPzRReyOdVaNw2XOctWGtoN2yZ1zV5Xke+hj5cFW6aht3RVd0RXP00WkK74usAKL1PTug77zXXoSu\n26nyq45lp1br/xlQZXdd/m2HS/DvZXUY+Z5VA3iXeVpm9izCHawm1KI4FTvz47xYxir0jnb+pRvr\noxMK2nZchsCfx/1jtdW1312Pq+1TEt1cZ4U52zEjf3Qmo/ZwEBAjoGZVmfnZRfOgX9fRgLokvBXM\nZRSk9q/r5180h9ZnO+t9vsZov7Pmj69r5J/3xdetws56H3yGdwWMNU6jn4c4hjbzLmLyLRrXbmwA\nbwnrdxUaH4VQsNusZA6CSYvSpledIA1c8X+NXuvsN36OgJVelEUbx07wMIGHv7kZzyrhrk9zu89Y\nmUhrLgT9rIg8P6vReH2vq3gpVj119dha6+BcLtu41g1v1Wz0vVqFpvZ6aOD2PECv9TkBvDWenSC4\nCD/aaUFaKNCTRV71er3ynO/Sc+LSCgVGxzGPnN2Uvva1r0mWWrFYxP7+Po6OjvD06VOcnJxIJWTr\nCWu3GHyPJ7L1tKX/mz+smhQKheB0OhGPx+H3+yVk9/PPP5dw21Wi5IA3xWMYv8BxKCyA+b6TTH4h\nmm8nEHl9awKOLqOuPQA64QzAXEIPA7oYbWnHbGRc3fSFIch0TTKJjVGZo9EIw+FQ6m2apimuUmtR\nXOs4ACRIyqptMQmLqdvMSNSRr8xT0MJymTDX2gjXg/0z2HiGApdzB0ACm1iMlnyxzGSyakI6QY+1\nIba2tiTKVjfPabfb0iGNQWIX0RrOFAqGYfxLAP8tgJJpmo9fv5YA8G8BbAPYA/DHpmnWjdOn+V8B\n/DcAegD+B9M0f3ruuwJk8wUCAaytreHOnTu4f/8+tre3kUqlEI1G59JiW62WVLUF5pu6LHiut1Q+\nMoBeCIaYspIPI/disRgASNUiwzgNvT06OoJpmhLuSrKquBQ0zCJkBSZmTrIaEzc2w2l5Td3oRqvj\n+vSgAKBwYSFVazFTt9stpcsoGLjBuYlYbbrT6bw1h8B8vgh7YwYCASQSCYTDYYTDYdkU1WpVyrgz\nBJm9HxiExMpaeiyS7gTFH/Y+YC4EG7GwyG6325XWdzpWRJujy7QTzg3XKJVKST8LCkwmyTE0fTgc\nolqtCn9yHRd5SqwmAYUc+43mcjlks1kpFOvxeFAsFqWOpmGcFh2KRqOS8HWR2hiraAr/J4D/DcC/\nVq/9CYD/aJrmnxqG8Sev//8XAP5rAHde//xDAP/769/nJjIvw1MjkYhE5JGxyuWy5A1sbm5iZ2cH\n5XJ5qepNWmR3cuN6vV7JLmRqs2EY0oxG9y10uVzo9/vCoBQSds9EJtQZn8lkUhaZzUx42jqdTimu\nUSqV5HS1qrN8Hob6Uoj5fD4RDtzoAOb+Z6IX7Xuv1wsA8Pv9Et5N4aS1BT2/FArBYBDJZBLpdFoK\nxTBXgCdnMplEJpORXoulUgmFQkH6Z2qTzaoFMQ07m81KD85oNCoJa8x9MAxDMijZD4TmA7NMrQeC\nnWbC9dKaDwXCtWvXEI1GYRinKcwUuiwxzyZCvB8dJXsWDsP/qTnygKR2QO2KB8tgMBDhyvUhn5xX\nWzhTKJim+beGYWxbXv4jAP/o9d//CsD3cCoU/gjAvzZP7+L/MwwjZhhGzjTN/Lnu6nRcDIdDsZP2\n9/fh8XjQ6XRwdHSE0WiEUqkEwzCkwWgul0OxWJybmEW0CJgi07GScjablRRcqr31el2awJJR2WaN\njGln1xOLoIBhufVYLIZoNCqqd6fTgWmacgLy/tj3EHhTY8KqjvKEATCnxrPQClPDWUFIq8as/xcI\nBACcRigOh0Ps7OxgPB6jUqnYziPviXPHQjD5fB7dbldOSZoEiURCkqQ8Hg/q9ToAyLotw1KoUfH7\nsVgMoVAIhnGaNFcul+V52BGaFayZhEZziPeuTQkrf2jzKhgMIpVK4fr167h58yZSqZQITQozpnOb\npikFaXVVpEWHBXle/09+DAQC8Hg8Utz36dOn0lIwHo9jOp2K6UAh9C7RqhfFFNbURi8AWHv99waA\nQ/W5o9evnVsoEPAaj8coFosAgFAoJBV4GbfPxqher1fayZHJVpGQVuCJJyiLkWxubkodAPaPBCCl\nvnQKLjepnXTW77H4CYu20BwJBoOSVkwzJRKJSEhvPp+XueHmt0PuWdyDreVZz4B1Bpi5SG2HG3E0\nGomwmM1mCAQC0oDE5/O91THZCtaxCW+pVEKpVJL6kjyRWSg2FAqJNsLmqGx5z0xHuznUBWW46WlL\nu93uuTLxo9EI6XRaWu+xvwTNIwoOake6UI0VR7CmTjMxiQ1z9vf3kc/npUM5DwoKf2omZ/GhFg76\n8zSreK1KpYJutzs3v3wG4ltWbOI89M5Ao2mapnGOMGWSYRjfBvDtRe+T+Xq9nqjCpVJJatIxd552\nP+1Vno6L1DTLvev7EbsxmUzizp07uHfvHpLJJFqtFnZ2dqQyEXEGqt266CptOStphNp6utLG5QYp\nl8tiG+dyOemZoIuwOBwO21oSdqg18x6Ydp7NZqXhK1PAWSOSG9jlciEejwsoxxOWWpF1/mazmQCF\ntVpNNhG1DtrSbCPHOaCqzfbty2pEEANgizm93loT4Kai5kK7mtqnFYux8sgiLIhmSzqdFn5kjwxq\nC8BpIhoFGwXCssQl7a2w3hOFHwHN0WiEQqEgpnQikZir7sSs4XepbH5RoVCkWWAYRg5A6fXrxwCu\nqc9tvn7tLTJN8zsAvgPY5z7wAWkD6tbvbEtG1Z4nppbuWgXj9axkVdO8Xi/W1tZw69YtfPLJJ1Lt\nhtWC2BiVtjZrB7DYC4FBOwbQmgJVdQAyBmv3ET1eW1vD9evXsbW1JR2F2cvS+oxW80ELBr/f/1Z9\nRmoHZDDd8CUej0urMgpBpl1bPQK8B25klgjjycZ1ogkTCoVw//593L17F263GwcHBygWiyiVStJt\nms9jFQz69B6NRoKw82BgWTzgTft2qv0Oh0M6etMLAcynzds9lx5XN8yloDk4OMDe3h4KhYJ8x+12\nS40MzotO67Ym8VkPLqtg4DPT1CLgGw6HkUgkBIcBIJ4bXu9XbT78BwD/FMCfvv7979Xr/9wwjH+D\nU4CxeRE8AXizSJSCPAFYzScWi2FtbU2ahrIHAtXcVQNVCMaQiXO5nBRWnU6nUtSUhTl1iTGqs9QQ\ntGptHZenHIWdrj6se2HSvRSPx7G+vi7l4NgST5/m/G2dN9q29KKwNwH7L3CcVquFV69eyelJtDse\nj6Narc6lqLM7lXWzaibWpgIAwUhYZ+HmzZv40pe+BJ/Ph0qlgmKxiOPj4zktgfdvfTYKCgZesdEM\nBR/XnWAfK1oNh0M0m00pjKPdghpotOM/LTBo8hFwZa+RdruN2WyGSCQiwCdNFBY/Wab9LNMeKGiI\nmVH7ymQyiEaj8Pv9MAwDrVYLxWJRTGtWBL9oOvcqLsn/G6egYsowjCMA/zNOhcG/MwzjnwHYB/DH\nrz/+Fzh1R77EqUvyfzz3HSmyosK0g2OxGFKp1Nwm5OvJZBJHR0dzteuWmREUCD6fT1qA3bx5U6r/\n7u/vS/lu4E2cgd/vnwMYCQjqCEBdOEVLf+IAvFYsFhMtaDqdihcjEonA7/ejWq2iWq0KQy/roqRV\nUWYp+nw+BINBDAYD+Hw+FItFAchoy89mMyQSCQE3WRsSgJSEWyQQ+LdmZGpDsVgM165dw40bN3Dz\n5k1EIhExM1g4R6vXiyoU6ecCIEKY4K1G9jl3NHny+by4PvX1FtVotD6L+Rrl1++z7wg1IJacY/1Q\nNgrWjW9X4UfNlzwEOY/aw5JIJODxeNDtdqX4DwFG3SX8IrSK9+GfLHjrH9t81gTwP13oThaPL5Jf\nI6vFYnGup2IoFEIymRT30HQ6lUAmO3yBjMdNmU6n8Y1vfAO/9Vu/hXQ6jVqthr29PfT7fWQyGWxu\nbmI8HsPpdIpLkkxtGMZcibFFdirvgdoBT+9wOCw9IOjn54m6s7ODnZ0d1Ot1cWGOx2O0Wi10u13b\n+dJ4C082Nt6lqjkajeZcjwCkUhKDjCqVimyowWBga6da8QvgTbQmEXPiCp1OB59++ikCgQD6/b5o\nMcQ8eG+LNg43LwUuBSu1NV1GPZPJwHztAdjd3UWhUHirB6jGdewEHjUEfobxHsPhEH6/Hzdv3sSN\nGzfmvD2hUAjNZlPm284TZafWW80Yto1jnVCu0507d8SU7Xa7qNVqODw8RL1eF0Fpx3/noUsb0Uji\nJNLdNxgMkM/nJZAmHo+LS4+Se2trC91ud66ZqJXJ+D8ZK5lM4saNG+LNGAwGSCQS6Ha7Arw1m034\nfD6JmdCaCoNlyNjWZ9B/WyMjCR5ev34d0+kU9+7dQyaTkeIkjIEgWt7r9SQq0ZqLwTF4MvH9Xq8n\nYCJVcAoPl8slTUsTiQR6vZ5oEJxH2vtaA7KOp5+VvvR2u42DgwNUq1U8e/YMiUQC26+rQIXDYYl2\n7Ha7c2XKFwHFdsKdAkI/E01J7WKmAGe+io63sLsu54pzOB6P0e1250r0AxDXNIUgA4lYI1Pz8TIA\n3Ao+ezwe8T6xGxgxG5oVrBNqh6H92rwPH4qsICAAMQnowqKLLBqNSrm2ra0tAEA+nxc/8Vk1HAOB\nAMLhsGx++nj9fj9isZg0ZKVAYJQePQ4EB6kKL1J9+TyseKzDimkLh8NhXLt2DeFwWDoP0T/PiDjO\njW6/bh2Pz0Kvha52TG2LjW79fj8ePnyIaDSKYDAoqih7TOiqxHbrZBiGqLaa4elaHY/HqFar0j4u\nkUiITcwir/V6XaJJ7exv60nKcXUeCiNBCQiyJ2ehUEAgEBDzgcLU4/GIMLEjCga6LXu9Hur1uvTf\npPZA7xHBXLfbjUgkgmKxOGfuWXnB+nxcK0ZOUlPgIUSQ1OFwIJvNotVqCfBtzdt5F23hUgoFLV0Z\nbszGH1TVWOE4m83KZNGPHAqFEI1GEY/H0W63RQ20S5oyDEOAwm63i0qlImh1q9VCpVIRYIvRbA6H\nQ07PYrEo5cO1+WAnpcnEfK/X66HVakmDG4Jj9DKUSiU0Gg00Gg3RGGgnc56WnaRE5XUnZgDiERiN\nRvB4PMjlcsjlcjBNU0qGF4tFMVHsVG5NFJgA5tRX2t4cezKZIBQKScgxn5vz5fF45NnsTm6+rjUk\nriEFK6NQeV0C0ASHKTD1b/KTHY3HYwmgY9gyNy/H6HQ6ovVoHtO2/SoYAgU5tUiatcwBajabOD4+\nRjKZRCKREKGkMRmdzfsbJRT4cDz9o9GoeBoCgQCm0ylSqRTq9To8Hg8SiYQ0ZWW4bTwex97entic\ni1Qp+tebzSYajQaOj49FRWf/BUby0QXE0GPa3IeHh6I16GASu7GohfAELpfL0huRpwHt0ZcvX+Lk\n5EQAQW4saiSLIje5USgo6ULr9/sA3tQ3JPPdvXsXPp9PBFC5XBYXHgO2rDa2XisKBZZa1yAvAInd\noL0PQBJ6eL9U07W6bvdcWpgzPoHuZB2DYRgGKpWKdG7y+/0SCqwBO4akL1ozChaaDtqE83q9sobb\nr3NyaOYxapLrrYPc7Ejn3JB/k8mkBJgVCgXx2BBjoNmiK3dbwe1VQE0rXUqhALw5GdxutyC7t2/f\nRjAYFMYZjUYS4EN1sdvtYjAYoNlsChILLI4tNwxDAoY+//xzaT02m82kx0Or1cLm5qbY/gAk+Ymn\nud6gy2xhhqTSrmcyUrvdxr1799DtdpHP51EoFPCLX/xCXGkE+ph/QLLbpDwtGFdB9JpAXL/fl2rI\nN2/ehMvlQqfTwcnJCfL5PI6OjiRkVveZ0LEAmgKBAAKBALLZrMw5NRu9BsFgUEKEs9ksTk5OZAxr\nshB9+ot4g+o214QeKbpfmRzHQrH8YdwGg+K41nbrxbFY2p2CYTQaSfBQt9tFt9tFIpFAtVqFx+OZ\n8yRpXuA17cwwnSjn9/tFKIRCIUlIOzo6EpOMmosO2LJe+yICAbjkQoEL4nK5kMvlkEqlsLm5KQvL\nSU8kEnO+fwaUaNV3mX+dodQ6sYlhuTzd6G5iEFGj0RAwzi5GYdFicFPTrPH5fGJH5vN5mKaJw8ND\n7OzsyP9sF6a1BLrvlp0+tIGZNMNrMA/C6/WK+VUul1EsFlGpVNBqteY8PSQ7N5cGvTY2NkQrIwLf\n6/UkGi8Wi+Hhw4fY3NwU84+ouVbf7eo3aDCT88gAMp1YxjWiR4jCgDET1LDIPzonYxEfMpKQm5bR\nlFxLHlAEfwkec2xtTi0DGMmPDPYiwEjciHyoTV62OdB8sMh7sypdSqGggRI2Z2HKq9vtxtramqjA\nFAwE+3Z3d/HFF1/ISbVKi25uMCbTkNkYRuvz+aQLNAN/mAvByDW9KHZMbSVKdwqrer2OWCyG4+Nj\nNBoNadNONygFAM0hnUFq9zw8TTqdDoLBoNi8VLfZTo54ye7uLo6Pj0XQWeMH+FzW8WazmfTj0D0q\n2Quz2WzCME5Ddbe3t5FOp9HtdvHixQu8fPkSxWJRBKQG46wMrV11OuWZgKEGm4FTDZNCgdoIn4e8\nQ83LTiOx4kLkM4KKxCrocaDtz1NdzxOFxTLBQ2yA12cyYCgUQr/f///Ze9fYSNPsPOz5qljFYt3v\nLBbvze7ZmZ7Z1exKsCwkMgQFSLJCgE3+GP4Ty4ER5YeExIADRPaf6KcTxA4cBBCwRoRIgBPFgB1Y\nCBwltpGFECjSajy7mt6e6R6ym3ey7vciq0hWfflBPoen3v6+qiK7Z5s94gGIIotV3+X93ve85zzn\nnOcgmUxK6vvc3BxarRa2t7dRqVQEs9HK4LbZjMAdVQoUmpTVahVbW1vyAFlQwyYjrVZLOuY8ffoU\nx8fHApKZgBKFg6ezDGkezs7OinnKGgGPxyOZd8xm0wkj2oebtFB5TbRufD6f9IuMRqOo1WpirvLa\nqEQ02q7JPbSJys+xjLjX6yGdTiOTyYjJTGykWCxia2sLBwcHks6sW57pHdppoukFXK1WkclksLy8\nLDslnwF3vS+++ALlclnK3LWlZVmW3LPbuXSyEqs6mUima17Ozs7E1GeKvK57IE7AUPekMCHPzzlJ\nXgUq1/n5ecFuLMsSjMkct3EWpE7TJ5jJwifiIDMzMygWizg+Psbu7i6azaZkMpo5Mre1FN6Zvg86\nBEWTlfFcvUD0DzA+BARgZJIB1+FBnY8QDAbF9G61WvJjJouYCshJEZmhI4Jg4XAYkUhE8ts5aTnJ\ngNGCIGIM5nk0WxN3bloKi4uLiEQi8Hq94sf/8Ic/FCCT79E60N2sqCScfH3LsrCwsIDvfOc7ACCL\nxe/34+TkRJJsqtWqdJzm8bR5rRfmOCXO8myGdxkiJDOR3+9Hr9dDtVpFrVaTmgea4lQKdDdNxWrO\nOS3MHwgEAkilUlhaWkIymcTCwgKGwyFarRYODw9RLpdRLpel4Sw3gXHzkanMDGuGQqER644WCq0D\nWghOm57Leb6ezWBcvi+/T3s/+juarYgLl9mS3I202c4JpU02nnvcrqBzLnSEhZOcyS66nkIvGG0a\nMvnGjN9rsllGZBjOJVMVffhut4vPP/9cemNy0moLgWOjU4qdzG2PxyPgJXc5hkO1q6N3s5vMPX2f\nTEzi+zMzMyPKm+4bsRGzoSzDf7ymcf63nif8nYuUWamRSERC1Z1OR6I4rG3R4zrpHnW6NseV485r\n5PjfIpX5L45SuI2YFZXa7NcPRz8kjfByceqqRDPSoSchMKoI9MLTuQucsCZoBFzXXdCKoOhrI5oO\nQFB5Xie5FEjiQjo07qAmfsBjMc+f1+Pmr7rFxk2lPc1n3P6vzWs9hjqsyTE1lYG+Tt6rfkbjFIP+\nn35uTOmmQjezJYFr6rxp1poeQxPX0GPgNkYTznGvFCac85Xf+bCd0oedqs60MuH3+L7Tg+P7elKZ\nD15PCP1Z/T/AvSyWgJWetMQPSPNGHkRGW2j18Bp5XTrmra/TLTdCi8Y4nN43/2diIk7Hd1uYGkPR\nx3JKJDN9btNtcROn+aKvw+3539a/N3Gi2xzDQe6Vwr3cy72MyFRK4b5t3L3cy72MyJ0KSepIgGl+\nO5mP01g52mQHrklCCMjpAhzThHV6NSvdTPNYf19n5/F9fR6n67sJUOp0XyZirk1ZJ5/fNJ+dfjfv\n0SmxyO04JhZw0/u7rbzO981yZ6cx0Mc38zfcxsHped1FuVNKgcKFB4z6bNqHBEZTQ/k/ppma0QE3\n391En53y7rWPqq9Dg10a+NPXbx7HvC8Cj6wD4GcYk9aThyCW9pWdJr7T/xjG5fl0eMz0XYneO1V7\njrsv8zimonPCGfQGcFMlws/qRjBc0Hz+lmWNYCCTQtVu59HnYhWjvn6NKxF7MkOub0qccKY3efw7\npxTMyaUnDQddAzp8SExiYXiKE6JcLo9w/zmdSy8GE113W3Q6m5ATkYvN7Xv6vLRUiF6bSLiOWTPG\nzfsFpkO0TZSc7+kQmZvVQsti2sl3E1BM/8+Jm2Hahcux4zMnuzEAIaDRCt3czZ2uh//T18Hz8Lkx\nuY2f4fhqoNOcG7Ztj81TmEZ4TpZK85p0Ity4UvBp5c4pBY24M0bOBcQdmKEn5u8z/z0cDiMajcLj\nuWQOajQakq7rlt+uFYKeNE4Tha96oXGRDodDKf1lQonb97VC4Hm5g3MxspBJv6+r9ZgD4LYL6evU\nf+uKRzdXQv/wu5PyL27qHjhdK8XJfTQ/T6uA2Zls1MJiJ61o+VyZMKV7IrgpfV6HZVnyHFjGT0Yl\nKiRaDSxH58Zllo07pYlPGhf9TLgBRiIRyRxNJBI4PT3Fy5cvUSgU0Gg0RpTSbeROKQVzELRpzzpz\nJhQxtZTsuqlUaoQGncQiTKfd29t7peUZMNqJWCsjLli/3y/55kw3Zb8GNiPhdW1vb2NnZwelUkl4\nD/W5tOXDCc00aibf6NdWqyWWwtnZmbD6zMzM4OXLl6hUKkKeYt4XAImdM/mK90orimNMJcXvmu6P\nZj92akPG++F4OvnT/L9WiDqvQFuBTPvWzMTmPKFluLS0hI2NDSFU4YJg7wnyHjCzst/vj1R/OvVk\nMBUUz8eiq0gkIj0eWIfDjYidoUh2S67LXq+HUqkkCmJa0a5qIpFANpvFL//yLyOVSsHv9+Pzzz/H\n1tYWOp2OUPDzurVLexO5U0pBL0zTrGVxEmnKI5GIpPGyIEfzB7BeIBKJoNFoCBW2BhV1noCetKxS\nY7efVCqF999/XxQBC4rIoERKb+C6uYmuMDR3HuC6bdvs7KywD3HCcRInEglZoFws8XgcvV5PGKFY\nAmzW0Xs8lzTgZHhiX0j2emCKuFZSNEep0JiNyLHRSUxa+H9WIfJvnpNK3bIsoV8jmQxLf3W2qG3b\nUnzm5F7wWuPxuHTZIoOUbdvSUEdnOtLasm1b/kfl6GQxcS5QeZF7IhaLYXV1FZlMBvPz84hGo+j1\nesKClMlkJBfE6/VKpahZ7j7NTm66ch6PR3g00+k0dnd3heSHdTnaReEmcFO5U0qBD1znoptmMOsE\nyEpDwhMWMnHxezweIcGgia8ntLlT6t2HuwLbm7G5LQt8BoOBcAzGYjHEYjHMzMygXC7L72aNg/Y3\nuSDp8iQSCSEIubi4kBRZLngek7sgs/WciFQ5edgkh30Wo9EogEtfO5VKwbZtxONxib5QGZIDgbvc\nxcWFpApzJ9KZm3ono9Imz8FweEmPxszKSCQikzoajUpHo2KxKNybZ2dnQvBiKiDtZtBlYN0BQd9K\npSJl4PT9AYhiYIkzFZybJWImcHk8HqTTaSwvLyOXyyGfz8Pv96PdbqNSqaBWq4mrwZ6apH/TVZK3\nda84D1KpFBqNBg4ODnB4eIhSqSTPR7utToD5tHKnlAIHTaP8FO3TpVIpLCwsCOGnLpFmPwYuIh7X\nSTubD4l+m+4jubKygoWFBYRCISlUqtVqaLfbyOfziMfjAnDG43FRZCa9l6mAqBiYNx8OhwX4Y1dm\nXT/A0lkeezAY/c4btAAAIABJREFUiHtgTjQSirKxC8u+W62WuFt0UdLpNACM7DDNZhPb29tC9BoI\nBKSa0XQfOOE1CEf2IfJZLiwsIJvNIpVKIZfLCTciezIkk0lsbm4ik8lI8RL/Z46h3jVpqQGXBC77\n+/tCfMMW8Nq9Y9tBMjA5hR55Ho/HI+NPS4H0calUCsPhJWPX8fExSqUSDg4OxNrjHOJYVKtVqeS8\nDdhoWZel58vLy1hdXcXBwYEwcmmWKw3Iv07E404pBcAdcabpvri4KD+dTge7u7uSu8/cfhKhsCiG\n4M+481DLU+nE43GsXdX/R6NRVCoV7O/vo1AooN/vixmcy+UAXPrb9IPZKclJ9O5K14GT5/T0VLgN\nSP1F2jI2SeWiZJWk23komtSTuzZ7bhKooqLRLc7IN9hsNjEcXjY7KZfLrqi9rgHgfSUSCXzwwQfI\nZDJ49OiRdIxqNpsjfnKn00EqlZIJTlIT0/zVSp5VhKQuI98lTWlaix6PRyonaR21223Mzc25mtb6\nfUYXaHnF43GxSorFIvb29lAoFMRlYaEUe3bYto1wOIxarSbjdFOTnhwi+Xwe2WwWP/jBD4RZ6uTk\nZOq6imnlTikFp12POxCbveRyOSwsLCAej8viIRGJZVno9/vCYUcqLg2u6XPp32nyMoKxsbEhLegH\ngwGeP3+OUqkkoS6a8B6PRwg8Xr58KVaL6aroHY6IdTKZFBeF5C31el0QZDYoJbhJRigCkMRRzPGi\nxUOglguEvxOD0RRvBKjoMvj9fgHjTk9PhXfAVAQ8J4ARE5kALbkb6X6Qf3IwuGx6A0CYryqVyoir\n4gYAejwecY3IunRyciI9KnjdBAABiHUEXFoVLD932r21BUEFzg0nGo3Kszo+Pka5XEahUAAAcV9Z\nnk5+RR6TnBI3ET7/Bw8e4OOPP0a/35fn3+/3BZTVloEOs99G7pRS0OabBpTYemxtbQ0rKytIpVI4\nPT2VztNc1ASzOKm4a5P3wAw58hx8gOx9QIp1PsRyuSxkLuxlSSCy1WrBsi55Hqk4zFixjvlzcnCS\nkuq83+8LVySvjbsOSV2ZpEUlR1dLT2jGw8ku1Gg0ZCcdDofSqZl8lp1OR9wSj8cj3aiOjo5GSEqo\nLMwxHA6HI7kTfGYej0dcHp/PJ5T79XpdgGJaJy9fvpRnyXZ2mq/RSYjHZLNZeDwe4ebU+QLBYBDZ\nbBb5fB6pVAoABF9pt9sCCLqR7ZrhZ62ECfKyxwOZrQh4cnxIq2biStMK3bB4PA6PxyP0awSQddcr\nLV8b98EEFrnj0URcXl5GPp8XYJHkFYxVU1NzImvQjrumKZzERJdJ1BGLxTAYDIR8hGafx+ORiARD\nhLVaDd1uV+LEmufAFBKN0kqgIrNtW3pZkByW+RcENXXJtGVZI6FFPYa0jtjurtFoiPIjwFepVOD1\nXnbL5nn8fr/stOz7YNu2uGDmDqQnHhWhtiZIOkoL6vj4eIQ9i64EqctJL39ycuK4UKlcmaxGwJRh\nWQKLOomNrhLPF4lEUKvVsLCwgJmZmRHqOXMemvPDxIpIBHt+fi6WBM8NXLchMEO80+7idGkZ/aJS\nIF7BddJut+Xzb8KNuFNKgaJzBfhQV1dXkUgkMDMzI30QCPLR5yOARTOZpqrZuwAY1db0s+fn54WI\nRO960WhUwEu2W6Mp32g0UCgURCFQUWnRi4esRLFYDLlcDtFoVKjXCTYyfBYIBJDP55HP58XcJ+cg\nd1KncJp2lxheJHre7XYRDodlcpPxmUxFpLgz3RK3dF0ucroftHhyuRxKpZJEbKiYaPmx5d7+/r70\nydRsQuOEwB9feX/s4H1+fj7SaIZt6XjtqVRKcgd0xqHbXOTmRFeSXcAYFaIlF41GBUDmDk4rQ4dq\np124DOGurKyINWpZljCLM5xLy2xc8t1N5E4pBa2dg8EgotEo1tbWsLS0hPn5eXi9XpTLZQFZVldX\n0e12hXHH5/MJas3YMfn53MJbXq8XiUQCS0tLSKfT8Pv9ODw8xHA4RCaTgc/nQyaTQb/fl7qKRCIB\nACgWiygUCiiVSqhUKiP59ubOQL89FAoJXyJNTiLdS0tLyOfzEvsOBoMjxCgXFxcjjVnd7otZfK1W\nS3xcXju5LekyZbNZcR+CwSCq1aq0WKPPz93b6b60yzcYDIQ1ant7G7VaTfAL4FL5Pn78GNlsFo1G\nA7u7u3jx4sUIzqB5J03ROQ/EgBi7n5mZkZAhLZ9KpSLksbQUaWEQM5mbm5Od1jwXsQviTFx0vB/O\nSSoeRlRo0Q2Hl13G2C2cZK/TWAqWdUk1t7GxgY8//liu5Wd+5meQTCZlc7CsS9Jiundvwlq4U0qB\nZhsBv0wmg2w2i1wuJ23TiBHQ32ZY7+LiQjpFM8WZLMFcKE7IOY/DtGKGsjyeyy5RpGFjW7f33ntP\neiSenp6iXq+jVquJqa7DQqZonIBs0ToOTtcinU5LbwFaDJwA5+fnwlLM+3IaQ7IWc9x0mi0pwwFI\nApjX68XR0dHIrsZMSuZWuEVw6LJwYdCSYdiO9xwMBrG0tIRAIICjoyNRprpPwqS6By4upnsTQwmH\nw+j1eshkMmJpsAmrdkkjkYhYPWR+dlNA3OU1zRzDrdp6CIVCI4lwjE7Yti1hVX5+mkXLa6UCY64J\nFbnP50MkEpF0boZl9ffNZ3QTuVNKgTfDmHI8HheAhZONHYuIitNvJDV5u91GuVwewRKcFqq2Snw+\nn+TN0yTjwgoEAuh0Osjn85ifn0csFpNYerlcxvHxsSgInZbtlGXIe9PUXdVqFR6PR/zai4sL1Go1\nzM7Oot/vS5EPlRRBOIZZne7LvF8qH4KTVKo0O5klSvyA9Ow8Fncgtx2OLgsAUQZ6Z6afPT8/Lw1s\nDw8Psbm5KRgMvz+JMxGAoP+FQgHhcBgnJycSYqQiajabODo6QqfTkXZytm0LMHh+fi70/ONcB44z\nE7Ns25ZsVr7P8+r7YF6ImeruxOrlJASkg8EgQqEQEomENIThc2y32yOtDpxcydvInVIKFE6mWCwm\naaMMn/GHZiSTlQaDgWSXMalD+97mRNMTXGdJcoFyAtDkI5JNs/zo6AjFYlFQaC4GnY1pnsu2bYmI\nMBYPQBQRw50zMzNiHemmH41GQxYsq+IAd34DujMkn+WkJQbAHX52dhb1eh3NZlNCgqYZ7Jazr++N\n2ZYcBx2FSSaTWFlZgdfrxcuXL/Hs2TNhxNYLcxrUfDgcyvOlC0BMg3Og1Wphd3cXXq8X6XRaIi+M\nvrA7Fa0Np3Oaz1CnhVPJEg/inA0EApIZqj/HZ68VqJsQTGW4u1qtIhAIoFarYXt7G+FwGMlkEn6/\nH41GQ8bQvO7buhJ3Tilw8BnLZyESdypq7sFgIK3Qut0ums0mdnd3sbe3J5ONuzfNXw3EUGMznJRO\npxGLxST1l5OOoR/6lP1+H/v7+9JenT6+7ing5Dfy+hkGbDQasnBmZ2dRLBYFSWefTO4ojMGzhRwt\nBeDVZBhaKVRoTKihYmNkg4spHo9jMBjgxYsXEndnIxqem5aKUx4Jz8kxJdAGXKPzqVQKa2treP/9\n99Hv9/GjH/0IxWJx5PnwODo/wClEyIXGFm1nZ2eIx+NYXFwUnIW4E/NX2FKQbiI3GG3dmaLH8OTk\nRAqO2JSXrhstV+ZAaDCSkSvdLp6p1uOEG57Gadgro9PpIBqNCn7G2go9hq8rd0opcEKzmIkpqWzx\nTYSZOQlsilooFHBwcCDoOUOSGrQyzURz8lH79no9zM/Pi3YGgHg8Lllph4eH2NnZkXNpy4UP3tx5\nNK7BzsUEuIiiAxA0nJOdVsjZ2ZmEPdmsVS9ErRT0zs3zac6JUqkkO+fMzAx6vR4ODw9Rq9UkK48L\nhqCpNo2dTFTznFSA7AO6traGb33rW8hms/jDP/xD7O3tjexu5tjp99zmCfGiWq2GeDwuz4uuAf1v\npnXn83nMzc2NFKsRnBtndg+HQ8mt0PgM3Tqmofd6PWn4SsU1GAwkr6DVak1lBVGorDqdDorFItLp\ntLT5Y54Oe1pw3L+27gN3G2roSqUiIaVgMCi9Hn0+H2q1GkqlEra3t6XbEIFIWhMasXYLSdJMOzs7\nk6pLug20FBqNBra3t/Hy5UscHBxIQo/u4sQF5JTKqsE7tplnsxnGurWVwYnPsCc7XvFYnAimf2qa\njoPBQHZEItjNZlNqEJgnwAlGC4tg3bRsT/p9muqsBdjY2EA6nUa/38dPfvKTkbwHvVAmTWJzsdKN\nomJmYxjusCxLJ0iqszTZz9MNU9DKjh3GqbzpxzOEzOgNcOm+UAkwbVvzOExbHclrbLVaePHiBbze\ny87kiUQCtVoNx8fHePbsmXSiuk01pJvcOaUAXAM8pVJJwmlM3vF6vTJxDw8Psbu7i0ajIX49m5ro\nJB/Lsl5JKNKWAouccrmcoLkrKysjZdDPnj3Dzs4Ojo6OpLUa/W4uOL463Y9WCqzpZ3SAxU38m1WK\nrMKjOaqTYWjeuvVB5ELQC48AI03c2dlZdDodFAoFVKtVaSqrU591GrDbhNbpzkTZmTlIK4uKlT04\naXmYVs40yLxWiLrFHRd9MBiU6w2FQvI7k7H4XJ06bJnXwfnR7XZRr9fFekylUiORBt2azuv1jrT+\n0xT60yoF1tKUy2UJwa6srAAAXrx4gS+//FLcV61g34TcOaVAQIbVdyynZetvKoXhcCgNNun36npy\nJ3PeybwiWl0oFJBOpyXrjbsN8x62trYk0qCVj3YNuNO7kWjwMwQZGT8ndkIF0Wg0RFH5fD6JdjB7\nc1zGpI6qaMXHHZ/KgJYUQUzu3rpnJX1gKmPT1NbKjs+GVh3vJ5lMCq/A/v6+PCsTLddhw3EKyOn5\nMcqkFSf5DMilYds2crmcpG5r12icm8INhU1zWSTW6XTQ7XZHqh9psfAaCCDrTWPaxUuFzxwH274M\nb4ZCIezs7Ajg7MTy9boyse+DZVm/A+A/AFCybfujq/d+C8B/CqB89bG/a9v2v7j6398B8DcBDAD8\n57Zt/18TL+Kq74PecYLBoEwSnfKsQRruEuaOqBcDJy7f03kB/N/S0pJQXJm1+VQ6u7u7MpnNWDrP\no8/FyaTvC8AIySzdGibD6O5O2jelouT3uKB5L1z0PBevgeYzsyTn5uaQzWalNBwAjo6OUKvVpFku\nd0biEPShzZ6WxvODx+NBNpsFAClc+/DDD/H48WMByp48eYIf/OAHohicxpDH1ziFy5xxxYj0NRG0\npsXJcaXiZXaiFq1Q9ZzUYKGOEOjz6eemQ7q2bb+SIn0TcQJgb2EZTNX3YRpL4X8G8D8C+D3j/f/e\ntu3/Tr9hWdZjAH8NwIcA8gD+lWVZ79m2PdUI6InAicmJqs1vfsZJGZg/bskwevGw1LZUKmFzc1Ou\nhb64mRdgTkZOIh2OdNpRuXg1yQd9R6eHbl4/fdpJOymPQYuLE1QDXqVSCZZlST6H3nH0gtChT3Mc\n9b1SSdm2LS7OYDDA3t4eTk5OhCHIjDboMdTv3XTCO32P7olWnjyPZsZyGj99DE0sA8DRFXXagHRj\nWJMR6abyGorgxjJRKdi2/UeWZa1NebzvAfh927b7ALYty9oC8JcA/H/TfFnfsCa7BK4f8Ljdiq9a\nY+sHpY+vfyc2wPiyuQNrxeNkHZjnMLP/zPOb92UqEio/81waF3C7Lz0eFxcXaLfbYkoTH2m324Ka\n0/zWx6Wp65Yg5SbValUwkc8++wybm5tSzNbpdCTUSSVlLj79XCbhC9NgD/q4uuhpUtakKRrQdZtD\n+nduEtxQ9Iahz39X5XUwhd+wLOuvA/gEwN+2bbsOYBHAn6jPHFy9N5W8icGiBTFJ9E7L351ISced\nx21SmeefdD03NSXHfd7p3IzkvI443av5HvPxea56vY6jo6Opj3eT/08S/f03Ob4/je+/bbktkdtv\nA9gA8DGAYwB//6YHsCzr1yzL+sSyrE9ueQ33ci/38hXIrSwF27aL/N2yrH8E4P+4+vMQwLL66NLV\ne07H+D6A718d46t3lAwxTWXTH6QbQItAhwGBaxNff17jFABuTbF9L86ix9rpd1Oc8A+n383P/jSF\nbolTbouTi+j0OfPzptzUAr+VUrAsa8G27eOrP/8jAD+5+v0PAPwvlmX9A1wCjY8A/PA251DneiWi\noP+nPwNcE4lO06nJabE7YQQABCfQ52S0gD7jmwKDTKzCzXe9qehIjj6ePoe+7ze9UCbhBJNEg8n8\nXaP/mjWZn9ffNbEmp2Pe5F7M350Uz7QL0lRuGuw1Iw7mc2S0zGneT4MFmTJRKViW9b8C+CUAacuy\nDgD81wB+ybKsjwHYAHYA/GdXF/LUsqx/AuBzABcAfn3ayMOY849MAg1QORFkaOUAYCSEaB4XuEaX\nNUBJy0FTqJuDrP1GjTbzfzd9GHpi6RJbrXD0Qr2J9tdot9vOqK0ct5Tw2y7or0LJcB4wIgO8GinQ\n0ZRxwPRNr4vzToclSd3H+WMqn3H5EHp89D3pDQcYVWD8G4AkL7Hi1ePxuLZKnEYm5in8NMTJfeCg\ns2ad/AOani2VSkm9vi6AOj09FRYkRjHMScEHykHX1oKZaWdeF1/NB6Qfpm07Zxs63aOeDEz4YY08\nd4FOpyMJRm6lsk7HZ3o3j89zckwDgcBIGjMzQxmK/CoshtcRjjezLVkHo0PXvF+nJrq3iWjoMWOy\nEglqyOvJFHTSBJJVmuQ4binO2tLhffFvp4xPnXvB301LQadVG9bKG8tT+KmLZVkjg89mKdFoFEtL\nS8jlclhbW5M6BaLeu7u7ePLkCQ4ODjAzM4NKpSLZeGamoSYT0X4dGX1I6smJYNu2pMxyp7AsS3gI\nNSsUs93c7o2vzABkG7wHDx5gfX0dv/ALvyC5/eVyGc+ePcPTp08dmXXGKQfem8/nE0q7XC6Hb37z\nm3j48CHW19clualarWJ7ext7e3t4+vQp9vf3hbnIiWLO7d7Miau7aLFsnBOVE5g/wKvhW6exm5mZ\nwerqKtLptDBZBQIBzM/PC/9ApVLB8fGx0LCzKlPnY+idd9wmwHLoYDAovTQePHiAVCqF9957D3Nz\nc0in06hUKjg6OsLTp08l6qKft3Zf3J6XnpOaci4UCgntWzabxcXFBYLBIHw+n4wnU54bjcYIGe5N\n5U4qBeA6NswKNHbeOTk5EQ79er0uXIecDLplHNOhdeWek+9M/kWWF0ejUaTTaUQiEVE8WiHw+vTf\npDpjnvw0CSp8mKzDp+LTDT5o+bBegszU01gJVF5kslpfX8e3v/1tPHz4EOl0GsFgUKoN+X8m+7Ac\nnQ1bJwmtEq0ISK5COjMSxZ6fn0vBEHkHzWfjdHyOdzgcxqNHj5DL5aR3BanrSNybz+dHunfR6uHi\n1/iQPr4pBPY4DxuNBqLRKA4PD9HtdtHtdpFOp1EsFkc4IpnqbKbejxs/3h93f84J8j+mUikh+zUt\naOByDhYKhRG8hUD6TeTOKQVtjtM3ZxkxNWmr1RK+gWw2i/Pzc6mZZ/quXljAqz44B4wuCnezhYUF\n6WhEZcO+AizJBiDl3JxcZExir0nt65riBICRGmxmZgafffaZUMlzDKgg3TASp3PooqalpSWsrKzg\n/fffF7KYcrmMzc1NqbmIRCJYWlqC3+9HuVyW1OdpnhktA1KWkZ0onU7L+TOZDF6+fIler4dIJIJy\nufwKQcg4YZWnpm3PZrOYn5/HcDhELBbD6ekpAoEAzs/PkU6nJa2cC5U1Evo5THIptIXG8SdzU6vV\nQrlcRj6fl1JsTWCjXVc3ZacjCpyPZNemFUJqwpmZGamZoTVBF5FNY7jR8Hg3lTulFEyFQI1HboTZ\n2Vk0Gg3JzuPOShOc1YY0qcyeh2aWIbP6qBSSySQWFxfx8OFD4cYDrhmLSZpBE5S+/9zcnFgzmmDE\nSfTEMJFyErTu7Ozg7OwM6XRayqrpO5sdpiftPqx52NjYwLe+9S3pzFwoFPDs2TM8efJEeC7X19eR\nSqUQDofxjW98Q4hC6vX62JRg/nAcScG2uLiIeDwufTkBCH0+6fGDweArSWNuwKauDaEVwAKlRCIh\nHZ+5EMPhsPSQLBQKyGQyotx1VuW4KIFZ6Gbb9giIx1RmLlIdqnaKcDjdF8+jNxKv1yus3+FwGKlU\nCqFQCN1uF9VqFRcXF8IynsvlJHsSgFALMEP3pnKnlIK5YIDRHoftdlsYkQGIFiUPPk1RanYzXViL\nNtfocyeTSczPz2NxcVFarFWrVbRaLbx8+VL4BAHITsXGH6zP1/Rvk+5Vm3hsusrKvuFwKGQrmjhW\nH3eSC8HJmc1msbGxgdXVVVmMm5ub+NGPfoRnz55hOLxkrj49PcXGxoYoxl6vh0KhgKOjo4mgKc1j\nLkgqBpLq1ut1oanX3aNYsanHxO3eWNhFYh1WuEYikZHOUFSiDx48EGVF1mxGdgi6Aph4b3osqRw4\nP1hsRSo/lr1rRTNuLujPmXOCrQTIMk7X+ejoSKxUdqwKBoOCn+n8mK8kJPnTFL3zmdWCHCy2ESfY\ns7y8jFgsJjRXpVJJKN7HVdtpcJF4RSaTEbZhlvsWi0WUy2V8+eWXYjqylp6LlX0MSVSiQ5njhBOC\neEYsFpMJS7JRWiFOzEfTWArsHfH+++9L85Tnz5/j2bNnwrhEIJbt3Tyey4Y38/PzQgE/qUTXtq/5\nLNmdejAYSMcsPkOCxR6PRzgH+X0dhnW6F/rHvV4Pu7u7ODo6QigUElo+7YqsrKzg5OREODwZHeL/\neX2TgEZeG4X3ws9Ho1HMz89jfn4efr9fukA7tdlzel6motdhTioer9crDXoODg6Ess/kq9DkxbzW\n28idUgrmgOliIQDycNlo9tGjR5ifnxfOgXK5jMPDQ6FA5zGcjk9zjT4wy4m5k5yfn6NarQqiTKpw\nIr40TXu9npybRCXA9PnvnGBspXZ+fo7l5WVpYmvGvieNmRayYi8vL0tnqF6vNxIu44RKJpOy252d\nneH09BR+vx8PHz7EH//xH0tDHSfRO65lWeJCaFKcVquFYDCITCYjfTOm8bn1fVJhnJ+fY3NzE5FI\nRCjXuICIIZBQpd/vi7VFrkTupuOU0Lhr4DWTDWlxcVGIVUhpZ4LBk+5NA8P8YciYxVyNRkPwGIZC\nE4kEzs/PZfMikznL06exgky5U0rBSfRgEjSLRqN4//33EY1GAVy6FTSr2EdA76xmKrM+tuYhIFqu\nuxVdXFxIzwJO3mAwiFQqBZ/PJ2FDovUMuU0L8FDRhMNhWaAEUEnOyWuaZF6bx2VORy6Xk3wEYgSa\nBVk3XwUgWIvX68X8/PxIM1vzvBpV1+N5cnKCbDYr/+MOSHOYHJdkPZ4k+jzEd87OzsStikajI23b\nPB6P0NSTUUrvwtpSuMnC4bO1bRuzs7PI5/PSp6PT6QhtvBnd4DMxFavGG3iPnOesUuU9UFGwQRGb\n2jQaDRSLRRwdHcnvDCOPS4t2kzuvFCg6iywej0uIsNPpoFKp4PDwUBBzHfPmRDIfCB/cxcWFhHa4\nCP1+P7rdLmZmZiRJKhwOS8+AVCoFj8cj5lq5XEapVBppZDvNROd1aV/U4/Egk8mIUqEfrePc0wgn\n1+zsrOwmFxcXYn5yckejUdi2LTyEc3NzODs7w/r6ujTdZehyXDNT/Tt3YYJd3W4XXq8X8XgcmUxG\n2KVqtdorINw40T66LuvWpeAXFxdIJpOCa5BZirs3LRiGXnk88z7cROdKkF9zZmZGmudOy8Podmwq\nc80tORwOpesVwWcCt61WC4eHhyiVSigWiyOh63FZlOPkTioFM37MxBH6xplMBgCwtbWFer2O4XAo\npiGjD2aSii5uAq7jz9TIrVYL+/v76Pf7qNVqAiaRRXdhYQGdTkc6YHs8HnEb2DqOFODmPUy6V5q8\nx8fH8Pl86HQ6ki9BzCKZTI5gJfr7bkAqLRCa781mU+jpGdIlXkHS1r29PbHCvvnNb+L8/FyYi93O\npfGA4fCSn+Ho6AiBQACZTAZerxeZTEZ+yD2oEXseR7sJblYJz8NXuiFsDEMAbn5+XkBbtuizbXtE\nyXETuEnoNRKJ4PHjx1hdXRU8q1AojOAyZq4JxWw1oN9n/5FUKoVEIiHNkKh8EokE0um0KMJSqYS9\nvT0cHBxISwImzenI203lTioFLmDujmTpTaVSmJ+fRzqdxmAwQLFYRKvVwvLysrgI8Xgc3W5XogCa\nwNQUTiq6Gt1uV9ijuSsTyWZ4kmFIy7LEVSEdvT7mNA9DR0ioxMgvaNs2UqkU6vW6TBI2n7nJg9Yp\nwNqt4nXTNNW/0yzX5uyk3U/v+CR32d/fR7vdlqQwEtNSUVGB6sU+bqz0ebTo5CJaJ6lUSrg2GarM\n5/MyZ+h2jMv70CAknxWVwuLiIpaXlzE7O4t2u41ut4tkMimfJ8syn6tTnY75nBglYeYiuTuJNzE5\niyS13W5XSIQ55/WmN02Sm5Pclk/hKxWdscVYbTabxQcffICVlRUkEgkMh0OhviZSy/bubPpBUFDT\nYlF0lIMAHH1PtmZjcgpDkgTbNL7A3ZtKiDIJU9CTjBmU5E9kg1v69QRC9Xf1j9vxmY3ILDt2ucpm\ns8J4zA5D3Fmi0ShmZ2cFYzF35knCz5J4lgzYlUoFxWJRQmfEBHTPjHGKQVsQXGS6WpBRpEgkgocP\nH2JlZUXS1AHIwmIIma37ND270xjSzWI4MxAIYHFxEaurq1haWsLc3Jz04GRWK58lXQuei1iH0zkA\nCPsXgVp2KCeASoCU1izp+UlYy+iPnhvvfPIShbs0zc9EIoGPPvpIzLVOp4NyuQzbtiUKQBowLmTN\nNqT9S40xcJIxlZjmdCAQkAIrpseenZ3hG9/4hrA703ejluZimAZJ1wohFApJOisXcaVSQSQSwenp\nqaQ98zrMPAW3CW3btigrmsbEFxYXF1EsFsXcHA6HMgHz+TzW19fx4MEDzM7OSoHPtOzKHG+a9Dqx\np9Vq4eRCF/zzAAAgAElEQVTkRFrP85hOboLbuGmLhFmUxFwY3WBaOucRu2gTwGO9CrGAcbs4z8W0\n40wmg5WVFSSTSXlerVZL6ORDoZDU4hQKhZE5pPk5zXMA19GiZDIpVgHxLs5TuoKNRkMyTmnlMXKk\nXZavBabAhw1AwJX3338fy8vLyGazEqLx+/1YX19HNpvFwsICwuEwSqWSZNBxUQHXmXB6gOhaAJdI\neTQaxenpqSTTBAIBMTsZuuOOenFxgZOTEwHtqBjod08DnFmWJd2nQ6EQTk5O5KGyAId+JvskOAGo\nbmLbtjTk5Th4vV4sLi4KUMfuz1wwq6urePz4MZaXl5FOp9HtdlEoFKSl3aS8CPPatJVhWZb0qyyX\ny69kFvLzHJtxFgNfuRB0n4lEIiGYE/koCQozg/Li4gKNRkPcRDcAV4PTHo9H/HwufsuyZC7OzMwg\nn88jGo3Koo3H4yM9Lpx2bR2pYiIdoynMluX4lMuX5OkMkxPc1hWRfKWiuwnFIOVOKgXmI9AtYCw6\nl8sJumtZFubn5xEIBCR5xe/3yyCcnZ05Is0U/YBoVbAAKBQKyQ5CxJrgIoE+AlWcbPr6gfF5Cnqx\ncGIyCYVWB3P66RPrfgnmsdzk/PwclUoFz58/x9raGj788EPE43Gsr68jnU7j8ePH2NvbQ7fbhc/n\nQz6fRz6fl3bupVIJL168GOlVeBvRO9fx8bFYPjStNXg6zkrgq6lsAoGAFMRxMRGg7Xa7spMTVGY0\nhGAgd1c30eeOx+PIZrPw+/0Ih8MC/AFANpuVhcjqRs5n3VXcTQjS8v5ISX9xcSH4QbValc2IESVy\nSDDiwHPcJAqm5c4pBSoDmpwAZKFSI/PhU0sOh0Mp9a3X6xIJIJjGB2+eRyeM0O/u9XqSNq1r1RcW\nFiTXvtFooFKpSGqtpjfXkQ5T9A5IEJNU7xcXl/0JV1ZWsLa2JhbEkydPUCqVUC6XR5TPNDs304Cf\nP3+OVCqFeDw+UlGYyWSwuLgoiP3MzAxisRj6/T52d3fxySef4LPPPnsjtHJMaqIJzEVK038aK4TH\n4aupXDk3mFPR7/eFur/VagkoB2BkAblFVrS1R5wEuFZc4XBYxoys2Uyeq9frqFarI6zY3NFNoXLj\nXGMvTwKlnGPtdlusn2azOVKMRzyBLuxtw5HAHVUKAMQ0I2B1fHwM27YRjUYRDAYxNzeHUqmEer2O\nTqeDvb09NBoNQby5G3HBOlkKZpSAfqbP55OQIABJLKJ/WC6XUSwWRzLHdEHLtBqaEQ+a01R+3M2q\n1Sp2dnawvb2NUqk0Qoaix8pJOMnPz89Rr9fx6aefSirshx9+iIWFBQQCAUQiEVEwLL3d3t7G8+fP\n8eMf/xhffvnlVDiJm5hmPnEdLigq/0kukRlK1gqdFgC7edMFJG7CNnHstEUCGbqHbladmVTE2oOt\nrS2pPQiHwzg7O5NSam5Mm5ubMg+1eT/JEqIi48Jm5Ihl2I1GQyxHbp66NZ22oG6bL3HnlAIAdDod\nMZ2KxSLOzs5Qr9elrnxubg7D4VD6SDKTrNPpjDSX5atTA04z5Mn3mGHHYiu2PWMeAZuxFgoFNBoN\nsQw4QXWjF1PM6MdweEmMsbe3h4uLC1SrVTFBDw8P0Wq1pF2d2bZ9Wv+eIOrBwQEajQZ+/OMfY2Nj\nAx9++CFWV1eRTCZl7Bj3Pjw8lLRZzWh0W6GVQDM/EolIhEXjPeOUnQYZdcia+Ei320UkEkGlUgFw\n3TeE6c00v23blpDv3NwcKpWK673pLFjWXHDzOTw8RCKRkAhNoVDAxcUFKpWKVJdy7tEScbISeHyG\nVBn9mp2dlQ2K1Y6FQkFqG6hcTWWjr/m2tQ93lo6NmhiYboeahFiboqvk6JoEAgGJEZNkhQ1F2V6t\n2+1KhtzJyclI1yaNdwDTVd/p66Ro4GkaAtrbijbFnaIakxbqNMJQYTwex9raGtbX19FsNrG7u4ti\nsThS6jxuZ9PXZ4baiD0xXZuvXGTkwaDlRN+du+ybUHqUmx5Hj/3MzAwymcxIxMHr9QomwogX78Gs\nrtTH0tmfalzfXTo2AK/sHjcVE9E2hSYrzWbbvswSq9frsuPPzc3J5zTKq3MS9MJyQtKnFTMyol+/\nKnFa8Pr6Ocluu+PwOAwVl0olybzTrFg3ec7mOHHcGRGq1+sCOpsZhRrv0UlLr6twX+f7OvJBy4K8\no9zttRIYhxfoufg613ZnLYWvWsi8rAeS7xF042TVO7/WwPy8Zg/WC+k2FWp3QUzF8LqT3vzRmYzT\nAmLmdZjWjd4pnQBDza3BZzhNuvhXLSYorVm7tNI2r9vJOtBCwF5bFJjSUvgLqxTu5V7+AspUSuFO\npjnfy73cy9uTO4sp3MvriZsZ/SYtQ6ccAx061GKCl9q8Nc1f7dJNkyOhIxM3ic68Kfm6neudVgpO\niSxvatDoh2pMAbie7CY3w1f9oG56X26JOLpM2fy//gzBuEnn1DgKF7qZQ6CTfsyxZG2E9n2nBTd5\nXtLXMe+BkQw39i39c9OkKRY1sVKWuQFO3cRuGrlxwk2AVzt86bCsxhneFHD6zikFJ4TV/Ntp57jJ\nsSmc8Ho3M5FyDfi8TrRkktwKRVbjMO44ZsRE5/vz/seVF/OVk5XHYg6BzvbU39HXyIlPshSnazUt\nAd0hihmoTPwxE9bMBeoGSroJQ6u6iC0SiUgkpVarvZJc5ja+buJ0baay5bXwf6bC4HFeJ3J155WC\nkxLghGBZrBbdG4GLedLDcENvTdGluiZpi27RNe3OoyMVprmtd83XyRngcc34tXkd/Kwu79VRlHEZ\neeSs0H0w9O45TpFyLPX1cdK7JZzxnNp9YaWgmXKu71Pf702sO3YpW15elr4YAKTorlqt4ssvv5RU\naoasbxNWN0ufdfYmnw9bGtDSYko3E6XMKMtN5c4qBW2G0jz0+/1IpVJYX1/HxsYGMpmMVN11Oh0c\nHR3h8PBQuP+Y1cbJMu1i1edkqXEqlZJsRb/fPxIvbrfbaLVaKBQKMjHcwpFUZnNzc8JbwB2InZWS\nySRisRhs+zJTrlAooFarjTAE6wXi9PDNxc6/NcU5y6WZ7EOOSOZtsIsTayNMIg+trHRDEp3hqVPA\ntQXCXV7fP81/Zuy5lWzzGZGDkvwWpHdnvJ+fI5U8r5sLiF2cxll5MzMz+Lmf+znk83ksLCzg4cOH\n8Hg8mJ+fF+V5cnKCzz//HFtbW9ja2sLu7q5wNd5EkZuhW3IqxONxzM/PY2NjQxilmHl7cHCAg4MD\ntFottNttNBoNmfdUUDeVO6sUtHACRCIRIcrw+XyiGXO5HKrVKkqlEgCMaExgfLzdyQLx+XyIRCLI\nZDLSB4Gp0LwWJpnwPOQ95A7mpoSY86+LdzgBWOyysrIiDz+VSgldmhOo52Tl6HHT18wFoglscrkc\n4vE4crkc/H6/7Hz6fKzSM3kHNNmJZVlCd8YdnAU+/D/5BJjyTGuL6bzEH2j+mz0M+IxIjhIKhaQz\n2MzMjBCQkKCWTE8c5/Pzc+kdQmuEYKeT8B74eSqfUCgkSohKbW1tDZlMBjMzM6jX6yN8ljfZjCgs\nByfB0IMHD5DJZJBMJuHxeCQ9ndWhnIvahaAVcVPX804rBRMM4qRmhtzu7q5MRpZKc0cyM9YmKQT+\nzSYm6XRaLJL5+Xns7+8Lyw0VRjwex/HxsWhkJuW4sd1oKwTACEMzc/S5kDKZDHK5nHA7aBNbH8/N\nzdEKg/fF84fDYcTjcaTTaWxsbGBubg6xWEy4AEhY0+/3EQwGhZuSKcEUKhrt15P9iGPO9mUkPbEs\nSypAAQhgNzs7K5WtbNBrKmwqba0UcrkcwuGw1JHQfWQPDXIbspkKOR1Y/KbHyAkL8Hg8YoF4PB5U\nKhUMh0NUq1UAEOs1Ho/D7/djdXUVL168QLVaFYU2yYU1MQTOEW6EuVxO0u9Z9cmaC2IpTNmmpfQ6\n+NadVQpaGTC1mL8PBgMhTGUqsu7FyAHR/pgbAGSGxKh4MpkMHj16hIcPH8K2LxuoNBoNDAYDZLNZ\neL1eLCwsCNkGy5onTQAWZ9FUJrcjr9O2Lwt15ufnpc2Zxit0NpuOEjiNn44MABCXgT0z8/m8TGZS\n3Nm2jVgsJuSm7XZbmpiauyqvlYzYoVBohPVIv0frSy9EjjUXM3kH9/f3hdFICy0Lgn25XA6JREKO\nTXbtXq8nlt3c3BwWFhaEu/PFixc4PT2VoigqLT2GepHqdPZCoYDBYIB6vS4Nb3hvDx48QDweR6FQ\nECXHOWG6WyZgas4ZPgf9vJi2XalUsL+/j0QigVgsJkxhtKrotrptTNPInVUKwCgazl2GviEblpBg\nlByLTgiwG6hkAlHciRKJBFZWVrC4uIjBYICjoyM8e/YM3W5XeiUsLCyM+MOcQOPMNYJvrLjjebWZ\nb9uX5eGLi4tot9vY2dmRSlHTJXEze033gmAhd1kuXPL/nZ+fo1wui5XC45LjkD0TTPdBjx3dETZm\nIQsSuxiR2p27bavVEvOe7hRdF6/XO7bTNZURKy5JgUZFy2PRciH/BtvLsYUdu2E5HV8DyGSgajQa\n8hm2veP4cIGSMYvKzwTKnUBXt+enu3fPzc2NNDyybVvOz4az+lxO+R/Typ1VCuMWNRdiOBxGIpFA\nNpuVluq6HwBl2tATfdtcLodkMik717Nnz6RMmhTc5CMgmy81OwBHJh+NyDuZxdps1N2F9/f3Bbyc\nNnbvNI56J6TZ7/Fctm6zLEuYpfQ1VioVIVjVnIoUDYix4zHN3EQiIUAtLQSWh5OtiiZ8NBodYbBi\nT07zXriACZCSXt3j8Uh/SfJodLtdJBIJ5HI5aS03GAykIzWxHzOKpMeQ1ha5M9hs5vz8HIlEQhRP\nPp8X60jnMGgmcb1Qnc6lnxUtYh3p4vc6nY70Po3FYrJR0HWgNTkOK5kkd1YpUPjAyAsAQMC3jY0N\nMZ0I0nGy6e+PEzNUFQ6HpZt1r9cTN4W+/cLCAj766COsra2h0+mgWq2i2+2OMCI7PQz9wJ0sFL3A\n2E6c5DL6nibdzzhTlfTk7FM5GAzQarWkZyX9/OPjY2EQ0p2yTDp0Tl4yJVvWJUVeMBgULkSWLZdK\nJWmcQyuAHY4IENLnp5I1Izh0MQAIwzF9aaLvJO49OTmR8mMuWDIwcbFTiZOsxBxD/t5qtcQ8bzab\nwtdJK5W065rdizu7XpxOm5MJFuv/U2nynmmJplIp4YNsNpsSJdItBoHbJ9XdeaVAoZZnSI/hSDbf\nIMOyfjCTzDQKHwrNZTItDQYDCXEGg0Gk02k8ePAAH374Iebm5lAsFqUtuNnHYFrrRIvH40EkEkEs\nFkOtVsPz589RrVYdQaNpIyoarPX5fBJp4G7GayYtvm3baDab0taNbhqfgRl90MePx+Oya52ensLr\nvewQTV7GRqOBUqkkFhdxILoNDCWbzYHN+6ZFQ6yDSrPf7wvHJT9LBXhxcSEhTh5fRyGchOeny9ft\ndqWTGBVLOp1GJpMRjoZ2uy1MzCRddcuudBONiTGiw/6l6XRaAFQAEukgNyndVyrw28zDd0IpaGsB\nuC5tnp+fx2AwkBh+r9d7JY4/bkBMhJ5kIETaydQcCoWwsbGBhYUF/OzP/qyg9OVyWbS0CQTeRkMP\nh0NB71++fCkt4N3Cm+OwC20CAxCzlj48/XsSkQaDQaEl39/fF/IT7vZuuxxj/blcTs4BXE5OtoWj\n66Xvg/0uuMi5C/J8TolLHGNiEPTfuaOypwT7b8ZiMXmWw+FQQEguqJmZGXGfxonmt6D1Ydu2dGyK\nx+Oo1+uSL0C+T+ah8Jo4BuOyDU0A0nSpUqmUsEmTB5INlRmSNF2Wm8pEpWBZ1jKA3wMwD8AG8H3b\ntv+hZVlJAP8bgDUAOwD+qm3bdetyhP8hgF8BcALgb9i2/emNr8wQbU6SK3Fubk64DXO5nDQ2IbCm\nd5txCoK7KDW89vPff/99aedOrv9Wq4XPPvsMT58+FQpxJ9992vvS0QHbtrG/v4/t7e2R/ALTHXBy\nD8x7Aq5pw4PBoIQNT05OJF/igw8+QDqdRr/fx9OnT7G5uSk9CRn756vTObiI2a6MpnS5XBZzln05\n+J1kMonl5WVkMhlRrgwzM+xrmtUcK+7wBOAIbK6srAgucX5+jkAggOXlZczPz8PrvewITQxqZmYG\nlUpFUpPHKQUzrBuJRPDee+9hcXERGxsbSCaTGAwG2NnZweHhoTTWpTvh9XqlATEZmJvN5itWrI6S\n8Zycw+zxyZyFSCQiXI1sJGtZo3wgxBVuk+48jaVwAeBv27b9qWVZEQD/xrKsfwngbwD417Zt/z3L\nsn4TwG8C+K8AfBfAo6ufnwfw21evtxYdmmQ+gmVZ4kelUimcnZ0hlUoJOaf5sMft3Iwi0KSmRmdj\n1kQigaWlJYnfv3jxQqwEknNqJXRTK4GTghOPZi75Cwk2cafVqPa4MaP1w1g2sZfBYCBUcisrK8Jh\nWC6XUavVRvpbcLK6mfIAxGz2+/0j3bUIDHKnpkJYv6KYp4I9OTlBo9GQVuuAOy5j27bkc2jrg02B\nyCkZDAaxvLws/TsYuaLyIb0ZLQ6T7ZtjyFduGkyGevTokSg7XgdD2exSRkuKx+/1enjx4sXY56Wz\nPclQrestCG7zWvjDNaGjWbd1YycqBdu2jwEcX/3etizrCwCLAL4H4JeuPva7AH6AS6XwPQC/Z19e\nyZ9YlhW3LGvh6jg3FnOwdFrr1taWNDD1er1IpVKScqzjv6Yp7ST0GdmlmCSxjDez4Wy328Xe3h62\nt7dRqVTEJDVDkdM+DG2V+P1+JJNJIRN1ayZr7ipOu4FGrsn5Rx/65OREwCrgcgGStLVUKkkKLbMK\n9fnchOSvtOI6nY7UQoRCIWm+8vDhQ6TTadm92bGbmEOtVhv7rGz7khqvUqlIYhXzKjRDNMeFwGW1\nWkWtVkOn05EuXOwi7paSznvmGIZCIWQyGayvr0u4lQovGo2O1CXk83lxLROJBOr1OnZ2dgS3cZoH\nPBfPx2Q8dpkmGzc3L52kpu9hmuc1Tm6EKViWtQbg2wD+FMC8WugFXLoXwKXC2FdfO7h678ZKwdSc\nTFe1bRvlchm7u7uo1WrY2NgYmfxM19V+1bidVVcBdrtdFItF2VWJMIdCISSTSRweHuL4+BjFYlGs\nEp1FNs5a0O/r66GJH4lEkEwmR0BLM3Sm6xgYsXBLXqKZzQkVDAZhWZb03UwkEuj3+zJha7XaCC4D\nXO/y41wUgn2lUmkE/OP5NPgXj8fFvWMYsVKpoFKpiPtHt8PNOiHV+czMDDqdDg4PD6VBC5u00o1g\nJyq2qyMFO3GOcS3xdBIRXY9oNIpkMik7NmtYNKM0Iy+Mku3t7SGdTuPw8HBkszLvi8+UtTEEf0lh\nz/oT27bFQmGynn4W+vU2MrVSsCwrDOCfAvhbtm23DNPctm5IqWZZ1q8B+LWpLvIqf4APvd1uS8fn\nQCCAs7MzsSCYvOLxXHfdnWRq0zXh7sbBbrVaoog2NjZQr9ext7eHYrE4UnCllcqkc/Ez+oegWD6f\nx9LSErLZrIB0wDXqr2Pq056H5jHDf6z24253fHyMzz77DE+ePEG5XB4JrQLXCpPXaoZ7uVtdXFzg\n+PgYkUhkpIKVk5nhRL/fL1GIYrGI7e1tYclm4ZXbTqcXE5OJQqEQvF4vqtWq1JPEYjHE43FUq1XJ\niuz1eigWi6IU6GZwdzYVgz4X5wNBWbJ/M4xLwDIWi0n3KS5c5kS0Wi0BYsdZQRxTXXNBxc+oENP6\nWX9hPq9p3WY3mUopWJblw6VC+Me2bf+zq7eLdAssy1oAULp6/xDAsvr60tV7I2Lb9vcBfP/q+I5X\nrhcAQ0G6ko51CslkEsFgUIA5PZH1cdxE4xU6ky6VSknYiY1SCoXCSEjLCUuY9kFwJw8EAsjlcnj0\n6BEWFhakIQhBU96Trjjk7uHWS4DXwTi+z+cTtDydTkul52effYYf/vCHOD4+Hqkq1QVllHG7j23b\nqNVqGA6HsnPS0vJ4PJKW3Gw2BT9gsxYi9mbZ87iMTfb4oCJn70a6B8wtYNYrqwapzLlpjIvu8FzD\n4VDyYHhOFiKdn5/Lbs6x1uFRRnJ2d3clm9LpeXH+6A2GCmQ4HKLZbErlZbPZlPoSRl5Y7wNcEwnf\nRiEA00UfLAD/E4AvbNv+B+pffwDgVwH8vavXf67e/w3Lsn4flwBj86Z4gmleMdzChxOJRJBKpaS/\n5NLSkiDXemID1xN50gBxIbCdOHcrVqpxUdJnJpijFcI05+ArFRgjJ+vr63jvvfeQy+VQLBYlBKXD\ncxo4GtevwEk5MQWXMfuzszPUajU8efJEog0mJ4R5T5NMUu70rHcgwBaJRCSpiR3Dq9WqIOi6rRoX\nBUFWN2FegC6Ao3XB17m5OWmuAlznG+jqwXGKRy/WTqeDYrEoDWCYOUmrjgqabekvLi5QKpXQ6/Ww\nvb0tXcVY6+J0Lr7S7SFHRLvdlkzRSCSCcDgsUQzmkeh5Qgvoq8QU/i0A/zGAJ5Zl/fjqvb+LS2Xw\nTyzL+psAdgH81av//QtchiO3cBmS/E9udWVKqIHp77JddyKRkP6E9E3Zvw+4mabUC8m2bckXYJUk\nfW/d/ccNXHQ7L3cTDQAyJ58Zan6/X3oRNhoNOYc+Fx/6uDoLKh2tUFk6fHZ2Jgvy8PBQym55/045\nAm7jaSYBUeFQcdIv5rUcHx+jXC5L0o3u1j2pnNkJNKZC0LRuACSiwYU1NzcnCT7BYHAE53BbPLwO\n3lO1WsXm5iZKpRKy2awUlNG8L5VKsnNrzIPuLkOvbqLNfuIyzWZTcAtiZszcZKiT+BmV+evkygDT\nRR/+XwBuDuy/4/B5G8Cv3+pqxggn8vHxMYLBINbX1+Hz+aTd+v7+PjY3N6U4RLseN9GYDCOdnp4K\nqMcCG/aO5A7OCQxMZ5FQIeh6ARb20DwEgL29PVm8uhDKNBPHnYvXw1ReRgeGw6GAmV9++aVYJE5g\norZsxk0yphtzZ+33+6II+ENXRsfXWXVK4Wc9Ho9rC3WniBIXLpOE2u02LMsaSbqiBUMQ0LIs6aY9\nznWgMMza7/dRLBZRKBTw53/+57JQ9RwjvwHdPIZEmX/hdi5t3TJLV5dRkzui3W6jUCigXq8LDkRL\nic/htinOAN6tvg9mgQiTNYBrboLbDAYXtgb+iCJzJyAyrxvXuu2o40SnyPLczDLkddDvfZ0HC0BC\nqgAE5GOIVYcOx/nU5s6sXRYqHI4Z05aJk7DvZywWEwW+vb0toUuPxyOvLGGmucyxMHdWXg/BPI4h\n4/QkrWEmIRcLx5dxfyp+Xbp+60VkgL5mRSmf9aREIs4//TtDk7wv1mAwXdttnrjcy9e/GYyZt/46\nD9UsXOGD1eivyVNo+p3Tnt/c7fiqrY7XMf8oROPNzE7uqrQ6plUITsen2PZl2i+jPwTiWJXIe65W\nq1J1yXukK8VKP4Zjx/nFGnPQz0tHRHhsXivDfbZti4V0m4y/SaJDxryPaZ+nmdWoj2fOtXHRmb+w\nSuFNi9OD0CCQfrBm2Od1dxrzeG/quXByao5EnmscQ88khQCMNum1bXuk/p+Zp3qXY4IYU6K5mxLv\noIuhx8Ft0ZocFObz4j04hXNvUpx0G3EKF9/keZrf13NLz0Xzc1PMw3ulcC/3ci8jct827l7u5V5u\nLu9E6fS7LiaKP+4zN7XczHwM/f6btgKdjulmwpq/6/9P+q6JCwDOboJ5DtPMNutGzHOY1/BVuRO3\nFSe34SbP9bZz4J1SCuaE0O9reVM+uQYyNdDDc2h0eZrzOT1UE2w0j6/f1+eZACiNnUDjxtAEXU1g\n1e08TsdxGi99fv7fzNcfd938nAbzTAYlHdmh8HMmnnCbeaJBRKf71UDgTSJITliCE4s3AMn7sG1b\nqO6cuERuoxjeCaXghKq6TVC3793kXPp4OgTmdlyCWJMmgFPEge+Zk9RJebh9f9z5pn1fj6sJSLol\nE5nXYC4Kc7c2FYh5Lg08TnpuJnhoWdYrWZ7m9ejyaFNhTRInxafPwwImhkbJWsXw9ThyFX2NwDUA\nC1wXxOnoCueiaS0xGsT07WnvzZQ7rRTMBzFpV9Q7g15Ek8xCc5fkd/g3O/UwiUTHupkwoxvQjMuQ\n46u+FyfTXy9IfW16IU2yFm4z6fUObP7fXKx6t3dbNOb73LHNWL4O+TpVfupjMf0cuO64xVdGPxjH\nt217JNmMNRBOeSbTjg3HgNW7Pp8PKysriMVikqvB2oeDgwMhVXFTdubmo3MqGOLlvfFvKoFQKDRS\na8Gak5taKVrurFJwWqicTKwxZ468bdvCLkSGIBKB6r/dWmjpJByfzyfFV5lMBgsLC1hbW8P6+rrk\nzDNdd3t7G6enp6hUKmg2m2i321Kf4XYucyejkmGDFKY6B4NBmSDcEXVZdaFQkHRhprk6jZ/TWOoU\n60wmI2Qh7GHQ7/eln0On00Gj0UC5XEa5XB45l9s5WOhFQpJYLCbNc1KpFABIfQC/d3p6KoVMn3/+\nuSSLUTSm4PP5hAZtZWUFjx49Qjwel9oA8hj6fD7UajVUKhWcnZ3h2bNnwrh0dHSEZrMpC3YaC4+7\nNBdjPB7H48ePsbGxgQ8++EBSp9mbgXU6pGYvFAqOTN96HnKO+/1+WJYllG7MftVZsOl0WupJPB6P\nlJGfnp6iVqtJEtzXwn3QphAz/khyMRgMpF8BE1FITw5ASnDJeANAtKtTrYA5sTmp2TEpm81KAQpT\nZS3LQqPRkIYptBK4E+kd0O3+9OJhgdfy8rJUMbLakIuUlY62fckuzAQkptCOG0u+UpmyyGtpaQk/\n//M/j9nZ2ZHFSoqvfr+PcrmM/f1LeozT01NHqndtLegJzC5Ua2trwkWgFTz5B7ngWdkYDoeFKIdj\nqHEEAEIjH41GkU6nhTMiEolImTLHMJPJoN1u44MPPsDOzo7QtZE1GoAofDcx/fRQKIS1tTU8fPgQ\nmQhpUOwAABVMSURBVExG3j85OZHsTo4H5+EknMdpfnCOUznQKiCh62AwkO5X3W5X3BTNu/HOKwVt\nGXCCsX6dyoDcCRyUubk5IQ49OjpCsViU8t1xHHymf8v3aHlw5wSAnZ0dXFxcCNUWd3cWaukahXHu\ngDYT5+bmEI1Gkc/n8ejRI6yurgq1nO5fweugAqI5yUnDxWXelza3eb3sH7m4uIhvfvOb+Oijj+R8\nlmUJPTu/T9YgUrg7gWEcP07kcDiMWCyG5eVlLCwsSO+Fs7MzYXZm7wIqer04NX2bOYY6O5BMVax9\n8Hq9OD4+loIhMirznmKxGFKpFBqNhlRp8ljTulgejwfRaBQLCwv4xje+IfOO3JYXFxcjHZ20S+RW\nX2KOqwZeycegd3zWRhDLoDXHzeJ10+PvnFIw/W36nrQU2LfPsix5CGyKwaIRFkVRIdBKcBLTR+eA\nalP79PQUOzs7I74fS3R5bJqFOnNQn0Onr2oXiF2019bWhAeSLEi2fUk9Rmo4XpuujZjE9KyV0Ozs\nrDRIefjwIdbX16X4iP0V5+bmpHkLFTALfqiEnc6lJzbvTXdRYleoL774QnbwaDQqjW29Xq/07TDv\nwem+WBnJMWKxGglSu92utAJIp9Nyb0y9ZiGTG4jqJDTnU6mUKPFEIoFCoYCf/OQnwk9JMhY2w2EG\n57idW5d8W5YlSo7jqa0N4NqCptXCWg+WyLMD1tei6zS1NgeJJrnX6xWzd3Z2Fr1eT8qkyThM66HV\nao2gvU6EITwXX7kL6WqzSCQihCdk9qlUKlIB6PP5xF3gcSZVG1Ip0PJZW1uTH6/Xi3q9jk8//VQm\nktfrRT6fF+yh3W7j4uJCMIxxJq8+P8k/Q6EQVldXZYd7/vw5CoWCFAalUik8ePBASGtarZYwGLEM\nedxipZXH1nThcFhK2nd3d7G7uytWy3A4RCwWk2fe7XbRbDbR7XYdn5feQXu9nrQKDAQC4jIeHx/L\ntbIWw7Is6SZFrs1IJDLCMD3tGKZSKTx+/Bjf/va3kcvlUK/XUSgU8OTJEwwGAzlmIpFAIpGQ++I9\nmWOn56Ce+3pekYVJW9HskuX3+0WZ6uiLk1U3rdw5pWCaUdospX9Fjr5Wq4VAICCa2e/3o1QqwbIs\nIVPlwJo7qjZ7zUiALq0NhUJC8KmrJ23bFspu8vyZD9g8l3aJAoEAFhcXsbq6ivX1dSE3ffnyJfb3\n96VvQCKRED+SHYHIXkTQ0elcWmhtkdCFVPa9Xg9ffPEFarUaPJ7LRjQsEaZbsrOzg0KhgGq1+ko5\ns9O5LMsSs53gV6VSQalUwtHRkfAsELmnhUeeRoYNnXALji0V+MnJCZrNpuz4BA9pshOvmZmZEX+b\nlgXxIZrmkxaQx3PZin5lZQUff/wxVldXAQCNRgOffPKJlEpzR2c/UvJv1Ot1R9Zoc/FqxcDnenFx\nIcDtxcWF9CGJRqMCdLNHicaepnWLTLlzSkFbCNy5h8OhmLLkamSrcvL75/N5WTAmASknkZZJGpth\nLKLYbJhK9mgSgXK31grM6dhUCFwQRI/J5HNycoJyuSyt7TUzMKMSLDkmLbpTkxZzl9DuCtmquIOx\nxwJ3OM0NwEVcrVYlymKG8fS5dLiVCjQQCIilxXJoRlni8ThisRj8fr9wNGo2aLcJrXEF+tbkReS4\nDYdD6TFK5QRA2KXOz88RiURQrVblmYxzIbgpZTIZPH78GGtra/D5fNja2sIf/dEf4fDwUOYtAAlN\nxmIxWJaFaDQ6QvVuitN80fNJd+zu9/vIZDLS0Ibkt81mU6gESTd3G9cBuINKgaJ9Yk46hp2azabs\nAkTrA4EAisUiSqXSK92nx+UOOMlweE3rTebjTqeDTCYz0juAzDe6z+KkCcZFE4/HBTDl94maRyIR\n+SxNXcu6ZEUmrTwJP+iDjkO0PR7PCFjLcC4AQcnZXi0UCoklUigUcHR0NMIANc594AQmA7a2jEhp\nxwWpzXdSoRMLcGqma57bsq65Bsh2FI/HhSCWfREAjPRjJH0+o0huC9V8ZpFIBAsLC1hdXUUmk0Gj\n0cCLFy+kIzitBD6vfD4v77HZ7rhx03/z/ujKsr8pAMnDsG1beo3qTQK47jR2W7DxTioFvWvrVE6a\nhMPhJZlpLpfD8vIygsEg+v0+jo+PXyENGccX4HZujS/QNyUoR8yCjT1NSnSnhWPiJJw83J0ZvbBt\nW3YB+u+cDOyJQKWgaeXd7oHC+De7RHU6HVlUa2trgsKTcox+cqlUkk5P0yhV+rpcDCcnJwgGg5IL\nkUql5NxcJK1WC2dnZ6JgqdDdjg9cR1NI5sJSbZ30MxwOxRKgNcaNhWPHXhj62E7nJOntd77zHTx6\n9Ai9Xk9yHcgyRQwmHo+LQqClNO6ezHvT1hcVLMlyqMzY3+Tw8FByR0y8QueA3FTunFJw8o8HgwEq\nlQqOjo4ERJybm0MikcCDBw/g9Xrx7NkzfPHFF0LxxZAQQ4VuYu4+NLUjkcgIp78mK+EOrd0THsdc\nkDwurQ8AwkoNYKS7FFuccUJzxzs/P5cu0NwVGO4ad1+8F15bpVKRvIdIJIKlpSXpYVCv1+Hz+XBw\ncICdnR0JHTI0aoYI9fMicMpMO8uyhEiF6Hg2m0UsFkO1WgVwuXv3ej3s7u6Ka6IZnZ3OwzGcnZ3F\n8vIyVldXheKNDXt4LO7epHrv9/uScxIKhXB4eCjKZNzi8fl8WF5exne/+1384i/+IhYWFlCr1bC5\nuYlGo4FEIoHV1VUZh3Q6LbRpvJdarYZGozHRIiFxDDNoY7EY1tbWkE6npfFwKBQSjKZarYpC4Nhr\nq9jMSp1W7pxSoNCP83g8Qr1eKBSkGzQAPHz4ELFYDM1mE9vb28LmrF0HHmvcefT5zBwAEo/yc9xp\n2DWZSDfwajjVFL2AOJmZg0Bzj+dijgABQVpN5+fnEpnQ1omTcNdk92Mi9trlyWazGA6HWFxcFIp2\nYg0cS72LuQkXK0FY+u5+v1/yILiDszt1IBCQzk06AWyceL2XXcKWl5cFBGaqOeP1tGy400YiEVko\ndCN0PgbgXCFJ9yKbzUqiFLELhlWJjzCqkclksLa2JuHCVqs1MZOR96XnH10GZoSm02mxdhhxoWum\na0BoVfP6vzYZjRS9+zKFlJmEHJTT01McHx+jVCoJIajTju02MDp5xOPxSHydoBxj3Pv7+1hYWBhJ\n4eWDByA7vLZunM7N6AYnVrlcRiQSEd/4/PwcrVZLMg4Zfh0Oh2g0GhLa0sd38vOp5JgVSQXn8/kE\nba9UKggEApifn0cymRSlSr/eBFDdxpL+L10H9lkg0xIBPu6sADA3Nyft6rmIdc2DE4ZA94T+fSgU\nQq1WE4o3KpZ2uw0AyOVykkdC10Jfp6aTc9s4uMFwgdXrddkEOLa9Xk9Sr/P5vCic/f19bG1toVwu\no9PpuIKn2tXlZkM6O4KWbHTEUDTp9HkdjOLofIZplKyT3FmloH1w3iA7THMHoGm2ubmJarUqi8fc\nQacZGMbx6QOzUWi/30e1WsXx8TFCoZAAZDSXZ2dnZaGak9jpvEx08ng8aDQa8lmSqDK68NFHH6Hf\n78Pr9QoIRyTfbbHq8+oaBybSsJ7CsizpGbC6uoqFhQUMh8MRhmWzoMbpXFoIirKrM60tKpmTk5OR\nxiw8pu4SbtLDOaHyBC1J8e/3+0fa91H50ZSnD57JZOTZXVxcTN0UmGOp6fLZgIY5AsPhEB999BFW\nV1exuroqjXa3trbw5ZdfolKpCHO0k5jWajgclroGurBcA/v7+ygWiyO5DFT6BHI9Ho90wLqN3Fml\nAFwDdKbvTpAIuEw/3t7efkUh8PsUtwGi0uGDp3VAE5dRBl22St9WRxyoxDS+oEVbEJxYNH99Pp90\nfa7X6wIucgdlNyXiKXoyO40ZxefzIZVKYWFhAel0Gr1eD8FgEGdnZ5KiHY/HAUDChuz8rCM3kxQd\n759KkhENVioSmOXf7PZsJis5PWd9X4zseDweZLNZCVFzIdj2ZUp4r9fD/Pw8crmcmODs2ExXtFar\nSe2D5lkwnxl350KhgHw+L6npLCJrNpuIRqNYWVnBysqKNIp59uwZNjc3BQdzi95ohcD/E0Bloh4x\nEra7r1Qq8h3LssQSIn7GMOvXClPgoHGiaPpzWgqRSASnp6fY3d0doenWcWy9aNx8Rv1/+vTBYFBq\nLhqNhsS9uZAGg4GYb9q81Od3E8bWO52O7Gh86Ezx5WRg5p5uI8ed1Wm89H3xh7t3MpmUz52cnKDX\n6yGdTmNjYwO9Xm+k+7PTTq1dOfNcfJ91/ARUOTbMH2AEiX45W7xxl6cScron4DqcSwyBSmBpaQl+\nvx8rKyvS4YtNduhvE5u6uLhAsVhEuVxGrVZ7Rfk4jWu5XMbm5qbkxBBHWFlZkVwT4hbNZhO7u7t4\n+vSpJFONY43mtfFcpJ2Px+MCnrJPJ1PFOZ6cp3ymBE3Npsc3lTupFLQ25UShucYQTSKRQLvdll3G\nXCjT4Alac1Oz6uzFi4sL6ZLMRBjbtiXJiCa9DmO6KQWeg+dj3bvuRchsSfaUpJVweHgopbAaUAKc\nwU2ei+XkkUgEi4uLEv7s9/uCcPv9fhSLRWxubuLly5eS+TducZrjqkt+6RJEIhGx5ugaBAIB6ctJ\nhc4Ih/m83HZUIvSFQkG6dLOG5PT0VHpo0NfvdrvSNq7RaODo6AilUklSryctGuJZW1tbAC6V+urq\nKrrdrtSFRKNR9Ho97O/vo1Qq4fnz5/jiiy9G+o5OGkfe33A4RLvdRr1eF6uOkRw+f26QdMOYvs2I\njgalbyN3Vino3+lrcRefn5+X0IzuRegG5ACTgUbguoMTzUtiCJFIBB6PR7Ilt7a2JG+ACkkrhEm+\no87hByCl2rlcTuLcVBy7u7sol8tyn9xxtMvidi4i/36/H/F4HIlEAsPhUKyNSCSCo6Mj/Nmf/Rk+\n/fRTsRTotkzyt83nxEgAQ5C2fckBkclkRqoGCQ63Wi3JCNU4g1awTiBtv9/H/v4+hsOhkJswBZ39\nIwaDAba2tnB2diY9HBnSZVs+WpiTFi1xJeYiFItFZLNZeQbdbhe1Wm0kmYjnNJu1uAGN2socDodo\ntVoIBoMjIV72Se31euLyMDql554m+xn3/NzkTioFrTkZFdDmMJttbm9vy3e4OPQiH6ckKPTBKMzV\nZ4w5lUohEAigVqvJDsOWXYwRm5bNuHPq4intA2YyGQGpwuEwyuWyxKOZNafHwcnvNu+Lk6ler6NU\nKonJSXagdruNTz/9VNrQN5tNURjmM9Bj7HQugoo61z8ajSIWiyGfz8Pn86HT6WBra0sWEHMudORh\nnIVn27YkDv3oRz/C0dERtre3EYlEpAqSxyEOw/oQhirpQuiEHyfLhOfjGLO7VaVSQTgcloInov37\n+/vSk5PRgZuY75pRiTkb9Xpdsnd9Pp+kgLNpjmVdd9PiffMZ3YRZypQ72/eBvhIAyQDM5XJYWVlB\nIpHA+fk5nj59imq1OqKRTbBv2siDBtP4nl6EwHWY8aY163qiEx/RhVFExlnJR3CrUqmI8jGLkcx7\nc7oWhsZmZmYkRTuXy0nbuG63i5cvX8pEG2d1OB3ftBR0RIahQ2IANGdPTk5kt9cT18R3zNwI/RwY\nWdEujtt4jAN9tUXC895EzPvX573NuuKc4O8a2Aaus3PdrOJJGBre9WYw9Ou5izDDi8k+tm1L8ZAu\noNG+9rQL1w0gNHdKtwc+yUTTD0trda2AdEYgTUAdaTB3btNCcDq/rkSkgqMC5P1q18vt2qdxH4Br\nhmG9eM3P8LrHYUBOSkFbWObzmvYZ89VM9tHj8dMWc3wZWjRFW6Ru90sFoj9jHP/dVgoULiLbtoXm\ni38TqNN53q+jqR2u640cyynspK0ZvQvqXcvJJTLBzHETRS9O0xKa5O443bsb+Of2Pb2QKW672zgT\n3hwD81omWYTm+Dqda1qr8qsWc24Ar7Jpa0WmvzfF3P96KIV7uZd7eWNy3zbuXu7lXm4udyX6UAHQ\nvXp9lySN+2v+quVdu17g7l7z6jQfuhPuAwBYlvXJNKbNXZL7a/7q5V27XuDdvGYt9+7DvdzLvYzI\nvVK4l3u5lxG5S0rh+2/7Am4h99f81cu7dr3Au3nNIncGU7iXe7mXuyF3yVK4l3u5lzsgb10pWJb1\n71uW9dyyrC3Lsn7zbV+Pm1iWtWNZ1hPLsn5sWdYnV+8lLcv6l5ZlbV69Jt7yNf6OZVkly7J+ot5z\nvEbrUv6Hq3H/zLKs79yha/4ty7IOr8b6x5Zl/Yr639+5uubnlmX9e2/pmpcty/p/LMv63LKsp5Zl\n/RdX79/psZ5azBzwn+YPAC+AFwAeAPAD+HMAj9/mNY251h0AaeO9/xbAb179/psA/pu3fI1/BcB3\nAPxk0jUC+BUA/ycAC8BfBvCnd+iafwvAf+nw2cdXc2QWwPrV3PG+hWteAPCdq98jAL68urY7PdbT\n/rxtS+EvAdiybfulbdtnAH4fwPfe8jXdRL4H4Hevfv9dAP/hW7wW2Lb9RwBqxttu1/g9AL9nX8qf\nAIhblrXw07nSa3G5Zjf5HoDft227b9v2NoAtXM6hn6rYtn1s2/anV7+3AXwBYBF3fKynlbetFBYB\n7Ku/D67eu4tiA/i/Lcv6N5Zl/drVe/O2bR9f/V4AMP92Lm2suF3jXR/737gytX9HuWV37poty1oD\n8G0Af4p3d6xH5G0rhXdJ/m3btr8D4LsAft2yrL+i/2lf2ol3OpTzLlzjlfw2gA0AHwM4BvD33+7l\nOItlWWEA/xTA37Jtu6X/9w6N9SvytpXCIYBl9ffS1Xt3TmzbPrx6LQH433FpthZpBl69lt7eFbqK\n2zXe2bG3bbto2/bAtu0hgH+EaxfhzlyzZVk+XCqEf2zb9j+7evudG2snedtK4c8APLIsa92yLD+A\nvwbgD97yNb0ilmWFLMuK8HcA/y6An+DyWn/16mO/CuCfv50rHCtu1/gHAP76FTL+lwE0//927Rg1\ngSCKw/g3VXpTWSbgDVLmAtqls/cYewc7SyuLXCK5QKrEIKIexWJTvBF2ggt2s8L3g6l2iz8P9jHv\nsZ2rb1X/5u03otYQmecppYeU0hMwAb4q5EvAGti3bbvsPLq7Wl9Ve9NJbGaPxCa5qZ2nJ+MzsfX+\nAXaXnMAj8AmcgA9gVDnnO3HdPhNz66IvI7EJX+W6/wIvA8q8yZm2xAc17rzf5MwHYFop8ysxGmyB\n73xmQ6/1rcc/GiUVao8PkgbGpiCpYFOQVLApSCrYFCQVbAqSCjYFSQWbgqTCH+B/MAgb87q1AAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACtSElEQVR4nO39aYhs65oeiD0r5oiMeczIeU9nn6mO7lADQkaUEd3uFg3V/UNCbbBlKFz+ISE3tEGl7h8tDIKycQsMhsa3aeGSaalU0C1UGGO1VLQQElKVbhV17z33DHvInXPM85iREbH8I/N59xvfXisicp9z7sldN1/Y7Bwi17e+6R2ed7Js28Y93dM9/fyS59t+gXu6p3v6dumeCdzTPf2c0z0TuKd7+jmneyZwT/f0c073TOCe7unnnO6ZwD3d0885fWNMwLKs/8CyrC8ty3phWdZvflPj3NM93dNXI+ubiBOwLMsL4BmAfw/AGYB/B+A/tW37s699sHu6p3v6SvRNaQK/DOCFbduHtm1PAPwOgF/7hsa6p3u6p69Avm/oudsATtX3ZwB+xe3DlmXdhy3e0z1981S3bTtn/vCbYgKWw88WLrplWb8B4De+ofHv6Z7u6U06dvrhN8UEzgDsqu93AFzoD9i2/QMAPwDuviZgWU48DfhZ5V1w/Hcpz4PvbFnWwnt/lTm4rYPb/qxLt30ny7Icx/y65rlsXCf6qmN9U0zg3wF4YlnWAwDnAP4KgP/1NzHQN7Uw3GjLsuDxeOD1euHxeGDbNubzufyzbVvG+jrGXPX9N33Qvg7yeDwL/2azmayTXqu3ff911kn/zFwzNyay7H30efD5fPD5fAs/s20b0+kU0+kUtm1jNpvJM819u+1czXNoWRbm87mMoc/h24z1jTAB27anlmX9dQD/FIAXwN+zbfunX+cYenH0pns8noVF4aVd95nm8z0eD/x+P4LBIAKBAABgPB5jMpm8wQjWHctNSprz0L/n9wBkjNlsJgfhLpC+JCTzYH5dDBN4vSZkzrycgUBALgwATCYTXF1dyX7NZjNZQ+7ZOgyAF9Dr9cqZ8Pv9sCwL0+kUl5eXuLy8xNXV1RvMZl1tzulMc01DoZCcwel0ivF4jOl0+sZzTYa7ir4RF+FtaR1zwLygXq8XGxsbSKVSiMfjsG0bV1dXmM1m6Pf76PV6wpXJoW/zfEqxcDiMaDSKeDyOWCyG2WyGTqeDq6srXF1dYTKZYDQaYTqdyuFaxghMKeXxeOR/r9cLn8+HcDiMUCgE4HpDvV6vbOh8Ppdxx+MxLi8vvxIj0AfN6X99oNaVlFpz0toTL4cpQS3LWtAWOO6yd+XzvV4vQqEQQqEQwuEwMpkMstks4vE4wuEw5vM5Wq0Wms0m+v0++v0+BoMBhsOhnAunS2vOi3Px+/0Ih8OIRCKIx+OIRCKYzWa4urrCaDRCv9/H1dWVPHs+ny+cjVVrqKW9z+cT4ZNIJJBOp4WxdbtdtFotjMdjEQZaEyGzM8b7I9u2f9Ec95syB75WMrmjz+dDJBJBNpvFo0ePsLe3h0AggF6vh4uLC5TLZeGUAODz+TCZTDCZTJY+n+T1ehEIBBCLxbC1tYWdnR0Ui0WEQiH0ej2Uy2VcXl6i3W6j1WrBtm1MJhPZbG7+snlwHL/fL5sdi8WQTCblcIVCoYVLMZlM0O12cXl5iV6vh3a7jV6vh+FwuFID0WPyApmShtKN78gDRqbD+TkRLwjfm/PyeDzo9/sYj8cyHn/n9XrlElJS87I4aUn6XfmPgiCVSiGXy2F3dxdbW1vIZDKIxWIYj8doNBqo1WoolUq4uLjAxcUFLMuSdfN6vU4X5g2m5vP5kEgkkMvlkM1msb29DZ/Ph6urK4zHY/T7fXS7XQwGAwwGA5m31+vF5eXlSgbn8XhkzQKBAKLRKJLJJLa2tlAsFpHJZOQs12o1nJ6eotlsYjAYiECgJqyZwSpBf+eZgCmhqRYlEgkUi0Vsb2/j4OAAoVAI5XIZ/X4fjUYDwWBQmAAP/bLnawnl9XoRiUSwv7+Pjz/+GI8ePUI8HsdgMECr1UIoFEKr1cJsNsNgMFiQ5vo5yw4VP0+Nhpy+UCggk8nIQUgkEvKcy8tLNJtNVCoVABAtxA0X0RdHS5ZYLCaq5cbGBiKRiEi4aDQq2lO5XEar1UKn08FwOJRLY85LM01ekFAoJJ8PBoMYDofyLrxQPp8P4/EY3W4Xw+EQl5eXsj5uTE3vUSAQQCgUwsbGBtLpNA4ODpDNZpFKpWBZFprNJqbTKbxeL3K5nKjSw+EQg8HgDZXbjfhOwWAQGxsb2N7exscff4xUKoXxeIzhcIhWqyVMqd1uIxqNyj6PRiN4vd4FO96JtHnj9Xplrw4ODrC9vS2aQKPREMZDU4cMm/ujtbB3ngmYNqXH40EoFEIqlUKhUEAsFkMgEJCFuLy8FHVPSxUn6aKfz6/JjZPJJN5//33Z7G63i06ng9FoBNu2RQLVajU5TMtsdG6IHpMbTq6fy+WQSqXg9XoxmUzExoxGo0ilUggEArAsC+12G9PpVHAJJ9KHm3Mis9nf30exWEQsFkMkEpEDQzU0EAjIuIeHh+j3+64HSUv//f195HI5xONx+Hw+XF5eYjQaIR6P4+rqCn6/H36/X8aazWbo9Xo4OzuTteMhdrKhuX/mz3w+nzA2y7LQaDTQarVQrVZh2zbi8ThyuRzC4TA2NjbElteScpnHgb8LhULY3NzEwcEBHj16BMuycHZ2JpqGZVkIBoPIZrPw+XzyXGqlfI4bFqQxJZ7XWCyGdDqNeDwOv98vUp9mYzQaRbfbFe3TCadaRXeeCQBvXhraf1zocrkMAGg2m2g2m2i1WiKFtN3ptiD60FmWhXA4jAcPHuDRo0dIpVLo9Xr48ssvUS6XcXV1hXQ6jUwmg36/L1JrlV2uGYBmTLT5A4EAvF4vRqMRms0mOp0OACAajWJ7exsbGxsinTXesUzj4NeUYul0Gh9//DEePHiARCKBy8tLdLtd9Ho9WJYFv9+PdDotz+x2u+j3+2IKmMS1ikQiiEQiSCQSyGQySKVSiEQimE6naDabwpwTiQTi8Tji8Tg2NjbQ7/dxeHiIarUqUnOZRCZxvWmqEBRst9sYDAZot9u4uLhAv9+H3+/H1taWXMxAICAmm2kWmXPTl8jr9SIej+P999/HRx99hEQigUqlguPjYxweHmIwGIjwODg4QCQSwWQywXA4RK/XE9Nn1bw4JhliKpWSva7Vamg0Gmg0GoKBkXFzPfQ5XBfveyeYAPD6YFPtJBjYbrcRiUQwHA7R7XbRbDZFC+Al0VJ41RherxfpdBrb29soFAoYj8d49eoVPv/8c1xcXCCRSCCVSolqSHTYVL2dSDMbUjAYFNW43++j1Wqh2+1iNBohFArB6/Wi1+vB7/ej0+mgXq+jVquh3+8vzNGchzmnTCaD999/H9/73veQTqdRrVZxdHSE4+Nj9Pt9hMNhbG5uirZRqVTQ6XTQ7/dxeXnpaAYQB+A8AoGAYDWz2UxU5X6/D5/Ph+FwiGAwKO8Tj8fRaDTeWENtDpioN//nReZnW60WJpMJ+v0+qtUqWq0W5vM50uk0AoEAAoEAbNvG5eWlXCotXJadCQLEe3t7ePr0KTKZDObzOZ4/f47PPvsM5+fnmEwmiEQiMr9YLIadnR0BC7X54XQWnTTSRCKBjY0NbG5uYjKZoN1uo1QqodPpCLbDS0/w+G2A/neGCQDXh2NjY0OAM43UXl5eotFooF6vC8jExdQuoWVEJkMmEIlEUK/XcXp6irOzM0wmE+RyOUSjUbEvw+GwqGluSLqb3cnvCZLNZjOMRiPh8JSu0WhUVMpGo4FOp4PxeCw24TJVVptPOzs7yGQyGI1GODk5weeff45arYb5fC6gE+13mj/dbncBtHMaixeRXxMQazQaKJVKYkJ5vV4Mh0Nks1lsbGwIs9ZgpX6WuWdaOlPtJSBHJkqmM51OEYlEsL29jb29PWxsbAijoDfH7cLoi0oNKZVKCeYQjUbx7NkzfP755zg7O0O32xWzbj6fCyNMp9MYjUYol8uisrutoWZw2iTN5XKIxWIYjUaiWdi2jWAwKN6AQCCAcDgsHqPbMoJ3ignQrk0mk0gkEmJ/+f1+1Go1tNttcf2QCbhhAU7ECxOPx0Xaj8djtNttzGYzJBIJ7OzsYHt72xF0cZJe/N60MbUECgaDCIVCohWQwWUyGUSjUfj9fvT7fZTLZWECxAOcDpXT84k3jMdjXFxc4PT0FI1GA+PxGJFIRA4c1dxyuYxarYbhcLjAVM1xLi8vRcWmpsIDW61W0W63cXl5KZ4Zotu89JeXl7L2eh8AvGFimWtNbaPX6yEUCslFjMfjSCQSKBQKePr0KXK5nGiN5+fn6PV68o5u89LmZzAYRD6fR7FYRDKZxOXlJV69eoV6vS7gM82tZDIpGoFlWQL41mo1wXjM8+iEFREUJjNpNpsCiNu2Db/fL+tjWZbgL5PJBLPZbC2zivTOMAFyx2AwiGQyiXw+L7bnaDTCYDAQ1NQJ7FmH65MJpNNpscFns5lIlM3NTXzwwQfY3t5Gq9WSv9UHeF2zQx+wQCAgh4jvQdUagMytXq8LOOkUJOL0DpRkZCz9fh+dTgfT6VRiH1KpFPb397G/v4/5fC5MoNfrSeyFk6pJ0IuXul6vC05D1x/92rPZTOxvAoR0ZVGtp0bAz7sRL4sJgtHb4fF4EIvFsLm5ic3NTfj9fjSbTdTrdbRaLYxGIwnq4fOWue145hKJBDweD6rVKqrVKkajkZiFPJO5XA6RSESETzAYRDgcRjgcxmg0WunO5Xv4/X7BT+i6TSaTC5/1+XzI5XIolUqYTqcYDocYj8drB8fJc2716W+RaNvSdZJOp7G5uYnpdIp2u41Go+Hqwlp1MU3QMR6Pix/56uoKW1tb2N3dRaFQwN7eHmKxGNrtttjyOkT2NtGJ+uDTT59IJCTijWYMVWvGCJhhuMvmS4lAVXE0GgGAXBCqkjs7O0ilUjg+PkapVEK3212Iq3AbZzKZIBAIwO/3i4kyHo+FiRG9579MJiPSjEwiGAwKkAhgKYNzMqnIOKhRxeNxJJNJpNNpzOdzCawhvrHMFDCJYCIvJLENmhscKxqNIhwOI5VKYT6fYzgcwrIsYXAMaHKS0E64DufEmJDBYIDZbCbhyl6vF8lkUoKlrq6uBFAmWLouvRNMwLykqVRK3CYXFxeoVCpoNpuutvG60tnv9yMajUoAiNfrlYjESCQifmnbtsVDQZeTz+eTw+umimkEnB4Bj8cj7k3+jtiAx+MRicqgICc30zIPAX93dXWFo6Mj0To2NzcRjUbl94lEAl6vF+12G81mU9T0ZfMBXkcw8mJRxSZeQyyj2+0iFothd3cX0WhUpDjNHzIpMj0TRNOqMv+RgXBfQqEQotGo4Ci2baPf72M0Gi2Eeq/LtLV7lcxSmxz7+/uIxWLIZDISUMX3nUwm8v5k9OsGdFHLabVaKJfL4l3hvkwmE3EPJhIJzGYzFItFVKtVNJtN2Y91TYJ3ggnojdDx04PBQLg8JZyb9HACmvg7/s9LqdXLVColG6nRaNpltP3MCDwnotbAZ9O9Q1uR6jf92OFwWC4wtRzT3luFNtNuPz4+Rrfbhc/nQzabBXB9UD0eD+LxOILBIC4vLwV3oFnFZ7m5I7VJ4PP5ZE84B15SugVjsRhs2xathFKLtuyqfAiCqADk0lNKJxIJxGIx+P1+Yaxa6tOlSc3FsiwxCUwN0mSwmvkkEgk8fvwYrVZLzkyn05FzenV1JR4FelYY9+G2Z6aHie7VUqkk8RTlcllMwWQyuSCA6EkIBoNvBEKtojvNBHi5dCw6F4ixAHSr6cQN8xnLNAFuMFVyAMLReSCpFofDYbm40+l0IYBII79uzIYuNZ0MwngHuoCI1G9vbyMej6NWq6HT6SyAQOsAnVp9p8nEw1Gr1ZBMJmFZFrLZLL7zne9IJNrx8TEGg8GCG22V64nJM36/H5PJBM1mE6PRCPl8HgBkvrx41HI6nQ46nY68m7bTndR+7pPf7xf7P5vNIpfLoVAoiBY3GAzk7zSAlkgkMBwOEY1GJdZ/Wa6HBl47nQ7K5bLgNLFYDADE82EyCnqsGCcwHA5dgUhNPCOWZcmZoICo1WpyFi3LwmAwwNXVlZhS+uLfxl14p5kAsBhmStW53+9LEEW9Xke323UFRLQ66Ua88Ny0breLo6MjJBIJ+P1+8TYUCgVEIhHxRXc6HUHY3RB0TVQlaTvShuWBHA6HYu4QOb+6upLN1glK68xLJ+1o9ZQYSiqVQjabFdfdixcvJCDqNkEn8/lcYuOvrq4EBzg7O4Pf7xfwMZ/PS2zFcDhEu91Gp9MRpqFVajdG6vV6EQ6HEY/HUSgUUCgUJCSY2gVDuSORCGzblsQvqtjUUHjJ3YJ4qEV1u12Uy2UcHh4im82KAKhUKrK+l5eXAhJSO+x2uwJGasbqRlogETRl8hM1RpqNBDc5NnNjnFLcV9GdZwI6c0tHp02nU0G62+22HB43KblMbQZeH+Rms4nj42PM53NsbW2JXRsKhTCdTiUx5Pz8HGdnZ6jX6wtuNDfSOEAqlUKxWEQ0GgUAtFot9Ho9mS/fdTwei5tNZ4jpDSZu4EY655zzpWkUCARk3er1Oo6OjhbQ69uAS2Q0pi3KCz+dTheAT5/Ph0qlIoFRZOLLDrEGhyORiERuptNpwR5oLpERbWxsYGNjA1dXV7i8vBRtTs/P6/WKBqLHonDo9/s4Pj6WOIBEIoFut4tutyuaIZndxsYGbNsWxlGtVlGv15dme+qzqbUPnjd6JahdkBHGYjGx/+v1usQj6HD5dehOMgFthwGQTY/H49jc3EQ2m5UF4QHSNhzgHHO+jHiIB4MBqtWqJG9o1ZOShCo6NRCt5rktPA9lMBhEKpXC5uamHF4eovl8LpmEwDVzqFQqb9QvuK0LiJ/X66kz8Gz7OiS12Wze+tnmGupLCECATb1XDJwh8wZeRwm6rR/XluZhKBRCLBZDLBZbiN6kWUHAcWNjQ+ZOzwU1LM1Uncbj/1dXV6jX6+KGY5IS/1a77hjN1+l0UKvVUKvVhNE5xXSQeEa12/Tq6kqYGIFpel0ODg6Qz+cRDAZxcXGBo6MjSS2+jfcDuKNMAHgzA86yLKTTaSQSCcm1Z7TYqjTNZT/XvyeA0+120Wg0sLGxIRGEPp8P8/kco9FIQnd5mNd1SerIuHQ6jXw+L8lDTEnmIadGQsRXz9GUHOuuJ7EVmiN7e3soFosIBAKirn4dRUq0lsJ9ZJw/LwQPOX3ppFVRdXyeNjvoi6epxYugk5iY9s1oRp3jv+rS8DPdbhcvX75Eu92WbE+aGgSOiW/QrBwMBgJ6umk4el4aaKXqD1xrVNlsVuJjyADq9ToODw9Rr9cllFwHyK3DDO4sE9DECZFDchOZTEHu73Z41iWOMRwOJaadqitR7kqlgvPzc9RqNUf0eZlkofQhoJnP5yUkVUcn0u1ZKpXE82FiAfq566yfDrbKZrN4+PAhPvroI+zs7KDX66HT6Ygv2m3tbiNd9OeJTRAHoJuSLlmdQrzMj8/LOJvN0O12cXZ2Jqo83Z0066ilUVAwQIqXVHsj1mGkFBBaWhPDIChK5kavi671cBt3NefAtHh6knQ8wmAwEJyiVCqJVmV6dNahO8sEuGhcfObyn52dSRbd2dkZyuWySLG3vSTm5wk+VioVYQx0r7EohQ5R1lqI23jUIgKBAPr9Pk5PTyW9NhqNSvZgrVZDuVyWYhE8rG5zWTY/02XJTLjt7W2899572N7elgSlZeDqqnGWjctLozMtKbnp7tMSj+/gNtfxeCzxFmdnZ+h0OgKw0v1KRksgjWtIAUIwT6ff3kZTpMeo1+uhWq1KKjXnx0AvIvvrmHF6fI0HkCF0Oh2kUilJ/2ZiUqvVEkzJNG/eaSagX57x4Vz4SqUibh+Wi7pthNSqcfWYjNZjRh9VPR4mDcqtQn6pDk8mE3Q6HTx//lwiBWmr6sAWt5JUt5Eq/JxO8CH+UalUMJ1OcXR0hHK5vFCDwWldlpGpNeiAHEYLUpviO9A2p4uUktvNxKJfnyp9r9eTAisaU+BFIOPRajj/3UZd1u/Af/Qm9Xq9hchRndrLgh/LTAFzfvyaf8PAsXa7jbOzM4lx4HOoYfG83mbPSO9EjUEuDm1MHfyzDGz5Gt5rAYwC8MaBIq37DnyWvpCci37mMum0DtCpP8v/tXstnU5LdmK9Xkej0Xgju+620t8MrNEVhBhfH4/H5aLEYjGp/6ATj5YFdZlfu72nXqNlgK0TznIb0ucReL2/mhE5nZe3Hce8AwDeEBZLxnGsMfhOMAHjs/L1z/Ld3/aQuD1Lc319gd7mAq47JrAYjELGpt2PHPttx9cMk3ERnB8DpAiA+v1+KWqyrNjnsvmYtIxx3ubztyGnwCbz+V/n2TG/v8UYfzqYwD3d0z29NTkygW+sNfk93dM9vRt0J4HBZbQsGOdtbPSfBZnq4bpuS22vmj9fZReb5ob+uek10H+/jkp+G6DQaSz9nNuqyyYoasYPrHrvdcy6ZWfM7blOn102Hn/mVuOQz2BcicZJnCI6NeCpf0aQchm9E0zAKXBIJxVpEMYptv7bZgh6c8wL+TZI9aoD73TpuV6MOGNSD8OO6ZVgDwCuJ/BmyPGqsTUwSB93MBiUjDftX9f+enMsJzIxFI5pFio1cRcAb8RA3IYB6TXke65yLTqBmcvmpcdhfgMjBnVSG12VBFGX5XqsM7c7zQT0gdLAFt1NLMkFYKEbj060Wacr0KrxnciJ6+r/V/3NbQBO/XtzPdZJWmLKLSMgGS7McFcm8dRqNak8rF2F64Yr8+JrrwBDexnt6fV60e/3Ua/XF0qPaVfaqnRicy30Gplnhp4X1hHgZ8kE1pkT50VA1bxwTu5Mp2doL5D+nf6fDFOHC2uPii7gyiYnZOTaU0aGsY6GdGeZgOkO4eEKBAJIJpPIZrNSsXY2m6Fer0sFFhaSYOTWshhxPR6ABQ1Dt4Ni9CAAWVzbfh0FyMNLSer0bCemYko0J0ZhakBac+DBcFNJ2WuAlXbIDBKJhJS84rz6/b4Ep2hJw3HdLoy5R6x2Q7fg5uYmtre3hWEzIYpjMtrOjHhblZC16h2oJeo5kHhplkUN8m90j0MWldEakz4rvORa+OiOVE5mq2YADH2ORCLSUi0UCkl5OF2khdmJ7EXAHA3NRN9ZTcCJAbAEVT6fx4MHD/Dw4UPs7u7KQb64uMD5+TkqlYpE+lmWJQkq3BinRdFjMZafpaN1IgrDNrnATIVtt9uSCsuyUmZpLicJpcfWNqL+PPC6kAbfiW624XAoqbMmfmBZ1oJESaVSkneRy+Uk+InjdDodKYKh10xLrmWMQAcHsaYhU5WLxSIKhYLUG7BtW4ql6oArzt30tZtnw2Sm3CeWFmOdQb7/dDpFMBiU7znmYDBYSEBz0rh0JiLXkCHDAERtZ2UpRikyanE0Gi2YWny2035RayOT3t3dleKl0WhUKlJPJhM0Gg3EYjHR4tjFybKsNwKHVtGdZQL6a15OVvtlY5B4PC5x2+l0WtQkZnLx73UpKadDZR5gShGWEEsmk4jFYtI8IxqNot/vY3NzE8fHx/D5fKjVarBtW7i100brmoJaxeSYvOw6PZWFTqLRqISnWpYlra9KpdIbF1c/W9di4LN4MTgWQ1vp09d2pnnpTUmm56cvDt+dJggZFQ+rbb9utKovq6nWr5JknNfGxgZyuRyKxSKy2axoHUxvZhs0VkXW7ePckpbIeDOZzEL2KjUdlp9jSvh4PMZgMJBqxuwhwcKklNCmKai1PJpryWQSyWQSmUwG+XxeulKRAUUiEeRyOdFSuN6dTmft0nCkO8cEzI2fz+dSXJENQllBVneb5cULh8PyHP79qqhCrXpSJeVzmA/Psk1aE2AcOy+LW6VjADIHs1TaxsaGqH8sYsKLSOyDc2ddwNFohBcvXuDq6kpUeb1+2v6kdGLoKUFBlhijqkzwiaHY68TTmzY5n8W1ACAMjbkRzHfn2obDYXQ6HRnPbVxT+vPykHGnUik8efIE7733HrLZLGzblsQyng/G8zM4irH5TmaaZtRM/WZJdgoI1keIx+MLacpMG+71euj1etjY2BCNwJTQHEPjLqYGFwqFJFeBOR5k4ixiArwOd9eVld5JJkAy7aZAICAYQCAQQLVaxcnJiZTkYr8+HgodBWeCR05jmR4GbT8y+SSTychlmc/nUmyCIbfrgGeU0OwlF4vFJD9dbyhwvYEsaMKmm2x2kslkUKlUFt6Tf0Oth4dCq9ehUAjj8Vi6C1Fy53I56XLEC6Cfuc5+kdmyECZbgzN7kFWYfD6fFG8dDAYLl4DjLXO7meu5sbGBhw8f4oMPPsDBwQHm87lklzKlOBqNiqaow2ydyqlr0JCalGa2fD4jIPl5SnpWNKKZ0Ol0pBCJCXqaZ5PvxZLjFHZcP1aZms/nwvwsy0I8Hl/IY1insCnpzjIBTWzrFIvFEA6H0ev1cH5+jufPn6PdbiOZTIq7i8U53FRWk5xAGsuypFikz+eTrrKawTSbTVSrVSkFrsd0UqG1yhcMBhGNRrG1tSVdfHUtfnYaJsenOUSpTolKiWtKSI1+M9GFlW+oilPiMK2XmItOTjGxC5PJ6XFMphEMBmWuzHZjsw4CldR0zOq/TpKZz9XvRgbA9mBPnz5FKBSS9mqVSkUYLS8kzcR1uvXoeREEZH/GXq+H+XyOcrksadF0h2YyGQHzKKSYOWlmapoMiGcunU6LFlqv13FxcSFdoufzOUKhELLZrNwJpmETh9Bdo1bRnWICmiuagAkBu0gkIplkLMlFu52AGTdcL/CqzdbEC813CIVCKBQKePLkCdLptGggpVJJGnbqcdyQZt1JlnMhCMlSX/1+X1RW2sysQFyv1wFAzCB2CDIlC1Vy7SKlFKR01vOOx+NS20DjB1rFd/IQuF1U4hk0ZWzbFnXZsiypCsT3ZGbcOllw+l1oFz99+hQfffQRcrkcKpUKzs7O8Pz5c6kCxFoDLKbC1mvaQ+DmtiMQx7RxalFU7VnuLhKJCG5EdZ61BTTjctLcNPDKysyxWEzSrBuNBs7OzmS/aVpSG9Ct5hmDQe/FOtrAnWICJFNF4vfaTafdUHt7e8hkMrKpTuWr13GVmO8QCASQzWaxt7eH999/X8pMsyVYr9d7owjGMjBL4xSUDKxIww1nQ1W29yLSTqCJRTJ0xSEnyaIxAUpZViciis51TKfTSKVSC2OykhLfW7taNZlMlug+Lx1rM5KxsE9fIpEQTIMS2vSMOI3F33m9XkSjUezv7+ODDz7A1tYWAKBSqeDVq1cL6jovKCsN0cxyK16iBQBT1pvNpuAIvNjBYFAKuLIEHms2eL3XHZlY+48eJDeTUTNPCgZiGKwaRK2P7chYY5Geg0QigVwuJ6nWZFyr6E4xAVOtBF6rfVRZuVCJRAL7+/uIRqPI5/OIRqMiQXUXXZ1jvi5p19DW1hbee+89PH78GJFIBCcnJwslsrRN6fT+nBc3X6PulCxU29nOS18MMj6WPGN5dWbfLcu953OZs8+1Y51+HtxUKiXdhXXTEMuy5MCbklqP46SmsxkImQrbu/GgEiyjFkT3oYnH6LH4fA0G7u3tYWdnB8FgEI1GQ+okplIpKd2+s7ODRCKByWSCVqslDMctZFfvpS4gwshKAscEdcmoeTFjsZiYbWdnZ1Is1kkyk2kCr70RfCYA2V/iGpT8Ok6GpiLNZmqabAu/iu4UE3Ajqkk80AAW6g1SOyDXo90H3C4yT/+NrscXiUQwm81wfn6Oi4sLCULStMrs0OgvpXS/3wdw3USFvm12lJnNZgI6XV1dodPpoFqtotvtinpNl9Ey0oyQ9j/93XRHscQXa+jrdlv0FLhV5DW/1lLR7/fLOrI5CP8xJoG2M7Ufp2eba0x0PpvNolAoIJ1Ow7ZtjEYj+Hw+7O/vi2TkZ7xer9jTusjJsvqCfHeG6eoLyTLqGxsbYsPncjlsbm5KN+tKpSJRmKawMIkMn8yTwgCAeKR0NCGb5hI7IsP3eDzS5IWMZBV9JSZgWdYRgB6AGYCpbdu/aFlWGsA/AnAA4AjAX7Ztu3XL58rXnLjmyro5o7Z9KTU1SKPR/nXcXhzftm3h/NVqFf1+H6VSSXCIVColLijTVeZGlO58rs/nQ7vdlo1lQ1KqsDwE7LhMdNkEM01yw1QCgYCE8KZSKfkZgc5eryceFvrWdZFTehvcxtFaG/EMMhrGLFDyA1gAJonec5/poTDnSslJZpZKpWRN/X4/dnZ2sLm5KZ8nkyNKz3fi+VhGOveBc7Nte6Fl/MbGhsQRMJ6E3Y/a7TYACH5Bz4kTkMs94tllcxONd5FhUluIRCIiDNg2j2Pp915FX4cm8L+0bbuuvv9NAL9v2/ZvWZb1mzff/83bPFAng5A7agCGEyRT0EAUP0/XzqoYAR1Pzu+1PU33H33dOqKrVCpJnIAJai6TLgCkog/tPEozqs28IAwRZaNJM57fJI6vNRUdTbe1tYXt7W3xpgAQnIOuPXoqdPlsSkJKNXNOXDceULoAaRqwrBi/J2OmtjUYDCSqj+aH1gxI2tPCdej3+yJJ2V2IQCTzS1imS5f9cuqToInrRq2BqHw4HBaNJpvNYnd3F/l8XnCUTqeDXq8nFzeRSEjUoJuGQ9BYX3bLuu4QxfHZQp4MlfMYj8cL0a0squoERDrOc+Unbk+/BuBXb77+bQD/ArdkAiROihyW9g8AqdXHPmwARBswXVy8qCbxd6ZLihyUbaDYAUZH8M1ms4WOxKZHwSRqFtoGZKSfx+ORYqp8p42NDcxmM1SrVVxcXAgISQbF0FCT6ZgaCdeQMem8FPF4HMPhUEpjM2CHQTAApBciowo10q3H4td+v1+SXrgujEpk92ItoSj9KMF0x10304PMmcVfT05OBCyzbVsKwFqWJaj5fD7HxcUFqtUqXrx4gePjY9Tr9QWfu9NYAEQqkwn4fD6J5tve3pYoRcZfUHsCIFpCJBKRjtImWKfnxXnQDa33i2ZCJpMR4XB5eSlnhWeRZfB5jtehr8oEbAD/k3VdGej/adv2DwAUbNsuAYBt2yXLsvJv82AeEgadZDIZeDweqa1ObpfL5eTAsQ2VGSS0zAzgoaP0AyAaxHQ6FSnDA02OTLNEq8M3c3ZeqBt1Wtug2oXGuARKgV6vh2azifPzcwEiqfXo5ywbj2vId6ek0j0MdMvyq6sr5PN5aRra6/XE00LV1mkM/TXXkQ1OyVgIXPEd6Akg4k7AlGDrsrLjLNh6dnYmGlU4HBb8ArjuO5hKpQBAPvujH/0Ih4eHC5qP29ngz+iGZM6A7lBMAI7+fJZuJ0BH04PZkqaw0eummRsxCM1MPR6PdDji72macF1I1BBMz5EbfVUm8Ods2764uej/zLKsL9b9Q8uyfgPAbzj8fAFA0YeLKjATP7h4dH8xLp3x03Tf6eeaY9EGo2+WzyOT4QYwhpyoOk0AfQnMS+E2LzI37aqKRqNSiJMBHwwQYT8AXoxl0XV8PsfS2kKv18PZ2Rk2Nzcl+5KXj757mlSXl5dS5p0mgJvfWTM43T+Rko0Xh8/weDwiMak6c+9oAjgBr5qpj0YjnJ6eotvtolariaQmIEhzBHjNBNhxeVVzUK4h7Wsi8WRws9kMqVQK6XQaoVAIlUpF+hkwQpMJRWR0OpfD1KaoSTKystlsSryB9gow9oB9CAkg09xpNpuC7TDAbR36SkzAtu2Lm/+rlmX9YwC/DKBiWVbxRgsoAqi6/O0PAPzgZiEcxRmlFstL01amikrQiYePUoVqFw+tm42uMYd0Oo39/X0A1wfw/PxcLghdklTt2EDTzUXnZvfxPTTzsazrRpN0LxGVd8u3Nxnkiv2RNdGHL5lMitbBA0VVHYBE+F1cXODVq1cSfquzFZeNxQYjwLVKTGZJRsD01263i3a7jX6/L6XcyVyXaW9khCz5TZcuGRm7RjFC7/z8XBrXkklp5uh2PniZiXMw1gB43ZW4Xq/j5OREmsQwfoEmFHEIt4a13EeaeM1mE69evYLP58N4PBacg6aObdsS8s0gMgDikmTlaDOIbRm9NROwLGsDgMe27d7N1/8+gP8zgN8D8FcB/NbN///kLZ4tC0O7nOGZAAR4Yqw9tQCmETNhRF8UN0yAlzEcDmNvb08kyMHBgSRrELjxer3SHOTi4kISUExy8wVr5kDfMsNmqQnQZiQj0/0NdKTfMq3DfBdeFv1etVpNkogofem7Z6cedrbhQWYmnhOZF1O/F6Wodo2y9gOZNkE6Mu1V4a76fDBJh54GtisnuMnAKrfGsW4MlVgSQ60BiHux1+thPB4vaGvUHNkwl2aCZgJu0YnAdWhyu93GycmJCAa6A4nPUAui0CPmQjcyNTd6Db5RJgCgAOAf30zCB+Af2Lb9/7Ms698B+F3Lsn4dwAmAv3Sbh+oNIXfsdDo4Pj4WxDebzQpKenl5iWq1iqOjI7x8+VI2e50S2pRedIkNBgMUi0XJVCQyz6ivV69e4fT0VMJGqZabz1+mGRCDYOorwU6G0dJG5yVxanWmNQqnxivaJNDraN+4qHq9Hsrl8kLdBNqxVCFrtZrE+tM16NbkxbRrefB1GDSZAHBtsxItp3qrmZzTZXE7K9oMiUaj4l61LEu6SFUqFbRaLUdAju/tdjYYK9HpdAQzokl6dnaG09NT0dgoLCgwGHpNHISmn9NYmoky0YqgIFPIdcaqBv/YP4LVhhiE9o0zAdu2DwH8GYefNwD8hbd97s0zFnz1VH3Ym01XXLm6upKN5uXUyDmf57QYdBuxD+D5+TmAa5cZ/datVgunp6c4OzuTOAFdI3+dRdbvQDdaOp3G5uammBmz2Uzs1WaziXa7LfNwCwjSjEF/rX/Hr8kIeAGpsmvfNM0ry7KkDRoljltTEK2RAK+BOyYuDQYD6etIBJt7QxCQoKS+DMuYjeln12AasSDGVTCRiGdIYynmOpH4Oz6n1WohEAhgNBoJ/tRqtXB+fv5GJ2BqfMzxpweEzGQZcyNT4z5p74ouAMP3025BMk66Pm9TWOTORQyah5cLow/vxcWFSDAAC+2reCCWSWZNDCVlUNAXX3whdiA3g2o5kfJ1L75JOmqQB5JqHluea/uVc9KXTwNmq+xm83u9nh6PB1dXV2LH0manxCFIx4u67lh8vj6UOp3Z9KbwMybWcRvmqrWOWq0Gj8cj2Xu1Wk2CvXQ4ubkm5jOpZTUaDfE80ZtDMJIeG11KjM/SqD6DmZZhVE5MW5O+/Pyfz+73+wtuas2011nHO9t8xIlT60VwQubNzzt9v+Qd3lDbV6n565IJCCaTSRSLRfEx27aNer2OVqsl+QHENcysPf5zY3RucQrm+5trSJSa0kszVCcbWs9Lj6u1OPPQmuNp7Id/q9fcfL6btsNn6dBbAsislahDzlcxG72GOnSc2gC1Da256Ofq9dT7ZSZ68fnm2OZZNrUt/VnNbPhZnThn4CvvZgeiddQ2t0W6C3MziYeVh0rbkJTMlMDavWkypXWZnXkRnfAKvX4aS1g23rKxVv1eq/Vvy2j1vExmwMuhL7p2L5pzMiWzXgM+S5syGrsw10i/g3mhnebplFrMnzm9q/lZnieNbWimpL/Hu8oE7ume7ulro/s2ZPd0T/f0Jt05YPAukKkiA87YhNPvnEgju27PMsfUaqyTnahVaYJ85jNXqf7m+6+alxOg9aeRlq3DKpPHiZz+ftXP+HM3U3fZWG7n1o3eCSZwm0v3VQ+qaUM7vcOqTVmGomtmQECHfmTz4pNoo+p6BASA3MAtpwPlNi83PMU8TF8HA3AC9Zze99skc+7L9tvpbLrN0enZTs9yAlVXjev07HXX9M4zAScJuuyiux3+VQviBDS5fc7cXI0CO5UzM6W5zk/XJbV0dh3/mWASv9cpsevOy+l3bhfdCVBcJxlFA1tOQJnWYHSBFS31vi6G81XIaR3cvBLm35nvv44QMy++0zl0Ykym0NAA6LouwjvLBPRh4vdOl4+fWVW5BVjuYXDj/PxaN/GgCq5RXC443WtOLjzOSTMBXV9PlyNnEA+TYjgG49HZbMTNhafXiPPQaLKuMqyrHOukIh0f4IZym/ulMxa5bnQ9srAq50OGyejI4XAo87ltPIbJkDWD5Rzc0PZV54LP0vPhnHT1Hh3zYJY15zhuNS9NJqnPv7m2OgRbz0EzUMYKrLOOd5IJcOF5mHgpGMTD6DZOmO2/mBzilGwD4I3IO/Oi8GsdpUW/My8Nx2UyDICF6i5sMsFSXZr4bB5UJvHwH5tPMhFG10Fgui/TijudDoDXGoET6bF0l1tGKzKbkPnpLF/GGvcMkmLGmmVZjpoH94tZcrzs3DeGtkajUZkffz8ej6VEOAu4sEqO2wHWF1RfDJalTyaTUq6Nsf/MVHSKKNVhuObzedHJxFipiBmfzOVnQVLWfmSmq65FyYAhM5zXFCqcl85riUajiMViEkIMvM75YJi2rgDFTkjMQF1Gd5IJsPoMizkmEgkUCoWF/G0WkQAg/fgYcNPpdCRjjOGcjJJzi8TSnDYSiUj1GBbl5KGlpGaQx2QykYvD5A1KbO2v1SaDxgJYSj2TycjBYrYiuTvz5HmQGQ3HmHmnlFEt9ckAstks9vf38fDhQ+zv70uZca1hdDodlEolnJ+f4/z8XHoccD5OBVo042Q5rEwmI0ybhUYY08+Gskyb9ng8GI1GwsiXmWRcP61JMQPz8ePHePjwIXK5HJLJJILBoESCck4nJyfC4MjQdMFY7hfH0Z2i2AGLuSW8mIwIZIh0rVZDq9VCuVyWyE9do3BZEJgpIJLJJAqFAlKpFIrFomQy0oQik55Op2i1WhI5yb4U64QP3zkmwIsRCASk/RObdLADEDPveBF0jYFarYajoyOUy+U3WpRp0gvP73XRENaNYyFLSi0eEKrrwHWWXKlUklRbt7HMuHVqOaxqzBr5OrFHS3nG9gPX7cTNQBOSZjiWZUlOerFYxOPHj/H06VNks1l4vV6pXcC5p9NpudQ8sNQIgOWYC5kNcC2dWAWHpcXIRILBoEg1psqGw2ExIZaZdKZJE4vFsL29jY8//hgffPAB9vb2RAtgwBUrDHm93oVqQqYGYK4hzT+OxQrG+Xxe9gqAaKAsfso1Yao5tQAnTMUJl6EGQiawu7uLg4MDqavJi831ZPWkaDQqSV/r4gHAHWMCekGoDnHzdGls237dzIJMg12IbNtGs9lEuVxeqA23CrEncSzWdGfVVtYPYK38eDwu1Wqp3ulSWea8gNclpKhaswDG3t6eXAoyOG4yLyhVZKrS7ClogodO6LBt21LMM5/PIxAISDflarWK4XAoJkg+n5e0XB4yXmI3pFqDlTrpybZtadvGg8oiHcz2YxenRqMhc6RmswpgAyAtzXZ3d1EsFuHz+VCv11GtVjEej4VpUmui5qarKy2zz018iAxBC51ut7ugQerQa6b1OnkNzHmZ3qFQKCRCkFWoG40G2u227DvNlMFgILUgOfa6uMqdYgIkXlrW3SsWi1Jvj6mw7DEQj8ell5/X65WSWHrytHndDjGwaIeFw2FhHp1OB7VaTQqJeL1ekXCkTqcjfeKA5WHMtm0vFMBIp9PSfprJO7QjeaF4+LguxCd42JzIxENoW9q2LR2MTk5OpKtxKpXCo0ePkE6nRY3U+Ipb5VptV2uPBW3ffr8Pv98vBVW3t7fx+PFj+Hw+aeJSKpWkEjAr8qzKtiPQx7Rsy7qunPTq1St8/vnnKJfL8Hg8ePDgAXK5HCaTCcrlMiqVykKy2SogWSdBsSJRt9uVPgflclnaum9tbYkp02q1JBWcmMoyD4vpcfD7/XIu2MqNtQaYMKTTjFlPgKYAQcF16E4xAY2OEkRpt9s4Pz9fSPntdDqCJPMAs8YcpRH/Xqtibhvg5MaiOtzr9dBqtdBqtQBASnXzUna7XSmTxUxHt9puGjmPxWJicrByrd5IvYm0qwlKAhCNyC1nXF8UgqeTyQSVSgV+v3/hABNU29zclCQZriPTiTXYqteNYzGVl0yJl4ygmWVZUiBjd3cXsVgM5XJZ2muR6ejEFydswATzCJjOZjPUajUcHx9L1mAmk0EqlUIul8Px8TF6vd4CgKw1GHNeNF/oJWGaMhmBbb/uesxsUIKeTGl3qvW3SjprJkDG7fFcF6LV1ZEISPKcA6+xMdYVcOqC7ER3ignwMGlVSoNRLLyoa9WFw2Fp6Hl5eYl6vS5pnjxYqxgAxyax7BfVUkqxYDCIra0tASnL5bJUA2ZeOQ+YG/BD25t1BHZ2dhbsc+bB8/LSI0HGQY2Gz3cCO7W7iAeZ1ZeSyaRI3Gg0ivl8jmQyiQcPHoi5VSqVUCqV0Gg0FvruuV1IvXc6iYUXlWZMLpfDRx99hEKhgKurK5yfn+PZs2colUpv1P1bZcLxXFBbvLi4QKFQEEA3Go1ib28PBwcHUnOCuI1ZXsyJtOnGqr5kHMSEaNZcXl4im80inU5LIRpqq/o8rAI89d5pLwvBW5q+2vvCS04NoNVquVZQcqM7yQQALNRko/S0LEvcQLwcREz9fr+06ur3+wucmJfGzTesN0j7gYl2p1IpJJNJpFIpHBwcIJVKod1uo1aroVQqSa843QNRE9VWmht00+3u7kpLLroX+Qza+/w8XYacCy8B4ByRZvqNzQo8hUIBiUQCw+EQiUQCu7u7SCQSUo6LrbN4iDmPZaSBT61mB4NB5HI5/MIv/AI+/PBDhEIhlMtlfPnllzg9PV2oasy9MPfInJtW1Xn48/k8isUiCoUCAoEAcrkcAoEATk5OUKlUpGy7jutwM3G08KGWw3qXlPxE7ol1WJYl2iAZp66tYK6LOS8SwVy6XHn2OR+eTQCCVbHQKYHeVTUgNN0pJgC8qcaysQIXg8AYyy9vbm5iY2NDKvKwNJNWK50WwwnB57hUnWezmWw2qw1ns1mMx2OpM2jWrtOppiZpplIoFFAsFhGPx3F5eYl+vy+17AguUfsgaMjilUSul0lMPT/OiXYtvSz0BNDcoMSsVqvS89AtuGXZWmr7lkVaHz58iI8++giZTAbdbhcvX77El19+iXa77RjUskwL0POaTCbSoblQKCCbzSKfzyORSAjuwFLgvMBOef1uxN+zDBov+Ww2k4Yu1BhYck4Hf2ktcB1wWn+enaHo5k0kEohEIgJwAq8L6uhybZzjO6kJmMRDzjJVtJOIWLMV9Hw+F5SWnF531aU2YD5b+2WB1xvQ7/cFqWdHW/rxbdtGtVoVH7ouNroMeKSWwRZWW1tbSKfT8Hq9UjGJABwZHhkA/fm0sSkFKTXdxjX9z7zUGlCjBLMsS4AsBuzo9VmHCejLT0YVDodRLBbx9OlT7O3tSXDQF198gWaz+YbaqsOo15FiLD9Xq9Xw6tUrJBIJYZr8Xb/fX+lBcdovU/OgLz6VSkmgEJvIsi4kcN0ns9vtLhSG0TEjbmSGn7fbbenZQLxBe17oXiY2YNaCWJfuNBMAXqPOjPzSLkPd+rparaJery/41XlhnOIEgMXAEx5agkC9Xg+hUGihEm84HEatVpOahizqaF5Gt7EocdkQlOPx4nEscn52uqEpQK+BLj7iNp4ZnKRtdX7+8vJyAYAajUbyGUoxndzkRHw+sMhYGey1ubmJx48f4+DgAJFIBKVSCS9evBCvhHaJ8Xn6wqw6zNQGWq0WQqEQDg8PF4rRUtOhZuW2R6YW4uQiZMxErVaTQrfEb8gMaL7Rx68rNDn1wNAYAMFogs6sZUgAVJupDBrS2AZNGLdweze6k0zAaRPI/QjO0CzweDzSsIE2LO0vYBHp1Quiv6bkpduPjEOrqHRzEQdgIVAzHl0fYpJ+l1AoJI00PR6PNN9gr0EdTJPP5yXSjmXHCTppO9ocS19+3ceOEZiWZYkaOZvNRNNg+XbOWzNIp0hBtzFp9uRyOTx48AAff/wxtra2MBwOcXJygpOTE/R6PRmD9i3/ntJuGbKt19S2bSkKenp6KuDc3t4e8vm89PjTGIpbHoF+NkkHDlFI1Go1KTPG9WJnYuDai9TtdhdiR5wupIkF0P3L5jSz2UyiDukVYIRkKBRaqC/oVtZ8Fd1JJgDgDduKseQAREVPJBIYDAY4Pz9HqVRaiKTiArq1swLejBFnEBClIEExBs5cXFzg5cuX4rIkd9duq2WLT+bCw8+vGbJLb0cqlRIGwHZWnCe1EBPkciM+k80zGUvBv7Os62ao7BdA3MAEzlapsWSkDF4pFArY2trC3t4estmseAOOj4+lexRLrGmgjmMxFHcddxovNYFg2tEUEozfWGauOT2b70ImwLl5vV7pUEUgjpeQFzgcDi8khC0LttI/Z3xALBZDOByWbk40O7lfBCHpHdEuVq7luozgzjEBLamB1+2huQlUt+LxuPjUj46O5FIAr1HqZT5nfcApfWlPMgiHqPxkMsHR0REqlQpOT0/FHagPrfZsuKnnVOvYBJTBO9FoVHrNM1KRbaiY2FOr1XB4eIijoyPBIjTi7DQvqvPUApLJpBzIXq8nbknmJtA9CbyOp9fqppM2wDHYSJPJNXt7e9jf38fOzg6i0ai8f7PZhG3bkuTDBiGMvKTKTNfcMjLNOTJu27bRaDSQSCTg9/vFW+SGn7itof4ZNSqdHcm1a7fbksNAPGoymSxk+2mzSa+h6RlgzAY7KDWbTdECuC+cB+M4mCjEIC0ygWXam6Y7xwScbDVeUtpZuVwOoVBI2nUxQooS3C0F1ol0Mg+ztejvZTQWE2vOzs7QbDbfqDS7ivPq3zGW4eLiQiLMCJ7RJRgMBsX1xUCki4sLHB8fo1arLWgBTmvGefHg+f1+SYTS2IdlWcIY6J3QHg6nzkdO+6XbaafTaWxvb+Phw4coFArI5XLo9Xo4OTmR7sp0gTIW3rZt6W7EuazTOIMMiHkcrDLs8XgESNNeFg3yrSMlnRiBNqvontNzJ44DLNZ80F4Wp7G1vU/QmyHP2kTa3NwU841Y0rKArnXozjEBYFHNY5INXXTs2kM7yHRjmdJ/nSANAjO6DTp72rGrLDPDzA66Tjaem3o+n88lq41hyel0GrZti0+YKam2bQv+QNcnQ5PX8d3rQ8VnezweaQlGG5lZcIw973Q6GAwGErijL84y1yc1qQcPHkjCSzgclijFZ8+e4ezsDIPBYMHG1mAZQchlZpzeS86RTI6AayqVwt7eHjY3N4XBmM80wTm3s2GeE9u2EYvFJNGLjCabzWJ3dxf5fF40DzJRU2C4jcV/NDvi8bhkZNIbkM/nEY1GpZ08G6BoN+ttPQR3kgmYqaK8nFxotiOnC4Zqtpk2qRnBMruZY4VCIUkfpubBEMxWq7XQItxccH1gnLg98QM2jqTqypRbHRswn1/362MPPQJDuhvtKltdq7SU5nxGKpWSll22bctYZ2dnOD8/X+jlyLktk6DEbwjAsU6/3+9f6OBUrVZFrWU6Nt+B2gf30i27T58PMhPu28HBAR4+fIiDgwMUCgX4fD68evUKjUYD1Wp16TPN88Bx9DryHefzOTY2NqQLFlPAgWu/PbVTZl/qNXM6h5qpcZ8YgBQOh7GzsyN5JQBkTQ8PDyUXwin0+Z2NE+BB08VEGBdAwISgEW2yfr+/0CFISzBt12oyLwiwWKWHWAA79BLF12oX31dLCbeLwnehGj+bzdDr9VAqlcTWZGoyA1PYYt3MzHNaL6extGZBlxwBJGIf4/EYlUoFL168kPBnAk4aW3EDPRkkw2AVthybTCYIBoMol8t48eKFgJlaw9C2PPeEa7TKM6D/1uv1Ip1OY2dnB0+ePMH+/j5CoRBarZYwN+2zX0daUnJr1x3duYwe9Hg8SKfTSCQSAIBGoyFmDyNJGQ7t1slJe78YHkwz1+v1Sj4HsYhms4kXL17giy++QLlclnRlMxnqNmbPnWMCwJvtuigB+/0+Li4uEA6H0ev1JBOuVqsttGI2ubfbpQRe220MOLEsS5iLHkP35jM1Cycm4AQ28WAz3LXf7wOAhIXqfHodtWgeXB5KNxWdY/HvmYfBC0GtA4D8jq3YNLCk57HsQFG7oTvr/PwcgUBAgmsYzqrRa/N9tda27OByzpb1uhkr04fZnq5UKsHn86FUKuHHP/4xXrx4IWng6wTt8H3Mi0VNZTabCUZEFN+yLOmMTbCQZ5JzWqYFkMFoAXFxcSH5HEwnZ+ESXYVJr9k63hyT7mzzEe0apEeAh5fRc7rclqm+Asu5IQ83JYl27UQiEQCvQzJ19Ra3TDp9WUzi5dZ2n9O7mS4v8/e0gfXf6gPrNEet2vJ/8z3cwp3XsZv1u+kmnE62/W2k0zqkPUj6jFB7pBfGLQFq2XO5rnocah+m65pmHAO5yMS1yajXQK+rE8Zhajl6H8n8zMvvRA6/e/c6EHExTBtQgyz68JoX8TabTkmsA0p4GbUt6IQBkNzGIxPQz+XfO112cx56DbRU0uM6qc9O76if7/Tut5mX03NNSbSMOX6dZK6rk1bxNu9ggoN8jhmV5/SZZQFJy8bSDFp/zd9prcJJ8jsxmBt695jAPd3TPX2tdN+G7J7u6Z7epDsFDJr2tdPvgMUoKyc1Wn9t/mxdt8m3RW4q/F3Q2L5NMlXuZeaLEyi7DulnmufNbSzz7/W5dDujwOraDD9LulNMgGSCYQRIGFxi2uZ6wYmc83f6mV83IGW+69uSmaij3WYa+3gbvGMVcVzS1z2G04V1Y9zrkn4e14oeFnMO2pNj4ijLxndiCE6gqtN6mSDgXac7yQSAxUg+DYqZXNppE/WhJlK9bqDIqnda9rPbaBomiKWBT9NVyHUwvQJfhbHp8VjiXBc3JbJ/22QUE8jiz8zPuDEaJ0bhRBqd13Ph35puXKcs0mVjOX2W2Y4m4LeMcboJpG+S1l1D0p1kAuaimxugM/G01NSSlJ/TyRtvc2n0u9AFxmcCry+qljzrFpPUX5tMj14QjsH31zUTOdbbzIfJPsViEY8ePUI8Hl9ooMLiqroQyao5ORVo4Zz0JdCMxQlBX6WJUPLzuaFQaGFvmFHIHAX+jR5fMzo3hF0zZz0v7UEymYA+a04eoK9Dy3JiqubPbzPOSiZgWdbfA/AfAajatv3xzc/SAP4RgAMARwD+sm3brZvf/S0Avw5gBuBv2Lb9T1e+xZtjvnGIuJlOKcb8p3PTGWjE6rLLDrHTourNZ1JPPB5HIpGQS8ogI0b2AdeLzoi7debG+ek4BQaH6Kw6HmzLsiRewXQXrbOuTMZKp9N4+vQpfuVXfkVKgFcqFZycnODw8BAAJOSVF0YzO/O51GCYyEOfPRuLaOY8mUwkA06nwZJpczy3SE+Ow9BuxvB7PB7xobMgK1N5SRyfUX86DNyJePbIdNgUhsFWzF+Zz+cLuRo8b4wX4JhONSjN+bmdFTPWw0kQWtbrFPp1ew+sown8vwD8PwD8ffWz3wTw+7Zt/5ZlWb958/3ftCzrQwB/BcBHALYA/HPLst6zbXttcWXGBGiuz8vBBAtdcJSZcdwARsKxAIiTXQi8yUXNIBAeNBb5YOeZ+fy63HitVoNt21I3n5vjdGFMDYDJL0wfZelxBisxzJYh0mbk2dtoOJZlIRqN4tGjR/izf/bP4pNPPkEgEMBwOJRsQJ/Pt9DCTb+70ziaiTGVeH9/H9lsFjs7O5KDz/VnVWXmRpRKJSkHzvnqvnr63U1Gw9h9AAiFQpJ3oDPwmJ/ALlLsH6HDgZ3OBXMbmCXIJCmeB53pyH3g/wwcYpovE6fcytHrNdbnn9WoWB2J51EXwQEghVTI2HSg21dmArZt/0vLsg6MH/8agF+9+fq3AfwLAH/z5ue/Y9v2JYBXlmW9APDLAP7NqnH0ImhVkZeEk2f+ABOKotEoEokELMuSwgvz+VzCR2nn6lj4ZeNroIlVgNjgJJlMShYXC0iwHZjH45G6+27S8mY9F/ANHs5wOIx8Po+trS3pKMNKP0yV1iGob4sHMBPt+9//Pt5//30AwPn5ORqNhtT8AyApsFqaOI1HRsaeivl8Hvv7+3j8+DF2dnaQSCSk+Qv7JjJ7kjUO2X8QgEhKJ1yBQoDSmWMDEEHAHo7UKHQzWzIUSklWcjILfnAsdnliL8pEIiFZffyd/hsyf+I4urkrNSmeMadEN64nBRDrTDB9OJVKCTPgfKgdMFS5VCrh6OhI1tTUch3PxBrnxokKtm2XAMC27ZJlWfmbn28D+Lfqc2c3P1uLtHqrAUG/3y994FhhmE0h2Xmo3+8L52UHIaZcsgHlMnBQ2/QaMNOlnBgSy8PHWHnGpeu/X0W8VB6PR1pzbW9vI5PJSHNLrcoyD9/0jqxbOILrG4/H8d577+G73/0uEokEDg8P8eMf/xjValUq/VCLWcUAKC11BR1qBVwzNs3Q7bq0BkezjZrAskNLycdxKKnZlk2nePNzlKIEPs3kL43vaKJZRknMNHZ2c+YeDAaDBeFB5s536Pf7woiWeQv073jmWZzl6dOn0h4OgJxlzfSomVDz4Tldh75uYNBphm4hwb8B4DdcfgfLsha6Eu/s7CCXyyGXy0nGGIs9TqdTqbs+mUwQjUaxsbGB2WyGTCaDaDSKZrPp+MJOG6NNAX3Z5/O5FK+cTqdSnpuJH3z3dSQ058h6gmxHFgwGJXGJ8fBmyLL++9toA36/H5ubm/jlX/5lFItF1Ot1/PSnP8UPf/hDXF1dibShhHQCzNzWUPf6m8/n0luw3+9LSbbhcIhoNIrt7W1sbm7CsixJtNH5906p33wXjf+wSSgbjrK6MNV72vJkEp1OR7QMAp40UzTpege66vPe3p7U/mdFH5YyJ8Mh0zGB5MlkAp/P51j5Wu8jNYGNjQ0UCgU8ffoUm5ubUpvh4uIC9Xod0+lU6iaQEbDiMZvHftOaQMWyrOKNFlAEUL35+RmAXfW5HQAXTg+wbfsHAH5w87L2zc+Eq7LeHw/m9va2FHKkTU6bmRlkbKRBjkk1m2CJSW6XiIgzq7voEs+8rJ9//rkcbN1hRkuBZWNRirIRCHvmsfHHcDiU8lyHh4eiYZgI8G2wAK/Xi0KhgO3tbczn1zUTmWFH9ZaMSeevu43F+VLVpenSaDSkNBoZJQ8nc+TZX49FWggWauzGXC9qRVTV6dpkNSF+jiYFf6bLz9M04IV0m5v20mxsbCCZTEoHrPF4jGaziYuLC0lQYvNQ4jl8ti6auiybkOeeWmYsFkMul0M2m4XP50Ov18Ph4SFevXolJfFZbpwlxyeTidQw4PfrgMZvywR+D8BfBfBbN///E/Xzf2BZ1t/FNTD4BMAf3ubBGsGOxWIoFArI5/NIp9MIBAKYza47szKvfzAYSMUaqnD0CGiUGXgTFDS1AB4GXgTWwet2u/D5fNjb28P29jYsy5LOx5oJcBOdEFmnCxQIBKQxx+7uLq6urqS/PXv2FQoF1Go1aY2mn0+0fV3Ng/YtS6axIAVNnlQqBZ/PJynTpgvPJH2g6Q1hJaZMJoPBYCC4Cte2WCwim80CuG7k2u120e12F6rwOK0XAMFhtNrNddcpwtRI6ELk/hAL0N4Vk7GSJpOJ9GTgehNfYhEWulNHoxHi8bjU/qdJRRyE3g83LId7yfdgoxFqhn6/H2dnZzg8PJRGq9lsFrlcTlq6dbtdAcFZSWndzMl1XIT/ENcgYNayrDMA/xWuL//vWpb16wBOAPylm8n81LKs3wXwGYApgL92G8+AGlMOLDsOs/Nqs9lEv9+Xxe10OpLLrvsQdLtdUZGc1EuSk4rNUmPUBIgKP3z4EOl0GkdHRyJBiRBzjHVVdI/nupDp9va29AEsl8uYTCbY2NjAzs4OHj16hEQigZcvX8ph4EVxAs9WEc0Lmk22baNQKEhRjlAohG63K5J9Ve69ZgK8fFTt+/2+AGm60jEBQe6LWb/A7eDqmAj9OQ0oEpijECHD0C5mzeidQEF+RuMLFDhkjOzPCLwuQBoKheQfAWOuhYnjLFtLviuBb/bYpEeD3pcPPvgA3/ve95BKpfDixQucnp5K52yzDsUqWsc78J+6/OovuHz+7wD4OytHXvZSNwxga2sLxWJR7CH641klhq4Qy7LEhUfVqN1uA8BC7vUq0nYZAAFfiNrn83lcXV3hxYsXODs7cyxisuzC6MPm8103GGUPQHpB8vk8MpkMHj9+jGKxKLYtsRGfzycbfZsoSGIsxDcs67pL8JMnTwSc5IHXc1kHD+BnWBWIEj6bzSIWi0lnYJZwo+TWhUCXPZffa1eebdvyPGpJ8/lcujdTrdYmBBlDMBgUTcEJ+CQT0PgE1wa4PhfU4tiViuAhS9bz3FE7ILbktJ78mXYRApCu3DyHm5ubgov9mT/zZ7C7u4t+v4/j42Ocn58vdMNyMzuc6E5FDHIxiC7z33w+R71eX+j7x41jnfZCoYCdnR0AEPWLASG3sZuBa6lDtY9uSPYMLJfL+Oyzz6TWvJNJsWoMHgq6yAgEZbNZsUPz+Twsy0Kv1xNwi+ow69cRTFvlHdAuT17CQCAgh5b+eTIh1u3n366zfpoRDAYDVCoVYTrpdFr6R1KDobkXj8el+5EZtGOOrUvH0QtBnznNJN2Vh94Ajufz+eT8UF13mwsDfKiB8Czx2QSfgddAIkvW81wCEHAwEAi4BpBxrvr89ft9aaumS+CHQiFsb2+jUCgAAEqlEr788kvpvkXmeJtI0jvFBEhUv8n1qtUqOp2OhLFykXmJnjx5gnw+j1gshsFgIHYtK+gyYMJJ4pj+YX7P/gC8aARdWDXXLRiI5AY48gCzTDYlum3bAkZSKxgOh1Kmm3Om5CQTpOaz7KISf4jH4ygUCtjc3ARwXROPngifz4dCoYBkMolarSaq9LpeCP1ODFw5OTkRzYDIORuhsiApf0Zmx8vrJjF5uM2IUWpvjEngngGQuBECkxwLwAI2oD08lP6MOmWfBjY0oc9eu7IZJakLjOp/pgnjtIbAtQbANupkLOxkRMAwFAqhXq/jj/7oj/Ds2TO0Wq0FHOA2ZuKdYwJcLNZxT6VS0vKJ6i/bauXzeezt7eHRo0cSLQZAsAP+02r7MtK+XrpbCFyl02kMBgO8ePECrVbrDRNjHVeMVvtY5PP4+BjRaFR85NPpVEpMNxoNlEolHB4eolaricTWNv26AVCBQAD5fB6FQkHckPV6Ha9evcJoNJIW7wAWVPTbaAFcP4bS0iXH2vyBQEDwgK2tLfme0YbsPcD3dgLQaJuzui/NF0p5j8cjwOZoNJJy5KbbkMzGyW7mRSUDoPZFDTEUCsGyLPEEeL1epFIpAa7ZJq7dbqPT6QhTWHZBNbOYTqfodDrSE5MelUQigcePH0tHp2fPnuEP/uAPcHFx4dgLY126c0wAgGxWNBqF3+8XiRGNRmFZ1116WOM9Ho+LSk2vAENST05OpHruuouiwz4J6rBo5snJCcrl8oIri2TalE7En2t/9ng8RrvdRqFQQDqdRjabRTwex3g8xvn5Ob788kucn59Ln0W6frQLah3mRrcTD3S9Xsfz58/x8uVL6UVAG1v3NVg2H7exdBMYdv7hIaXEZUNNnWzDcOVlY3JfiAfpRix0N9J+Z/iwLhhKJkJNwWywArxm6Hx/MrfBYCBuuWq1KqHLLDZKfIp9Iur1OgaDgbyvOY4mXl7dYYiaKEHWYrEo/RyePXuG3//938fh4aF4A/gcrt26+3YnmQDRaUZAZTIZfPTRR9jZ2YHX65XYAcuyxEMwGo1wdnYmDRnOzs7QbrcXovmWgTI6A5HSIhwOCybQarWk6jAP1bI4g2WMgIeLB7rRaKDT6eDJkyfY2NiQQ31xcSGuKB7627h+zHeaTq+7N1uWJYyAOEM6nUY+nxfbkh2Xb6MJAK8DrXip/X4/bNsW6RwIBAQ1DwQCwhx0xqd2her351i6dwM1CYKS2i/PPWQeCZF9E08xI+v03jJ6czabIRgMotVqiQlCDxL9+ZeXlxgMBri4uJDgNcbva/xo2dnQzECfzY2NDQkMqlQq+NGPfoQvv/xSIkndYg++Fu/Az5q4EGwBHY/HRRsIhULIZrMIBAJSkpkXqFarSVso2lO6Zj/gvCgmEk4mQAaQTqfh9XrRbrcXwBd9KPUz11l4SiQyBKqQVIevrq6kZj7noUNetVmxznryULVaLbTbbWxubkrgUDabxfvvv48PP/xQsJTT09MFEGwVmbgKtTgA0pjz6upqoY8kUXNGXy4rGMt58OdUy+v1OkajkfR05O8ZCUgzg54Blq6ndGVQzSpsx9QKPZ7r1uvcO9rrzIzkOAQV13XV6f3SofMM9d7e3sbV1RVevnyJzz//XBLjnCT/OmeDdOeYAABRvcPhMNrttnQE0iGYpVIJx8fHEo3GDCqivlSbNRjjthEaAKM6m0qlkM1mxVZlIwkGp3CzbuurJ2mgiFFo9Xod5XJZoiGZ8wA4V8Uxv3YjZu5dXFygUCiIV+CTTz6RgJNQKITT01P8+Mc/FhXztl4VAAtgHeMsKMnYQGZ7exvZbFY8LDrOfZUqqyU06erqCqFQSMwQovEcn0xIuz+B16aUWxCZZkbaVUjGwiav9H5wnXVIMjUjgpTL5qW/5t8lEgns7e3h8ePHiMViaDQaePXqFSqVykKK/G0Eg0l3kglMJhM0Gg08e/YMnU4HyWRSJIvf7xebv9FoSCNNzXH1P+B1R+BVqju1AIakkgkwHVS3Pnfi7rcB0/g5MoPJZIJWq4Xj42MBHtvttmMm321ckvzMZDJBrVbD8+fPpWfg5uamgGYvXrzAv/7X/xr/6l/9KzET1p0HL7Cu6UBAjpFtXFPd+aherwvDNqMFndRbMkwSJS3NPcYdcA9DoZB8hmdEa2G86G6S2ryYnCs1gXg8LqYAwVZGCdKk1MVhVtW14Dhs6RaPx1EsFvHxxx9LYtnZ2RlOTk7Q7XYXMAbzXdcBwkl3kgkQ5OHlpR3GC8FQTR4gp8g2SnX+fJkdpjUAbjLdP2xwQrXcZDbms25DPOy0ZxnEQylME0EDW5pp3YbZzGYzaeM+Ho9xdHSEg4MD6cD88uVLfPrpp6Ji3wZdtm17wVWnmWkqlcLBwQGy2awkurRaLekPSASdJs86yDYPPMFHUwrq/obEjHgZia9wD5eZPNplrCMLdWIRtQJqGhpUpWlExrPOvBgxyOQoBo35/X40m02cn5+Lt8wNB7gt3UkmoO0worKUhmZOgNNl1JsHYKlJoCUrXVu8+K9evUIoFEKj0cDp6amAjG8DzK2aL7UBnQXGABptW+q/uc078HKx6/Dp6Sl+9KMfSXdkalTLEOxl706if9zv96PRaMDr9eLy8lIaoDL3o1wuo1arSUkzt5ZrTuOZGY58B9NNRmB5MBjIe7AtGgHEZeCnHkubiwQtCRo2m014PB4BW3VGq+mJcDMhTQ2PHjKmQHe7XRwfHwv4rTEbzQRvKyAA3K3mI3oRdDEIAAuXwUnlV8+SzTIlBbA8iIfaAP3XjNQiWq5Vyq95/gsSlJiDvvjm5fg63kFL1NsyFadnmZKSwU38Wu+lidtobc7pPXSxFqciIHoPeXY4JoFKBv1wbLOVl6lR6Gea82JgF3EHAAI4zudz8T4wmUnjU3oscw2pCQSDQaRSKRQKBdGgOp0OKpWKuIvNqMA1zNG734HICWWmfclQT6fLbx4OHhg30GfJeywcZF0Syw0H+CrkZHNybLc53oX9WkZOl1N/TYajkf51mJup5mrGqU06/k4XgOE5orvOzexwAtdMAcGLqrM6g8GgqPz8PDVZp6CuZQxXz0szNOB1tSfT43ALLOruM4F7uqdvit7Wi7Pus4FFlf4u3CsHcmQCdxITuKd7+rrpm7yUq8zNu073TOBnQG6lurSLygnVNcEi/XP9DAC3yhp7V0mbE06/M7+/rffmXbzAXwfdM4E1Sdu2pNvY6dovbdpyxB60G9Acy+nvzM/fZh7L5qWfrb//NslNzeaa6mw+c04E5NxqB7ztu7h9/1VBVvO5q571VU2dd5YJOC38Nz2W6Xp0qsHndgA0IKYPrunicSLzeQSNtLdk1fvrmAknwE6P4wRMusWnf9207oE2kXsNqBHA47xMt6fWmpzA42VjLvvZ1wXemnuyihk4McbbvMedZgJOF07nketiErpGnRO3/yocn1l4OnSZP+fYPFjLfM/6oPJ7rQWYri7NODRptyHgbgro52iThGPoghe6dBmwWJGJaPeyxhlO6+Zk+mhE3zzg+hKtQtBN150O8qIrUicw6b4DuvOQ9jitmo/b2rrNlT83I1mXjWP+03/H8cyeiOa6OTGmZXRnmYA+vKyKo1OKI5GIuIGGw6G0A2MkoRn2qguOmuTEdbnYrGybSCSkfDkAiQ5j4RJdq58JJE5z4jvzEuo+emQ0utEmXVl8f8ZL6FZaDH4x56Qloq7Vr0Nfo9GoxL7z+QwoYrozALlcuoSV2zo6HWbt7tJNO7hmZrCQrilojqHVftZKoN+eFYiZ5cf+BiwpxvkxSInVgledDXMeusAL35trywAsp8zGZRqVdmeSOev10HtIxsyiNG49ItbRFO8kE6C056HRBUbS6TSSyaTkxjPKj9VWK5WKFFzUF1FzZE3LfMKhUAiJRAKFQgFbW1vIZDLS8oqltRuNBgDIheE7OYWJ6s3lIWLrsVgsJmWkWdWH783AE1ZXHo1GaLfbkjVp5v/rNTSlPhkAm3akUimp5gxAajPS782kG5oubiHFJtPW6di6nRd7EwYCAQQCAWl8yjwCXhK3gh/6UurwZCbasC8hS6jbti1fM4eAfndeIvrynRipqZlRG2RSm9Y8+Dnbft2PUjdVWRbGzj2JRCISbh2NRkWLmU6ncmY0I2Dvg0ajIWdeM4N1YlvuHBPggeM/Xbghl8vJReQG27YtbaLIlZn2yX+mLb8O6UKg7733Hra2tuQg8IAyrwF4LdHczABycX7NEmrZbFYqKrNll66JT83C4/FIanS73RYzxGleWuUmkTExxZYHLpFICCOYTq97HvJQ6xBZztFtz/h5MhvG1SeTSWHalNSs0UCp/Nlnn0k48Wg0cgU7zUxDy7KkWEqhUECxWEQikRATRgcHRSIRZDIZXF1dCRPiBTEjEPlsXWdRazJst1YsFqVUmtZeBoOBCAkyA51P4DQvMsV4PI5MJiPrFY/HMZ/PkUqlMJ/PRYAkk0lJcW82m3j27JnUMeD5f2cxAdPGosqr68Wx79pgMJDsNKas8vNmtRX9v0kmMGdZr2vysTUYc/7ZT4+SkqWkdP64yelN21yHhvL9abvSlGGxC9t+XbSSffx4kZ0uO0mnPJNxaTyC78GLGolE0O/35bNMmqIkWhc843g8qJubm9jb25NKQixgwjUtlUp49eqVdFzm2nLd9NcEQ/U4bEj6+PFjuZCVSgX1el20s0gkgu3tbZkf0821iWiuIVV7zSRoGu7s7ODBgwfY39+XNGGWHQMg5cFrtdqCaeqmmtPso7DiOeJe0fylIGGtSNZLPDk5wenp6UJiE/dxHdfxnWMCwGvAi9yMEp3pkyyOMZlMRFrrUtdmVRx9GcxNMAFEbauz5ZllWdIZiKpmIBCQgibcaOD1hpqkQR6+E2vUU3thXDuzCJnDwAPAjrpMTiFz0F4Kt/XkYeb/ZAB8vsZW2NuBZbkpqZZ1VjJBXNrhbOVO1ZiFRbjOw+FQGqFy3TSI50RkCKw0/eTJE8FrSqUSLi4ucHFxgX6/D4/Hg93dXbkQ2sxgkVEn0uAt3zUSiWBrawvvv/8+Hj9+LI1WmJmYy+VEQluWJWaattdX7RHzDvjZ0Wgklx24TqXf3t6WdZ3P55J9SkZPIeGmUZl0J5mA5pqU/IFAAMlkUi4e7SwmWgSDQVQqFcn0MxND3OxLJ1SXBTFY/GI4HEpn4EQigXg8vlDElPY6ybwsGunn+2jmxr/nBWdvO9rRPFB8D86fn9XjaVTZzDWnVCfIqpNgPB4Prq6upHmomS3J91ylYuq94yGdTCaoVqtSIPTRo0eIx+OC43BtdRm4ZVKT2Eo0GkUmkxFzisVTy+WydAJmDUpqimTSnJ/JnDmG3jOCfclkEsViEfv7+9KZigwHuK5nwHqNvJAa3AXe7IKl94ZZiVrDJEbAd2WRlGQyidnsuodErVZDv9+X52uPwjvpHdASmweBAE6r1RJ7zrKuq70+ePBAauWXy+U3mICTC8dpLBIPGTc8Go1Kx6ONjQ1sbW0hHA5LN2JKZV5E4hKmhkE1nvMioEk1kiW4x+OxSFIeYBYm1VKa9Q1MAFK7iTTT0XY7GSq7PLPuf7/fF7vcLH/m8Xgc04z1s6nS8jPhcFjarLN1HMHIRCKBWq220DlHM5llTEADm8ziI6Pk2sxmM9HmCoWCZPpRc3NKxTX3S+NONG+2t7dlTy4uLnB0dIR2uy39BqhBaI2DTEAzaHO/iL3Q9KW5qU1Dnk19fprN5kJPDm1+rJsWfieZgPk/pcloNMLGxgZSqRTC4bCU0AaAWq0mZZrX9cvqcUgej0fqCyaTSTnIxWIRyWQSW1tbGI1GYnOahUacSB8CXQtBq2qsmMyKu2x4wtZgbILZ7/cX3FpOarMTBqLVWvYHpAQNBAIL7cOd3E1u2IM5DufJcXS3H5bM3tvbQzAYxOnpKc7Pz6WtvFldyBzDtu2FEmJs2BIOhxfwGHpYkskkdnd3hdlRg9IFTLg2JmlMhp9hq3oWS6VrmAybWhVwjSlwPm7xBHpuBJp5LjhPamgsXhKPx+VczmYzNJtN6cuhC+04mb5udOeYAPCmnU7/NX3JvJSsoc86g8uKY667IDxgXq9XAB+aAMlkUsyOZrO5UEV21VimKWAWRiHzYRwCS2VRTR6NRgtVcsnpV9maWlJrlJtmVDqdFv8/cRYnDWodpqo/Q4lF11Y+n0cymZT+iq1WC1988YW0MNfai9s4/BltXsZusKx4IBDA5uYmstmsuHfpkTArUJFRuXlYyFTM2ICNjQ3Zv2AwKC3Wk8mkdMweDAYyjg5YWoXY63nzHbmGtm0LE4rH4/B4PFJUV3fmcqs/sYzuJBMwVVnacLSJ2f+NNhEvBtFvvamak69aEK2u0RfPWm+8lMPhULq9aJNjGafnz7WvmKQ711K1ZQDRdHrdBVf3zNPBPvq93eajv9Z/o+MV6M6i50MDqebaOa2jmySle5P1+La2tpDL5TCZTPDpp5/i5OREKhFpd5xboBDHpb+cRT5TqZRoG+l0eoGZskrTfD6XQDP69iltl0lnfo4uPJpvfr8fhUJBajSaNQCoEbFD8bJgNTemy3N/eXmJYDAo5eHD4TAuLy9RKpUED9DANL1I6yaV3UkmALx52GgDUWKxZj27EFOC64usF9Zts50uimVZ0sZsPB5LhRqW56JdqVXmdcbSSS7UNCaTCfr9vvQaJHMhhqAlKp/NYJfLy0tXz4CpyjJ4h4eUNuh4PEa1WpXOznxHShTdSISHa9k6apuYUYcMiqKkrFQq+OEPf4jz8/OF0GS+M92bbhGDvJR0ncXjcdi2jVQqJV4Dr9crZpTP55N10/EBeiwnRqYlKVF4mi80QailEZ2n6cpGojraUwsMJ0bq5GnRZdC8Xi8ymQxCoZDUG9QdtngHiCe4jWXSnWUCwJvJGQROer2egIPsAqvDbXkQ3VJ03cbi39u2LTZ4KBSSNtTsDNRoNBbq4rnZsSbN53ORwHxfjk2pz/dlpxvgWpoR69CcnlJzmSagQ1H5Py85aymywakG5rSLbB0ybV/tEgwGg9jZ2UGxWIRt2/iTP/kTfP7553KANfPlmE6AFs8ADzj3qdPpiEuMVX85/mQyWZD8DPfW9f+WSWgyZXo4xuMxotGo2Px8/+3tbYnwOzs7W6iErftNrlLR9brrAKVYLIa9vT3s7+/DsixUKhWUy2Xp0K21YG1WvZPAILCownMxtJQg9yU4Eg6HAUCaQOi/XRcL4N9wIS8vL1Gr1aSePS+NtsHM2nj6f7d58bIQoef7DodDaV/NAzubzUTz0PHhZAjm2E5EyciOxByDzIMhpwyssW17oYOuvpDrgKzalmVz2Hw+j1wuh1gshrOzM/zwhz98o7W7fsYyokbY6XRwdnYm/nJqVpwbMRSCoIFAALVaTaopk7EuA3W14Ol0Ouj3+ws1IHlB0+k0Dg4OYFkWWq2WMIFeryf7tuoyai2BEp1hydFoFLu7u/jwww+RSqVweHiI09NT1Ot1wUJ4rgAsYA/vvCYAuHefZUBNJpNZQOjNUFdgtTTT9rquFa/VcKq29EHrlufmQXZbeB42r9crCDbDhD0ezwLiz8PXaDSksYouzmmq0G7EA8Ugp3A4jHA4LGAgy39TE9DrrS/HKnRbj0cVeDKZIBAI4MGDB9jZ2UGn08GPf/xjvHz58o1EJI3Umyqxua5XV1fodrsol8uwLAu1Wm2h+QcvN6MJqVH1ej0JNNOhtW6mB4k5B1qw6PwSBo8BkE5VOvJz3WhL7qe+/NQAvv/972N3dxetVguHh4colUrSmIa4g9YMuX9OAV4m3UkmoA+CjoCyLEuyB3mwgesMN5aVNgt0kNbRCLhZbDUVj8eRSqWQTCYRCoVQqVQkFNQtKMOJAWgVW4OIDEqaTqfCCPgZqpLME9AMwC1jTK+fXkNiAmQ8xWJRKtgScCWwRDXXDIFexWz0GpLR+f1+bG5uYmtrC36/H8+ePcMPf/hD1Gq1hUunTZplmIr+/OXlpXTh6XQ6iEajgvYzGtOyLAnA4rwItOkWZOvOS+8dBQ4Aaa8+m80ketBMgHJjbHq/eHnpKWKD2o8++kg0jYuLC5ycnIh2yLXSLs1194p0J5kA8GYuPyPECAZtbGwgk8lI4IZlWajX63K4THNglbTk/7Z97cpJpVLiFoxGo1KzXie4rHuASBqN1mg9bUwzIIRSjfEIJqC1bF76UukLHYlERGJQLdYaFA8USQNj66Sl8m+m06kAgR6PB8+fP8ef/Mmf4OLiYsHUcLocyzABfeiZWEWtQ2cn0p1Hc45YgOn54Pqsu49678hseFaYgEUzx2k/3J7J5+lw7lgshgcPHiCVSgnW8OLFCxFE3CcdXbssRN6N7hwT0NyWF4J14xnFVywWEYvFkEqlMB6PcXJyIpLT6VAtu6zmYvEAUkoz3JRNJtj9yPT5miCm21gaAKOd7vV6hRFo6cw0UbPzrDZ53NQ9UxqQ4egDQnCMXhc3O5n/u6nMer+odTBQKBaLodPpoF6v4/j4eGEuTmYUx1vFtMkI6ALkvHTKMteUIda8pPT/3xY30meLZhYbrAKQvSKT03vAv3XLK+FZZyh3NpvF3t6exFcQA2FOBAOetAaqk8NM0HoZ3TkmYHJabavTzVQsFpFKpeDz+VAul6UfPOOuzUO2CqzTjEdfLNu2xfbXbbN03vs6ZKpsvOys1sN0UcuypGZAo9FArVZDr9dDv9+Xz+tgkGVhrwzS4UGkRhEIBNBsNt+IUdeZkOa6rVpHSjLNtGl+jMdjnJ6eSoCV2xjrMFGncXVlINOmZkclhhPTvNJRpeteFHM/yQR0MBKTv/g77WpdNi8txYPBoDCWWCyGRCIhnomLiwtxezLCkqTH4rqsez5XMgHLsv4egP8IQNW27Y9vfva3AfzvAdRuPvZf2Lb9/7353d8C8OsAZgD+hm3b/3StN1Gk3V/aVmX6LMOHJ5MJKpUKjo+P5WCbUXSrNthUMVmIpFarwePxiP+8XC4LF3YreLFqHAa0+P1+9Ho9sVlZuAOAaBrME9eRYFoSmb5ncyydikrGQgbHOIvJZCIah9Zu3DCNVfM1k26IbcxmMznATh2H9Di3XVOeETI+Mrt6vS5tz+gS1BoBmeht9xFYTGJiJud4PBZvgJt2sWwcuj7ZsoxxKgwJbjabOD09FSFERsbnkgHyrNxmXiubj1iW9ecB9AH8fYMJ9G3b/r8Zn/0QwD8E8MsAtgD8cwDv2ba9NHTJcmk+onEButXoY6dbhKG0utPL22wqiWNxgxmPwLp0t+3VB0Akv1aVdcQeU2ctyxKXEiMJdXaiqbE4oeuaqHVozUpXG+J6mRfTpHXWkxeDlyMcDiORSAggx2SrZaHdy8gMfnIa33wHSkf+ndYanDCOdedJzZT5K7u7u4jFYuLNYTy/9lqtc2ZoDjBvJJFIIBgMSl4AqxTpQDX9Xppc5vJ2zUds2/6XlmUdrJzBNf0agN+xbfsSwCvLsl7gmiH8mzX/3hwbwOsDrwNqNEp72410G4fP4wHREvptGYx+PqUVq/fokFlqPjykOsxU2/P8mb4Qbu+ktQcdWWh6UPQhNZ93G9VcS9jJZIJut7tg+txWQpnP11+7HXqqybTLOSf9uXXMRCcyz8J4PJbMVZ/Pt5DfQgZ+m3EIdtJMK5VKACCpyU4M9G3MKJO+Cibw1y3L+t8C+CGA/9y27RaAbQD/Vn3m7OZnX5k0Q/gmaV3V9zZkSgGqfj8L0hedtMx3/FXnva7Uuy25mSg/S9Jng2YIzYCv672omWkmts47fRVaXpLGnf4bAI8AfAdACcB/ffNzJz+Im6r/G5Zl/dCyrB++5Tvc0z3dCXpbzeKu0FtpArZtV/i1ZVn/LYD/z823ZwB21Ud3AFy4POMHAH5w84x3c/XuMGnV1ennTqRB0mXPdVJHl9mn69Kq564iJxNhmbrsNleaZ07vpP/G/IwbZuE0L2pjHMspOUuDrHou2htikvk5PZYbvRUTsCyraNt26ebb/wTApzdf/x6Af2BZ1t/FNTD4BMAfvs0YLuO+8bXGBwBnrnxXObQZLOM0P/OA3cZGN5+lD5vTAVonvt1JLXfzt5t74/aOTpfH6ZC7MSBzjnps/c78f53EMj0vkg6pJobjhElpZrouY3ULm9Y9GvS8zPmbHrFlIKpJ67gI/yGAXwWQtSzrDMB/BeBXLcv6Dq5V/SMA/4ebwX9qWdbvAvgMwBTAX1vlGViHlnE882BykTQQ9jZo9DdJq5iZ26UyD+YqFVR7V/Ra6fgL8yA5BQmZX5tj6PfSa+/E4JYxNXPey3AAPZ7+mc7/ACCAsp6bmX7tNDdzXkzo0VLZKR7Fyf1pxoa4aTx6/cwzrwOB+Bnzsuu5mTUil9FKF+HPgtzMATe1yjxwOmZaLzj/rZvJZR4o68alZ6LzWqLo91prwR0OLv/X7jtNOr2Uh46H2w1td7qUWpLxouiLR8nG77XvelnsBd9Xq9E6T0J3XeK68XkEerUnQ0tYt7GcgskYvMMS6vTA0MVGxF63WOO89Th6HyzLErc0GYE+ByajpOqtn033r23bspb8HPeAczPzS/Q51CnhrBugzQWORe8IXYkKhH47F+G3RU6qoFNUGpN9LMtayNHnJtNdw0PgdmH4DJ1xpyvxcoP5LPq8mdCjD9I6F1NvLmMFmArNy8C5cMMtyxK3E5Fpsw7AsjULBoNS1FR3OmIxFgAS7MLGHZyrWQjUnJOuV8C5MAae4dGaKTPghc/VYbDcN7d5aZWcMQmZTAabm5vY39/H1taWZA92u12cnJxILwId+q3z/AFnIcMIPmb1hcPhN2ofkLkyQUm7CBmWrTNSTWHEi6wZAmNVuGeMHuR8mTrN80bX6Hw+l/qHrKm4iu4kE3CSljxcPFBMImLgDevm2fbrQhNMjmEOvVtihz64rC2fzWZxcHAgSUoApPsPoxQZycWMNL25blVxzItJKcPEKLPYCH3E/FteeuaRU8txu5x6TDKCfD6PRCIhlYa1esywV6bdUu2lSu00Lx3IxVLmXDf+z5oPvBij0UgYDHsD6sw+tzRcPSfOJ5PJ4MmTJ/jFX/xFbG9vIx6Pi9+e7byYB8LxJ5OJaBNusSYUCOzXyE5KOhCJqeBm0BVTz9kkR5c583q9C+XV3faKAVebm5vSeYvt97gXurYE17XT6cj8GeuyTEu9c0xAq6d6s3VxyVwuh3w+L/3gGH1H6VGtVkWaMG9dq6p6LB3+yXLYe3t7ePr0Kba3t6XwBwt+bm1tySFjXvyy6jQkHjinn7FabSqVkiw/HlJWH/Z4PFJBhoxAawvm+gGv/dla60gkEnjw4AG2trakaCYP73g8FilDAJHhtvqQaonJfdEaFOeSzWaFCWhJyQSXXq+Hbre7YLfrgidOZ4Nz4loyNfrjjz/G06dPEYlEJM242+0CuNYcCoUCrq6upCq1NvGcxuGZ8ng80g4smUxKvUliDhQgumApS6vV63VZI0prJwGn8QttgoTDYeRyOezv7yOfz4uJoysaTadTaR7j9XolgYnjmmfOie4UE9CH1yT2BuSibG9vL+SPM2Os2+2iUqkshPiyWo/TeNpens1m8Pv9UoWXyTYsK8WDzhRSxnnrZA43O9ZUITmm7knIKjlMV+bcmKs+HA6lrDrVTLesNBN88vv9yOVy+M53voMHDx4gnU5jOp1KPD8PMw8W6/QxRNttbrrwKc0m9o/M5/NS7IOmxdXVleTfW5YlTJpa2yqpRaIKHY1G8ejRI3zwwQeIRqMYjUZ49uwZjo+Phant7OxID8RkMinFSNwuCH+nz41mpBQKxItotlB1576yAxLNLx35ago65nrocdLptDCAVCol+8UQ7NlsJmXouEccj3NbJ0LzTjEBDXIAi/YmiywcHBzg4OBA6vF3u11pq816gLQ3ebBYKcgkzZHZrJObwaYih4eHODs7w3g8RiAQQKFQQCKRkGo/GmRaRqYU5UFJpVLY3t7G9vY25vPrQqatVguDwUAaZgCQ5p3D4VCy4zSwtmzcQCCAbDaLTz75BN/97ndRLBYlOYWSkeuvL3Umk5G+ehqcNPdHA1LUumiCtdttsVH7/T68Xi+KxaJcHuIsunwacZFl54RrmE6npUmMx+NBrVbD4eEhnj9/jvF4jGw2i1gsJrUGGI/vBsLqMTTT47lks1GPx7PAhNkDgeapiT+xjRlL4znNh+OwkjLL6ieTSVxdXUnpMhYUoVagtUGaA9wL89w50Z1iAqaaBLzmbOSKH330EWKxGGq1GsrlspSATqfTGI/HC6W4KFGpPjkthEb4KWFbrRY2NzfR6XRQq9WkHFUmk5HP8vOkZe40U+PQACRLcbM5BsErbiJbnQ+Hw4WQUi1V3FxnXDs27Pz4449xcHAAADg9PcWzZ8+k7DelHtVeqpjpdFpi2ZnSrIm2MZkApRXxBsuy0Gw2pSALG2dsbGwIQzPTv93mZc6RvQWIDU0mE+nIo4ucUuKyQjFxEA0Iurkq+T6Xl5dot9syDk0arpsWVhoM5LzMYjfmWGS8TMHO5/PY3NxEOp1GKBRCvV6XylaDwUDMV56nUCgkjVW0priq1wFwx5gAN0tLHRYU2drawieffIL9/X10u13U63VUq1WpMJROp6UUF7OtyI3dkGZ+z42i3Uowjjb0ZDJBNBqVSjm2baPX68lh1c9ykiw8SFrCUTJsbm4K2EOQkWBOMBhc+Httfmjm5ablUJ0vFot4+PChmFAXFxd49uwZXr58KfYxLzPHJ5CWyWTQ6XQc8+MBiCQig/L5fGKKEcvQrkfaupZ1nZnJBrKcl9vFdNo3aiixWEzOCouK0H5nKTXgNcNnuXAdoGNKS+4XcSWuUSwWW6gCpd2C9O5ohJ4FQLh3pkeCpLNX2WU7mUxKYxUWfqFmRu8Va0YS06HmpUHWVXSnmADw5mXy+/3IZrN4+vQp3nvvPWxsbEi/vEgkgt3dXTx8+FAkt+aATpzYaSz+T/WU/QATiQQAIJlMyiGLRCKifZhcfdmCazCL82NHGaLWo9EI8/lcVEp6DWg7m3X59FqZl0d7UzKZDHZ2dpDJZNBsNnF0dITDw0OplcB0aZOxUMoR+DMZnAYe+XleHBa+oDeH7bny+bzMt91uL/Rw4D8tpfVYTuObFzIUCknLONaH3NjYgN/vfwORd9svrUazPsF8PhfmFYvFFio3W5aFdDotgDH7RureFW7tyTmWjt/Y2NhAOp0WQJVMn6XM2IBkY2ND0rVZXZnMgozJzdzRdOeYgCatzm5vb4uEBoBCoYCtrS3s7+9jf39fALXBYADbtgXd1WWW3DQBElM5yUxo5+mN8/l8SCaTqNVq2NjYQLPZfEN9NEmrlaYLiMDO5eUlAoEA8vm8HKxIJCKMiOWutbq/qiiG3+9HJBJBLpdDNpvF1dUVSqUSnj9/jna7Ddu2xb3FC8VDQwZAENQNRCNz4xzJzBgDQLCMiHo2m4Xf70er1RIp6YQxrIq1MNeVXhrLslAoFMTkIiPkujNOQmubbqTX4vLyUmoIcG8YQUjQNRKJYDQaodVqSQUgve9cL61NabCY70dNgKbHdDoVja5QKEjcCGNMeD7JCLTwW4fuJBPQgCDdTtPpVDq9cEFCoZD0I2w2m+h2uwLwhUIhOUjrlF3mgRqNRri4uEAsFkOhUJALQLArlUohFouhWCzi6OgItVpNGM0y6aIBJsYHhMNhuSzT6RSJRELAo+FwKAwQABqNhjA2+pyXzYPrR1/9xsaGlNnqdDoLB5PqKu1nukxZxZmuvWVz00yQngzOIZVKSc1Bqq60q9lJSjNaruWy80Gi+UFpzQtKoUBwOJlMIpFIYDgcSvAPTRU3E05Hn3LvaNLouBL2RCQzImPT55DmnJOrmuvH/dVt1Ag8RyIRpNNpMVlZAYut8TRGpJnyO28O0KYdj8dS7ouuFh5Wn8+H4XCIs7MzHB8fC7LuFC++yl1CsI9Vi8vlshyWcDgsoBYlLGvZreOL5Zx4sOjeJGDGC6g75uoKSsCbJcudzAH9c64Ro/UYvMLDwsNEdZwHlCg61WF6JZzUaCfwjvjAYDAQRqelL+ei4zf0haN24cRUNYjGw97v90UVp7BgYVgA0jOQF4nqPPfA6RxoJsA14Vpy31kRmFoAO0azpyPNKDaW1b0dzPWj2UVGCUC0Q2qAxIj4DD5/NBrJZ8hwyEjfeXOAPutOp4PDw0PU63VR51jg0efzoVKp4Cc/+Ql++tOfolwuL8QHmDUHTXJSRemC63Q6AvYEg0EJfikUCiIBaE+vIkpIbqbH4xFwkYeZl45obzKZxHw+lwAQ0522jKFp+3o6naLVai38PRkO7VVWPM5ms+JPp0eg0WiIautm7gCL4bx00Xa7XYRCIXkXDXZqHEKvIX30y0jXnCRjmE6n6Pf74vpstVoSrcjIUWphGuNwYjT6HQk20nzb2NiQoKh4PC6FRjUQSC2MOAUlt65WxbkCrzEe3S+R+8w1ZV9HmiCMGGXcAgFWxmO80+aARvTZyordeemr/+CDDwS5//TTT/GHf/iHOD09XajHTqnCr9dRjfg3vByXl5fi9726usLZ2RkODg7Q6/XETeSmUmrigae7ki4nFi5lAAntvGQyieFwiEgkgsFgINF1RH3NDDY9DgAB5yj9qQGYXgYyyEgkgu3tbTx48ADZbBa2baPdbqNUKqHdbi8k3DitGSWn1gYIdNLVSJNkMBiIy5PrrSWY3je3PSJDobZDE6rVaqFaraJSqQhKvru7K0yIjFjH6TvtlSa6FlOpFDKZzII3IhKJYDaboVar4ezsTDCieDy+cPG1F8Wci/Yy6MK6/Fmz2RQmRwHICNnZbIZGo4F2uy2eFl2N+J00B4BFtF4j5rZtIxaLSSiqx+NBpVLBp59+iouLC2njtU6UlNOY+gJpwIZ+Ytu+dg1WKhV4PB70+/03+um5SRcSVeVut7vgdtPeA9qFw+FQqijzn7m5Tuo53+Hq6gr1eh2fffYZLi8vEQ6HJegpGAzKc+LxOPb39/H9738fuVwOXq8Xx8fHODw8xPn5uXgm3DAPbcvzAmuNg9WT9Rowd4B/byLntH2dxiKzILPu9XoSgcjqvyzImUgkEI1GBdvhHvJcuXkdyDD4mWAwKMU/PR6PhA8PBgOcnZ3h/PwctVpNLirVeO1+Jo5griHPAIUOcRu6owlWz+fzhbnQw1Kr1aQcPiNKOeY62sCdZAIk2ujaPgsEAtLcstls4vPPP8fh4eECOGJOfB11nePpOAWi41xQ2oFEoZ0Sh9YZg8AYgAU3E99TNyUhyEbga10mx8vS7/dxenoKr9eLXC4HAJKYwgtDzYqRd7VaDa9evcLJyYn01XNiOvoCae+ADkHW0Wy82NSI/H7/gtprpmkvM+Go+nc6HVQqFaTTaQHnqAFMJhMcHBxge3sbuVxOtK96vY5Wq+WaVcp5Aq/NKuIMRO6pfbTbbZTLZekNyCw/AKJtEU8hyGcyba4jzwVBVa4PzYTZbCaRj5eXlxJGrl2SZoXqd1YTABarwJBL0iZjs45arYbj42Opbb/uZV9GvIwEasgUotEoDg4O8OGHH6JYLKJWq73h+zfffdnceLi09NKmAOPude/B22o4tPubzaa4VwuFgsRAJBIJxGIxbG5uYmdnB7Z93erq1atXOD8/R71eX2gW4jY3t/gBZhTSw8OYCB3NCUB84ZS+TuaAOQaxm0ajgfPzc2xtbQlKDwDpdBo+n08YAEOKS6USarWaaI1OKLq+mBRE4/FYMh79fr+sKVVxrhMZNaMraZ6SKTlFrmpmenl5KViMBp0JGtKDRMCWDWsJSGqTal26c0xAq+FOvyPY0mq1UCqVUCqVFuq7LwN53MYzVXkyAQa5pNNpPHr0CN/5zndQLBYxnU7x7NmzW2kA5vvwnXhwmHTDS8mUVWoB1IbM56y6LDzEVFVHo5EwAEad+Xw+1Go1iSPgP5oBJoi3bE78nu8aDocFQWdSFiUky8drn71GuJcRTYFGoyHMczKZ4MGDB8jlctjc3BRQ9/LyUnJAvvjiC1Sr1YXL6GbiaIxDR/x1Oh2J5Gu1WhLwRGYNQJrl6vwCArFOGA5/psOuqX0y1Jng5Hw+F+yjXC6/EZDENV23ovWdYwKaK2oVWaPq9KszjtoJtHK6DG7kdIgZubW3t4cPP/wQH3zwAfL5PKbTKcrl8kKwyypJqeelx9KAIgNFGOXm9/ulHZlOt9USyu3wOjEa5kQwVLff7yMWi0l7ch7iRqMh7cp5iNYB0DRKT02HpgD93sFgUOxe2uU6pJv/nABPJ8yFKbvEg2q1Gk5OTrC7uytp5vRuMNfk6OhoIcHGaR25vswq1R6PbreL6XQqHhvWDaDGZlnXNR/oBaHZw1gGp3gLSm9qQsPhELVaDZeXlwJ+p9NpMSmGwyEuLi5QrVZl7/Q94DPX1RzvHBMgmReGbhEu8uXlpfTqc4oKXHVZSKaty8Vj+HC73cbJyQls20alUpGc9NPTU1Sr1YWMvnVVMD2WRobpUiP+0ev1JHmJB0h7PtZlBDwMvHC0pXU3Jz6X9uiy9usmETPh2DpUmx6Ker0uwTvVahX1el0iM8kMdKSb3j+n/eK4Wquo1+s4OjpaCOvl74ghsFXYOoxbYxXUPCzLkouoKwfxszQRuR5kjgRCTdenNns1VsSkrU6ng2AwKGC0x+PBeDyWqERd3Uqv2W1MgjtbY1AHxjBaj7EBtG/pNjObXJqS8C3eZyGohyotU3spTTudzq27zHBOWm1j/DtDbHUVHjI4BkCtupRO5o2ThmSODbxOYtENO7V97iYxOSf9HO4Z8QBiA9w3mhpmeTZzH1fN0fy5noc5f/18ktNzmHpOvCYcDi/UVaBmRWGhmZ7JBPgOdP/p7wFITIBeN36t50KQmtqCTriiMNEmoo6/WFVj8M4ygZufL2yoBtG0xHYLLPmqc9MXxsw/15v+VZ7L/3UUnC4iyUNrmjy3YTqrfq/npSMrTWbjdvn0OHqvuG66RgG1Hl4yHavgpMV9HaTXeRUDABZ7R2ohxAvKi85gNP5MRzqaXhOT+fDM0gPgtH5O8Sfapcw5kWE4CQeu9w29e0zg55W+zgtwl+hdn5e+2O/oXN6tasM/z/QOHq616F2f1zpaxLtId4oJvK2f38QBlv38rm2etqs1mSr4be3jnxW54S9vs5cmlmE+8y7SVz1fbqaK22fMMbTZ4Ga2rXqnO8UE3C4zyfQY8Ger3ElvQ6Z7UgN6HGMVar7OGAAWQCzzvc15Lft+nbFuQ+s8W+/ZKleiuX/6UJsHedVZMJ9vgnG8HE4A59uSPgfcM413ECMwAU7OZ9lzzTPLcRjrwPkxahZ47WLWlZwALHiQ1qE7xQScNt28IMuAl2WBM+ssiNPF1yXJebCcgpNM5rBqHJ2mqhFl/TOCjybwaV6edefl9F6rDif/X+WNMPfIlFaa4elnmxGXBLJWZRHyGToVmaHWRPcZQLOsFsI6xOfr5io6EpIu1uFwKN4qejy0Z8Vtv5zWyrz4upx7IpGQtGlGJDKakfk2fId16E4xAVOqcNHpFdCuJyK4RM6JnuvF5/N4mdxIc3i94ewHwMKbjOBjgIauNqzdd25BGnw+uyexcAeAN9KjbduWaEFdQVnnKnCMZYzASYXUpF1RGhE3QTC3cFS9ZyaD1nPWLld9cVnSW6c+s7PSsj2j9NWJOXTj+Xw+SdPW78X3XVdC8/11KrFuZJJKpZBKpSSsuNlsolwuS0wHM0Z5Gd0qXHEc/q89RfpnwWBwobYgcxpYecjj8UhgmVsejRPdKSagDxMXXheOjEaj0qmHbjQmXDAtl8kj2vXEGH0nzqgXHYBw+WQyic3NTRwcHKBYLEoserPZxKtXr1Cr1SRunHncPMhOG60ZAANZWEwyGo0ik8mgWCwikUggHA7D5/Oh3W7j9PQUtVoNFxcXaLfbC23HtIRfxnT012b8BbDYe48MVoedMsiITM9JcmkXIJ+n++exCAvDX/l7XhIGJzFOgZWinBiB1tAYbs28BDIRqsrajafrS6zjbuV6MGclmUwil8shk8kgm81KMhEve7lcxnw+lzqDvKBcF/6/TEjwfXTKczgcRiqVQi6XQ6FQQDqdltwJFtVhkBHjCbiH62imd4oJkKj+8NLrC5LP56VuPMNGqYZdXFyg1Wqh2WwuFFbQi+92qLQNFo/Hsb29LY06WBev2+0uLDJVTh0Db15OTeTm5OhkNOl0WhqCxGIxyVHP5XJIJBI4PDyUuH/NbPT7OzEdHcpLzYPaByWo2eiSHYioieiegQy3Ne1XbdrwexbuILNjshKLcFCdZdw7I/m4flSvnUwhMoBwOLygqWUyGdj2dW+AYDCIbrcrEZ2MHFxmWpnEdeO/YDAo6cEUGmQ4bKISj8dFg9NRkOaYq0wzzaiTySR2dnawtbWFQqEgNSl5psPhsFRENrXadXCVO8cEtA1OLs+S4izvRSlFLsumobSDut2uaz66JlNF5KYzZ2B/fx+5XE4SazqdjsTEZ7NZjMdjVCoVed6y4CG3S8nOSoyqm81m8v4sEsoLWKlUMBwO3wjoMcmU9jzALE/NCrz6wrPUNRkwy1vrDkxO9fG0BqDnysusW8exsAjz5LmezMGnZqeDbpzWUF9O5u5TO2QvB5Y2Y34H8+zXBVM5NjNYmeevG36QmRLHsG1bsAKPx+ManuzEsE3Alz8LBAIoFot48uQJMpmMVBHiPwACFjJDk5qEnscyulNMgIdWh7JSAjJUkgeSajGru/BS8UBSC9Ac0W3zyVH5t9FoFJubmwgGgxgOhzg+PsbLly8xHA4Ri8UkzZcVYfkMtwXX41MyMB+c6jXbgVHqshEli1mwJp62c50wAdME4KXhc9LptJTHDgaDEvvO/g5ktNVqVWrchUIh6R7kdDE1ss/vaRbQlublIBOfz183iu10OlKpybIsMTtMhqoZA/Gf6fS6P0QmkxFThtKf9QD5LOYpcL9WnUWeC52Nx3NSqVQQi8VEK2CNBl5IU/VfJZVNJgpACunu7e1Jz4vBYCDFQ3q93kIjWK4hNbt3vrIQEzZoIzLenIUhiIBGIhFks1lsbGxI+S1eNGoCOgx0Gc3n84Wcba/Xi/Pzczx79gyHh4eYTCZStJKFJXQo6bIF55y0KycQCKDf76PVaolt3O12Yds2isWiMBnbtiVRxATvVm0yNat4PC6mBysYs1AGazXw0g2HQ4nt54W6TS1FMgAyAVb61e3ghsMher0eGo2GJBfRBiZzcCM9b9aXIM7A3HqabmRqs9l1SzTTG2E+z2k+xHl4jrheLBZC4cNqRU6JUMvGcdIMWGn6wYMHgkv1+31UKhUcHR2h1+vB6/UK42GrMrM0/Tp0p5gAX5pAC3DN/VutltiAlJQ8vLrNFFFaEyxzyvLTC8S/p9TU1VuYitrtdheALeA109AZdPqZeiytCTDllAyAFZX5/iwLxWSpyWQihStM6bJsHbWdz8ul6xSw9iAAcT+REfX7fTSbTUn5JfjkNC83TSQajSKfz0vhUl3uyrZtNBoNKWI6GAwAQABf1iA058V9JMOwbRvhcBiRSESyEvn+1NZyuRym06nsnU7L5j6a42hNQGsf8/lcTDfgtU8+EomIpCb4SEa4bnyCBo/ZWOf999/HRx99hOFwiBcvXuDZs2eoVquwbRuZTEbaplMjoDZJ79U6dKeYAPB6Q3RmIFNCaQMSqZ9MJlJDjn+rfae6bJfJBMxLpMEubY9R1aIqzQo2fJ7uD++22ea4GmFnzzwAIvn9fj/y+TwSiYSUW6/VagsFJPmuTvMivsHfa4kciUQwn8+l7h8burKOwWQywfn5OcrlMhqNhjBbs/2ZOZa+nMD1ZSYWsL29Dcu67qJExqRr6WnvCluXOZkD2mTT+8teDPw8tSpiKroOBMFV7pebd0WPzYuuNQK2juPvksmkmB40aylUdLKPG2kMJxwOo1gs4pNPPsFHH30En8+HcrmMFy9eoFarYTabIRaLCXNNpVJyDwiAcn3fOXOAm2JeKl5soue8oLPZTNo1sbY9SUveZWqYk41LNx43e3NzUzguW4g7LfAyl5O2ly3LElCTh59jsYx1sVgU9Za+ZzMGwgTk9Fj6oujSazoAhTjA7u4uNjc3EYlE0Gq1pM+jLnXuBnrqi6mZAiv0kpnxPf1+P/r9/kKbdT0G/34VQ+W8aIMT5ByNRoI/8JLk83npUKyLw/LCmmM5CQh+hoAkMQhe3Hg8LtWxWeacwkgzHDfSgHEikcCjR4/w/vvvI5fLodvtSgERj+e6cvPm5iY2NzelDD6FBwuU0gOjm+a60Z1iAsAiMkpQRnfhZcMF2rC0zZmCy4ARs777Ko6oL7BlWdJv0OPxoFAoSKcjFqwYjUZvRPmtmpP+3gzooDeABzcajYr3oVqtuoI8y5iAZgb8mqh5KBTC3t4e/H6/HKjhcIhSqSQlq0yV2a1QhZMk1RV5tHuSxT0ojZ1qQ7rFWphnw7Zft+KiSUCm5PP5BMCldE0kEhLcQ21KI+kmaeHBsXm+2KBFS3kyFWpdJgNws9NNLWBzcxPvvfcednd3YVmWdKsOBALY2dkRYZROp6XWAWMk2BdhWUl1k1YyAcuydgH8fQCbAOYAfmDb9v/dsqw0gH8E4ADAEYC/bNt26+Zv/haAXwcwA/A3bNv+p2u9DZxj5VnJhaocN0GjsASBtC9dYwGrFkRLSlagoX3Kem98N4/Hg0gkIk0odNyCfpbbOCZazANAu5JgD/3cBPe0d0Aj8E5SU7sk+Xm6Hi3LEjAtFoshmUzC4/Gg0WhItyFqKuaeOO2XNj04F14KBs1QNaY3wrIs6dpjFktxA1mdTB3iB5SGBCCp6bDUl2VZSCaT0kNBu9KWuZL1vBgjouMsdLQgi6cmk8mFPdYeBpqs5ryo0cRiMezv7+Px48dIJBJSVcrn82Fra0twADJVvhPNZmoqXzcwOAXwn9u2/ceWZcUA/JFlWf8MwP8OwO/btv1blmX9JoDfBPA3Lcv6EMBfAfARgC0A/9yyrPds214ZDK4vq54Ay1S1220JpKHvW2+Q1+uVwBSG2pKJ6IOjSaPF/JquJAJ42k1Jz4DP5xPVnYtvuiWdxtLYg5ZiDKKhu5PqMf337MfIv9XquZuWwPcgct3tdgFADgkBKNYzZNkvluPSkYT6UJvgINeW0XLUzHQ0J5F02qvatWuGLpsXfRnpbrwM5uFe6EIsjHokQ9U9EJftF+elw5O5drqzMoOdaJqwCzPHJbbCvzODvchcGBiUzWYRCARk3Wh+kMFobYnvR7yo2+2i1+utJfyANZiAbdslAKWbr3uWZX0OYBvArwH41ZuP/TaAfwHgb978/Hds274E8MqyrBcAfhnAv1k1Fl+YL6/DeRkn3Ww2ZTG5CIzyo43b6/UQDocXmpG4RQpq6aWBQEp2SjNKFDa5YFARY98153VSZTVz08FCbP2Vy+UEQacXwOO5LnWuW10BWEhgcrL5tFTl90TN6Z/n3FOpFK6urlAul3FyciL187U0NoNe3EhH1QGv6+SRqfGCmniGKTXN9XSaGy8oy45Ho1HxYFAiE2CksGBcgV6/dYjAKsPYiT30ej3U63X0ej1pEkt1nJ/TnZ70XM1zwa+ZGwBAGCY9EtRAyUwty5K+mADQarVQqVRQr9elT8U6dCtMwLKsAwDfBfAHAAo3DAK2bZcsy8rffGwbwL9Vf3Z287NbETeRXJsumdFoJMgrJTYDaeLx+EJwDCX0OllptPcY0svIvaurKzSbTelmSy5PN9tkMhFpZm6olvqaCJwRvU4kEgJEanWRFzaXy6HRaCzMg5LODY/QwCCfR1cjtZV4PA4AaDab+PLLL8X/zENLE2hZdKImfVl42ZvN5oK7jDiLmeXmZAa6mQQaXKV20263RSvTUYW2bUsHZAZokQms6uegwUwGHtHFyLwGzkN3duZ5pcuVGhEBbnOuPCt8TqvVQrvdFpcfzalUKiV1LnXE4mx23QbtxYsXePnypfRVWLcf4dpMwLKsKID/AcB/Ztt2d4ma4fSLN1bYsqzfAPAbTg/QEoJMgFyPG6s77ALXzGFjY0P+Roez8m/c/KYa/DKlEy8lI80ofRlKyg4wesFN1dKJ++u4d9rl7NU3Go1kzmQM2WxWcBGzXPayy8KDrk0JIvLD4RAnJydoNBo4Pj6WVFTTO6NxFSefup4jQTFm83Fv9GHXQUiaWTkF2LjtF01Eps5SC2FsADW1VColSUXMVWDsg87IXDYWmQ41GTJixmBQ9Y7FYtInkPul8wr4NyZp3KDT6aBWq+H8/FyA51QqJeeFNQn5f6fTQafTwcuXL/HZZ5+hVCqh1+utHSMArMkELMvy45oB/Pe2bf+PNz+uWJZVvNECigCqNz8/A7Cr/nwHwIX5TNu2fwDgBzfPdxQx3ACqQcFgEKlUShbWDO7hJaIayA6/buaAHocXhSpsPp9HKpWSw0JJEI1GJS5cN4Ak2r1kDReYA+04AjycA9X7yWQiUj4ajS4kpPBiUxq6SWiuHyUhEWRqWMC1CnlyciJdi/XfrpL8TiYPLwsbqjJQaT6fi7lF6andgyYTdXq+056RWVF74d/yMtJWZtgw94tMYd1xaG/TBRiJRER7nM+vW5+Fw2EUCgXk83n4/X7UajWJxdB5EuZ4ZHqTyQSNRgOffvqpCK14PI5MJiNuVp79TqeDVquFVquF09NTvHr1CmdnZ8LIV81L0zreAQvAfwfgc9u2/6761e8B+KsAfuvm/3+ifv4PLMv6u7gGBp8A+MO13ub1mAuqNC9xOBwWe5bhoPQH7+7uIhgMotFoiA1ISbiKCZBo/7fbbfHxMnfbtm3BBMbjMTqdDi4uLhYaSugLbpKTdOPhDYVC4pLkJeL7Ex1uNBoLkW7LMAFzXJ2vkEgkJPLx6upKimCYwJ/eA/N7k6it8J152NlEhaorLyX3wol56jFXET9Dc4MaG7XGyWSCfr8v606NgaCa9rQso/l8Lvkqg8EAuVxO+hICEO2D+I1lWajX62g0GpISzWAmtzZk3KfRaIRyuQzgmkFns1kJ5NrY2BBTpF6vSzNSNoxh/smqmAST1tEE/hyA/w2An1iW9Sc3P/svcH35f9eyrF8HcALgL91M6KeWZf0ugM9w7Vn4a/YangESgTN9oTQHpcRPp9MLYbxsH27br7vOUgKs4wbSaj872YTDYYkQpInR7/dRrVbx5ZdfotFoLJgCqw6wBrs4Vq/Xw8XFhfych5T2+2AwQKlUQrPZXPCv09Z1azWlgUheCmYRZrNZaa/Nd+E/fSH0M1ZpBhrA5RrMZjM5vJSYlGKVSmWhg6757uswbY6jx9UNQClNM5mMuAlNk2MZ4Knnze5DAKQjEPMWaLISb6DH4uLiApVKRbRJrsky/GE6ncq6dDodwRbi8bgwW2qrbBTDMZ0Y6jrMdB3vwL+Cs50PAH/B5W/+DoC/s3J0578FsJiiqrPuxuOxtCcnJ2Y9Af6rVCoL0W5OuQMcS3NMqoytVgsvXrzAYDBAvV6XaLrZbIZSqYRKpYJKpSIx6joMeBnIRBOAavxgMMD5+TlGoxEajYZk9/l8PoxGI9TrdXS7XUkwImhHhmW2QDPH06o/vR8ML9UIN91X1Bj0Wq1y05HJ0u1I7UW76ogJMHT39PRUXJF6TP3u6x5gfWb0u5NhMwCHwsWszLQKU9HzZHNXegUIIrPFGpk310x3yDJxFrd58B+T5QKBAOr1uqwnP8dYGL1vb8MAgDsaMUj1joed7hAAUt6LwS5cMMYFMDONabp6cZwOtFad+FlesG63i/Pzc4lKtCxLQBeitjpmfdnCc158Dz23fr+/UElJq7JEnWk383Dy37KN5sGnN4XupNlsJglCdCfp9F2TAXBMJwwAgMRTWJYl6Defx7kRnKOKzCxFzQBMjWOdOAFzjbmfuuchtQBTYq5zKfU7kZGRsdHjoV2u2pzjGVwF4jqNy7UhU9Hucn7G/Of0nHXoTjUfMRF0/uMCOIWhAq/92Nxo3SbaXKC1F8YYX9vLbhdj1bNN3ze/1sVG+M9Ey83nr3OgtIuVIc/UNObzubRxM80M/W7LxtKf0ftDpqMj95gP4ATKaY3MSVu7Dek94xmhOs18BYKs67jPnN5LX3i9p/yartVl+6fXbZ0LrMdwe9Yaa/hudSAyJ+30v9PXeuH14t9Wqri9jxPd5rlOTMA0S8znOm3uumPycvJCUnJpxFu7HN92LCemadu2pFnzuToOghqRHmcZQ1jnHfS8tSZE7cqpg/VXJSfhta7wWQXguTED82yYTNvlGe8WE7inb47e9pLd0ztP923I7uma7i//PWm6ZwI/I3JT10y/vPk5J5PB6WsnW37dd7otU3gXmIhp/n1Vc/BPM72zTMA87O/SBjsF4vDn+n+iwfqyOuEbtwE73X6ux+TznIJ47iI5Aa4E6PSacj46ou6bwgZIX/X5Jtai+wmYyXFvO9Y7xwRMRPbr3shvityAHPP9ecHpJeBctY/YsqwFH/EycjqYZvo0D5f5NzrAap0krJ8lOQFieq2YockYAQ3YMbJunXDvdd/FHMPJm3Sbs2p6jpinwAxXs1q1qR3e5k68E0zA5Ia6wAZddToU9LYLzjGcvtYXEYCrf34Vqm0+3019pwSja4+oPnML6Dpksgkr3LqNaUp5LVF0vXqG9PJndCHSJ85Arbe9ME7MyDSB1tVu3FxzPBssBbe/v49MJiNBQoz/ODs7Q6PRQK/XAwCJNL3tXLhXvKC6XyXXWrepY/DaunPjnJj3wcQsy7Kk7RiZGMegdmB6XpbRnWYCWq1jzToWVWSEFsNvWaxStyG7TQqsjq7jhYvFYtIWzLZtyUBjxR+mpDq5g8wNoHR3myf96mw8mUqlJBKNwUpkfKyYc3p6iuPjY8d6h04MgM/QxVNjsZhkqXk8r5t6Mq+AkYtsseV2YcxLqd2RZqq1/qxOiDKzCZ0OsakF6vlxz/L5PD744AN88sknUoSj1+uhWq1Kdp6uzqvrGzqNp8fSTJRdpLLZLAqFguT86yxT5mawqKpuguI2N63RsFoSqwqxrF6325UcF+Y1OGUPrsMI7iwTMLlsoVDA5uYmnj59KiWkKK36/b6EC1cqFUm2cbOhNfFA8OInk0lsbW1hZ2cH+/v7KBaLEpnIaMSTkxM8f/5cssR0F1raak5qPsn8ORNskskkisUitre3JXNMN19ldSHLui6mEY/HJU/CLcWXc9RMjk1GstmsxL6z7RsrHjMzrt1uw7KuIwHdctS1xOKesTpzPp9HMpmULEzGKPCZrVYLg8FA8jBYoIMX6TaBNIFAAKlUCgcHB3j8+LEUhWW4NkuLmabUOmCqyeDYx+HJkyd4+PCh5LJ4PB5J+SYD7XQ6aDabUmV5WZdkU/DFYjHs7e3h0aNHyGazCIVC6Ha7UryEyUNaEJjMdpUQvJNMQHNcLkShUMCHH36Ihw8fYmNjA4PBQCYejUaRy+UWuKQONeYznQ6Pbl2VyWSwt7eH9957Dx9++KFUytXSajwe4+DgALlcDkdHR3j58qWkizIW3knFB95UdzXHT6VSePLkCX7hF35B5sisNYa+klGxRh4ACYnVxOg8JylGJsACFV6vVy47NZCtrS3pVAQApVLJNaBJMwAy02QyiUePHuHx48c4ODiQEG/iDrRnWX+QocRnZ2c4OTlZmhnpdKCZXx+NRrG/v4/33nsPOzs7iMfjch6YyqtrAuhu0uuMxzUMBoPI5XL45JNP8PHHHyOdTktTHKZtR6NRWJaFRCIhWqObBsBn6/F4LmKxmAglppRPJhPpKEVmvSxHZhXdOSZgSjDbvi4SwjztYDCIer2O4+Nj1Ot1AEA+n5dureVyeaFW3SotwAzZZe/DTCYjHYJ0jTzWxSsWi2g2mwgEAiKd12k0YR4qj8eDeDyO/f19/NIv/RLef/996abEbDsWmmQV4qurK7RaLVSr1YWCFU5j8HuuI6U9pTJVVY7BOoq6O7KJtZj7pTWASCSCQqGAjz76CE+fPkU8HhdTimG7l5eXGI/HC52KeSHXkcpO+xiJRLC5uYn3338fT548kbJp7BxNTIOX32SStx2rWCxib28PiUQCrVYLr169QqVSwXQ6RSaTkY5ALPfFRC0npuM252AwiEKhgGKxiGw2i3a7LTUDmLrs8/nkHph41brzunNMQEscToix79PpFM+fP8fLly9xdHSEbrcLv98vqhJ7Ejipq24LQlCFOAK59unpKSzLQrlcxvn5OYbDoZgKwWBQUjlZvISagpvdr99Ff72xsYHt7W18//vfx3e+8x1Eo1GUSiV8/vnnAmBNp1NsbGyg3+9LK2zmqTNDz1xDvZaW9brbciKRENvy6uoK1WpVug0TD+l2u1LKmunMPLxuWg7wujHmw4cPUSwWEQgEpOrNy5cvUS6XpVZjJpPBgwcPpCZkr9eTRiS3Bel4WT755BPR4DqdDs7OzoSJWpYlmXcEW82ScOuMRZODre8qlQo+/fRTPHv2TErQMUmJWZPs9LSOJ4JzZ4uxzc1N7O/vAwDq9TpOTk7Qbrel6A0rYrsx6HXW8s4xAY0Yc2KUVu12G8fHx6IFsKRYLBZDLpeTLj1udevNcQAsgIv1eh2xWAzPnj2TfO5yuYxWqyW+ZXaa4d/RM8EDpqWm07xIWnr90i/9En7xF38R6XQaZ2dn+MlPfoIvvvhCgB8iwolEQjLjut2udAhyO1gaMddgYDAYlPkxg5DApK6/QHCL6LqTLWt6OohfDAYD+Hw+HB0d4Sc/+QlOTk6kfx6bZ9DbQQCN3oh1C5tSZY5EInjvvffw3e9+F8ViEYPBAEdHR3j+/Dk6nQ7m87kg65FIBOl0Wkqq6/Ljq8YicJrJZFAsFnF1dYXj42OcnJyg0+kAwMKZZQEVrvEqPECfDVbO3t/fRzwel6Yw9Xod0+lUzNd+v7/wN99IPYGfNWkpxktF1L/ZbC7Uw7csC6lUCo8ePUIymUStVnsjv9/NltULxJRej+e672E+n0etVpPKr0SrM5kM4vG4tPCiNqBRbT0HkzRg4/f75d2/+93vYmtrS+oYPHv2TDabmxuLxQRYoorrpAXosTTIxI7A6XRasi95iejeIjjo9Xqllj7BT7N6kl5HuqPYfIPAXrVaRblclpx6anX5fB5bW1tIpVIYDAaoVCoCEN6mEjALyu7t7eFXfuVX8OTJE8xmM1QqFbmYtm0vVIhme2/WoFjVOEYTNZ1UKoVMJrMAlrLAqm5Wy6pQLGm2bpwFzwdrT8ZisYXaFdlsVsqSDwYDmZsTBrQO3TkmQOJh01FRs9lM+vONx2NsbGxgZ2dHpArtLicbeRnKTGZDRLfb7QpwFovFBPlNJpMLdfW1a0m7tNzGIvOiFrC/v4/vfe972Nvbg2VZqNVqqFavSzVGo1HJJacdr6sRkQm4udH4v/YIpFIpcWPRlcTy1lqqejweNJtNtFotKaLh5hqkT5x7xIvBmoWz2QypVAqWdZ3mnU6nBTD0+Xw4PT2V4hs0ydaRXhpQ/eSTT/Dee+8hEong7OwMp6en6PV60g6MBWjZoMTj8eDi4kKes85lIfCZTqdRKBTkOeFwGLlcDrPZTOo1BINBABBXMmspOpmqPBvmO5AJsKvSZDKR7kQ7OzvY2dlBMpnE6enpQmFdDQr/qYgTAF7b7JR69ATwMhIEmkwmC5oCF2Nd+5LjdDodNBoNZLNZjEYjcdsRl6Bvmci6U1WcZaQRem6oZVlSIy4UCmFnZ0cYHQAJ6CG4RtVymY2p1VfWEaBKzFgD1sMDIF6NUCgkOEez2RQX6KrS3DQLqKlQ+rKvAg9lNBpFoVBAKpVCpVJBqVRCtVqVHH83+1bPC4DMbX9/Hx9//DHi8TgGgwFevXqF09NTjEajhXboZILhcFgalazCb/SYxAMSiYSUErMsSzoC0+UYDocBQIq16Ki+2wRakcFQ+5vNZigWiygWi7J+xDQYSUit9J33Dphk27bUVLu8vJT2X5TQu7u7iEajaDabsG1bLir/1ul//WxN8/kcw+EQ5XIZoVAIl5eXsuDcfD7fjLJb19esy3xtb28jEAig3W5LU5V0Og3btkU9jsViiEajgouwmtEqlVkHBfHikYGRCVALmEwmuLy8FI3DrMq7LNJNSzFqAs1mEwCkvRk751JNZsVmxgewNPe6fm1qN+l0Gh999BF2dnYEhDs7OxMVmUyTZ4VFY3lW+M7L9kvvGwOqiG0QR4lEItIujj0kms3mQljybT0QNNkmk4kErbGxC39HM4QBX5pRaw1tFd15JgC8LsrZ7XalcCURWtq4VI3ZIEKXvFp3A8hwBoMBzs7O0O/3Ua/Xkc1msbe3t1BqmnY0S2fpajJudrNuZUUp3Gq1RIJyDvSjezweaVDaaDSkRJeOiHQiIuasJ1gsFpFIJAC8Nn24LgQBdUQhewXyM9rUcVtPfm4ymYgpQMCNh5YaGnv4MYJOh7quOriMQgyHwzg4OMCTJ0+QTCal/l+z2ZRAo/F4LEyatQAJflLzI+DrFkei4ysIZNLbYNuve0FeXV1J3wFKcBPgXEdL5DrRfBoOh8jlcshkMgsl23SLODJ7xmJok+CdDRbSxIUhE2g2m1Kam1ycCLaWSJrDr+MP1p/hQmvUf2NjA3t7ewtVc1gGbN05cHwCcNPpVBB+zo8b7fP5BBlmpV660XTTVTcimEjMJBaLSYSeVrl5mGhXUkugP53raVYe0mSCuZPJRIqXApC4hn6/L0Evk8kE9Xpdag2uUzdRA52JREI69LLdF00qrb0wqIaaCNeZoO6qYCEyLTJ9v98vmhiTkCzrugT+3t4e0um0gMxOUY9uY/HnFCiz2Uxci8QyGDsymUzEJObzyfTWBVU13XkmYNu2SJVKpSIADdFQtg7rdDoiIbUKdpvACR08REaiDwklByW3Lma6yubTUpUHi70S6Yqk7cdgJIYMj0YjnJ+f4/z8XBjFssNL0IwHc2dnB8PhEIFAQKLzmCHIPodUMy3LkkhFMptVdrpeY+1inM1maDQauLq6QiQSEZWa2ka9Xl8ocLoKXOXcGNTFkGcypl6vJ9gGA6JoMmxtbUm16OPjYzQaDdfcDz0WAOlxSaCO7z4ajXB5eSlh7alUSi4ruxQvcxs7rSPPO0vbf/bZZxgOh+IJaDabb5TZJ/bA0ubruMg13WkmwMWbTqdiNzabTSk1TpsvkUigVqtJnAClpL6Uq9Qira7zf7rNGDgDQFp303XGQJpVY5mqNTPaAoGAXDYdBk07ejqd4uLiQpqFUsKuMxcizDs7O7i8vESlUhEpw/BWXnLGPgwGAznEOkmKl89N+zAZLs0xemv4Pb0PTKjRBUfX2S9+joxD917I5XKwLEs0qWQyic3NTWxvb8O2r1OIv/jiC3z66aeoVCprZ0Uyt4MuYpZLZ9NP2uQMs65UKiiXyxLOa2qly/aOcwOAarUqZuLm5ibm8+tCralUSgKT2C9Ta0C3AaqBO84EALxxcRhcMh6PEQwG5TCZl+NtNQHdlZhJNrT1IpEIxuOxZNW1Wq2FABA3s4Pvwd8TeCNiTmZDP/rW1pbkD3S7XZydneH8/PyNnoeA86HS4xEBZ3wD7WdG5jFhiLiLbdtoNBoLSTzr9OzT43ItmbjDf7FYTHz05XIZ0+l0oU7CusQGHUdHR3jw4IG0HPvoo4+kkrHOvacZ9Omnn+KP/uiPpHPUKlCQ/7SXhZhTOBwWt+DDhw/x+PFjRCIR0dhqtdpbFzXlWWf/S4an0+anUCIewPugNZvbREK+E0wAeN27D3ht8/PQaRMAgCNa76buaTBGR9ZlMhmkUink83kUi0Xs7u4ikUiIlKzVaiLJuOjrqLJ8fzI0xh9Q04jFYtjd3UU+n5dY8ePjY2E4egw3psN3YWQhGU0sFsPm5iaA10k81HrYE4BRhFq1XGdemunoPAwzOSuXy0l49vn5+QLgqJ+zzPSYzWaSSv3pp5/C6/Vif38f0WhUEr6A6zPTaDTw/PlzfPnll3j+/DlOTk4EC1hFupYE50RvTSwWw2QykcSvzc1NdDodvHjxAp9//vnC2TDffxVpbScQCKDZbErp9Hw+LyYc41p0CfXbCj7gHWACmpgpRXWJySfEAgAslLjmJVkmxbjRGnVOJBIoFAo4ODjA3t4eisUiMpkMptMparUayuUyyuXyG6oXL5/TpdREl2en0xEplkwmkUwmJUGp3W7j1atX+OlPf4rDw0Oxd/Umu10WqsntdhtHR0dIJpMSj8Cx6HLVgCs1Kkb96QChVcEnGrRjj4NUKiWp0Ts7O8jlcvB4PAsXUSfyaEawjAnYto3xeIzz83MxYY6Pj7G1tYVoNCrgXaPRwKtXr/DixQtcXFyIKacvp5vE5EUkys+AHzJT5l8wQ7JWq+HLL7/EH//xH+P8/HyBYb8NkdmxLTnjHehC5r4xjkOfxdtoAcA7xASoItFmZZ44D5LOdTczxFYdKF2TnyYBbcm9vT1ks1n4fD40Gg0xBRiTrrnvKuCM7zWdTtFut+UQ5/N5RCIRARy73a5IucPDwzekyqpN5iWhJgEAtVoNtm1LS3LWYODF4PqZPfPWBZh0JiFj9Pf39/HBBx/gyZMnyGaz8Hg8qNfruLq6kvRr02W5al5aK+n3+zg9PUWz2ZQCKdpF3G63Ua1WBdsgaLmuhOT+EuBkEhtddl6vV7weh4eH+Oyzz3B+fi44yG3AOae5ApAzb9vX3ig2I+10Omi32yiXywJA8nzdZt+Ad4QJcDLEA3q9HkqlkoQOMxWWqqwOblnFjfXBoE0cCoVQrVYRjUYxn89RKpUEWf7JT36C09PThdZdWv1atvBazWNKbbPZRLVaxenpqdh84/EY1WoVpVJJgB+tYaxicATmhsOh9GU8Pj4WgI8XntLNNK9M7WbV3PTf0ZOjE6sIWl1dXeHs7Ayff/65SGZ6OvT6rFpDaiVaMNTrdWFExEG0kFi2Vm7Ev+d7DYdDnJ2dCUZEPGM4HIo7T9vlX5U4LjWCZrMpjIAeFjIDjsu/u83471TzEdpmumwVW1LrTjpvw4W1OstSZizvRRODmYzat01aNpa2dU3Vl6qelqQAJDTYyQTQZEpR/Xttn2tkXwNiy6SGW7CJ21y1aRUOhyUBhio6pTPToDXIeVs7dhXdJkhs3efxf9ar0LEpt9Uybju2PpsEBTmmrmwFLF3DPz0diPSGAKvDgd/m2cCbRUa1pNKHbNV4mgk4/dyck3YnupEbMGiOZb6/2/vexp5cxfD4Pxmbfgetdax6p3taJO2xMPd/TaH3p6cD0Td5cPQzl7mQbjO22/vq799mLssu89uu0VddUz0u1el7+nroq2AMy2i9NKp7uqd7+lNLd0UTqAMY3Pz/LlEW9+/8s6B37Z3v6vvuO/3wTmACAGBZ1g+d7JW7TPfv/LOhd+2d37X3vTcH7umefs7pngnc0z39nNNdYgI/+LZf4C3o/p1/NvSuvfM79b53BhO4p3u6p2+H7pImcE/3dE/fAn3rTMCyrP/AsqwvLct6YVnWb37b7+NGlmUdWZb1E8uy/sSyrB/e/CxtWdY/syzr+c3/qW/5Hf+eZVlVy7I+VT9zfUfLsv7Wzbp/aVnW/+oOvfPftizr/Gat/8SyrL94x95517Ks/9myrM8ty/qpZVn/x5uf3+m1diUdcviz/gfAC+AlgIcAAgB+BODDb/OdlrzrEYCs8bP/K4DfvPn6NwH8X77ld/zzAL4H4NNV7wjgw5v1DgJ4cLMP3jvyzn8bwP/J4bN35Z2LAL5383UMwLObd7vTa+3279vWBH4ZwAvbtg9t254A+B0Av/Ytv9Nt6NcA/PbN178N4D/+9l4FsG37XwJoGj92e8dfA/A7tm1f2rb9CsALXO/Hz5Rc3tmN7so7l2zb/uObr3sAPgewjTu+1m70bTOBbQCn6vuzm5/dRbIB/E+WZf2RZVm/cfOzgm3bJeD6YADIf2tv505u73jX1/6vW5b14xtzgWr1nXtny7IOAHwXwB/gHV3rb5sJOKWs3VV3xZ+zbft7AP5DAH/Nsqw//22/0Feku7z2/w2ARwC+A6AE4L+++fmdemfLsqIA/gcA/5lt291lH3X42V1Z62+dCZwB2FXf7wC4+JbeZSnZtn1x838VwD/GtTpXsSyrCAA3/1e/vTd0Jbd3vLNrb9t2xbbtmW3bcwD/LV6rznfmnS3L8uOaAfz3tm3/jzc/fufWGvj2mcC/A/DEsqwHlmUFAPwVAL/3Lb/TG2RZ1oZlWTF+DeDfB/Aprt/1r9587K8C+CffzhsuJbd3/D0Af8WyrKBlWQ8APAHwh9/C+71BvEg39J/geq2BO/LO1nUi/38H4HPbtv+u+tU7t9YAvl3vwA1y+hdxja6+BPBfftvv4/KOD3GN7v4IwE/5ngAyAH4fwPOb/9Pf8nv+Q1yrz1e4lj6/vuwdAfyXN+v+JYD/8A698/8bwE8A/BjXF6h4x975f4Frdf7HAP7k5t9fvOtr7fbvPmLwnu7p55y+bXPgnu7pnr5lumcC93RPP+d0zwTu6Z5+zumeCdzTPf2c0z0TuKd7+jmneyZwT/f0c073TOCe7unnnO6ZwD3d0885/f8BNrI6QpkktEkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 3 Train loss: 128.1274\n", - "Test loss: 124.5251\n", + "Epoch: 3 Train loss: 128.4078\n", + "Test loss: 124.8055\n", "Epoch: 3\n", "Reconstruction\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAB4CAYAAADi1gmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl8VFWW+L+3KpWVJFTCFoIQdgRF\nwCgoi+IGDbKoqHTT3U7To2OLjDP+7BbbdusWu4eZ1u52BIZucWEcBFkdm0FtcG1UZAkqhjUQtiyE\nELInlar7++PlXqpCYiqk6lUI9/v5vE9SVe/Vu3Xfveeee+455wopJQaDwWC48HFEugAGg8FgCA1G\noBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E1ol0IUQE4UQe4UQB4QQ80JVKIPB\nYDC0HHG+fuhCCCewD7gZOAZ8CXxfSvlt6IpnMBgMhmBpjYZ+NXBASpkjpawF3gSmhaZYBoPBYGgp\nUa24Nh046vf6GDDyuy4QQpiwVIPBYGg5RVLKzs2d1BqBHhRCiPuA+8J9H4PBYGjH5AZzUmsE+nHg\nEr/XPerfC0BKuQRYAkZDNxgMhnDSGhv6l0B/IURvIUQ0MBN4OzTFMhgMBkNLOW8NXUpZJ4R4EHgX\ncAJLpZS7Q1Yyg8FgMLSI83ZbPK+bGZOLwWAwnA/bpZSZzZ1kIkUNBoOhnRB2L5eLkUceeQSAuLg4\nhg4dyowZM/RnixYt4rPPPgNg2bJlESmfwWBop0gpbTsA2d6PFStWSK/X+53Hvn375L59+2TPnj0j\nXt7vOgYMGCB9Pp/0+Xxy7ty5ES9PQkKCXLhwoVy4cKH0er1y69atcuvWrbJXr14RL5s5zBHmY1sw\nMtaYXAwGg6GdYEwuIWLFihUAAeYVgD179vDuu+8C0KdPH6ZMmULfvn0B+OEPf8hzzz1nb0FbwPDh\nw/H5fAAcP35OiIHtdO/enXvvvRcAn8/HlVdeCcCtt97KSy+9FMmiMWLECNasWUNGRkZQ599yyy0A\nZGdnc/To0WbOto8pU6awfv165s6dC8DixYvxer223LtLly4ArFy5ki1btgCwZMkSDh8+HPR3JCcn\nM27cOAA2btyIx+MJeTnbMkagh4DMzExuu+02/Xr3bst7c+rUqRQVFVFeXg5AdHQ0n3/+OVdccQUA\nKSkp9he2BQwbNoyKigoA1qxZE9GydO7cmVdffTWiZfguJkyYQExMTNDnT506FYDZs2czc+bMcBUr\naFJTUwFYuHAhAC+++CIAS5cupaqqKuz3d7vdut8kJydTUFAA0GJhvn37djp3tiLkMzMz2b9/f8jL\n6k9SUhK//e1vueyyywC46aabIjqItFmBPmPGDK2NnThxgurqagDeeOMN8vPzOXDgQCSLF0BaWhpC\nCMAS5hMmTAAgLy8v4LxHHnmEwYMH69d//etf7StkC7n88suZO3cur7/+ekTL8c///M8ATJ8+nauv\nvrrRc8aNG4fD4WDXrl0AfPzxx7aVLyrK6kKTJk1q0XXbtm0D4OGHHyYhIUEPnJFCabXp6ekALF++\nHED3u3DSqVMnVqxYoRWchQsX6hlCS/jVr35F7969+ad/+ieAsArzWbNmATB//nwuueRswHxSUhKn\nTp0K232bw9jQDQaDoZ3QZgOLcnJymrRHlpWV6elZMBw7dgyABQsWaM0o1PTq1UuXrbi4uNFzdu3a\npadmYE3PPvjgg7CUp7XMmDGDlStXMn78eAA++uijiJRD2W+VLd8fh8MR8FlurpW/6O6772b79u22\nlO/mm28G4P/+7/9YsGABv/zlL4O67uGHHwasNpmWlsbJkyfDVsbmiImJ4dNPPwXQ6xKTJ08GrN8V\nbm655ZaA+3Tr1q1F9TFkyBAAvv76a9auXcs//MM/AFZfDAc9evRg586dgGWq8pehK1as4MEHHwRo\nUg6cJ0EFFrVZk8u9996rbc3ffvutNlUMHz6c66+/nlGjRgFw9OjRgCkPQF1dHQAnT54kLS1Nv3/k\nyJGwCXQlTBrj5z//OQADBgwA4Isvvgj42xb5xS9+QW5ubtjqKxg2bNighXZjqKlteXk5vXr1onfv\n3gBs3boVp9MZ9vJdfvnl2jRx8ODBFi1wKxt6W2Do0KFakIPVf+wQ5GoR9I477gDgpz/9KUCLhfnf\n/vY3/Xrt2rVhE+SKRx55pMn1r7vvvpuJEycCljnmxRdfpLa2Nqzl8ceYXAwGg6G9cCEGFrndbnnD\nDTfIG264QSYlJckbb7wx4Bg9erQcPXq07Ny5sywqKtLBMQ888IDtAQG33nqrrKqqklVVVdLr9cq8\nvDx53XXXyeuuuy7SgQqNHhkZGTIjI0P6fD65Z8+eiJRB1c/Bgwd1MJbH4wk4XnzxRTllyhQ5ZcoU\nOW7cOPn0008HfP6zn/0s7OV888039bO96qqrgr4uJSVFKrxer+zcuXNEn/lzzz2n+4jP55PvvPOO\nLfddtmyZXLZsmZRSym3btsmEhASZkJDQou+4//77dbmXLl0a9jL36tVLnjlzRrfLrKws+e677zYa\nQJiXlye7desWqnsHFVjUZk0u38Xp06fZvHmzfr1p06ZGz7vjjjtwu918/fXXALz55pu2lM+fzMxM\noqOj9esVK1ZEzB4dDNddd53+PxJ23YyMDP2cOnXqFPBZbm4uq1evBuCZZ56hsrIy4LP77rP2Uenc\nuTMLFiwgNjYWgP/8z/8MuSvZjBkzmDRpkva2+vLLL4O+9vHHH9d2/w8//JCSkpKQlq2lKA8XgNra\nWn71q1/Zcl9le/b5fJw4cSJo00RcXJxeq3jggQf098yePTs8BfVj2LBhJCYm8sknnwBWf4mNjeUH\nP/gBAI899piOM+nWrRvr16/ne9/7HhBym3qjXJACvTmUbW7hwoU4HA5+/etfA/ZUqD/r1q3TASQA\nr7/+um2d5Xy5/PLL9f8LFiyw/f4ul+scQQ7WouzMmTMpKipq9Lrc3Fx++9vfAvD8888THx+vy//2\n229z8ODBkJbzzjvvJD4+nkWLFgV9jVrknzVrll7snT9/fsT8lq+99tqAvwAVFRVkZWXZXpbJkyfz\n3nvvAVBSUtJkvV533XUBa2gAq1atsqWMYC0gSyl54YUX9HvV1dUsXboUsAb6Pn366M8qKyuNDd1g\nMBgMLaddauhz5swBrKn36dOn2bt3r633V5411157LTExMVqrfPbZZ3XUaFvkmmuu4Sc/+QkAO3fu\n5P33349wic4G4MyePbtJ7Vzx9tvWhlmzZs3iqquuCkt5kpOTAbSGqCIrg0GZhDp16kR2djZAgOnQ\nbhqro5bMOFrLH//4RwBuuOEG0tLStOlHCNGkF5AQIsBNMCcnJ2hX0VDw/e9/Hzjr1rlu3bqAzzMz\nAz0LP//8c1v7fLsT6KNHj2bevHn69fTp0/nmm29sLYOy86pw6v/+7/8GCPm0P9TceOON2h1r48aN\ntkQJNoa/q+LIkSODvk5F6zocjoDveOaZZ/jhD38YkrKp8P709PQWr8ko2ypge5tsDH/ho+z4ixcv\ntu3+Klbg8ssvZ9iwYdrd7+c//7lev3nttdcCrlm2bJmOCAbYsmWLrf1q+fLlTJ06VQ+GgwYN4vLL\nL9epP9xut65Lt9vNvffeq9Nkf/vtt2EvnzG5GAwGQ3vhQnRb/K5j/vz52o3p/fffly6XyxYXLHVM\nnTpVVldXy+rqaun1euWmTZtkhw4dZIcOHWwtx/kcb731lq672267LSJl+I//+I8A98OWXDt37lw5\nd+5c6fF4Alwd+/btG7LyxcXFybi4OLlt2za5a9cumZKSIlNSUpq9rkuXLgEubXPmzJFz5syJ2LMe\nM2aMrKurk3V1ddLn88lDhw7JQ4cORbwNNnf06dNH+nw+uWPHDrljxw7bXT5TUlJkcXGxfo4+ny/g\nub777ruyX79+sl+/fnLPnj3S6/XKxYsXy8WLF7f23qFxWxRCXAK8DnSt/+IlUso/CiFSgBVABnAY\nuEtKebq57wsncXFxTJw4Ua8qP/XUU7Z5ECjzyi9/+UtcLpd+Pysrq03bzcFyrwIYO3asXm9Yu3Zt\nRMoyZcqUFl/TuXNnBg8efI4tVU3bQ9kGVObBgwcPcscdd+gEa88///w556o0D3379qVXr14Btl87\nU240RmpqaoBZqi2slwTDk08+iZSSRx99FLDftba4uJi77rpLe9aoNRWVnfLRRx/Vpso1a9Ywb948\nnayvb9++4TcPBaFVpwEj6v9PBPYBg4EFwLz69+cB/xZpDf3JJ5+UPp9PbtiwQW7YsMHWkfu5556T\nzz33XMBovXr16gtCM583b56cN2+e9Pl88pVXXpGvvPJKxMqyd+/eFmvof/jDH84JPDp48KAcO3as\nHDt2bFjKeemll8qVK1fKiooKWVFRobVd/yM/P1/m5+fLvLw86fF4Aj5Tmn6k6nnZsmV6NlZcXCyv\nuuqqFgVH2X3ceeed8s4775Q+n0+eOXNGjhgxQo4YMSJi5bnpppvkTTfdJJcuXSqff/75RmfhcXFx\ncu3atVoevPbaa625Z2h2LJJS5kkpd9T/XwZkA+nANECtWLwGTG/uuwwGg8EQPlrk5SKEyACGA18A\nXaWUKuF3PpZJprFr7gPuO/8iNo9yIXriiScoLS3lN7/5TThv1ygqe54/Dz74YJs3t8DZTJFgReFe\nKGzYsAGAgQMHnvNZdna2juYLB9nZ2dx1110MHz4cCPRgUfgHvLz22ms6hzZgy6YRTdGjRw/tfgdW\nNtKWRLpGAhVtCfDOO++wY8eOCJYGnRDMPzFYQ6qqqlixYoV2wRw/frz2IgtXkGPQAl0I0QFYDfyL\nlLJUuYgBSCllU6lxpZRLgCX139HoOa0hNTWVP/3pTwA4nU42bNjAZ599FurbnBcpKSmN2m/PnDkD\nWLZdZW9Xtji32w3Av/7rvwZc4/V6td3QP+Q9FPjbrd95552QfndLEUIE2Hb9O/Kf//zngOyZDdPn\n+nPrrbeGsZRnUWlU1d+myMnJCXitInJVWgo7ufbaawPqeP369baXoaWodlBZWcnvf//7CJcmeFau\nXKkF+t13361T66ro9VATlNuiEMKFJczfkFKqvcgKhBBp9Z+nAYVhKaHBYDAYgiIYLxcBvAxkSyn9\nl/LfBu4Bflf/19ZhXuW73rhxo86DffDgQZ544gk7i/GdfPXVV42+/9ZbbwHWFnVdu1qWqrvvvrvZ\n78vPzwes/B+hYuzYsboMbYFFixYF5JBRMwalhTemjTd8z87gmGARQuA/q42EZq5QHlkq8lZFbLZV\n7r//ft1GCwsLI25uaQk+n0+352nTpvHUU08BVqLAffv2hfx+wZhcRgM/Ar4WQqisPb/EEuQrhRA/\nBXKBu0Jeuu9A2Sz9E/M//PDDEYvGVPbcadOmNXvunXfe2ej7dXV1AcJJhbKr8He1q0womT59uh4c\nd+7cGfFMkGvWrNEbgqjNfpvj5MmTZGdn69D6hnu5tgX8PL0ijkoYd+TIEeCsCbCtcv/99+u6U26i\niYmJgGWiVL+jraKSnT355JP8+7//OwDPPfccP/rRj0K+ltKsQJdSfgqIJj6+MaSlCZJevXrpzGxw\ndkegSNp/b7/9dsDa6cffDx3ObpHVUAtfunRpwK7ma9as0Tk+7CA+Pj5gc+NVq1bpLICRIjc3l5kz\nZwLWYPPQQw81e838+fN56aWXwl20VqFS+YI9Gy83hmqX/fr1CyhHJHepbyler5dZs2bpNabdu3dz\nzz33RLhUwfH666/rDaxvv/12fv3rXzc5iz9fTOi/wWAwtBcuxNB///B+n88nMzMzZWZmZsSDHy60\nw+VyyS1btsh169bJdevWyfj4+IiXqeExceJEOXHiRLlmzRrp8Xjk6tWr5erVq+WECRP0Zz179ox4\nOZs78vPzZVFRkSwqKpIPPfRQRMrgdDql0+mUS5culT6fT7766qvy1VdfjXjdNHdkZWWdE2q/ZMkS\nuWTJEnnJJZdEvHwtOXr27Cl79uwpfT6ffOONN1pybVCBRRecQB87dqwsLS01At0cF9Txv//7v3rb\nxEiXpXv37vLll1+OeD6ZYI+xY8fKzZs3y82bN8unn35adu3aVUZHR8vo6OiIl+18j/fee0+Wl5fL\nwYMHy8GDBwdzTfsU6I899liAMN+/f78cNGiQHDRoUMQfkjnMYQ5zBHMkJSXJQ4cOyalTp8qpU6cG\nc01oQv8NBoPBcGFwwW5woZLc33jjjbbvFWowGAytobS0VMfPhBJhp29sOEL/DQaD4SJgu5Qys7mT\njMnFYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ1gBLrBYDC0E4xADzMqD7Z/LmyD\nwdB+aEt92wh0g8FgaCdcsJGibQWHw4HL5SImJgaAnj170q1bNwDGjRtHbGwsHTp0AKwdhz755BO9\nCUdhYSE1NTUAbWbzg7aO0oaklAH/GwyRQAjRptqfiRQ9DxwOBwMGDACszTaGDBnChAkTALjsssu0\nAHc4HAEPvLKyktzcXL3z0OLFizlw4ADQ+NZqkSQ6OpqMjAwGDRoEwEcffURpaSlgrwBVQtvhcNCh\nQwe6dOkCQE1NDUlJSQCUl5dTUFCgB8dI1GXDza19Pl9APQkh9M5QLpeLqChLl1KbTPhvLBKp8gN0\n6tSJ/v3763ZZVFTU5tpmQxoO8qFqn42ZUhwOBw6Hg+joaODsc66trdWvw0RQkaJGQz8PYmJitEYu\npeTKK6+kR48eAERFRenOClajUA9ZSonL5dICv66urk3Z3+DsXq1du3Zl9uzZXHrppYC1HdyyZcsA\ndOO1A1U/HTp0YNy4cYwePRqA7t27U1dXB1hbqG3evFlv1Xfy5En9WThxuVx06tQJgJSUFOLi4qis\nrASguLiYsrIyfW7Xrl21oImJidE7GJWVlXHq1Cm9a1BNTY3tAtThcOh9Rh999FFuueUWXfbZs2ez\nb9++sA/iUVFRpKSkAJZQ9N9FyePxBLz2HxxjYmK0cPV4PNTW1upnX1dX16oduPwHaHUPNRtXn6m+\nXlJSAlh9Q9WVEvZ2KkDGhm4wGAzthKA1dCGEE9gGHJdS3iqE6A28CaQC24EfSSlDprr5T2H9tdiG\nU1k4O5I2ptmEa3QsKCgArClqTk4OCQkJgJVFTWnvR48eZe/evXpanZKSQkxMDBUVFYC1we2xY8cA\nIr6Xp0L9jsGDB3PllVfq10p7shu1D+awYcOYPn06Y8eOBawZg9LaPB4PvXr10rOkVatWcerUqbBr\nuk6nU2vaQ4YMIT4+Xs9evv32W63V1dbW4vF46NixIwAdO3YkOTkZsNruN998w6lTpwC02cgOVL/p\n2LEjN9xwAwCjR4+mW7duWgNWmzGHA3WPuLg4+vbtyxVXXAFYm3yrZ3fy5Em8Xq/Wumtra0lOTtbt\nIjExUfedmpoaiouLOXnyJAAVFRUB2nJLUOZSsLRwNatOSkoiOTlZP1u3243D4dB9fs+ePRQWFgKW\nKdDj8QTM0MNNS0wuDwHZQFL9638DXpBSvimEWAz8FFjUmsL4T2Pi4uK45JJLAKvS1EKjx+PB6XTq\nKeLw4cN1J5JSUlJSwokTJwBL6O7bt0+/Li0tDUmlqoYDsG3bNnJzc7VtNz4+nvz8fMBaBPV4PPph\njxgxgpkzZ5KRkQHA+PHj2bNnD2CvGeO7UJ1j7NixdOrUSQuYLVu22L6ZcFRUFH369AFg7ty5jBw5\nUg8sUVFRuqxer5cRI0ZogXnkyBE+++wzPQ0Oh2AXQhATE6MHkREjRnD06FG94H38+HHOnDmjy+dy\nufQaRGxsLP379wcsk0FhYaEW6JEY2IUQDBs2DIBu3boRHR1NeXk5YP2OcAgif7PJJZdcwlVXXaXX\npQYPHkxubi5g9aeioiJOnz4NWGYUp9Op10/69OmjhW1paSm5ubnaXKR+g7pfsL/D6XRqWzlYA44a\ngN1uN507d9YDeVJSEkOHDtXn9uzZU6+R5efnU1RUZOsgHZRAF0L0ACYD84GHhTV03QD8oP6U14Cn\nCZFA79ixI927d9daw7XXXqsfYExMDFJKLdDj4+P19dXV1ZSXl2u7VlFREV9++SUffvghYC3shUIo\n+dv4vF4vlZWVWtMWQmhtQgkS9UCLi4txOp2kp6cDVmNUjbqtoDSfSy+9FLfbrWciu3fvts0WqDSj\njh07MmvWLOBsG/CfjalBUAlXNVBOnDiRsrIyvvjiCyA8Wq8QArfbzW233QZARkYGu3bt0nn6y8vL\nAwYSn8+nhXVpaSm9evUCrDaQnJzM3r179ffaXc91dXVaE09MTEQIwcqVKwG0thlqlHcYQN++fRk5\ncqR+flVVVQFKWUFBgRbOqk5Vv3c4HFqZSkpK4vjx4+fdx1V9+Hy+APu5w+HQ8icjI4O0tDRdjtjY\nWGJiYujcuTNgzXDVOsqBAweorKy0d9YV5Hl/AH4BqBaaCpRIKdXK0zEgvbELhRD3CSG2CSG2taqk\nBoPBYPhOmtXQhRC3AoVSyu1CiOtbegMp5RJgSf13Nal6CCGIi4sDLC0xJSVFexD4fD6tKVZVVdGh\nQwdycnKAsyM4WPbs8vJy0tLSAMjMzGTkyJEcOXIEgC+++CJkZgOlRXm9Xnw+X5NeFf5Ty379+jF0\n6FA9RSwvL9f29baC0kRGjx5NXFwcn332GYA2F9iB0pT69+/P1KlTAbQ5RWnlBQUFVFVVAZanSGpq\nqtaMBgwYwKRJk8jLywMgJycn5KYMl8vFpZdeqmdbn376KX/729/0dL+hli2lDDARqd1qevfuzY4d\nO7S2aidKy/R4PGRmWh5xSsPcuHGjLmso8bdLK/NZdHQ06enp+hnn5uayc+dOAPbu3UtlZaWuT4fD\ngdfr1SaY1NRUvc5TXl5OeXm5bhf+623NzXr8Z0ZOpxMppe63UVFRup927NgRIYRuh06nk7KysoB1\nsquvvhqwtPfs7Gyt7dthTgvG5DIamCqEmATEYtnQ/wh0FEJE1WvpPYDjrSmIlFJPTUpKSjh+/Djv\nvfceAG+99ZZufCUlJZw8eVK/9hekaiFD2V1/97vf0adPH92IwuUi2LCx+N8nKipKd97Zs2eTlpam\np4+7du1qM4uhYJV72rRpgNVwa2pqeOONNwB7faPVoDJ79mwtMB0OBzU1NRQVFQHw+eefk5WVBVhC\naMCAAXrKnpGRQceOHbVwXbRokRYArTVn+JuDxowZw9GjRwHYtGkTp06d+s7vV5/16dNHKx1gteFI\nBJipe6Wmpmr7tRCC4uJi7YceLqKiorTCNmTIEGJjY7VQzMnJ0WtLDU1Xyg1Qra8NGTJE96EdO3Zw\n8OBBrbS1tC79/dkdDoe+r9Pp1INPXFwcpaWlWtiXlZWRkJCg7xUXF6fXzPr27Ut6erpeH2nMoSPU\nNGtykVI+JqXsIaXMAGYCm6WUs4APgBn1p90DrA9bKQ0Gg8HQLK0JLHoUeFMI8SywE3i5tYVR05i6\nujqOHTumTSX+zvn+bkCN4XA4tNYeHx9PXl4eu3fvBtBTMbtQCzZPPPEEYLneuVwuvv32W8AyAbWl\nsOHo6Gh+9rOfAZYGVVJSwieffGJrGaKiopg+fToAU6ZM0dNpj8dDXl4e69dbesOWLVt03QkhKCoq\nwu12A1bQUZ8+fZg0aRIA69ev1x4vra1vZRrJzMwkIyNDezQdPXq02VmM0up69OihtcGqqiq2bt0a\nEQ1dmQImTZqkzYBSSv7nf/4n7At5Ho9H37Nbt24BAXn+C5sNZ9VRUVHahRWs2Y5a/M7KyqKkpET3\nf3+50dxic8PPvF5vgMxRlJWVkZ6ermfZ5eXl5OXl6ZmkuhYsJ4j4+Hj9O8+cORP2GXmLBLqU8kPg\nw/r/c4CrQ18ka2pSVVXV6AMIxhamTBzx8fF89tln2oPAjuhBVQawbGhTpkzhqquuAiwPHa/Xq6eT\nZWVlbSpStEuXLtoNDyxfav9oRztITU1lxgxr4peQkKA705kzZ1i5ciVvvvkmYHUWNbWNjY0lNjZW\n+/fHxsaSkJCgTTfXX3+9bgOtMR0JIXTnTE1NJS4uTnuBBLMW4u/jr+zFH330EQUFBREJr1f194//\n+I9auFdVVemI4HDgbwtXg2N+fj5XX321Xqfx+XzacwUsLyV1bqdOnZg2bRrXXHMNYKXTUP3p6NGj\nAcLXX1YEM1D6m1z8cwX5fD7tghodHY3T6dTmIuXlps6Njo7WJpbKykoSEhK0B5H/WkC4nnebDf0/\n3x8cGxvL8OHDAavRfPrpp00uVIUDIYQOOujXrx+jR4/WjVHZJ5VLVkpKih7p/R+23SjN8eabb9bu\nYF6vl5dfftlWQRMdHc3w4cO1Ldzr9epnt3z5cv7yl7/ohU5A+wJHRUXx9ddfM3HiRMCyYwohtNCM\njY0NSd06nU4taK655hqcTqcOYomJiaG2tjYgiMRfO4yOjmbo0KGA5eOvrsvNzT3HTmwHDodDKz6D\nBw/W7x85coRDhw6F/f5SygDf8qNHj2oNvV+/fnTv3l2fd+LECT1jyMzMZMyYMVqAnjhxQqd88Hg8\nAamq/e3graG6ujpA65ZS6nbgdrvp27evPtffbVopl6q/+2voasYQ6uduQv8NBoOhndBmNfTzwel0\nctlllzF58mQAjh07RlZWli2O/WrK6nK5tJfN7bffzqhRowJsaDt27NBRpgMHDtSudoWFhVRXV0dE\nS1earv/Uu6CggI8//tiW+/sn4Lrxxhu1Lby2tpbDhw8DloZeUFAQYINUdRcVFUVeXh7Hj1uOVsrt\nTH1va6Md1fc4nU6tjbndbqSUDBw4ELACsY4fP65NLx6PR892hBAMGDCABx54ALC8eNS0vKysjLq6\nOtufu8vl4qGHHgKs2YXqI6+88ootnlf+GQqzs7Pp0KGDTgQ3atSogERd6jmD1VZTUlK01vv3v/9d\nr48AARp6S7XfxlxNwerbav0tLy+PHj16aNOky+UiMTFRm3rKysr0rLtfv34UFhbqGafP59Prgqqv\nN2bvbw3tQqD7C4Tbb79dh+n++c9/DlvockOU2cLtdusp7OjRo6mpqdE+8ytXruTDDz/UHSYjI0OX\n1efzUVRUpAWCnR1cNc5+/foPEYswAAAOyElEQVTpsi1fvjzAvBFO1CDSvXt30tPT9euysjL+/ve/\nA3Do0KFzBJ/6v7a2ltjYWB09rKIy1cB5+PDhkAl0Nfip9BOXXXYZYAnFY8eOabfKXr16aTtrfn4+\naWlp9OzZE7Bs6crcUFBQEJCR0y5SU1P1orHP59Nmlv/6r/+y5f7K8QHODsyqDjIyMvSg7vP5SE5O\nDoi+rqqqYt++fQB8+OGHAXlwQtlv/NuX6pelpaUUFBToyNDOnTtTUlKiBX5FRYUeqOLi4nA4HFoe\nVFZW6sGnrq4uIHoYCEk7MCYXg8FgaCe0Cw1dacfDhw/n5ptv1ol9PvroI1s8W/yjQbt06cKoUaMA\na3qYm5vLH/7wB8CKJpRSam+HsrIyPS1PTk4O8CjxX2BThCtJkkrMFB0drTXMVatW2eYVpDRypQEr\nDae8vJzPP/8c4BxzlL9JReXzHjlyJHA2cZea3rZWQ/df3FQa1uHDh0lJSdHPqHPnzkRHR+tskP5u\nb+Xl5cTFxelnXVNTo8teUVFhe9IzIQTjx48PiL7dsmULgG1eTVJKrZl7PB6++OIL7V7cqVMnPZsZ\nNGgQ8fHxun+NGDECIYReCD1x4oTWjhtrr63Z1UpdU1dXp597TU0NJSUl2uvF7XYTExOj3Vc7dOig\n67WoqCggkZf/zmYqM6f/zCMUs7R2IdDV9GzOnDl06tSJV199FQhfpriGCCECsr8pG7rP5+Oll17S\ntuja2toA4V9UVKRdmpKSkujfv79+qGVlZXpgUtOycAhYp9Opo0NdLhdfffUVgE4yZQfqGXXo0CGg\no+fk5Gjh7nK5AjJS+tdjSkoKjz/+uBYCdXV1FBUV8dZbbwE0G8EZbPk8Ho/OpvjJJ59QXFysn01C\nQgLR0dH6dU5OjjYplJWVMXPmTL2WUltbqwfOsrKykJsKmiMqKoof//jH2hvr5MmTPPnkk7bdX6Hq\nSpkblekkLy9Pr53s3LmT5ORk7fo7fPhwysvL9cBTVlYWkG3Vn1DVqZRSD7p1dXVUVVWxfft2wDIT\nVlZWapOM2+3WClu3bt1ITk4OUFj8lRCXy3Xe9v6muOAFusPh0O5qI0eOpKysjHXr1gH25E5Qwlwt\nfEyePFm7NO3Zs4dDhw4FuCr5Z3Hz92seNGgQgwYN0gNDcXExf/3rXwFrYCotLf3OvO/nS5cuXRg3\nbhxg+SCr3C2RyDFTV1dHbGys7jyJiYm6LhMTEwOyXKoFcICnn36a0aNHawFVWFjI2rVreffdd4HQ\npSauq6vTmlh1dTX79+/XHTI5OZnU1FQtxE+cOKGFTmJiIpMnTw7I17J161bAEl52zYQU6enpZGZm\n6vvu2rUrbFkVm6KhW6d/m/Z6vbrPVFVVIYTQ6bPdbjdVVVV6QLRjh6eG7oX+uWQ8Hk9AMGN1dbV+\nznV1dQE5amJiYnS+qvLyciorKwNkVCgGIGNDNxgMhnbCBa+hu91unTO7rq6ORYsWafc1O1B5sceP\nHw9Y4f3KTuZ2uxkzZoy2nRYWFurNl8HSMrt27QpY4dfDhw/XQQlfffWV1gaPHDkSYGIIlUYihGDG\njBl6llBZWck777wDRCZJVEFBAdXV1QGmFJW5zuVysWXLFu0Sds011zBnzhwAhg4disvl0tr79u3b\nWbJkSci1Tp/Pp2cu+fn5FBYWam1M5elX7n8N98A8ePCg1ipPnDihPZ/Ky8ttd1mcNWtWwFrFSy+9\nFNGNoBv+fn/vD9W/lFnV5XKxe/du3cftcrFsWEZVd6dPnw6YdVdUVGibeUZGRkDW2OLiYq3Z+7ta\nqnuEggtWoKtKvOeee3TmuuPHj7Nq1SpbMxgqv1flxpSYmKgF+tChQ+ndu7denKuoqCAlJUUL7bKy\nMl32bt26kZKSohdbEhISAhao/NOvhoqEhAS9iQhYCfl37NgR0nsEg/pdp06dYtu2bdrM0r17d8aM\nGQNYPvsDBw7UJqnx48frunM6ndTW1uqcHk8++SRHjhwJu5Dy+XxagKspd0M3NLDq+dSpU+zfvx+w\n7OvqOjs3P1CC5vrrr0cIoRWGjz76yLYyBIt/KP2QIUN0rhSPx0NOTo5eZ4lUdLV/Wl7/BXohhO7f\nycnJuN1u7ZocGxurByaHwxGWDaSNycVgMBjaCRekhi6EoF+/foAVjalGxHXr1ulprV1IKamurtaL\nYUeOHNGBBPHx8SQlJWnvC7A8DPzdtZQJQUrJoUOHdATcxo0bdfBETU0NHo8nZKO5/wYS/fr10+aB\njz/+2FaNsSGVlZWsXbuWQYMGAVbOcbWg1K1bNwYMGKC1zJiYmICo1o0bN/Liiy8CsH//ftv3aPV6\nveckWvOPHo6Pj9cJwrKzs3XQlp2zSZVLpnfv3ni9Xr33ZSSfeWP4a7lpaWkMHDhQz9pU9LAyWdi5\nZV9T+N/f4XBojbxHjx4B+/J27dqVb775BjibuynUyfkuSIGekpLCb37zG8Dy0lBCcN26dbZ7DCiX\nq+XLlwPW3pvKDXDixIkkJibqMkVFRVFeXq6nuqdOndKdPCsriwMHDgSkDFY7MdXW1oa00Sq776hR\no0hOTtYDzOrVqyO64YbX6+XQoUO6Lk+fPq1NQsrfVw0+Ho9HRzfOnz+fHTt26ME8Ur+hYQf1zxAY\nFRWlTWhHjhyxvYwxMTE6MtTtduPxeNi0aRNg7+YlwSCE0O68119/PRkZGQEulqWlpbr+Ii3MG+Lf\nBoqLizl8+LD2bImKigrYFSkcKR8uOIGemJjIM888w5VXXglYQvGFF14A0L6rdlNbW6sX4DZt2qQ1\nn2effZbU1FStqSUlJREVFRUQ9q00SZX6NdS5HRpD2fHUQq4K6Dh27FjEO0hNTQ0ffPABYGna77//\nPgDXXXddQPbFrKwssrOzgbOLqW1JMKmd48FyvcvNzdX5Serq6gK2YrNDuHfs2JEJEyYAll26tLRU\nzyrbUr2BJdCVltu1a9eA3Yx2797NyZMn29ROXxC4JaXq36WlpZw+fVrPLgoKCrQDgtpKz2RbNBgM\nBkOjXDAaupq+Tpw4kfHjx2vXtsLCQr0DUCS1S/9VbxWKXFVVpc0rbQmlQSxYsID09HQd9q0i9SKN\nsjnm5OToWZdK4+C/0bJ/nbcVGtvAoLi4mL179+r1gGPHjgXkAreD8vJyVq5cCVia4+bNm3VUcFtE\nzVwPHz6M0+nUNvU9e/Zw+PDhiOzwFAz+rquHDh3C6XRq06n/ZvLK3NKa1ASNIeysECHEed3M6XTS\nv39/AB588EFuvvlm7Rr45Zdf8tRTTwHWw25r00eDQbm2KiUkHFPtYFD3B3s2LD5fHA6HtqGrLJVK\nKB45ckSnHG6LCCECYhM6duyoTZxqUALYu3cvNTU1Lfkd26WUmc2dFJSGLoToCPwFuAyQwGxgL7AC\nyAAOA3dJKU8HW7qWoDxJwNLesrKy9Ot9+/a1qW3cDIaGqPWQSCsbbc3u3BQ+ny8gV0tOTk7AImik\n6/G78I8Xqa6uprS0VM/Y4+PjtQOC/2wzlARrQ/8jsFFKOQi4AsgG5gGbpJT9gU31rw0Gg8EQIZo1\nuQghkoEsoI/0O1kIsRe4XkqZJ4RIAz6UUg5s5rtaPcdT/sf+G0GE2g5lMBgMrcXhcARYD1o5uwiZ\nyaU3cBJ4RQhxBbAdeAjoKqVUW9rkA13Pt6QtobEgCCPIDQZDWyMSpqFgTC5RwAhgkZRyOFBBA/NK\nvebeqFQVQtwnhNgmhNjW2sIaDAaDoWmCEejHgGNSyi/qX6/CEvAF9aYW6v82mtpOSrlESpkZzHTB\nYDAYDOdPsyYXKWW+EOKoEGKglHIvcCPwbf1xD/C7+r/rg7hfEZaGb2/ClbZPJ0ydNMTUybmYOjmX\ni6VOegVzUlB+6EKIYVhui9FADvATLO1+JdATyMVyWywO4ru2GW09EFMn52Lq5FxMnZyLqZNAgvJD\nl1JmAY1V2o2hLY7BYDAYzheTy8VgMBjaCZEQ6EsicM+2jqmTczF1ci6mTs7F1IkftuZyMRgMBkP4\nMCYXg8FgaCfYJtCFEBOFEHuFEAeEEBdt3hchxGEhxNdCiCwVbCWESBFCvC+E2F//1x3pcoYbIcRS\nIUShEOIbv/carQdh8af6tvOVEGJE5EoePpqok6eFEMfr20uWEGKS32eP1dfJXiHEhMiUOrwIIS4R\nQnwghPhWCLFbCPFQ/fsXdVtpClsEuhDCCbwEfA8YDHxfCDHYjnu3UcZLKYf5uVtdjInOXgUmNniv\nqXr4HtC//rgPWGRTGe3mVc6tE4AX6tvLMCnlBoD6/jMTGFJ/zcL6ftbeqAP+n5RyMDAKmFP/2y/2\nttIodmnoVwMHpJQ5Uspa4E1gmk33vhCYBrxW//9rwPQIlsUWpJQfAw3jFpqqh2nA69Lic6CjilJu\nTzRRJ00xDXhTSlkjpTwEHMDqZ+0KKWWelHJH/f9lWJle07nI20pT2CXQ04Gjfq+P1b93MSKB94QQ\n24UQ99W/F5FEZ22QpurhYm8/D9abD5b6meMuujoRQmQAw4EvMG2lUcyiqP2MkVKOwJoazhFCjPP/\n8LsSnV1MmHrQLAL6AsOAPOD3kS1OZBBCdABWA/8ipSz1/8y0lbPYJdCPA5f4ve5R/95Fh5TyeP3f\nQmAt1jQ5qERnFwFN1cNF236klAVSSq+U0gf8mbNmlYumToQQLixh/oaUck3926atNIJdAv1LoL8Q\norcQIhprMedtm+7dZhBCJAghEtX/wC3AN1h1cU/9acEmOmuPNFUPbwM/rvdgGAWc8Ztut2sa2H9v\nw2ovYNXJTCFEjBCiN9Yi4Fa7yxduhLVDxMtAtpTyeb+PTFtpDLXfYbgPYBKwDzgIPG7XfdvSAfQB\ndtUfu1U9AKlYK/X7gb8BKZEuqw11sRzLhODBsnP+tKl6AASWl9RB4GsgM9Llt7FOltX/5q+whFWa\n3/mP19fJXuB7kS5/mOpkDJY55SusndOy6mXJRd1WmjpMpKjBYDC0E8yiqMFgMLQTjEA3GAyGdoIR\n6AaDwdBOMALdYDAY2glGoBsMBkM7wQh0g8FgaCcYgW4wGAztBCPQDQaDoZ3w/wFzeSrf0VINXgAA\nAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAB4CAYAAADrPanmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABHp0lEQVR4nO29eXBc132g+53eF6AbQKOxL40dBEGCu0hRpChRu5XYsSUncfzKes+Ja8axZ1QvyYvGTk2mpupVOXGiyTaTsjx2JrbsZzmWXZKt0S5SC0lxFTeQAAgQOxpobL2iATS67/uDPMcNLhJIohugeb8qFIDe7ulz7/2d336Epmno6Ojo6Nx+GFZ6ADo6Ojo6N4cuwHV0dHRuU3QBrqOjo3ObogtwHR0dndsUXYDr6Ojo3KboAlxHR0fnNuWWBLgQ4hEhRKcQolsI8cxyDUpHR0dH55MRN5sHLoQwAl3Ag8AQcBT4fU3Tzi3f8HR0dHR0rsetaODbgG5N0y5qmjYP/AT49PIMS0dHR0fnkzDdwnvLgcG0/4eAuz7uDUIIvexTR0dH58aZ0DTNe+WDtyLAxTUeu0pACyG+AnzlFo6jo6Ojc6fTf60Hb0WADwGVaf9XACNXvkjTtOeA50DXwHV0dHSWk1vxgR8FGoQQNUIIC/B7wMvLMywdHR0dnU/ipjVwTdMWhBBfA14HjMD3NU1rX7aR6ejo6Oh8LDedRnhTB9NdKDo6Ojo3w3FN07Zc+eCt+MB1roPNZsNgMCCEwGg0YrFYMBgueavi8TjJZJKFhQXm5+dXeKQ6Ojq3M7oAzwBf+MIX8Hg8OBwOmpubueeeeygqKiKVSvH888/T0dFBZ2cnv/rVr1Z6qDo6OrcxugBfRsrLy/niF7/IZz7zGVwuF0ajkZycHAoKCjCZTGiaxoMPPsjatWs5e/Yshw8fZnp6moWFhZUe+lUIISgpKeErX/kKZWVl/PKXv+Ttt98mHo+v2JisViv3338/mzZtYtu2bfT397Nv3z7ee+89JicnV2xcOjorhS7Al4mqqio2bdrEo48+yrp167Db7aRSKeLxOJOTk6RSKaxWK+Xl5bhcLoQQ1NbWcubMmVUpwA0GAyUlJdx9991UV1dz9OhRjEbjio1HCIHD4WDz5s088sgjbN++nb6+PiKRCN3d3SsqwI1GI06nk5aWFkZGRhgYGPjE9+Tl5ZFKpZibm2Nubi4Lo/xk7HY7breb1tZWhoeHmZiYYHx8PGvHlwpPQ0MDkUiEUChEMBhkdnb2hj7D6XRiNBoJBoP8pm8ZqXcjXCY+85nP8PWvf5177rkHm81GKpVifn6evr4+3nrrLV555RUOHTpEIpHA5XLh8/nYu3cvubm5Kz30a2IwGKirq8PpdDI/P8/ExATJZHLFxiOEwOv1sn37du666y40TcPn89HW1sbGjRtXbFwADoeDxsZG/vt//+98+tNL6yaxdu1ampqa8HqvKq5bMUpLS3nggQd45ZVXePrpp9m5c2dWF+2cnBzWrl3L3/zN3/Dv/t2/Y8+ePRQWFt7QZ+Tm5rJmzRrWr1+PyZQd/VQIgcFgUHGubKJr4LeIwWCgpaWFe++9l7vuutRJoLe3l1/84hf89Kc/ZWJigkgkQiqVwuFw8MILL9DY2IjRaCQvL29FtdqPw2g0smbNGmw2G36/n9dee23FNEWr1UpRURF/9Vd/RVtb26LnVoOGlZeXx+7du8nJyVny+dyxYweVlZUkk0n+7M/+bEUXRwCXy8UDDzzA008/jclk4gtf+ALFxcW89tprWRmby+XiG9/4Bp/97GcpLS0lFApx4sQJRkauqg28JiaTifz8fH7yk59QWlrKwMAA//7f/3uGhoZIJBIZGbPU9r/2ta9RU1PD3NwcTz/9dFYt6lUrwJubm6mpqcHr9RKLxUgmk0xOTtLf308sFiMSiayKLA4hBAUFBeTk5CCEYGxsjB/96Ee89957dHV1EY/HWVhYwOPxsHbtWjweDzabjVAoRFdX16oxn9Ox2+2Ulpaya9cuotEonZ2dN2TGLidtbW34fD4aGxtZv349brd70fP5+fnU1dWxY8cOJicnmZ6ezqrZL4QgNzeX9evXY7FYlvy+YDBIbW0t1dXVWK1W4vH4ii5GlZWV+Hw+KioqAAgEAoyOjmZcGEkh+Hu/93ts27YNt9vNRx99xEsvvcRHH31EKpVa0udId19zczPd3d2cPHmSYDCYscWnpqaG+vp6tm/fzsMPP0xBQQHj4+PYbDZmZmaWPO5bZVUKcIPBwNatW7nnnntoaGhgcnKSRCJBX18fJ06cYGJiAr/fTyQSWdLnpVIpFhYWCIfDJBKJZb9RDAYDU1NT9Pb2Mjg4yL/927/R19dHLBZTr/F6vdx///2UlJRgt9uZmJigp6dnVQpwp9NJRUUFW7ZsYf/+/Zw7t3Idgnfu3MnmzZtpbW2loqLiKjO1sLCQ1tZWNE3j4sWLXLhwgVAolLXF3Wq14vF4aGlpYW5ubsnHlXGRkpISrFYrc3NzK6qFNzY24vP5yMnJAaCrq4vz589nXIBbLBY8Hg+f//znaW5uZn5+nn379vHyyy8zMTGxpM8wmUxUV1fzyCOPYLPZOHXqFO+88w7T09MZGbPRaGT9+vXs2bOHJ598kqKiIoxGo4pxDQ4OZm1BXrUC/Otf/zoNDQ24XK5Fz2maRjQaZWhoiFAotKTPCwaD9Pf3873vfY/z588zMzOzbGNNJpPs37+fs2fPqtU3GAxetQIXFxfz6KOP4nA4EOJafcBWD7m5ufh8PhwOB6dOneLQoUMrNpY/+qM/UgL6WtTV1VFbW8tv/dZvMTo6yrvvvsuzzz7L6dOnsyIQGxsbueuuu9iwYQPf+c53OH/+/JLel5ubS0lJCbW1tdjtdmVlZhshBBaLhS984Qts27ZNPX7kyBEOHjyY8ePn5eXR2trKtm3bcDgcnD59mn/8x3+8IeFbWVnJzp07+eIXv8irr77Kq6++ygcffJCR8crg/pe+9CXuu+++RfLJ4/Hwn//zf+Zv/uZv6OrqWqTAZYpVKcBTqRT/9E//RE1NDS6Xi+HhYUpLS/F6vZSVldHS0kJpaSklJSVMTU3h8XgW+R5TqRSJRIJYLEZ+fj6pVIq6ujr6+/sZHh5eVgEuCQaDGAwGUqnUVcL7vvvu46GHHqKyshKDwcDY2Bjt7e20t7evmGvi42hoaOCJJ55QVsJSsiqWm5KSEv7kT/6E8vJyDAbDNQV4NBplbm6OVCqF1+vF6/Xy4IMPUl9fz0MPPbRkC+1mMBgMVFdX8+Uvf5mdO3cyPDzMCy+8sGQBvmnTJurq6jI2vqVitVqpra2lqamJoqIiNE0jlUrR0dGx5O9ys+Tm5lJbW8uuXbswmUz87//9v3nttdeYnp5e0mJmMpmoqKjgmWee4e677yaZTHLgwAEGBgYydl/ZbDZ+93d/l/r6epxO56LnHA4He/fupbq6mtOnT/POO+/wq1/9irm5uYxp46tWgB85coTe3l7sdjtjY2MUFRVRUFBAUVERFy9epLS0FJPJxODgID6fD7PZrN6/sLBAPB5nenqa3/md38HlcpFMJrHb7RnTfq9lahoMBoqLi7nnnnvYunUrDoeD+fl5Lly4wLFjxzLqo7tZbDYbpaWlrFmzhtnZWSKRCNFoNKtjyMnJoaKigu3bt2O32696Ph6PMzw8rNxUmqbR0NCAz+ejsLCQ3NxcGhoa6O7uJhwOZ2SMJpOJzZs3s27dOtxuN/v376e7u5tgMPix7xNCYDabqa2tpbi4eMWtMavVSmNjI3l5eVitVpLJJH6/n4mJiYyf9zVr1rB161Y2b95MJBLh1KlTHD16dMluG+k6aWtrw+v10tvby4kTJxgfH8+ID9pkMuF2u7nnnnsoLCwklUoRjUaZnZ0lJycHp9OJ1+slNzdXyZx33nmHhYWFjLmiVqUAB+jo6KCjo+Oaz7ndbqqrq7FYLHR2dtLa2orValXPJxIJIpEIk5OT7Ny5k/LychKJBCMjIxmLSF8Ls9nM5s2befzxx9mwYQNGo5HJyUkOHDjAL3/5y1URhL0Sj8dDeXk5Pp9P+eizOWdCCCoqKmhtbaW8vFwVQKVSKfV7bGyMV155hQMHDig32o4dO/jSl75EdXU1QggefPBBkskkZ8+eXfZFUgiBzWbjs5/9LNXV1YyMjPCP//iPTE5OfuKxZPZRQ0MDxcXFS/bzZgqn06kWSk3TWFhY4KOPPlqye/JWeOSRR3jooYfYvn07p06d4tSpU5w5c2ZJ7zUYDDidTtatW4fX6yUUCvHmm2/y/vvvZyyu5HA4KCsr495778XpdBKNRunu7mZiYoL6+np8Pp/yhdfV1ZGTk8M//dM/MTc3d+cJ8I8jHA5z9uxZhBAkk0mOHDmySJPRNI3i4mK2b9+Ox+MhGAxy6tQpXnrppU/UkJYTs9lMW1sb+fn5GI1GUqkUr732Gm+//TanTp3K2jhuhLa2Nmpra9E0jampqawvMmVlZfzRH/0RTzzxBCUlJco1pmkaw8PDHD16lEOHDvGDH/yAaDRKKpXCaDTS39/Pzp07KSgoIDc3lz/90z+lqamJ119/nRdffHFZbyCfz8eOHTvYu3cvkUiECxcucOrUqSUtFF6vl6997Wvk5+czMjKisiWyuUimky7AU6kU4XCYb3/721y4cCErx5cux0AgQDQaXdJ5slqt7N69mwceeIA/+IM/wOPx8POf/5xnnnkmo0kBhYWFNDc3k5OTQ3d3N2+++SZ/8Rd/gcViYePGjezYsYOnnnqKsrIybDYbFRUVfOc73+Hv/u7vePvttzPi0rstBbimaYt8SlfeOHa7nbq6Or74xS/icDg4ceIEb731VlZdFps2bWLPnj089thjFBYWMj09zblz5/j5z39OV1fXqnOdSEpLS/F4PCQSCd544w38fn/Wji3dC263G4/HozJOZBD6ueeeo7e3VwWw5Rwmk0lGR0d57733MJvN7N69G5fLxc6dOzGbzezbt29J2vFSKS4uZsuWLTidTo4ePcpHH320pM92Op2Ul5eze/du7HY7nZ2dvPbaa8zPz69ICqHX66W+vp7GxkYsFgvJZJJ4PE53d3dW3GbyOwshWLNmDU8++SRr1qwhHo9z9OjRq2JVMjuqoaGBDRs20NraSkFBAT09PXR3d2e8zYPJZMJqtSKE4Pjx4xw+fJhoNIrBYODMmTMkEgkeeeQRvF6vep107WYqrfC2FOCfhNfrpampiXvvvRej0ah8Y9lK2ZNFML/927/Nxo0bMRgMXLx4kQ8++IAPP/wwK+bpjSKEwG63U11dTX5+PtFolIMHD2bdxDcYDFgsFuUSm52dZWhoiA8//JAXX3yRUCh0lbYqM5NOnDhBUVGRymiora1lfn6enJycZVu8DQYDhYWFtLS0YLFYOH/+/JLNfo/HQ01NDc3NzQD09/dz8ODBFVvMCwsLqa6upqSkBLi0UI6Ojqq03UwTCoUIh8Mkk0kqKirYs2cPLS0tzMzMkJOTc5XG6nK5aGxspK2tjcrKSrxeL/Pz85w5cyYrFoPNZiM/Px+4lCc/NjYGoCwIi8VCIpFQwlrTNCKRCLOzs7oL5Ua49957uf/++8nLyyMcDjM6Osrw8HDWjl9QUEBNTQ1r167FYrEQDodpb2/ne9/7HtPT01lL8r8RbDYb69ev59FHH8Xr9XL+/Hk+/PDDrAcwr6Snp4eXX36Z73znO5+4mJw8eZK8vDzuvvtuNmzYoDT45QwUOhwOysvLaWlpQQjBgQMH2L9//5Leu2nTJh5++GHy8vK4ePEi586d46OPPlq2sd0oZWVlKhNG0zS6urp46aWXsnZ9vv7665hMJjZs2EBxcTHV1dX4fD4A9uzZc5VVcuV5TCQSDA8P8/zzz3P06NGMj7empob7778fIQRr165lYGCAd955Rz1vsVhoaWlRgfdUKsXZs2cZGxvLmPL4GyXATSYTra2tPPnkkyqt6Jvf/Cbvv/8+/f3X3BM0I/zFX/wFu3btUlWDH374Ie+//z6Dg4OrUnjDJbfT9u3bKSoqYn5+nv7+fpWil22EEOpmfeaZZzh+/DhTU1NLfq/sS2EwGPB6vXz1q1/l29/+NqOjo7c8NrPZTG5uLnl5ebzxxhtKC1sK+fn5FBcXAzAwMLDiAcyysjIV74jFYpw5cyarAry3t5cf//jHHDhwgObmZpqammhpaeG3fuu3VKVye/uvN/kKBAIcO3aM73znO+Tn5zM3N8fJkyfp7e3NSjOz3t5e3n77bR588EGqq6tZs2YNNTU1yqpqa2vD5XKpoiyr1cpnPvMZurq6CAQCGVEif+MEeHNzMxUVFVitVoaGhjh27BhDQ0NZCcZZrVbKysrYsGEDlZWX9nseGRnh0KFDnDhxYsUCVUvBYrFQXV2NzWZjfHyczs7OrJv2Qgiam5uVmQowODhIIBBY0vtLS0upqKigsLAQIQSapqnFaLnmXqaohsNh5e4xm82f+PkyqFVTU4MQguHh4RXtoFhcXExjYyMNDQ0AzM3NMTU1xfDwcNb88fPz84yPj6uMsf7+fjo6OhgaGiIWizEyMrJI8YpGo/j9fpLJpHr+rbfeylqjtYmJCTo6Opibm6OgoIC2tjaeeuopiouLqaiooLS0lNHRUQ4fPkx+fj5bt26lqKiIlpYWLl68qAvwT8JisbBhwwbcbjeRSISTJ0/S09OTNZ+zy+Vi27Zt1NTU4Ha7WVhYoKOjg7fffpvjx49nZQw3i8ViwefzYTKZGB0d5dixY1nXvg0GA7t27aK8vPyGhIjc+WjNmjWsW7dO9fNIpVIEg0F+9atfLVsGgBR0IyMj6qYtKCi4poVgNBqVRSDjMtL/PTg4uGIauMFgoLa2lvXr19PS0gJALBYjFAplPT4jhXF3dzfd3d0A/OAHP7jma51OJ7W1tcClVgTt7e28+OKLWcssm5ycpLOzk/HxcRVr2b59u0q/DIfDvPfee/zzP/8z9fX1lJeX09TUxIYNGxgfH+edd95Z9nvqEwW4EKIS+AFQAqSA5zRN+3shRAHwAuAD+oDPa5qWmeYDS8BkMpGbm8uePXtwuVycPXuWZ599lnA4nBVB5HQ6aWxs5Otf/7rKoEgkErS3tzMxMbEqe55IcnNzqaio4K677mJyclJl7ayEAN+zZ48SwEvB4XDgdrupq6vjqaeeYtOmTeq5WCxGMBhkYWFh2bTK+fl5pak++uijfPOb3+Txxx/n5z//+VWv9fl8FBUVKQ2tqalJPXdlJlW2yc/Px2azKVfV0aNH6enpWbHxLAWfz8fTTz+Nw+Hgl7/8JT/84Q+zugjOzc0xODjIV7/6Vf78z/9cFecJITh69ChvvfUWf/u3f8vMzAzRaJQ33niD+vp6mpubiUajVFdXMzg4uKwBzaVo4AvAn2iadkIIkQscF0K8CTwFvK1p2reEEM8AzwB/vmwju0Hq6+vZvXs3dXV1BAIBzp49y7lz57LW2nHz5s3cf//9NDU1YTab8fv9tLe388ILLyyL7zWTNDQ0sH37dvLy8ujo6GB0dHTFfPVSa10qa9asYffu3XzqU5+ipaUFp9OJpmlMTk7y5ptv8s477zA+Pr6s10F3dzc/+9nP8Hg8lJaWsmPHDhV8S0cIgclkwmaz4fV6Vd8MTdM4cuRI1nKtr8RoNCrzPpVKMTs7ywcffEBnZ+eKjGcpNDU1cc8993D//fer7I6VyOZKJBKcOHGC//W//hcnT55k/fr1xONx3nrrLfbv308sFiOVStHb28u//du/sWXLFtW58POf/zzPPffcsjbZ+kQBrmmaH/Bf/jsihDgPlAOfBvZcftm/AvtZIQHudrtZu3Yt9957Ly6Xi0OHDnHu3LklB76Wg7Vr17Jt2zYKCgqAS0Gq999/n9OnT6/KfifpFBcXU1tbi9VqZXp6OmPl58tNU1MTW7Zs4Z577mH37t1K8KdSKWVJfPDBB8ueHxwIBDhy5Ah1dXVs3LiR0tLSq9rcAgwPDxOPxxFCqB14JENDQyviQjEYDNhsNtra2vB4PKoc/Pz580vuvb0S1NTU0NLSQlVVlZq7bBblSTRNIxAIcODAAfx+P6Ojo8RiMY4cOcL58+fVOQ4Gg5w9e5ZTp05RVFREYWEhO3bs4Mc//jGhUGjZFKQb8oELIXzARuAwUHxZuKNpml8IUXSd93wF+MotjvNj2bRpE5/61Kd44oknmJmZ4bXXXluU3pMNtm/fzt69e9X/R48e5bvf/W5GGmctN7m5uWrnk1gstqoWnHRt/Mq/v/GNb9Dc3KwyOySapjEwMEBHR0dGtNxIJEIkEuG//tf/Sk1NDSUlJZSVlV31uv379zM5OYnZbObv//7vue+++1TQcH5+fkXyv61WK8XFxaqT3uzsLIFAgAsXLiw5WLwSyPiBpmkcPXqUU6dO0dfXt2LjkT77N95445rPy+0U9+/fT2trK1VVVWzcuJHCwkImJyeXTS4sWYALIXKAF4GnNU0LL9XM1TTtOeC5y5+xrE4/o9GIy+Xi6aefZuPGjSwsLPDuu++uCn+ezWYjLy/vmtkJch/EZDKJ0WjEYrFgs9mASz7diooKHn/8cfV62QPkJz/5CT09PcuezdLU1MT27duBSwvPSprSMugnr68tW7ZQUFCAw+HgG9/4Bh6PRxX5eL1ezGbzVdtZJZNJ/sN/+A8MDQ1lfLyDg4OMjIxcszWCXAhlG4D0nPqamhomJiayLjQLCgrYuHGj2m4sHA7z5ptvZqX16a3Q2trK2rVrmZmZ4Uc/+tGqbUWRzsLCAq+//rrKPNqxYwef+9zneP3113n//feX5RhLEuBCCDOXhPePNE2T0ZoxIUTpZe27FMj68l1UVMQTTzyhfJ+BQIBXX30Vv9+/4hsFb9y4ka9+9avXvDGGhoYYGxsjEongdDopLi6mqqoKuJQNkpeXx7p16xa9J5VKMTQ0hMlk4uzZs8s2zvLyckpKSlTq3uzs7Io12UqlUpw8eVJ1c4NLe41OT09jNptZs2YNTqdTlSdLIZ8eDJyenub8+fOMjo5mvLQaWHKnufRAqhCCcDiclfFdiby+ZJB9YmKC/fv3r1pL0WQysW7dOqqqqsjNzWV2dpbu7u6sukdvhWg0qtwo27dvZ8+ePQQCAc6cObMsLqClZKEI4HvAeU3Tnk176mXgS8C3Lv9+6ZZHcwOYTCbKysr48pe/TEVFBdPT01y4cIE33nhjRXyLiUSCubk5pdls2bKFLVu2XPO17e3tXLhwgampKfLy8qirq2P9+vVXvW52dpZkMqlMbZmOtFwCXAhBQ0OD2iVIfoeVWvw0TePAgQOqOMJgMPCpT31KPZf+OolshrSwsKB2qH/77bdXdc49XEpJy2S/8uthsVjIz89HCEE8HmdsbIyDBw+uWgFuNpvZs2eP6kw5Pj6u/M7SWlutfYUk586dw+VyMTU1xdatW+np6eHdd98lFArdcibSUjTwncD/AZwRQpy8/Ng3uCS4fyqE+DIwADx5SyO5QQoLC6mtrVWa6oEDB/jud79LX1/fiqRntbe3c+LECXbt2vWJr21paaGlpQVN0xb5dZPJ5KI+Cvv27VtUAHDmzBkuXry4bGM2GAzcd999+Hw+EokEHR0dHD16lN7e3mU7xo2QTCZ5++232bJlC+vWrVOC5uOIx+MEg0G6u7t59tlnOXXqFNPT06vKjy+R1+VKpg96vV6123wwGFSW4GqtELbZbPz+7/8+5eXlTE5Osm/fPubm5rBYLNjtdlwuF2NjY6uyNbNkeHiYgwcP8uyzz/Jnf/ZnbNu2ja997Ws8/fTTxOPxW5r7pWShfABc7y7ae53HM4YQgsLCQp566ikeeeQRAH7yk5/wyiuvcPz48RW7OX72s59x7tw5Ojs7r0qFk3nAcrERQhCNRnn//feZnJxUZvjhw4cZGxtT2tDU1BTxeFwJo1gstmxmt8FgwG63s2XLFkpKSpiZmeG9997LWt789QgEArz44ov09/ezdetWHnjggau21UvnzJkzvPXWW7z88sv09/cTjUZXpfZtNptVS+HlzEu/EQwGAzk5OZSVlWEwGFhYWGB+fn7F3Y2fRLqrLJVKsWvXLhobG6mvr2dsbIzvf//7WYl33ArBYJA33niDJ554Qm0BV1FRweDg4C1ZP7ddJabBYKCxsVHthgKXmhh1dnauaGny4OAgsVgMh8NxlQD3er2Ul5cv0p5jsRgffvghU1NTSoAfP36c8fHxrPlG5Y7qs7OzjI6OcujQoRUPZs3NzdHR0aHKq+12O1VVVXg8HoqKiggGg4RCIUZHRxFC8OGHH3L48GFOnDixouP+OIQQVFVV4XA41CYAK1HYJYQglUqpLb5mZ2fVjka3Azabjerqah566CG1881q7i+Uzvz8PH19fbz33nvs2bOH+vp61q9fTzAYvLMEuNls5qGHHlI9M2QXtdVQLDM1NcUvfvGLlR7GktA0jWQySSgUUpsS/PKXv1wVrge/34/f7+fYsWOcP3+ebdu2sWfPHvbu3UtHRwcnTpzglVdeQQihfKKrGYPBwO7du3G73QwMDPCDH/xgxXKYZZOoTZs2EQwGGR8fz/o4bhTpWiwoKGDv3r3ce++9HDt2jPfee4/nn39+xZuCLYVkMkk4HOa//bf/xtzcHC0tLXzuc5/jwoULN9QQ7UpuKwHu9XppbW3lqaeewuv1rvRwbms0TWNmZoY/+IM/AFDN/FcbR48e5eTJk/zLv/wLFouFhYUFEomE8nlKs3o1o2kaZ86c4cSJExw+fJiDBw+uiAaeSqVob2/n29/+Npqm4ff76erqyvo4boRYLMZf/uVf8ru/+7t4vV7a29v56U9/SiAQUPn4q/38pyM3NP/oo4944IEHePXVVxkfH7/pRle3lQB3uVw0NDSQn5+vmqcHg0GVraFz46z2qkvpXlqNi8tSWVhY4Pvf/76yLFbSyonH4wwNDfH8888zMzOz6tPxFhYW1G43drudiYkJuru71SYJt5Pwhl+nyv7whz/kL//yL3G73eTn598ZAtzhcFBaWqq2fwoGg5w+fZpgMLiqm0Xp3NmkUileffXVlR4GcMnSikQi7Nu3b6WHsiRSqRQjIyOrusz/Runp6SESifC5z32OmZmZRUVoN8ptJcDTGRkZ4eDBg3z9618nGAzediuxjo7OnYncSejhhx++5c8S2YxA32opvd1uJy8vj9LSUhKJBNFolIGBAd19oqOj85vOcU3TrqoMvK0EuI6Ojs4dyjUF+M07X3R0dHR0VhRdgOvo6OjcpugCXEdHR+c2RRfgOjo6OrcpugDX0dHRuU25bfPAVzNCCPUjdx+XvYvTS79vlyZCOjo6qxNdgC8DcksvKaStVit2ux2Hw4HVasVms2EymTCZTESjUcLhMNFolFgsRiKRUEJeR0dH50bQBfgtILVss9msfux2Ox6Ph4KCAjweD3l5eeTn52Oz2TAajYyMjDA8PIzf72dwcJBoNKp6OqwWIS4XJLlPp6Zpqnf0So/RaDRiMBgwGo2LNkiQHetWeny3O+mWI+hW4mpHF+A3icFgULuCGAwGysrKqK6u5q677mLPnj0UFhbicDiYm5vDarWqLb+Gh4cZGxtjeHiYQ4cOLdpBZjXcLEajEY/HQ01NDU8++SRGo5FIJMKZM2fYt28f4XB4RXY/kfNdXFxMYWEhxcXFav/O2dlZgsEgExMTxONxEolE1lsrpLvIrmdRSeEoF5/0BWelz73RaMRms2G32zGbzczPzzM/P8/MzMyKVDpfayem9D1F5e/0xSb9NZmez3Q36ZUbTlyLTI1HF+C3gNxdxeVykZ+fT1FRERUVFTidTrXjidyFRdM0tSNKIpEgkUhQUFCA2Wy+6iJcSaSgdLlcNDc3q00I4NLGGSux6bEULmvXrmXjxo3U1dXh8/nUpgShUIiPPvqIU6dOMTo6yuTkZNaam5nNZiwWCw6HQ+1uI3/S4x9GoxGTyYTZbMZms5FMJlVr3PTd61cCIQQul4uWlha2bt1KRUUFExMT9Pf3c+DAAYaHhzMuxI1GI1arVc1RerzoSgs1fR49Ho/apCIWixGJRNS+rstpkaUvKAaDAZPJhNFoxGKxqPtdtmiGX8uGubk5NY5MKBW6AL8FpOluMpmwWCyLuiRKoZd+8pLJJEajEbPZjMPhIDc3F5PJ9In7PmYbs9lMTk4ObrebnJwc5VJZCYQQ2O12CgsL2bFjB5s3b8bn86ltwebm5tTmsHKj27m5uaxo4dJ9lpOTQ3FxsdJWZcc/KUSkdi4FT05ODslkUlkPcoeclUAIgclkoqKigrVr17Jjxw58Ph9DQ0PY7XZOnz6d0Y2D5dw4nU5ycnJwOBzY7Xal1KRSKWZnZ9X51DQNk8mEzWbD6XRSWlqK0WhUVpjcWi0TAlNq2yaTScW43G43JSUlmM1mAGZmZojH48RiMUKhkFqoMzV/SxbgQggjcAwY1jTtcSFEAfAC4AP6gM9rmja9XANLN03k/9fiSnP1yo2CM3ljpJvLcvWVW7tJrSASiZBIJNQelOvXr8dut2O1WsnLy1PaxmpBCkyp2SQSCUKhEOfPn2dqairrvawNBgMej4cNGzbwh3/4h5SUlCiNBy61R5Wb3GqaRm5uLolEQs17Js+/PKcej4e1a9cSj8cxGo0A9Pf3E4lESCaTCCGURm4ymcjPzyeVSjEzM4MQgkgksmKBbPkd7r77bu6++27a2trUuff7/VgslowpGNIyMZvNFBcXU1xcTEFBAS6Xa1Gmltx2TApxIQROp5Pc3FwVa1pYWFCWl4zZLNfeo+muEmkpeDweiouLaWhoYP369TgcDkwmE6lUip6eHvr6+ujo6GBmZoZUKqXGvdzn+EY08P8InAfkDrPPAG9rmvYtIcQzl///85sdiLzwpVlisVgwm81YrVbcbjcm06+H6vP5ANSNajKZlDYTCoWw2+3q/eFwWO3cIVfE5UBeYAsLC8RiMXp7ewkEAirwJzXuUCikNIa8vDx14oUQyl+bTCZXlQvF7Xbj8/lwOp3MzMwQCATo7u7Ouj9UCEFxcTH3338/Tz31FD6fD4vFooS3nDOr1UplZSX33XcflZWV5OXlEQgEmJ6ezpgrRbrD2traaGlpYfPmzRgMBgKBAMPDw4TDYSwWC3Nzc8rlJG9+r9eL0+kkGAwyMjLC1NRUxm7w6yEFktVqpaSkhMcee4zW1la8Xq+6BhwOBzMzMxkZkxSGdrsdt9tNS0sLjY2NFBcXYzKZmJ2dJRwOMzk5qYL9ckG2Wq1YrVaEEHg8HhwOh7J8HA4HTqdzUdD9VsafnqggZVNZWRnr1q1Te/M2NDRgtVoxGAzMz8/T2trKhQsXyM/PZ3p6WrlMMzGPSxLgQogK4FPA/wv835cf/jSw5/Lf/wrs5yYFuPS7apqGxWLB7XZTXl5Ofn4+OTk5CCHURe90OikvL1cCP93vOD8/j9/vVyfY4XDg9/vp7u6mt7eXaDS6rH6xdBMPLu12YrFY1DGSySQzMzOYTCYcDodamJxOpxp/Js2rm0Ga+HLT2Gg0SiQSYXR0NOMa7ZUYDAZaW1tZv349dXV1WCwWNW/AonNpsVgoLCwkkUgQDocpKSkhkUhkZH6l8MnPz6epqYm1a9dSWVlJJBJhZGSEiYkJJicnicfj6tgOh4OcnBxyc3MpKSkhNzcXm81GPB7HbDavyO4yUjDl5+dTUFBATk6OcgPGYjGmp6eZnp7O2LgsFouaD5/PpzRwg8FAb28vo6Oj9PX1MTY2pnbdkosOoObNZDKpzCSDwaCUp+VCfrbT6cTtdlNXV0dzczONjY34fD4Vy5IuvWQySV5enrIkMmldLVUD/zvg/wFy0x4r1jTND6Bpml8IUXStNwohvgJ85XofnO5XSqVSmM1mXC4XdXV1lJWV4Xa7mZubw+fz4fV68Xq9eDwezGaz8h/HYjElwAcGBlQetsvlYmBgQAWYLl68uGxmlUTTNHXSZmdnMZvN6oRJF4QMYAFqEQLUyrxaBLgQQgUwi4qKcDqdyoUyOTmZde3bYrGwYcMGWlpa8Hg8GI1GpaVKH7K8QYQQOBwOioqKaGxspKqqinA4TCwWW/ZxS4WjtLSU+vp66uvryc/PZ2JigomJCQYHBxkbGyORSACogJu0JktKSnC5XJhMJmWhrUQcRPqf7XY7NptNBdRTqRTj4+OMjIwsq9V65bGtVisul4vS0lKqqqrweDxYrVbm5uYIBAL09vbS1dVFNBpVY5DXhXz/7OzsooCnEIJkMqnm/lbGl/53umJTU1NDbW0tVVVVFBYWqjoP+R6ZUmwymTK+MH+iABdCPA4ENE07LoTYc6MH0DTtOeC5y591leSUwk5qItJ/JSPSVquVqqoqXC4Xubm5KtAhJ0uuuMFgkMnJSWZmZsjNzcXlcuH1elXxTCwW48iRI+qmXw6u9IHLlV9eSHBJS7TZbOTk5FBUVITH42F+fp7x8XH6+vpWNIB1LXJzcykrK6OhoQGDwcDAwADd3d3E4/GsjtNisVBZWckjjzxCa2urukE0TWN+fp5QKEQ4HCaVSmEwGMjLy1OCtaysjF27djE7O0s0Gl3Wcy7Hlp+fz6OPPsq6devweDwEg0H27dvHsWPH6OzsZH5+Xgkdg8HAzMwMFotFaZtSA49GoysWB9E0jUQioWI2cn7j8Tjvvvsu77zzTkZcUOm+5Pz8fKqrq2lpacFgMBAMBjl+/DjvvvsuY2Nj6hynX3tzc3MqM0kGDRcWFggGg0ohkvfhcowVULGOqqoqampqKC4uJjf31/qsPJbMKopEIsqFt6ICHNgJ/LYQ4jHABriEEM8DY0KI0svadykQuNlBpKcLzc7OMjk5yYULF/D7/TidTsrKynC5XMp8Li4uxmAwkEgkGBsbUz6yubk5bDYbmzZtorm5mby8POWyyMnJWeRHX07SBXj6/3LldrlcVFZWsn37djweD+Pj40rDmZ2dXTXbwRkMBtatW0dLS4ua48nJSfx+f1bHaDKZKCkp4atf/Sp1dXXKjZZKpYhGo0xOTtLd3U13dzdGoxG3262CwxaLBZvNxj333KN8ub/61a+W7UYyGAy4XC6V819QUEAoFOLQoUN88MEHatPidK1VWmnSwiwrK1NugFAopDTfbPrA5TUqXUG5ublqTNPT0/T09NDf35+RY0uLOy8vD6/XqwLTkUiE8fFxTp48ydjYmNK8010QUqBaLBZycnIoKChQ+erxeJzx8XFVHCe/562OVS42TqdTySEZc5ufn1feg0QiQSwWIxwOEw6HCQaDGc9L/0SJpmnafwL+0+Uvswf4U03TviiE+DbwJeBbl3+/dLODkF9OTsLMzIyKgNtsNsLhMA6HA7i0wuXl5SlNLBAIEAgElJaVHplOzwCQbo5McaU2Li80q9VKUVERVVVV+Hw+HA4HqVRKnejlduncLNKcXrNmDbW1tTgcDmZnZ5mYmCAQCGR1jG63m+rqarZt26YC2FII9vf3MzAwQFdXF729vSqFr6KiQrlZrFYrpaWlNDU1EQqFePfdd5ctrdBkMuF2u6mqqqKoqIhEIsH4+Dhnz55ldHR0kdBJJ5VKLRIEFotFWZmyDcNKYLPZaGlpUQpOMplkYmKCqakplQqbCQwGg4oLyAV6ZmaG6elpAoGAWgSv5T+2WCzk5eVRXFyM0+lUcZrp6WkV7FzuHPD09hjwa007FospS2Z+fp5wOMz09DThcHhRxlamFudbUUm/BfxUCPFlYAB48lYHk+7wHx4eVr7joaEhpX3LlBzpP04vKjEYDIRCIYaHh6murlarcDgcZnx8POPmTLoWLlfunJwcmpqaaGlpoaqqCrvdrlLIMuGfvRXMZjPbtm2jpaUFi8VCOBxmeHiYwcHBrI1BCEFVVRUbNmxg7dq1KidY5tcfPXqU06dPMzQ0RCQSUTm4o6OjypcrC1NqamqIRqN4PB7C4fAtZ/sIIbDZbBQXF9Pc3IzNZiMQCNDT08OxY8c+NnVRtibIyclZ5G+en59fUQHudrt57LHHcLvdGI1GEokE/f39hEKhjBRspVsadrsdp9OJ3W5nbm6O6elpxsfHVfqlVITStW9pAVVVVdHY2IjD4VALzsjIiEo3vFVheWU6skyKcDgcSpmIRqPKPZZIJJibmyMcDqvxSPfoldWaHzc3NzruGxLgmqbt51K2CZqmTQJ7b+hoH//Z6rcUhPLCltVN6eXK8gSnC+RUKsX8/PwiU6e/v5/Tp09z4sSJjPqb0z/XYDBgNpvJzc1l69at7N27l8bGRkpKSohGo0xNTamg4Gop4rFardTV1VFTU0NBQQGJRILDhw8zMDBAJBLJ2jhcLhf33Xcfn/3sZ1WqmEzV3LdvH/v37+fcuXP4/X6qqqrIy8tbVD4vzXObzUZ+fj6FhYVKi79Vf67RaCQvL4+SkhLKy8uJxWJ0d3fT0dHB+Pj4NRdjec3abDa8Xi9lZWXk5eUpH20oFLrK5ZItcnNzqaysZOfOnSoVLxQK8dd//df09PRk5JjpWUPSbSot6ZGREQKBgLK8jUajKoQBVNrhmjVraG5uxufzEY/HCYVCBAIBxsbGFlU+LocQl58xMzPDyMgIyWRSLcQyFjc7O8vMzIw6jzKIKttoyPs83aK41vhuZryrshIz3aUCi3sfyMfST1L68yaTicrKSsrKyhBCqMyAYDCY0WZH6YJYBrnKy8vZunUr5eXlykwMBAKMj48zPT2t3icDsSvlSpGaZVNTE7m5uRiNRuLxOGfOnFE5ytnAYDBQWVmpKi2lRhIOh+nt7eX111/n7NmzjI2NEY/HmZmZYXJyUuXnyuZh6ZlNMtMhPYPlZpAWVVFREcXFxYuKRyYmJhbNUXqAXQZWCwoKqKiooLKyUi0m8sZfqV4jMnjodDpVNlcgEGBoaIh4PJ7R46cH+tOrFc1mM5WVlbhcLjTtUvsJadnIVL6Kigpyc3PVAjgxMaEshiv95ctxT8nECuky8fv9KhkhFospa8pgMBCLxZTrRGacSUtLunGlF0F+9q2MdVUKcFgcCEz/kummyJVfWGYjlJWVqZxg2RtD+qoySXpaVklJicoRzs/PV8UJo6OjBAIBQqGQKq++3oqcLWT1pex9kkqliEQinDt3jlAolLVxGAwGqqqqKCkpUYI4mUwyNTVFZ2cnx48fV8JbLjLT09OqDqClpYWioqKrKudklsetWDvy3Mrukrm5uWiapkrhjUajWiTkd5EtFmQgvry8nOLiYlX6LbOjVqKQy2QyUVNTQ0tLC2azmVQqxeTkJJ2dnSo2kymk5ZzeL0Q2c7PZbFRVVak5NZlMqtkbXMqnLy0txel0KoshFAqpwGUmgobpPu54PE4wGFRW39zcnLq+ZGKF7IEkc8HlvS/Pu5zbZYnJ3PInZJilmBlypbZaraqXg91uZ3R0lJMnT9Lf3084HM7oTSKFhUxj27FjBw8++CBr1qxRFaOjo6OcOXOGvr4+pqamsFqtyp8m+z2shCA3m814PB4efvhhXC4XkUiEnp4e3n33XSYmJrIyBpmxs2nTJioqKtTcxGIxurq6eOONNxgZGVFalrhcgh6LxZSFdebMGZxOJ7W1tcqUnZ+fX9SX5FbGJzVAmc4qhFBB8/QFR1o0DodD5Tlv27aN5uZmCgsLMZlMTExM4Pf78fv9yx50Wwq5ubncdddd3H///UpDPHjwIP/jf/yPW86hXgqyO+f09LRSsFKpFMXFxaoxnHSjyH43UoOVdRSySlgGDDNhyUh3bbrPu7S0lGg0Sjwep7CwUFXcyqwes9msYgoTExNqkZcWYywWU6mPV3oSMuoDX2mu9+XSK8p27dqFz+fDaDRy4cIFTp48id/vz6iZmu53LSgoYNu2bbS2tlJUVMTc3BxjY2P09fVx9OhRjhw5QjgcVhejbN9pNpsX9QZPNzGXMge3Ql5eHpWVlTQ2NmKxWBgaGqK9vZ1QKJRRTSwdmdcri2KEECQSCYaHh+nq6qK9vV0F1WQcRGpl8vzLMmo5f/Pz80SjUUZGRpZFKMn+NjJ9rKioiObmZqVpj42NqUKT3NxcVc3qdrspLS1VBTxms1lV6UpXWjaFt8FgoKioSFkEmqYxOTlJb28v7e3tWRmLtKxkfn99fb1qDJefn6+6PMq5lVlnmqapwjyZeSZ/blYIfhxSuMqCIbPZrASw7HooK0KlEimbf83Pz1NdXa2s7EgkwtDQEOPj40xMTCjXUPr45TGXym0lwK+HEIKCggLq6+tpaGjAbrcrczAQCBCPxzPmx5XCw263q7zUyspKCgsLsVqtxGIxhoeH6enp4fz586okXb5XppFJIS7bz14rAyBT36G0tJSGhgalVQaDQXp7e7PaV1te/G63W+UjJ5NJlTMvLah0F5o0mWVwKz8/X/m7ZTl4KBRS2t2tIM3+mZkZgsEg4+PjFBQU4HQ6KS4uprGxkcLCQnVOXS4XbrdbVQ3Kx2WxmvSnplcZZguDwUBzc7PScjVNo7+/n5GREWKxWMaPL4XizMwMU1NTSmuVi598jczYkVlnJpOJ3Nxc1aNHVjpKt0UmExSkn35hYYF4PK5cIXIxlr7t9HbCsjeL3DNAVt7Oz88r94t0z9wsvxECXG6osHnzZmU+BwIBjh8/ntGGRsAijSs/P19lKOTn52M0GhkbG6Onp4eOjg66uroIh8PAr3eWSe/jYLPZVEBT+uzTM20y4d8TQuDz+Whra1N9MKanp+nq6sqqYJHfX/bjgEsLViAQYGpqivn5+UXCO11jkd3sSktL8Xg8yucoc4ploPBW5k3exKFQCL/fT29vrwq0ytYP5eXlyp0nu9PNzc2p9sJSS1tYWCAajapq0mzvJmQ0GrnrrrsoKytT2uHZs2cZGBjI2jmXi5hUVmQlttVqVYFJt9uNy+UikUjgdDopKCiguLiYnJwc4NJ5l4Iw0+7H9PTldBeILOeXQjkWi6lApnxe5vtL948cq0yXvFZQc6n8Rghwr9fLtm3b+MxnPoPb7aa3t5eenh6OHj2a0dRBqTnIvsQ1NTVs376d8vJyAPx+Px9++CHvv/8+fX19yhcLKF+p1ODNZjO1tbWq2f/k5CQmk0kVBszOzmakGEAGDltaWoBLvkm/38+xY8eyWn155Q5HsrdMLBZTudLpvSXkPMhUuD/+4z9my5YteDwelXp64sQJ9u3btyz59lLjl5aJNJ/lzShdaNLsj8ViDA4OqkKzPXv2qM6EiUSCvr4+RkdHFwmfbCAtnb1791JRUQFcEk4vv/wyx48fz8oY5AIsteaFhQVmZmZUIHBwcFC1GpB9RhobGwGorq5WbQdkJbYUpumL9HK7UdLbZMRiMWZmZlQtx/j4+KJmerKNrMFgID8/n4WFBWw2G3Nzc1RWVlJQUKC6FI6PjxMKhW46DnLbC3CDwUBbWxtNTU14PB7i8Tgffvghhw8fJhQKZdR1IgNbpaWl1NbW4vP5cLvdqiuZbIcpNUBpPqe/X+7m4nK5aGtrw+12YzableY2MDBAf38/fr8/I6ldVquVwsJCSktLSaVS9PX1MTAwoDZJyBZSu5EdB+XCVlJSQkVFBRUVFYsaWEm32ebNm9m5cyebN2+moKBACflTp05x7Ngxzp49u6xa5ezsLOPj4ypgKd1e0qKSqa7j4+Oqf7rsWCk1rXg8zvDwsKo4zGbgWqa4ejweFXwLBAL4/X5lHWaLa9VzyNiH1F7lNm/SbRGJRMjJyWF6elp1fpTxpEzPo3SfxGIxRkZGlMUgO1/KDSVGRkZUj3pZxSkDm7LYTC760v1ys+O+rQW4TNlbt24dNTU12O12xsbGOHPmDB0dHRnfVktqhU6nU+3TKItGZJBDjlGafemaghACt9utikNkyqHUwmUFZDQaVdHs5UQIobo7yrzajo4Oent7s75xgwwQyi2xHA4HRqMRr9eLz+ejqakJk8mk+lM7nU5qamrYsWMHd999N6Wlpaofczgc5vjx43R2djI6OrpsN7X0V0rTN5lMLiqHlwJkYWFBxV5kiqbU4KS2OTU1lZVNJ64kNzeX+vp61dI4Fotx5syZjLsaryRdU74yjVbeH3KOhRAq739mZkbdD7J1QTayeOR4pLtnYmJikdtP9nEZGxtblPUkLW5Z/i8VlPn5eWVt3oqSeVsLcNnd7YEHHqC+vh6AAwcOcOjQIbq6ujJ+fGn2Sx+d1+ulsrJSCSNN06ivr1f7XwaDQVV6K/NcS0pKqKyspKmpiV27dpGTk6PyRZ1OJ/Pz80xPT3Px4kWMRuOyZoUYDAa2b99OdXW1qhh75ZVXOHz4cNYbbMm2tR999JEK/JjNZpUSWlpaqrRWg8FAY2MjW7duJT8/Xwl7uZVZZ2cnL7zwQkYKUqTvVvrYZX74lRsaS2EiNxaRvm8ZBA2Hw4v6hWcDWbzzuc99TvX0CAQCfP/732dqairr6avpQjxdA5cLpRSasqmaTHGdnZ3lwoULdHd3Z6UZXHrMJZVKqYC69H3bbDampqYYHR1ldHRUbZ0o007z8/NVFe7s7KzKvCkrK2NkZOSWahRuWwEu9/H7wz/8Q+rr6zEajQwODvLjH/+YwcHBrKW/yYmfmJhgaGhI5YUCSqgXFBSoiPXc3JxqzVpSUoLH41GN/t1utzLBpR9XmofLra3J8u5Pf/rT1NfXq6rCixcvEgjcdGPJm0YueocOHcLj8eB2uykqKsJut1NRUYHX62XdunUqGyEvLw+73b6oif/U1BQHDx7kH/7hH+jt7c14q970IHP6DSiPKX21UguXwUvpDsi29u12u6mvr+fee+9V2vfY2Bhnz57Nqvb9caTPR3qQ2uVy4XQ6VcxAzmG2+sikLzbSCpNdEKWVIBtcySB2UVERDQ0NrF27lpKSEhWUl1lrU1NTahG/WffPbSnAZTJ9U1MTbW1tmM1mJiYm6O7uZnBwMCu9q6V2kF5ea7VaKS4upqSkRBVzSPcEoJoFyXzWvLw81ZnOYrGocl2Zu3zu3DmGhoaIxWLLntJns9koKyujuLgYu93O7OwsnZ2dGWtitBRSqZRqE1taWnpVPrAs4JCLT7q2FgwG+eCDD3jvvffo7OzMeOOyK7ne9SaDhulVh7LwJFtKBlxaROrq6qitrVVl6uPj46rXzWppaQy/rnqVG2HIDcBzcnKw2+2L2g+kd3PMxj0vjyPdKTMzM4yPjy/qV2+z2VSBl3Sr2mw2VaEZj8fx+/0qbfNWUiBvSwFuMpnw+XzK951MJhkZGaG9vZ3JycmsVJLBr4MakUiE4eFhUqkUBQUFWK1WJXRkG0oZtJQ5orK9qAzYSHNMdk48c+YMp06dUvt5Lme5tRCXNoWtrq5WedMzMzOcO3duRTskplIpBgYG6OjooKioiNraWqxWqyqpljdJelMzmbp14cIFXnvtNY4ePUogEFg1AknuYC5v+kQioTaZyOY8y9zv+vp6lS7q9/tX3aYi6edXtiGQG7S43W5ycnJUm1sZg0pvsZFp5DzJmIbsoigzyWQjrpycHPLy8tSOPekB7unpafr6+vD7/XeeAJeBrZ07d7J7925SqRRjY2McPnyYl156KatmqQxYjY6OMjU1xdDQEOfPn6eurk71Or777ruVhm2z2Rb5P2XmhVzN/X4/09PTqsBjfHxc5ZQup0CSfRqampqwWq0kEgmmp6fp7OzMevDySoLBIIcOHWJychKHw8F9992nttpKv0llNkdvby+nT5/mH/7hH+jp6VE7uKwG0ouTcnJy1GIks2zkT6avV7kBc3NzMzU1NZjNZmZnZxkcHKSnp2dFG6ldC5ndZbVaycnJoaysTOX4yy6Gcl7lJtfpc7mU1q23QrpPXKaSyloOt9uteh9JK1EWlY2Pj3P69GkuXrxIb2+vEt53TBBTBgUef/xxNmzYQGFhIdFolP3796tGRysRiJFCWPY7iEQiSms8derUoqIdWRJ85UIjfcBSQ5eulvR2mss55pmZGYaGhrh48SI2m43p6WlGR0ezHli71timpqY4f/48P/7xj+nr68Pn81FZWUlNTQ3BYJBIJMLMzAynTp2iq6uLrq4uLly4sOr6q8vgpgxcy9xgmUUjt1TLBpqmqUwO6fYLh8PLUuS03EghLK2XvLy8RbtpyTz8a8UR0hf5TC6O0mctBbQU6LKQJxgMMjY2Rm9vL9PT0yrZYXh4WPU8Xw636G0jwGUgqKioiLa2NsrKypTgkTtYZ7oF5vVIT3mSgQx5IQUCgau6413Zu+FK8+/K6svlvgjTBfiRI0cwm81q84Zs+46vhTRLz507RzKZpKenh/Lycnw+H9PT06qJ1blz5xgcHFTnfqXHnU66FiivCSnAZWFSevfCTCOrSKemptRPIBBgenp6VS16kvRuhXLuZHqerGBND+xfeY9k0wpPH7PsXR8MBpXVPT4+rtIHx8bG1G5Hy2H53DYC3Gg04vF4aGlpobW1FY/Hg6ZpRKPRRZufrhauVxGWLf/8xyFToc6dO8f4+PiiQOBybwB8M0grZWxsTAWI0nf5lrn0q01zvBIZ84hGo0SjUbXproxpwK8zVTKJNPX9fj8XL14kJydHufv6+/uzng3zcaRXPcrWrf39/RiNRpW+Nzo6ysjIiNrAIVMVmDcy5vTfMhFgZmZGtY2W9SADAwPKjXplE6ub4bYQ4AaDAafTic/n47777qO0tBSTycTU1BTt7e1cvHhRdXXTWRryBhkaGlKPrbTgvhayV4bshbJaBM0nIRdF2XGwvb1dLUbSckhvrZDpsczNzfHKK6/w5ptvqu550pW3GjVwqcnOz88TCoUYGhpSVa9yIwWZZrsafPhy4ZGbHM/NzTE5OaksQzm+qakpNefLYV0vSYALIfKA/wm0AhrwfwGdwAuAD+gDPq9p2rJLUel2KCsro6amhqqqKrV7yOjoKKdPn151vs/bidUotK/HSt+kN4o0qaPRKOfPn2dgYAAhhPKBZjv7Q/ZikazW+UwvsZcBfplfLfvkpGdzrZbvkZ5aLBUO2SpBPi8t3OVyjS5VA/974DVN054QQlgAB/AN4G1N074lhHgGeAb481se0TWQaW8yei7NkIsXL6rGMavdnNa5M5E39ODg4KItxFZK8Nwu98i1euLLeNHNdu7LBlJIS64X41i2lOBP+iAhhAs4BdRqaS8WQnQCezRN8wshSoH9mqY1fcJn3fSo0xs/5eXlEY1GVTFEukmio6Oj8xvIcU3Ttlz54FI08FpgHPgXIUQbcBz4j0Cxpml+gMtCvGg5R3slcmWTvrH0AIAuuHV0dO5ElhICNwGbgH/WNG0jEOOSu2RJCCG+IoQ4JoQ4dpNjVKT7xFab/0tHR0cn2yxFgA8BQ5qmHb78/8+4JNDHLrtOuPz7mh2QNE17TtO0LddS/3V0dHR0bp5PdKFomjYqhBgUQjRpmtYJ7AXOXf75EvCty79fWsLxJrikwWdnq/Pbh0L0ObkSfU6uRp+Tq7lT5qT6Wg9+YhATQAixgUtphBbgIvB/ckl7/ylQBQwAT2qaNrWEzzqma+OL0efkavQ5uRp9Tq7mTp+TJaURapp2ErjWJO1d1tHo6Ojo6CyZzNfx6ujo6OhkhJUQ4M+twDFXO/qcXI0+J1ejz8nV3NFzsiQfuI6Ojo7O6kN3oejo6OjcpmRNgAshHhFCdAohui/3TrkjEUL0CSHOCCFOyuImIUSBEOJNIcSFy7/zV3qcmUYI8X0hREAIcTbtsevOgxDiP12+djqFEA+vzKgzy3Xm5L8IIYYvXy8nhRCPpT13J8xJpRBinxDivBCiXQjxHy8/fkdfKwpZip7JH8AI9HCpLN/Cpd4qLdk49mr74VLnxsIrHvtr4JnLfz8D/NVKjzML87CbSwVhZz9pHoCWy9eMFai5fC0ZV/o7ZGlO/gvwp9d47Z0yJ6XApst/5wJdl7/7HX2tyJ9saeDbgG5N0y5qmjYP/AT4dJaOfTvwaeBfL//9r8BnVm4o2UHTtPeAK+sGrjcPnwZ+omnanKZpvUA3l66p3yiuMyfX406ZE7+maScu/x0BzgPl3OHXiiRbArwcGEz7f+jyY3ciGvCGEOK4EOIrlx9b1BgMyGhjsFXM9ebhTr9+viaEOH3ZxSJdBXfcnAghfMBG4DD6tQJkT4BfqynunZr+slPTtE3Ao8AfCyF2r/SAbgPu5Ovnn4E6YAPgB/728uN31JwIIXKAF4GnNU0Lf9xLr/HYb+y8ZEuADwGVaf9XACNZOvaqQtO0kcu/A8AvuGTeLakx2B3A9ebhjr1+NE0b0zQtqWlaCvguv3YH3DFzIoQwc0l4/0jTtJ9ffli/VsieAD8KNAghai7v6PN7wMtZOvaqQQjhFELkyr+Bh4CzXJqLL11+2VIbg/0mcr15eBn4PSGEVQhRAzQAR1ZgfFlHCqnL/A6Xrhe4Q+ZEXNrS5nvAeU3Tnk17Sr9WIDtZKJejw49xKYLcA3xzpaO3K/HDpSycU5d/2uU8AB7gbeDC5d8FKz3WLMzF/8cll0CCS1rTlz9uHoBvXr52OoFHV3r8WZyTHwJngNNcEk6ld9ic3MMlF8hp4OTln8fu9GtF/uiVmDo6Ojq3KXolpo6Ojs5tii7AdXR0dG5TdAGuo6Ojc5uiC3AdHR2d2xRdgOvo6OjcpugCXEdHR+c2RRfgOjo6OrcpugDX0dHRuU35/wHTH9HEUJ8AowAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -1317,12 +1296,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVmMnOl1JXj+2Pd9yYzIfWFyqYUl\nlqSSSmVbKmjkEWzI8IMxbT/0DBrQy/R7+22AefLrAAMMRg/t6YY809220HBbGGtsSzKlskolVZFV\nXKq4ZDL3zMjY9z3in4fkufwiGBEZkUxKpJQXIHJh5L98y/3uPffeczVd13Eu53Iu50Ix/Lof4FzO\n5VxeLDlXCudyLufSI+dK4VzO5Vx65FwpnMu5nEuPnCuFczmXc+mRc6VwLudyLj3y3JSCpmm/r2na\nfU3T1jVN+/PndZ9zOZdzOVvRnkeegqZpRgAPAHwdwB6AXwL4V7quf3rmNzuXczmXM5XnZSl8AcC6\nruuPdF1vAvhPAL71nO51LudyLmcopud03TiAXeXnPQBfHPZhTdPO0yrP5Vyev6R1XQ+f9KHnpRRO\nFE3Tvg3g27+u+5/LufwWyvY4H3peSmEfwKzy88zj34nouv4dAN8BnlgKmqZB/ariHf2/G/SZQaJp\nWs9nzms9zuVllv71/DzkeSmFXwJY1TRtEcfK4H8A8Kfj/rGu67LpjUYjgCeDYTQaoWkaDAZDz/cm\nkwkWiwWNRgOtVgu1Wg0A0Ol05G9/FQP6vOQsnn2Q0h103bO4zyDlPeheL/Oc/DrkVzFWz0Up6Lre\n1jTt3wL4/wAYAfx7Xdfvjvv3XEjc+ADQ7XZhMBhkcalKwmq1wmg0wul0wu/3o1arodlsotvtIp/P\no9FoQNf1l27xqZv4WZ7dYDjGk3kNjqHBYJD/MxgM0DQN3W4X3W4XnU7nVPfsf2ZVwQ+63ss2J78K\n+XUryucSkpz4IR67D9z0AGC1WgFAFikXsaZpMJvNsFgsMJvNsNvt8n273YbFYoGu6+h2u2i1Wmg0\nGsjn86jVami32+h2u6d5vp7NQ2VlMpnQarWg6zra7bY870kKSLVcNE2DyWSC2WyG1WqFz+fDwsIC\nXC4XAoEALBYLNE3D1tYWkskkCoUCSqUSdF1HsVhEs9kceh+OF+9pMpng8XjgcrkQDAYRj8fRarXk\nOQqFAorFIqrVKtLpNFqtFtrtNhqNxljjZrPZxDIzGo0wGo0wm80wmUxwOBwAgGaz2XPdVqv1lAIa\n1zUcNK4AZG4CgQAcDge63S4KhQIqlQparZbMEcfopHfrt3zU9+M7RiIRLC0todVqIZPJ4PDwEIVC\nQQ6ncZ/d4/HAbDbDZrPB7/cjEonA4/HIOvf5fMhms6hWq8jn88hkMvK13W7LGue/PvlI1/U3T3qW\nXxvQOEjUiep0OgAgL8aNaTab4XK5ZKBsNpsoAV3XUa/XoWkaWq0WHA4HWq0W7HY7ms2mXLNfVMuD\n33PzW61WmM1mBINBsUbMZjPMZjN0XUetVkMqlUK1WkWhUBhLIfTfFwDMZjOcTie8Xi/m5uYQCoWw\nsrKCTqfT807lchlWqxX5fB7A8QYY9l60rgDAZDLBZrMhEAggHo9jYWEBc3NzaDQaqFaraDQaCAaD\nKJVKKBQKoiRqtRrq9fqJc8fNYbfb4Xa74fV64Xa7YTab4fF44Ha74Xa7USwWUSqVkM1mcXR0hGQy\niXq9Lkr1NIpAPTDoSjqdTnz+85/H3NwcyuUytra28NlnnyGbzfZYTMD4ioGHgc1mk4PIbDYjEAjg\nlVdewZUrV9But5FKpfD+++/jwYMHI5V2v3DTOxwOXLhwAdFoFAsLC4jFYgiFQvB4PLBYLEilUqjV\nakin00gkEvj444+xubkpv6/X6z1u86TyQikFitFohK7r8mLcoPxnMplgtVoRi8XQbDZht9vlJLBY\nLOh2u3A4HOh0OjCbzajX6zCbzWIWj7ovJ54T5Pf7sbq6is997nNoNpuwWCxoNpuYmpqCxWJBPp/H\nvXv3cPPmTdy6dQvtdhu6rg9daINAz263i3q9DqPRiGKxKIql0+mg0+kgn8+j2WzKqVMul9Fut080\n8bkouGFcLhempqZw9epVLC0twev1YmdnB9VqVT5jsVgQj8fhcDiQTCaxt7eHYrF44nyZTCZRBNFo\nFPF4HH6/Hx6PBzabDVarFSaTCdVqFa1WC5ubm2g2m6hWqzJmnO/+5z9JVGvIYDDAYrHA6XTi6tWr\niMViSKVSSKVSsFgsMJlMPetAdW9Ouod6SPh8PlG0drsdmqah0WggFovBaDQiEolgd3cXlUplItfV\nbDYjGo0iFAphbW1NFLjJZEKtVkOtVoPD4YDT6YTD4RAcrdFoyBo5Ccc5SV4opcCB52JXX4omGydh\nenoa0WgU1WoVnU4HJpMJRqMRtVoNZrMZBoMB7XYbrVZLAMlB91OtA+D4RKWZPT09jYWFBSwvL2Nl\nZQXlchm6rsNsNmNhYQFWqxUGgwEzMzMwm8148OCBLPBxJkI9sbrdLhqNBorFIrLZLIxGI3K5nFgF\n29vb2N/fRy6XQ61WQ6fT6TGDR10fOD6FpqenceXKFbzyyiuIxWIolUrY3d1FOp1Gp9NBsVhEPB6H\nwWDAhQsXMDU1hU6ng8PDw5FWFl0Ebv5oNCqnG5+Bi9ZiscBisSAWiyGdTiOTycBkMqHdbp8KEOZY\nU6nxn9PpxPT0NOx2O8xmM1qt1lOuw6BxGjWOVCZ0G+v1OsrlMiwWi7y3y+VCt9uF3W7vcd/GfY9W\nq4VKpSIWqcvlQiqVQqVSQTKZRKvVgsViEdfSZDL1WM6q1TzOuw2SF0opABi6obj4PB4PVldXcfny\nZXg8Huzv76NcLot1QbCsXC6Lr14ul2E2m1GtVp+6l/oVgEy61WrtGfStrS1ks1nY7XYsLS3BYrHA\n7XbDbrejXq9jaWlJFNMQf27k+3IiLRYL2u02XC6XWAPVahV7e3vI5/NyshJnOWkDUZn6/X588Ytf\nxNe//nVEIhG0221sbGzgo48+Eren3W6jXC4jFoshEolgfn4epVIJd+7ckWjOoGtzs3Q6HbEITCYT\nDAYD0uk0KpWKuCJzc3NYXFyExWLBxsaGXEfdPMSWJsF/1ENEjVjRQszn8yiVSjJ2/RjGOIqBz1Sv\n12WOW62WPDPXgNPpRKfTESxm3I3Z7XZRqVRQr9ext7cHm82GWq2GZDKJUqmE/f191Ot1+P1+LC0t\nCfZkNpsF36CF+ixg5QulFPoXuar9eXpfvnwZX/nKVzA7O4udnR2ZJE3TBEMgeNbpdNBqtWAwGGTy\nRkm/ye5yuZBIJFCpVNDpdJDL5bC8vIxQKIR2uw2HwyGLsFKpyALgop7ktAOe+OVut1s2WDqdxs7O\nDjKZDCqVilgi6t+dNKZOpxOXL1/G7/zO72B+fl425HvvvYeHDx8KWErT2mq1YmVlBXa7Ha+//jr+\n/u//fqBS6Ld0CHQlk0lYLBZsbW2hWq0ilUqhVCqh1WrB7/fLmHGu1Xca92Ttfw51vPksPNEPDg5w\neHgouNJpNwuftdvtiitHxVWtVuFyueB2u8XMr9VqEys2Hmjb29s9bhVB4Ha7LZufrgyfh1E3Xuu0\n8kIpBaAXOOJCNZvNCIVCuHbtGt555x28+uqrsFgs+Oijj1Aul3sGgidVrVYTbKDRaKBerw8dqH6z\ntdlswmAwIJFIIJvNwuFwiJ/ocrng8/lgtVpFAe3s7OCTTz5BrVY7deiTodVQKISpqSkEAgGUy2U8\nfPgQDx8+7DnlBj37sPeyWCxYWVnBV7/6VayursLtduPw8BDXr1/H+++/L5EMKlF1QcdiMbRaLSwv\nL+PmzZtD78371+t1AfK46UulEnK5nACmLpcLLpdL/qZcLosr1L8GRuE//aLOHzeX1+vF5uYmNjY2\nkMvlepTPaYXPqSoiXddht9sRi8VgsViQSCTw6NEjNJvNE++nzh/XXqVSgdlsRiqV6rEIiSN87nOf\nwyuvvAK/3w9d18UK4lieFkugvHBKAUAPkmyz2eB2u/Hqq6/ia1/7Gq5cuQKz2Yz9/X1sbGwIUt5u\nt+F0OsUqMBqNcnLRnBw2SOqkqL5dtVqV0//ChQuYnp7G5cuXEQwGYTAYkM1msb+/jx/84Ae4ffu2\nWCOTKgaenE6nE/Pz81hYWBB0eXNzE9lsduCCPmniDQYDHA4H3njjDVy7dg0+nw/NZhMfffQR/vZv\n/xZHR0dPbXQqBvqn09PTcLlcsNlsT7lf6tjxhFMTybxeL6xWK5xOJxqNBgwGAwKBAOx2O7a3t8VH\nHhSSnPSEVUFVk8mEaDQqh8P6+vrIsOqkFh03qnrvixcvYnl5GXt7e/j444+xt7c3llLrB555IFUq\nFQBAJBIRZRCNRjE7O4vPf/7zcDqdqFar2NzcxN7eHnK5XA9oC5w+3+GFUgrcTAz3aZoGu92O2dlZ\nvPXWW1hZWYHFYkGhUMD6+jpyuZyAV3a7XdDuSqWCcrmMbreLXC7XE9Ycdl+KOtl8Bq/XizfeeAMr\nKyuIRCIS4tza2sIPf/hDvP/++8hmsz2I9iTChezz+XDhwgU4nU6Uy2UcHByg0WgMBS9Puo/VakU8\nHsfrr7+OSCQCTdPw4MEDfO9730MikRBwj8+gntDValUsn/n5eXz88ccjxw0A2u22uFFOpxOBQEDC\nd7TUHA6HLOaDg4OBp+kkmAxFjVJ5PB7Mzs6iVqvh4cOHYqkMkknnimuCwmjV5z73ObTbbdy5cwc/\n/elPR1qmo66tumIM8S4uLmJ1dRXxeBzT09MIBoNoNpsoFotIp9MAIFGdZ3k3ygunFPjVbDZjamoK\nr732Gq5evYrLly+j2+3io48+woMHD5BKpRCJROB2uxEMBuH1etFoNOD1epFOp1EqlVCv13Hjxg0B\nhIYttP4wmMFggN1uF1BzeXkZb731loBn6+vr+Pjjj/HjH/9Y/ObTug0MoTGUBwAbGxsol8vwer2Y\nn59HuVyWZKJJ7uH3+/GNb3wDb7zxBux2O9bX1/GXf/mXWF9fFwvK5XIJWEiz3+v1ol6vI5fLwefz\n4fDwcOg9VAyFyqvb7eLo6Ejeye12w2q1wuv1IhQK4fDwELdu3UKxWBQcheFIbt5JsAX1sx6PB1ev\nXsWXv/xl3L59G7du3ZID4ixEzVdgbsni4iLm5+dx48YNfPe73x1ogU0iPCCmp6exvLyMtbU1LCws\nYHp6GlarFZVKRRT23NwczGazYAqMJP3GYApcFAaDAU6nE5FIRMxXhn+Iztrtdtm4Pp9P3AxGCxwO\nB3Z3d9Fut3vSeQfds18pmEwmuN1uzM/P4+LFi5iZmYHJZEIymUQ+n0cikcCNGzeQSCROdSL0399o\nNApoubOzI5vT7XZjeXlZ7jsOWKoKE2vsdjtarRZ2d3dRKBREIRiNRng8HhgMBgECGftmiKtWq6HV\nao2VhKOecrVaDQcHB6jVaggEAvB6vZidne1xQ6xWqyiSfnxiElH/jiCc3W7H0dGRWC5nKVQKDocD\n8/Pz+OM//mMAwC9/+Uvk8/lTvYMKqNP1pcWWSqVgs9mQyWSgaRpSqZSMqcfjAQBEo1F4vV7J2mw0\nGqfODH2hlIL68PRJCezVajUUi0UcHByI4ohEIhKOYXJOvV5HKBQSt4GLmX/Tv0CoMHjicUEx7EPQ\nr1AoIJPJIJvNYnt7G6lU6imFMKkP15+J1+12kclkkEqlsLy8jFgshkqlAq/X22OCT3J9Anz1el1O\nGOBJBqXVakWj0UCn05H3XlxcxPLyMpxOp8THR923fzPruo5Go4FcLod6vY5arQaXy4VCoSB+r8/n\nQy6XE0WiuhEnJZmNEoJ+TIw6SdGcds7sdjtmZmbwzW9+E1/60pfEamRm5qT34tpjGJyJbIlEAs1m\nE4eHh8jlcjg8PITdbsf8/DxeeeUViRLNzc1hb28PpVKpp/bnNPJCKQWgtxiKZn+5XEapVEIymUSl\nUpGIRKlUgs/nk79jCKhcLmN3dxfr6+tiTo0yR00mk2hpq9UKv9+PWCyGqakpGAwG5HI5qa1gEg6R\nXt6bEz4qLq0uCtUHZt0D89mLxSLC4bCg0Hy+/pDtSQu61WpJXrzX65XsT4/HI1gMLSlaZl/4whdw\n6dIlzM/PI5/PI5vNolgsjmWlqCdTt9tFrVbr+V273Ua9XhfzmEqcY6+6MLzGuMJxsNlscDgcAmyO\no1wmyZykleB2u/HFL34Rv/u7vwuTyYSbN2+iUCgMvKaacTnoPurhYLVaJX2/0+mIG9xoNLC7u4tS\nqQS/349GowGHwwGfzyfp5KFQCH6/H7lc7lShXcoLpRT4Ikzi4MnCSsdms4lGoyELiJmLXAjM/Ds6\nOpKwEDMeh/lZdBUMBgNcLhecTid8Pp9sSqfTiVwuh3g8Dl0/rq04ODiQTaImTY06JdR35CYgQBoK\nhWC321EsFmVCafFww1oslp6CMRUIHbagK5UKNjY2sLq6ik6nI0AmMz81TZOIQTgcxle+8hWJ7nCM\n19fXUSqVRm5QdfGr4WT1nY1GI8rlsuQLMB8jn88LpsG/J3YyySnOU9br9ULTNCQSCYk4jNog/cDh\nKOHnLBYLFhYWcPXqVQDAL37xC9y5cweNRkM+x+v2X3uUYnA6nYjFYvB6vfD5fDIWuVwO6XRaXDnW\nNjDkznR+ppSbzeae532p3QfgyaDRbP30009Rq9UkbZmKQdd1BAIBiTiUSiUkEgmsr69jd3dXTtyT\nYsVGoxFLS0vw+/0AAK/XK+mlAMQ/YwoyJ0dVAPQBxzFVgSfFScFgEG63G1NTU6jX66hWqwI6Li4u\nIhaLiZXDzTYJiFSr1bC7u4sHDx6Im8VM0Hw+j4cPH2JqagqRSASXLl3CtWvX4Pf7Ua/XcXh4iK2t\nLdy9e1dArZOEG0GtWeGYNBoNGI1GZLNZAMfuHJOJWNlKV29SfIHjwxRqq9UKh8OBSqUiZvSz4D68\nBwCxEgKBABqNBj755BN8/PHHyGQyPVGuQdbBqJCoruuSis6iOCbmsd6G6dPBYBBra2vyGVq4rVYL\npVKpRymdxoV4oZSCOnHNZlOSN6rVqmhBxt51XUckEoHNZkOj0cDR0RHu3buHg4MDyf7iiTPq1DEY\nDHjllVewtraGVqsFn88noFu73UYmk4HZbMbW1hZKpRLu378v8XV1EwBPZ2QOej/VJ43FYojH43C7\n3ZJ56fV6sbi4iDfffBPhcBgbGxti7UwKxDWbTWxsbMBgMKDZbGJ5eRlerxerq6uoVqvwer0IBoNY\nWlqCz+eTTM1SqYSNjQ1cv34d+/v7Ey0stTKTY8LaAyL21WpV4vFMCW42mz2FcOMKrRACzMSXaG3x\nADlpXsYRRmsikQhWV1dRLpeRz+cFS+B9CHZyPOgKjbIS+NwsxJuZmRFlEAwGEY1GkclkAECwBK/X\nCwCiDBi1UkHG08gLpRRUYRJNJpNBo9EQsKrb7cLv98Pr9Qr4mE6nsb6+LvUB9PfVjcTTvF+Yp7+0\ntIRIJAJd11EoFLC7u4tsNguDwYBMJoNPPvkEiUQC5XJZXAd1szC2PmqBcaFwc1gsFoTDYUxPT6PR\naEjl5fz8PJxOJ7a2tvDee+/h7t27KJVKE4NvxFfW19flvd566y3k83mEw2FEo1EEg0F4PB60220c\nHh5KduaNGzck6jFJHYdq1ajmLd0lpuVyA9CCsVqtMnZMOhtHVCXLEzwQCMBkMiGbzT4T4NZ/H4vF\ngmAwiJmZGTgcDhgMBuTzeYno8Pn57uppfZK1YDKZxKKy2+3odDrweDwwGo2YnZ2VjW4ymaRQrdPp\nIJ1OY2NjAz/96U8Fc1CzLk8jL6xSAJ4oBp4kDocDZrNZzPn9/X20220UCgU8ePBAsAe1Gq7/NO+X\nZrMpSTeBQEDi9FarFXfu3EE2m8XOzk5PVpxqnvEe3PAn+cG6rotSYepytVpFIBBAKBSC1WpFt9uV\nJJj79++L1XOaCj+CVffv30e5XMbm5iZ8Pp/803Ud+/v7KBaLyGQy2N7eRj6fx+HhoZw6J8kw8JPj\nzlJmr9eLcDiMWq0m7kT/eHI+JlWAjKZcvHgR09PTyOVyPQDps7oPBITdbjemp6cF4yHmxVRtFRfr\n/zrKUiGofnBwAKfTiVAohGazKdE3WsomkwmNRkNqYu7evYtbt25ha2tLUrkJ3v7GRB+AXp+SC4Q+\nPf3xRCKBg4MDAfgqlUpP7Tr905Mq7ur1OtLpND799FNYLBZBxNfX1/GjH/0In3zyCbLZ7Ino+zgT\nwLAoT+VUKoX79+/3VGQylDdOafQ4wjEslUq4d+9ej28MPDnV+iMo3KDjPoMKavHzdBGYl09Skna7\nLSQr+XxeQqbELiZVCFTITqcThUIBt2/fRjqdxtHR0anZtvqFB9T+/j6uX78u0RNyJqj36bdyxhk/\nHjjr6+t49OgRfvSjH0kpusvlklwTHiKFQkFCybSI+/Gm066dF4qOTQVngKfTj1VAyWq1wmq1SiUk\nB0wdGF5HZaEZ9L7hcBgXL14UtP/hw4dIJpOiDF6EMXqeMmzcJ43fq0g+/WSLxQKHw4F4PI75+XnB\nig4PDyXRRlWA/cVR4wgrBpnQxjyHVCp15nNHvIAhcyrRs3JR+PUka/OUMhYd2wulFAZlHaommaoY\nGIqkEuDmJdClKgRVSQyaPJK3cKI7nc5YzEbnMlo4VwQCGS5TowLA0xWOpxlz3gd4EiaehArtt0Re\nPqXQf2L1f1WFIZx+M1s1g1Us4aTTrz8H4FyeTYah3+rvVcviLMZ+kryG31J5eYlbJ4nDn5WcdX78\nb7uMG/47y018rhDORp5bK/pzOZdzeTnlXCmcyzPLIDdv1O8muea5/OrlhXIfThIVZFS/OhwO6R1A\nJPi07sBp8sVfdF9WbWTDRC42HFHBPjWkRiZs/t9JMk4EQ01u4s+DsJyTslBfRBmUzfo8n11NIT/r\ncXrhlYI62OQAIHcCGY+Z6cVOUCwYGRS7HSXcPCoAxp8HfUb9/2GffxGEhWPMk9C042o81uSrtQfV\nalUSfzjuo3Im+hfkqBN+kMIdxc34oo3jIFEjYur7PQ+MalAU7nnc54VVCrQEBhWZqMVH5A9k7Lha\nrUpNObPmTlIMzHtglhp7BfA0bbfbkkjCUBpPU6aVlstlSa9+Fs2t1tSzZJrXZKMP5mqwhmDYvSwW\nizx/t9uVYis2hVlcXMQ777wDi8WCXC6Hhw8f4tatW7KomVTEEB8weKOqi3UQuSu/8t1sNpsod6b3\n0jKhcuK9n1X68ybU741G46lYs/gupLsLh8OYmZmRMn9mF/aHXoGTFd2gtcP7kTJgZmYGq6urCIfD\nAI7Jb1OpFDY2NpDJZJ45pP7CKgXg6VOE5qbNZpMWaCyXLZfLqNfrktrKzTLOoHADdrtdBAIBoerm\nCcp7sbjGarXCZrMhn88LXwH5HYDTnXAs9AoGg7h48aKk1ZZKJWH4Zdms1WpFsViE1WpFJpMZmG3J\n8WLWG6nkSB0fjUaxsrIiGyOVSgk9GlOqOYajTm5aSf3lzwBk47HugYlMbI3GLL1msyljRzIYZkOO\notDjvclHQSuISlQ9ULihaOn5fD60223ppTDJPLFWIxwOY3l5GbOzswCe1L+QUEblvRzXzO9PvFNz\nPJxOJzweD2ZmZrC4uCi9MovFIjqdDnZ2dmCxWHp4LE4jL6xSUAeHA0pt6XA45GRnByOWODOHnNcY\nRzNzobBXH31tNXuNdNoul0vuRR4HfmZ3d3eiBaA+g9lsht/vx+XLl/Gnf/qnks6ay+Wwvb2NcrmM\narUqBWAGg+Gp+v1+UfPx+ZXZhfF4HHa7HQcHB3j48KGkVzebTVit1p7F3O8eDDrJ1HJpdROyUMlu\nt0tX8KmpKXi9Xuj6cS/OcrmMbDaLTCYjrc+oUEaZx7TmgsEgfD6fMEmxKS97c3AeWYfBpjfpdFoO\nmklSyul++f1+WTscO7XLuVp/07+exxEqBLfbDb/fL7UXlUoFBwcHQjvIblRU6Ex9Pq28sEqBovrr\nTJvlSc2TkyYazbdBtOGjrk/CCp5OXNRs7OH1euH3++H3+4V9KZlMSmn39PS0nNzkH5zEWmAJ8ZUr\nV/D7v//7CAaDePToEY6OjnB0dIR6vQ6fzwev1yvU3kdHRyMzADluaoYn2XnYcs9sNuPu3bvY2dkR\nF4NmMSnBTkrzVjcuP9fPIsSqVt6Tbc7YLi6bzaLRaEg+v81mE7dlWM0JFRAtj9nZWSEooQJKpVJC\nIuNwOODxeOD1emE0GnHz5k3k8/mh3J2jRLVMyPJ09+5dAJBx7C/KU8dnEmE6P11alvO3222EQiEE\ng0HpfVKv12Xtq+M06X1feKVA4clFM0rTNFSrVWkZxy5NKodCPwA4TKjVeeLR3221WvB4PLBarcKx\nQHq2XC6HZDKJRqMBn88nrcLHJSRR38tkMmF+fh7vvvsuLl26hJs3b+JHP/qRMDiTAyEajQrjFCtH\nR92rHyAlt9/q6ioWFxeFqerw8FD6M7BVGQlWucGHYQlc+P3jzFPO4/EgEAggGo3CZrOhVCoJYStP\ncJvNhkqlIs11aZ6PqtCkdUa2orW1NenpqWma9HuoVqtCgBsKhTAzM4NEIiHWhNpqbdz5omKLx+PS\nbSuZTAoBi4p5DbKqJgG+2Q/E7XYLXsYDSMVLSqWSVN2e5l6qvDRKgcKJNJvNQs5KJTHIVBs3KsBF\nTGGpLxmNU6mUuA65XA77+/vSDp6nokqDNYkp6nQ68frrr2N5eRmNRgN/9Vd/hd3dXQEHdV2XOnqz\n2YxHjx4JmHSS0lPDuDwpZ2Zm4Ha7kclkkEgkBHOgW+b1elGtVuF0OqXQjNfqB80G3V99d7vdLr4v\ny3rD4bAoqWq1imw2KyFlgsWqWzfonXha22w2RCIRBINBaJom/JyPHj3CnTt3RMF7vV5cu3YNbrcb\nhUJB6iJOomsbdG9d12XN5fP5nsavJJQ5qyIpAOIqkiUbOMZE5ubmpLXh4eHhQGzkN14p8NRqtVqC\nWpOohCd4P1Cjfj9Ka3NzejweRKNRrK6uCghGjgNaJmz4yQlqtVpC8KE2hTlJuLgXFxfxpS99Cbqu\n47PPPsOjR49Qr9dlU/AUD4XIOUsIAAAgAElEQVRCPd2vxlU+dLvC4TCWlpYQDofFbCebELsPkbiD\nCoDKZ5DP3b+ZVAXEUzMYDIrPq/Jr0h8ndT8VAynaGOEZJtzoFy9exMrKSk8/iY2NDRwcHKBUKsFk\nMiEWi8Hv9wswXavVUCgUpMXdpMLojc/nE3o+k8kEr9crTGCD3NfTgH9UfipDtcPhwJtvvolLly6h\n1WohkUgIp4N6r9OGLF8apUDXQWXwAY4nyO/3CxkoP6smyphMpqEVc5wociksLi5icXFRiFo3Nzdh\nNBqFuIInGkM+NOMY7+eiG0cIYH7961+H3+9HMpnEz372MzGbGcJbXl4WwtW9vT3pEj2MTapfWdD3\njUQiuHLlCkKhEHZ2dlCpVDA7O4uZmRkx70lrls/nxQwul8sAIKj2sAQd1XIgkajL5ZIxIlFtLBaT\nhLO9vT3s7e2JUqDVQuUwas5mZmYwNzcn3a/29vbw6NEj7OzsCLO32WzG8vIyXn31VXg8HmSzWWxs\nbAhYOw5uogqVnd/vl43KeQ+Hw091mu4HaSfdpLSKTSaTuLYrKyv4whe+gGAwiFu3bkljHVURsbnu\naeSlSXOm7xkMBqVzMdHkcDgsCoHWBIlDgJPNXKvVCp/Ph7W1NSwuLiIajcopFgqFEAqFpFGtGuO2\nWq3SIToej0tjjnEWGEOOc3NziEajKJfLuHfvHnZ3dwVVt1qtiMViuHTpEtxuN0qlEg4PD8X8HdYf\nsX8hms1mOBwOzM3NIRAISGSjWq1icXERKysrmJubk1M9EAggHo8jEonA7/fLwuw354e9JxUAIzO0\n7oDjpiWxWAx2u11Q9P39fWl7RhOZncOHidPpRDweFzq5TqeDZDIpwCJ98cXFRfzRH/0Rrl27Bl3X\nhcSE+Qk81ccRWkFUdLRW1XAh8CTq86xJbTwISSLMcb1y5Qrm5uZQrVbx4YcfYnt7WyIelGdppvtC\nWwrcgBaLBZFIBCsrK1hbW4PFYsH29jZCoRAuXLiAeDyOarWKUCgEp9OJZrMpSDaByEENRjhhTqcT\n7777LhYWFqDreo/5yQgHOzepKcMzMzMIhUJYWFjA4uIibt++3ROBGCb0p6PRKN588024XC48evQI\nBwcHmJqaQiwWg6ZpCIVCWFtbQyAQwN7eHt5//338/Oc/f4oTcND1KSQCvXDhAmZnZ1Eul1EsFrG9\nvQ2/34+VlRVxiyqVCqrVqgB2ZPzZ2NgQYHAQkNWfIESLgBgNIwQmkwmrq6vQdR03btzA9evXhVdT\n9fENBsPIU07XdYTDYYTDYei6ju3tbVQqFczNzWFlZUWo8t9++21885vfhMPhQDqdxoMHD3D//n2Z\n20KhMLHvr+vHTONsBsTuZIFAQA4mtiYol8syXqdRCAyPVyoVcZfm5ubwzjvvIJVK4bvf/S6uX78+\n0DKdNCFLlWdSCpqmbQEoAegAaOu6/qamaQEA/xnAAoAtAH+i63ruNNdX8xLY13FxcRGtVguVSkV6\n+LErM0/rZDKJo6MjiXsTre8XmuBTU1NwOBxwu924d+8ebt26Jam+9Xpd+lCoQKbL5UK1WpVYMcNu\ndDN4/SHjJmY6T1GLxYLFxUXU63U4HA7UajVZ+I1GA/fv38edO3d62o0PE24suh98PvYhJBBmsVhw\ncHCAg4MDFItFIXT1+/1yAhMPGIRfqC4a34uKgc9gs9kAHOMugUBA+mbcuXNHTnaV2n2cECHRduZv\nMF2b85/P57G6uopr167JptrY2MC//Mu/iAI5Ld2druvCy8ioFUOi5AtVcyVOEwFQx4FWmtvthsfj\nwZUrV+B2u/Hhhx/i008/7XF9VAbp094bOBtL4au6rqeVn/8cwA91Xf8LTdP+/PHP/27Si3JxUSGw\n27PX60Wr1ZLGmzSpNU2TxcwUXQBy4pDnsV+MRiMCgYB0KV5fX8fR0VFPfwdd13uAPYawiCtEo1E4\nHA4BQIHRCsFoNEpSj8lkQqFQEIDK7/cLUj81NQWn04k7d+5IS/p+M3GUqHRoXq9X+kSq8fkHDx5g\nd3dXCFMZ2o3FYmi1WmItqCHe/vtzPBjBYXo4lTexilqtBovFgq2tLRwcHIiCAiD9C8YNIVcqFezv\n78up3Gg04HQ6ZZ4InpZKJdy+fRv/+I//iPX1dSSTSeFbPK2JTStD0zSJTgUCAbRaLQGlh7mu42xU\nKgW73Q6j0Sj9QS5evChr/uc//7koJpWHlIfBs8jzcB++BeD3Hn//HwD8M06pFMjQy+7S3W5XYugs\nhmITGG4uotlcKAT+hvmNBoMBCwsLiEQi0nSmVCr1tIDv7+ugFmb5fD4B1WixnDTprCWgmZxOp2Xj\nEURcW1tDOBxGOp3Gw4cP8dlnn/W0qhtn/IAndHRqAhizCff397G3tycukgpSEfQDMDa7shou5rix\nCIvdt3K5HB48eIB0Oi04grqJmHl40uapVCrY29uTzlqbm5sIBoOIRCIIh8OIRCLodru4e/cuvv/9\n7+OXv/ylsB1TwU2iFFQ0v16vI5/PS/4A+3AyWlUsFnvmapKcGXWNESzUNA0LCwuYnZ2FxWLB7du3\nsbm52ROpOa2rMEieVSnoAP5BO6ZT+z91Xf8OgKiu6+xdngAQPfXFH5v3jD9TAfj9fjidTqyvr+P+\n/fvY398X/42Twf4C7A0xzEfVdR0zMzNiXk9NTcHj8UgvQloEzBXg6RCPxwWci0ajEqYcB/Gln8nG\nocFgEOl0WjCQr3zlKwiFQjCZTDg8PMRHH30khS7jTr6aTcfFSTSejWPb7bZ0FrLZbPB4PAiHw9A0\nTXptMNQ1KHqjLnImAakFTxaLRe5pMplQrVbx6aefSgSFkRz+PZ9RzYsY9r60bBimczqdUpzGnhb3\n7t3D3/3d3+H69evSA0J99kn9bvVveH9muO7t7cFkMomFyejHsEjNKOFpz76bDJebTCbs7Ozg+vXr\nyOVyApKqNR78+utMc/6Kruv7mqZFAPyjpmn31P/UdV1/rDCeEk3Tvg3g28MuTE3O7K1ut4vt7W2p\nfnS73fj444+lG2+n05E29VarFQCk4/KoBrPEB9iSfWZmBvF4XJQKTU0yBTNG7fV6pQltp9PBgwcP\nkEqlTjzl1EVVqVTQaDSQzWYlU41NbwAgkUjgn//5n7GzszORQuC7ctNks1ns7u4iGo3C7/fL+zJv\ngai/w+GAzWaDrutS7EXW5UFFUao7wWgKATGmhpMKnSfsgwcPcHR0JNabeg21kGlU+I6mssoATbeB\nGY5msxk/+clPcP36daTT6aesgtOcrPwbpjGzATBdrkKhgMPDQ1Sr1ZFhyZPuzffjHGracYXs7u4u\ncrkcHj169BQuwjkfVEQ4qTyTUtB1ff/x16Smaf8VwBcAHGmaNq3r+qGmadMAkkP+9jsAvgMAgxSH\nrutSy9DpdHo6J2ezWcRiMWxsbMhkMMGGpxyz40Z1COKgbW9vY21tDS6XCxcvXoSmachms9A0TaIJ\n4XBYqtUYm2a+/meffYbt7W3pOnzSRPA0ZFdogo2lUgl2ux0OhwPlchnvvfcebt++fSouSj4Dn/He\nvXuSBDU7OyuNb3w+n/R4ZDiQCUzr6+vSNm7UyaOeUCzsYmOb6elp2cB7e3ui2MdZzKPGsT+b02Qy\nYXp6WiJC9XodP/zhD5HNZp+qQThNEpH6LHzWWq0Gs9ks7dto/YxqKTCOQuhXtuzv2Wq1cHh42JPO\nTHdDjQT116JMKqdWCpqmOQEYdF0vPf7+vwPwvwL4bwD+NYC/ePz1b097DyoGXdd7EpPYbjuTyUjd\nvYrAclDUzLJRA/Tpp58iFAphZWUFFosFs7OzkhDl9XrlFASOq+FMJhN2d3eRTqelXXsymZQIxbhg\nEnsdMvGJFYztdhuffvopPvjgAxwdHU2c8KKeULSWjo6OcOvWLTQaDVy6dAkXLlyAx+ORGD8VAxvz\nplIpHBwcSPGNet1h9wIg4+TxeBAMBuFwOKBpmlgdxWKxx69XsQReZ5zFzA3D0F0wGMTq6iouX74M\nh8Mh+Q/ELDjm6vgPe6dRomJK7HwViUQk4YoKXFWUp7VKCBATJCZvgnrQqe0MVCvrWTCGZ7EUogD+\n6+MHMgH4v3Vd/4Gmab8E8F80Tfs3ALYB/Mkz3KPHrGw0GpJezEal3PhEbDkYauccXmeQdLtdPHz4\nEK1WC5ubm5II1e120Wg0kEgkRDFkMhmk02lpYksrplKpPAUsnSS0FgwGA9xuN6LRKFwuF6anp1Gr\n1XD//v2h+eyTjh87aO3s7Ei0Zm9vD9PT0wiHw6IEmC7b7XaRzWYFsOUCHGUt9J9wjLDY7XaUSiVU\nq1Xs7e0NTbhSr6N+PUk0TYPb7cbS0hJee+01TE9PQ9M07OzsSILSqPtMsoFo1vOwYtUpQe9kMjkQ\nSzhtWNJkMkmNBTMv1V6m/JxqKahK9bSK4YXq+zDmZ0/s0TAJiMRcCDU2rJq26kDz5/4iGtUHHFcY\nw5+amsLs7CwWFhYQj8dRq9Xw3nvv4eDgoAdMmlRGLUS+q4pyq+PKTU03rN/87r8HT06fz4dgMIjp\n6WnMz89jampKUpmZl8D6FHVT9pvz48wdgU2v14s33ngDb775JmZmZmAymfDJJ5/gJz/5Ce7duzdw\n7AaZ2pMIn5numNfrhaZpyGQyqNVqPdWrp9lfBBrtdruUzAeDQaRSKeTzeaTT6acs4P75HnLfl68Z\nzK9L1OSccZXJswoXFlOQSSlnNpuRz+dRrVbPrA/iSc+hfqVi5IZRwbVRf0/+CafTiUAgAKfTCafT\nKeQpuVxOCp5GKSvg5FNcNeF9Ph8WFhZw6dIlmM1mFItFPHr0SPI6hs3nad0HVbh5mZPRb52eVtS5\nUN1mYjPPkMJ8rhR+VfKsPtyg0/J5K4NRz8KvqmU07LPqBiaXAIlwAAhuQqT8JKtn3LFk3QHZnQKB\nAHRdR7FYlPyH0xYETSpnoWBOurYqz3Cfc6Xwq5LnuSh+HaK+z0luiPp/dENUq4vA77h4i2raj/p8\nf9ae+vlfl0J9CeTlaxv3sspvijKgjOGbDvy/UfwHk977pDE93/jPT16a0ulzOZdz+dXIuVJ4QaTf\nlx/2/8N+/m0RNQTXP2bDxo6fOema53Is5+7DhNIPrp3WdVCTTuhDq8knlP57PWsM+mWX/vi/GkYd\npjjVxLZ+1+hlw4P6o0WUs3SnzpXCGMINy0WlpuZOkmSj/q3arUg9qVg8xOur1G/qxKub4bdB1PFT\nlSilf8MDT2/6QXkWp81V4N8Put/zmhOGQNWwMYAzj7K8tEqBySMulwvhcBhGoxGlUgn5fF7yxFlf\nftLmURFzNX+AFX/T09NYXFyE2WwWhqLt7W1Js2Zs+qR7aZomTEjkhiA9+fT0NFwuF7xer/RDKBQK\n2NrawsOHD7G7u4u9vT2pbqSSOIuyWVUxMf6v5myYTKaeBidnKarCJY2aylVBUTc4OSeZeMZcD3Jm\nMPGKeQMqu7I6xyzT5vWHjSPDn8wb4P11XReGKXYUYwMfNoVR5+e0mY3sxTE1NYXLly/jnXfeQaFQ\nkNT1zc1NFAqFnuY/fKfTyEulFFQ2GqPRiEgkgunpaaytrQk78b1795BKpaRgZlwKb3Xi1M5QJBlZ\nWlqSYqiHDx8ikUg8ZcoOY7xRFQ7bt7Gz0cLCAoLBoLAHBYNBGAwGtNttoVjXNE16Vaot3dTnHlf6\n/W+Vb5KbjNclczSb5FQqlZHXHXYSA71zx+vzfnwGdnPqdDrI5/NCGMtrUchfaTKZpOqTJC/q5mYn\nL6Y7q6xT/TKKb4Pl+ySLcTqd8jsqpMXFRYRCIeRyOezs7PRkg/a7fpMI10w4HMaXvvQlvPXWW5if\nn8fBwYGQ1pCzQi3EehaM5KVRCqp25wn++uuvw+12IxwOS+GPzWabGDhSFYJaYabrx0zGrIVgJSNp\nxFSTfpzQHZ+JDEecPG7Ier2O3d1dSZVlkY3ZbMbKygoajYYstv7rjhP/5+bjpnK73Zibm4Ou6/B4\nPJI9x8rKUqkk9OtqVeKgew3y9VXFYzKZhCDX5/NJ4hHJcEn7xo1sNpt7+Bb6larFYkEgEJBNqp7I\namNek8mEYrEoDFCqpaX2tFCthv73YsEYa1XYvarb7QqbVSwWQzgcFoo7NXX8Wa0ri8WC+fl5vPHG\nG3jttddQKpWkpUGxWBw4D89iPb40SgF44lORVJSDzgw2Vqn154WPO0D9PqGu66KNWYJbKBRkkanV\nfuo1BgkVjq7r0kSVzFGlUgmadlzwlUqlkE6ne5rRuN1u1Ot1TE1NSc+CSU4e1TIg3x/LjC9fvgyL\nxSJWAYvOqtUqMpmM0KZxE42jfHi6Eh8hQ9XCwgJWVlaErYhsWRxzg8GARCKBbreLmzdvDryu6mo0\nGg0EAgExr1k0xB4MJF2ZmpqS99E0TUrE+f1Jqcm6rj/V+4IkPFQYLBcnz+dZMCJRoXq9XiwvL0vb\nvZ2dHayvr0vz4bNyIykvlVKgf+t0OuFyuYRchYtErTXv187j+nP8DP+eJwRPbnZE5mQMuuage/Fn\nnvxsRlqr1ZDJZLC/v49isSiViuwMHYvFsLq6CpfLhVAohGQy2dMybBLlQBN9enoaFy9exOLiIrxe\nr/TEJAsTW9YTL1E347i8CvT1PR4P4vE4Ll26JCQvVAj0+1U+B7oZPp8P29vbQ+eI1aOZTAZ+v1/I\nYXjfZDIJTTtOvQaOGbvz+bwoQLaXo6VyEqELP0MKNNUdqlQqCIVCiMViyGQywlrVDw6fxtdnd+vL\nly9jZmYGlUoFH3/8sdxn0uuNIy+VUuBiI1tuJpOBwWBAIBCQkuph3XkmFRVo40nh8XigaVoPt+Cw\nvx3n2pqmCRV9pVIRLoNisQiLxYJmswmbzYZyuYxgMIhcLgebzSYLetKQGnklg8GgKIStrS1kMhnp\n3ESmJCo94hvcsCcpV7VIyOv1YmlpCa+++ipmZmakOSqVa6VSgclkEldsZ2cHVqsVyWRSLAhV+jEi\nUqGVy2WxNMiVWSqVEIlERIlVKhUx5dkvkx2o+fth79VvcaohTjJzhcNheL1ebG9v4+DgYCS5z7jC\n9R6PxzE/Pw+DwYDNzU08evQIFoulJ0p1lorhpVEKHCA23eCmsdvt4j+qJv2zCDebWsJKDkeVB3LY\nc/Ia6u/UBaWCmfShi8WiuBIMMbGTcKfTQbVaFaS7v8bgpHHj2NlsNkSjUSwtLQk/xN27d6VxbiQS\nQbVahd/vFz4JNQrQb5Wo91fHiyXFFy9exGuvvYZQKASj0YjNzU3s7+/3dMByOBwoFotSdlyr1aRR\nTf8py81LRcWoAN/PYrGIJcfxpTVAnk6LxSLYEwHUcdZMvwWpujxkBK9Wq7hx4wYODw+HpnxPEoHQ\ntGNW6jfeeAM+n0+6nXc6HbhcrpH9P54lAvHSKAXg2JRimXGtVoPD4cDs7CycTicODg56GIhVeRYk\nlj5dJBKRXhLPSnzCZ1JP4EajIacLQ5cEVCkk7+RnCHaddCLxs+yd4XK5UCqVsLu7KydyJBKBx+PB\n4uIiOp0Ocrmc8F+qNOyqDFpwtBLi8TjefPNNhEIhaJom1G4kgiW5bjqdlgY1ZNCiz99/fb63yu1I\n0NHr9cp1XS6XXJ8ANHAM2FEY1Zm0vVo/7sQomNVqxfb2Nj744IOR5eGTbFKj0YjZ2VnMz8/DarUi\nnU4LcbFKiqt2Q1MtyN/4kCQBRqfTKZNNk81isQjINMiUOu3gqHkF3W4XmUxG2qUPk3GQeYbl6JeS\nVVm1INhUlIh9KBTC3t4egCcEI+OajQQY4/E4wuGwkKi2222YzWb4fD4sLi7i1Vdfhcvlwo0bN3D3\n7l3kcjlhLe73j4e9Oy2SqakpAYNJmUfTnUSrBE2JrQDHG5/sRYPGkKFSu90u64H5IXQracmp4Ug2\ntAWO+zYwvEoehElEzXWg9VUsFvHhhx8Kee+wvxtXqLDm5+cRCARQqVSQSCTERSaoOcxyPG0IFHiJ\nlIKmHZObZjIZWK1WBINB/N7v/R6sVityuRxSqdSpCE6H3YsKIRKJYGlpCbOzs7h9+7achACGkqAM\ni9kDx92S2Z8yEolICJUhSvI8Wq1WzM7O4sKFC1hYWICmaeJa0Jc8yYXgSUoLq91u4+joSLCF6elp\nvPbaa1hcXMSVK1fQbrfx3nvv4f79+9jZ2ZE+Cc1mcyQYB/SeoK1WC6lUCg8ePBAr65VXXsHly5dx\n79496dmQTCaRTqefsvCGKXaCkpp2zNpss9lQrVbRbDZRKpWk3wTdEM6Vx+PB9PQ0VldXUSqVcPfu\nXYkAnQZ/4ny5XC584QtfwLe+9S189tlnuHHjxkAL5zRChVOtVrG7uytjajab8fbbb8PhcGB/fx8O\nhwPBYBCffvqpWGHPohCAl0gpUPObTCaUSiVYrVZ0Oh04HA5sbm4KRZUqqttw2omnmUYGZ7vd3hMX\nn2QCSB/GkCAp0RnH533IiMxu0B6PR8JrJPFkBGMcU5HXTSQSwj5Md2VmZgYLCwvCVXnz5k2sr6+L\nQpgEuwDQwwdpNBoRi8UkV4A0+kajEbVaDeVyuSfvYpz78O+Z9UnsgdaiGpJm4hXdBhV3Ip5wGlOb\nypadxRYXF/EP//APkjMw7HqT+vlUsKVSCQBkXayurqJcLst7tVot3L9/v8eFUK8xqbw0SgE4fvla\nrYZsNiub02w248GDB6Ilz1LYx9JsNiORSKDVakmjGPr/6klzEnZhMplgt9sRDAbFJWG7uFqtJiBZ\nMBjE3NwcZmZm4PP5ZBFzkxLQI3o+bAGqsf1ms4lyuYydnR24XC5YLBb4/X688sorcDqd2N3dxfXr\n13Hjxg1pnMKNdVIoEuhNQ2a/jvX1dRQKBaTTaUSjUTidTvh8PjnJ1RTxk0QdW3blJlDLHIp+5mY1\nW5INcJjPwpyLSfEmjqvdbkcsFsOrr76KQCAg/R5U16LfbRy3XkWd43q9jmw2C6/XK/iMx+OReQF6\nW+6NM1cnyUujFGg+crEy5HVwcIDPPvvsqTxz/s2gQplxhXF2UoZzkzgcDmGS5gKg8OdhgCcz+mw2\nm/Qh7Ha7knPR7XYlP8HtdgsISaXB9Ger1Sr3H4ZjcNHwWdg/kUk/rL1IJBL4/ve/jw8++ACJRKIH\nSO0Pw40SPgtrF+i38/culwuzs7PSsVnFgPr94WFCbMnj8aBWq4k1QJBRfXc27/F4PAJi7u/vS7et\nQV2vTno/FbR97bXXMD8/j2QyKUlX3KzqO3AemBk7zn25udPptBwUDEWrqe71eh2Hh4cClp6F6/JS\nKQVuPqfTieXlZbRaLdy4cUMQ8kEDMmmsWA3hOZ1OOBwOARlzuZyYqf0M0P0hx0GihjcDgQDsdruE\nmFqtFpxOp7SH9/l8MBgMkqVZKBRQq9Xg9XqlgQxz3YdhGP2ItIqYz87O4hvf+AbK5TJ++tOf4oc/\n/CGSyeRTXYzHBTR5L25ago4EDhkGBCDdsFQrZ1wznkp5amqqpykKcx6AJ3MeCAQQi8UQj8fh8/kk\nQYzgJw8adYxGvR/Hw+12Y3FxERcuXECj0cDm5ibK5bLk0KjJTuqJzuc/SfgsbBhUq9XEEmLildvt\nFms1lUqJlfKseALwEikFCotgFhcXsbGxgbt3747k9z+NUCmYzWZBybnomDRCs5yTPI4ZTPCSjVKs\nVitsNpswILtcLqFJ52IoFAqoVCrC7syFoWbUjSrmoanNRe10OnHhwgX84R/+IV599VX84Ac/wF//\n9V/j8PDwqXfgphlnbGlFMblKHUeOUSgUQrfbxcHBgUQI+u836vqq4mGvTboPzEfghmI9wvLyMux2\nO3K5HCqVCjKZjFS60jIbJ1OTc83IysLCgoCamUxGwGFGVtQO2lRSTI0eZyxpCdD9qlarcDgcAjYC\nEHyNkZ2zUAjAS6QU1EUdCoXg8Xjw4x//WCoiz0opcCGzgq9er4uZGo1GoevHnaFVcLC/f+SoZ6FW\nZ+WbwWDA/Py8/L3X65VEm4ODA0nkASAt8giSnWQF8aRyOp3SmCUajeJrX/salpaWoGka/uZv/gb7\n+/sDk23GrTClcMyYM6BpmpQUx+NxTE9PI5FIIJVKjVVHoUq/T85OXfF4HDabTRq7ckP6fD5cuXIF\nRqMR9Xod6XQau7u70hGaLgdP9HEsBYYfI5EIIpGIzGUmk4HFYpG/Z1csXdfF3aUiH8dypVIAgHK5\njKOjI+zs7EiKOHEuUgVQzqqs/aVQClwQnJTl5WV4PB6pVjxrK4H3YjiPOIDL5UIikejJgmMe/Ekn\nHjcX483hcBiBQEDy9lltV6/XsbGxgYODA6mD4MKlxcDGtMDohcDFxfZmMzMzeOONN6S/44cffoiN\njY2hyTunQcttNhtsNhtcLpeg5YFAQOLtv/jFL0QpTCKqadztdpHP5zEzMwObzSaJXswhYcFcq9VC\nIpFAJpORRCyGDNV/w8KtaiIQrQTWcvBQYI8O/lMzQKlsmKQ2DsX9oPdNp9PY29uTbN5oNCody5PJ\n5IldtyaVl0IpcGIcDgcikQjm5uagaccdeSY9cU4SThxNS+IK0WhUugqrbef7q+GGKQQVfLt//75k\n2sXjcRgMBkxNTUHXj7s9v/fee0gkEiiVSrKIWMHInAGeQKPMe26gTqcDu92O2dlZ6Wh969Yt/PjH\nPx4Jep1mXIklkAAnGAxKaLVUKuHRo0dPdWUeR7hBCbzmcjmJ0bOXJBPAaCExdl8qlXqaEPdv2mHP\noWIxajSn2WyiWq2KFZlOp5FOp59qMKzya3CdThIZoKWRy+WkYIxl9oeHh9jY2JCxPIv8BHnvs9xQ\np36IMfo+EFyZm5vD9PQ0Go0G3n///TPXko+fR9wIZhUydMhy1X5WoJOuxwWtnr6qf3nSAlWLkfo5\nH4YJIzTT09O4evUqlpeX0W63cefOHfziF78YmaM/iXC8HA6H5GBcu3YN0WgUU1NTMJlMktzzwQcf\nnEqRc9zIBUFMgW4RlUcFZS0AACAASURBVBsVb7VaRblc7jm5qTDUMQRGg5xqLgOzNWl5Mf+CuQT9\n3BqTWlqj3p3At9/vRzQaRavVkuSvCayQ36y+DwwhbW9v4+joSFqQnbVCAJ5sNsazgaeLmia9HgAB\ntfjzJBtSVRrj+vmMp5MmjLH0u3fvIp1On9nYqe/HecrlcoIhkFbu4ODgmSpYOSedTkcqZBlxUPkO\nVNdulAId5znUMeJ60DRNemIO+twk1x9HiEmw+1UymZTnOUsLgfLSWAqPP/dUttaL8PyTyLOeHsPC\nj4OuR98aOOYnoN9NHsuzHjsi7jabDTMzM4hEIlKsxvqGZDJ5qvuq70gfXy0MUyMIdB/UYjF1rain\n//M4VJ63TJqBqch527gXUc7CpJxkUTC2robHmONw1nNPpa3G9MkhSIvrtMzD/VZSfx6GeliwRoJu\nQv+Yq+7CKNfhN1B+s9yH3xQ5i8U3yTXGKa0+K1FPY57ajJKcxbUHfR0m41R0Dvr+XM47RJ3LuZxL\nn/zWWwqDzHnVVFX92EGf6b+WauL2f56/67+u+tmT3ItRf8vfDbqXal4Pevb+9xz07vTFX0Y//FzG\nl996pdDvp1LUlFr1d6rPDDyp/e/3T/sjBP0bmSXA3GDqfQZtWDWc1l+P0L/J1bi6+v04uQHq5h+k\nSF40U/tXiQf0K8pBUaD+OTmrZ+ufi/7+GWpI8lnv+VIqhX7gDDibWPCgk7B/M6sgGidGDYUNy0Hv\nX1D9SoApt+o79T+DKmrK7ygLZtjnRkn/mPYXfb1oMsqiO8t7qHKS1fisCmGYJUrqfBXEZU2MaiE+\nS/7JC6sU2IqLSUtra2u4evUqPv/5z8Pn88HtdiOVSuHu3bv46KOP8LOf/QyJRGIkP54q/UlEVAaD\nEG4VSSeLEdmf6vU6PB4PdP1JWW65XB5Yxs0klH70X1UyLLoies4J50lA4JCFUEyj7b8Pr6taCyaT\nqSdsd9LY8KvauGYUfwMzClmyHA6HJU+/2+3C5XIJQSs5GZvNJiqVSg8gehL1m6ZpEmpVU9JZwMb3\nI4HLsH6c/etgmKi5JcyNINcGqeXZ4IekOUx0I/UdMyFPKrziqc/vWZhns9kQiUQQDofx+uuvIxAI\nCMnMzs4O9vf3USqVkMlk0O12Je36NNwKJyoFTdP+PYA/AJDUdf2Vx78LAPjPABYAbAH4E13Xc9rx\nCP9vAL4JoArgf9R1/cbETwUIIaXZbMbc3BxWV1dx7do14RlkJlun00E2m8Vnn302cdpzf2iqf0OR\neYn8BXa7HQ6HQ6oZNe2YFqzRaAh5iFruOkhURmK2ayO3QiAQgNPplA3Menmm9VYqFaEZUxe/eqr0\nL2CWMXNMgSdJU6pl0q8Q+f+M/5+EJbDwyuPxYG5uDsFgEH6/X8qWOV8HBwdoNBrSoyORSODw8BDZ\nbFbSuPsLzAatDWY0kguS1Zkkwq1Wq8hms6hUKkIMO6wnyChRFSQzKFl/wP6frNa0Wq1C/18qlZDL\n5ZBMJqWm5aRxVPMm1AOJPKF+vx/z8/OYmZlBIBBAq9XC0dGRPFOhUJCuW6xOfS5KAcD/BeB/B/Af\nld/9OYAf6rr+F5qm/fnjn/8dgP8ewOrjf18E8H88/jqxMLZttVpRq9WEk4+KgIupUChIbcL+/r6U\nkZ4kg3y/fheByT+sn6dioDntdrtFOei6Dp/PJ01IBpXj8sRViVndbjdisRhCoZBsHjZKsVqtaDab\nODo6wtHREfb396HrunQ3UvGC/nx+o9EoKdpUDCS85TOolaDkPmTdAklda7Ua8vm8MD+x6lAVPoPZ\nbEYgEEAwGMT09LRwGbCYi0rT6XQiHo+j0+lgYWEBd+/exaNHj3r4HIblD/DkZE1FPB5HKBQSajKW\nR3PjVqtV7O/vi5XDZzjJ7eLv1LmjdRCJRLC6uoqlpSXJGGVSVqfTQbFYFBLZdrvd03dUxXr67zXI\nsuQ7ezwe+P1+OBwOpNNpqdBUi61oIbCuRsUbJpETlYKu6z/RNG2h79ffAvB7j7//DwD+GcdK4VsA\n/qN+/HY/1zTNp2natK7rhxM91fF9pWTZYDCI5i2VStB1XYqSuHljsRi2trZQLBbH5jboB4M4Edws\nPL1XV1dx+fJl6LqOUqmEVCoFTTtuCsNKR1opg+rlVVCKm8doNMLtdiMej2NhYQGzs7Nwu90wGo1I\npVJSt9DpdGST0lqgOQqgB4vg9al86IY4HA6Ew2EAEPMWeNKol9YFu17z+Vivf/v2bRwdHQklXf+7\ncexarRby+TwikYh8z8a4tVoNJpMJiUQCHo8HU1NTiEQi0smbp+pJbgMrSv1+P4DjMmV2gK7ValKB\naTKZhIgnEokAgLgT3LzqWhsEGqqi67psztnZWayurkobv6OjIzx69EjcSo55Pp+XzTpqTY6yilRe\nUDJX37p1S9Yp2bvYf5TUfeOwbw+T02IKUWWjJwBEH38fB7CrfG7v8e8mVgpqP4S9vT3EYjHs7+8j\nl8uhUChgZ2cHuq7j0qVL0twzHo9jb29vYheCws1L33Bubg7Xrl3D2toarFYrtra2UC6XkUqlxFwm\nqSb9/HK5PFAxcKNSSLYyNzeHhYUFcYnIIsXT0Ol0wmKxYHt7+ymfnqf7IFBJVWxutxs2m03cE2Ij\nZrNZ/HlSoIdCIei6LlRwlUpFSD5I+T5o/MiwxGdJpVLwer0oFApCGML/Zwp0MBgEAGErAvDUZu0f\nQzaFLZVKMBqNgiNVq1XhVKjX69A0DYuLi/Lue3t72NzcHDhOo4DhfveBh8Ts7Cza7Ta2trZw+/Zt\nJBIJ8fm9Xq9YZrQYR0UjRikLrkWv1wur1Sr9PVUlTko/lZaOz34axfDMQKOu67p2ijRlTdO+DeDb\nI64rL1oqlbC5uYlu95jNuFqtolgsCnDmdruFN2Acuiv1Ho+fRb7StJ+ZmcHbb7+Nt956SwhdHj58\niMPDQ5TLZelRWCwWYbfbxR+mtu6faNX35+lM0FEt6snn88hkMojFYvB6vfD7/WIZqO3R+FV9fn7P\nn7khPB4PwuEw/H6/sDxRIXBxEeBsNptipoZCIZRKJXEx6HIMEwKiyWQSuVwOQG9vi06nI41Yl5eX\nEQ6HpU1euVzuqccYhei3223h0shms9A0TdrQcVMYDAZcvnwZ8/PzyOfzskkmYXtSx5Sbk/wQzWYT\nOzs7uHHjBjY2NoRUl24hSVeILanvNclG1XUdDocDTqcTnU5H1gdL+okdkHdDdRlOsn6GyWmVwhHd\nAk3TpgEkH/9+H8Cs8rmZx797SnRd/w6A7wCjax9o6rF5CVHseDyOqakprK2tweVyIZvNCuPNML9t\nkKif58TH43G8++67ePvttxEIBLC/v48PP/xQqgy50B0Oh6DK9HWJBwzzT2myk4gkFArB4XDAbrfj\n6OgI6XQa+Xweq6urgjNsb29Lp2kVMxgUwlQjDlw4LpcLVqtVFhg3LiMAKt260+kUIhueQPl8Xghf\nhy1ozhO/kvdBpa0zm824du0a/uAP/gBra2toNBr45JNPpPJ10Lj1vxep/qlI+Dzkq6DFZjAYkE6n\nBQNiz85B+BGff9Da4L1JjT8/Py+RjwcPHmB7e1sOKCoGn88nwGk/2/e4FixFLQ8nSS3dEzaDoavA\nyJt6cEx6P+D0SuG/AfjXAP7i8de/VX7/bzVN+084BhgLp8ETKHwpml8ulwuxWAydTkdM0FAohHq9\nLpRlNptNQl0niaoQ6J9NTU3h7bffxle/+lUEg0Hs7e3hJz/5CdbX1yUWbDabhe2HYTi1l8AgUcum\nWQ9AU9nhcKBer6NUKiGdTkvXJtKSk8CDJymjCGazeSA/ZafTgcVikU1OSneChEdHR8hms2Jx8flb\nrRZcLhf8fr/wAzabTaRSqR5Ow2FzxXvzPam4zGazUMH92Z/9GZaWllAul/HgwQPcvHkT9+7dOzEy\noK6DVqslSLsavlPfX9OOiWgajQYKhYJwK/RXTY6Tg0E8we/3w+v1IhAIiDKgVUjf32azCYZQLpd7\nSFAYGRhXGHkgSSsPnkAgIK4gDyFiTbzXpO3wVBknJPn/4BhUDGmatgfgf8GxMvgvmqb9GwDbAP7k\n8cf/XxyHI9dxHJL8n071VIpwslSe/ng8Lj0fdP0JZyKpt8vl8li4AhcF486hUAivv/46vv71ryMa\njSKdTuODDz7A7du3Rcnw1OApzIXZ7XbltBhGmMKTvh/oA4B8Pi/+N6nZaH7u7e3J5icI2H/a9W/K\nbrcrLD1McKlUKkgmk3Lyc9OwWxK7V9FdIA07AcOTEmJUP1btt+D1ejEzMyNdosrlMra3t3Hv3j3c\nv39fiEpUwHfYtdX35Aan+0UlxHAvIwGZTEYiKIPculHrRI2stNttUa6NRkMUQbPZlFYAxGKoVNX3\nOg0vJRUJoxnEF8LhsADBdJ1UJrBRXdFPknGiD/9qyH+9O+CzOoD/+VRPMvz+koiSSCQkRNhutyV5\niEzI8/PzuHr1Kr73ve/h/v37Pd2HBl1XdQNWVlbw5S9/Ge+++y7i8TiSyST+6Z/+CR999BGazSYu\nX74sCsBisSAUCmFmZkYWH3n0BvWzVDcwN4zNZhPi11wuB4PBAJfLJe5QNBqFwWDAo0ePUKvVcOHC\nBUHTO52OcBTQreh/N46bw+EQTEalAQeegJ+6fkwYGwwGsby8jEgkgnK5jM3NTem+NWosKaobZrVa\nEQgEEI1Gsba2hqWlJSwsLMi8HB0doVgswmKx9Gz2k07sfpeJCpBku7TivF4v4vG4KLVSqfRUctAo\nend1faiJZZlMBjs7O2i325ifn0csFhP6emI4/VR9k1aqqmNIhVetVqFpmrQxBI7Dr0dHR5IXQ9Kh\ncaIpo+SFzWik8ORhaKtcLmN/fx/dbhe7u7uIRqPSr9Dlcknr7kwmg2QyKX4eMDw11eVyYWpqCleu\nXJEuPK1WS1qMe71eYVluNpviZng8HjHVdnd3BckfhWQTrOPPNNutVisikQiazSa8Xi/sdrskvDAK\nUalUYDQaUa1WUSgUUCwWn3JX+q0ftlFjOJMLjX9H/5vh0enpaWE2SiQSwg2obsL+/It+wJPKgS4W\n+yEyasPWd8FgEF6vt6dB6kl+dz9QpypAPofVapXkou3tbQAQZaHWCPSzWQ1SDFScxDIODg7EbPf5\nfGi1WpJfUqvVxHpV3RrVghoVaVC/pyJyuVyw2+1iJRI4LpfLojhUq+lZlAHlhVcKwBN/Mp/PC8Nx\nrVaTBbe6ugqbzSaTs7y8jE8++UT4FAE8tZB5XQ62z+eT/gg0/XRdlxRmh8OBXC6HarWKcDgMt9st\nAB6bpQ7qUsX7qIuOmZI0QwGI1cAuSoFAAEdHR6L9uTBognLTq8Ai8GTTqCE+LmgCgExCYg8Lm82G\n2dlZzM3NweVyCQDJiAqvy8XeLyqRi5pRyd6KzFEoFotwOp1YW1vDhQv/P3tvFhtZlp6JfTcy9n1f\nuJOZZO5ZmVVd1VL1dEktoQXZMCBYEAbzYnuMgeWHGRiG5sHjebEf58ELBjAwgAwbtgDD4wFsQAN3\nqxs9ltSNBrr2NTfuW6yMfSUZJOP6gfn9eeLmjY2Z1c0q5Q8QQQYj7nLuOf/51+9bQTQaFYXHkuBh\ngb9R79O3j8ViuHnzZp/lwMyKWgk6irPDGLRrtVpShenz+YTYR+X6ZB2F3++X+TSOqAqRi93v98Pv\n9yMQCAhyFhUDC9vU52E810WCjMAlVwrq7sEfVjrS9Ox0OsKgw8VAUzifz0sgzTih1YXKqjDW5He7\nXezs7KBcLkvOO5vN4vDwED6fry+iTwbldDo9tokNQCL+jUYDh4eHgkZME5Rmbz6fx97enviNXDjN\nZlNMSjOh62C1WuVzVCqMS5yensLv92NmZgZXr14VfstarYb9/f0XIvaAuaVAa8PpdPaR0p6enopF\nQ/N2ZmYGjUZDFiSLfbjDTuJ3q+lXKkrGL1isRUXNoDAACdiy2Iz8koPGUQ0QVyoVHB0dYW5uTuor\ncrkcGo2GUP2x4lRNkY+TCVAVAhUBlQ7rRzqdTl9xGqnpOZ+5Ri5SyUi59EpBNTeTySRmZ2dlAtJ0\nD4VCUh7MQWMQcNDgqJOJMN21Wg25XE4WLCvtGN0livDi4iI8Ho+QdBAIdVBwR93Jab5SsW1tbSEa\njeLg4EAi9A8ePECtVpNg3NbWljS6qAVLrLM3Ox8LbRwOh/BO8hoYJXc4HLh27Rpu3LiBVCol2Y/t\n7W0Ui0WpRDSm8YxCliuyWasWCRuCODYkZo3FYrIQyWLFgjVjPGbQ3ACepypp8UQiEcRiMYnzcI7w\nh2PIc7Fke9gioqXKrAf5HtxuN1qtFtLpNLrdLuLxuJj8VCZqNeM4AU0GZ2OxGGKxGFKpFNxuN05O\nTtBqtVCr1RAMBgFA3EtamypupepOTJwGnejTvwHhAp+dncW9e/fE3wbOB8XtdmNmZkY0KYtg+MNd\nbdhDbzabyOVy+Pjjj3Ht2jXYbDZREuVyGc1mU6oPV1ZWpIAqnU7jyZMnEk8Y1HyiWiWsuahUKlL9\nmE6nYbPZMD8/j1AohOPjY5TLZayurmJ3dxf5fF52PAaeeCz+bjwXxy6ZTEonH8umdV0Xd+nWrVtI\nJpM4PT0VLgF2ezLNpZrXZhPMarUiHo9jenpavtNsNkWp0D92Op24desWHjx4gGQyibW1NRwfH0uV\norEnYZxFpNaX0NxWLRYqNe1ZYREbzbgr81jDFAKtF2YBgHMLJ5PJoFarIZPJIBKJ4ODgAMlkso8S\nT72fcRaoWl4/PT2NcDgsBMMM+PKZlEqlFwra1JSrUcGOK5daKfAmrVYrEomEdEuGQiF4vV5Uq1Vh\nWGLTzcnJCfb398XcH/Qg1MXT7XaRzWbFLPf5fMLCxB1oYWFBzs1qto2NDWSz2YEBRoq6w6rlqNwp\nGbTqdrvweDyoVCpIp9PY3d2VSDaPwx1ukP+tRufr9TpmZ2eRSCTgcDgkTsAFwjoPANje3saXX36J\ndDotbhMLxoYFAOm3z8zMYHFxEcViEX6/H7lcDvv7+xJnYMbmhz/8obgQ1WoVhUKhzwQetoCMBUfA\n8+5MWgms76DVyGOyyIcFQMzjs3R6mKhFUcwWOZ1OVCoVqeWgC8WGJJXncpQY5wfw3PrS9fOK01wu\nJ2373W5Xzk3XkNbPOG7KKLnUSgE4DwJxF6Z5PTMzA5vNhkQiIZ1hlUoFW1tbePz4MT744ANhBFKj\n04OELkSxWJRz0jez2+1SQckgXKlUwqNHj5DJZKS2wKihjfELVdTPcrey2+1SHKPrulgox8fH0t1o\nBmEO9C8gVdnVajVks1mkUimEQiE0m03pcaD/vba2hnq9Lk1PLLihMuC9DYvQs1oymUzi5s2bQsar\naRr8fj96vR4SiQTm5+cRCASQz+fx+PFjfPjhh9jY2EC1Wh2ric3owlDZkPQ1FotJnQW7CVmJqZra\nFzGvjXGVZrPZR/TKylSLxYJardZXTKSWsQ86tvp6dnaGer0OTdPEKk4mkzg5OcHx8bFwPxQKBVF8\nnLNqzOdbGWjkYm42m3j48CEikQii0Sii0ag8kEqlgtXVVWxtbWF9fR0bGxvY3t4WRWI04SjGXZY+\nGwAJTDGqzmYfVjUS1II+vZqyGzbJjItX3cXIWRmNRgVHQQ2kqbs18RRURWF2jmaziWw2C4vFgkQi\ngWg02sdcXalUsLOzg93dXeRyOWksUkuH6bMPiieomaF6vY65uTmhiSP1nd1uRzgcxtnZGR4+fIj1\n9XUpEeYYqsp0mDmvfkYFIGHjF4vK2CBFMhoqBZZD0y1QMxKjhAry+PhYYjssP15YWEAkEpG5QGXE\nOTzKJVJjTizjJsHwzMyMWAOapiGTyYhFR2vE6DrwWBeRbxTvg+pD8pULy9hdN6pSTT0eJxmPycAX\nJxuj9awMJJU5J5Ox/HeY2WsM2lEhhMNhXL9+HYuLi7BYLEIyWywWJZDEBcGgnVmhlJqrv3r1KkKh\nECKRCPx+P4LBoFT4sXR6b2+vL3PD3YaijuugBUtG7uXlZVgsFsGYsNlsAjiyv78vHa4qZsKgMRsk\ndFeosNxut7gM09PTiEQislA2NzelR4LPitWGvIZJK//UGgKPxyMu2NLSEjweD3q9Hra2tlAoFFAu\nl/syOKNcTGOchClIdSypNDjnBnWVDjjPazKYEeccGFHng+EEpDnKsmAV2MIog8xso2Lg72pzVCQS\nQTKZhN1uRz6fl5SqipRE14EWinpe43mSySTm5uYkvXV0dIR6vS4BVKY5VTfLeO1UEMOKl3g+9oGo\nVpDqfryqucZnoy4ev98vCpzPjaA7KgwaLRIAA6Hlxjk/LRUS6QYCgb7Saqa2VbdolPIZNBf5yudj\ntAgmkNdKYcQ5+5SCcRzUKj3mnGmRGBcRP6cG/4zHNDufcWdg2sxut/eZtqprwu8PmtAqbgNhy1QE\nJgapWDegRteNC1cFpjW6PpOM8dch6niquzd/NE2THdW4m6pR+Ze5PjUtqvbAAM97KlQlOcl9fU3y\nmiFqmBgDc0YtbZw0qu9GMZYYqxPVLCBnjA/wd+B5VoKxBLPrUxfuoCi9+nuv15PCIVY/qru2epxB\n12e8L+M5hsnXveGYRe1HYTBeRLkNEjUwOOicxo1i3GP+JuXvrFJQZZwHYZa2GhU0GvT+pA9+2OeN\n/1MnJ+MOk55n0vv6TYiZIrxoYO1VyCTP6LLLa9q41/JaXkufXCpLYVDwb1hA8KK7rlngb9C51c8b\nzfZhpiE/y6CY2bUPcjmM/zO7HtW1MMK2mx13mHsz6P7V6+Vnvmk736SixpOMcSGgvxaF8YxBRUqD\nnvNv0qoZJZdKKQDmEVhjuab6GQaYuDiIfMyKwUEL3iwIaPa/Qe8ZfXCzBW32fX6WFXBGPAC1AYfR\nbE46NR+tojibXdug845a1MZAnDFQ9jUHwiYSYxCYxUyapglepjFuMmnAj2OsAriwMlKN9agBXnXh\nqwrkVYpRcb3K4186pUDhzZopBLOoMwEsSd7CeoODgwOBajMef9A5xxXjZwfh4hmDipqmSfGVqhjU\nnYT3w048tTyaE1LX9YHpQbPfx703Y83Fq4rWv2phNSPTg6xbICp2o9GQsVNTo6PEOGZUNuoiH2bl\nqZWnPIaqUCYJPBqFzYBsmjo9PZXmtXEar8aRS6kU1FSP0Xw3/p/98pwMyWRScOtYu6+SY5jJRSe8\nmlLkxBxUYqpG9Fn2qioE1kOote/M+7Pc+vT0VPLugxSCcYzUa3mZXf5lgEC/DmHqkYrB6XQK4E61\nWsXh4aGgVQPPa0KA8QKq6udpfbAVutvtSj0Ey7lJqMMCI7p0ZinKiwoVSyAQwNtvv41bt26hWCxi\nZ2cHn3/+uWA6qKnRi8ilVAqAefUfrQLuCGyASaVSAkZBM45IxA8fPoTL5cLe3p4pGvEgv9GY+ybe\nIbHyWDDj8Xikq+3JkycolUoolUovsCjxPrj4OclIZhIKhaRGwel0ihLgBFOx/a1Wq/Tws2LOTFTe\nSvX+1ApO9T1ep3F8+MqJPokJfhFR07SD/h8Oh2G1WnH9+nXMzs4iFosJQxdRq3RdlzHudrsolUpo\nt9t9bsWwVndabF6vF5qmSVt2IpEQoB0iKpfLZYGZa7fbKBaLKJfL6HQ6Ui9BFKxxmqTMromb3p/9\n2Z9hYWEBBwcHaLfbAjWnuoffGjwFVQGYLV4K0YHn5+cxPz+PcDgslX5EvwWAfD4vQCgApG1WPZe6\nk6g/6k7k9Xpx7do1QfIlcCvbdFOplICXfPjhh32IQ+q5aPafnZ0JRiNxCMLhsJTsnpyc4OjoCC6X\n6wUwV5vNhmazCbfbLQAyg4BPWCJLE5vvc6z4Hs1OuixURpzAaq5dxSBQnw0notoroQZY+R5LxtmC\nTHQnY5UovztoAXW7XWlCisfjgh1htVpRKpWEKYzHZFUq/x6WquWcUKHYWEodj8exsLCARCIhGB6s\nL/H5fHA4HCgWi+Ie2u12IfhRx3BSxcANaWlpCcFgEJlMBqurq/jiiy+EXFYte34Zi+5SKQVOHLWC\nzug2cEGGQiE8ePBAFhFr6gnWwXZa7shm5wL6lYOKbUjwT/JIvvvuuwiFQn09B1QIyWRSOC+Jb6ju\n3lQIav29ruuC4BSNRpFIJATXIJ1OCx9Dp9ORuAKVFM1ZNfionosLinBrhHn3+/04OTkRMBS6LVR8\nXq9XxpCIVtyNdF1HPp83VQjAc/Qljh1RjclIRci7u3fvCigtUaSz2SxyuZwgOxuDxGbC/9FC1DQN\nhUIBm5ubSKfTokw1TUOr1RIFqcYHhjVCqUFeSjKZxNLSEubn52XjIa8jkcDOzs5kfOPxODTtvLKy\nVqvJdV9kwVosFvj9fty9exePHj3CxsYGNjY2UCwWUa1WJybOHSaXSikA5v6eGlgkBt+1a9cQi8UE\njYYsQM1mEwsLC/JA6aezEWaQqLubw+EQhl+iKJMo9eTkROjJrFYrpqampIyYiD/stTe7N0aq6YbE\n43EsLi4KulSj0UCxWESlUpFWWVoV5IdQG3o4edX74C5FXD8yRNHVcblcsnsSa4G9A+QrODo6wu7u\nLnw+H8rlMjRNkw5R47jxWdEKICt3OBxGMpkUszsQCOD69evSMXl8fIxisYirV6/iF7/4RR/Uu9Vq\nRb1eHzpXVLJZh8OBtbU17O/vo9ls9kGiMRZA3A2C24yDykWF7vF4EAwGBTWq0+mIEmI3YzAYFJeS\nWAi9Xk9IkAcxkY8jTqcTd+7cQSqVwk9/+lOsra1JVyutnlcV77l0SmGQUMMnEgksLS0JoMfe3p5A\np1ksFszPz6PZbAopJ1NTDBqZCZUBd7lQKIREIoG3334bCwsLCIVCqFarqFQqqNVqEtlOJBKCqguc\n4xeYZTtUa4dxCtKyRSIRuN1uOJ1OHB4eYmtrCxsbGwLKSQzBQCAgqM+kyVODYcax4s7CyRwKhQRs\nlvELkuMGg0F4yUC/IAAAIABJREFUvV6cnp5KM082m8Xs7KyQ/NJaGZS1UbtL3W43pqenkUgkcP/+\nfSQSCfh8PthsNsRisb4cfzKZRLPZRCqVwt7eHhwOh7hfZvEeVQGR4VrXdezt7WFnZ0cU9snJiezc\nnAsEzGGmQu10VcWYxiQoMJUsSWU3Njbw8OFDVKtViftwrnm9Xly5cgXtdhvhcFjwKYxKfBzRNA2h\nUAhvvfUWfD6fWFRqjOdbnZI0ZhtUH9/n82Fubk4mwvb2NtLptOAghEIhtFotpFIpAM/7FRjtV0UN\nrtGXttls8Pv9iEQiePfdd3Hnzh1YrVa02218+eWX6HQ6QgFOH7Fer8tOsL6+LnRhZkLF5vP5kEgk\nsPCsBz8QCOD09BSbm5vY2trq42Gky8Br5m4ej8cFhEUVuikMVrK5ipYTFUOr1UKpVEIkEpEeCUbt\nSWJaKpWESIUBs2HpYZvNJl2DPp8PKysrwr1AqHgiFZGzkghJhL+jJWQW0FTnBmncIpEInE6nBPYY\nSKTSYft7LBaThrBoNCp4nLlc7gWT3tgMR8j4eDwuqFwHBwfY2tpCpVJBo9GA0+mUueT3+8USZBaE\njNSj3BYzsdlsuHHjhmyE3ADp8r5quXRKQRU14BcIBHDz5k0sLS0hEAjg6OgI+/v7qFQq6PV6Erji\nQ2TrKt8bhHmgPnji4t28eRO3b9+G0+lEvV6XBcLotapMiMJTKBSwtraGfD4vaVCjqFiF8XhczFFN\nO0eL3t3dRbFY7CMpoVXBOIpq9hLz35gj52IlRmIoFBJTPBqNCmO32+3Gzs4OvF6vRLFzuZxQy7Xb\nbaFcI7q0Wbs2JyhJUWj++/1+oZhvNpvyfZfLBa/Xi1QqBV3XsbGxgXQ6Lc1bZrESo6i4kLTyGOWn\n5UcUZILtdjod2Gw2FItFdLtdRCIRlEqlsSgGvV6vBCqPj48FJo+bCQPBVA6apokbQUXucDiGInCb\niaZpCAQCWFpagq7r2N/fl7gXXTozXI2XST9fSqWgBstsNpuQtSwvL2N6elpQfhgAY9rI7/cLxDZ9\nOZr66mIxCgNhPp9P4gherxeHh4eoVquo1WqyODn4PF+328Xu7i6Oj49ll6epaLbTeTwe+Hw+IZkh\nrXqhUEC1WpU0GuMFLpdLshJOpxPHx8eC/MN7MqtJIIM1kYEIQ5bP59FqtSRtVyqVxM2iNUBXqdls\nwmKxiPUzLK+vZiuYUahWqyiVSnIs7qiqz53P57G7uyspY+A5e/UwCYfDmJqakoAlx4KbiMViQSgU\nQiwWw8zMDILBoFiEHL/T01M4HI4XYOWNwWePxyNoVxwjwrD3ej0pmGNtCeM/rBegglMzEOPKlStX\nBLTYarVifX1d4ih2u104UIyYFd+a7APQD2BBhqZEIoF79+5hbm5OdqR6vS7wW9TQHo9HTDRCkTF4\nNajyj8EoWgkMiPV6PYF3d7lcuH79ukSZW62W1Be0Wi0xQ3O5nKmVwAUOnMOrx+Nx+P1+Qf6t1+so\nl8ti3nNS0xSnm8H0FzH8zFp21eAj+SPPzs4k9VkoFARqTkVwIpuUyn3BNCGPNWgM1Uo/siS1Wi0h\njm00GgJoCkAQppnXL5fLAt6qUp8Nmh8Wi0Vg1H0+n0DIc3Pggp2fn0cymRQKAKYHPR4PAMjcMS5U\njqFaz0Glw7FxOBxIpVIIh8OoVCoyBxm3oGIHIBibF3EdXC4XFhcXcXJygmKxCKvVioWFBczNzYkb\nQWSpi9Q/mMmlVApUBouLi1hcXEQqlUIqlYLH4xHz2uv14vbt25J+ZNoNOE8TMc3FxWOWClLNzJmZ\nGYTDYTSbTXz66afiqwLnJnez2ZSsxMzMDJxOJ7rdLr788ksx+9VSU+NEY5CQVk8wGMTh4aGwPweD\nQfh8PmiaJkxXZIsmlV21WkW325UFNCiazfgBAVSZa9c0TYpuAoGABNB8Ph90XUe1WkU6nRY+RHXM\nzFLEQH9tCXfSbreLTz/9VCjhPB4Pjo6OYLfbcf/+fVy7dg3dbheff/45PvnkE3FZuJuO2uVYPxAI\nBCQ2MTs7i+9+97s4PDyUTFAkEkG9XkehUICu6+LnM/tCSHizTBFTwFzQ7XYb29vbfSX0kUgE3W4X\nc3NzEgPh3KULa7PZcHh4KIt2kqIiq9WKxcVF/PZv/zYSiQQymQx+53d+RxR4p9NBJpOBzWbDl19+\nOTGB7cDzvvQRvgax2+2IRCKIRCKYn59HKpWC0+kUpGEAEmjiwuaDoB/NTAHwPJpsNOm5u9Ef9Hq9\nwgBUKpUQCAQkj392dk4GEo1GEQqFhFGKvI7NZnPg/dDnZjaBO3Cn0+nLetBSIM24GrzjJCZ7Mmnv\nB0HCnZ6eit+p7nwk5AUg6NhutxvtdhuNRkPcBForaq5+UPZBVRw0lwkWQ/Pc6/XCZrPh2rVr8Hq9\n2N/fRy6XE0XHRTXKvOazpJtD+LpQKNS3i1ssFuFkYHaARDR85ixLN55TnSfq2AGQOA4tGjJbsT4m\nEonA6/WKMlazQ+pxRokaTPV4PDg7OxP8SYLhEoZ/lHU1qVw6pcAb8/l8iMfjSCQSQqPG6DJrAVhw\n43K5YLFYUCwWkc1mJSrMoM6oB0GfnZPh6OhIfEen0wmLxYJYLIbZ2Vkkk0lcuXJFIvR7e3uo1+tC\nOkJRJ5ZaQsxAIRubaLIDzxt81IlH4lKL5ZxToNls9nWBUtEYz6ueWy1/BZ5H10k8QpObpDaM2ag1\nD+MsWPVe+TtN2sPDQ0xNTWFpaQmdTgd7e3t4+vSpZCWMYzVMaNWsra3B4XDA5XKJgvV4PH1cDNwc\nQqGQKF5mqyqVytAgI5WrCg3Pfhv1+TDgyO8wW0SriVaH+oxGCS1m3l80GpXyaV0/p487OjpCsVhE\nOp2e2C0ZJpdOKXDA/H6/5LcBSE653W7LDun3+yUfXCgUUCqVsLOzg1wuJw/EDEZNPQ9w7uMuLCwI\nrwNNvmazKR2Y09PTWFxcFL80l8thY2NDsPeNCMVm59N1XY7LICkzEiyVVSvpuChZ3UdkZ0KWs7pw\nmC/JSDVBTX0+n1RJlstlrKyswOVyodlsShVlpVKR0nC1gtM4bsOEC4EFWH6/X3gtdnd38dVXX8mi\nNFpvo4TjuL29LbUDdCHV8uWtrS0cHh5KTYjL5ZLgMF2KRqMxNIDKSkhaPU6nE1euXEGr1YLdbpdN\niudhoRStWgLsMlMwTkWjGsc4PT1FtVqVNOrm5iYsFgtcLhdarZZA2L+qeAJwCZUChZOK2p8TgZOU\nOP+apmFvbw/ZbBarq6uCgMzJOMis4g5rsVgwMzODubk5CTrt7Owgn89LZJksxj6fD41GQzgeDw4O\n0Gq1XkDtNRO6ELVaDaVSCTabDaFQCMD5ou50OvB4PDg4OOgrPab5fXJyIiY+rRiKMfug+vgqMzXT\nhazGZCETcN4nQpOeCoLXNow/QxU1b85JzVbf6elp/OAHP0Cn08Evf/lLbG1tCVnKpEIfn2nMcDgM\nn8+HWCyGUCiETqfTZ+lFo1FRSlxozWYT5XLZ1H3gfdBNoQLm/GMQmM+Fi50WHutH6F6SS4PuxKgU\nqDrOrVYLxWIRXq9XArIul0vqWrLZ7NjKZly5lEqh1+sJww5TjiqM98HBAaLRqOTAHz9+jN3d3Re0\ns6oQjG6EOhGOj48xOzsruWir1QqfzyfsTDdu3EAoFMLh4SFWV1fx4YcfYm1tTUzfUQqBgT6LxYJ6\nvS6EpCx6Ylyh0+n0Ra8JF04a9WaziUqlIpFsTgSzDAQAIX7hxD85OUG1WkU8HofVakUsFoOun7NR\nFYvFPqZpKgPVHRk3963ycjDL8t5772FlZQVfffUVPvnkE2nguYjouo52u43Dw0NhwWLRGTM7JM89\nOzuTxjWa/AwKMz417J56vR7K5bK4q6yZCQQC4kr0ej1xY5lhYD0De3LIcD3qfKqcnZ0hl8shnU5L\nUxyrbR8/fox0Ov2C2/oq5NIqhWq1imKxKFRu9DvpKzYaDeE+zGQyUtqqKgF18ZhVfnGxMkBlt9sx\nMzMj6To28cTjcWxvb2N9fR2//OUvsbGxIZOSwTejAjIK32MREADhjoxEIjg6OoLf7xcFwcXOz9Os\npwXE61cbrczGkRgM9XodkUhE+jRYhtzrnVOpr6+vC4GpEbFKfR0lqtsTCAQwPT2N73znO7hz5w48\nHg9+9KMfIZ/Pj2x4GiUqbgDnBusVqtWqNLL1ej3huSD4SrVaFXbyUQG6Xq8n9SrpdBoAhIFKtT74\nzKho2u22EMByXNTXUUJF3Ol08MUXX8But+PatWvw+/0ol8t49OiRWAmvWi6dUuBiqNVqePLkCSwW\nC0qlkqTJqOk7nQ6ePHkitQTcyeiTqybVqDQQyWJZfRYMBrGwsCAls+l0Gh9//DEePnyI7e1tif4b\nC0aA0YhOvV6vbwcBzoNwat6dk4H19Kenp4KvoFZqqqlGdfzok/L/BAXh91hRGY1G0Wq1UC6XpWeD\nLheVnRqhH2cRs9GKNHh37tzB9773PczNzUlvh0pN97LC6ySgDlOqNptN+ERPTk7g8/kQiUQAQIJ0\nrJ0YFP8BIBtEvV7va/lmB6Tb7ZbvsdKRz0+lLuS4jlM9CTwPch4dHeHg4ABra2uSrt7Y2MDTp0+F\nR5Kff1Vy6ZQCcH6D9Xod+XwemqYhHo9L1Jh+NU1pNQJPE5k7t9qCPWjQmP9/+vQpgsEgYrEYAEhk\nt1KpoFAo4G//9m/7KMCMQUXVSjBTFOpnuVCpvJxOJ2q1GoLBIEqlkvizrLjjK81Vmt7MYpgpJWP6\ni+diwIzuSy6Xw1dffYWDgwNhv1ItK7Wke9CENi4iktAsLi7i9u3b0jj2+PFj5PP5VxoU45jqui6u\nEjsk6/W6BHK5Y4fDYWiaJu7DIOVEK4ybVLfbRa1Wk5Qgg8WsZOR5eUw1yN1sNscq3Ta7BrZdr6+v\nCz4Ig9uvCn7NKCMZojRN+18B/AcADnRdv/Psvf8WwH8GoPjsY/9c1/UfP/vffw3gHwE4A/Bf6Lr+\n05EX8YwhSt3xCHfFnZ+7smrujRvJVcXMxA8EAkgkEpidnZXJxAfPHd0IAjrJuTi5aMnws+ouz/9x\nd1aPpyo7HlONFVDRGL/DCju1jHtqagrxeFyU39bWllhcnNCqkqVZrCoEszFQayoCgQDeeecd/NZv\n/Rbu3buH4+NjbG5u4he/+AV+/OMfv9Le/1HC8WCFrNvtFleDVoRRjA1R6ubCcWEQnNkptdycY0ZL\nj2M6CvFp3Pt5CSXwyhii/jcA/xOAvzC8/z/quv7fqW9omnYLwD8AcBvAFIB/p2naiq7rE28NXPwq\nRRtgjlT8stLpdCTyzoetTpxx0WzUyL+ZSUpFwDiAccJxoqhgLOrC5yRU8//GOgWei2N35coVHB0d\nSZ1DPp8XXAT2R6iszKqbw/OPkwPnMyJVOmM9dIM2NjYE8+JV72yjrgt4nrZttVrQNG1kWbDxOfLZ\n8Dvqd1WEKfV5sK6BSnvStO6w+/k6ZaRS0HX9F5qmLYx5vD8C8K91XT8GsK1p2gaAdwD8apKL4gIZ\ntPMafzfKpIPOSa/uxnyAVE7DjmlWEWd2jWoEX13IasWj+hlj0RMns4rmbFacxffVlCSVEOs9zs7O\nZJEaAU7VyWzM2Awbd/7v8PAQT548wfb2tmApZjKZsTI1X5dQSaqKeFwxm4eDrFX1+Gpa9uvYzL4u\neZmYwj/RNO0/BvAxgH+q63oVwDSA95XPpJ+9N5aog/Uy5uU4g258SOPkjsf9n/HvSX3oV3HvfDWD\ntx9HzK551LiqyhUAms2mZI9+02Icl2H3Mun4f5MW/DhyUYSGfwXgKoD7AHIA/vtJD6Bp2p9qmvax\npmkfX/AaXstreS1fg1zIUtB1vcDfNU37nwH8v8/+zACYVT468+w9s2P8OYA/f3aMX7t6VRl+zIqa\nVDNe/dv4u/oZ1aQHMJYv/lr+botxHg2aT8b3JpFJP38hS0HTtJTy538I4OGz3/8tgH+gaZpD07RF\nAMsAPrzIOS4qahR4lNBnNgbq+D6DQ2rmw1iboPqPr+XXK2rGRv35TV0L4z4sQJvkWtTNR/0+fxgA\nZ0aISN3MfjAI/SrGYKSloGna/wngdwFENU1LA/hvAPyupmn3AegAdgD8589u6JGmaf8GwGMApwD+\n8UUyD2Nck+lOPUlk21hPoEaPx+3UM/7Oh2NWTz+JqN99FT4qA11mGZGX2YEui/wmrp1zUCXwYb+O\nyuKlZhwGzSvj9atzW/2dSkH9MfalqNbvRcdkZJ3Cr0MGuQ/GnDCbawhCwoo8XdcFQJUNLCrYidmC\noGYF+lub+TpqXIwPxxixZxpqzPuX7zOXDjwvOBrU6TmOcNx4HlpGnMgq+Qvz9qqVdFlF3SFZdQjA\n1Jp7WVGfD/C885TAsTdu3EA4HMbs7CxarRY2NjawtraGnZ2dvjoFs/E0KgCzMmjjHOOaUC1dNXVP\n69WYzscrrFP4jYjL5QIAQbjx+XyYnZ3F3bt3MTMzg1QqhWAwKJ/f2trCl19+iV/96lfY3d1Fo9EY\nmotW0XDVRhVi/Hk8HoEsV01BKhpOSGI5xONx1Ot1AXgd1M6qWgH8fjAYxPXr1/G9730Py8vLiMVi\nKJVKWF1dxc9//nM8efJEQE8nmeicvBaLBdFoFNeuXcOdO3fwne98B1NTU0gmk+j1elKSu7q6iv39\nfXzwwQdyTjOqvXFENaPZ8cmFTPQicmi0Wq2+StFRYrPZ8P3vf18Qs5xOJxqNRh+8WqlUwqeffop8\nPi8o0Re9D+Mz0zRN4O2Wl5dx9epVfP/734eu69ja2pLuS3XhGmMDg87lcDig689Rorxer3Bler1e\nKcUnAhd7Y9iNyXFl9S8wubV5aZUCgSs4admqSgxBts9euXJFyEbI1pTNZmVwBokxWMhdmpBpKk8C\n+SYIqcZyYE07r30PBAIAIDBkLHc1O7/RXKemDwaDCAQCArpC3D1SkV3EHeEiI9flgwcP8Oabb+LG\njRsCHsMuO7/fj+vXr8Pn88HlckHXdTx+/FgUwyTCnYwdn6FQCNFoVCw8WnMEclXRg0YJOy/v3LmD\n69evIx6PC1gqFxQbyLxeL95//32x2i6CY6guKLWyls+4UCjA6/VidXVV4AJJE8cu33GUneriEZo/\nHA4L3wTZxEhjQJQxXT+HpaOVrL6aBdLHkUurFNTgHnAOg9VsNrG7uyuMRZFIBNeuXZN++kQigXA4\nDK/XK52Ig4QaX8VtIL4/SUSnpqZEMRCTkYQfnCChUEjq6YvFIpaWlpDJZEZ2w6n+H9GCd3d3EQ6H\n8dVXXwnAC+HDaeZfJPJstVqxtLSEGzdu4ObNm7IQ8/k8CoWCTDqfz4elpSWBf3M6nfjwww8nVgrA\nuWIgTFoymUQsFsP09DTy+bwAvqjlzuPcF8dqeXkZb775JsLhMKLRqHAxHB8f97U5f+9734PX68XP\nf/5zrK+vC5/GpP622WeJxlSpVBAKhQSYhmjb7HcY51xqwx4/SxZ1NnIRU5MKrt1uS9s2W8XZ8s6m\ntGEI3MPk0ioFVcMSS6DT6eDg4EBKdUkdR8CQeDwuFsKowaDrwFfW7EejUdy8eRPz8/N9PAvEbiAm\ngdVqFdJRQn2xQYbBxnHvkU1Ph4eHePTokXT6ES04Eokgl8tNvDjpDnFnfeONN+ByudBoNLC6uoqP\nPvoIe3t78Pl8mJmZweLiIpaXlwUCz+VyIZfLoVKpTDS5aCn4/X7Mz89jbm4OiURCCF8IaKOWfI8j\nNMeJwOX3+6Wzk6XVrVYLVqsVoVBI4N/YPNdqtV7onbloio8/BE0hFoau6wKEM4ny4Tzk+GmaJnid\n7GEhczY3HSpzxjcajQZ8Pp8wk08ytqpcaqXAB0atnMlkxIyiyU/aM7fbLTBsDO4ME7Uc1el0wu/3\nY3p6GqlUCktLS3KecrmMcrmMp0+folwuSztrMBhEJBKBx+MRkpB6vf4CYcooIYhHNBoVshDS3hHA\ndXd3dyjt3TBxuVxYWVnBvXv3hMtic3MTP/3pT/HZZ5+hVqvBZrMhmUyiVCoJs3E8Hke73cb09DS+\n+uqric1umvOxWEzYrLLZLI6OjuBwODA/P49qtWpKaDNIaDlWKhVsbm4KH0ej0UAul0OhUBCeDJ/P\nhx/84AcAzolcpqen5flxTl00Q8RrJdsXgVo1TZPu2klcFfXe2WXKlCOVILt1c7mcUAy0220Eg0GZ\nO7zvs7MzZDIZ4VGd+NlN9Olfs6ganfEE7txerxdvv/027ty5I2zJpPJifb8xzWP8m/682+0W8/bu\n3bsIhUIy6Ht7e8jlcnjy5IkoJ4/Hg2g0il6vJwFJ0q7lcrmJ0HB6vZ4waRMJ+OjoCLdu3RJeiIti\n+hMd+ubNm8KMXSqV8Ktf/QqfffYZDg4OpM242+3C6/Xi6tWrspBJEjsJ/yF3OQaIp6amAJzD7m9t\nbQmr0/z8fB+FutlxzNJ0bGFeXV0VtidiI7TbbVEKkUgEi4uL8Hq9iEQiSKVSAo6j1phQJtnR1WAz\neTOnpqZwfHwsvCCDumoH3Rd/JwQ9eSoACBZjtVpFuVwW9Gt201IBE3dDJcT5VrkPqhg71DRNw9zc\nHB48eIB4PA5dP6fT+uyzz5DL5cbCrOMxqZk9Ho9wP/j9fokRFItF5PN5oTNjRJiMykThyWazyGaz\nEugZt7OQpnYkEhHo9VAoBL/fj16vh2w2e2HoMk3T4PV6hemZrE27u7vi89LiIlhtJpNBMplEMpmE\npmlYWFgQtqNxLSAqIwYu9/f3sbOzg0ajgatXrwp4arlcNs06mO3gahS/1Wrh448/Fro7xiao6DlW\nmUwGU1NTOD09FUg2gtUYW80nXTw8VywWw9LSEiwWiwCiDHJfB1kmxvoCWgnE0GDwknD4VEgEomVg\nmEpJZRC7yLz5RigFCgc1EAjg/v37CAaDOD09RT6fx+PHj/H06VNBKjI+lEEam9H5QCCAUCgkyDrE\niNQ0TWDQgeecFIuLiwiHw+h0OqhUKqjX69jY2BCIrElgt4DniEU+n0+aiDgRarXahR6u3W7H9PS0\n8AZ0u13htSAwCFOupJGn9XN0dCR8kExrjisE200kEmL6ksuSJu7R0ZHA6Jn59oMWKU1/gpxQGZCI\nV0VKqlQqwgdC9ClahyoU20UUAoOe8/Pzgk5FRKdBytPsPMZaGs5xBh8J1gJArp8wgcy22e12CXTS\nUrloChb4BikFug02mw1TU1OYnj5vviQDUCaTkayAUSObBZM4uNTMpEoHIEE/u92O2dlZsSAYDHK5\nXBLBPz4+xsHBgcC903QcVxhIPTg4kCwG03YUAs5M6gNzURMctt1uI5fLCSu0x+MREhtya5ABmteS\nSCQuFGRkxqZer0sQjjubw+HA7u4ucrmcfEd9HXU+FbCEc4IL9fT0VBYUqduazaYgWKsEsOrmMW7A\nkeex2+3C9OXz+QTOjuPO5zXuMSlOp1MyD5zPDJwSkpDuEIPhzKownkUavUlbxCmXUikYy29Z5ReP\nx/HGG2+IlfD++++jXq+j1+shGo3i6tWrqFar2NnZeWEXMOI0skTUZrNJRiGTyaDdbkulH92Ds7Mz\nLC8vI51Oo9PpCJLR0dER1tbWsLe3J3DvNNnGfRjMeROynPDvkUgEwWAQDx48QCKRwKNHj/DZZ59J\n7nsccblc4ndyghE7MRaLCYbgycmJQNxduXIFoVAIXq9XuBICgYDAmY3z7JhuPDk5kYVTKBTgdrtx\n584dXLlyBZnMeZ+cx+MR1wzA0DSeuquyToTvqxWOXq8XMzMz+MEPfoBisYhmsynMUJFIRHxzQtAB\n4zWvcS4GAgG8++67eO+99wQZ++DgQJQorZ9SqdQ3BwfVDfD6mfGxWq2y0/NZWa1WnJycwO124+7d\nuwgGg+h0OiiXy6jVasjlcmg0Gn0o6N8qS0FdUDQLfT4fkskkotEorly5glqtho8//hhutxsLCwtw\nOByIx+OIx+M4ODiQYhUeyzhAfDinp6eS8iT34tHRkVgRanDz9PRUUIoBSJEMadxVP24Sc5umJ2sg\nLBaL5OCZc8/n80LKOq5SYKpODYoRmpw7CoFgycFYrVYlB85deNzMh1rq3Wq1sLW1heXlZXS7XbHE\nyHhVLpelHF0tSQcm8++NJeKcJ2+++SYcDgd8Pp88Cy5gh8Mh7NMszhp1Tp6DGZWVlRU5Xi6XQ7FY\nlIK3WCyGRqOBWq3WF6A1VkfyPeB58RLRtrmxcGwYFwmHw1haWpIxLBQKogiYhmTtzaRjSbnUSoGT\nkoVJV69exdTUFGw2G7a2trC5uYnr169LTnx2dhbb29vC9cjdiqaiuhtwEjKjQEhutR+Ai8Vms0nU\nmsSzVAalUklQpo0QXaMi9qrZTABQBk0Z6AsGg1KgonbOjZvCOzw8RC6Xw+zsrPSNhMNh5PN5CfSp\nvQ80r2mG67ouNGnjytnZGVqtFj744APs7u4ilUrJs7h3757wNbTbbYkLqJmmUfdkHEMqBELKX79+\nHTdu3JBMDq0/KgSmrGluD4Kc4zhzzFmivbKygjt37kgalzwenU4HXq9XgpqM2zD4yYWqjqWqDFUF\nR1eWtRXcJKampqBpGmq1msScWNJ/fHwsblq73TZVQuPIpVQKwHMzlFWLt27dws2bN+FwOLC3t4dM\nJgOfz4dUKiUMw3a7HYuLiwIzxuAWH8ggOG+1BVXXdTidTnQ6HaFp48JIJBIv5I7L5bKQ2qr0auP6\nkgwuzszMwOfzIZ1Oo91uI5vNYn5+HjMzMwAgfuMkD5kThei/rNdn+Ww2m4XNZsPx8bE0SSWTScnA\nBAKBoSxbZtLr9YT302I5J3nd2dmB3W4XyjjWYqjo0ZMKFw9dBloFTA+6XC4pjuI9ksuDxMEHBwcS\n1DVTtOqCvXLlClwul7iw4XAYvV5PELHZL0PS40wmIxkkNrUBL/I+qM+TMReVKpEKj+ldPrfNzU1s\nbW2JRULHHCp9AAAgAElEQVQlznt+GV6NS6sUWD/A1NaDBw8QiUTENE2lUlhYWMC1a9ewsLAAj8eD\nbrcrLkStVpMeCTOcPJr4uv6cY4HuAYOJrIJTi0QYS8jn85J+YtRZbZMdtXjVHYFsVKxe466taZr0\nehBeHOhXOMOsBl4bg58OhwMejwcLCwvSa0A275OTE8zOzuLq1au4desWZmZmBBp93JQoMwPqTkgX\nhkG/RqMh5DQXVQjq+KkNbPTJmeNnfwJ3cRV3s1KpQNM0yRQNy3YwaMi4FlOFJJ2NRqOwWCyYnZ2F\n3+/H1taWEMXoui7n4oI1Hp/PUA1is5Gs1+shHo8jmUyKBfbRRx9J8Ravm8/XiMj9raho5MOmsLCI\nxUUkwKAbMTs7K3Rd3BG4ENRc9CDEY+DcRGOXHYlCGa0mbyXTlYeHh9IN2Ww2pcNPNTXHCfKoZbIA\nkEgkJH+fSCRw8+ZNxGIxHB4eit84KTT6yckJ9vf3sba2htu3b2NhYQHBYBA3btzA7OwsVlZWsL29\nLWMQCASkR4IFWaQmu6hQUahWlOprX6TM2Ciso2DUnm3hTOdRATI7QFZqlkSPYllSg9XsXmSQOh6P\nY2VlBT6fT+YNr4HVmsa5MUh6vZ7MpUAgIO4cM0FHR0fY29vDw4cPUSwW5djsDG02m31xiG9NoNG4\nsHT9OR2YrutiopHm7fT0FK1WC4VCAevr6/j888+xuroqhR7jEGb0ej00Gg1Eo1Hp3GP6ikQ0sVgM\nPp9Pyk0rlQqq1arApxtNzXF3VtXfnJ2dRSqVwq1bt5BKpeBwOPD48WPs7OxIJRvwIrDMsOPXajU8\nfPgQgUAAf+/v/T28+eabCAaDCIVCSKVSuHnzpuT1NU2TMlnWfnz00UdCNvsyomaRqNgnSdsNEip7\nFvGw3JcBYl0/58oksRBZvxqNxgtw+WbXrI4z40y0IGdmZoR/tNPpSEXr+vo60uk0yuWy8Jqq83mQ\nkAGMDXA+n096GSqVCg4ODpDJZERR08Xm/KGCUy2wb02gkTdydHSEcrmMnZ0duN1uSS3RzC6VSigW\ni3j69Ck2NzexsbGBXC4nrat8EDQTVTF74LVaTeoRmJpj1JdlzwySkbqOXXE8D7Ma4wYCyU5cq9WE\nINVqtUp14fr6OlZXV6VNdlLpdrvIZDL4xS9+IXR3d+/eRSqVknJgNtA0m01Uq1W0Wi08ffoUH3/8\nMdbX1yequxgknOQqIAjHaxLFoGYoqGhoajP2wyBisVjE9vY28vm8kAWzg5H1GIw1DBPOo06ng93d\nXWl6YyqcxMMPHz5EoVCQxi8WEamVhWabBTctpsZtNht0XZdUp91ux8HBgQQ1GXxkVoxKjelVlVbw\nInKplcLp6SlKpRI++ugj7O/vIxqNIpFIIJVK4fj4GE+ePBE6cnWB0mTlcYY13HBgWRBzeHiI4+Nj\naVX1+XwSLKpWqwKiwt2CD5QPhp1848rp6SkODg7wwQcfwG634/bt24jH45JdefToEfb39yViPsrq\nMRvH4+Nj5HI5/OQnP8Gnn36KlZUVfPe738Xs7CxmZ2fRbDZRq9Wwv7+Pg4MDNJtN7O/vY319HeVy\n+aXNe+B5Xcj+/n4fliFfx1WkxlgNsxpM5ZK8lqXnTPcCEKuAVPTGeWIUYwzq8PAQ+XwejUYDW1tb\n+OCDDyRNvLm5Kf05tCi42QzLrqjVjAxINhoNsZAZuyB2A+c5cF4kxR4ItU9imAIaRy41HNvXKWrA\nhyAd7Iz0+/3wer1iitJfY4cac/vqDqpCsT27pwujOavuyEUf7CSiLjQ1HfyqiFs07bwTNRaLYWZm\nBsViEdlsVvr/Jz2H8XpZy8I0IHsHqOS5W7ObFXheG/KbRtxW05G0pph6ZrqUbrAJvNoLx6E7pcZs\nlDk0Fhzb31mloPL98YHQbVD5F6ntGeihz6Zqf7VoRzWFXzWR6jdZmPL0+/3i179KglTVFVGtP+Nz\n4rV8XeSsk4qa+dA0TTp++T6zOaNqOdSMl3EzUT7/WikME8JhPzt/H04j3+Okof+mckoalQmAF+IK\nr5XCc1HH+utajMMqIlWloXZU/qbF6A6xaImiuoy8bmNK2viqWquGsf5mA7d+3TLpgjV+/rU1MJm8\nTDR80nMM+p/6/8uwGQIvXsek9IXDxvWi93hR2rjX8lpey7dU/s5aCq/lXF6mTkDFFATMI+tm7oLR\nRVOvwWgOj2OJmd3DqyiK+rsq3wqlYJxUr2oyGP09o18M9MNzXdZJaFycxusfVpI96p4GKQLGVEaN\ni6oYjO+Nc1/GwrFRn7+oC2FWU6GO6df57NUgIkWFhAcmY0cbJd9opWCMuAKv1lccJ39tDPpcVsUw\naCdWFYX6OVWMWBSqqMczWyTj+vl8NQZ8B4lZcNh4r2bnMzvOOM+MTXOqMCh4dnYmpeCvckMyHssI\ntGOWYRn03UnkG6cU1LQSy5HZ88/iJSOxyKtMeZkhIKkTe5KOQuPxjcd7FWLs+TDb2fm+cUdSlYWZ\nYtD1/lLll92teBymFM2ON8jlGPe8ZtbeKHE6nUgkEggEApLKJrIT+2yKxWJfmvWiYlSyAPrS5A6H\nQ+Y7SXRUCMJXYTFfWqVgXHgcGJfLhWQyieXlZbz99ts4Pj5Gq9VCLpfD3t4eNjc3JQ+udosNm7DG\nCcbuRbfbjampKWm6YhEMMRpYssta/q2trT46LzMhFZ3NZoPf75fcPcE2ASASiUi6c3t7G+Vy2RSh\n2njtZufiOBI2nLsbKeX4PwBS6NPpdF4A/TS6HOoz0nVd0INV1Cm1HmCQ4jAW79D1sFgsppF4HotA\nJF6vV6DfVKYpFcrM4XDIBqJpmvRFHB4eolKpDK0UtVqt+P3f/31cuXIF9+/fl54UAuDwfn/2s5/h\nww8/FFatixRFqS6KCi7EjuDl5WWhM2i1WiiVSnj48KHMEVU5cBy/VcCtxonH34mmTCjv4+NjuN1u\n2Gw2qeE3Tt5hPr9RIfCBOJ1ORKNRzM3NYW5uDl6vVzANVMo6ANJTzx1ELZ4xnosTn33+BOIgGnCv\n18M777wDr9cLXT+nEHv8+LFU/6n3ZfxdFV6DpmlyHuIysnGIDE6cgI1GA5lMBplMRtqpjUU+ZvEI\nFnk5nc6+3c34DFiVp+IgsCmJHAVc0L1eT1qBjfdFa4KAMV6vV7AfCHjDdnjyL5I0haA6fJZq8ZCZ\nwmUp8fz8PKLRKOLxOPx+PzweD4DntSm/93u/J7R/jx49mnhBmsVEOA+5CXo8HqGmYxFdMBiE1+uV\nlnTeg7FWYRK5tEqBopqwtBQ44ba2tqRdlOSaat33qMUzKGrNbr5UKoXl5WVMTU1hc3MT2WxWujNJ\nZgqcKwlaEaq2NxN+5ujoCJVKRZqEut2uIOecnZ3hxo0bcu+rq6sTdRSaZQWoGLxeL2KxmGABhkIh\nBAIBuN1udLtd6dDb398XLAIzv5Xn4e6rYhkQro6txrxn4jN4PB5h16JcuXJFOk/b7bZgXhrPx7El\npFogEJAmMioLtSXa5XJJo5nf75feAlpeKqrzoLEkwjeVH2HceB3hcBjz8/PQNA1Pnz7Fzs5OXzv9\nOGLmEtntduFI5bx4+vQptre3hWOUJd201IDniuqi7tylVwqqsL6dkymbzUofvd/vl88ZS0LHiUyr\nYrVaEY1Gcf/+fdy4cQNWqxV/9Vd/JdYACVKCwaBw9hGsc5gpyt1SragjjDzfIxRcJBKBw+FAvV4X\ncNlJui+B55BqBG2hclDJQugGBQIBnJ2dIRQKCRUeS2zVXdyYIuSCISAscQTpf/N8aqluNBoVyDIq\nDKIx1Wo1ZDIZaSOmmPnYbKOPRqPwer0oFApi2bC5SNfPCViTySQ8Hg96vR5arZZYR+yqHNS9eHZ2\nhkqlIqhRxK+kpeF0OrG0tCT4odPT030s5ZOI0RpjL4TH40G73UatVsPGxgby+Tyi0SiuX78uCpld\novz+y8g3SinwIVM7ZjIZIRhVgU/pz41aQIN8W6fTibm5OczPzyMSiSCTyWBnZwetVkvg1wmqQXIO\n44Ifdk7VxFN3c/rg5GtotVoCGfYyASwqn06ng0aj0UfVpmI/np6ein8OQMBEqFC4G1MxqO5JIBDA\n1NSU8FCmUikhSHW73QDOW+HJqMWuRirVXq8n7eiMywwCv9W0cxCSQCAAl8uFYDAojWr1el1wGYkq\nDZyD2EQiEdRqtT6YdzVYOmjsiM1RLpcFr5NAKlNTU7hy5QreeOMNYWgiS9M4KdlBwnHt9Xpot9s4\nOTnBxsYG9vb2cHR0hFAoBACyManPhMp3HJxQM/lGKQWLxSIdjKRuW1pags1mk52GO7bZgh/1cBhg\nTCQSuH37NpaXl9Fut7G9vS3Qbh6PB/F4HLOzs7Db7QJ+yl2e1sIgf9LMpeH1MR4xPT0Nm82GUqmE\nR48e9bXDGsU46Yz3agw68f16vS48jG63W9B72LZr3EH5XfU66MbRSlhaWhIYMp/PJxyH5NEggnS9\nXpedllygLpcLpVIJFotFgmZmMRn6+SQE9ng8QodH6j5modxuN05OThAOhxEKhcTiqtfrci+0lAaN\nLwFn/H4/yuWyWHJ0ZfP5vIyDGosqlUoXAjtRNydaQzabTZDDj46OBC+Syp3Bb3WMXsZa+EYoBS5y\nDhQRaRwOB/x+P6rVKvb29oR30czMHvZQ1Gi5x+PB7Ows7t27B4fDIfwAVAjT09O4ffs2FhcXX6Bg\nY7CNBCuT3J96DYuLizg7O0M2m8WTJ08mwjI0mqCc/Jy4xLJUg5sqDgVBP/m+Gs02jiNxJohreXR0\nhKWlJSGDITt0oVCQ38vlMprNJo6OjpBKpeB0OhEIBATItV6v93VRqkKMQ15DLBZDKBSSrANRjQnD\nRncoFovBZrOhUqlgb28PlUpF8A5otQwSuhsnJyeiEGipEr3Z4/GICwmcuxRUhsPGb9hcoKXA2Ilq\nAZOentmjRqPRp8Bp1V20LfwboRQoKtwUTTSajSRLHYZsM0yocGw2G+bn5xGLxdDtdpHNZtHpdBAK\nhRAOh7GysiKcAoVCAbVara+HXXUhLmI2cges1+v4m7/5mz5wTjMZFEBV/8eJppKPMrvByUwqOWIb\nMtahac9Rq8wWKXELSFTCYOXx8TFKpRLK5bIAzxJu/vj4WKLqNHGJiJ3P54em9Hgv3CkBiPnMGApT\nhV6vF8lkUmDRy+WywKKzPXkchctAMq0K/litVoTDYfHnySHBOACzAbTUhj0zs/skeU+z2RRQV9Ul\nIyK1ih7F87yMu/mNUgqqCcwJXCwWUSqVpFbATAa9b4z2MpLM1FKlUhEffGFhAdPT03j33XeFT4Dn\n5OIAMNBSGUc0TRMW488//xz5fP7C7b1maVbuHl6vt69Fl2xQFosFjUZD+CUZYCTSjzFCTr+VioVE\nOoS/Pzw8xO7uLiqViqQX6WoRCi4SicBisUjGQQWwUU1gNaYBnNdy+Hw+hEIhgfLnAmXWIZFIYHFx\nEZqmCdmPyqPJwOkov5vPUw2cer1eLC4uYmFhAclkUuYK06sq6QzToMZnM0rOzs5QrVb7MBb8fj9S\nqRQCgYCgdfN/xqzD16YUNE2bBfAXABIAdAB/ruv6v9Q0LQzg/wKwAGAHwN/Xdb2qnT/Jfwng3wfQ\nAfAPdV3/9EJX138dAM4nMH1WQmr5fD7Mz8/DYrEI0aaRmQcwL4el9mehiNfrFTiy4+NjmbiRSETg\nt0ulEtbX17G9vY1CoSCmHRXEpA9DTbMtLCyg2Wzigw8+ENz/SYWLFXgeDNR1He12G263W3aws7Mz\n3L59Gw8ePEAgEEA2m4XD4ZBiH5rXDASaCXfQZrOJfD6PdrsthLIWi0UKvQgtFg6HEQ6HcffuXSwu\nLsJms2F3dxfb29t4/PgxCoXCQB5EQvAzmEefmmnJN998E1arVbILoVAI0WgUvV5PoNnIo0mXaVyQ\nXWYCGIBeXl7GysoKZmZm4PF4JAjY6/UwPz+PYDAolkmv1xPULs7RUXOEbkuhUBDGMrfbjWvXruGt\nt97CycmJcIRwQzLGRi5qrY5jKZwC+Ke6rn+qaZoPwCeapv0MwD8E8P/puv4vNE37ZwD+GYD/CsC/\nB2D52c93AfyrZ68XFjV4YrfbZWLncjnB2wfOK/L4M2nhCBcDy0cLhQIcDgd0XUcsFpO6BAK87uzs\nYH9/X1h+eZyLCJUTST8+++wzZLPZPor1UQFFs3sCIAVCAMSv5/8DgQCWl5fh9XrR6XSEAIdKhSYy\nd1Z1t6Mws8HK0pOTEwEt5XV3u134/X4x7ROJBObm5iSTQ+BaVlIOuy+a8sRZBCDpTxLpMtXo8/lw\nenqKer0unJJcqHR5hvnd6pjbbDaEw2FMTU3h+vXruHnzppADkSD48PBQUrrBYBCLi4uS8UmlUiiV\nSnj8+PHgiYD+cnq1UMvlciEcDiOZTCIUCgmJDZ+vukb4c1Gsj5FKQdf1HIDcs9+bmqY9ATAN4I8A\n/O6zj/3vAP4W50rhjwD8hX4+mu9rmhbUNC317DgXEnWggsEggsEg7HY7CoUC4vE4jo6OEAgEBG67\nXq/37djDFpCaHuSkzOfzqNfrmJmZQSgUQqlUgtfrRTgcRqPRQLFYxObmJnK5nOD8qZV4F71HRpo/\n+ugjgXRXo9G8XjW6bPRX1ftSi324i9BK8Pl8QnADnGcj9vf3sbOzg2KxKOxSdCXUmgf1mmmmMo1Y\nr9dlFz45ORH8S5XFe3l5GXa7XRT706dPkcvlBGV5WL6d59vf3wcAqWTUdR3JZBI2m03ciZs3b6Je\nryOdTmNnZwf5fF6CjO12W57dqB2VCttut2Nubk4K2ggt1263xYLluJMpigHdL774Auvr68hms5J5\nMZ5DtVxVXkin04np6WmEw2HhuGBQWA0SG+fFRTepiWIKmqYtAHgA4AMACWWh53HuXgDnCmNf+Vr6\n2XsXUgrUhFarVfLSuq4jnU4jm82iUqng2rVrcLvdCIVC2N/fl0msRmOHDRCj6PSFj4+PEQqFcHJy\nIuxKc3NzEnQrFotCKqqeQ/XjJjHduIOGw2E4HA7ZZbmg6Jfys5RR98WJzJ2TKVer1YpUKoXFxUVY\nrVZUq1U8evQIT548wc7ODmq1Gnq95+Q6rLYcdj/sAVGVBtOaXBiapuH69etIJBKwWCyCiLyxsSHW\nhapYB90bMwyZTAbNZhOFQgFOpxMbGxuyaEKhEEKhECqVClZXV7G7u4tcLidWDbMywwh2eL+MD7AA\nihR/XLx+vx8rKyvynPisqCTq9TquXr2KR48evRCXMZ6LCogFSXR3PB6PpIypgBmAVCkGeIyLxrWA\nCZSCpmleAP83gP9S1/WGIQikaxPiLGqa9qcA/nTU53hj7BXQNE0g1plTVzUlNajaVjpKY+q6LgqA\nr51ORxqVaIEwh87JqFojatpUve4RYyCLPxQKIRKJSDUh/XGW0xoRno3nG3R85rTp/tjtdiQSCdy7\ndw8LCwvIZrN4+vQpfvWrXyGTyfQRvqr8AWaFOGqzGRmXGIjzeDzybKgQIpEIkskkgPMS9U8++QQb\nGxsoFot9XJzqmJo9q7OzMxQKBVFyvE+HwyFsXrQYNzc3sb+/38eXMKyfw0yomFl7wdQkA8wul0tY\nxw8PD+V9Xhch6Fn8NiqbpF4PU6sAJIsTDAbRbDalAlR1McfdCIfJWEpB0zQbzhXC/6Hr+v/z7O0C\n3QJN01IADp69nwEwq3x95tl7faLr+p8D+PNnxx+5gqgRGdRisIaUcvRdVYXw7Ngj748TjblranvG\nLvx+P3RdF4KWarUqiwTAC+caVyFw8TgcDszNzSEejyMUCuHw8BDRaBSZTEZSpTwfd1314Q8StUOR\nPqnb7catW7eE8erHP/4xPvvsM+zt7Ym1RGuEv3PhmxUTqWPYbDalaYfXzLqSYDCIBw8ewO12Y2dn\nR0huqtWqFDZRIahuySBpNBqiLPnq9XrluXEnPTg4QK1WkwpKjol6T6N2VS5K0gXu7OwgHo+LomWs\ni/TwJycnkqas1+s4PDzE2tqa8JMME3X+8doYPOV18n54LKfTKYoHuDjfA2Wc7IMG4H8B8ETX9f9B\n+de/BfCfAPgXz17/Unn/n2ia9q9xHmCsv0w8gZODA1Wr1RCNRhEOh3Hnzh3cvHlTCpgajYZMbKMP\nPmqhcoKwQIamr8VikYBSvV6XtJka/DMqg3F8VDVoOj09LSnPqakpnJ6e4osvvpCAGieyel/qdQ8S\nmsesKNQ0DfPz89JURvOdHAw8lsoZME5GhWPHSkF2QJKZ2e/34/r165ibm0O5XMaTJ0+wubkpjUnG\nNvNRu5zRSlJ3SVYBsv2caUg18GpUZqOeF+NFBwcH2NnZga7rODg4EPo9WhLFYlE2DXaMapommYdK\npSIBwmHC52axWODz+aSRjffKOAY5OXntVODA11+n8D0A/xGArzRN+/zZe/8c58rg32ia9o8A7AL4\n+8/+92OcpyM3cJ6S/E8vdGWKcBdn7QBbmRcWFuByuVAsFrG3t4fd3V2pwjPKuAOkNv5YrVYsLCxg\nZWVFNPTJyUlfYY+ZDDqX6gIwWu7z+RCPxzEzM4Pl5WUEAgFsbW0hnU6jWCyKYlB3ThUfYtR98Xo9\nHg/Ozs6kDqHZbCKbzSKfz7/AmM1X9RxmloLxXpk35yRmY9fMzAwSiQROTk6ws7ODra0t7O/vS5uz\nsbBnEotLdS+Jc7CwsACfz4dcLtdHbKsGXFVFMM4Ydjod1Ot1bGxsIJvNIh6PIxwOSwbl+PgY+Xwe\n5XJZui/VYrFarYZSqTQWWa8a72C8wGazwev1Sqry6OhI3GcVh0J1IS5qMYyTffglgEFq+/dNPq8D\n+McXupohcnZ2hmaziXQ6DZfLhVu3bqFcLgs92O7urqSd1Ik8ScDPaJXQ7Gbhzfb2NnK53As1EJOc\nixOewaS5uTm89dZbCAaDCAQC6PV6+OSTT7C2ttbnZ6sTmi7EOOdiOpKpPxbYdDodPH361DRjoio8\nY9OW8XO6rkvjFMeB183WXrvdjna7jUajgc8//xzZbFbo+WjKq008dJPGtfDUDIvH45GofKVSAQAx\nxRkYpJvI8uFRwtgIXRGn04m9vb2+mAF9f/ZFABB3hudrt9tjKzqmvhlbajabcLlcsNlsSKfTqNVq\nfaA/tNBUiryLyjeODEb1I9XJOClN+7DjM/jncrkQjUYxNTUlWYdSqdTXY6F+b5yxVBezajHw+9zZ\nXwWfBLMXLPhROxQJysGdaNC1D9u11T4Em80mPrbf75cWaoK6MObwxRdfCFEvAClu4qRm0NIYr1Gv\nRx1r9XnZ7XZJWdtsNmSzWXEfuPvyuKzWfBWM2oPGTcW1GNYkN+oYVD6apknnJ+e8mcU4ZB5++xmi\nJjEzL3JsBi2ZFuVu8DLpnkHnUl+Blw8WAc8zNmo0XLWERrkgo8ZXTY9qmiYZGmZQWKtPRedwOLC9\nvS1WgjqO3F3VGMawazMqV96r+sxUxmfVVVDBSF7FOA+SVz0/jbGQC8i3nyHq61Zoxrr4r+t84/q2\nkwrrL4D+HVn9/7jXNkxo/lN50iqgL86GJyoomvxq5kDNrkwSV1AtCjWFaoyJqIr3ZX3uceVVP89f\n1wb+jVYKX6dcBgvqZYW77st8f5gYFxcrCX8dMk5KVpVvw/P8dclr2rjX8lpeS5+8Vgq/RjGmMNUo\n/7AU56hjmn3votVsF5Fh53+Z+xp2PONxR43lsOv4dY7Vy8qv41pfuw8TiDEgSL91XN/ULG2pxhOM\nxx1VwKO+Dvr/RUQ9/yS1Aur3hx17UNGX+rvZedXPq2lIY1DS7Lvqe4OU2CRjNkopGUupJ5FhChF4\njqLN7INaqXnRc6ryWimMKcYdSn0Aw7gDhh3P+FnjMYYd6+vMvBjPP8mCGaT0jMcftWuP8z01JTrO\n9ZiNq1rMNOo4ZsdgcNXj8cDn8wnASqvVEoQnbhyTjKGqAJiKZNaELf6apkkTmpoiV/s7LiLfeqUw\n7oQetDtzNyLeArEhCULKMl0VxcfMcjDuKuNe0zjvv2rFYGaqD5rYZuNm3NHV91Q4M/5t3OXMzmU8\nFouiNE3rA4RheTFTnizuYWZCpXYzZiZGjYdxbNg96Xa7pQCt3W5LSTMAaeNnufmo86j4Fxxb3pda\nn0NFwQIptoGfnT3ntfzWYTQaH4TaEUfzCXie3+bn1MoyRt9pag2iclPLj9UHQ4DMq1ev4r333kMs\nFhM2nkKhIMQcmUwGnU4H7XYbmqYJnJgqZguH+XWHwwGv14tIJAK32w2XyyWLgvgCKvae1WpFpVIR\npUQE63HGlPdG5KJIJCI9GA6HQxYpdx+PxyO4hkbYO1UhGHdwLhbC25F0xu/3y3Nk52C9Xken05GC\nokwmg3Q6PRBbwW63491330UwGMStW7cwNTUFp9MpUPKEqedx6/U6Tk5OsLq6itXVVWQyGRQKBVlI\no8ToerDzNJlM4p133sG9e/ek/4YNU41GQ2o0Tk5OpHpzUDZIrbUgzL+u632Q8URfIoyA1+uV1vdu\ntytl8cR1vGgdxqVUCurupKL/EK+ftfWspydCsTrB2u12H1KQSkhiPJdaG8/dQ6XsWnjWrMTFSXxD\nXhPLZVWzzQw2XLUQuFuybZrgHdFoFPPz82KBsCNUhXwj/2G1WkWn05GFbHYudWejYiX03NTUFP7w\nD/9QevaJZ0DkKtYbUAGyV4HK1Uw5UOkQ9j0SiWB2dhY+nw/hcBi6rguUHkuh4/G4nIutxzSPjTEX\n7pYulwuLi4uYmZlBLBaTyk0iQB0eHqLT6QiBkN1ux/379xEIBPDll19KKTaVwiTWGzeM5eVl3Llz\nBwsLC8jlciiXy9jY2MDh4SFcLhfi8TgsFovAzg9boJyHbHpjc5dqqRK4mCxlZKzyer3Cc8F5Y+SB\nmEQunVIw20050bgbkCsgHA7LYLN3wOl0olqtChDHoAVKMTNRNU0T+PipqSmEQiEhGgH6B5pmMHcB\nM6fYxAsAABXnSURBVO2sKjn1PQJ0zM3N4Tvf+Q7u3r2LaDQqWH7ENSSMOrEeOAEGMREZFxMVkN1u\nFxq1+fl5vPHGG3jnnXfE/FRbl8nXSRi2qakpQTsadi4A0qk4OzuLpaUlIYgBznEU8vm8LFx2VJKj\ngWQwg3oSOL5HR0eyA9NtI3x8qVSSHZULyu/3Q9M0TE9P4/DwUPoHJhVNO0fIun79Ov7gD/4A8/Pz\ncLvd+NnPfoa9vT2USiV5NjwnIQIHKR11DI3NWmovCPsqaPXa7XaEw2F0u11xV1iw9jJZikupFMyq\n0Oi/xeNxJBIJ+Hw+IUIlRh93QPYpjIo4D7sGknokk0nE43FsbGzg4OAAfr+/D2qL2ltVBqr1Mej4\nPMfMzAzeeustfPe73xWknrW1NWxvb8NisaDZbMLv9yMYDMpu0ev1ZDGY+fnG++ZY0uycm5vDm2++\niXv37qHT6eDg4AC5XA65XE7cl0gkIl15vEeS0BpFVabcSSORiLS4h8NhHBwcYGtrC48fP5ZJzQ7C\nSCQiVsoglCc1TkG3ivgGANDpdLC1tSVAOTxGKpXCzMwMvF6vuDQej0eYsczGbNhzI3vXe++9h/v3\n78PhcOCrr77Cxx9/LFYqLS8S0XInJz6mmRjdS+OmAzzvFuZGSX6JbrcLp9MpMQUGYC9iJQCXUCmo\nEX11hyXCDZtuyuUy1tfXpeut1+uJT55Op+VYwHOEoHGF5/T7/cJlQJiy09NTcRssFssLxLbqfQw6\nNndtktgmk0nY7XZUq1U8ffoUf/mXf4lmsylKYGZmRiDRdf0c3v74+HjsZh5aCuQMuHr1KmKxGMrl\nMr744gvs7u5KcMrr9eLq1asAzolj6vU6Go0GSqXS0Cg9J7WKgMQFkcvl8OWXX2J9fR2lUqnvmRIv\nQIXI530NymJwDLvdLmq1GsrlskDzdTodafQioWwoFEK324XL5QIA2UCM8ahRioF9HW+99RZ++MMf\nIhqNYnd3F1988QW2t7f7FDRBfu12O5LJJE5PT02xGQeNI11VtmEzUEkl7ff7EY/H5ZxUqmqPy7hI\n1Ua5dEoB6I/wUiMSxz+VSqFaraJQKAi8FQNiHo/nBZIPVTFMMkA2m03o7um+eL1e0f40dbkDmAXE\nBt0PA0YLCwu4du0apqencXx8jM8++wzvv/8+dnd3ZdHQejg9PYXb7X6BAcmYelInt7pz0wednp6G\n3+9HqVTC2dkZPvnkEyGc8Xq9wqTNMSQeJVt1B1lfagCYu2QwGES328WjR4+wvb2NUqkkcR5+lvep\n63ofFsYwS4EmeafTETLaUqkkiERcSABE6RwdHUmDFAOMdrt9rBZ0Xq/D4cDNmzfxJ3/yJ5ibm0O9\nXsdHH32Ev/7rvxalynEDznkoYrGYxE+2traGolcZnyF/1L4VXdeFMpEt6ZVKRZQClQmf+zit4Ua5\ndErBqCnZ+ebz+bC0tCQak1yILpcL09PTiMfj0oVHLkIuGJq/4woHVNd1HB0dCYAmacrY4MPFop7L\nzGQzC/gx0JdMJmG1WrG3t4e1tTXhPaBpzRw46dbL5bLprqCey3gv3BnJgXnlyhU0m02BQuv1en2A\nL+FwGDabDaurq8jlckin033YDmbjRbHb7QgEAjJWmUwG5XK5T3HyvtjOTQAYXT/HHODYD3KLOAc4\n4ev1el+enunja9euYW5uDlartc90VyPzZkFaM7FarUgmk/jjP/5j3Lx5E71eD++//z5+9KMfIZ1O\n9yliZgroQvl8PqTTaTgcjhcUq5lCUhWC2qXLcZmdnUUkEhGr6uDgQGDf6Lo6HI6xs1Iv3OvE3/g1\nC3e7cDgsGp+TmIxOTHu1222k02nhFOTA0teaRMj/wOxGNBqVuAbZjIy7E025YQ+CloLKJUG+BT5U\nYkIykKQGOxlMY5R5GEQ5FyuzN36/X6j2eM0k1iFr9NzcHGw2G/b391EoFLC5uYlSqSQLaZiZTZ/7\nypUrgm9JbgbyIqopPb/fLy6Rpmli/rOz0iyIyd+NwC66rgsDM7EVrl692odpwHvv9c7RnlnTMEoY\neL1//z7eeecd2Gw2rK2t4Sc/+QnW1tYEnFZ1C8PhsFARkP5t1LnM3F0Gvfn9s7MzcYNoKVWrVSFA\n4lgYM2qTyKVTCsZUGn0jAOIaBAIBMfuCwSDi8TgAIJvN9gFc8hiT4h9w9zg+PhYwkmg0KgNeqVQE\nTZcm6TBloF4L3SGCkdDqODk5QSAQwMrKCsrlspjzkUhEIszEiGSKclChlDqWako3EAgI4rCmnZPB\n3Lt3D6enp/D5fPL5SqWCSqWCra0twRc0q5DjTqZaALwv4Bxc9fDwEE6nU0heaf1RoTPDsbOzIxmJ\nQdV46qJSU9QE9KVFR5fy4OAATqcTHo9HgF3///auLratsww/b5y4duIkduw4jt2ma9Lsp50mNk1o\nF1PvBmM3hbtdsQskbkCCCy6GdrNbkOACCSGBmDQQYjfA2A1SgW1CmkbpaNc2aZsmTeP81I6dOH/O\n3xzn48J+3n0+tR2na2cHnUeK7Jw457zn83fe7/373ofZA1LnOedbNbC9+0svvaSu1/vvv49Lly7p\nWLIFu9frRTgcVu5RABoYrjVH7Lluf29MH9suq4ggGAxqk9hcLleRIrav8aAZiJZTCrb7QM24tbWF\nqakpiIi27+7p6cHe3h5isRg6Oztx/fp1XLp0SQs57PPwvNXg9MGp7UkVx/x9V1cX9vdLzUlZ5CMi\nDXFH8hr8H/qJmUxG+wqyRyPTkdlsFh6PRyPnqVQK4+PjmJ6e1oBnrevamQBmK/iQkDeyv78fvb29\n8Hq9yOVyWFxchIgo98Pdu3e1eMgZn6n2fdG8LRQKqkh6e3u1wzZdIKaTyZuQSqUwOTmpRVgHdZ1i\nuvP5559HMBjE9PS0uhJsw0aez2QyqWnqs2fPIhAI6ILC+ZNMJqumjAmPx4NTp07h5ZdfxpNPPomV\nlRVcvHgR7777rs6F7u5uJBIJFItFtQKfeuoptcKuXbtWQQJbbQw5fiKiyiAQCODkyZOIRqMaV2MA\nM5lMIplMKkeIHTRlTOWRMUQ1A05TcXd3FxsbG5icnFSTzOPxIJFIVPRPZEDH7vd3UFrGVkDUzmwl\nFolEtDqORLOhUAj7+/u62ju7A9e7JzvYWSgUtPZBRJTfsLu7WyPlpB9jdJk5fDsPXe9B5f3ZLE80\nzVnYY6cFl5aWsLS0hMXFRU15OpWrc+z4yvHjgykiGlTk9bu6utDb26s/DPYxRuC0EKpdk2nFRCKB\n/f19ZZpi2zXWrbC5LvlAl5eXEQwG1W0pFotaEcj9CbXmB1OYXO2npqa0gIhKjkE/kvrEYjHEYjGs\nra1heXkZqVTqQLeSVp3f71dGMsZdmFlra2vD1NSU8ozancftNLlNJXfk3QfCNv1FRBmLNzY29EF9\n4okn4Pf7MT8/r01cq1GLN+ILc7Xr6elBf38/jh8/jkQigXA4jO3tbaysrGBoaAg+nw+hUEjrz52K\nx44SE05rZX+/1JG3r69PG23ShywUClhaWoLP58OJEyfQ09Oj5vz6+npFGzPbwql2b1RyVDA0cbkf\ngGzQ4XBYKdxYu1+LAq+a9UVZmLlob2/H7u6uln3z+owH0dJir0ibQ7LWtezvieXSOzs7WhLOWAQL\nvPb29pQPhKXGtCCZ0mPrtnqggqHsbAzMTA0VDVBiwh4cHMTQ0BD6+vogIpifn8ft27cbJpVlmpqK\ngZZOT08PvF4v8vm8zgMqfM4/KggGYA9i9aqFllUK9s3YXXZsPzYcDqNQKCCZTFaY1NX+rx6oEAKB\nAAYHBzEyMoKzZ89qxeTMzAxyuRxisZj6sqyzt6PC9rWcboktE1NvNp+hXXabz+dx+vRpLafe2trC\n3NxcBTHqQe4Q/VsWYZGjgCsaTfXR0VH09/djYWEBq6urOuGcbehquWG2m0J2Jrscl5V4TCGSHZxZ\nJcZlaEXVs0qMMfD7/Xj88cfV/WCNA+NOZKIuFouIx+OqAOyekaFQCMvLyxUrbL05wjEnS3U8Hsfx\n48c1U8JakkQigTNnzuiCMTY2punYRh5QOw0ej8dVAQaDQV0YJycndY8DFXGhUNAKTgBa8/KgaFml\nYMP5cHPDiN/vRzqdxuzsbAV3AXEYLcmim4GBAZw+fVpXIprUrBTr6+tT/gegssy5VsTXfs8JSzZi\nrgisA1heXobX68Vjjz2mltHMzIxyBlDxNVK27fV6VcmFQiF0dHRgZ2cHa2trupqz0zKJSkgwYp+v\n0XH0+Xzo7u7WQB9Tnh6PRynTqRxERMudGUeotzmJi8He3h6i0SgGBweVNm14eBgdHR3o7e1V9+vE\niRMYGBio4NAk0zUAXfHZLr+W/03rYGZmBs8++yzC4TCefvpp+P1+JJNJ3Lt3D6FQCOfOnUM4HNa0\n482bN3H58mWMjY0hk8nUVeQE3QEGhtmVulAoaGZtZmYGmUxGFzLWeNBK29nZqdgs+CDdqltaKVRb\naTkQoVAIu7u7WhTTSNygHmiSU1vzdXZ2Fm1tbejv79eNO4yq2/62LWu9GAMbjObzeU2dbW9va0nz\n1tYWotGockBks1lkMhl9cGptfHIeA0qTLBwOI5FIoL+/X7kEmMkYGhpCV1cX8vk85ubmlI+Bq+dh\nir3sMaDPTkuA8RgqwPb2dqyurmJxcVF3MFajPHO6DrwnZih8Ph9GR0c10MdAHMllfT6fbpLjhimP\nx4OlpSXMzc0hk8k0pPRIAjM+Po5nnnkGgUAAo6OjCIVCOHnyJCKRiMY4Njc3cfXqVYyPj+PGjRtY\nWFhQi6kWONY2oTFjM7RC79y5o4QynAfcQUllSZZwWqL/d1unnaCJymjv0NCQcjvWo4A/TKCFK+b2\n9rb6n/F4HF1dXYjH4/D7/VhZWcG9e/ewsLBQ8TlbORwUeORKT2YhanlGmEdGRhCNRtW/T6VSatY7\nz1/t/mwFRR81Eonog1csFvVYLpfDzZs3cfHiRaRSqYoKuGo+fb2xpL/OVHEwGMTy8rJSnvG7o0Uy\nPT2NbDaLfD6v57eDl9WUHXcdZrNZ3QPz2WefqdtCF4n8CIzOb2xsIJ1OK71gNptFOp1uaG7s7u5i\ndnYWH374IYwxOHPmDDY3N9HZ2YlgMKhZKWZSLl++jOnpaaytrVX0bzgIxWJRi5ECgQCi0Sg8Ho/G\nk7LZrG5c4yLGGE2hUFBLDMAD1eYQR0opsNR0eHgYQ0NDSKfT95m7zv9pFMYYpeK6c+cOACCRSCAU\nCiESieDYsWPIZDIYHx/HlStXtLeAs1ag2gpbbYLbSoHVhIFAALFYDMPDw+jq6sLq6iru3r2rRT12\nzMRuQ1YLvIZdO8DKzHw+j1AohImJCXz88cdIJpP31VxUW6mrjRsAdYnI6cBIeU9Pj+7q5E7G9fV1\nzM7OanWm3f+iXhxof38f29vbyGQyuHLlCmKxmAYMd3Z2NM7ABSSdTiuVWzqd1qK2nZ0d3SnJ89Yb\nR9aS3Lp1C9vb2/joo48Qj8f1Htva2rC+vq7WFq9Tb9NatTE0pkSEs7m5iYWFBezu7mrB3srKSsWm\nMbsHCF9pHRzUu+EgHAmlwBWEK83AwADa2towNzdXUazEzxIcrEasBdYOrKysYGpqSgc4Ho+jra0N\nk5OTShtnZwLsL7Ra5sF5H/b12H+hvb0dwWAQIyMjmiXI5XK6R5+Kj7nnw3BRkHl5YGBAV1HuFJyf\nn8eFCxcwOzt7X+bGGSitdl/2cU5oZjRSqZQ2cAmHw9jc3MTa2hrm5+eRy+WwurqqZi4Vvp1qrWX5\nsQ7iwoULCAaDutuR/TPolzPuw01rvDePx6OZinoWphMsrb916xZ8Ph8mJibQ2dmp3+Pm5mbF3gNn\nZuYg2J+hErD7WhSLRb1HO/3IkngyTzNYfVBhWz20LEOUbUay+IVBs2g0io6ODnzwwQdIpVI1q+AO\nm6O1r8lX+z0H+bAVks5r2ClQ5t252SoSicDv92vgb21tTYNxTn/7IBnYR4Bl4KSNy2azukqTW/JB\nJ5B9X+xPCKCi14M9XnbPwsOOox1X4PdxmECofQ4btkL/IqhXO9IInDUvtTI+jS46VXD0aePsScCi\nE9a3G2OwuLiI9fV11dCP8l4e1qRxmnxcJfkQ0SLi3nlntuEwE495eF6DvQzZz4DnfRgKodoxp6xO\ny6LWuWpZKzzXF334nPI+LKXwMODc7vygCu+LKIWWdh/sL4tBPa6YNP248jzqL/Rhnd9pjXDVtFvH\n2TvpbOXhVCo8Ty3ZnGZstaDoYWWv9j+1XDfnSndQDUK9AGq1azwIDoqNNBsHFYzVwsNUai1tKbhw\n4eKhoiFLwWWIcuHCRQVaxX1YArBZfj1KiMCV+VHjqMkLtK7MJxv5UEu4DwAgIp80Ytq0ElyZHz2O\nmrzA0ZTZhus+uHDhogKuUnDhwkUFWkkp/LrZAjwAXJkfPY6avMDRlFnRMjEFFy5ctAZayVJw4cJF\nC6DpSkFEXhaRCRGZEpHXmy1PLYjIjIhcF5FPReST8rE+Efm7iEyWX0NNlvEtEcmIyJh1rKqMUsIv\nyuN+TUSeayGZ3xSRhfJYfyoir1h/+3FZ5gkR+XqTZD4hIh+IyA0RGReRH5SPt/RYNwy7Fv3L/gHg\nAXAHwDAAL4CrAM40U6Y6ss4AiDiO/RTA6+X3rwP4SZNlPAfgOQBjB8kI4BUAfwMgAF4AcLGFZH4T\nwI+qfPZMeY4cA3CqPHc8TZB5EMBz5ffdAG6XZWvpsW70p9mWwlcBTBljpo0xnwF4B8D5Jst0GJwH\n8Hb5/dsAvtlEWWCM+ReAnONwLRnPA/idKeHfAIIiMvjlSPo5ashcC+cBvGOM2TXG3AUwhdIc+lJh\njEkZYy6X328AuAkggRYf60bRbKWQAGDzm8+Xj7UiDIALIvJfEflu+diAMSZVfp8GMNAc0eqiloyt\nPvbfL5vab1luWcvJLCKPAXgWwEUc3bGuQLOVwlHCi8aY5wB8A8D3ROSc/UdTshNbOpVzFGQs41cA\nRgB8BUAKwM+aK051iEgAwJ8A/NAYs27/7QiN9X1otlJYAHDC+v14+VjLwRizUH7NAPgLSmbrIs3A\n8mumeRLWRC0ZW3bsjTGLxpiiMWYfwG/wuYvQMjKLSAdKCuEPxpg/lw8fubGuhmYrhUsARkXklIh4\nAbwK4L0my3QfRKRLRLr5HsDXAIyhJOtr5Y+9BuCvzZGwLmrJ+B6Ab5cj4y8AWLNM36bC4W9/C6Wx\nBkoyvyoix0TkFIBRAP9pgnwC4LcAbhpjfm796ciNdVU0O9KJUmT2NkqR5DeaLU8NGYdRinpfBTBO\nOQGEAfwTwCSAfwDoa7Kcf0TJ3C6g5Ld+p5aMKEXCf1ke9+sAnm8hmX9flukaSg/UoPX5N8oyTwD4\nRpNkfhEl1+AagE/LP6+0+lg3+uNWNLpw4aICzXYfXLhw0WJwlYILFy4q4CoFFy5cVMBVCi5cuKiA\nqxRcuHBRAVcpuHDhogKuUnDhwkUFXKXgwoWLCvwPBQpz1kOXwhAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACtj0lEQVR4nOz9WYxkWXomiH3X9n3f3Mx3D/dYc6+sYhXJIjk93dBDAw09zKBHgDQCGqIeZjAQMA/NmZcRBDTQD9IAAgQIoqCBpgH1Bki9gFCLbLKnwComWcysyozMyIiM8H2zfd/N3MyuHiK/P47dsNUjkvQoxg8EPNzd/J57zz3nP//y/d+v6bqOt/JW3srfXDH9dd/AW3krb+WvV94qgbfyVv6Gy1sl8Fbeyt9weasE3spb+Rsub5XAW3krf8PlrRJ4K2/lb7h8Z0pA07T/maZpTzVNO9A07fe+q3Heylt5K68m2neBE9A0zQzgGYC/DeACwKcA/jNd1x+/9sHeylt5K68k35Ul8H0AB7quH+m63gfwzwH8ve9orLfyVt7KK4jlO7puCsC58v0FgB9M+7CmaW9hi2/lrXz3UtR1PWr84XelBLQJPxvb6Jqm/S6A3/2Oxn8rb+WtvCynk374XSmBCwBryverANLqB3Rd/30Avw+8tQR+FUXTXj4HXjX+pGnaxGvw58Yx1Z/x/+rfT7veTRb1GV/XvX9XSuBTALuapm0BuATw9wH8L76jscZe5ut+sZqmyT+TyQRd11/691ZeCOeJi9VsNmM4HGI0GslnXocyWPQ+5o2pKpBl7ku9h0kb83U+I59DndvRaITRaPRa1uF3ogR0XR9omvZfAvhDAGYA/4Ou61+/7nHUDapOGidHuZ9Xur7VaoXdbofVasVwOESv18PV1dVL43zXMumku2mivgturNepMCdtPlXhmM1mWCwW2Gw2WK1WUdyDwQD9fh+DwQC9Xu+l+7nOvZlMJvnHa1DZqRt02edTn0vTNHkuu90Op9MJTdPQ7XZlHQ4GgzElu+zzfCcpwmXlOu6AyWSCzWaDz+fDysoKQqEQLBYLer0ezs/Pkc1m0e/3AYy/nCXuCRaLBW63G5FIBOFwGBaLBZ1OB5VKBa1WC61WC/1+H8Ph8JVPAGp5k8kEi8UytsB4zdFoJAtuMBjIv2WfbZZwPNWMXvSZeEqZzWaYTCZZvFdXV7i6upJ5Uhf2YDBYWEmom0M9HS0WC+x2O4LBIOLxOMLhMILBINxuN5xOJ3RdR61WQ6FQwOXlJcrlMhqNBnq9nszhos/JsZ1OJ4LBIBwOBzRNk3XA+et0Omi1WhiNRhgOhzLGvGurp73FYoHT6UQoFEIsFoPf74fdbkez2USlUkGj0UCj0UCr1UKv1xOLa8Za/IWu698z/vC7cge+M+FE2e12eDweJJNJfPjhh9jd3YXNZkMmk4HJZEK73UalUsFgMJCJXXSz8PMejwfb29v44IMPsLGxgX6/j3K5jOPjY2QyGRQKBVQqFXS73Wu7I9wsdrsdXq8X0WgUoVAIbrcbfr9fFMLV1RVarRbq9To6nQ7K5TLq9Trq9Tra7fZSC5jmpHqvJpMJVqsVLpcLwHOF0+/35fQEZis4/r3b7ZYT2GKxYDgcol6vy9zz3dlsNjgcDrRaLXQ6nbljGBUA14HFYoHH40E0GkUymcT29jZ2dnYQjUbh8/lgs9lwdXWFSqWCy8tLPHnyBM+ePRvbKNyoi4jZbEYgEMDOzg729vYQCAQwGo3Q6XTQ6XTQ7/fRbrfRaDSQyWRQKpXE8lAPi3nvx2KxwOFwIBKJ4Pbt27h16xbi8Tg0TUOxWEShUMDFxQWy2eyYe6DO1bx3RnmjlAAnyWq1wul0IhAIYG1tDaurq4hGo6LZ+/3+2KRMChrNE6vVilQqhR/96Ef4/ve/D7fbjUqlAofDgXa7LS+7Xq/L3yw7Dp/HZrMhFApha2sLu7u7SKVS8Hq9sNlscpJaLBa0Wi2k02lcXl7KeK1Wa6biUU8XnphcNPwbh8MBh8MBr9eLZDIJm82Gcrksim7O6SLPQCXm8/nkb5rNJkwmE3q9HkajESwWC1wul5i1NpsNw+Fw7gZRhfNMV83hcMDj8WBtbQ2bm5uIRp9nwS4vL+WEtlgs8Pv9SKVSyOfzKJVKMj/8ushJbbFYsL6+jt/5nd/B7u4uvF6vWBi1Wg2tVgterxexWAyj0UhOaOMpPenaxvm1Wq3w+/3Y2NjAxsYG/H4/Go0GgOfKiOvDGCMwXnfec71RSgDAmJb0+Xzw+/2w2WyyKbPZLDKZDBqNxkuTsugpTSvg3r17+PjjjxEOh5HL5XB2doZKpQKTyYRoNCr/V2VeAMr4M461urqKBw8eYH19XdyaTCaDVqsFs9mMZDIJp9OJlZUVlMtlaJqGdruNq6uriWPxK01vbnSn0yn/N5vN8Hg8SCQSCIVCCAaDiEQiGAwGODg4gK7r6Ha7YjJPegaarLTKVlZWEIlExIqoVqtiGg8GAzgcDvj9frhcLnS7XZycnIj7MM8kpzWnPp/VaoXX68Xm5ibW19fhcDiQyWRwdHSEs7MzdDodOBwOrK6uYnt7Gy6XSywExgoWtRAtFgsikQh+7dd+DT/+8Y/hdDpxcnKCx48f4+joCFdXV3C5XIhEIkgkErBYLBgMBuh2u+KazhPVMuP7XllZgdPpRLVaxeHhIXK5HDqdjligPPSuK2+cElDNVofDIYGedruNi4sLHB0doVwu4+rqShbVJC07SzRNg8/nw87ODrxeLyqVCh4+fIj9/X34fD5Z7DQx2+32mCk2aZxpqS2ax16vF2azGcViEaVSCUdHR6jX6xgMBnC5XCiVStjZ2UG/30etVkOlUhE3YJJyUYNldrsd4XAYHo8H6+vriEQicoLQAvD5fIhGo4hEIqhUKjg7O0Oj0UC32x17NmMmxm63yz+PxyMn8WAwEMupXC6L2a4u6v39fVxcXCykqNW4jrpRaN24XC7U63WUy2UcHh7i+PgY1WoVAOD3+xEIBNBut2GxWKDrurhhNL8XsQJsNhu2trbwox/9CLFYDLlcDj/96U/xySefoNFowGKxiEJ1u93Y2NhAo9EQl4AuzyQxzoGq4K6urtBut3F6eoqzszMUi0U4HA5xFY3rfNp1p8kbpQR4cqr+Mjf7YDBAtVpFLpeTTWmc2EXHsNlsWFlZQSqVAgAcHx/j4cOHSKfTWF9fx71795BMJsU8bzQaY2mwRS0OXdcl4ksF0Gg0cHp6ilwuJ+az2+2Gz+dDKBRCt9tFNpuVMeeNYzabxTzd3d3F7u4uhsOhBJby+TwuLy8Ri8XgdrvR6XRQq9VEuXF+Zwnv0+fzIRAIwO12o91uo9PpIJfLoV6vw263y0INBoNYXV1Fp9OB3W6XOZuX6p30O26WcrmMTqeDYrGIs7MzlMtldLtdmV+fzwen0ymWjapITCbT3JiApmnwer348Y9/jK2tLfR6PXzyySf46U9/inQ6jaurK9hsNtjtdnEJ3G436vU6jo+PUSwW565BdSNrmoZwOAyv14tAICDxoEqlgl6vJ4egy+WC1WqFxWJ5Kc6zqLxxSoAnjtvthtfrxerqKlKpFK6urnB5eYlCobCUfzlpDK/Xi3v37iEcDqPdbuPw8BCZTEbMvXA4DJ/Ph2AwiJWVFVxeXqLX6y0VkFHjGy6XC8PhEMViUYJ9qv/s8/nEz87lciiXy5KZmOVn8vrBYBDJZBLvvPMOrFYrDg4OcHp6inK5LC6N1WoFAPR6PRwfH+Ps7AzVanVMCRitDjUFyJO13+8jn8+jXq/j8PAQZ2dnGAwGkmbVNA3vvPMOfD4fPB6PXIdfp/no6vdqNmEwGKDdbqNYLMJkMqFQKKDdbmMwGMBsNsPv92N7extra2vQNE0i67RwjOnlae/KZrNhd3cXH330EXw+Hz799FP80R/9kbx7buB2uw2z2Qyr1YpwOIxAICCu1zyrQ312m82GYDCIWCwmipLPTqVusVjQ7Xbh8XjGslTqYbRIGvuNUQJqEI0mbCgUwvb2NqLRKJ4+fYrz83MJQBllUZ+JCyeZTMLn8+H8/BylUglXV1cIhUJIpVIIBoNwOp3w+/1wu91jL1dN6c17HovFIj613W6Hw+EQX/Xq6goOhwN2ux2BQAAmkwlnZ2eyOTudjgScjKIGzkwmk8RPzGYzyuUyLi8vkU6nUSwW0e/3EYvFEI1GEYvFRAlcXFyMuTmThJuQp1Cv10M+n0e320Uul0M2m5VrdDodcbPoH/MZjKmxRdJ1jLYzZTscDmE2m6HrulhPLpcLt27dwq1bt+ByuZDL5XBycoJ8Pv9SendeLMLr9Yp7WK1W8emnn+Ls7EyUJBUpT2Wn0wmLxSJ/r76TaWOpn+FhF4lEEI1GUavVxBV1uVwIhUIwmUwYDAbodDqSzeF6WCTGQnljlADwwvTzeDwIh8NYX1+Hx+NBr9fDs2fPkE6nJy7aZWIBDP5Eo1FYrVb0+31omoZQKISNjQ2sra3JC3a5XLDb7eJfL7qAOZbZbIbT6YTJZEIkEkEymYTFYkG1WpVA2nA4hN1ul5RQOp2W381TbLwPZlN4YvZ6PQCA0+mE2+1GPB5HKpWCy+XC/v4+nj17hmazOXZSzsJacJOXy2XY7Xb0+33Z4Pye80jMAE9k3p/q7w+HQ8EVGJ/FOO5wOES324XZbBYTmcozEong1q1b8Pv94roxuMs55HVmvSee6mtraxiNRnj27BkODw/R7/dhsVhgtVphs9nkYKDC7ff7ksI1xjNmCdeh1+uVw07TNKytrcHj8QgY6urqCisrK3IYNBoNAbGp1/qVsQSAF+at3+9HLBaTDVkoFPDo0SN0u91Xuj5fOHP1jOoy0LO+vo5wOAwAcgIaN/6y+XqTyTQGdGHOu1wuo1qtYjQaodVqoVKpIJfLodlszgW38HcEqRBZ1ul0UK1W4fF4ZBHZbDbE43GsrKygWq3i4cOHMi7vD8BUi4OxkGaziVKpJO6L3++XzdxsNscyIQS80LpSMx2DwWBsg6pzNutZR6ORxD+YrYjFYvB4PKhWqyiXy8jn8+JTqzGcebl7i8WCUCgkAVUqUmIE6J5SmQeDQQwGA/HhK5XKS5tzERkMBnKic40Qe6HrOmw2mxxEg8EA+XxeXKFl5I1RAvQ5CaBYW1tDLBZDu93G06dPcXFx8crIOW7IUCgkpxsAJJNJWK1W+Hw+aJomqS4u3kWBJkbflymvbreLZrMpL5AR5dFoJEHDarU6FgxcxFzWNE2CgJlMRp6RaVWasSsrK3C73bi4uMDFxYW4VOo9TpPRaISrqytomoZWq4VGoyHuVCgUkp81Gg04nU7cv38fiUQCo9EIkUgEW1tbcLlcaDabqNVqoninbXq1LoHZAcYbPB4PAoEAQqEQfD4fXC4Xrq6uUK/XUavVUK/XX4IMLwLe4buni+FyubCysiLrMZFIwG63o1arybNbrVYJvnKNLLM+B4MBarUastksbDabKFpmbADIgeHxeNBoNHBxcYFSqSSxokWD4W+EEqA2ttvtEiVPpVIIh8MYDAY4Pj5Gq9WauTnmmUXqqczUI/3pSCQiLgBNeABotVqoVqsLKQFj0Iv/7/f7KJVK2N/fR71ex3A4RL/fh81mw+rqKsLhsEBDl8lpUwlwMX3zzTdyIhN+yiCT1+uFpmnI5XLI5/PiY6oKYFqASbUGOp2OnH7RaBRerxculwt+vx+j0QixWAz379+H1+tFq9WS+XS5XHI693o99Pt9uX9jcJABTACw2WyyEbxer0CGGYzTdV2yBHxHVqtVIMuznsv43mw2m2QSIpEI7ty5A7/fL9F7ui8bGxtIJBIAnoOVGo3GWAB3kaAg31uhUMDR0ZEo2lKpJEqA2JFgMAiPxwO/3z+GMOWzLSI3XgkYo7c8qbkpC4UCTk9PRcNP+vtFhUqApzIDO4S+UgF5PB40m008evQIl5eXEmmed0Ibg3U2mw2apknaL5PJCLjlgw8+wObmJsxms5jxy1o6NJPpnxNd6HQ6pcDmzp07sNvtGA6HSKfTYxkBdbx5Y9P0r9frcDgcODw8hM/nk6Irbl5df46rbzabaDabokgZrGs2m1PBL5w/BlQDgQBWVlawuroKj8cj/66urgRIc3V1JTEQj8cjeXf1+gxOTkpJMvhZKBRQLBbRbrfhcrmQTCbhcDgwGo3QbrdRKpVgs9kQDofhcrnErclms2PrYxHhvdTrdRQKBQGPEabOQ4KpbILnGJRU730RufFKAHiR6uBE8rQul8v45JNPXoK2qrLoRHDRE5hRLBblhKOZTs3f7Xbx5Zdf4uc//7kUKi3yknmSqKbrYDCQMTkOi0ZCoRD6/T7Ozs4mYh8WeSZuBNW9IYCIRVcmkwnlchkHBwdS9LLM3DFAZ7FY0G63kU6nkc1mJWbicrng8XjQ6XTE1aKLkk6ncX5+jmazKVbALIgt793v9wvKkhmjXq+HRqMhAUen04nRaCRAoW63K8qXlp5qJUwSBh4vLi5wdnaGW7duibIplUriQnU6Hdy/f18yOdlsFicnJ8hms+JezZpPI9iHwT7iNhjH6Xa7KJVKcDqdqNfrYlHRSlTThL9SSoAPY7FYEIvFEI/H0e/38fnnn+Px48dzU1nAYlHSq6srFAoFPHz4EGazGffv34fVahVQCxfa5eUl/viP/xgHBwdiOi+DC+Am9/v9uLq6QrlclsVvt9uRSCSwsbEBt9uN09NTnJ+fLwTamSScF3Wh8+RjME3XdRwfHyObzS4c3zAKF6zJZEKz2ZSf85k9Hg/MZjPOz88xHA5RrVZRLBYF4s3NuIglxRQa6xR8Pp/4+4VCAf1+X96Xx+OBy+WSClCmY7lpyHcw7bmpRAuFAn7yk59A13Xs7e2h0+ngyZMnOD8/R6PRQCwWQyAQgM1mQ6PRwP7+Pj7//POx4ql5wmenW8Q4yerqqgRaz87OxD3x+/1SXMZ6CGNQ8FciRUgNaTabJU1HGO3+/j6KxeJE/Pyk6yzymX6/j1wuh2fPnsHn8yEej8PlciEYDMJkMuHy8hJ/+Zd/KTnipTSuUvOwtraGZDIp0F8VYHLv3j2sra2hXq/js88+Q6lUeiUA1CThCe33+1Gv13F2dja2ea8jjA+owvlptVoolUooFAowmUxSOaiCjQBI7ntWhJt4EZ7Ibrdb+B6YBWG1XzgcxtXVFcxmM5rNJux2u1g/qh8+77l6vZ6kBY+PjxGJRJDL5dDr9aRwiuCycrks8N5pbuq8OWT+n0FFbvpEIiGZpN3dXUSjUVxeXuL8/Fxg5pPiKbPkxisB4PlLcjgcSKVSiMViGA6HyOfzSKfTL+H2gZdx2JRFJoWgi1KphJOTE1gsFolgA8+DPWoQ7zrmOYt27ty5A7PZLKhDAEgkEtjd3UW328VPf/pTfP7552g2m69NAaj4hHA4DIfDgUajgcvLSykSet1C85QFRawq7Pf7EmFnMGxW3b0x9UlUIOsuXC4XzGazuDR2u11M8VarJdWfo9FoLMi66AFBK5DAKAZZo9GoAJKazSaOj4/x9OnTa7831TUlFNrlciEQCGB7extutxuhUAherxfNZhPn5+fIZDISz1nWbXwjlAAAMVubzSby+byAPmZVUE1SCvOEgaBarYaLiwsJBhLQcnJygmq1eq3KLb4cBreoDFKplJjE3W4XxWIRR0dH+Iu/+Avk8/mFCCmWEebrfT4fBoMB0uk0KpXKxNqHZZXoNGFMgrBepnzdbjeAFzRkxDRMEhVIREy+w+GQGoF+vy9B3UajMcYqRF+afAxUJMuk7rj5i8UizGYzotGo5OlNJpMEDs/Pz1Gr1a5tvan3nM/nJUi4srIicOt2u41ms4lisYjj42OpnaAl9isXGKQWPj09FXM6m81KUE592Gn/X0YYDGRuvdFowOv1YjQaCYzYOO4i1+TpxWg/cedcyAySHR0djY3zqvgHVZhmowndbreRy+VeqhY0BqpeVehb12o1DAYDqRtgtJ6BOsYrpl2DbkKtVpMYAItoeIJyA3Ej8D11Op0xajiV7WjRdzkcDgWwVa/XJbaRzWZFERWLRUFcLnPtSfNFpVUsFnF6egq/349wOCw4j3a7jXw+j2q1OhaAXGbcN4JejCYsi23MZjN6vR663e61kFgL3pNE8p1OJ6xWq6TzOO6ymp4WgMPhEBSiy+UaS5sZzdbXbQGwNmJ3dxerq6sYjUaoVqs4OjoS3L9qsSwDhZ43LusgmDpkvp6Wla7rUiI9LVDHDMu0wp9Z96vOp/q56zybuiYZ7KVbw4j+6+Kh5FokroJxDVrH3W53LMYCTD0A31x6MZqBqi/2Ki9wmTFZEmvcEK+i3ZlDNhbMfNfPBLxgpBkOhwI+oQltPBXnLKilhSY4MyFOpxONRkOouXq93phJq4o6T8a8/nU38XX/ln9Hy67b7QoGw5jOfh3CZ+Zzd7vdMSVoHGvZcd8IS+CtvLqoUFsCTRiRZ4EPFe0ykeVZY3E8fiXIB4Bg4LmAlwXUvA551ee8KbKEQntzLYG38uqi5qB58s777KuOxfH4dZFU7l+l/CooAODVn+M7a03+Vt7KW3kz5K0l8DdIVNPcmAn4LmIRKsJP/QdgavzhdY79uq/7uq45LQVr/Iz6b1ZAc979zPv9G60E1EX1OlKDv6pCf5x19sFgUEgomFIjZ74Rnrx0kElZuDabTfoQsF6CNQQk22DB0HXy28Zx1a/8/6Rnue71jRv2VYKKs0TtpESCFMZPWP3Y7/clJTjpnf1KgoVUMaZnWDdP8IeRkea6L2tSKeubpmBIK06yi2AwKCxC5AIsFArI5XLCV3BdkAvTd1zE7N7E3HYikRASmMvLSymuubq6GmuKcp0AIVOaKr5h2jUWBUAZA5wqxz8xCUvl4xe4L65rBm8DgYDwP5Cjsd1uo1qtotlsjjU9WZZRiHKjlYDxparFKIFAQOr8df05Nr1cLqNWq42ROMyrh1fHYj6WL4ORbKM5xs8xTaRGuZclj/guhczMiURCipJCoRDW1tZgMpmQSqWQTj9vFs303HUBQpwTKgAuYvLwJ5NJuN1uIdlgGzdVYXPe6K7Me19GBa1mINTNqprUzH6oym7SRlbXnNrog/9YXWhUBPw67efz5o8KgAxaq6ur2NraQjAYlOrHTCaDbDYr7FMcb1G2JKPcWCUw6SUT6LK1tYX79+9jY2NDCB2y2SwODg6kRRjpq9SXOS3/rG5sdrRxuVxysnFB83RjsQp59cgJSAJNLrJpz6WKESuwiN9p/My02nsSsfB+fT4fVldXEYlEhFqM7c0GgwGazeZC1XzT5pCbDIAAV/g9Oym1221ROFSg6qmqmvWL3APHVrkn/X4/AMhYfFYV7MWGnpPKltV7YJ0Fy6FZuUcFxk0LQMYiVZrKCK3O6axn40HCUm9Sv/l8PtjtdqlapRCrQN6E61i+N1YJTHoQKoFbt27h3XffRSqVgtlsFo1cLBYRCoVQLBZfWljqV1WMFgBdDFoCLEXlIrPb7XC73XIiHB4eygsg9HVarp3j8HShn04WHNJS07XRdV2ux5pxMg+xAGZaU1KOz+ciykzXn+PQ1YacwWBQoNL1en3hbjmT3peaEmQVHCHRJGdptVqibNRNOGm+Zm0WdV24XC6kUins7u4Ksw+JS0jAabVaUa/Xkcvl0O/3X2rcoZ7aVKJOpxPJZBKRSERcKlY6ulwu6dcAANVqFbVaDblcDiaTCScnJ9JMhkpvlpWozgEPHBYKscsW54+VhR6PR0B017VCb6wSMIqmadKWaXd3V3q9cWJGo5HQKwHjQaB5viEVBqvb+DdsVkF8f7/fl/ZSAMYKUeb5sgzoMEjmdrvFpWG9ezQaFSuCtfk8zQEIa87FxQX29/elu+60slsqlNFoJNz0pP9iYJB02pFIBPl8/qW2aou8F4o651SE6vOwVx95BK/jUxs/yzkiFPrjjz9GMBiULsQMSNJFKBQKqNVqsFqtY5vS6PKx3Njn82FjYwO3bt1CKBSSegsyC5NpqtPpIJFIiJUwGj3vEXF6eoovvvhCOjpN4oVQDymuQ/bViEQicLvd4gaQgIUkLj6fT5S7Op/L8EK8MUqAE5NKpbCxsQGHwyHdZni6mkymMZLKeRFTo3lGk02FtzabTaF4jkajYgGQQYd9AIwc9saxeJqzLjwUCglZZTweRzQahd/vh67rUqDC+/J6vRJcGw6HePz4sSw0mrZG4T1w0dXrdXg8HpyfnwsleLfbFX6+cDgMt9u9tDk56bNcyCrO/+rqCv1+X6w2Yw3AdQOuVAKJRALvvPOOdAfK5XKo1WrQdR2BQADxeFw+XygUxF3kPBtP0OFwKGXKiURCCp5YuKRuRNY9kPQ0mUxiOBzC6/XCZDKhUqlI4dQkAhN1zVAZqPTlLG0/PDyUqlKz2Qyfzyddikjfls1mZS4XZR1+Y5SA1WqVZiOkA3/27BlOT0/h9XoRDAbRbrelrNPY7WXaQjP+TMWlj0Yj4chj3Xs8HofVasXZ2RkODg7G6KQXWci6rot/brfbsbm5Kb45q/na7bZ8lqcSux7Rn6YfPyl1xb+lQms0GshmszCZTGONS6iU1tbWxFLhiTkpJjNpvqYJlaXH45EqSW4AmtksHVaDWYv4zeo9mUwmxONxfPDBB9jd3YXD4cDFxQUODw9xcXEhlHChUAgOhwOdTgenp6fyvNOuy/shF0GhUJBNxaYtZrMZkUhENiEVOyP57FLFAjS1Xdistcig4ObmpjQivbi4QCaTQblchq7rEqMge1IgEBDCWPbfUAPjs+SNUAL0adlyzOl0olgsCtOvyk1HLUoNvchJM+2FMKDDzf/RRx9hc3MTBwcHY52JJvnj04RppuFwOMbpTxLJbreLer0uL5quwNramjT5ZHpIDTxNEm46tsZS/XTguXsxHA6FW4AsxJO6KC2qBDjfjN+wGWi5XMZoNBLsAFu9k2eAcQ41ODjLpKVy9Pv9ePDgAb73ve8hGAyiUCjg8PAQz549Q61WE7yCx+MR/549AlSLZNrpTAVADkgWXPX7femBSIYm8kNqmoZYLCaWpBr3mLU2+ExerxdbW1vY2NiA2WxGOp1GJpNBvV6X4iHiB5iG5VdafwDE2pn3zt4IJWAyPW/TnEgkEI1GMRqNBOjidDolTUjCSdaWL5OimTYuOeY/+ugjfPTRR8jn8zg4OJDehJMiy/MUDi0LTdNQq9XQ7/fRaDRQq9WEcJOfYy/Bfr8/dsKxD8EsXgMuCJrgrHHnvJGum6QpXIQ0LbkxeOIuWlzERZpIJKRdeKPRGONXJH+/3W5HuVxGuVwG8KKpCxXwpGvz3TgcDqyvr+P9998X3snDw0M8efIEuVwOLpcLbrdbFIDD4ZhIoz7NTWTAjYQdjUZDAqe0dDqdDnRdl1gBlUK320WlUkE+nxca91mkpmqWg5gKxqFIhkIrkpwaLHMn65DVapV7VIPV8+TGKwH1VKHpRd+K5hVbT1ksFmFfNW7+ZVNeTA0Gg0Hs7e3h3XffhaZpODw8xOXlpWy+aQtomqgxB0avmRJSG2bw+iTSZH+/hw8f4uzsTBbjvGgzg6dqxyPO5d7eHm7fvg2n04lWq4VeryeLjPPA05KBtHmZAy5k0m5tbW2h2WyKBaD2cGRQzeVyYTQaiak7KzipbpZAIIDNzU3pHl0qlXB+fo5utwu/3494PI7V1VUEg0GJ4FMJMkMzj5WKiDwAUlYOQGI0pG/nhuV7YRMZcg2qfSOmBQZVXAfdimKxKJyJVGoOhwNut1v+jm7dcDgU68vr9Yrymic3XgkAL4KCbHlNU5ibnT6Y0+mUYMzrsALou4fDYVEAuVxOfr9sUIsKgDnkVqslJBFsZW2324Vbjq2nSGH91Vdf4eDgQDr1LJISoiKgIiVP3ebmprDY0iJptVpyytCdYhCKTMvzzEtuUHZsdjqd6PV6onzoy7KzksPhkNQhA6LzhO4hW9FFo1EAz5vB2Gw2IaPliRqJRKSNPd1GxiYmUbfRbFezBDx4aB1Go1FpG8d3QLcjGAwCgPRTYPZqVtBVJV7xer2iiKvVqtCnMc3LuA0VTavVEteOcSx+ZhF5JSWgadoJgAaAIYCBruvf0zQtBOBfANgEcALgP9V1vfIKY4yZXgQClUol6TrECDsDhsDiG39ewJAsRgxCNptNCcYscjIar0kTs1AoyPXJltTpdASYxKBSKBRCuVzGs2fPcHx8PLM5h/G51Plzu92CPnvnnXckw8KuvmQ0ZiCrVqsBgNB3czOT9WjSHKqoPS5YNa5CxappGnq9Hnw+H2w2m+Ax1OYZzPRMejdkfAqHw1hZWRHAmN/vx+3bt6HruvQXIJsRn5XQaPWkn7Y5uTGtVqu4aPTD/X6/tBznOH6/H2tra4jH49L2jHNjs9mkCcqkdaHOG+MytCyoRGlxcE4JfqpWq7KOCJBjrGMReR2WwO/oul5Uvv89AH+i6/o/1jTt9779/h8uc0HjomJuvdvtolariQ9Zr9clVRIKhRAIBFAsFqdGzCeNo/qIxvF1/QXD7NXVlTDl6rouXYimmXjTRNd1KdThaURmH7vdDpvNhkQigXA4jEgkgsFggPPzc5ycnIxRSvNa856Pp2Y4HMbq6iq2t7ext7cHn88nJyMXDjdLu90WZFy/35fAYT6fx/Hx8cRx+JWbgvTf9FHpC/P0JSCLi5vdnUmZpV5XnTs18KjWjrBpKFmhGQilG6JpGsrlMjKZjFhRxs7HxmdyOBzSNZrgLo7L+2FfSnZ2TqVSsNlsyOfzkgVxu91j6NVJY3HeGOMiZoVowMFgILyCKrSYSFY+C9OwVFqL7IPvwh34ewB++9v//48AfoIllQCFL5dgD3a4ZQFKq9US/5KaWeXnU2WeCcuvakCRrMPki+MJQ1OW2naRTakGm+hj0j3gNWjWWSwWaXN1eXmJs7MzCS4t6+IQ9urxeLC6uir5cuILGFykH8+AXSAQkA01Go1Qr9eRzWZnjsXFTIVdr9fl/71eT4Kh3PhqzIGnJK2lWcFOZhTYGuzk5ESUCN8/35XH44GmPe+z+PTpUzx8+BCnp6diZs+DSHPzq6lTNW7DoDURhQyCEhTlcDjg9XqFYXledoAoUCoNKgWuE4K7XC6XKDiuGVp1dO0WJXF5VSWgA/gj7Tk92P9N1/XfBxDXdT0DALquZzRNi1334vQv2RGWpJQsfW21WmIShsNhgYQu2r2XC5LmGM0nRsEBSDESFzGDM7VaTXjtVctlniLgQlLLQjkWewEw0FWpVPDo0SOcn5+PvVRj5mPW8/GEIeiE8QY+t6Zpkl+mOX51dSW4BF3XJWvB1myTnovCOaS/CkBOOM43uyzpui6s0YTWqojNaW6aSsf96NEjjEbPOxwTxNPr9WCxWLC9vS2t0R4/fox//+//Pfb391+C8E4L1KlWpjo+CW8Z5GTAmuuBAV9aKmrDk1npaMaKmNJ1Op1IpVLCB8kDiJgHv98vFk+xWESxWJRsxDR04iR5VSXw67qup7/d6P9e07RvFv1DTdN+F8DvTvqdetoNhy8aaZpMJgSDQYG7Mu+bSCQkn/ro0SOBxc6bAJ5a3JBsAc2/o6kJPDdjCfUNBAJScWfMMS8SKKT/p5q1bK65u7uLZDKJfr+Pp0+f4smTJ5JGVOdlkZerRsLr9Trq9TqKxaI0uOQComJyOp0YDAaCIHQ6naI0WMU2KRahWjnMjdvtdhQKBdhsNunc2+v14HK54PV6Bb3I9md8xkkw3knj0U1j8w2ewlSUOzs7EvS8vLzEz3/+cxwdHUm/x1lzSAWgQoOZfXK5XBgOh5JWZaoOgMQBCoUC0um0ZASYErZarVPdT8aKarWa4AJu376NUCgEs9mM1dVVUSgMHDLtSyvt8PAQ2WxWlJz6bmbJKykBXdfT337Na5r2rwB8H0BO07SVb62AFQD5KX/7+wB+/9tJmHin1PpcXFarVRYoues//PBDRKNRdLtdnJ6eIp1OTzTzpi0q+lSMaKudiNnN5urqSnzOZDIp+XaV5129/rSxuNnopzMIaLPZsLOzgwcPHiCVSqHdbuPp06d49uyZmK2LgE2Mc8fnqNfrsij39/cRDAYl5kDXhsAqq9WKbrcrG7jRaKBareLp06fIZrNzU5I8pekKMMVJc5kEGeVyWZp8FgqFsXoCbop5VhXjNP1+H5eXlwJ9ZqGP1WpFq9XCs2fPkE6nX4J2852o86UKsflsMkJr1G63Ix6Pi5Jli7VKpSLYAALZ6LrM6q7En9HdPT4+Rjweh8PhQCQSQTQaFUtCBZipm5+ZKyJCl2ljf20loGmaG4BJ1/XGt///OwD+DwD+LYD/HMA//vbrv7nuGDST2u228ASsrKxga2sLOzs7iEajSKVSGAwG+Prrr/HZZ59JQ8plsgMkb1hdXZW0GfsAVCoVyUJYrVZUKhWUy2XpQ6cy4iwqNI/ZWz4ej2Nvbw/b29uCeycqkTUCi57+RqElRb+eEWa20aaJySAlrR+efNycx8fHgsWfJfRp+c6Yi+/1egJsaTQa0pG4VCrJ6XyduWT9hMn0vMOw2+2WprUulwuFQgEXFxdjlOrA4rBkRuLZsIVgHqvVilqthmw2i0KhIH0W2UmK+A+OswimA3iuCIrForSf29rawurqKtxu9xhDc7ValdjY+fm5QM7VCtNF5/FVLIE4gH/1rSa1APinuq7//zRN+xTAv9Q07R8AOAPwn7zCGGLypNNpac+8urqKWCwGl8uFSqWC/f19/OxnP8OTJ0/GgmeqTPsZT3wCLBhBJ1Irm83i4uJC2m2Xy2WpF5+2qKZNPqPMbrdbfH+CXaLRKHRdx5MnT/D5559LOlB9mcYA5iILWV2AjEEwQJXJZMaCmyqBhtfrFcx7s9mUQOwi49EXZRqXfR3pI6ut2I0KgNdYdAHzNGa8g9YHuwFRiatcD4tYAZw3Bhp5fYfDgUqlgkajgcPDQ5yenqJUKo31blDvjQFkHhiLKNF2u42Liws0m02cnp4KOxMVHRU7IcwEeqlEOsswRF1bCei6fgTgvQk/LwH4W9e97oTrSWtoouYIEGE2YH9/X3oTLkOIYazNv7q6wtnZmWDZ2f7p5OREGj6qGn1RZaP+jnDaBw8eYGdnB+vr6wL0+Oabb/D06VOcnJyM9bJbxg2YNi7TTJNEvTaj4Y1GQ0xQLsxFzUvOJV2DRqMxltpTg6PT+gEuaw0weMvOVOVyGa1WCycnJyiXy9fqDky2KrYcB4B0Oi10bJeXl6JkVFOfMR8VUKa6IvPG5XzzOU5PT8VN5TtUrcNJgdRl9sGNRwzytGbkuFar4fT0VHx5Tth1SBV0XZeJJvEFFyp9OJ4GXNTXMckpzE0DEB/T6/Wi3+8jn8+LMlNTkkbrYhGLY9bzzvu5GqlWT8pl2YbUe1ffiYrh4LO8igLg59nVqVAoYH9/X0rAC4UCMpmMEHEsem0qgZOTE1xdXaFUKol1kE6nBbU5iRdBfT41A7VMpSk/P6tSVP2Zah2q11hE3tgOROrEXNdfnnY9ynU32yxhjfrW1hbu3buH9fV1mEwmHB0d4fHjxzg9PZXiqGnjLuIGvIpMwk18l9dX5bpjqcAy1pIQ7EScgtESWiQmoNKLaZo2VgikKrBZ70pVApN+v8w9TfvbSfthgss4sQPRG6sE3mRhBRwbWLJegDTSr6uR5avILH/5dY6xaGxj2evy3yQltsjmV091+vWapr3ESTjrWioWY5oyneXmLTInqkLl1xmW1Vsl8Fbeyt9wmagE3rYheytv5W+43PjA4K+CGE02owls/Dn/r/698bMU/s0yAdG38lZUeasEXkGW9WW5YY3/VP9yXtpxkpK4CS7dLPmuA5lv5dXkrRJ4BZm0OY0/N/6O0WI1aKQWlqhBJGMASo34vq6o8qxnuo7wefgckwhfjSm17yID8VYWlxurBIwLddr3iy6kWafRLKw/v6r/Jt2P+vdGfjx146qtrABISotFKMx5E8DEe7u6uhKUopFFdt5zU4gIJFSYEGGWrna73TGMuzH3PWuOufkJNmK6jqm1WfPWaDQE7z4JG7GMGN/Tq15v1jizSDumWWrXfSaVHk5l0wYwho9R39u0tKRRbqQSMD4sq6fYTkvTNCGnGAwGghJTWz4B0/1q41jq79V8M7nb2ByEG5aoNwKISOpI9GG/3x+D2BqVCe+N12aHGT4n/46KgkCYSqUy1lprEXYhjkcuRvYiXF1dRSKRELrzTqeDXC6HXC6HfD6PYrEoACzmxJkimzQOa+7V6rtAICB1/ixUUqnOybbD1nEkTVmmcQbfFwk8WAdCnACVDDH9LMYywrEXSRvyOckuTLIVlcBUrexjWzfCmrk25yE31XVIzoBAIIBYLCbjklOQ8PZKpSKsU51OZyzlPO/ZbpwS4GmpsqrGYjGsrKwI3x4pqQjcINtQPp9Hr9eTF64uXpqmszYO88Eko2AFVygUEk4DkmLy5CJzTqlUEgpytvhS6//VDckTkxVppJUi0ajP55MFTRZblsym02lpRUVFMCkwqJ64rAcIh8NSrXjr1i3h5lN5BliJ+fXXX79UL6AWxKjCE5HPQ24/8iayDNlkMqHdbgvrsNvtlo3BTcN7X2RTch6pSFOpFNbW1rC5uYlkMikcCvv7+3j8+LE0qyGRyiJly+o7YyXp5uYmHjx4gPX1dayvrwuFOWnjMpkMSqUSjo6OpAmKWnk6CblodBlpsYXDYdy9exd37tzBnTt3hP9xOByiWq2iVCpJpefl5SVKpRLK5fJY+7V5SvXGKQG1JztbQK2vr0slFXsCctGqTS5J7HhxcYFCoYBqtToGvzVOhtEX1zRNTFiSWN6+fRuxWEy0PVmC7Xa79PFjzQFrHNQoP689iVCC5cQej0eaTnq93jF+QRbclMtlabbJHneswTeK0fSmYmNb8lQqBZ/PJ8U9JHJlPz9SnqmQWJ5exg2jWlCcP0K52bWH74cbPhqNChkouQpU7gbg5QyK8dmAF/364vE4Njc3sbGxgfv372N1dRWBQEDWyerqKsLhML766is5GUnLrb77eWNxQ/7ar/0a3nvvPbGk6EY1m03hO6RS0DRNrETyXxrHUunc+XubzYZYLIb3338fv/Vbv4V79+4hEAig1WoJcQhJTE0mk1g/7FzMWo9Z8R/KjVICqhtAbUhzstFoiH/JxpntdhuapkmbLhJLDAYD1Ot16T+gVlapMumls9Q2Go1ie3sbsdhzYiSWivZ6PWHljUQiYpZxDC4o48nM70kmQvPV4/EII24wGJROMjSnrVarcCkAkNiByoA7CQ6rbk5df9HslCb4/v4+0um0KMpkMon19XWEw2HE43FUq1UUi0Ux0XmdadBbzjOVMYtvaC7z78meFAqFEIlE8M033yCfz0vxl/ou5q0Vvi9u0Fu3biEYDArrUKVSERJXtTGH2vVo2lowjqVaAXfu3EEwGESr1cKjR49wcXEhTXBJmMqaE1KQ80SeZAUY74XQ8lQqhY8++ggffPAB3G43stksfvGLX+CLL75ApVJBv9+HzWaThqmkiCsWi+KyLhKDuFFKABjn4Ot2u8hkMtB1HfF4XIqIaB6PRs+bkNJV4OlM058Lc1I03ShqoCcYDCIWi8FsNuP8/BzVahWZTAbFYhFXV1eykGn6ctE1Go2J0XtjGpAUW2ywGovFkEgkxBXweDzSF5B+Ham/nU4notHoGEvQJB/TaI2Q8ddsNkv1WyaTkQo/k8kkRCP0Q6l4VLN5mlBBsOMRrYlqtTrmjrFpJzkbLi8vx/o4qOPMYjHi79krAXhOz00Tud/vw+/3486dO3C5XEin0zg9PUU2m124/boxpUt+P13XkclksL+/j88//1x4HzweD2KxGGKxGAaDgVij9XpdWoovEsfhAbG3t4etrS0hg/nzP/9z/OVf/iUymQyGw6GsQ5KpsNRYLWFeRG6UElBPG574KgMtm4vQ/OJLDIfDQoChtu9WJ90Y2Z60oGleBoNB+Hw+dDodlEol5HI5pNNp9Ho9qbVnH7hWq4V0Oi2ViAxSTisWoX9OEpNbt24hlUoJfz35/nmasGacz+XxeBAOh+WUq1QqU+dTXcQMbLLslTyMdK/i8bgoPpa9sjTXWNE4aRzjpmIFHAlENU0TH/fOnTvweDzSLoy9/YzBunknmcq2ZDKZpF0Y3bVkMimEKefn57i8vHwpC7Hoacn7J79ksVjEs2fPkM1mhVqca5VcgZ1OR1qHqXRf88YzmUwSdGy32ygWi/jiiy/w5ZdfIpPJoN1uixuZSCSEbp90/IxJfed8At+FqKkNbuROpyN88QwukXqZkVoSPFarVVQqFdH26qIyFuSoJ6WavmNkm3/DzzI7kUgkkEqlsLKyglarhUwmI+y1XGCTzE01is0uM7du3cLu7i5CoZBsTDLS0KTmS2Vgj118jCSl84Q+KhlwV1ZWhJWJCsnlckHXdZTLZeFQmERwOk2MaUsy5DJW4PP5cO/ePcRiMdTrdTx58gSPHz+W0ullTHT1vXKjkE3I6/UiHo/jzp07iEaj+Prrr/HkyROUy+WXxllkk6hWXL1eh8/nw2AwgN/vl3kjFRk5COv1ulhadAWWyUIMh0Pk83npAaH2crRYLIjFYtjd3cWtW7fgdDqlN8Xp6al0LVqUYetGKgHV/KQfxVOYlFgA5HRjwIU+GNOFqiZcZEExKzEcPu/kG4lE4HK5EAqFxNSPRCLS9+7g4AAHBwdC7sgFNin2wFgHO+fs7u5ic3NTiCQBoNPpiDlLphr28IvH4wgEAmLqMVaySB7YiBW4ffs2ksmkBM7obpBBJ51O4/z8fKzj8qJzOGlc+rh37tzBzs4Out0uzs/P8ctf/lLo4FQA0aKKjYqGGaJ79+5hdXUVyWQS0WgUbrcbxWIR33zzzUsux6KiKhtSegcCAUSjUSSTSVEMzEj1ej3k83nUarWXTuRFrACO2Wq1hOCGTUp3dnbE6t3Y2JDg6tnZGR4/foxvvvlmjEr9jW1NzkVAc5IBFjLykhOfDRq63S50XZcgoBqJBl4g1GZtFtUH7fV6QpLpcrkQj8fhdDrlPuh2nJ+f4+joaIxVVlVik4KOZEhmowoSSFLTn52dIZvNSnfidruNVqslTMRs4UV3aR6JijEmoOs6gsEg1tfXsbGxAa/Xi263Kzx57GaTz+dfiUNRHZ8u1traGt555x14PB5cXl7i8ePHwv47iUJtEWH8iPl4AEilUtje3obf70e/35dYDn3y6zwH8ByrQW5Jn8+HRCKBtbU1UaRMUWcyGRQKBaH8WpQfUsUIkD6Mpv/a2prEvYgvYW/Fi4sLsXQKhYK4bsvwUt44JQCMa1+2YuKCGo1GqNVq0pjR7/dLBJp+rtqSXL3eJDFuFJ4qHo9HGkaw9t9mswn//snJCbLZrJjvqqafNB6VG3vkRSIRmM1m1Go17O/v4/T0VNhi6UMy1cQ4BVuEkaNfbac167m4sGhF8Nq0Nmq1mgTY3G63ZEAWVQDGeTYCeFZWViR112w2cXJygv39faFQM15rGV+dgchSqYRHjx5JAxW27lLjStcVzl+9XsfR0ZG4N+zPoGmarLloNIpmswmPx7PwJpz0TOxfQHp4xpG8Xq+sm1wuh8PDQxwdHY25OsuOeyOVAIVBQl3X0Ww2JVDH1Fo8HkcwGEQikRAXgCbfolkBVWgJkKaKqa1wOCxWCDn8s9nsRMqqaZOvac95/UnB7XK50O/3hQ6LHIk8fbnQQqEQdnZ2kEql4Pf7hc7bSEU+aTz1q67rQqHGgCIXm9VqFXBNOp2eGM+Y9VyT8BZMtcbjcdy7dw/vvfceQqEQLi4uBJWokn9Oy6Ys8s5I//XVV18JSefW1hb29vZgt9uRSqWk+cky1zaO0+v1UCqVMBqNZC7dbrc8Ky22VCqFUCgkZDGLICCN96Xm+KnE2HaMVOtEdtIS5XWA5eoxbpwSMJqF1MLEBLDzUK/XQygUEpBLt9tFqVRCtVoVM2xZrUjXgR16CLyo1WrY29uTvgREtxkDgOpYkxYbT3XChGliqj4lN4bX60UsFsO7774rvRVMJhNKpZJ0m+H4sxSdirfQdR2VSgUHBwd4+vSp9AT8wQ9+IJF0NRYw7TmmiYqEdDqdCAQC2NjYwDvvvINkMolKpYJcLofz83M0m82xWoPRaDTGqb/Mu6MFNxwOsb+/j1arhWq1Cr/fj+3tbSQSCUmhLQNJVueQc9zv91Gr1TAYDCQfPxqN4PF4cPv2bcTjcXi9XiQSCXg8noXdEKMVRUqzRCIh8Q1ybKoYEbVXwyKW7yS5cUqAogaIjO3BGGALhULSQot54EqlIj3ZjSnCacJrapomzStp/tH/onKgGcYmm2oHHzUIOWlj0gyntaJ2NKrX63LPLpcLm5ubuH37Nr73ve9Jq+uTkxMcHR3h8PBQXIJ5vHW0KILBIKLRKGw2m/jhtVpNFhgblOZyOWQymYkUZ9MsDnUTs0EMFcDe3h7W19dRqVTw9ddf4/j4GMPhUGolmM9W4c+06JYRFRDGLBEBNUY04nWE7g1rHrhGmNEhzPfdd9+F3+9HOBwWy3ERUbEIBKslk0nE43G43W5pCDMajeDz+eTdLEsAO0lurBKgqGYtc+yE2RKfnk6n8ezZMwlmqafIrJPZKBaLBbquC2yZ/eW4cer1ugBOjNTj6rUnjcUFXqlUUCgU0Gw2oWkaYrEY7t69i2AwiHK5DIfDgVQqhd3dXYG7djodHBwc4NGjR9JQ08hxP0u4yQgtNZvNyGQyElNh1iGbzeLJkydjvRxVJTPtuYiaVGMee3t7uHfvHra3t2Gz2XB4eCjAK5PJJAuZpzO/0rfmAl9UqIyYMeL7pAk/rR/FoqLGONgElxZpp9OB2WyW7ICmaWg0Gi81PJl17zw41DT12tqagLaOjo5QqVSgaZq4G5w343r/lbEEgBebS9XCwWBQevZtb29LD0K1/di8hauKekJQm9PsZ9MHn88HTdOQzWZxdnYmLaaWFbV1VD6fh8fjgcfjwa1bt7C+vo7BYACTyYRQKCSp0GKxiOPjY/zyl7/Ew4cPRYFMwiIYn0vNVvCEoTsCPLdMmEtvtVo4PDyUNuxGK2DaPHLzMX8dDodx+/ZtPHjwAPfv34fH48HJyYlUCtLNGAwGgksAnm8yBkKvc7rRhHY6ndLbgcqtXq8LXPtVhClquqHpdFqa1/h8PqlZGA6HkuFZpEiJv1ctgUAgAL/fD6fTKTn/brcrJeCcc+MhpwZVF3XlbpwSUE1rTgp92lAohI2NDezs7GBvbw/RaBSFQgEnJyfI5/MvLd5FXzo1MNugRyIRhEIhRKNRBAIBiTKn02kcHx9PPFWM0XijcDO2222cn5/j4cOH0HVduv9yHG4qRqKfPXuGg4MDQaexGGURCCqF/Q663S62t7clgMWGrj6fD0dHR/jyyy9RLBaXbmNFayAcDmNzcxMffvihNNNsNBo4Pz+XZpnc6HQd6FJx8/OdLypqJoKl2Jubm7h79y6SyaS0lp8VRJ13fb5bbryVlRVJ0TEmsLW1he9///uIRqM4OjrC2dmZtH8D5mMsVNeXKE6v14tQKCQQ+WAwKDUrDJITzGXkr1hGbpwSAMa1Iife6/UiEong1q1buH37thRwnJyc4OzsTAo1jFFqYDHCEVYPEm3GfnY2m01aPrObjbHl8zxlQwXAaHypVMI333yDbreLRCIhhUNM3xGUQlx9qVRCvV4fa7CiPuc0ZaDOQbfbRavVQr1ex+rqqrTTtlqtKBaL+PLLL/HNN99IOfQiz8VnI/w4EonI8/j9fukO9dlnnwmqkvfO90pIOBUDo/CLttVWn9NqtWJjYwM//OEP8f777yMYDEpFaa1WW1hpqtdVr09Yt8fjkb4RTN+trq7C6XQKEjKTyYyBdRY9lXkg0bJh5ef6+rrUIFxdXSGTySCfz7/kFs47jCbJjVMCRguAOXryCnABD4dDyddPgoOqMm0xq6aoak6S7INdiS8vL6VB6CJ+3ixLgPl5bvbT01MpJgIgICG272KQbFKQc5oCUM1CSrfbxeXlpZiStVpNOBmOj4/xi1/8Aqenp2MNUNW5m6ZIGcgbDofSM9JmsyGfzyObzYoVwyAd75dMSax2oxXEOVoUCakqgGAwiPv370vZbb1ex9OnT3F4eCjB4usK748WldvtFlASn+fi4gK/+MUvJFW5rOVBC4gZiHw+L2hRWme1Wg1nZ2eCVG00GmMdiNX39MYqAeBFFkANTFEZDIdD1Go1FAoFwUqzTZgxMLLIZPDzxO4XCgXY7Xa0Wi1pzc22z7Q2Zpnis8biouBCJxiJ/wCIeaymONUXvKiFw5/T+iCMtFKp4OjoaIyZhrgDNai66DPpui7XuLq6Qj6fx9OnT6WDMxGcRuow3psRzzDvuYxjq/NB1OjR0RGOjo6QzWbx2WefIZPJzO0KPOv6tHZarRZyuRz6/T7K5TIikQjcbre4h4VCQWIfyyoBjsFrs8SaBxPnmSxJtAqMhVfq9RaVG9t8RHUJGBCMxWIIhUJwOp1iotdqNek6a8wGAItNBjchCU2YFaBpSgz4LF95HqBG/aqK8cSetRmMoJplCmHUU5MKh39zHZSZUWjCquncRWs3XlVoQhNZ6XA45N1Vq1VBdb6OcdR4hlqzz9w9Keau87zGd6TyCNJK4ntSUapLyJvXgUidEAbMmP7hiTmNqAFYnoFX3SDqRpmUclzy+caCnfNOPeNJry4O/s7oGtyE9wgsp3y/q/GvY1XcNFHXC/Da5nOiEriR7gBFTXEBEEqxv4qxvotr8/+LfH7a3990+eu+zzdprmbJX6Vyf9uG7K28lb/hcqMtgXkyzw+fZGbf9FPCGD/4VTnZXlWWAfoYTehZ6dxpJvd1gEXT3Lp5Y/11y41XArPynrMUwKQXcJMmXhXGPBjgYvwDwFj091Xq4X9VRN1Ik94zP8PfGzferEDstGtMGktF6Bnva9bPbqLcWCWgTr7xhQDLsdzc9BdhXLRqfwTjvV8HDDJLqHiIH2AqcVJK7yaIui6oPCdt9Fl/u8w46vfqWlQDxYuuxZu6Dm+cEpiUTptkIk/7/SQN/TruiZuFGHlWkhHcM62YaBHh8xCwZLfbpUZfpRVX25Opf3sdYZorEAggkUggFovB5/MJUpEUZ4vSiwEvvzM128K/NwZe1Wsu+iyqxQS8qLcn4tKYnlRTl6qSXSTVZsRlqM/F5+G11HWiivoZXvO7UATXve5cJaBp2v8A4O8CyOu6/uDbn4UA/AsAmwBOAPynuq5Xvv3dfwPgHwAYAvivdF3/w2VuyLjBv73m2ILiRPMkUAE3mqbJQiAq7boLjV/V+oVIJCIddjqdDi4uLoRhSK3tX2YcTdOEOYbcfypvApUBK9NeNYtBXoNbt27hBz/4Ae7fv494PI7RaITj42N8/vnn+PrrrycqgEnPpS5+1mAQb0EkJFO7xLkz00Ma+UkYjGll0iomgeOxJwXxALx33pN6OHBNML2sWj7TxlMPAYfDIRWKLA/XdV0sKt4LsQr8Z4R8zxNjWnjSJuc8qPtGfZZF1skilsD/E8D/BcA/UX72ewD+RNf1f6xp2u99+/0/1DTtHoC/D+A+gCSAP9Y0bU/X9YWRGsaHNp7CatspYt95erKYgwi4SqUiSLhF2V5VxaIuNovFgkAggPX1dWxtbcHr9UrLJxXUwfte5EXz2axWq7QIW19fBwDhHSR0WE1hvmoa02azYX19HX/7b/9t/PjHP5YuStlsVhSEuknmEZeoJKpsnJJMJpFMJqWfgtvtFnej0Wjg4uJCmp9cXl6O1UaoG1ZVPnwPqiIgtJybc9r8s5KSxKrcuKyTmDSvHIOWn1p6bbfbpSiJ1Z+cC5fLBYfDgXa7jXK5jHK5DABCvz5LEXCe1XGtVqtwIjBepK55UvFXq1WBnKvPMm+9zFUCuq7/qaZpm4Yf/z0Av/3t//9HAD8B8A+//fk/13W9B+BY07QDAN8H8OfzxgHGzXl1M7IvIYk/4/G48K2TmMNiscjJT8bhw8NDPHr0SDD/i5qzHJfgJC60eDwuJcyapkl1mgpZnqW1p41JKvN79+4hEolI9xx1oRIm+qokEmyg8cEHH+Djjz+Gy+VCsViUTUmUndrbYZa5rPZT5By999572N7exsrKivRn4ClttVrRbreRSqVwdnaG/f19mbdqtSpkIip0nPNEynl+r9aWsO0YlSrnTn2XPJGJMGVFo5GVl2NRCZB7UbUCHQ4HrFaroATZBEbXddm0ZAGap1CN3xvRq+TP4P9Jdcf76/f7yGazyGQyOD8/l56cszgoVbluTCCu63oGAHRdz2iaFvv25ykAf6F87uLbny0sKnsQzTC73Q6Px4ONjQ1sbW3h9u3bSCQSQippt9tlg3S7XWxubsJsNiMej4813KAmnidceNSyrGIMBALCa1gsFqUJKXkMKMsoAMYBtre3sbW1BYvFgkKhIBTnVqtVXvQkBbCsH2ixWLC2tobf+I3fwMbGBs7Pz/GTn/wE2WxW+i0arY9ZoprldJfYQJYsTRcXF1JBqGmakJvEYjGpyTfGOoCXg2pqrwX1cPD7/QiFQhKv4WEyGAzgdDrlZ2SGIn2cEZqrisp6RKaf9fV1JBIJJJNJYZ2u1+tSVqx2lgYgXAOEvnc6nZmbUg1y0vINhUK4c+cOtra2hMeAClXXnzMPsx0Zazf4PngPc9fE3E8sJ5OecBok+HcB/O6si3FCfT7fWGfWRCKBUCg0dsJ0Oh0xzYkh7/f7OD09hd/vF7dglhgj8KoJOhqNRBnY7XaUy2UcHBxMZcxdRHRdF/ISUkrTjWFbq0gkgvPzcxQKhYnXX0YJaNpzstP33nsPH330EcxmMx49eoQ///M/R7fbRTKZhN/vH4u3LPIMKh8AN1o6nZY2bqenpygUChgOhxKL2NnZwdXVlXTsVdugTxLVAqACYGfjaDSKRCIx5vOTbZifG41GYy26SPOm0sNRjMqGbEnJZBIbGxvSF5C1K3x+HhJOp1MqJFmodXV1JdebVvlpfL5oNIr33nsP9+7dQygUwmg0ktZupFiPRqNCTmM2m8eKtYzPNU2uqwRymqatfGsFrADIf/vzCwBryudWAaQnXUDX9d8H8PvfPvjYKqZJ53Q6EYvFsL29jR/+8IfY29tDLBYTLU1TLJ/PY39/H6VSCevr6/B6vfJi6D8tU0BCTUpLhAsnEolgfX0dZrNZOvQYXYFlAoNUWFtbW0ilUrDZbCiVSsjn89A0DXfv3sXe3h7+p//pf8L+/v5YRFqNlyyakdA0DcFgEPfu3RP+/7OzM1lQDGzRHF7EfaISprXCEliTyYRWq4WnT5+KtcQ54rvo9/vS/dho6UwymVklaLfbpbyc78Tr9QqFOv10AFLhx7kDXu6tOGn+aD3Y7XZhsyJXQqlUwsnJCS4uLtDtdtHtdsXCCoVCMi7LxVWym2lKWw1+22w2xONxfPTRR/j4449hNptRr9dRKBSQTqeFZozuCeMVZB9S62kWWRfXVQL/FsB/DuAff/v13yg//6eapv33eB4Y3AXwl8tcmJNB0/LevXv48MMPsbW1Bb/fL+WWDITUajWp9WeLLzKvqB19lvWl1Uox+tF3795FOBzG+fm5sNpOIuNcdEOyddXW1hai0SgajQZOTk5QKBSQSqXwwQcfSBBKJeTkqchA6DKWQDAYxObmJgaDAS4vL1Gr1eD1eiXewjEWLb1VNxQbtFSr1bFybAZwrVarbCTWxtMSUOMP3LDG5xoOh8IjqPL9qYSezKK0Wi0AkACd0+mUSD6DgeozGMcaDAZCKsogHLtdZTIZZDIZKZXu9/twu91jcQjGjNQKxlkdo9QAuMfjwc7ODh48eCDsTJlMBpeXl0I2ythANBqFw+HAyckJLi8vxxiUFl0bi6QI/xmeBwEjmqZdAPjv8Hzz/0tN0/4BgDMA/wkA6Lr+taZp/xLAYwADAP/FMpkBTgbLQm/duoV3330XsVgMw+EQhUIBJpNJqJUymYy0zOr1elhfXxffiN1icrmcLLJl7oG+IE+d9fV1hEIhdDodfPbZZzg7O5vYc2BR85zXX1lZwerqKux2O54+fYp0Og1N07C6uopUKgVNe97fnlwKRsIN44KeJWazGX6/X7gLq9WqkFawtwK7+SxCx6VuVHZFYo17p9OBz+dDKpWSaDxxCU6nE81mU05uY3pu0kZh9J4WGlmg6SO3Wq2xZqqcm36/PxZfUhXnNKtNtex4MtOlqFQq0kCVBwUAIaQlWS0PIRKnWq1WSVvPe0ehUAjb29tCMkvyUr/fLxkWl8uFu3fvYmtrC+fn5zg7O5PDbpaFM0kWyQ78Z1N+9bemfP4fAfhHc0ee/LdyQrIXfDweh9lslp4C1PR8GZVKRbrQskuPyWRCLpfD2dkZyuXyUoQSRp+TQafd3V04HA7kcjl8/vnnaLfbL/3dosJn9Pv9uH37NsLhsJxQ7EZ77949JBIJCdhtbW1B15/3vWP2Q+12u4gwvZrNZmGz2dBqtSTI5fP5xJyflGaaJqriU6nRSNBK2i21C9DV1RUKhcLUjThp4RIABLwIdlFBUzkyrkAFy7FoXZA1WnVJjEAe/ozzakwdci2RgYonLgOd7G+gKja6V9NQmOrneACSSITuTSKRQDgcFn6LeDyOnZ0dOJ1OVCoVpNNpYb1ifGZRC/HGIQYBiP8dCoVgsVhQrVZxenqKdDotmrHX68kpwlZX29vbiEajQsZJ1Nt1rAAuWnaejUQiuLq6wuPHj3FycjJmBqun/6KugM1mk3hHIBAAAGxsbMBut8Pv9+PBgwew2+2oVqtYW1vD7u4uhsMhSqUSnj17hkKhMBYgWnRMi8WCcrksvRR8Pp/42mQLXjaGwucejZ73ZigUCmJKE1/BU4xzG4vF0Gq1ZNNMC5ipQnNexW+o/Srp/1PZMEjI9LLT6US1WpVIPYFLk8ZVCULYEszr9WI0GgkNOBu6ABCrLpFISFMXFc9AZbKIYu33+6hUKjg7O5P3ojbCMZlMEn9ggNroCixqBQA3UAkwHhCLxRCLxYQj//j4WOiw+eJMpud93Le3t3H79m3s7e3B5XJhMBgIR5+xWei8sdUXR4XA3oGDwQBfffUV6vX6Sy/TaAnMGotpQTINm0wm2SShUAixWAxra2tCT+50OhEKheTZGSMAXgSwFknlkWU4Go0Kf+JgMECz2YSu64K78Pv9S2U41P/zeplMBs1mE5eXlwgEAkLVza7OgUAAkUgEwWBQ0qCcx2nviic0T/LBYIB2u41msylt1WjuE5F4dXUlJystMConNS1pfF7GRWgd5XI5XF1dSfaEATludrIA+/1+CXYSRERlNI9xiEHoYrGIX/7ylzg+PobFYhGWK6YY33//fcTjcQDAo0eP8MUXX0gz0uuwRN04JQC8UAQEg1ADkl5Zxb3fv38fH3/8MdbW1iSKWiqVkMvlkM1mUa/Xx1Im8yaHC7ndbkt6h/7e4eEhDg4OJNWoXpNKY5FgDNNqrVYL+/v7GAwGCIfD6Pf7YuL2ej3s7+8LVTd/1mg0kM/nhTZrkZgAfdJgMIiNjQ0JNnU6Hezv76Pb7SIUCiGVSokpuUwDT6NZr0Kca7UafD4f8vk8vF4vUqmUvLtQKCQntBpFnzYGANn83OQ2m00agNBK6Pf7Yg0aszx2u12UCDfmtDHJz9hoNKThDN1Apjvp87PqczgcClKwWq3KPBu7ZU96PioLIv8uLi4wGo0kRW02m7G5uYn19XXBqvzkJz/B48eP0Ww2x+ZpmYDxjVICXEg0XclLH41G5SRWmYfZhnp1dRUejwf5fB6np6d48uQJ9vf35TRaNjPAxdjtdqXfQblcxp/92Z9JdFY1/9XTaxEtrOvPm4OenZ2h1+vh4OAAsVgM4XAYt27dQr/fx/HxMX72s5/hk08+QT6fl0IiRuH5/SIvm/gAn8+HYDAoG+D09BSPHj0CANy9exdms3mM5HRZIJIxbUk/nkqTGyEajSKVSqHb7co7n2cm83Pc/Iz6u1yul5inut2ugMc8Ho+4JowZUEkwYDnN9SHuwWKxCDU6OwWXSiU4HA6JdwyHQwSDQfR6PRQKBTmEiIHgmpr1vvgcavyD68lisSAYDApWpt1u44/+6I/wySefTLRMl5EbpQTUE5UBMHLYv//+++j3+9LsMRQKSZT46uoKh4eH+OKLL/DZZ59Jt1b2C1xG1BQcUzUejweffvopnjx5IgU902QRnAAVTDabRaFQkAj9Bx98IMHAk5MTfP3117i4uJDiJABT02fzhFTZbJlVrVZxdnaGYrEIt9stKbBqtSqc+cuMYXQLaE3Q1GffRE3TUCgUUCqV0Ov15B1Ncq+M4/M073a7qFQq8lxqjpz/rq6uBHpL8A4Rfir8mkp8GoCn3+/LyVwqlQROzHoFbk6/3y9dpk9PT5HJZNBqtcbg19Oeyzhv6v3QPXU6nbh9+zZ+8IMfwOFw4C/+4i/wB3/wB9Il+VXkRikB4EU0tlaroVQqIZFIIJFIwOfzSQCQgR0WnxweHuLLL7+Ufm30dWcFfiaJatY6HA7JThQKBTx9+nRuA4tlTk7eF7MC5XIZ6XQamUwGvV4PX375Jc7Pz2XB8v7UhcufLfJc9KdZqENlEIlEsLu7i48//hiBQAAXFxeyMZdVNKp1pPYTUBc3u+2y1bzafFRF1C2iRAlCYgyDc0nTmdkdYglUl3IWQa1RCEenojGZTOj1etIvwu/3S1qQfSVUa2qZd6V+Tl2LW1tb+OEPf4j19XVcXFzgP/yH/4CLi4vXwqJ845QATeWTkxPp/U4optVqlTx2Op3G0dERHj16hMPDQ8ndqmCQZfwiCv3nSCSC1dVV2Gw2nJ2d4eLiYqb/vew4/BvVfG6328hmsyiXyygUChLtVSPn17ECuAmJOkulUvD5fPj1X/912Gw2aelGEBTjKNcVNb/OwJnL5YLL5ZJ+fQ6HQwK3iyxk4zNTgdKaYEZD118U8Kg9Hfk5WgmzIvWT5pfzTgXDE9rlcsHj8UhAmn4/U3XMhlx3LdpsNoEPf/DBBxgMBvjiiy/w9ddfvzbS3RupBNiA4fDwEP1+HxsbG0gkEjg/P8fV1RXS6TROTk4EU8+FxJeknkiLmGGqcOJZC1+r1XB+fi7a3ail1b8zjrmMEBRULBYBQApu1Fpx49jLxjkKhQK+/PJLeL1erK+vCybd6XQil8vhyy+/xKNHj9BqtZaOBaj/pxJgADcYDMLn8yGRSGB3d1cQg61Wa+zdqdDeSa6AUbhWGIxUU5AulwvBYFBiBjylCbZR73XZE5rvg9WFrGDkfTBFyJiWmrdf9ORmsNHr9WJrawt3797FYDDA/v4+Pv3009fiBlBunBIAxiOsNpsNo9EI5+fnAhIqlUoSfVb9LfVlLhvU4t9wsTHNxa4y9GkpqkluHHsZ4cKgz8lCE2OJ8nWvT2HxyZdffolSqYTt7W3s7OwgGAxiMBjg2bNnePLkiVg815k7YJzlh/7y7du3sbm5Kc1jGJTMZrNyahoV9rxx1OdSU8DM5DC7xBgOMyn8Xn3X88aZ9Hm6PESVqkHb4XAo8QJiMDRNW8i6UtPULpcLsVgMt27dgt/vx+XlJT777DMcHh4uXBG7iNw4JcDTnBVmAKQCrdVqSWHGvMj4MpvUCPYZDp+3lv76668BQIJJxmu86sakjEYvuuWwNZmu6y+x0Sxr1RiFLgE7I3/66acCeKFSvY4CmCSMqNMi6Ha7yOVyAup59uwZTk5OpIW3qggWyXaoX9WYBw+Nq6srNBoN8f8bjYZg+Y0kLYsEeo3fq+ul0+mg0WhIYJUuq5rRUZXdIs9FopmNjQ1sbGxA0zSJfzUajWu5F9PkxikB4EWuudfrSRSYvpbR3J8my57S6ufVFCG/n5VPfh1CRcC8M4Cpm+JVXr6u6xI3aTQaAF6d8069RypRptc6nQ4ymYzEB9xuNwaDgXRaVi2sRRSAMQvBr+omYwqw2+1KvT2xCzyN1cDxtHEmzQuDfQwAMg3NzAGxAYSrGwPAxmeYNqZaxJXNZpHNZvHo0SNkMhmpyHxdcmPbkNEk4mlCrbqoAriuj65qY2P+/60sJ+p7YJxAxQWohTzLKFgVj8B3xOtzzZD5h7EGFhNxcxm5C6a9X+NYwAsiFSMFGBURx2Fq1BgLmLeW1IInkuaYzWZRqioycEl583oRvpW38iryOmI2v2Ly5vUifCtv5VXk7cZfTN4qgb8CUc1gYwaDP5uWAlNl1jVeB2jkTZFJ6dJJ/5/kOr5VDC/LWyWwhBjzysv4spM2tPr3i8Q6+Hfq1+uK6kur36v/v6kbRr1PlepbJRmlT03fX62JUK/xKs+4iOJ+E+StEriGGANeqswKMBk3HRercWFOE25M48ZdNvuhfj/pJFXv9VVBUK9TjM9ABcDfseKONSW6ro9V96nAousWSany1z0fr0tuvBIwRmSp7bkAmB9etKLuOkIILLHiNO9ZIUfsAvAiXTXpPlSOAuMmVDHz08zXaa7EvHoG9Sv/b4ymc7MAL+aUm0VNW71qmtR4enMeFy3BnvY8JpNJqOkJMWeu3e/3w2q1CicgodkEm/Hayz6HMYPE+2DpL59pmXU5z9IzBjtfh0VzY5WAukjtdjtcLhf8fj+8Xi9sNpvANFmzXq1WpXnFNATadV40oZskFolGo7Db7RgMBmi1WsjlckI9zQVlRIepm04lL1Wr3HiP5KzjvTLHzEIbY6894gsm3fukja821GCnHLfbDZ/PBwDC3UCaMZ6eLKXl98vMofouSZJBvL2u6yiXy9JybVGrSL2+2hwkFArB5/PBbDYjEAhgY2MDKysr8Pl8qNfrODg4wC9+8YuxYqNloLzAC1ZmPhMRi0wXejweKWumollEEaipR6579bBjpSeAMUo19VnUuVvUyrmRSoATYbfb4Xa7EYvFEAwGxxqOkIONpZ6Hh4c4PT2VxatW3l1HuLj8fj/W1tawurqKWCyGSCQC4DmsOJfLoV6vj1GBqw0tjCe31WqFzWaTYhqXyyVsNFxY7N1HUE+/3xdQD9F+rVZLFhdRhZO66Kj/58Jibb3P50MgEIDX60UoFJJKPPZuIOBGfQ4qkHmbhs/PHoGk9+LGTCQSWF1dhdvtRq1Ww6NHj/Ds2bOxhbzIAuYYTqcT8XgcqVRKOCYJBqpWq3C73dK6jvX/y4K/VGXGQ4ksxMQi0Jqy2+0yd9yk80Td+OylEIlE4HQ64fV6hUmbBxCLr0ick8lkBPG5rNw4JcBTSu0Z4Pf7hYoKeK4Fi8UidF0XC2F3dxe6ruP09HRsc1w3gKZpz9mN4vE49vb2hPmXpyOhsCQ65WnAghFjoI2AEt5vMBhENBpFOByWhiZqEQrJULigAYhCyOfzwp846RlVX9n4c7PZPLbx3W630H5xDKOJOy+LYZw3VQGQd8/n88HlciGVSuHWrVuIRqMYjUY4OzvD+fm5MP4Yr2VUpEaXgCQzyWRSWIuq1aqwTF9eXqJarYpLN4lPYNpYk+aPazIUCmF1dVWagqhWQrvdRrFYFNo2430blZuqADweD4LBIMLhMNbW1hCLxWCxWAQ6DEACnYPBAOVyGZlMBl9//bXAsFUXZxFleuOUADCOBSe9eLfbRbPZFO73SqUCs9mMaDSKZDIpnHXn5+cv+UrGqP4iwsYgm5ubSKVS6Pf7Qubo8XjkPtjXTkW/TQqi0aRm37xQKIRQKDRGsknmnUajgW63K0086dOyUo4xEAAyL8axVFEXH5UsS3zVBahCXI10X1Qsi8whr+l0OrG2toYPP/xQXB6HwyGs0LquCwyWeHj1nhcxn8ntt7W1hWAwiG63i2fPnklfRZfLhWg0KoQqrM9QN+6ksSYpBVprXq8Xd+7cEU5L1l0Eg0F4vV7UajV8+eWXuLy8fCmmMy2jwHfBtU9S2eFwiHg8LpWddAO8Xi8ikQgikQhsNhsuLy8lvrMsEvPGKQGehHwAwjzdbreU2TIQx8aTNJNoLi/qg00TnmTsbuPxePD1119jf39fTEA216DrMesUMb5cmvnNZhNutxuFQkECjCx6oekci8Wk1TUtjG63K+YmU2HGOTQucJW6iky6VqtVzFUq3FarJT66+lxUViQAmfcOVaZm8kTm83lcXV3JxhwMBtI3QqWFX0Rp071yuVy4ffs2YrEYbDab9D1k1aDdbkcymYTNZkOlUkG9Xpf55b9phT1Ga45krXfu3BFrpl6vC5FNLBbD6uoqfD4fDg8PJ/ro04TZC5PJJNYlXY7z83NhRxqNntOdb2xsYG9vD8FgUOov1A2vlmXPkxunBIDxwhk+HAMjXLCqyRkMBuF2u6Vo5FWBM2Qx3tjYwOrqqhSEDIdD+P1+rKysoNFooFQqveRbTnrRqhl3dXWFdrs9xiA7Go3GTqjBYACPxyPPp45RLpfFpKXfrj6v0XRXLSHOmXpaMO7hdrvRarWkl4NqbVAhL2pNaZom/fusVivq9TouLi6Qy+UQiUQk0Foul7G/vy/9JPi3xqCm+lxqBJ4NO9kolLRe7BZN5iT2Azg8PBzrfKyenJOeQVWmFosFHo8He3t7uHv3LjweD6rVKs7Pz3FycgKz2Yx79+4JVwJrBuZZGHxXquVLl4z8hjz8KGRuZnaq2Wy+ZEmpczZPbpwSmLTI6AORPZbFISy19Pl8yGQyuLi4GDPN5113kvB0DYfDwi9YKpXQ7/cRCoWws7ODRCKBRqMh3XuN4xm/V9NEPIVJc8W/58bp9/ui2CKRiCiBZrMpASCWxLKgZFJxyqRUkrrYGMUOBoPS36Fer6NYLIoiVV0B/t0881INnjFKTwLYer0uzUgjkQjOzs7w5MmTMcIW3vcsS47KzOPxSNCYrck4v5r2vGOP+r7UeADfM//GKEZrymazIRKJYGNjA+FwGN1uF0dHRzg4OEC1WkUymRQXi2SnRnbheZuSn+X9MSbELsdU2nSD2HE7l8uhWCxOpaKbJzdOCahi3Ehms1m4Bn0+H9bX1xGNRpHL5fDs2bOJ2vA6YrPZEAwGkUwmJTXm8/ng8XiQSqVgt9uRzWYndumZNL7KEET3hpz07JPHttO6rssGpbnO2EO5XEa5XJbI8Dwu+0kpUi4kr9eLeDyOSCQydlrT4lE34bKWFeMOwPNIOQOn4XBY2sqbTCb84he/QC6XG7MCjPduFFXJRKNR6VFJ/AiVg9frxdraGnZ2dmAymVCtVqHrOpxO51gGBoCUFE8bk5suHA4jHA7Dbrej0WgIqxV/z2pFNbVqjKVMW5/qXBstIaYfTSYTfD6fdCK+urpCqVTC5eUlKpWKHCjL7oEbrQSAcY2m0jklEgmsr68DgJhQ8yZ4EVHdDJp0mqYhmUzKIjg+PkY+n5+4OWaNpbo3NEmZPmOjTra3Yj1+rVYTX50WAFNBVALznlmdQy4ol8s1lhUgr6HKpqyaxGqgdZZw4ZPhh7TfyWQSsVgMt2/fhsfjQaFQwE9/+lP0er2xuMa000t1a3j9VCqF3d1drKysoNlsigvn8/mkBdr6+vpYM1QyAeVyOaE3mxWs41ev1ytpO6vVin6/L4rBbrcjkUggEAhA15/jHkajkaSEVStwkQ2qzrUx3RoOh8X6GY1GorhpdRjf+yJy45UA8IKHnZFznpCVSkUonBiwU2MC1wkMcpGREjwajQpDLjn7c7ncGDvNPFE3Fc1qvjRaGsPhUIA0drtdmnrS/1X/RkUWzjoxZ7kGfCYGVEulkkSgpwWVFg3Y0bWxWCzo9/vSl3B7exvr6+sYjUb4D//hP+D09FQsPLbZmgfeYeqW7trOzg5WVlZQq9VE4QCQHpI0mdfW1qTzM98jm8yo78g4TwDEbXC5XEJ+G41Goeu6uKjkUSQzMVOSKvJy3nPNs+hIORaPx+Hz+aQprxpTmXetSfJGKAFuEp6AZBXudDpIJpPi25LBdtIJtohQAZhMJml9TtJR5vUvLi5QKpUmZgXmXZsmKxcEse61Wk168nU6HQHWABAlQVQgF6Su61OZaoy5feBF2o4bjqAUt9uNarWKer0+FvmfFFSknzpPjGa2yWRCMBjE7u4uotEozs7O8Id/+IcoFAoS5FUzHbMsOk17TlvOSDwRghQGiZleJcV6LBZDt9uFw+FAq9US5KY6X8Z5VJV0v99HsVhEOp2W1nHRaFSCs9zwpMGrVCpjnaquw0zFe+I6Y8p1fX0dw+EQmUwGuVxOGLDUNKP6HubJG6EEgBeBIgbRmCIiNpw+tLpgr2MJAM+pzAjC4KSmUim4XC60222k02nZNIuaYLx3lY+f9zgYDIRduN1uC5qP+XsGu4bDIaxWq6TceN1JKUKKqtiY56YLwoBTp9ORzaL+HYCx+1zU6hkMBsInmM1mEQ6HEY/HkUwmMRgM8K/+1b/CL3/5SwkIMvA4D4ugPqemacJKDbzobjQajcb4/ehGeTwe2YiMpzB4N4sAlAq70Wggk8ngs88+EyVDi1HTNKRSKUQiEXQ6HWkTzudTqxjnWVGq4lXngsHq9fV1uN1u4WgkPbwKEOM7WFTeCCVgnBDgRb6bJqymadduyGgch7DMTCYDj8eDRCIBu90uKS2iwRbt0mOMMhM9GAqFxBxWswaqD9hsNsXnI7ecehpPS2+pC4qBK0bQ+b3dbkepVMLR0ZFw4qnKxciDsOhJNhqNpBcfMRzxeBwulwuffPIJ/t2/+3diBfDztBj4/bS4ABVlsVjEN998A6/Xi3w+L++Nm00FPvX7feEabLfbyOfzqFQqgsmYtTlVK5QpSFoHfJdEfG5sbKBWq+Hi4kLSlLzGMhYj8CJ9ySBrJBLB5uYm7HY7Dg8P8fTpU1xeXqLRaIxZpMbU5iJy45WA+jD0j9VOvPRp1eDItOssEtRSOfBHo5GcmmzcwQ2zTJsudTNyg/t8PtmIpKc2ujCkXW+1WpL5UPP3POEXwfIDELQiOwEXi0U5UXg6qotJVSbqBp33rLxHk+l592X2z0un0/jX//pf4+jo6KWTahElQ3ek2WxKT4qnT59KgxG2AqOi47MTd9/r9aRZbbPZnIpJMAqDtGobeNWyYkpS0563WKvVakvFjPhsnAcqADanTaVSuHv3LlKpFGq12hhTs1rQpT7LMtbwjVcC6gbixBAo4vP5JGim9h00msPLjsWNqrawYlckdqdd1tKgz2u1WuX+nU6nRJTJwgtA0GFk5WVWgD0JjEi0Re6F+Aqfz4fNzU2YzWaUSiXp2UgrY9JJwjGXDYSaTCasrq7ivffeg8PhwGeffYYvv/xSgnGT/m7W++J1adLv7+/LocCaDI/HIx2rWKGpVufpui6xJdXqWea5AEw8fYkCvU5gWt28VJ5+vx/RaBQffvghNjY2oOs6zs7OkE6nx3AB6nzz669UYNCoAJjnjUQiWFlZQSAQQKlUegk6uUjOeZqYzWa43W7BuLvdbmkeqrofy1gCRgVjs9kkeEXsAwBJ/TE7USqVUK1WxcqhhaICeaaluCj8rMPhkI5DjNyrvfl4PTXzoG7MRRUq31koFMJ7772H9fV15HI5wQW8DiyHGmxTrSOy/jKLwOdnEJb/VAV63dgR54YuATMDjPssG5eiorLZbPD7/Ugmk/j+97+P27dvw2KxSKUsLRkGclUFPa14bJbcSCVgDJBwYohCSyaTSCQSiMfjUmihmmDG6wDLa2UG0Dwej/ihtVpNIvKT4hTzhJF9loeyjp+lqSxyIbqNZaJqSa8aQzDGByhcDEYzkQqD8FQ2ySBXgQoTNp5y08aaJjabDYlEAvfu3YPL5cKzZ89wcXExZlJPkmU3JBXKYDCQYipiAHhSMr07Go3GagdUC+e6ommaAIWYfWB6dBkcicovQVzF9773Pdy/fx+hUAjZbBb5fB6ZTAaNRmMMLj7tEHjjswOqaaNaAtFoVFpa2Ww2nJ+fi99srKW+zstVg0/MnzPKTeIQ9ZRcRNS0INGA/EdkHRdwsVhEuVxGpVIRnLuKOFR97nnCTc/xm80mstmsxFJY+MIIuVqWbLR2ltksXNBWq1W6DT169AiXl5dz7/s6WR3eG4vHGo2G4C2IISFfQqvVkkKzeYjLeaJadSwA0/UX5CJGf33WOLquS0FUKBTC2toaEokE3G63dK2+vLwU121e0dprdQc0TfsfAPxdAHld1x98+7P/PYD/DYDCtx/7b3Vd//9++7v/BsA/ADAE8F/puv6HC9/Nt6I+gLrhCO5g5JW46UKhID6zulivmyZkIOji4gKDwWDMf75u4wf6sQ6HA16vV/xil8slm5Adber1uvS2NxJtUCkShDIrqq2e4uzKS5CV3W5Hu90e6+lofC7VpF1U6anp21arhW+++QZPnjzB0dGRlMbO2wzXEVoqrIpst9tj1Gm5XA6apslcq6m76wqfk9YVAV4q9FdVqrOeTWUKIiiuWq3i6dOnkpk4Pj6WmIPqUqnrfREg2UvPMe+Dmqb9GEATwD8xKIGmruv/R8Nn7wH4ZwC+DyAJ4I8B7Om6PnOmtTnNRxhUU80lAGLG0qR9Ff9OFW40Ivh0/UXrrmUAQur1+FW1BBwOBxwOh+S2e72ebH5ucjXIpAa4jAt4kp+t+odqyomLk6g5I8HGqwpTkCoDFBXbq5rfi4hxAxozANws6oa5zoFhNpuliGlrawuhUEgySESV8r0sEgdRXYJQKIRoNAqHwyHpzHK5/FIwcEm5XvMRXdf/VNO0zQUH+XsA/rmu6z0Ax5qmHeC5QvjzZe50wj3IYlXptvi76/j9s4SLgyeLOtarXrff7wsFGk18trBW89tGba9Gt42/mzUeFz+VBq0JdTO+TgXA61GpsZfkX8XmV8efZCrPsmyWvTdep91uI5fLyZqkW8B06zJBUOIaGGAkWA2AKOzX/a6AV4sJ/Jeapv2vAHwG4L/Wdb0CIAXgL5TPXHz7s9ci38UEzBrrdYm6ENTaAcp13ZZFZJKCfFW+hUXG/Kt6T4vI6z4keC1ucjZ3fR3Xp5L/rt+RKsvnE57L/xXADoD3AWQA/J++/fmkHNLEmdE07Xc1TftM07TPrnkPvzJykzbMW7mevMnv8FqWgK7rOf5f07T/O4A/+PbbCwBrykdXAaSnXOP3Afz+t9d4c2fwBsskC8OY/gO+mwW8zDjz7vOvWmbhIdT0Nb8Cy88hP88YjZr9MY6l/m7avKg/N15rLqJ0qTt/MeCK8u3/HMCjb///bwH8fU3T7JqmbQHYBfCX1xljwfsQX9mYC18GKXgT5XU8g7oJjXNjDJRNGuu692C8tvF6xqDdpEV9005WNThttVol/cg5VQOv/Dy/zlMqwMsEMEaMy6SsjXpfwIu40bKySIrwnwH4bQARTdMuAPx3AH5b07T38dzUPwHwv/32Zr/WNO1fAngMYADgv5iXGXgVmeR7Ghe+8edviryO+1UXCq85SQEYfzctsLZAJmns6yL3N8kCWGSsZe7DmKa7ThCQm5/XImBLrbeYlJo2bm71Z+r11fmfZEWpymXSGjcqH8YrFkrr3oTNcV13wLigjRBa9UVcJzptrKJTTTL1+q9DJuWVeQ+qdjemt2YVTBkXFU8NtZYeeEFppbLvcgw1VTnLnOe9Gsc3vhPje5hXwTdvTHXzEOVps9kExUdWIRYekYVKBQpNU0S8f0KNaQlwrtT3wPlR524S1ZdREakQY6PypPJh2pDvjO9r0twwUEkFxazCt3K9FOFNE3UhGzcIq/FUYlK+HE7OvGtz4j0ej2D72VuOk8nUIWvYXyFvO2ZmEuXGMQAIUpK+obqImUqc9lxGBUluQbYAs1qtMjcqWQkLYfh8nU4HwDhG3SgqBoEbh0w8RO1xQRLiS2IYKhkjDHYaGGrac6VSKayvryOZTEqlJJ+pVqshl8vh4OBAUnoESU16f+qJb7PZ5CufiZaBy+USbkEC2PjVSHs3LSXJd2tUPna7XepXQqEQXC7X2P1xvogG5cav1+tChDsPpg28QUpA1fYul2us8SQ3DvncarWa1FmruXLmx6ddnxMfDoexvb2Nvb096XykaZpM8MHBAdLpNAqFArLZ7BiAY5mAlqp0fD6f9NJjR12+VL5w1kkY6++Nm0U9/fkZtXNOKpWSijvWxvPUIqcAC6Z4H9OwCbx/KmTy6vl8PgG8BAIBhMNhaJomjUby+bwURrFRKJU2T7xJJ6lxbKvVikAggNu3b+NHP/oRdnZ2EIvFYDKZZAMShLW2tiYKnNRtRsyEKrSM1M5R0WgUoVBIlCkbyHQ6HVQqFeEqUElhVSDbJBIao1WjFhGlUikkk0nE43HYbDaB0PP+SG9G8tlarYZyuSw9ORbpE/HGKAHgBRItFoshlUohGo3C5/NB13U5rSuVCo6Pj6WaSwXJTAt+8SvJK99//3386Ec/QiqVkuuzJ0Cz2ZTGqK1WS/rOqRHYRX1dWgHsonPv3j2kUilhslE7HpMQQz1xVTjxrFiIeqpsbm5ie3tbaMZZc0FlSf5G1apivfykuaMFw+9Z17+ysoKtrS2srKwgFArJPHFhJhIJaebKhU/ot3HOZq0Hr9eLu3fv4u/8nb+DBw8ewO/3o9Fo4OLiAsViEe12Gy6XS8rOU6kULi4uxAyf5McDLxSAWqYcjUaxvr6OlZUV4Z4khLvdbos74vV6BQmqFnpRqRljMnQtVBfK4/EgHA4LWWogEAAANBoNYRLiwUMWbnJUDIdD6ZFpfM5J8kYoAdU0I2HlBx98gHA4jFqtJqYZK8ZYqMKJn0dbxTGsViui0Sju3LmDzc1N+Hw+nJyc4NmzZ6jVamIlkMRS9QVVWcYSMJmetzvb2dnB7u6udFqiElC7B3OTqCfzLBYe1dJwuVxYW1vD3t4e1tfXpakF/WR2Jyafva7r0tii2+2K+W4UlSmYJjPLvFdWVhCPx6FpmnD+d7td+P1+xONxmEwmYVJSS5l5/7NiBXQ54vE4PvjgA3zwwQfw+/3I5/P48z//czx69Aj1eh2apmFjYwO7u7tCqUa2I2O8R30vqs/OdxQOh8UVUPtR0gUwmZ5TgrvdbjmQarWaxGB4zUmEKmr8ii3cqARImFosFqWMmEJXiBBtwuoZQ1gkFvZGKAHgRW/Avb09/OZv/ibW1tbEnNR1XchG2K+PptekoBXFqJG5sFjgc3BwgJ/97Gf45ptv0Ol04HQ68eDBA9y9e1dKl41Uz8u6Ai6XCxsbG9je3obP58P5+Tm++uorZLNZ2O12eL1eMW+58VkEM0+p8SstjXfffRf37t2Dpmm4vLzE5eUlSqWSlNZGo1FZUMFgEL1eD7lcToJhxhOF36uBRQBSdAUA2WwWjUZDWoCZzWbx2dk8xciirKZ9Z80dacvu3LkjltnDhw/xySef4OzsDK1WS7o/r62tSXyClZvqHE1S5OrJTYXFCkSLxSJVmCRLDYVC2NzchN/vF9Yo1k7wMKLFoz4Ln1uNdzmdTiSTSUSjUWngcn5+LpRiakyCriEzFiwUW3Qt3ngloJpHe3t7+K3f+i3s7Oyg1+vh7OwMuVwOoVAIiURCgnWMiqovcdapoi5muhaVSgVffvklnj17Ju3GmBumVqeLsAg+3Gh60kRPJpN499134fP5kE6n8fDhQ3Fn3G63BCi73a5QWc3S7rw2TxS73Y5QKIS7d+/inXfeQSgUwuHhIY6Pj3F+fi5wV4fDgaurKzm5SW0VCATQbDbRbDbHoM4ci6e4ap4y+FcoFNDtdoXOvNVqIRgMSlpN7b2oPtes6DfFZDJJl2PSf2ezWezv76NWqwkHgxrNpyXD98brTKv757u9urqS4ieWmdNKojJ2u93w+/2w2+1iHdGlItEJ78F4+KjPxBjHxsaGdE8qFAqoVqsSb+h0OsJMxfgRg4ZqleSia/ONUAIOhwObm5v4zd/8Tdy/fx/D4RCHh4fY398HAAmaAJCSXGNV4STKZ2OAhiZwPp+XGnGv1yuKYn19HfF4HFarVYg5F8V4G3120pft7u4ikUjg6uoK6XRaKKRpEvp8Pvj9filFVrvMTAtq8X7pBiSTSWxtbcHpdKJer+P09BSnp6coFotyavNvGFGna+D3+1EsFoXOXX1edcMyWMlyWpr5ZHwyUotTsZBIhYqBlsAiC5gKiD45uwGRtclsNiMej4vrwTQhgJk9K1UFxLJyVvLRJeP98hrkimSPSQZA2aVK13UpFZ6W8VCVNuMOVCBqOpOmP9eH1+uFzWaTnoQMEs7i3FTlRioBVTuSVvyDDz7AO++8A6/Xi4ODA+ltF4lE4Pf7EQwGUSgUZEEBL/L886ru1Bfe7XaRz+eRSCRw584dxGIx+VtOPrXxvFN50nNxs9F3Zt+EarUqfPg+nw82m01IQT0ej5xuxmjyNAXAzRAMBpFKpWQjsG8dWZK4uNTIfCAQkDQeLRaa0MaxjG4QT3VSqAcCAUmx0aVikFPtd6DGVmbFA4zSbrdRqVREKUajUezu7kqcgzEcdpQqFArI5/MSzJ0V0+EmZ4TdYrGg1+vJ3DIromka3G43vF4vTCYTarWauA3GVnXT3peqtLkunE4nBoMB/H4/YrGYWByqkmd8CoDEJxh/WZR2/EYqAQpNvmQyiTt37iAQCEgKxGR6TmK5srKCvb09qeVmtJ0aeVGziJq6XC7j4uIC4XAYa2tr2NragsPhEPOfRCaT+hAu81zU+CTFbDabiEajEmmn+5FIJMQNUN0cKpRZbgHxDqlUSrruZLPZMXIUBr6M7cqZX+YJPmveVL+WpnO1WpX3p2madIiy2WzQNE0YlFV+Q/VaiyhX9ZSmS7K6uopIJCLxHRXbQPYmjjkN36FuTI7DeVAp4mhB2e12xGIx+Hw+dDqdMVo49Z2raULju+L7cjqdYziO0WgEr9eLzc1N6aDEPhGDwQChUEhYlhkPYCD3jVYCapCEveyZqut0OuJLm0wmrK2tSVMLBtqYtqLZtqiQ3Xd/f1/yzNFoFMFgUF4iKc78fv9YB5t5C1ZdWFygxDmMRiO4XC7s7OzIZszn8xKsI5sSfVkupmkLWHU9SK3FHDPNdRXAojY3YWyACoGWlAqPnTSeagmwhyKfNxAISLSa3ZU4BypyUVVss5Sbujl5+lHh0JVhLIBZDabvVDpy3v80mXQ/dNO4SW02m0Tx2SeCTUdo8VFB0fUyKlXGb7huqSjVDlMqJqbZbEoKMxwOw2KxCH6EeAuVSXme3EglAIxH60ejEYrFokwsJ5NcbHa7HbVaTcgY1e5AiwZHAEhMIJvNotls4vj4GOFwGIFAQMgft7e3EY1GEYvFBJq6zPW5AAlqOj4+lgg28KLxyXA4FL+21WoJo/IiJrP6c5quZrNZgkYqQIgLRsVVEI9BxaH6wJPGMt4TfV/2jSQSkvx5lFKpNNaRiX+vch1OEjW2QF+f6TBiEWjGl8tluN1uJJNJyXr4fL6xIOs04bti5N1qtcLj8UiHajYp3djYQCwWQ7lcFitL0zRpSqK6XMbAIIXQYCoylZAFgLgktASdTqegCdkFiQp9FrJzktxYJcBFSpLPn//855I6YXCELZrb7Tb29/fxF3/xF/jqq6/EVKICWAbWqy4kbj6+nHK5jHA4jGQyidXVVXg8Hmnlvej1+VxsK/3o0SM5VUjM2ev14PF4EIlEYLFYkM/nUSqVZMMu8pL53M1mU5p18kThBqfPysXJmAd7L/L6/MykwKox68GvzBCo6T8qdbpqVHwq1Fs9eWdZWKqlyP4Qo9EIjUYDpVIJ+Xwe+Xwe5XJZgrkej0cQf2R3npdqpQIg2Coej0smIBwOY2trC6urqxgMBkin09L8hEAiugQ01aelPo2WItcgvzI7Y7PZEI/HEYvFEA6HxwKelUpF3hXXyTzAFfAGKIFOpyMMvEyhBINB7O3tyYt/+vQp/uAP/gCffvqpmGLGa11nbNVMbrVaaLfb2Nrawp07d3B1dQWv17vQJBvvg6cCcQ7qKcjFEI/HxTLJ5XLiYy5q2dBULpfLODk5wfb2trgyHo9HTjma/nQd2DcwHA6jVCoJ4SWDkupcGp9dzXOrFg/hz8zbq8pCBbSo15/3jNycRCMyeHp1dYVMJoNnz54hk8nIZlhbW4PX64XP50MikcDx8bHQj0/y0fmVa87j8WBzc1MyUcQ7BAIBXF1dCfqRjUh5TboftFqM2QFV2VFpErfB91MsFsXPd7vd0jvCbDZLU5yLiwvBZDAouKiFemOVAADhx89ms7BYnt+q3+9HIBBALBaD2+1GoVDAn/7pn+KLL76QVl2vKupmpSLgYj46OsLjx4/HfOtllIxqsqkts1RF4HA4kEgkBMOvLqxlLA42Vt3f30cymZRedn6/XxYRF6jD4cDq6irW1tYQCAQkkl4oFMZ8TPV0pnujblzVnKfpy/ZfrVZLzH/VUuO1VCUwL39Pq4Gp2qurK0HwsWUcQTW6rks9A+MejBsYn0l9LjUASxgve10wJsR6gXQ6PUbhTlExA7TAVLCQ+qwqzT2tMUq9XgcAwY0wS1AoFEQJkHV7Epx8ltxoJQC8aPc0HA6loi+ZTCKZTKLT6eDhw4f4sz/7M0lJvW5RNSpPBiN09zqiLn5gvKSUqSK73Y5qtTrWBn1Zt6PVauHk5ETMf6axyHjMa4bDYdy7dw97e3vwer04OTnB6empLCx14xvHUb9ygxJUpW5mLkpjYYtqti4aZGXsJJ1O4+TkROC6jD8wvRYMBvHOO+/g448/RiwWQ7FYlA23DI9fv99HpVIRN4Atzi8vL3FxcYFqtSonMN8h4zF8HuI8Js0hlWa9XkexWJTUqq4/TwtGo1GYTCYkEgkkk0lRJtVqFdVqdawLF+eRmZZ5cuOVAPBigVGbsylDNpvFl19+KZHRWbKoVlQ/r45ttVoRi8WwsbGBcDg8M8W0qHADqhFydive2NiAzWYbq0K7zvXpJ19cXMBut2NrawvD4RChUAgOh0OQiIxz2Gw2VKtVnJ2dSYvteQE04OX6fuBFaTfx7YFAAF6vdwxeTGUwLwYw6dm63S6KxSJOT0+xubmJYDCI1dVVAM9PzKurK6ysrODDDz/E3t6exJfY22Fe3wZ+5VjcdIFAQOJF5+fnSKfTUpYMQIqlrFbrWI+DSfOoPjOtQ1Yg0vT3eDwydwxsttttXFxc4PLyEsViUVw2Xkd9J/PkjVACwIu8N0s4G40GDg4OcHFxMdYabJGI+aLCDUrz/Dd+4zfwa7/2awgGgzg7Oxs7zZZVMuoYo9FIutZ4vV6pvFPN5kkyacxJpi1Tn7xeJBKB1+uV4JXX65VIdq1WEwXA5quLKljjomO1GxdzKBRCMBgUrgJaGCoPAe95noKlRVEul3FwcAC73Y5Op4O1tTVsb29jbW1NqgeDwSD6/T4ODg7w8OFDnJycyKk9a70Y3UJagJVKBVdXV+KHl8tlyZ5wjumG0L9nQ5RplgC/qsFwpgrZ1p3cBewkdXR0hOPjY3EXjdf9lYgJqEIlQDjvxcUFzs7OxuIAr3IqTxIu4LW1NXz00Uf4wQ9+gGg0ikqlIkGnVxF14xCvHwqFEIlEoGnPK+9YqDSroMZ4TeP3zHiwBqLRaIg1RbO90WgIzPf8/BwXFxcLm8xq7l4NCHIzM9PBQGq/35dmJOrzq18Xnb9utys1EOl0Gjs7O2N8Cfl8Xjbg48ePpThrURdLDaDWajVBXdI9IDJQ5ZMgLkGNmdAFmoZQpEtEchJCumu1GkqlEsLhsNQlDAYDZDIZZDIZiX1QCag1M4vKG6EEeErwhRQKBTGHGAh5nQrAaNqORiOUy2Wcn5+j1Wrh7OwMR0dHr9oN5iVhkK7f76NUKknaRx1nUbPZCC0muo44+1KpJJWXDodjDNNfrVbH2rrNUrK8/iQADhc3Tzf6y5VKRVqiG6G1y6R01efq9XqoVqs4PDwcQ9wR7KRuWrWV3Kxx+BmmdNkBiLgKgqhUa42ZH1YdMltCEJVRqRrfJ7M6/DwPHI/HI8qW9TGsvVDZrWZByqfJG8ExyPwywR4Oh0NQaawa/C6CgrQ+iE+IRqNwuVyoVCoS7V4muDRtDCo51oIT687ovurvUa773jieCoFVkXtMUxkj/rMWlWoJAOMNSZlTZ2ESawjK5fIYPRtl2VNs0r3wq1ExzXsO4zUAyH0zVUjXQKWtM2Y41Guo7EWq5cjP0W2YZAHR+uN7Uq9LBaTCyNVrqM+ozO9EjsEbrwSMpqZKPbWI7/ga71FeCl/+67Y+uGC46LjgVN/1uxhzmgnORb3oplQVjKpoVEps4EXGRwW0LIty+y5FnQ8VmaiSsPKeZ1lJk5SQ+j3wQglMkknKYdJJryIuJ13jjVcCb+WtvJXXJhOVwHXbkL2Vt/JWfkXkjQgM/irLdVOLN0WMeAr159N8XfWz0/zYaddd5F6mjXWTZZlgL8U4v6p7sMxzv1UCM8ToG3JyJ/l2r3L9aT65+jInjX0ThAvRmFGZl3bj71W4tHFBL5IupD9M7gS1qrPX6wnk+XXM3aTYFPAC7cng3zJBSF530vNO+pmRf9FInGPENywib4QSMG4GYPIEvY4Nom5MBoVYN848rpoWus6YakbAGNwBxjfGpCDktNPzr0uMeIdJwSyj4pykYNV3u8jcqkE7krL6/X7UajVJG76OgKq6FjRNE/oyIiIJuqrX65K2IyZgkXdlfLeTPsfxbTYbbDabrEmW2pPxGIAEkxddnzdWCUzTgHzpxo1CMWpiyqKmFl84IcrhcFgoqsjnXq1WhUJKJXacN5a6mNQadbXjEamwCSElXFXlFzQumteRHjU+v9Ecn3ayGTezeg3j9SYpB+PP+TxMf82aSzWbwu5AAIR4g+g8FYm4rDJQNx/ZfQOBAJLJpBRikVIsm80il8uNZQ3U9zVrgxvnUv2eSo5FTMFgcKx8ularIZ1Oi/Ij78Siz3sjlYB6UgIQ6C4bLBDmCkBqwql9iR0g4ELNd8+C36r/J//f3t4e7t27h7W1Nfj9fqF1ymQyOD09xcnJCTKZDFqtlowx77mYl+fC9fv9iEQiWF1dxerqKgKBgGj3Xq+HdDqNo6MjnJ6eolwui9JR73sZH9CYvlOvQeCQikwjGIW58UkoSWP6lNcnR4J6Wuq6LiAeXdfHuP7UQiOVXGXac6j8BIFAACsrK1K3X6/XxXrjtacRo8yaKyprjuPxeLC2toa7d+9Kt6hmsykIUrIqL+LiUYwulNE6tNvtiEQi0jiGJcx2u104MW02G87Pz1GtVl/inJj3zDdeCZjNZrjdbine2d3dxcrKCnw+n5SNNptNlEol1Go1VCoVmQzgRfPGRfxCjul0OpFKpfDhhx/i9u3bMlaj0RAOf9JlF4tFAPNNOnWjqDXq8Xgc6+vr2NvbE7grSTf6/T4CgYAg3tgtyHj9RYNKPDlZaUfKL1UpsUCFJ0w2mxW+QCOCkAvdqExo4bB0lgAotaW3utHb7fZYj0VyDExjBDauD9U893g80n9CReot0pNvltDn5j0TjqxpmrT/UqsnVZdm0YDdpDXDhjubm5v4/ve/j93dXXi9XgyHQ9RqNaEYW19flz4YLFVeJD4D3EAloAY+NO05nn51dRV37tzBe++9J4Uh7XZb0IImkwmBQED4+srlstR1q0GnaROiviRW8d27dw+7u7twOp04ODjAN998g2q1Kgy2LpdLyCUWiU2oJzDvh6SSsVgMkUhE2G4I6SUdVyKRQD6fh9PplI2hWh3zAmjqyc9Tk8QhqmvldrsF41+r1aTRBQlBJwGLiGQznl5UKjRhPR6PKB+2BOt2u8I4rBJkcrOpYJtJouu6nM6kfAuHw6hUKnI/xNW/CqhM7UfR6/XEGiyXy0J8o74HKspFXdJph4amvaDb/9GPfoS7d+/C5/NJpSFdD6vVilQqBYvFIpwErVbrzQ0Mqj6i2WwWHjc2YjCbzXjy5AmePn0qfG6BQACJREIWL/By1HrR05LMRaurqzCbzTg7O8PPfvYzPHv2DMPhECsrK4hEIgiHw/D5fHC5XGPNTynT0l1q7byu62ONTFqtFvL5PFqtFvx+P/b29qQCz6gcVfN7EegyT3u2cdva2oLL5UK9Xhc3g2NFo1HB5BspuIxzaOQCUJUKrQ6iBmllEdtPJc26AlKQqZbbNOH75QGglkK3Wi1pnGKz2eT0XlYJGN8XSWDodpI+Xdd1UXi0OJYZa9pnTSYTgsEgPvjgA7z33nsIhUJoNBpSu0I3IJVKIRaLybtjG7tFS9BvnBLgxHMxqL3Zy+Uy0uk0Pv/8c1xcXEhV18rKirDFkJ6J11mWsIK19eQuPDw8xNnZGcrlMjRNQywWk+aUpJnmJppnaVBJkGaKG5/sON1uF7lcDldXV9jY2MBgMBBfut/vjwW6VP95lqgbMxQKYXt7G3fv3oXD4UClUpF2ZLxPnsSMrrMBJu973ng8xdkbkvOvFkARfnt1dYVqtSrFRBzb6XTOHEMVUqbR9K/X66hUKmg2m9C052W4FotlLn/ALOFaUl1L9mFgPYTaw5F/w/lf1nXj53w+Hz766CN89NFHSKVSqNVqePbsGT755BNcXFxgNBrJuGR0Zp8KulyLyI1SApMizUx3XF1dIZvN4ptvvsH5+bmQKrICjj4rXYRJdFzz4gFUOuzJp/bK03Vdioii0ajQU5EdVu3iMy2lp6b8GPhjpSBrzXu9HsxmM/x+P3w+H0wmk7S6NroCkyLuk56JhJzr6+t499134XQ6pb/CyckJ6vW60Lax3p9xFpUvz2jeqmXDkyLbJDUlqQg79PBdZbNZnJ+fo1aroVarSZUhx5tn4dAVY6v6dDqNXq8nbEjhcBjvvPOOcACoVs11U7vkXyDBKV0EYhRIB65mr4zXWMQidTgcePDgAX77t38b77zzDlqtFp48eYKf/OQnePbsGdrttjSoITEM6eUdDsfEjlHT5EYpAeBlmqrBYCBMK9yQ5GanHxsMBoU+y1gGO21jThJuGAJMaD4zOJdMJnHr1i1p1sl7MJb5zns+nij0/wFI/XsgEIDP58PKygqcTqcw56hcf+pY0xa0av2ocY61tTWZTxJT2u12bG5u4uOPP0YqlcIXX3yBZ8+eoVAojCmBaS6PquQopNZyOByiNBnkZRu3XC6HQqEgOW71mdRswaz3RV5/Kn8Smvb7fSSTSTx48AA2mw1HR0eS1jW2qDPeu/F9qc+ouqixWAya9oI/oNfrCTP1JFdqUoxjkqVAE//HP/4x3n//fQyHQ3z11VfSHJeBP4fDIezQ5GpQg6/zYiqUG6UE1EWgnpbkclPJF5keCQaDCIVC4sNyAaj0X6oymKcI1M8zNsDgWCKRwMrKiiw2lf1XVTKzxuCpSeuG1kYgEIDL5UI4HEYoFILX60WlUpGWa1xQ6jiL4AO4MPx+v0SVuUB4ksRiMXz44YfY3t5GqVTC06dPcX5+/hKR6rTUlvo7Y8oxEokgHo/D6/Xi6upKmr1ms1lks1lR7KoipZJcJJND8AzdwdPTU5jNZsRiMcm2WCwW+Z70aQR80bVa5MSkReX1enH//v2XGtxUKhVhbGZ2RQ3QTUsPqs9kNpsRDAbx4Ycf4t1334XFYkE6ncYvfvELHB4eot1uj4GjEokEEomEUMWpKd03NjAIYOw0YASZjSqCwaD0HCBrDQOC9CsnBbIWRU+p0E+bzSZtwa+uriQSTbOdmlY9/RedePW043h2u12anWiaJulOttmaFNuYdYLx88xxm0wmAZIEg0Hs7OwAgGAi+v0+fvnLX+Lw8FC68KrjzFM6xnQYTWc2ySDYirEGYjkmKdFZJrtqCTGjQcuJ742gHmYhnE6n8EOm02kUi8Uxko9llEAkEkEwGBxbd8SK+P1+cR0vLy+FUGVebEpNT9NtY9uxx48f4+joCO12G263Gy6XSwKf8XhcLGH2mKBltSjXxVwloGnaGoB/AiABYATg93Vd/z9rmhYC8C8AbAI4AfCf6rpe+fZv/hsA/wDAEMB/pev6Hy50Nwbhhmw2mygWi2MAG0bm2babxI4MiFxnY/KzPJ37/T6cTicikcgYRbamaUKcSZ93lhugbkjjfalMOmxvZbfbMRwOxaejj6d2VeLfq1j5SaJaVjzZXS4XVlZWpM+hz+eDw+HA/v4+Hj9+LOSiRgWwiDvFz6tKXO17qM6hEWCkjrdIUGs0Ggnv5Pr6uoDJkskkNE1DOBwWWjWHw4Hbt2+jVqvB5/PhyZMn0uQVwFwgkfpszLQwGFksFlGpVCQ1yn6InDNafdOyOWo8yufzYWtrS7I3l5eXOD8/l8akRJbSuotEIvB4POKqVavVMbqxRWQRS2AA4L/Wdf2XmqZ5AfxC07R/D+B/DeBPdF3/x5qm/R6A3wPwDzVNuwfg7wO4DyAJ4I81TdvTdX1hCh715rmQ2L2FC4ebxWq1otFoCKkkobeLtg2flN5ixxf2uFObgeq6jlAoBLfbjVarJeAUFQMwayzjSUngEGGpJJngvbvdboTDYbFw1HSaev+z5pLUWGdnZ8LOpLa2jkQiaDab2N/fx8XFxRgoaZK/bxRVEanv6OrqSpqXENRDhcBn5TOo/9SfzbMGSFZKfkb6ybr+HJlYqVRQqVSk0Ss/53a7JY6gIhiN70v9P924Wq0mlszh4SEuLy/R6XRkY5IinG5HtVodu/YkU53MUmSaJtEsrQzGvoLBoACSwuEwYrGY0KsTw9BsNpfiv5yrBHRdzwDIfPv/hqZpTwCkAPw9AL/97cf+RwA/AfAPv/35P9d1vQfgWNO0AwDfB/Dni9yQ8RTg/0nAyHbZo9FIcPxXV1dwu90IBAIIBAISCV6Wq59gGqZ/mJmo1WqScvL7/WOUUfSvFwnCqM9FVB19zHA4LD47yVMtFoucZmqsAxjnv5u1WYg8LJfL+OabbwR+TXP5nXfegclkQjqdxrNnzyTdyfegWhKLBlbVhipcmNyodIGoOFWlyAwLsJj1xndzfHyMSCQirL7cBIQQ93o98ZO5ZujSLdKKTLVamIEinuPw8FAo74lUZOaIpLQul0vcPqPVZjyEbDYbnE4nLBaLxKIGg8HYe2PzkUQiIQ1JK5UKTk5OhET1O+tApGnaJoAPAPwcQPxbBQFd1zOapsW+/VgKwF8of3bx7c+WFi5Caj7VDCPve7VahdvtxubmpkAsOYlM08wKDKqLnRh3FdoKQF46A0DBYFBovIkWW+RZKFQ2Xq8XoVAIKysrwitIKm61VqLb7cLv9wtVN90kIw7CKHxW1gCUSiXoui6oR6L4qtUqnjx5grOzs5fIMBexBPg5nvaqRUb4LwCUy2UAL/jxVFSguhkWbepC8/fnP/85isUinj59inA4LDyGKpqT0ORsNotCoSCNa+cVKlHUkt12u43Ly0uxDHgKAxhz24wwaVp4xqwEf8dgM5UYU9DsNsS1HY1GkUwmkUgkYDKZkM/nsb+/j6+//hr5fH4ioeksWVgJaJrmAfD/BvC/03W9PsMMnfSLl2ZY07TfBfC7E34+djqo3xNvPxqNcHl5KYs2HA5LVJYPT6XBTcI04SShouBJQYZfLmyVrptuh9lsHmsUukzcgc/COgQ2OWWas9PpiFkLPN88bE1NRWhcPNOEz8YCK763wWAg5vnJyQmePXuGer0+kQ13lqh+PQDB8dOyYSMOpsxcLpfEJ3gvxopQnoqzTFr62o1GA61WC7lcDl999RXi8bjw9Pv9fjGfh8MhyuWywH3p8iySLQIwpnhpKdntdiQSCQEpMR3KGAvrV1QXaVqakBYbMyf5fB6JRALRaBQPHjxAPp+Xg2FtbU1AUMTOfPHFFxMDuovIQkpA0zQrniuA/5eu6/+fb3+c0zRt5VsrYAVA/tufXwBYU/58FUDaeE1d138fwO9/e31d+bn6GTntuGmYg1VPYeIGGDWlAiBcdZFTRdd10cJcKLu7u9KtNxqNAgDi8TgcDofEKjqdjvi582ICxkAbNzQbZQIveh2w8wzwPHpfKpXECqLSIbhmnqg4drohbKfV6/Wwv7+PfD5/rT4Kxo2rFiJZLBaEQiFp5sraDgbKVIWzrBJV/4YuRrlcluKeRCKB9fV1CaZpmoZ2uy2uHRXArKyHek8M4LZaLXnnfr8fiUQCTqdT4lLr6+sIBoOCV6HlprbTmzQOrYxarYb9/X0pXPP5fNjb20MymUS/35eswGg0QiaTwcOHD/GXf/mXODw8FNd4Gnx9miySHdAA/D8APNF1/b9XfvVvAfznAP7xt1//jfLzf6pp2n+P54HBXQB/OfdOpoi6wAihZbqOJmckEsH6+jocDgeKxSJcLteYf7nIRgFetCVnMKtWq8Hr9Uq01+FwwGKxoNVqoVqtCtJPjdbPEjUSTmi0xWJBIBCQZ2PE2efzjbUqZxMSlvSq87OI0BoiNmBjYwORSESaW9Bkn6fIVFEVgLohqXT4XORLoJlKmLQRtLPs+5p0PzyVAUjwmHOndutdBjmoKgoeSqx2dDqdSCaTAh1mJyTCsQuFgqAhZ8Wo+PN+v4+Liwt8/vnncDqdWFtbk+CzzWbDaPS8rVwul8PTp0/x+PFjUeIqQG4ZWcQS+HUA/0sAX2ma9sW3P/tv8Xzz/0tN0/4BgDMA/8m3D/O1pmn/EsBjPM8s/BfLZAaAlxciJ53+MnPDzNeyX7tam67ry5NJcBFVq1V88803sNvt2NvbQygUkmIUpmDYpqvVar10gk57yeri5qlCy4OnJyvtACCXy6FUKuHs7Ewq+mjS069WW6HNE8Y8EokEdnZ24HK5xnzjVxE1eKZpmgQz3W43HA6HBHYZyymXyy+Bn/jep52YiwjfYa1Ww8HBAXK5nCDqGCcAMEYfvsjaoLmu6zoymQx6vR6KxSJSqZQAlfiZZrOJi4uLsZ4RVAKT0oO8b77XSqWCzz//HIPBABsbG1hbW5PCJZZen56eIp1OSzt0VcksK4tkB36GyX4+APytKX/zjwD8o6XvRhE1ZaTrugS2HA4HvF4vUqmUvFzit6l1WfqqmsGLTs5oNEKz2cTBwYEEm1KplKSf2HikVCpJJyRjB5p5z8VF3mg0cHJyIg1ASRbBqDpjDpVKZey5gBcm8KJRe8Y36NrQrSoWizPLTlXFNSmFxp+p5BvcCADEJSMfAv1dKs9Jpviy72zS3zO+QwwJrSBjGnIZ4XwzA5HJZPD06VNRAoxjEJRFchv+3aR3Ncn97fV6yGazaDabePr0qQRwCYlWs0X89yql0jcSMagKNwxzzplMBrquyynD9tok+MjlcsjlcmNWwaKpEnU8goWq1Sr29/cFnqoWNJHIchEfTDWduZCGw6F0Gcpmszg4OBCOAkahVbINmrC8xjKmH5UAI9Xlclk4A9Rg0jQrZpYQzcjn4d+Q88FsNo919eVCNloBfK5XUQDqPZOMpdlsSjqW86kG+q5zXa5Jsk1Nwjqoa28Za5TxKa4/NQVNRaEqyledrxvbfGQSUENlkmFQzeFwiKXA3K8a9X0dC0p9sapc59rG6xjzxGq0fV5NwiJj8/pMS4ZCITFhS6WSnDiT+AsXubYas+G9E7mpFrFQQRhJWlU3aVoK91WEcRb2JuTGNQYmX4cYLQzjKf+6rq/Kktd98zsQTQIRGc3V1z3xf9Uyz/ye9rt511QDgzabDQCk+GVZa2nWGADGYgMM0KqR+EnKRo0HqN+/DjGCuV7FdH7DZaISuPHugCpv+gZfRGY916v4yPxb1kW8blHHuI5Ced0WgCpqvcVbeVnetiF7K2/lb7i8VQJv5a38DZc3yh2YJK/Td7ypYoRP/6o/7+sQY8yIwcvrpI3/usWY1iTM+lURl5Q3UglcF1H2Joox9aQqhNcV4JoUcAXezBgMNwmLd9j7gPUDzWZTiFWY7n1dzzYLf3BdpaMGWInDACAAtesgBI3yRikBTRtnH2a+XQ1Iva7mkxxP3XR/FaeHmg5lSpT/WEBEjgOCUZYJeqmLSsX6k9CENRDEQahdiG5KVH3aIWBs6rK2toaVlRWEQiEAQKFQwMHBAdLptHQKehVlqs4l3w1T1hTWDTATs0jRkqpM1O5bLpcLmqYJlFy95rT2e4vIG6EEuCnUqju1AQkfmqSkLMVcNo0GvFhIZG4lnRMAYeElc4uaa34d+WwuIrLnsnKQJJ0AZPO2220Ui0Wk02kh1lhkDBZi+Xw+4WckDyDbavV6PVSrVaTTadTrdeTzeWQyGSlQWfR5iBXgfQPjtSDAC0g4sQPLzKcRaEREZCKRwDvvvIP33nsPm5ub8Pl86HQ6ePr0Ker1OkqlkiAaja7WokKeP3I0xmIxoRxT+SNZsFSpVKTmhJbIJFHXIZ9nZWUFm5ubCIfDAiAiIpFoUmNV5CSswjS58UqAC4b88js7O1hdXRUsONFg1WoV2WxWylaXqYjjGBaLBW63GysrK9ja2sK9e/ewsbGBYDAIs9mMZrOJXC6HL7/8Ek+ePEG5XJZSYp4my0y+Or7FYoHf75cmGuymY7FYBJFH5CC7zFgsFlSrVbTb7bnAFy4q1g5sbm5KxRsVDyHZJP/I5XK4uLiAw+GQuZ6nXNWiqGQyKU1avF6vFHwRTcjmMYVCAcViURS4iieYJNPGZ5EZny8ej0vpOct/aeGojWSvA/hiGfE777yDu3fvIh6Pw+fzQdd1WX+Eg2ezWQwGA+E5oFU16/rqwRcOh7G2toZYLDZGn14ul0XZ8DC8zmF045UAAKGqTiaT2N7exvb2tmD2yQHvdruFhWUZ85jAFmrdjY0N/PCHP8THH38sC4muB1/AxsYG4vE4Hj58CLPZLGXNi9YPTHu+nZ0d6TcXCASkEKZYLEo5tdVqFReAmHi1GQnwcrCUnyGV9b1797C3tweXyyUFSuRLcDqduHv3Lm7fvo3NzU2h0FqEuJJjRCIRvPvuu/joo48Qi8UQj8fhdDrFpyXbUD6fl9Lfs7Mz6fJE+vFFRdd1UXArKytYX19HJBKRng0s6a1UKkLl9iqQW5LXPHjwAL/5m7+JWOw5n04+nxdriYqTSoHFYtMsqUmHB8vMaf2yuxLfE8lb2I7MOCeLWjlvhBLg4mJjRk3TkMvlcHZ2Bk3T8O677yKZTKJcLuPp06cLa3ejb2mz2cSX5ClGbD8r+Ej2sbOzg0KhgEKhgGq1+hK0eNGFRRTf6uoq/uP/+D/GD37wA+k3UCwWcXh4iGw2C11/waLL3xkZc2eNTSVHRer1enF5eYmHDx/i4uJCCEUsFgtyuRwsFgs+/vhjabU1K/ag+rAejwe3b98ea53V7XZRKBRQLpeF9380GolLAgDFYnEMeryMUImzxdrt27cRDoelxRo3I2nFaBVdRwiLTiQS+PDDD7G1tYVarYYvvvgCx8fHqNfrsFqtYsU1Gg1UKhUhPzHW+1MmvTNaAqSj73Q6KJfLaLfbSKVS8Hg8qFarODo6moou/ZVwByg+nw+pVEr8rK+//hrZbBZutxvvvvsu1tfXcXp6utQ1jdFvEnl2u13UajU5ob766itUKhV4vV7cvn0b8XgcvV5P6hfU4o5lxWw2IxQK4fvf/z5+9KMfwePx4ODgAD//+c9xenoqpyVPBC5sLqxFAk000VOpFFZXV4VZ+KuvvpKFy2uYzWY0Gg0xMfn/WVaA6uezgSybZ56dneFP//RP8ctf/hLVahXdbleU7TvvvIOdnR0MBgPxdVVuyEWFRCy3bt3Chx9+iNXVVdTrdZyfn0uLNfIP8v98b4v0OJg0Fg+KWq2GTz75BJ988ol0CSbRaSAQQKPRmEiFv4g4nU5xq2w2m7ifnU4HsVhM2K5VSLQaxF5Umd54JUDNm0qlsLa2hqurKwlSdTodRKNRaVfudDqXXkBqZoGmKHu+nZycjBE2bGxsoFaryVgkGblu/p7txn74wx/iN37jN+ByufD06VP8yZ/8CR4+fIharSZsuKQdp1+7KESXp6TH40EkEoHb7cbFxQW+/vpr4Shg+SuLjNiog/EVEqDMW1Q8jZPJJNxuNyqVCv7kT/4EP/nJT1CpVITBmE1WVPIXEmQuU+PP57Pb7bhz5w7+1t/6W7h37574yyyOohXFKD6rT0ejkZzOi45ltVoRi8Wwvb0NXddxdHSER48eoVAoCD08g6GsOp3HfD1JCfGdMSblcrkkI8SAJHtukEVLXfvLBDxvvBLg6UI6LNJUkS//ww8/xO7uLnw+31RTC1gMVEQNSppn9pVjf7ednR1sbW3B6XSKb6aWpi77XG63G3t7e/id3/kdbGxs4OzsDD/96U/l1KR5zoYXfr9ffE5WTc5Tegw6Op1O4RTkaTIcDsUspqsRi8Vw69YtuN1uZLNZHB0dSfBzkc1JEpHhcIh0Oi2c+Tx57XY7UqkUPvroI9y+fRtXV1d49OgR0un0tebRarViY2MDf/fv/l384Ac/EOLNXC4n3XrY01HTNHl3LNE1m80Ln9B0S+PxOBKJBFqtFjKZjLRyY9+AUCg0RoPHQOS0dOQkU57rmwHcer2O0WgEm82GZDKJWCwmPAM+n0/crOvIjVcCAGRy2TGYtNjD4RDr6+uwWq2S+jHy8dMsmleYQ3eACyQUCmFtbU3aXXs8Hvj9fknRaZomJvms1t1GoYZ2OBxIpVL49V//dWxvbwMATk5OcHFxMXb6M+WVTCalmw5To2qfwGljsfSazL9qG/JAICCdiTweD3w+H3Z3d7G5uYlyuYz9/X2xhBbBI3DOO50Ocrkc8vm8kL/Q9CYd3N7eHjweD548eYJHjx4J5dgywVV2pPqt3/otfPTRRwiHwzg7O8PFxQVyuRxMJhMikQii0Siurq4kbUn26GXiD5xL9iH0+/0YjUZjvRYdDgc8Ho90qcrlckJBp3IaLjKWxWJBMBhEIBBANBqFyWRCKpWCpmmS0RkOh9KL0G63j6XLl4mrvBFKQNM0MbX8fj+2t7fhcDgwGAykOxCDdCTj5MZc9GShEqhWq8jn8wiFQgiFQojFYohEIsL3Rxon+q+tVmvh/gZqDtjtdmN9fR17e3uw2+3CIKRpGlZWVsbyxMzhM9JNS2XeyclYgNrevNVqiXKh9cSONrQ4rFYrstms9CRcJDXIuSZ7EF2l3/qt30IikYDP5xP8QaPRkODu559/jrOzs6W4GjmXdrsdt27dwq/92q8hEomg3W7j6OhI0rcMzrXbbdmsVqsVtVoNJycnS2UGuDF9Ph/C4bB8H4lEcP/+fVkXavOaUqkkAeVlM0cqLobvJpFICGCIVgWVhdPpHEuvLiM3Xgno+nPyRfYYoCvArjzc8LVaDQDG6uXVzbmINUB+QebGVYSe2iHI4/Egk8kIGceymABu7lQqhUAggFarJT4lF66mPWfZCYfDWFlZwXA4RCaTQb1eH2M4npUzVwlYqDT7/b40aeH3xKLTvCTtmcphv8gzDgYD5PN5PHz4EM1mE+vr6+L/e71emSui3kh13mw2l2IUUk/Ke/fuIRaLodFo4JtvvsHnn3+OdPo5uTVZjDjXbrcbTqdT6LqXQQvSRHe73QAgrqLdbkc8HhelzDgAMy7XIWsBXqx7Bmh5cFCRs+0e4wIq89Wyac83Qgl0Oh0cHR3hz/7sz7C2tjaW249Go8LAaiy0uM7EMyX49OlTFAoFHB0dIR6PIxwOY3t7G7du3YLH45F+BKrWnTemimsncIYRePbFMwYb2QmZZjxNy1kLi5uE3Xr9fj+cTqfcHxUMIcLEQFBqtdpYW/JFF9Vo9Lwr1NHREer1ugBlyJirac97ODKvTk5IY0BrHhiJUNq1tTXcunULNpsNl5eX+Oqrr6R/gq7rKBQK0DRNUpF0iwhYmvdcqknNMW02GxqNBsrlsliobD7CA4LXXKYfoHHMwWCAYrGIr7/+GgAEEEfm5EgkAq/XC4/HA4fDIfvhOvJGKIGrqyuk02m0220cHh7Kg0ciEdy6dUv8dHLCk5p7Wb46mlI8aUk9nslkkEwmhWzUZrNNBLUsm2bSNA2ZTAbdbhf5fH6spx3BUeFwWE7nYrEopvm804VxB/bFI9UXGXFzuRz6/b6cJlQG1WpVNif5AhcVnqztdhuZTAb5fB7n5+fwer2S7/7hD3+I9fV1AM+xAUZFuohLpbpJ8Xgcuq6jWCwik8kIPJcnIoFYBNbQHZiVszcKA5q0JMgIzPgR3dLNzU0Eg0Fx265bnMR3US6X8fjxY+nAxbgX2bbJSs2AoGr5/kqlCIEX9Nzk3/f5fILrByCnMplzjXz2ywhPIp6UPH2Zk2drK/aJWyYeYHw5JpMJ9XodxWIRx8fHgtojGIVmfL1exzfffIOTk5OxMWcJ0WYrKyuyYBhPyGaz0teR7bt9Pp8EO09PT0UJLMvDx7lTC1uIDaAFx955uVxuIZzDJLFarXISEu6tWhM8GILBID788EM8ePAAfr8f6XQax8fHEohc5N1RCbANOPBcgWWzWQGKEXbtcrmwv7+PQqGwVDDQOIdc89lsFqPRCKlUStCj0WhU1hEVEolJl+2/CbwBSoAPxDw+gy+ktiZ2mhzv151443h88Qyq0ZRst9sol8s4Pj6WxqHL4hJYVVYoFAScw54Ko9FIOhJFIhHouo6nT5/i4cOHKJVKC51edIusVisCgQDW1tbkVCoUCnJScSMxeEgTlG26rtNeje+Kc8jnBV7QjxMJybTXoqIGxIhh6PV6sNlsCIVCePDggTBFm0wmhMNh3LlzB++//z68Xi+q1So+//xzPHr06CU3ZN64DDjTrWLTFnamdjqd8Hg86Ha7OD09RalUulZ1IufPyIjMsudGozEWmGQvAjVLteyYN14JqMIJotYjSIK+0qJpullCv131AVkQw+agFxcXOD4+fok2e9FnoKtBOK6u64KFsFgsWFtbwzvvvCOxgMePHyOfz89NCRrH4eb2+/3wer0wm824vLwUC8Pj8SAcDiMSiSAQCOD4+Hisv8EifvM8IarSZrNJy65ms4mjo6Ol3Q0+Fzd6Op1GoVBAKpVCPB7Hb/7mb+L+/fvodDrStdfn86Hf7yOTyeCTTz7Bz372M5ycnCxUC6GOSReOhWu6rkvUPh6PY2trC16vF8fHxzg7O5OU6nXmTk1Z89AZDocSFI9Go4hEInC5XLDZbNJ7wJgeX1TeKCVAIYKNhUO0BIz4/esK0zPcQKurq7h37x78fj8KhQK+/PJL6W2wTLwBeHGacZPRpGXemdmAeDyOQqGATz/9FEdHR4KmM443KZDGjcJ26pFIBBsbGwgEAtA0DRcXF1J8RQWRy+VwdHSEXC53LYirUVSMgtfrxdraGnZ2dhCPx6U913VcDT5vr9fD2dkZvvjiC3i9Xuzu7iIcDiMajcrYVqsVhUIBn3/+OT799FN88cUXogCWeT6a3cQ5MDZEpbC6uopbt27JWOl0+lo9DSY9LwApuPJ6vUgkErh16xbi8Tg6nQ4KhQLq9forva83TgmoJ5Pdbpf0IcEgwPUpx9S6dJvNhnA4jPv37+P27dvY2NiA3W7HV199hZOTE9HO6t8uEhcAIPn0XC6HlZUVRKNRxONxeL1eCeCVSiV8+eWXkqWYVho9bUxdf16uyzbciURCmqmurKygWCyKG5LNZnF8fIxCoSAuyaxrLyLMggQCAezt7eH+/fu4e/cunE6nFBJdZ+Hy8+xp+JOf/ATVahX379/H5uamcD8Qk/D111/j4cOHuLy8FAz/dV04Zh2IH9nb25NgY7vdlr6A6hy+qjAAPRqNxPIlOI7QaBUkNGmu5skbqQToE7IpI+GZwIsec8uKWsNNX3lnZwff+973sL29DafTiWw2i8vLS5yfn6Pdbk+8xqyJV0+yTqeD8/NzMY9TqZQ0T2m1Wkin0wKnJX5/GauDkObz83N8+umn0rGJJbW5XE4q+6gMaJ0w/nIdd0DlZvD5fLh79y7+o//oP8KtW7fgdDqRyWRQLBalluC6Mho9b7eeTqdRrVbxi1/8Qjak2jGaWA61FdiioqZTiYJ8+vQpGo0GUqmUZBrq9TpOTk7w8OFD4bR4FQWqjq/rutw/s0m//OUvcXl5iX6/j8vLy7Fg83UOwDdSCfClnJ6eStqL0NZXnXwGXJhzZbqLG/Pg4EDIHNQNsmwaktmMfr+Pk5MTaUZKBVGpVFCpVASss+zJwjFyuZwAaQg7VumpJqVSX8cckrKMhS6tVguXl5c4PDyULMd1WqGrwg3S7/dRq9VeKpp5Xc+jzmWz2RQ3kWuPrchY8PW6exzw4Ot2u7L5g8EgdF0fS4kuk2pV5Y3qQKR8XoJbPp8PANBqtcZOs+uKCrUNhUIIBoP///bOJ7SKK4rD3w8xEtSFVpTwFBvFjas2CzeKS/9kk7rLzkWhG4W66CLixm0L7bbQUkFEdKOiS0UEd1qVmERCmmgFrcFgXCR00Zb2dDF30uH55qnNy7t3nPPBMPNu5k0+zrw5c+feOzNLQ27zu9Pyt/h24mDJz5zFZwoWu9mW8yDJfPvFyxBY+YeG5j0Tvb29NBqNpcFBCwsLLC4uMj8/v3Q5UCWKZ9t8Xuz6XW4j6rv8/3yUYn4vSD5QqRjLNg7Vfw1Zi+8tdUNBZ947WKTYxlDc/krv6JwU9s1yyH+0zUmoE0/IrTPNDeDv8Zus/mvImin2Qa8EMV5d9SEdHHnbhNNZOn6y69iWHMepJKnUBF4Bv4d5ldiEO3eDqjmn6ru9VWESbQIAku61ul5JGXfuDlVzrpqvXw44Ts3xJOA4NSelJPBDbIH/gTt3h6o5V8o3mTYBx3HikFJNwHGcCERPApIOSZqSNCNpJLZPGZKeShqXNCrpXijbKOmGpOkw3xDZ8YykOUkThbJSR0knQ9ynJB1MyPm0pN9CrEclDSbmvE3SLUmTkh5J+jKUJx3rUprHPXdzAlYBj4EdQA/wENgd06mN61NgU1PZN8BIWB4Bvo7suB8YACbe5gjsDvFeA/SH/bAqEefTwFct1k3FuQ8YCMvrgV+CW9KxLpti1wT2ADNm9sTM/gQuAkORnd6HIeBsWD4LfBZPBczsNvC6qbjMcQi4aGZ/mNmvwAzZ/ugqJc5lpOI8a2YPwvIiMAk0SDzWZcROAg3gWeHz81CWIgZcl3Rf0hehbIuZzUL2wwA2R7Mrp8wx9dgflzQWLhfyanVyzpI+Bj4F7lDRWMdOAq2eBZZqd8VeMxsADgPHJO2PLbRMUo7998BO4BNgFvg2lCflLGkdcAk4YWYL7VZtUZZKrKMngefAtsLnrcCLSC5tMbMXYT4HXCGrzr2U1AcQ5nPxDEspc0w29mb20sz+NrN/gB/5r+qcjLOk1WQJ4LyZXQ7FlYs1xE8CPwO7JPVL6gGGgWuRnd5A0lpJ6/Nl4AAwQeZ6NKx2FLgax7AtZY7XgGFJayT1A7uAuxH83iA/kAJHyGINiTgru5n/J2DSzL4r/KlysQbi9g6EltNBstbVx8Cp2D4ljjvIWncfAo9yT+Aj4CYwHeYbI3teIKs+/0V29vm8nSNwKsR9CjickPM5YBwYIzuA+hJz3kdWnR8DRsM0mHqsyyYfMeg4NSf25YDjOJHxJOA4NceTgOPUHE8CjlNzPAk4Ts3xJOA4NceTgOPUHE8CjlNz/gUU7yPTEvyA8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1365,9 +1346,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorial/Japanese/01-DistributionAPITutorial.ipynb b/tutorial/Japanese/01-DistributionAPITutorial.ipynb index 2d354130..b2584ed7 100644 --- a/tutorial/Japanese/01-DistributionAPITutorial.ipynb +++ b/tutorial/Japanese/01-DistributionAPITutorial.ipynb @@ -18,7 +18,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -39,9 +39,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.utils import print_latex" @@ -71,9 +69,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal\n", @@ -126,9 +122,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -168,7 +162,7 @@ { "data": { "text/latex": [ - "$$p_{1}(x)$$" + "$\\displaystyle p_{1}(x)$" ], "text/plain": [ "" @@ -267,9 +261,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 50\n", @@ -298,7 +290,7 @@ { "data": { "text/latex": [ - "$$p(x|\\mu_{var})$$" + "$\\displaystyle p(x|\\mu_{var})$" ], "text/plain": [ "" @@ -362,10 +354,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true, - "scrolled": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Bernoulli\n", @@ -397,7 +386,7 @@ { "data": { "text/latex": [ - "$$p(\\mu_{var})$$" + "$\\displaystyle p(\\mu_{var})$" ], "text/plain": [ "" @@ -450,7 +439,7 @@ { "data": { "text/latex": [ - "$$p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$$" + "$\\displaystyle p(x,\\mu_{var}) = p(x|\\mu_{var})p(\\mu_{var})$" ], "text/plain": [ "" @@ -469,9 +458,7 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ "同時分布でも今までと同様にsampleメソッドでサンプリングを行うことができます \n", "全ての変数とその値がdict形式で出力されます" @@ -480,9 +467,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -533,9 +518,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "a_dim = 20\n", @@ -605,7 +588,7 @@ { "data": { "text/latex": [ - "$$p(a|x)$$" + "$\\displaystyle p(a|x)$" ], "text/plain": [ "" @@ -642,9 +625,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_samples = torch.Tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085,\n", @@ -675,11 +656,11 @@ " -1.1435, -0.6512]]), 'a': tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", - " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", + " 6.5706e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])}\n", "tensor([[-1.7231e-01, -5.0856e-01, 1.3573e+00, -7.1246e-01, 3.8644e-01,\n", " 1.1225e+00, 1.4864e-01, 6.8819e-02, -5.6884e-01, -2.4427e+00,\n", " 1.2279e-03, -9.0337e-01, 5.3217e-02, 6.0509e-01, -3.8033e-01,\n", - " 6.5707e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", + " 6.5706e-02, -2.3049e-01, 3.4607e-01, 2.6745e-02, -3.9659e-01]])\n", "tensor([[-0.3030, -1.7618, 0.6348, -0.8044, -1.0371, -1.0669, -0.2085, -0.2155,\n", " 2.2952, 0.6749, 1.7133, -1.7943, -1.5208, 0.9196, -0.5484, -0.3472,\n", " 0.4730, -0.4286, 0.5514, -1.5474, 0.7575, -0.4068, -0.1277, 0.2804,\n", @@ -731,9 +712,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/tutorial/Japanese/02-LossAPITutorial.ipynb b/tutorial/Japanese/02-LossAPITutorial.ipynb index aa76cbe9..053e3c60 100644 --- a/tutorial/Japanese/02-LossAPITutorial.ipynb +++ b/tutorial/Japanese/02-LossAPITutorial.ipynb @@ -62,7 +62,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -83,9 +83,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Pixyz module\n", @@ -126,7 +124,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -185,7 +183,7 @@ { "data": { "text/latex": [ - "$$\\log p(x)$$" + "$\\displaystyle \\log p(x)$" ], "text/plain": [ "" @@ -206,9 +204,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -261,9 +257,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -289,9 +283,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -346,7 +338,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -373,7 +365,7 @@ { "data": { "text/latex": [ - "$$q(x)$$" + "$\\displaystyle q(x)$" ], "text/plain": [ "" @@ -408,7 +400,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(x)||p(x) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(x)||p(x) \\right]$" ], "text/plain": [ "" @@ -482,9 +474,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# 確率分布の定義\n", @@ -504,7 +494,7 @@ { "data": { "text/latex": [ - "$$\\log p(x|z)$$" + "$\\displaystyle \\log p(x|z)$" ], "text/plain": [ "" @@ -542,7 +532,7 @@ { "data": { "text/latex": [ - "$$\\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$$" + "$\\displaystyle \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right]$" ], "text/plain": [ "" @@ -563,9 +553,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -647,7 +635,7 @@ { "data": { "text/latex": [ - "$$p(x)$$" + "$\\displaystyle p(x)$" ], "text/plain": [ "" @@ -680,7 +668,7 @@ { "data": { "text/latex": [ - "$$mean \\left(\\log p(x) \\right)$$" + "$\\displaystyle mean \\left(\\log p(x) \\right)$" ], "text/plain": [ "" @@ -701,9 +689,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -733,9 +719,7 @@ { "cell_type": "code", "execution_count": 21, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# 確率分布の定義\n", @@ -762,7 +746,7 @@ { "data": { "text/latex": [ - "$$mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(- D_{KL} \\left[q(z|x)||p(z) \\right] + \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -801,9 +785,7 @@ { "cell_type": "code", "execution_count": 23, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -869,9 +851,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/tutorial/Japanese/03-ModelAPITutorial.ipynb b/tutorial/Japanese/03-ModelAPITutorial.ipynb index eb15faa3..acb2a0ed 100644 --- a/tutorial/Japanese/03-ModelAPITutorial.ipynb +++ b/tutorial/Japanese/03-ModelAPITutorial.ipynb @@ -29,7 +29,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -85,9 +85,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -147,7 +145,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -161,7 +159,6 @@ "source": [ "# Lossの定義\n", "from pixyz.losses import LogProb\n", - "from pixyz.losses import StochasticReconstructionLoss\n", "from pixyz.losses import Expectation as E\n", "from pixyz.losses import KullbackLeibler\n", "from pixyz.utils import print_latex\n", @@ -209,9 +206,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.models import Model\n", @@ -279,9 +274,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0, Loss 199.60440063476562 \n", - "Epoch 1, Loss 147.97647094726562 \n", - "Epoch 2, Loss 128.66696166992188 \n" + "Epoch 0, Loss 199.86109924316406 \n", + "Epoch 1, Loss 147.0438690185547 \n", + "Epoch 2, Loss 126.67538452148438 \n" ] } ], @@ -323,9 +318,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from pixyz.distributions import Normal, Bernoulli\n", @@ -344,9 +337,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "x_dim = 784\n", @@ -405,7 +396,7 @@ { "data": { "text/latex": [ - "$$D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$$" + "$\\displaystyle D_{KL} \\left[q(z|x)||p_{prior}(z) \\right]$" ], "text/plain": [ "" @@ -436,7 +427,7 @@ { "data": { "text/latex": [ - "$$mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$$" + "$\\displaystyle mean \\left(D_{KL} \\left[q(z|x)||p_{prior}(z) \\right] - \\mathbb{E}_{q(z|x)} \\left[\\log p(x|z) \\right] \\right)$" ], "text/plain": [ "" @@ -463,9 +454,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def train(epoch):\n", @@ -489,9 +478,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 1 Train loss: 201.2876\n", - "Epoch: 2 Train loss: 147.1453\n", - "Epoch: 3 Train loss: 128.1311\n" + "Epoch: 1 Train loss: 200.3801\n", + "Epoch: 2 Train loss: 147.1353\n", + "Epoch: 3 Train loss: 127.9876\n" ] } ], @@ -546,9 +535,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.8.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 75f3e219ff048d5e0f1b9bfc8b5aa10837f14cfa Mon Sep 17 00:00:00 2001 From: kaneko Date: Fri, 2 Oct 2020 23:02:22 +0900 Subject: [PATCH 4/9] add IterativeLoss part of tutorial (cherry picked from commit 70ddd7fae593b4b410a57838faf16515c468d104) --- tutorial/Japanese/02-LossAPITutorial.ipynb | 250 ++++++++++++++++++++- 1 file changed, 249 insertions(+), 1 deletion(-) diff --git a/tutorial/Japanese/02-LossAPITutorial.ipynb b/tutorial/Japanese/02-LossAPITutorial.ipynb index 053e3c60..14d9763e 100644 --- a/tutorial/Japanese/02-LossAPITutorial.ipynb +++ b/tutorial/Japanese/02-LossAPITutorial.ipynb @@ -62,7 +62,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -587,6 +587,7 @@ "本来ならxについて期待値をとる必要があるが,データ分布は実際に与えられないためbatch方向について平均や合計といった計算を行う \n", "合計や平均といった計算もLoss APIでは簡単に行うことができる \n", "ここではobserved_xを訓練データとして尤度計算を行いそのmeanを計算する\n", + "\n", "$p(x) = \\cal N(\\mu=0, \\sigma^2=1)$ \n", "$\\frac{1}{N} \\sum_{i=1}^N\\left[\\log p\\left(x^{(i)}\\right)\\right]$" ] @@ -816,6 +817,246 @@ "以上のようにPixyz Loss API同士の四則演算で柔軟にLossが定義でき,数式から実装までが直感的に行えることが確認できた" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 時系列のロス\n", + "\n", + "時系列のロスはIterativeLossで扱われる.\n", + "例として以下のナイーブな変分下界を表現する.\n", + "\n", + "$\\frac{1}{N} \\sum_{i=1}^{N}\\sum_{t=1}^7 \\left(D_{KL}\\left[q(h|x,h_{prev})||p(h|h_{prev})\\right]+\\mathbb{E}_{q(h|x,h_{prev})}\\left[\\log p(x|h)\\right]\\right)$" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle p(x,h|h_{prev}) = p(x|h)p(h|h_{prev})$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 各時刻の確率分布を定義\n", + "x_dim = 28\n", + "h_dim = x_dim\n", + "\n", + "decoder = Normal(cond_var=[\"h\"], var=[\"x\"], loc=\"h\", scale=torch.ones(1, x_dim))\n", + "prior = Normal(cond_var=[\"h_prev\"], var=[\"h\"], loc=\"h_prev\", scale=torch.ones(1, h_dim))\n", + "\n", + "print_latex(decoder * prior)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle q(h|x,h_{prev})$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 損失の期待値を取る確率分布を定義\n", + "encoder = Normal(name='q', cond_var=[\"x\", \"h_prev\"], var=[\"h\"], loc=\"x\", scale=\"h_prev\")\n", + "\n", + "print_latex(encoder)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle D_{KL} \\left[q(h|x,h_{prev})||p(h|h_{prev}) \\right] + \\mathbb{E}_{q(h|x,h_{prev})} \\left[\\log p(x|h) \\right]$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 時刻ごとの変分下界\n", + "step_loss = KullbackLeibler(encoder, prior) + decoder.log_prob().expectation(encoder)\n", + "print_latex(step_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "時刻ごとのLossを使用して,時系列のLossをIterativeLossで定義する.\n", + "\n", + "IterativeLossには\n", + "- max_iter: 時系列の長さ\n", + "- series_var: 時系列の観測変数\n", + "- update_value: 次の時刻に引き継がれる変数と引き継ぎ先\n", + "を指定する." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\sum_{t=1}^{7} \\left(D_{KL} \\left[q(h|x,h_{prev})||p(h|h_{prev}) \\right] + \\mathbb{E}_{q(h|x,h_{prev})} \\left[\\log p(x|h) \\right]\\right)$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# IterativeLossで時系列での変分下界を表現する\n", + "from pixyz.losses import IterativeLoss\n", + "t_max = 7\n", + "\n", + "_loss = IterativeLoss(step_loss, max_iter=t_max, \n", + " series_var=[\"x\"], update_value={\"h\": \"h_prev\"})\n", + "print_latex(_loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "観測と初期値を与えてLossを評価できる.時系列の観測変数のshapeは(時系列長,batch_size,...)であることに注意." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(29149.8828)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lossの計算\n", + "# xとhの初期値を観測\n", + "observed_x_num = 100\n", + "observed_x = torch.randn(t_max, observed_x_num, x_dim)\n", + "initial_h = torch.randn(observed_x_num, h_dim)\n", + "\n", + "# 観測したxのLossを計算\n", + "loss = _loss.mean()\n", + "loss.eval({'x': observed_x, 'h_prev': initial_h})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stepごとに異なる損失を用いたい場合は,slice_stepオプションとtimestep_varオプションを使用する." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\sum_{t=1}^{7} \\mathbb{E}_{p(x|t,x_{all})} \\left[D_{KL} \\left[q(h|x,h_{prev})||p(h|h_{prev}) \\right] + \\mathbb{E}_{q(h|x,h_{prev})} \\left[\\log p(x|h) \\right] + t \\right]$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.losses import Parameter\n", + "from pixyz.distributions import Deterministic\n", + "\n", + "class SliceStep(Deterministic):\n", + " def __init__(self):\n", + " super().__init__(cond_var=['t','x_all'], var=['x'])\n", + " def forward(self, x_all, t):\n", + " return {'x': x_all[t]}\n", + "\n", + "_loss2 = IterativeLoss(step_loss + Parameter('t'), max_iter=t_max, \n", + " series_var=['x_all'], update_value={'h': 'h_prev'}, timestep_var='t',\n", + " slice_step=SliceStep())\n", + "print_latex(_loss2)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor(27127.0879)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lossの計算\n", + "# xとhの初期値を観測\n", + "observed_x_num = 100\n", + "observed_x = torch.randn(t_max, observed_x_num, x_dim)\n", + "initial_h = torch.randn(observed_x_num, h_dim)\n", + "\n", + "# 観測したxのLossを計算\n", + "loss = _loss2.mean()\n", + "loss.eval({'x_all': observed_x, 'h_prev': initial_h})" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -833,6 +1074,13 @@ "### Next Tutorial\n", "ModelAPITutorial.ipynb" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From ed3d85d80d0d52521666be809046062f76e5cccd Mon Sep 17 00:00:00 2001 From: kenoharada Date: Sat, 3 Oct 2020 22:20:16 +0900 Subject: [PATCH 5/9] add DMM tutorial (cherry picked from commit cf1d84be16d7faa88dfc7f492c5dcecde8f1771a) --- tutorial/English/04-DeepMarkovModel.ipynb | 3551 ++++++++++++++++++ tutorial/English/prepare_cartpole_dataset.py | 34 + tutorial/English/utils.py | 43 + 3 files changed, 3628 insertions(+) create mode 100644 tutorial/English/04-DeepMarkovModel.ipynb create mode 100644 tutorial/English/prepare_cartpole_dataset.py create mode 100644 tutorial/English/utils.py diff --git a/tutorial/English/04-DeepMarkovModel.ipynb b/tutorial/English/04-DeepMarkovModel.ipynb new file mode 100644 index 00000000..a403b6e5 --- /dev/null +++ b/tutorial/English/04-DeepMarkovModel.ipynb @@ -0,0 +1,3551 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Action Conditional Deep Markov Model using cartpole dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ubuntu/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py:1067: UserWarning: Duplicate key in file \"/home/ubuntu/.config/matplotlib/matplotlibrc\", line #2\n", + " (fname, cnt))\n", + "/home/ubuntu/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py:1067: UserWarning: Duplicate key in file \"/home/ubuntu/.config/matplotlib/matplotlibrc\", line #3\n", + " (fname, cnt))\n" + ] + } + ], + "source": [ + "from tqdm import tqdm\n", + "\n", + "import torch\n", + "from torch import optim\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torchvision import transforms, datasets\n", + "from tensorboardX import SummaryWriter\n", + "import numpy as np\n", + "\n", + "from utils import DMMDataset, imshow\n", + "from torch.utils.data import DataLoader\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "seed = 1\n", + "torch.manual_seed(seed)\n", + "if torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare Dataset \n", + "you have to run prepare_cartpole_dataset.py or download from : \n", + "https://drive.google.com/drive/u/2/folders/1w_97RLFS--CpdUCNw1C-3yPLhceZxkO2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# you have to run prepare_cartpole_dataset.py or download from :\n", + "batch_size = 256\n", + "train_loader = DataLoader(DMMDataset(), batch_size=batch_size, shuffle=True, drop_last=True)\n", + "# test_loader = DataLoader(DMMTestDataset(), batch_size=batch_size, shuffle=False, drop_last=True)\n", + "\n", + "_x = iter(train_loader).next()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHkCAYAAAAzRAIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAH1NJREFUeJzt3X+MZedZH/DvY0/sEAO1g8G4dkLcymoIqA7JKkqVQFNcGhMQDhJKjShsINK6qmkBIxGHItmuWpGqrQMICNmSNEuVxrjhR6zWBVw3aUBtnOyGmPgHIVaCE1tOTIqSIKd1vPbbP+Z6PTPe2dmZO7P3OXc/H8na8965984z+5xzZ79+z3tOjTECAAAAi3bGogsAAACAREAFAACgCQEVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFrYs4BaVVdU1cer6v6qum6vvg8AAADLocYYu/+mVWcm+bMk35XkwSQfTvKDY4x7N3n+7hcBAABAF58fY3z9Vk/aqxnUlyW5f4zxyTHGV5LcnOTKPfpeAAAA9PbAyTxprwLqRUk+s2b84OyxY6rqQFUdrqrDe1QDAAAAE7KyqG88xjiY5GDiFF8AAAD2bgb1oSTPWzO+ePYYAAAAHNdeBdQPJ7m0qi6pqrOSXJXk1j36XgAAACyBPTnFd4xxtKp+PMnvJzkzyTvGGPfs8L12tTZ2V1Vt+jW96+tEfUv0rjPH3HTp3XTp3TT5XTddjrnp2uq4Oxl7tgZ1jHFbktv26v0BAABYLnt1ii8AAABsi4AKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALQgoAIAANDCyqILWHZHDl69brxy9jnrxpftv+lUlsM2nKh3+tbb2t455qbD5+V06d10+V03XWt799IDb1tgJWzHxmNO757JDCoAAAAtCKgAAAC0IKACAADQgjWoAAAwYXcdunbd2PphpswMKgAAAC0IqAAAALQgoAIAANCCNagAAAALYP3wM5lBBQAAoAUBFQAAgBYEVAAAAFqwBvUUO/rYo4sugR3Su2nSt+nSu+nSOwB2ygwqAAAALQioAAAAtOAUXwAAkjg9G1g8M6gAAAC0IKACAADQgoAKAABAC9agAgDAhFk7zDIxgwoAAEALAioAAAAtCKgAAAC0YA3qHls5+5x1Y2sEpkPvpqvOePqjbTx5dIGVAABszr8vn8kMKgAAAC0IqAAAALTgFF9g6Zz5rLOPbR99zCm+U3HGyrPWjZ88+viCKgEAFsUMKgAAAC0IqAAAALQgoAIAANCCNagAtHDGmWetG1uDCgCnHzOoAAAAtCCgAgAA0IKACgAAQAvWoO6xy/bftG585ODVC6qE7dI7gJOzcvY568ZHH3t0QZWwXWee9ex14ye+8v8WVAnbtfa4c8yxTMygAgAA0IKACgAAQAtO8QWWztrTs52aDbC5qjMXXQKcViyJ2JoZVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBfdBBaCFtfevTdzDFgBOR2ZQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFt5kBAOZywYtfvW780J2/vaBK4PSx9tZcbss1HW6ptjUzqAAAALQgoAIAANDCjgNqVT2vqt5XVfdW1T1V9ROzx59bVbdX1Sdmf563e+UCAACwrOZZg3o0yU+PMT5SVV+T5EhV3Z7k9UnuGGO8uaquS3JdkjfOXyoA0NE3XmYN6lRZDwd0s+MZ1DHGw2OMj8y2/yrJfUkuSnJlkkOzpx1K8tp5iwQAAGD57cpVfKvqBUm+LcmdSS4YYzw8+9Jnk1ywyWsOJDmwG98fAACA6Zv7IklV9dVJfivJT44xvrT2a2OMkWQc73VjjINjjH1jjH3z1gAAAMD0zTWDWlXPymo4fdcY46kFJ5+rqgvHGA9X1YVJHpm3yO6q6qSfe8MNh9eN923jtat5n920097p22I55qZL76ZL76ZpO31L/K7rxDE3XXo3n3mu4ltJ3p7kvjHG2hX2tybZP9ven+S9Oy8PAACA08U8M6ivSPLDST5WVR+dPfazSd6c5JaqekOSB5K8br4SAQAAOB3sOKCOMf4oyWZz0Jfv9H0BAAA4Pc19kSQAAADYDQIqAAAALQioAAAAtFAdLk9cVZsW0aG+rWz3Eu471fHv4kQ/e8d6NzoVvev497DVz92x5rUcc8fXsd6N9O74Ota7kd4dX8d619K3zXWseS29O76O9W6kd5s6MsbYt9V7mEEFAACgBQEVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBZWFl3AMuh4iWdOjt5Nk75Nl95Nl95Nk75Nl95Nl97NxwwqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALQgoAIAANCCgAoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALSwsugCtlJViy6BHdK76dK7adK36dK76dK76dK7adK35WcGFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaaH+bmTHGokvgBE50qW+962urS7TrXV+OuenSu+nSu2nyu266HHPTtRu3ATKDCgAAQAsCKgAAAC0IqAAAALQgoAIAANCCgAoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALawsuoBld+Tg1evGLz3wtgVVwnbp3XSt7Z2+TYdjbrr0brr0brr8rpsmx9zWzKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC24D+opdteha9eNL9t/04IqAQAA6MUMKgAAAC0IqAAAALTgFF84SWtPz3Zq9nTcffPPrRt/61X/ckGVAACwFTOoAAAAtCCgAgAA0IKACgAAQAvWoAJL7YnHvrzoEgAAOElmUAEAAGhBQAUAAKCFuQNqVZ1ZVX9cVf9lNr6kqu6sqvur6jer6qz5ywQAAGDZ7cYa1J9Icl+Sr52N/3WSt4wxbq6qX0vyhiRv3YXvA8BpZO29hxP3HwaA08FcM6hVdXGS70ny67NxJfnOJO+ZPeVQktfO8z0AAAA4Pcx7iu8vJPmZJE/Oxl+X5AtjjKOz8YNJLjreC6vqQFUdrqrDc9YAAADAEthxQK2q703yyBjjyE5eP8Y4OMbYN8bYt9MaAAAAWB7zrEF9RZLvq6rXJHl2Vteg/mKSc6tqZTaLenGSh+Yvc3k8+eTRrZ8EAABwGtrxDOoY401jjIvHGC9IclWS/zHG+KEk70vyA7On7U/y3rmrBAAAYOntxX1Q35jk2qq6P6trUt++B98DAACAJbMbt5nJGOP9Sd4/2/5kkpftxvsuoycff2zRJbBDTz7xlUWXADAJbhEEwE7txQwqAAAAbJuACgAAQAsCKgAAAC3syhpUOB08efTxRZcAAABLzQwqAAAALQioAAAAtCCgAgAA0II1qMBSO/rYo4suAQCAk2QGFQAAgBYEVAAAAFpwii8AAEmSuw5de2z7sv03LbAS4HRlBhUAAIAWBFQAAABaEFABAABowRrUPVcbxmMhVQAAAHRnBhUAAIAWBFQAAABaEFABAABowRrUPbZy9nPWjY8+9uiCKmG7Vs4+Z91Y7wAAYG+ZQQUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBQEVAACAFtxmBlg6Z6w869j2k0cfX2AlzMOtnQDg9GMGFQAAgBYEVAAAAFoQUAEAAGjBGlRg6Zxx5lnHtq1BBWDZ3XXo2nXjy/bftKBKYH5mUAEAAGhBQAUAAKAFARUAAIAWrEHdBVW16de++fnnrxtf9WO3rRvvO8FrNxpjbK8wtnSi3t1x0/514z/60jXHtvVtsU7Ut2R979b2LdG7U+2GG25YN77xxhs3fe4v//zvnvC9TtS766+//oTfl+3b6jhb68YbPrRu/Mqv/ZWTfi/H2e7brd5t9T56t7u207dkfe8cc4s1zzH3xbe8ft348msPbfra06V3ZlABAABoQUAFAACgBaf47rH7Pv35dePh/wlMxsZTLP7VvziwoEqYx8oZbjMzFS89945Fl8AOOc6mS++mS++mSd+2Ji0BAADQgoAKAABACwIqAAAALVSHyxVX1aZFdKhvK9u9LPhOdfy7mPplzE9F7zr+PUz91gGOuePrWO92bjMzjyncZmZqvTudj7ON9O74Ov7sa03td52+Pc0xd3wdf/aNtvi7ODLG2LfVe5hBBQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAW3GaGuUztMuCsmtql93maY2669G669G6a/K6bLsfcdLnNDAAAAEtDQAUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBQEVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoYa6AWlXnVtV7qupPq+q+qvo7VfXcqrq9qj4x+/O83SoWAACA5VVjjJ2/uOpQkj8cY/x6VZ2V5DlJfjbJX44x3lxV1yU5b4zxxi3eZ+dFAAAA0N2RMca+rZ6044BaVX8tyUeT/I2x5k2q6uNJXjXGeLiqLkzy/jHG39rivQRUAACA5XVSAXWeU3wvSfIXSf5DVf1xVf16VZ2T5IIxxsOz53w2yQXHe3FVHaiqw1V1eI4aAAAAWBLzBNSVJC9J8tYxxrcleTTJdWufMJtZPe7s6Bjj4Bhj38mkaAAAAJbfPAH1wSQPjjHunI3fk9XA+rnZqb2Z/fnIfCUCAABwOthxQB1jfDbJZ6rqqfWllye5N8mtSfbPHtuf5L1zVQgAAMBpYWXO1//TJO+aXcH3k0l+NKuh95aqekOSB5K8bs7vAQAAwGlgrtvM7FoRJ7iKb4f62FxVbfo1vevrRH1L9K4zx9x06d106d00+V03XY656driuNvzq/gCAADArhFQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoYWXRBSy7IwevXjd+6YG3LagStkvvpmtt7/RtOhxz06V306V30/Gnv/vmdeNHH/nUsW19623jcbaW3j2TGVQAAABaEFABAABoQUAFAACgBWtQAQAA9sg533DJse21a4c5PjOoAAAAtCCgAgAA0IKACgAAQAvWoAIAQHMvfO1168YnurcmTJkZVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABowW1mAAAA9sjaWwS5PdDWzKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALQgoAIAANCCgAoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALQgoAIAANCCgAoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0IKACgAAQAsCKgAAAC0IqAAAALSwsugCAPbSXYeuXTe+bP9NC6oEAICtmEEFAACgBQEVAACAFgRUAAAAWrAG9RSzHm66PnvX7x/b/sbLXr3ASuD04PMSgGXnd90zmUEFAACgBQEVAACAFuYKqFX1U1V1T1XdXVXvrqpnV9UlVXVnVd1fVb9ZVWftVrEAAAAsrx2vQa2qi5L8syQvGmP836q6JclVSV6T5C1jjJur6teSvCHJW3elWligz33UGlQAoJ9P/+G71o2f/+0/tKBKYH7znuK7kuSrqmolyXOSPJzkO5O8Z/b1Q0leO+f3AAAA4DSw44A6xngoyb9N8umsBtMvJjmS5AtjjKOzpz2Y5KLjvb6qDlTV4ao6vNMaAAAAWB7znOJ7XpIrk1yS5AtJ/nOSK0729WOMg0kOzt5r7LSORaiqk37ujTd8aN34lV/7Kyf9XmNM6q9lEnard1u9j97tvp32bjvHXKJ3u83n5XTN07s7f+p71o2v+YXbNn2t3u2+eXq3bxuv1bvdtZ2+JRt+1z26/vPym77jH236On3bfTfccMO68Y033rjpc3/553/3hO/14hPsB9dff/0Jv++ymOcU37+f5FNjjL8YYzye5LeTvCLJubNTfpPk4iQPzVkjAAAAp4F5Auqnk7y8qp5Tq//L5/Ik9yZ5X5IfmD1nf5L3zlciAAAAp4N51qDemdWLIX0kycdm73UwyRuTXFtV9yf5uiRv34U6AQAAWHI7XoOaJGOM65Ncv+HhTyZ52Tzvu0xWznh80SWwQ3o3XXo3Tfo2XRt798Lnf/2CKmG7Nvbujpv2H9u+/NpDp7octsFn5jS99Nw7Fl1Ce/PeZgYAAAB2hYAKAABACwIqAAAALVSHeyGd6D6oHerbaLv3qdqpjj/7RlO7L6HerZrivUD1bpVj7vg6/uwb6d3xdfzZN9K74+v4s681td91+va0qR1z27kP6jymcB/ULfbjI2OMfVu9hxlUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGjBbWaYy9QuA86qqV16n6c55qZL76ZL76bJ77rpcsxNl9vMAAAAsDQEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBQEVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaWFl0AVupqkWXwA7p3XTp3TTp23Tp3XTp3XTp3TTp2/IzgwoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALbS/zcwYY9ElcAInutS33vW11SXa9a4vx9x06d106d00uR0JTJMZVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBQEVAACAFgRUAAAAWhBQAQAAaGFl0QUsoyMHr970ay898LZTWAnbsbFvl+2/ad145exzTmU5bMPG3jnOpmNt7/RtOhxz06V3QHdmUAEAAGhBQAUAAKAFARUAAIAWrEGFTdx16Np1Y+t0puPoY48e27Z2GABgOsygAgAA0IKACgAAQAsCKgAAAC1YgwosnbXrh60dno61a4cT64enRO8A2C1mUAEAAGhBQAUAAKAFp/jugXO+4ZJj248+8qkFVgIwHW7tBKee07OBbsygAgAA0IKACgAAQAsCKgAAAC1Ygwoza9cOJ9YPA5ws64enS++AbsygAgAA0MKWAbWq3lFVj1TV3Wsee25V3V5Vn5j9ed7s8aqqX6qq+6vqT6rqJXtZPAAAAMvjZGZQ35nkig2PXZfkjjHGpUnumI2T5LuTXDr770CSt+5OmQAAACy7LdegjjE+UFUv2PDwlUleNds+lOT9Sd44e/w3xhgjyQer6tyqunCM8fBuFTwFL3ztdce2jxy8eoGVsB3PPu/CdWNrUKfD+uHpOmPl7GPbTx59bIGVAAAd7HQN6gVrQudnk1ww274oyWfWPO/B2WPPUFUHqupwVR3eYQ0AAAAskbmv4jvGGFU1dvC6g0kOJslOXg8AAMBy2WlA/dxTp+5W1YVJHpk9/lCS56153sWzx6C9F/zd/evG/+fj/2tBlbBda0+rT5xaPyVf9dy/fmzbqdnT4bR6APbKTk/xvTXJU/+a35/kvWse/5HZ1XxfnuSLp9v6UwAAAHZmyxnUqnp3Vi+IdH5VPZjk+iRvTnJLVb0hyQNJXjd7+m1JXpPk/iRfTvKje1AzAAAAS+hkruL7g5t86fLjPHckuWbeogAAADj9zH2RJADYKbflmqbzX/jKdWNrUKfD+mGgu52uQQUAAIBdJaACAADQgoAKAABAC9agAgDbsnEN6gMf+I8LqoTtct9ooDszqAAAALQgoAIAANCCgAoAAEALAioAAAAtCKgAAAC0IKACAADQgoAKAABACwIqAAAALQioAAAAtCCgAgAA0MLKoguAqXjisS8f2z7z7OcssBK2465D164bX7b/pgVVAgDAVsygAgAA0IKACgAAQAsCKgAAAC1Yg3qKWQ83XXff/HPHtvUN9p7Py+n68ucfWDd+zvnftKBKAJgaM6gAAAC0IKACAADQglN84SQdfezRRZfADujbdOnddH3iv/7iurHTswE4WWZQAQAAaEFABQAAoAUBFQAAgBasQT3FrKmajjNWnrVu/OTRxxdUCdu1cvY5x7Ydc9PhmFsejrvpWnt7J2uHgUUwgwoAAEALAioAAAAtCKgAAAC0YA0qbOKMM89aN7Yebjqe/+0/dGz7k//94AIrYTscc9O1dt13Yg3qlOkdsGhmUAEAAGhBQAUAAKAFp/jugqra9Gt33LR/3fiPvnTNuvG+E7x2ozHG9gpjSyfq3UY33HD42La+LdZO+5bo3aLp3XSdqHff/Pzz143/4Y/93rqx3i3OVsfc+3/h9evG//ML/+TYtr4Bi2AGFQAAgBYEVAAAAFoQUAEAAGjBGtQ99v0/d/O68RuvO7CgSgBgb9z36c8vugR26Ikn168dXTnD7Z2AxTKDCgAAQAsCKgAAAC0IqAAAALRQHe5bVVWbFtGhvq1s575+8+j4d3Gin71jvRudit51/HvY6ufuWPNajrnj61jvRnp3fB3r3Ujvjq9jvWvpG9DIkTHGvq2eZAYVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFpYWXQBy6DjpdU5OXo3Tfo2XXo3XXo3TfoGTI0ZVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABaEFABAABoQUAFAACgBQEVAACAFgRUAAAAWhBQAQAAaEFABQAAoAUBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWtgyoVfWOqnqkqu5e89i/qao/rao/qarfqapz13ztTVV1f1V9vKpevVeFAwAAsFxOZgb1nUmu2PDY7Um+dYzxt5P8WZI3JUlVvSjJVUm+ZfaaX62qM3etWgAAAJbWylZPGGN8oKpesOGxP1gz/GCSH5htX5nk5jHGY0k+VVX3J3lZkv+90wKraqcvZcH0brr0bpr0bbr0brr0DmB37cYa1B9L8t9m2xcl+cyarz04e+wZqupAVR2uqsO7UAMAAAATt+UM6olU1T9PcjTJu7b72jHGwSQHZ+8z5qkDAACA6dtxQK2q1yf53iSXjzGeCpgPJXnemqddPHsMAAAATmhHp/hW1RVJfibJ940xvrzmS7cmuaqqzq6qS5JcmuRD85cJAADAsttyBrWq3p3kVUnOr6oHk1yf1av2np3k9tnFAT44xvjHY4x7quqWJPdm9dTfa8YYT+xV8QAAACyPevrs3AUWYQ0qAADAMjsyxti31ZPmukjSLvp8kgeSnD/bhmVlH2eZ2b9ZZvZvlp19nL32TSfzpBYzqE+pqsMnk6phquzjLDP7N8vM/s2ys4/TxW7cBxUAAADmJqACAADQQreAenDRBcAes4+zzOzfLDP7N8vOPk4LrdagAgAAcPrqNoMKAADAaUpABQAAoIU2AbWqrqiqj1fV/VV13aLrgXlV1Z9X1ceq6qNVdXj22HOr6vaq+sTsz/MWXSecrKp6R1U9UlV3r3nsuPt0rfql2Wf6n1TVSxZXOWxtk/37hqp6aPY5/tGqes2ar71ptn9/vKpevZiq4eRU1fOq6n1VdW9V3VNVPzF73Gc47bQIqFV1ZpJfSfLdSV6U5Aer6kWLrQp2xd8bY7x4zX3Frktyxxjj0iR3zMYwFe9McsWGxzbbp787yaWz/w4keespqhF26p155v6dJG+ZfY6/eIxxW5LM/o1yVZJvmb3mV2f/loGujib56THGi5K8PMk1s/3YZzjttAioSV6W5P4xxifHGF9JcnOSKxdcE+yFK5Mcmm0fSvLaBdYC2zLG+ECSv9zw8Gb79JVJfmOs+mCSc6vqwlNTKWzfJvv3Zq5McvMY47ExxqeS3J/Vf8tAS2OMh8cYH5lt/1WS+5JcFJ/hNNQloF6U5DNrxg/OHoMpG0n+oKqOVNWB2WMXjDEenm1/NskFiykNds1m+7TPdZbFj89OcXzHmmUZ9m8mq6pekOTbktwZn+E01CWgwjJ65RjjJVk9TeaaqvqOtV8cq/d4cp8nloZ9miX01iR/M8mLkzyc5N8tthyYT1V9dZLfSvKTY4wvrf2az3C66BJQH0ryvDXji2ePwWSNMR6a/flIkt/J6ulfn3vqFJnZn48srkLYFZvt0z7XmbwxxufGGE+MMZ5M8u/z9Gm89m8mp6qeldVw+q4xxm/PHvYZTjtdAuqHk1xaVZdU1VlZvfDArQuuCXasqs6pqq95ajvJP0hyd1b36/2zp+1P8t7FVAi7ZrN9+tYkPzK7EuTLk3xxzWlkMAkb1tx9f1Y/x5PV/fuqqjq7qi7J6oVkPnSq64OTVVWV5O1J7htj3LTmSz7DaWdl0QUkyRjjaFX9eJLfT3JmkneMMe5ZcFkwjwuS/M7q74OsJPlPY4zfq6oPJ7mlqt6Q5IEkr1tgjbAtVfXuJK9Kcn5VPZjk+iRvzvH36duSvCarF4/5cpIfPeUFwzZssn+/qqpenNXTHv88ydVJMsa4p6puSXJvVq+Oes0Y44lF1A0n6RVJfjjJx6rqo7PHfjY+w2moVk83BwAAgMXqcoovAAAApzkBFQAAgBYEVAAAAFoQUAEAAGhBQAUAAKAFARUAAIAWBFQAAABa+P8xi6TxfjVkhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[0.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.]])\n" + ] + } + ], + "source": [ + "imshow(_x['episode_frames'][0][0:30])\n", + "\n", + "# 0: Push cart to the left\n", + "# 1:Push cart to the right\n", + "print(_x['actions'][0][0:30])\n", + "\n", + "# for more details about actions: https://github.com/openai/gym/blob/38a1f630dc9815a567aaf299ae5844c8f8b9a6fa/gym/envs/classic_control/cartpole.py#L37\n", + "# for more details about CartPole-v1: https://gym.openai.com/envs/CartPole-v1/" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from pixyz.utils import print_latex\n", + "from pixyz.distributions import Bernoulli, Normal, Deterministic\n", + "\n", + "\n", + "h_dim = 32\n", + "hidden_dim = 32\n", + "z_dim = 16\n", + "t_max = 30\n", + "u_dim = 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deep Markov Model\n", + "* Original paper: Structured Inference Networks for Nonlinear State Space Models (https://arxiv.org/abs/1609.09869)\n", + "* Original code: https://github.com/clinicalml/dmm\n", + "\n", + "\n", + "Prior(Transition model): $p_{\\theta}(z_{t} | z_{t-1}, u) = \\cal{N}(\\mu = f_{prior_\\mu}(z_{t-1}, u), \\sigma^2 = f_{prior_\\sigma^2}(z_{t-1}, u)$ \n", + "Generator(Emission): $p_{\\theta}(x | z)=\\mathscr{B}\\left(x ; \\lambda=g_{x}(z)\\right)$ \n", + "\n", + "RNN: $p(h) = RNN(x)$ \n", + "Inference(Combiner): $p_{\\phi}(z | h, z_{t-1}, u) = \\cal{N}(\\mu = f_{\\mu}(h, z_{t-1}, u), \\sigma^2 = f_{\\sigma^2}(h, z_{t-1}, u)$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define probability distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# RNN\n", + "class RNN(Deterministic):\n", + " \"\"\"\n", + " h = RNN(x)\n", + " Given observed x, RNN output hidden state\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(RNN, self).__init__(cond_var=[\"x\"], var=[\"h\"])\n", + " \n", + " # 28x28x3 → 32\n", + " self.conv1 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)\n", + " self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)\n", + " self.fc1 = nn.Linear(128*7*7, 256)\n", + " self.fc2 = nn.Linear(256, 32)\n", + " \n", + " self.rnn = nn.GRU(32, h_dim, bidirectional=True)\n", + " self.h0 = nn.Parameter(torch.zeros(2, 1, self.rnn.hidden_size))\n", + " self.hidden_size = self.rnn.hidden_size\n", + " \n", + " def forward(self, x):\n", + " \n", + " h0 = self.h0.expand(2, x.size(1), self.rnn.hidden_size).contiguous()\n", + " x = x.reshape(-1, 3, 28, 28) # Nx3x28x28\n", + "\n", + " h = F.relu(self.conv1(x)) # Nx64x14x14\n", + " h = F.relu(self.conv2(h)) # Nx128x7x7\n", + " h = h.view(h.shape[0], 128*7*7) # Nx128*7*7\n", + " h = F.relu(self.fc1(h)) # Nx256\n", + " h = F.relu(self.fc2(h)) # Nx32\n", + " h = h.reshape(30, -1, 32) # 30x128x32\n", + "\n", + " h, _ = self.rnn(h, h0) # 30x128x32, 1x128x32\n", + " return {\"h\": h}\n", + "\n", + "\n", + "# Emission p(x_t | z_t)\n", + "class Generator(Bernoulli):\n", + " \"\"\"\n", + " Given the latent z at time step t, return the vector of\n", + " probabilities that parameterizes the bernlulli distribution p(x_t | z_t)\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"])\n", + " self.fc1 = nn.Linear(z_dim, 256)\n", + " self.fc2 = nn.Linear(256, 128*7*7)\n", + " self.conv1 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)\n", + " self.conv2 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1) \n", + "\n", + " def forward(self, z):\n", + " h = F.relu(self.fc1(z))\n", + " h = F.relu(self.fc2(h))\n", + " h = h.view(h.shape[0], 128, 7, 7) # 128*7*7\n", + " h = F.relu(self.conv1(h)) # 64x14x14\n", + " generated_x = self.conv2(h) # 3x28x28\n", + " return {\"probs\": torch.sigmoid(generated_x)}\n", + "\n", + "\n", + "class Inference(Normal):\n", + " \"\"\"\n", + " given the latent z at time step t-1, the hidden state of the RNN h(x_{0:T} and u\n", + " return the loc and scale vectors that\n", + " parameterize the gaussian distribution q(z_t | z_{t-1}, x_{t:T}, u)\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(Inference, self).__init__(cond_var=[\"h\", \"z_prev\", \"u\"], var=[\"z\"])\n", + " self.fc1 = nn.Linear(z_dim+u_dim, h_dim*2)\n", + " self.fc21 = nn.Linear(h_dim*2, z_dim)\n", + " self.fc22 = nn.Linear(h_dim*2, z_dim)\n", + "\n", + " \n", + " def forward(self, h, z_prev, u):\n", + " feature = torch.cat((z_prev, u), 1)\n", + " h_z = torch.tanh(self.fc1(feature))\n", + " h = 0.5 * (h + h_z)\n", + " return {\"loc\": self.fc21(h), \"scale\": F.softplus(self.fc22(h))}\n", + "\n", + "\n", + "class Prior(Normal):\n", + " \"\"\"\n", + " Given the latent variable at the time step t-1 and u,\n", + " return the mean and scale vectors that parameterize the\n", + " gaussian distribution p(z_t | z_{t-1}, u)\n", + " \"\"\"\n", + " def __init__(self):\n", + " super(Prior, self).__init__(cond_var=[\"z_prev\", \"u\"], var=[\"z\"])\n", + " self.fc1 = nn.Linear(z_dim+u_dim, hidden_dim)\n", + " self.fc21 = nn.Linear(hidden_dim, z_dim)\n", + " self.fc22 = nn.Linear(hidden_dim, z_dim)\n", + " \n", + " def forward(self, z_prev, u):\n", + " feature = torch.cat((z_prev, u), 1)\n", + " h = F.relu(self.fc1(feature))\n", + " return {\"loc\": self.fc21(h), \"scale\": F.softplus(self.fc22(h))}" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$$p(x,z|z_{prev},u) = p(x|z)p(z|z_{prev},u)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prior = Prior().to(device)\n", + "encoder = Inference().to(device)\n", + "decoder = Generator().to(device)\n", + "rnn = RNN().to(device)\n", + "generate_from_prior = prior * decoder\n", + "\n", + "print_latex(generate_from_prior)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define loss" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from pixyz.losses import KullbackLeibler\n", + "from pixyz.losses import Expectation as E\n", + "from pixyz.losses import LogProb\n", + "from pixyz.losses import IterativeLoss\n", + "\n", + "step_loss = - E(encoder, LogProb(decoder)) + KullbackLeibler(encoder, prior)\n", + "\n", + "# IterativeLoss: https://docs.pixyz.io/en/latest/losses.html#pixyz.losses.IterativeLoss\n", + "_loss = IterativeLoss(step_loss, max_iter=t_max, \n", + " series_var=[\"x\", \"h\", \"u\"], update_value={\"z\": \"z_prev\"})\n", + "loss = E(rnn, _loss).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Distributions (for training): \n", + " p(h|x), p(z|h,z_{prev},u), p(x|z), p(z|z_{prev},u) \n", + "Loss function: \n", + " mean \\left(\\mathbb{E}_{p(h|x)} \\left[\\sum_{t=1}^{30} \\left(D_{KL} \\left[p(z|h,z_{prev},u)||p(z|z_{prev},u) \\right] - \\mathbb{E}_{p(z|h,z_{prev},u)} \\left[\\log p(x|z) \\right]\\right) \\right] \\right) \n", + "Optimizer: \n", + " RMSprop (\n", + " Parameter Group 0\n", + " alpha: 0.99\n", + " centered: False\n", + " eps: 1e-08\n", + " lr: 0.0005\n", + " momentum: 0\n", + " weight_decay: 0\n", + " )\n" + ] + }, + { + "data": { + "text/latex": [ + "$$mean \\left(\\mathbb{E}_{p(h|x)} \\left[\\sum_{t=1}^{30} \\left(D_{KL} \\left[p(z|h,z_{prev},u)||p(z|z_{prev},u) \\right] - \\mathbb{E}_{p(z|h,z_{prev},u)} \\left[\\log p(x|z) \\right]\\right) \\right] \\right)$$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pixyz.models import Model\n", + "\n", + "dmm = Model(loss, distributions=[rnn, encoder, decoder, prior], \n", + " optimizer=optim.RMSprop, optimizer_params={\"lr\": 5e-4}, clip_grad_value=10)\n", + "\n", + "print(dmm)\n", + "print_latex(dmm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sampling code" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def data_loop(epoch, loader, model, device, train_mode=False):\n", + " mean_loss = 0\n", + " for data in loader:\n", + " x = data['episode_frames'].to(device) # 256,30,3,28,28\n", + " u = data['actions'].to(device) # 256,30,1\n", + " batch_size = x.size()[0]\n", + " x = x.transpose(0, 1) # 30,256,3,28,28\n", + " u = u.transpose(0, 1) # 30,256,1\n", + " z_prev = torch.zeros(batch_size, z_dim).to(device)\n", + " if train_mode:\n", + " mean_loss += model.train({'x': x, 'z_prev': z_prev, 'u': u}).item() * batch_size\n", + " else:\n", + " mean_loss += model.test({'x': x, 'z_prev': z_prev, 'u': u}).item() * batch_size\n", + " mean_loss /= len(loader.dataset)\n", + " if train_mode:\n", + " print('Epoch: {} Train loss: {:.4f}'.format(epoch, mean_loss))\n", + " else:\n", + " print('Test loss: {:.4f}'.format(mean_loss))\n", + " return mean_loss\n", + "\n", + "_data = iter(train_loader).next()\n", + "_u = _data['actions'].to(device) # 256,30,1\n", + "_u = _u.transpose(0, 1) # 30,256,1\n", + "\n", + "def plot_video_from_latent(batch_size):\n", + " x = []\n", + " z_prev = torch.zeros(batch_size, z_dim).to(device)\n", + " for step in range(t_max):\n", + " samples = generate_from_prior.sample({'z_prev': z_prev, 'u': _u[step]})\n", + " x_t = decoder.sample_mean({\"z\": samples[\"z\"]})\n", + " z_prev = samples[\"z\"]\n", + " x.append(x_t[None, :])\n", + " x = torch.cat(x, dim=0).transpose(0, 1)\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 1/200 [00:03<11:42, 3.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 Train loss: 25165.2360\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 1%| | 2/200 [00:07<11:43, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 2 Train loss: 9130.1990\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 2%|▏ | 3/200 [00:10<11:37, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 3 Train loss: 6401.8344\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 2%|▏ | 4/200 [00:14<11:33, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 4 Train loss: 5604.6350\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 2%|▎ | 5/200 [00:17<11:30, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 5 Train loss: 5250.0818\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 3%|▎ | 6/200 [00:21<11:25, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 6 Train loss: 5136.6165\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 4%|▎ | 7/200 [00:24<11:22, 3.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 7 Train loss: 5041.2250\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 4%|▍ | 8/200 [00:28<11:18, 3.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 8 Train loss: 4976.7343\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 4%|▍ | 9/200 [00:31<11:14, 3.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 9 Train loss: 4947.8100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 5%|▌ | 10/200 [00:35<11:11, 3.53s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 10 Train loss: 4868.6670\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 6%|▌ | 11/200 [00:38<11:08, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 11 Train loss: 4887.0091\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 6%|▌ | 12/200 [00:42<11:05, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 12 Train loss: 4818.7775\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 6%|▋ | 13/200 [00:46<11:01, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 13 Train loss: 4782.6232\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 7%|▋ | 14/200 [00:49<10:58, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 14 Train loss: 4773.8522\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 8%|▊ | 15/200 [00:53<10:55, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 15 Train loss: 4742.7823\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 8%|▊ | 16/200 [00:56<10:52, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 16 Train loss: 4727.1570\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 8%|▊ | 17/200 [01:00<10:48, 3.54s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 17 Train loss: 4696.7326\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 9%|▉ | 18/200 [01:03<10:45, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 18 Train loss: 4734.9274\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 10%|▉ | 19/200 [01:07<10:41, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 19 Train loss: 4708.8597\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 10%|█ | 20/200 [01:10<10:38, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 20 Train loss: 4635.5423\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 10%|█ | 21/200 [01:14<10:35, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 21 Train loss: 4662.6501\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 11%|█ | 22/200 [01:18<10:31, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 22 Train loss: 4617.7811\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 12%|█▏ | 23/200 [01:21<10:28, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 23 Train loss: 4629.0972\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 12%|█▏ | 24/200 [01:25<10:25, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 24 Train loss: 4630.6133\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 12%|█▎ | 25/200 [01:28<10:21, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 25 Train loss: 4623.1689\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 13%|█▎ | 26/200 [01:32<10:18, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 26 Train loss: 4580.3945\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 14%|█▎ | 27/200 [01:35<10:14, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 27 Train loss: 4583.2993\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 14%|█▍ | 28/200 [01:39<10:11, 3.55s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 28 Train loss: 4596.0267\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 14%|█▍ | 29/200 [01:43<10:07, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 29 Train loss: 4537.0640\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 15%|█▌ | 30/200 [01:46<10:04, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 30 Train loss: 4525.9952\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 16%|█▌ | 31/200 [01:50<10:01, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 31 Train loss: 4490.8614\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 16%|█▌ | 32/200 [01:53<09:57, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 32 Train loss: 4462.6433\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 16%|█▋ | 33/200 [01:57<09:54, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 33 Train loss: 4387.5721\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 17%|█▋ | 34/200 [02:01<09:51, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 34 Train loss: 4267.6621\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 18%|█▊ | 35/200 [02:04<09:47, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 35 Train loss: 4188.8135\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 18%|█▊ | 36/200 [02:08<09:44, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 36 Train loss: 4096.4102\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 18%|█▊ | 37/200 [02:11<09:40, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 37 Train loss: 4677.2219\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 19%|█▉ | 38/200 [02:15<09:37, 3.56s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 38 Train loss: 3991.7929\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|█▉ | 39/200 [02:19<09:34, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 39 Train loss: 3994.9256\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|██ | 40/200 [02:22<09:30, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 40 Train loss: 3920.9626\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 20%|██ | 41/200 [02:26<09:27, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 41 Train loss: 3933.4977\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 21%|██ | 42/200 [02:29<09:23, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 42 Train loss: 3915.6800\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 22%|██▏ | 43/200 [02:33<09:20, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 43 Train loss: 3884.8615\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 22%|██▏ | 44/200 [02:37<09:16, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 44 Train loss: 3864.7660\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 22%|██▎ | 45/200 [02:40<09:13, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 45 Train loss: 3851.0302\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 23%|██▎ | 46/200 [02:44<09:09, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 46 Train loss: 3855.2326\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 24%|██▎ | 47/200 [02:47<09:06, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 47 Train loss: 3830.1528\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 24%|██▍ | 48/200 [02:51<09:02, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 48 Train loss: 3800.6746\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 24%|██▍ | 49/200 [02:55<08:59, 3.57s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 49 Train loss: 3800.0325\n", + "Epoch: 50 Train loss: 3764.9729\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAADFCAYAAABw4XefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvX+wHcd13/k5M3Pvew+/+AMkARAiCf0gxR9CFJGA6N1od23YolmqUmzLpCQrsbS1kuWk1lWOlWTF+C+7Ntposy5ptXaltmTFMWXLm9hOqsy1U0pFWiW2ZVkhZclWJJk/JAAEQRACQBLAA979MdNn/+juuXPvm3vvzP3x7nsP/UVd3Ptmenr6O+d0T/fp06dFVQkICAgICAgICJgM0aILEBAQEBAQEBCwlRE6UwEBAQEBAQEBUyB0pgICAgICAgICpkDoTAUEBAQEBAQETIHQmQoICAgICAgImAKhMxUQEBAQEBAQMAVCZyogICAgICAgYApM1ZkSkYdF5GkReU5EHptVoTYTAsetj+3ODwLH7YLtznG784PA8ZqFqk70AWLgu8DrgCbwl8C9k+a3GT+B49b/bHd+gePiyxY4Bn6B4/biOMlH3MOpDRH5b4BfUtUfdX//E9c5+2fDrrnpppv00KFDE91vEVhdXeXMmTPceeednDhxggsXLvwiXNsctzI/gK997WtXgI9dyzKEwHEzItTF9djKHIOe9rDVOBZx4sQJzp8/L+PSJVPc4yBwqvD3C8CDg4lE5MPAhwFuv/12nvwv/wVkbLk2BX7/93+fz3/+83zmM7/O0aNv5cKFC9U4PvnkRhd1YvQ4foajR4+Wctwu/ACiKPo+Vnf7EPR0c6OKnkIJx69+FaJZuIZWHXROrjM5x1//NEff+mCoi2xtjrX0dObtjbJeF8uO1UcVPYXxcvQl2Swb2vnHP2hfOnr0aKXr5+6ArqqfVtUjqnrk5ptvzkssQz6LQPG+Iv06LetSrMc6joVrpZBnkeO8+Q7m31eOUo7DUcpP1udXzLfs/rPEuvz7yiDu03vu4zBOT4fddyOxYXo6Qo6zxmg9tXIsnhuHdRxn0pEqlnTcZ7Jc+w8OL/OWrYsl6YZhu7ensBHtTdlVkz+hunoK5XLsq9fus669rvks62B9HZHCPS1LKZSpDqaxTJ0Gbiv8/Rp3bMuhr7/ueqUCvObgQU698EIx6WQcB3q6sv7QzFGavz9YaGQn5Sh9D83/0L6/xpZnBuiXm/QfVOHgra8Z5NekhgwHHtlCsQg9nTfmradbCQcPHuSF7VoXEQ4enK4u5tjGejrY3izaalP2bCfV0+E5OmjvzTg3/oMZymysdTCdZepJ4E4Rea2INIH3Ak/MpFSbBEePHuXZZ5/l+PHjGGMgcNxyKPLrdDoAN7KN+MH2lyEEjtsBoS5uD1wLHCfBxJYpVU1F5OeA/4D17v8NVf3WzEo2vgT2f2NQ0+07I1EDyc37NXudhS5xkiT82q/+Kg8//DAnT54E+N2qHHOr4foiV+9tq+eYYdI1AIwzPSbxMhLF7mbjOWpfsh7JiTmOuWWtEYUxmKxlr3Om4zhujp7uKCuOrB8qJo0evyzLAF6uo6dTj1m8DLM052jcqThZIfJ6OsZknmfny7WJ9FTVMjKdFt2rrwKQiT22tLKXuNl0ZY7H50WJOg/IsS7H6dBrZwCyTpvu2kX7O7bnlpauJ0kcx9hzrK85SZLwq3PgOHldtFdG8QoydV1UkkY8cV2cSXtafGdkbXfEc1yu9c4YZs+Ypi5Wu/OoEuFX22G6XUzH6anY13yjuYMobtj7VORaZpmfTk9HWYK05NfwdJqmZJ1LQO+92GjuRmLfrVl/n3nONEzlUKCq/15V71LV16vqx2ZVqM2Ed7zjHTz99NMcPnyYwHFrwvN77rnnAF5adHnmge0uQwgctwNCXdweuBY41sU0PlMzRXVrjXFfvifeJeuk7rf9jptCpLaf2LPeVOw36sg/K0MpDM5qX5wBYDI3yjBt0o6zvtkRHbISEydufjlyYhxnocq75TOYiS41IfTfZmxB/ChKO2SdAeviUkyUD/Jrym6OThSVn5xxMvQWjaxNutZ1pzoANHfE0LCyi7wMo6JLbfWCzERPaz43dRw1s/UuzdborFkLambcSDHpEHlOuZqOsVAN6qkuwIOkYBUGyFLLsZtdoX3VWYmx52JdIlq2l0UyYIUbUycX4jtZlsL06mLatnqqxnJuLCdI4vWzovXGy2yIL1ddTNeeOsup8e+OTl4XUVsX4+WYOLEyq9yezgG1KeZNqX9n+PZmjU7byg9XP0UbJE1viXN6mlvGN0pPR3vxjbxP/u53HNMWnbaz82dWnpEs03ttDJdjXxMzIzGH7WQCAgICAgICAqbAwixTtQfDfqToeqe4UVPWbaFdN5Lyc6kSY1yvNGq6Jaf5jcr7jxuximJsnjlHP1p0loxOCzpr7pwtoXZaGF0Cihw9tzEca/sajC5v7YeW83OWjU4XvA+DeGtHgoqf3/cjjNF+G9L3V43yjCqq+66up270lI/4rZ6adhuyyzav1Mm528CoGyEuuftotVHxXCwaVR9bHoilRI5+pG/s+NB02xjnRxR7U2PsuVXT09xHYiyBWUF7cnTf4upidrWFdq7ac6742l3DJE5Xnb+G9HGcr4Wj37pY1+HNf3u/tw6kV9wh7+/XRCPfxgyzOA2UZ1am0xGo3p5664V7Z7TX0NTJ0J2K4yZGrQwjWyULFtQNak8ngbNI+XeG11NtdxBj21SclZi0hYlsQ9PzmXL6ugF66gpc+C19h4Y/v8H2xsmx0yLqOh9N/17srqA+zERz8H04TleHOOVVxMKn+aoVd70AtPC3r+h0nGIlFFqXAUlthjXu45CTc1w1Qv2LqOU6WEs95Y90Mo4z6zhOmIHSe+F4Z1c67rsBvRLWnX+arDzTZ6nrfhb11FhSkDoZKkjUr8+TTrktErkcNc47+9L1jTx541a4wGKCtSEb8sJSf7deEU3+K0Yj9+Jyuqo7ox5H/yj8OGOjp4omfLH3tafu5SN+kLo8RfO5kB7GOETgBmo4FxGzpL0Zdo9FtadVob0hpLheYd6p0AjjXu+RmwJDokKb6/Nw3xulpir177WuX+7rZkTqer5y1U1p7tBeXazKbUaWlDDNFxAQEBAQEBAwBRZumaqK3vSeN787h8kso+WWY4vrlTeTiEZjT1866bNUDe+qLm4gpT2O3jxNb6qhtfYKAFFmLVRL2RLRkrdHr8+r6vLemaByj34wgeeZ0ems2qyMGxXTJerNfQ3caHTuizTq9GTYr6+ZSVm7es4eS221W8maJLLsr3T/O32tKMPFYNASqvl3t2unT4itHBtxRuTDBawb+te628ZBCnIchCqttasumS1ZQzs9jj6LnOr85Sglf4yfehqw3OeHla5bUo+bqo1MB5GVWmVafF1U8iAk66aLDZ3Oy+6Qm57VJWK/iqA0rw1sT6uioKeaO/y79kYyOi3P0bajK5rSjFfya/uxQe1N3yqCqvcbVGb7I1ND6+pZm1Pqpi91N0ve2j84I131PhMiWKYCAgICAgICAqbAwi1TVY0a3vdAB7qZSjcPIRD7JaA7eolknd/NZh3tSwlH70+jaNdZ4rBOhSIUhr9bh6NF7lBi/xJFO87R1zv8ZlJyXbXcFwlx45Pcqug5akaW2t+JW2aPmoLie4vcZmAxDoNDPsdZMjJHKMn8aNL0/Ia8Yk9oodpIeDmYvOiR+zvLF0nQdT6LxDnH3iKQrVYX7ZfB5OEgPM3+DS6r8docrHseb1Coi2Skdp0EMT5Egpa8Kwbz2XzwZdaBugiKcRbwyAe17jO2DrY3G8SxzGdqXCdA+hP0/BMNpmM5xtJxhwp+ZJNyG7bj8RgsvDNVDQXXU/FK4L4zQXxl8clN4ZXkG7dN4ERYvePYvwpBjEFdbCIvMpMVKdW2Z84Gk95v4OUqJspb7t6KzGLjVg351MIchFgtSylMebmYNS4WUaQRkeOYiZ/KK3lJbYJ2eyzXvKhOP31HwsRExq8qcvqqcX7BhjtjTwzJlUhc1JrITZ/ERBjX0U/cMaPFKRL/cLYI14G6GKkU3iF+9VSBS0Va86yLg0Upz7r3zpC8LvqVmTFx5N4ZbmWtrZL9g7zNL0MpqFt/J14MZJmbcndTmappT0vXrcrcIJQFdqqsG/3v/og4b1+zwuB7/U4flQtXt0AlpQsICAgICAgICJgIC7dMVe8D+pGim+7yncgIVJ3zp4+5YefAipdV9kabpxPh+LwHvEf9oJGMzI2uEt87jwQf6GZhA6hZPawoIx91FKwedZ1Y83SbIDRCvuDBTy3EJncSjdwoUlUK1p3BvBY3Kq7/+ByfSDF4K4D7lunj18zTWjzurjIQdltFSSLvmO1TJqxvb+j/e47oG+tP+ZBUQHy74g9GQl0i86iL9VewD7anXk9NbsmIfMWLItZNfS3ei34MClNauZ4W3AyMs0j5YPwkDLefLHCar1CC4VZGcjlKcbrWhWCJG85aJT05Tkxpwh0XgmUqICAgICAgIGAKLMwyNdhpHNsHHJgH9X9maUaWubABbvmuSNbzda3pw7BQn6ncf6F/hKRGEBc9O3V7fxFpYcQ1nRPh8BFBhQuLqJxJv4OgdgVjXERiP79PVrjBeF59KSZ0IBybL1V8pnxCHx7bLeNtK4rV01R32tSxKThTbgI9HRjID8+7v4w9vxghkkvu5w53TgtirCbPdS4PBUPthlmnBizauV+YRhhaABjvpxJnvVHzAnzfpO9+dXW/vy6iGUbX3DnHL6q3nH2j6mL19tQndP6YWQbYKO/GuPYUU9LcbHB7WnLHuu2N4PfjE1RafedITKGdqbYn38xR5jNV0JHxfnAFmAiJ3XtDbFdGoxHph+W4TrHGNoClCJapgICAgICAgIApsHCfKY/xI+3ycYlEiogd6Sd+8UlUSF9zpF+9PDXyq5vZ4EheMkxiR/px168gMpQMpaqVacACMTkGRxi9lTGVsvaXRwqRtUjFmfd/i6j99AdlPcNRcZ6l+x6rp/7hRt7HzZBlNpBs0/kTZaZXNsnHNRWtNpXLMxpS9ldVOa7TU8WY3QA0XLBSIxR8EGpaNRaKAQtT7luj+R5uDbVWAFVKOG40k0Hdd19V62IfrLUmyQMkT1Kc2dbFWbanKgouQGfiggQbig9qUe3pJBi4uecYZeCsNeKMVTbihRavoi7X2dsXJ8nCW4sNiZNj5P3DhgXbrVWmQt2voa+bpjNVF2p8hGklSXwl8XufGbTh9pXSoiMsDBNmfefGMeUbeqcaebh4Lxho+L35XNRzzQzGbfgYVdwct6yMU5Zw6NEqzzGPTo8Sx26PpcSbn7OCIlf1BB1IN4NO1OQ+qE4nMx+zJyNxIjR+6ihLURcbzcelGtepmq+eatnXCDiO+UaySsNzbLi6aEy+MATivuvGl6e/HAvpaPlnUYho32j46S8XoR+D+o5V38ax9tfGYHhdrHR1YfPxyPHTppOhGvKI/pV5zbYuTtWe+lu7d0aUKnHsp4Vc26kGNT7+m29PfQbV7jwLPZ06D1/X0owk8Ytb3FSmyfJ3Sv9OC1PdsW4Bp79XrqsGSVxEdxPnx/LNySd9b6w7Xg1hmi8gICAgICAgYAoszDI1+QjbORHmowig6ZxdXZTwLIPE+CHlZMskZ2fWnCATX3Q/ilADTbdvVNvzl4JJc7C0Y8jq+lT1eUpvhDBgwq/sgOnKb0wGbh8+4yw5mkawVHPUtC78xUylWC8n7ddTVYMkVoaaOt5Zwfo4GNp/EWaYgSXBY+WYc/TTQSmaOGtN28kx0wlN75Tq6cbDc7R8TGaIYitHcRHQSePCg4qKl21Q4UvqYlUZeviwMgoSeX7uXBYVLBlV62KvaP0/ZlAXJ8zCOOuhERCnp9qxmZlUUf8Mcqf8euVZqJ7mxpos/1Njt1+dD/JupGeBrKmnM2tBR4RGqJyF9qxr4k3hXWdNNf4/qH6jIem0cu0BgmUqICAgICAgIGAqbB2fqYFRsFG3XYUoScP2LGM32ojjRqGv6S1YPnJZvfnvDYXn6Hrexth9+BAlct71DTfaSJI438dOXUj9jfW30SG/q+TreTqrTSS5+0mUORk2AW9djAdHGuv52Zn4hUitH/ku7t6SYZeZKxHRsgu8mjkH30bUs+r47Vdi73PT24al9DYzLzgMLgmuKkfjyp6h+TA4WbJyjEQK1jcf5bKeP9FCfKbyuujbG8vLCNBwPhnOmhrFmvu+4XTabye0MaXWwm0mk6FvQ1QgWnJ7uiXuOy5Yvhj0nSrPUQbLswgMtKdq/L6mQrzsHJebrk5GSR5UN5cho98Zs/ZfLMt7fEKvn/3vDBVD0nRbWUXWryhOtFAX/fvTdwG8vs4ZfV76659cNUu484cmIm7atjRyFqo4TgrWt4q6OiNJLrwzVa3Ymj8g03UVwj+nZIk4N1n6zkUC+Z49tmLEbnNViWRkh2oeFaKaiAoKlfqNKd2V8RIN18nAT29KM3da9lNjUc6xWrmmQZ8bYd0Mc8d6bx+PiIybqvVmaiNobPrSjdtPKn/eWn58GtTW047rCHsZNmIaLr6Ur+NKkm+am+upjxw+ui81H1R9AefxevwyIfslEhOLXc2H08kMiClM59LT06ovqcHj84f2OPq66KZmJYLY6SquUc80wuBfZs7J2a/i3AAZKut1vjIG6qLECVE6UBeJetOAxnX218W4KynUjFG/PXUy7PZv9CtJ0ntnON5GIiI38DZuRXHensajG9TFdRc17+PmeurEKXETadnVw6J+MVaCuhdn5jYij10MMYl0A5W15Bjjn2Pu2uPKLkmEZLvsMRcJXZckfy/6gWrvvTFOV6frVIVpvoCAgICAgICAKbBwy9RI5Ga9LB8FZ35ZuetRJ1Ejdxj0vuZRFKF5JFg3YnRpIhSJvUlzY/qSVZ2x/TL6fG9vN4pI4hgTuSGHmw+LkkIvOxuc7iOPbzRP80btkaIfBfqRiJNvBBi/i3tuWo/yaUBxy17ztQRj9nvb+JFiQU9TW+Y03x/KljOJGmTOksGSm1pIGr1RlJOhoZtftlF6Wu959RzKs3zZu7OqiZJ5I7GbIoqjnhzzKU16Vp5RZtSFybFQF7u5rvYiS5Pzt1MMTTIyH6bEyd+rcQxboi56s00kEerrYmJDI0RRb7qz51rg7jekLs5TdpXyNiaf0soGLNpRlOQO9eqnhwrvjNyVxLWnkYBEGzltOwaF6cu8vcn11L8DFIm9tbSZX2fcezRywadM4t+LRQvc/Nobzf/rTa9V1tUB7RYVIt9+Nt2UdNRzK8jDJ3kLY2VdnUx7g2UqICAgICAgIGAKjO1MichtIvIlEfm2iHxLRH7eHb9RRP6jiDzrvm+YeelUXW86w6jBqEG7bfvxceSMYDTCaISoICpu4Gh3j1a1Qbw0Vfsx2J5ub0jGqVOnOHbsGPfddx9vetOb+NSnPgXAyy+/zEMPPcRdd93FM888w1w5pgajmXUkTFv248upkGpMqj0nQZOZ3CvASIaRzC5DzxR11/gOdhV+Dz30EKkfVdelQIW+vIK6f2SZ/XghKmSakGmSZ2ZHFQIIKsbO9btnVXazqhyZh6elk5NmJtdT0jak7Z7eGiXTJpk2rR+VEW80tY9HM1QzTKaYghx1s+hpkauXW9a1n1wBhC4xXeL8mMkMqIBKLv+cVz5M3SQcve5lJpeHpF0k7aKZdRsShK5EdCVC1CBq0Ex7v3GfvrrY88HaHHVRe3XRZC6Yo2tPVTBEGCJErS+WH+Db/C2/Yts0iIXWRfes1ZgR7wzFaIzROH9nGFWU2H0ya+XP1H4MfTKsynHe7wxNC+1Np2U/Xi5GSU2D1DSsPmcGY0wu01xP08x+jONZkPWmaG9U87JKmiJp2hOFUVIapDSQVJFUyYxYqxxaSVdniSqWqRT4h6p6L/ADwP8sIvcCjwFfVNU7gS+6v7ckkiThV37lV/jWt77FV77yFf7Fv/gXfPvb3+bjH/84x44d45lnnmHPnj2wRTlW4Xfs2DFeeumlRRd1YlTlCOxfdFknxXbXU9j+HENdDHVxq+Ba4DhLjPWZUtUzwBn3+7KIfAc4CPwY8IMu2ePAfwI+Ov6Wg+783t/EdonbV9tcXH0FgKePPw/A88dPkxm7A/bFVbsr/dXULu28JVqhcaPbt27Z7dHXUi5fOgtAU623v9xgB0G7lq/jlptvBOC1b7jDHtuzmzff/DfI0pTdu3Zxz913c/r0CzzxxBN86UtfAoW9e/dy+vTpH6/GcRh1yzVNU9Zadrfr5184A8D3jp/k1UuW98vnbdkvvGL/3kWD5CbLLVqyKzSySy2y7DIAuxuW/46brgfgul3X87rX3Q7AoUO3s3P3ModvvhdVw65dO7nnnns4ffp0jx/wgQ98gF/+5V+emFo/zd7c/MVX7e7sp148zYkXX7Bcn3sagJOnv285XemwvN+uAovdirf25QusNOyKuH37XwvAbYduA+COA4c4ePBmy3WvHRTt338LBw4csM9j9+6hHH/xF3+x4iiqbNkJ+Xx8t5NytWW5nTx1xnF8niur9tiL5yy3S5etnJvtlKUbLDd1fm/SugJOr1eWLf89js/ePTezb99Nlvfrb7Vcb9jFLU5Pd+3axd19evr/zU5PPdeCHC87Hi+8+CInz5wA4Dv/9TsAPHP8RQCyy1fYvc/Wt6xtuabtVVaWrR/YHbc6Od7zegDecPsd3LZ/HwC7r7e6W0WO9TiWy9G3OybN6Lq25JVXbH16/vkXOPniKQBOPP89AE4+b3VX2ilL1624HGy961xZY2nZ5nfwFquXt95hdfXg/oMcuv1WV+5buP663dx8897RdfH9s62LmVvpdeGCbU+OnzjJ2QtWZt87fhqAF89ZHV660iW5ya0Cc0FmzaWMWKz89+29BYBbbrffN990G6+9w8rr5n2W+76Z18Wh5ADbnrbWbPlOvmB5fff5k1y9auV59qULALzq2tzdKSzd7FadNtwefVcz0pZNt5xcB0DTvVf27tnHgX3unXHnawC4ce917N+3DzVmrnrqfdXSTspa27YtZ86cB+D5F0/x8qv29wvPW/mdO2/fj1E3Zfl66/OWNVydfHWVZNm2X7deb9uW61z923fDTdx6m/194ICV7Y03Xc++fbdgTFbyXpy+vRk0FBV19ZVXLI9TL5zizDlbF7/9rO0PnDzh3hurq+y6yXJrxe69cf5lmkuW4+teY/Xxtte/AYD9B27n0G2uLt68F7BhlCKZjYG0lgO6iBwC3gJ8FdjnOloALwH7quShgyswB5yRJTJ03NLHLLMvmqYKF93SR+8I2GrZNJd3p9yYWaXXNas8V1ovc9mG92HHiqXYvGRv+jKrrFyxL7P2mlXOnc1daMPmd/z543z9G9/gwbf+AGfPnrWNgiqJdaitxHEod/ctqj3TuYvRE0cR2nKHlr3DoCtn1GZn1x7rdPwmuWukHV9ZbOMuqU3fUUO3bfPtduz3cmMHRHDixAm+/vWv8+CDb+3xA/bv3z/x1MJ6oorJHVydo6MxNDp+2bgtb+ZsykmSstKxRtKrbj+ptrTJLtl0199gZXfpipXlq1mbm9xyX7dinVjEbpgMnDh50nF8cB1HKuq8qvaW1DpO/rj9NqRtvzTeL5+PyDpOT10FvdJ2zzRqs6NrG/C2K4LJUrpXfCgEK8vmmpXzq7s67G7bzuSau89KIhA7jseP84056WmBdGF7RM8LtG1lFLuYZ/kSZNZY6liOa/5FF12me9Ue6zpH2GzN8m91MtpurnPF6Uss5PbyEydPlMqxDsd17U2PWg6vq16Ohixfau3jRUV+Q1xNSVxdbLlp9zaXiNqeo+PWdmnaKa2OcxJ2z6lhGFMX982uLlKoi9i2IFLIWj7siuWVunbF6Co3pfb32prtaLTiM8hlm77jBqWrq5bfjt1rtJye+rAQUohy3eM4eV0c2tHIHZGVrnteRm1Zki50r7iBjxsAra3ZNEkjZcea7bz79rTbucTaK05nXT9rx0X7bM6vrLLTPYu2a09XGrvy0IUnjx+fvZ5q4QSAGox7LxLZMohAd9UeMm6xStctYGnqVeK25eiiCdHhEqZjO8odt6in4/XVdOl07LUtF4KqGffa1OMnB9+Lt86+vSm8N9TpqpiMK1cdb/f+WHOD2Mi8ys41X+9smnZ0EVxdbHfs+6N91fULspSOa0tTt+AnjqaPyO5R2QFdRHYB/xb4B6p6qXhO7RumdEZSRD4sIk+JyFPnzp2bqrDzxurqKo+++9184hOf8ObLHO7FuqU5en6f/ORQfqXYKvzAcnzkkUf45Cc/ua05bmc9hUpy3NIcQ13cRhwffZRPbvO6+Oij27u9mQUqjQxEpIHtSH1OVf+dO3xWRA6o6hkROQB8v+xaVf008GmAI0eO6Li4YEaVFbc31LLbvftlrtC++ioAV1+1ptrOJdvbXLv8MufEmjq7anuk5oYdNN1IZTW25vldTWvWW2o1WPLGgsjmEYvQTbu8573v4X3vex/vete7QJR9+/Zx5syL7N9/gK4N/FaJ4zBu+VJQgUZiRwZN159tpWt0UjvMuPKiNcdffNma10znPC85E2fXlTm67jpuatjnkyzb63a5vcLibkTiRtKxW6Kepl0eefRR3vdTP8W73vWTAI7fGQ4cOMCZM2f8KGNifkXEbjl4wwk8NV3WjB1RtM9bfpfPW7P62UuvsPrMN3EE7fU79vC6G63M1tzosWGsaXpHay+0/XJXd0OBbjflkUce7cmwhCN5SPzRHIfpae+w0nT7Je7A6WK2xuU1y611/qLl7fT1anqFi6ltULpuxCTXNbjOTTOkuanSWntWLkc0r/ejJydzx/Hd73kv73vfT/Gud/1EQU/PzExPi2x94MLYhTAQlI5avWxfsXp39aKtm+cunOGvn/2WTZfa9MmeG3jjAWtaTzPbECdiXWUamRD7AImFwHrdbpdHHnlkqBzrcBzX3ig29IgvD0AcZz1r41U7rO+07Pe5l89x5aSdplZnwYmXdnJon5VVq2UtNppd77juJjb9wXS7abpxdVEhdtanprF6ZKI1rrSc7F7eD842AAAgAElEQVS1U2Frrq25fOksJ048B0DacVNg1+3ktXvsjNzlq7YdusHYc41uk8SXIuqNzcfJsE5dHEatt1BeaSZuV4HUfq+ay1xuWW6dK+77vOX4CqusGqs+q9i6uLxniZ0u9krkzD0rxupp85WM5g2WvyQ+aKmQdrs8+m7X3vzkrPVU+74QaDat/BpiObbbGZ3Yti/tK7YOrl20HF+6dA7tnLC8fYDO5k7u2OfC79xoeSfOzSAxe0gyH7Kld89uJ+XRd8/3vZhDIPZ1EatfHdxCF6DVtjaclnM5OHP2NM+2/9ryd3ssNnbs4Y23WrlleSBoO0W71N5L4nQ0D6o7tlDVUWU1nwD/EviOqn6icOoJ4APu9weAP5hhuTYUqsqHf/Znufvuu/mFX/iF/Pg73/lOHn/8swBcuHABtihHVeVnf/bvcc8995TwexyAxx9/nOud38pWhKryoQ99iLvvuZuPfOQj+fFBjsCriynh9FBVfuZnP7xt9RSqyXErc/Rtzci6+NnPbo+6ePf2rosf+pmf4Z677+EjHymX41bWU3DtzYd/hnu2cXszS1SxTP0t4KeBb4rIN9yxXwQ+DvyuiHwQOAm8e6ISDHQNJY56XTy31UbSSOn4LYV8VMDdtrfaWY5J3Ygidg40y8mqC9AF8ZqbL9/lfFIaKR23H1PD+Z989Stf5XOf+xxvetObuP/++wH42D/9GI999DHe89738Bu/8RtcunQJx3li5IOMqPCHm3ePmqDOCtB0fhpJ0/K5Kk26LReAzu0qs3e5TXPF7dPnOd645Di2aS25HjjwlT//Kp/7nd/h8OHD3P/AAz1+jz3Ge95j+d1xxx3ej2F6SG+3I428DCPE/V7aYWWRqBthxTFJy5b90op9BvsbXTrLVj2X3Bx+6oZMnbiLccH2IudT8OU//VN+67d/i8OHD/OWt7zFcvzYeo64xRRjMbi7uY9P6XeUjwVxv01sdTFqCA2nnw1nBYiWbPlacYQ4JwvdY9Pv2CGI03FtOxm6IHrpzoiuC0TXcBz//M/+vKCnBTnOWE+LlI3fr8zvvhH3qmfi6p26upZpjGk5n5oVW+b9cZpbU5up5dh2Vg0TtXEuG3meX/7yl8fKcTYcnb+N9KKkmMT7wzVQt8dg5upk6uqkiUHX7O9LzrH+ltiQunSN1PnDOUZdOqRuFBwDf/YVK8O+uliip7Oqi33Taa690yih4YxCTWc1c5MBpGlCdtFyWNttrRw3SULadOmcL+rVyNXdpYzU7Ykaufrw5S9/md/6rRnWxTF7jdqgjN6q6Pzeop6P5nLHycbpZEcb0LUy3OHa0+Vml9jttahXrZ6+eqN9KLt3RWjDta2uPnzlz77Mb3/utzn8psO85S33l3KspaeDbmHS/y2ReLdFxAVVjZY7eXDZFeePKG5vT5abpJedVXWHq4u7IpIla62JfIBop5tZ1KbbtOm8HL/yZ3/Gb3/ucxzuey/+Ux776Ed5z3vfO/P2pvgAIreVWDdO0a7V1Ru7zoro3gPaMJhXnR/miuV6yxIY538qV+x17aabCUhSsshznD2ktyng/HHkyBF98skn7Y3dsY27+3Q4evQoTz311FirYBnHQSya87BnX4Wj59eXaCBDXX9oQzF4byn8jqLoa6p6ZNT1QU8tFs15mBwn4bjVULsuDqbcZHWxiGnr4rD8FoVp2lPY/noKm1dXR73H/M+qHEME9ICAgICAgICAKbDwvfnGrFreMMx61NPfA+/v8sr8g7GWYrA4UhgRTJbZ4Byt9k5p/z3nxbd0ZOGn4gaHGLO6z/TZTYz56Gk5OynJdN68y+RZVo6p8mXx1oyZoszLfpPVxXXD/UnyHrYoZDu0p4N5Mn1es8TMdKdUV/1XL/dRbc+kZSnOUIzU1fzveooVLFMBAQEBAQEBAVNg4Zapwa646mifl3khv5d3NJ7yhkqhdz3QzS6bG543x1EWwMnvPXhVgdUAwbJRQdn9i+fK0g09N2pGexYPtmQ4tAhflJnrqQxY8Mbdl+F8J9Gj0mc41juhPgZ1aLP4ws2mHMWrSxgO1kXp6c1WqYv97WnJuZLybb32dPh9Fq2ns8Ogp/0QFJPo+kP+79q6Ooe2xSNYpgICAgICAgICpsDiLVPa349clA9VcZq0+Pfkvigl/WZdz3EhI48hPf16eRT4DXb3tXxsVjayKBRn/S2GHC97fjbxwJy3zvDpDmQxxwHOSMxcT8vkWGLuqsJ3kjKUGhuGmjhmV0s2y0h/JuUYDOMxeG7wLjq8Lg7+9n8vui7268fwd8aWbU83KWbPaVSOUiK40ZKsq8e97IqW2xJTJ7jj1TVpgztTijEZURQXirg5mrWRpTCjTpbkpYY83LE9MEmRZoqxJajBcZ78RuVUeTKqLGGtIirGpERRskm0s4eR5cnGJRjIaxPpaemdy8pTi5+SZh2SuDnJ5YtDWt3xVUfp/ByxcXWxRE83gRRn254qWdYljhubgFk/RpYnHZdgfW6b4FXoUCjIsELVLGuY5gsICAgICAgImAIbGrRTRM4BV4DzG3bTyXET/eW8Q1VvHneRiFwGnp5bqWaL2hy3uAxh+3OsqqfXAsdQFzcPQl0cgmuE47aui7DBnSkAEXlqXNTbzYBJy7lV+MH25zhNOQPHzYPtrqew/TkGPZ3ftRuJ7a6nMHlZwzRfQEBAQEBAQMAUCJ2pgICAgICAgIApsIjO1KcXcM9JMGk5two/2P4cpyln4Lh5sN31FLY/x6Cn87t2I7Hd9RQmLOuG+0wFBAQEBAQEBGwnhGm+gICAgICAgIApMFVnSkQeFpGnReQ5EXlsVmk3EiJym4h8SUS+LSLfEpGfd8d/SUROi8h3RaQlIi8GjluW43nHry0i/2pMPpuSH2x/jkFPrwmOQU/78wocF4QKHL/hPu+olKGqTvQBYuC7wOuAJvCXwL3Tpt3oD3AAuN/93g08A9wL/BLwjwPHLc/xl7ExQ7Y0v2uB4zWup9cCx6CngeNW4fiP6uY3jWXqrcBzqvo9Ve0A/xr4sRmk3VCo6hlV/Qv3+zLwHeCgO307gWMRW5HjQeDCVucH25/jNa6nsP05Bj3tR+C4QIzhWBsTO6CLyCPAw6r6Iff3TwMPqurPDUu7d+/eDx66446SDUyngVK+veX093jllVe4ePEihw7dwYkTJ7lw4cL7WQjH+SHneMcdnDg5nuPevXt/79ChQxtf0AnRk+EhAL72ta+tAo+PleEW5XjixAkuXLjw94DD25xjtbq4jTmGurj5EPS0H1uVYxEnTpzg/PnzY1/oc9/oWEQ+DHwU2LNz506efOqpGeVc3G++rEM4fWfm93//9/n85z/PZz7zGY4ePcqFCxdK082P4ygUO5GTowpHx+/DwA07d+7kySefdH3FoVvVs66DW33v1kpY31ctL4vn9+u//usARFG5MXadDCtxdL8Ku8bPn2NR7y2KHJ0M3wd8c31+ZRxH6dDmlGOturhp5bgeVTgO1sWnnnyyxsCtnGv/mWqQvh/V7p+3Na4uSsW6+NRTT1a+Rx8GDAXjOA4+ix7H6vfucfwMR44eqayn1wTHKXV1Ukyiq717K0ePHq2UdpppvtPAbYW/X+OODRbm08DfBf7i5pvHbm9TA0Le7Cn9WjSjlvDgwYO88MILxUMbzDG/g9Uo9URn05GCahxV9dNqw+v/3R6/UfcvnBuUzQwg6/4aXpaDBw9y6tSpYqplKstwBEftnSto4swg0Ht2Ku5+Xu795fIcC3gjM9HTzSlHhxp1cZPIsSLHAirWxTqlkb5f04u1ejtUwq9GXZw/ZqHiOcfeY1nQO6McW4ej09AZVMac8wR51XnLTtOZehK4U0ReKyJN4L3AE6PSTnGvheDo0aM8++yzHD9+HGMMBI5PblzJZoMiv06nA7Z+bHcZLrH9OYa6uMVwjdbFoKdbkOMkmHiaT1VTEfk54D9gPfZ/Q1W/NSbtH016P2/r8z5eJusC0F27Suvy9wHIIntuZcdNNFd2AhAnTYDedIZU7z8mScKv/uqv8vDDD3Py5EmA350rR/o5apYCkLZbdNdesb8jy2Nl+XqS5jIAElsx9qZsqven63I8cqTi/o81zM+adkjbFwEwWQZAc8deJPHq2c+nOMqQ3o916cDy+7Vf+zV+9OGHyWze56rLcIQFUHrzXSMHPGoASFtXaF88C0AWWd3dsec2kqUdLr9+vez3/hs9pPIcCzL8v6twHK8lNTlevcSVl08AkGF1d/feN9JwdbGU4wRynGldrChH7eP4HADGndt1wxto7Nxts5O4/7q+W1XjWKsu1jJQ+/Zl+Ln0ykUuv/hXAJjIynDP/rfQ2HGdK3tUSG0z683cjC7M5HVxsumvYfLMWhe5dOprLpmV4u6DD9DYeX0fj36O1cqQc/zRH62ppzPmuHaR1TN/CYA46+uOA4dJvBxLOdJ3bhgm5liJopZ9DWYKQGf1ZV49/XVbYrHvij23vomlXTc6GmXtjbr0/ui4QlWXy1RxplT136vqXar6elX92Li009xrUXjHO97B008/zeHDhwkctyY8v+eeew5KzNFFbBMZ/pNRabcJx1AXtyDe8Y538Mwzz/Dd734XtnFdfOaZZ7a9nm53jnUxdwf02UDzHqVJOwCk1kxMN7tKp21/Z5lN04jbJM5a47ugceSsN/FmDfquYAY4dp31Lb3C2pW2TebSJLqMuF5zZI1vxJEbFUf9o+ONh5b8KoGxVihjOqSttvvt+DU7xM4KRzRcTXNHyjFuZJN5mJVdVdER2414vQU1667RXrO/1R9b6RLH9rckDXfL9fo5L45jPe/G+Rg4jrkFtdui23b2GitazHUdNHXW4UZzaEnnK8cRqChHL7O026J91R1zbVK2O6XRtc+AhpNfiSVjYRyrmN5cXcyyLsaVIGvF7lQ35y/JehnmBrfZF3xilFs0XJ1MDeLEpa7QquTPoLS92YQkSzn6NjU1aBa7dO69YgBn+Scu4+i+50RRtcLjG6mqzrJqrPCyNIXU6ajL12Q6UlcH7zNLrpu1ZxEQEBAQEBAQsCWwNSxTqqjrUau6nrUbDXevXME4K5Uf1JtOh8yNgr3fjTorh2hU6B5vnlEGqqgbVajzxpDMWdyurKHmik1nO92Y7jKZW1rsrW3G8Y9UavmGzQ5Vl89r37emKajlGjv5qslQ456DOGvHWE7DhxuTLQrp91yqll+/35u3JGadFBErQ+/DoGkHNc7vLR/5juYgQ0fIw/0n6qOiZTFP5H38DHHkLIyp59jNn4Wol+M4y+k85Lj+edXJT5wctdMhkqsAmLbLM+vmvjeSe1JtNMfxtxo12s9laDS32vg21upwlfZkeH0ZmqwSxtpQC0lHZJ5TNajTwazr3h2YkffoSWte5ptpOfYLOc3SfIYjczMcYrqFe6znMX+OYzDCB8yfL35naYr62ZyubXfEdOmt0B1fx2Ssuay6sm6ZzlTvt/vK+0MNiF3D1XYdrV2CGXxAuok6TmUocPTvU+MaMEOMGjdN6Ro4RfLOU64s3tYZb3KuDj3GMaquY9gxvZO1Teoz5q0y7B08dgm9b5CM+44iwWR2Kk+6vsPYm2aYwyt0A9DfIRER0q4dxMReT2csx5lN11aUI7kcvcNuQpZah/pEW3kaP1irAtsp9gtiKl82IrMp86AoQ8i6A4MYf6JyJtOXpzYqzGQWC2jcwDVJ0t65dXVxk7WjFTj67kgkisn8b1cXI6CSni6Od5XWMB9PRuLHqkSJ5xiBj1+2wWIM03wBAQEBAQEBAVNgk1umev1TI96M7iwYbhQhkdDNVgGIvOOgZCQNZwXwVqu+UcdmGnEUOKrpO5TPaomh07WhETSzI/9EuzS9E2GezudligfnUWhGPcexNpZ8ls9bNgzdjuUXOdKxaO8B1I6aOyNrjxSvrzrN15/e66lKTJa+ak8lS/Y7Mr0o0LWnZXXkn/XyqSvH/ucsfrQrEWnXcvTj/RXRAsfp5bjR07WDHCWGNLWhWDrONLwizI5jXYJjbzcuQy+7XjlaqW1PY/VWcDNjx+t5WGHdVPKoO/h3RhKhZg2AbiYlF1ThOuY9MhdD82hbOPT0MEoSVCxHP4UhfbMzVae2Zif3qXOSfo5xHGPU6qrmHugFC+MMdLaOGINlKiAgICAgICBgCmxyy1Svh+ktFiZy/ib5SDDDdP2opFO41PVivSUr7xcLs+xtT4/hHHuWGUOaut545ix0RgucPMeiNWreHEf7tYzs0eei8KPCFON5pZ6DWXdZ/TJNa6Eq4Tg2y4FRkf+ODJlaK2nsJ/qlLBhgVbkNceaqjUnk6Ln1W1c0VjK3aCDKl54XHXsn5Vb8exKew+VYiNk55JoBh/9Y6TrH89hxxRi7sGXYvcaXpkqByjHW0D7eK6zv/pGgxoXwcHoqIgPt5/CijE4xR1Sp6oV3gklde+Osb0RS0y9sTNraD6HCBQPVbiTVKMaJkcivWpKoZsFmK8nZqaq3EsfgfWy9ZbLPJ2z68tfJYZN3phykp+gS2em7yE37xSbOz/mFfmqUyKeXXiPhMtuYMteG5GUUfERzSyjShEh8w+ZM76L0ZhbqTjHMC70WbXTbNtjRjVHt8bI/tCCpSadOitdP8hKeYko41z/bgYo0JnER+ulYrr0XMNVlty5ZZU/qGqgqR693TjeN5AskcNMnYqRQ5mnlOCmmmJIW71bgnHmJabi2R30wrUgLNv4p5VgXVW6XD1qG38O3IZEISde2sUa8g71Uuk/1qNLzQKXeFOD6TcYOvNXYKfdhmy4P5l5bhSujSltTgWPeYYTYrYDPXNxBGTPGrt/e1sOsuja5riJ5vfQD1fIB6oiyjEkapvkCAgICAgICAjYIW8MyRWFKy1suXO/TxIpxU0Pi5hYkit06UAqjMpfVoo03Q9EbmfR61m4frNiAiQvpQDRBXSwboe/UAi1UNYdjRZrGc3WntK5JupjhjDBFaIQeetNDaddNDyXeTC3UHs+s0+PxVocNgyiZnz5xFjlrdl+wHKeZkl53gZA5i1Ru9NaY2qFXhsmx72TFfMbdupZuRJjYWW2y3jRfPZlstkU+/VARNHWLXxouzpRW5TgvXrPKV/Kv1E/V+MjuCxbJeK2oWRuFvL0hdrM4MyZZJ7dgmQoICAgICAgImAJbxDIVgQ8gp725fQCMolwGIHNBEVWznjtHIYTCpoZE+OjJ6ka5vqerHTBil4AaXMiHJCtYdgYsWhtCtWycUbAeVhpgeKtKhCRuGW+2Yr8rGqbm6qZRtolawf+kkl9YnkiIGjZytprCnlE1CMioZDP1maqXZ6+OJYi4qMs+cGxFK+l83W1G6OpYvzCf2vOJABttOXU71ZtIZ2h8m9C6OzKNk0/BQrXuLsVl5y6orGn4tKPLtF7EVX1/5oAC12GlFol6YQLc+2RU0FUp5Fu9HPWS17LmVeIY93aTiIrhgcrvMRHHmqiUfS1dTXqWKO/HGI1+caxvZ0YXKvhMBQQEBAQEBARsELaIZQryMAEDYQNUFCK7IqPhlterRAWfBB9avt5IeSEYWE7vR0sqJt/DremCk5ms1w+WdQE6N4LjqHv0TBpVRv2IQc1ugHzV4qx3/5ksuxFXVbUE5TJVMDsAiL2/hlQL/yAj/qpfoDoQ8pV6VWJKagZYPY07fp/JjHpPf7xXRX2MkqPkPkUjdTU3SGaQWo6NpBempFYpNtzE6LMuMBx2CzW9Ux0fPmC4nlbTzWkxQb4yQmfV5JZTSZ2frdmINnMUZstRMaTu7d4L4bFYjmO3wSui0ovDYAbjVlfmWNNiXgFbpzOVb3LoOhjGVYJUSZwZM0ucXZqst2mwM3WKN3Uu2gtvFAYUx3OIjCFpuBhUfsm5pnaDYECXHMc+bovkqYWXz5h0AEaJY78JrlPJTHsXl1CpOy20KPfsfMPjTPMtE3XZTfMZIH9RDd8YdyCaU99f61MtAP7WBhLnXJ/FS4VznuN6Q/h6OY6e7pg9yxHTCSXJxEC05HTUx0QTJlgAsIgVMZUCFBE59YzdPJ9KxLDyTuZqPsmzmuVdJHcT0cTWu5EDm4W5TVS7qvyEEJveTgs2rTJU7zbxa3E9ehzi2M9F2zppQ+uMqFtz5Bmm+QICAgICAgICpsDWsUx5uBGg8QHJjELDDqWithtdpFJwmlzMDtJTwXN01rfMZPlUpqSOdyoo/U75ORY+lSnVRuqFvfkk2umOdfvODb3U3ymfD5zACXgaaMXpGPWjQoM03Egx9dYqKuWxuGm+XpajcvZ6qCg463Ds9zyranbPp+HHODtXy606KspRvRzV5A69SeynQGs+d2V2dbSWQWPE3Elu+TeI2EUgubVmxDTmoluaodDhbFUNPjCyD/48aipzYyI9THCDUrEU5Bh7W7bf13bRHGtgZIPj3hvG5O2GlDiuj8x3DlyDZSogICAgICAgYApsGcuUtzT5bUcyt+u30TS3ZkjirDcopuv2l1py37HbooXhy0MXC81Hv94iZTK7nYORCFmy5xLni5IkYLoundsaATd/HBX+n2d5hz7HiiN178+mKkRN78xrnXslUjvygMJWD2X3G+5XtS5NbRSvW++jVMV21uMI4vze4sRvFyQ9jvHwIdNon6kqnuGTomKmXm+zFPEBLRvel0F7QQOj9c1Nj01FnalWopKrhihI1TAeTo7GQJL72zg/De35N0pcwTdzlrpaqykblbeVYZpmkNrQD8Teqq893z7pb1eUgjFxkzWr69l6i7/m+maclVFNwZq+EMv+jExD+ayGQZx12L/71LBQjrXuONLn1h7MTJov/vAGcDXDdbUsj3GlqlMbt0hnyuSmZt9Jwm0BJnGEiJsicvuCpQaM2/Q4y7xztouSHsebrtID7qXjOHZc58hzTCIaLccx9R2uCOP26cucI3rkwodrEiPRvFu4ER0bxiihV/ZCTYncSjcvQ0PUM8GPUPzedN+QIo0tzKhySkme9ToY+JU0kRBjOarbmNtPjtmv8Y1c/4trSKdqlhiXZdHc7osiu+wxFz1bRUo6TBPKcWKOI3R1XF/Kc1TfsTfgnesz73Jgxk5PFu44U12ttkJKy74GkvjprgzjXQpcA6TGjHz1VJHvdJiRY7ZftakZxnUUe6vhsqG9Qlvv5t0JqZOvFv4vPwcZxg/a/Cp3HxF9yFXz5litu+jr26gkPTlmboAW+feGZtV0tVqDU0sqYZovICAgICAgIGAKLMAyVcOcWRgVGmd96eQDfje1ZxRxJvbMmdgjyehm1roTO0tWVghcFDmz52gz4DQwVO6nFqb2vNXNc8zDPxjtTTP40UZkzZzQ45g6R/REAL83mswpJERx6FB5xmlgROXyiETz+GE+Orio5Jx7wURGWzZ6I6v+8kwKRYcagIZm7c3seYRlxxFyh1Calk8ciZ2mBkRdZHt/o3GjQ+3/MTnVsqnManmukyNCvOT03u1DGGFyPcZxHBXXYh5y7NdVL5dqWeeTud53N0vz9sYvx0YU40bGUeQ4jpiangvHYdDSn+uTuZOR5t4CiN8PVEzPMjfKuphTGm0uq0+1/jtjFATyHTF6AUnSIoHSEthTFa1vE4XKmEGcFy9HhNi5FUS5W0FBjiXvvvUcGV2mWe8HWtU9xBv7jRBH3krl3QrSXjgkhr/7+g1T4y3mVRAsUwEBAQEBAQEBU2ABlqkaFhI/yk+z3Ck7d470S68Rus76kvgkXSVxEcKN66VGfnfpCNT3ZufmOVkhPz8yzn3BDMZ3ubuWYx7w0QgdtRYbH+U9y8D7LBu/9DX1ezElPZ+pUb7bJeWZCFWv9emMn8P3lkfBuABzIt5h2xSsB370UXFOf0YDpr67VM7TldVZL/yqcgFSrAwT56SdZQVjW0XfqWEaO3FghOGGqRHX5Mrbl16AzPntJZF32O6VrCdH6V1QqWwzNN9UHU0PcOyN6MF4i5T3eis49q73yRh3n2rFmRxjbpDzdH8X3QT9DgwwOnRATdRubasYbQae/6g0YIjcOyPfmVHjkZapvrL4H7P0LZoVx2KGPgCyX7qiUbWFHhUNUxuOgvwAEJPPLrlmx+5rW9tiNhuSYy1TInKbiHxJRL4tIt8SkZ93x28Ukf8oIs+67xtmUqIF4NSpUxw7doz77ruPN73pTXzqU58C4OWXX+ahhx7irrvu4plnnmGrcqzC76GHHiJ1U6lbEadOneKHjh3j3vvu474Bjm8vcGRUqPFNjqIch3HcynoK1eS4lTl6GQ7jd+d2qYs/9EPce++93Hffff0c3/527rzrLt6+DeriOI5bWU/h2uA4S1SxTKXAP1TVvxCR3cDXROQ/Av8j8EVV/biIPAY8Bnx0fHZD/IlcbzLLMtKu9Xd69dJlAE6/eJbjzz8HwHefOw7AidMv2MvWUlaut0HmMrWrpVpXL7GS2PwO3HorAAdfdwiA1956K699jT12w9697uYZ/8c//+fcf//9rK6ucuToUd7+9h/hN3/zcY4dO8ZH/5ePcvsdt3P58uUKHG2Ig9I5aWeR6XZT2h0b9uD82VcAOPnSKc6eO2t/P38KgLNnL9gLWymN691Iqms5dtuXabpp4ltuusl+33oAgNtuOcitt+6zxw7cwtXWZT72v/2vvPXIg1y+fJkHf+AH+JEf+WEef/xxjh37IR577DE+/s/+dz71f31qNLU+luMS2BTttvXnOnfhAiee/x4Af/7VrwLw5DeftWlfucgNr7H1MW3dCMDlKy9x3Q77vO677x4ADv/NBwC487Wv5eabbwZgacXKPkkSfuVXfoX777+fy5cvc+TIEX7k7W/nN3/zNzl27Jjl+PGP84UvfGH/rDh6y1qnbfX1++fPc/zkM47j1wH4+l89bdO8+jI37Ldl7hi74m31lXNct9OOit70prss1795PwBvfMPr2X+LleHyyo7KHG+77baKelrCccSILnNWz0uXLvHs8e8A8Mdf+ldQhCYAACAASURBVDMA/vOX/xyA1iuXuenAQcfRWhpfPneSPbts+f/bv/UWAP7Wf/eDANz5htez9wYr98QF3p07xxEwzuq7emWVZ75n5fif/9MfA/CfvvCn9tyli+zfdwcA7cxWwLPnn+W6XXsA+O//h6MA/OAPHQPgrtffyXXXXQfYkBhJElfSU//iqsRPtZrtzp3stNscP27r4h98/gn7/W/+wPFb5eCtdwOw5jZ3e+nsY+zeaffO/Ns//nYAHn3XewC47dAd7HD66S01cZkMf+RHJq6L1mhTwmyE35sxhrNnXgLgd3733wDwW7/+mwBcWr3Eaw4cBqCV2jK/eO6vuG7FyundH3gUgA+9/wMA7Nu/n8SHwXD5FzmuXr7MA0eO8HbH8YePHeOjNfU096MbMJKMMrJkWcYL7l3xu0/8OwD+zW/8DgAXL17ktoP3AbDm/InOvvRNrt9h256f+Ds/DsDffe/7ADh48CDN5tJcOVo+9axG3W6Xk8dPAPAHn/8j+/3//FvH8TKvOfhGANqZlc+L3/+v3LDDyvFHH30IgEff+ZMAHLr9dlYGdFVtoWqVaRjGWqZU9Yyq/oX7fRn4DnAQ+DHgcZfsceDHq9xwWLnV/QPFGPvR1O0/py1MpphMrWO1xIgKokJEl0YmNDLBdO1HuUpmEjKTQBrbTyeBTkKWCt3U0E0NaQZpBgf23cr999uX2O7du7nn7rs5ffpFnnjiCT7wgfcjwF7b8arOUQVHx4Zp0QJHNWTdlKyb0qFLhy5qDKaVYVpZnr5rUromJaNN0opJWjHdTOhmQkdbtFtiP93IftoJ7XbC5U7KWrfLWrdLOzXccNMtvOXwW0CV3bt2cffdd3P6hdM88cT/y/vf/wFQeP/7f5pXX321Cr1K0PyfQTFExpBdTcmuptBYhsYykUntR1LilhC3hI5p0zFtkPOkrSZpq8laa5m11jKtltBqCWtrKakxpMZg1E6lHThwoF+G99zD6dOnnQxto+i+ZziK8gI2oIYIQ9aNyLoRsfuXmdQuFDBrJB0l6ShRq0PU6kDjEqYTYToR3bUddNd2kLUSslZCu6tkmSHLDKqKqlbiWEdP68G4T4ZmCZoltkESAY1AI4QuUTcj6mYknTWSzhqxXCGOlDhSJF1C0iWyTMgyQbv5o/NPcqEcc53VDEkVSZUsS8myFE0iNImIIzBpF5N2EW0h2qJhOkRi9VjbMdqOSdOINI0wJsrlp8D+inpaty7651cllWIwohhRsnZG1s5QabpPTJplpFnGCldZ4SpLWZcoUaJESTQi0ShvowUptN0Wc6mL6uMDFtrVEZwFRSI7C+TLmkUxWRQj0sBkLUzWyjmuZBlRIyVqpOxIlR2p5m1L2STQMI5/MK2e6sBnZFqDJGI/LYO0DBonaJwQRTFGWxhtsSO9yo70Kk3tEDUNUdOwnArLqdgATUaQEpZFjrscxxdmwbEONCOKIYpBuop0FW000EaDKEpQbaHaomnsZ1m7xEtKvKSsdGNWujGikf3M2UW8Vu4icgh4C/BVYJ+qnnGnXgL2zbRkC8KJEyf4+je+wYMPPsjZs2c5cMBae9zIZMtzPHHiBN/4xjd48MG39vHbv3//lp5aKOLEiRN8/etfXyfD/fv3w5aJrTYawzhuFz2F7c9xlJ6Gurh1sN31FK4NjtOisjKLyC7g3wL/QFUvScH5TlVVpDxqnYh8GPgwwO23317is+ecUouFcjt5J35KPYoxLsq5pi58wBU7TXbu4jlaJ/8aAOPM7o2lHRw66Mtmg11G2OuSSImcc3ovsKXF6uoqjzz6KJ/8xCfYs2d3r4SC3/unOsfC48h/Fq5uNO20xorjqGpou6ju2mk7jldtuS5f5NSV7zqO7tk0dnDw5pvcsVXH0V63pBmxCwkbOSdSImF19Qrvfu97+cQnPsGePdYUKs6ILiOcKQf5VYEf6STuW2JIE1u+6NUrAFx52Y6+Xzx7grW/fspe2HFTBSu7OXyX+x3badlmYqdhlpKY2DgZDhR7dXWVRx55hE9+8pPs2bNnkMdcOHpnVomFdmY5dttWdledheH5F0/zzWf+KwDqwgY0d+7mb7zuDTYz/b7NK7J6vaxC5Mc6A+WuwLGSntaBH9VFUUTmFnVkXft95bLlePz0Sf7quW/aC1xg0mZjB/feZZ+PMVZPE1e8pBHlDqSDklkEx8iVIo4iUhcwNnaerWsXXwbge6dO8FfP/mU/x3iZN97t5BjbdqYpPkyJ5npSHP1vpJ4WrrY8o4jILQJouldA+8olAE69dJLvnrLtqQ+82pAGh5pOhi4IcmQahbKWl3emHEuCK46c2pQon1La6QJ0tloXAXjp/EucOmvdRbwvc0zErU0fzsO9K6Q5tqyrq6v85COP8H/OSk9rrLWQKMqneiIXiuPqqq2Lp8+9wIkz33McbZpYEu5oOF10u2vEru3K3xNDOHo5XrdBdTFf1BL1FgYkLvTRmuP4/NnneebUt23CXFebvN6FnvE7o/j2OYqHc5wFKlmmRKSB7Uh9TlX/nTt8VkQOuPMHgO+XXauqn1bVI6p6xPu5bEZ0u10eefRR3ve+9/Gud70LgH379nHmzJn8PJU43rRRRa6FbrfLu9/zHn7qvT/Fu37iJ4B+fmfOnMn9AgaxpWT4yCNDZei+S4f824VjdT0NHBeFKnoa6uLW4fh3tqmewvavi7NEldV8AvxL4Duq+onCqSeAD7jfHwD+oNIddbB3aEc2fopYRHKfIRKFRG2IeDGoGEQUEcXEMSaOQSNMewnTXuJyYricGOKG0tEmHW0SpfbTJaFLghrFJIJJhBj7UVU+9DM/wz333MNHfuEX8nK+853v5PHHP4sAFy5coBrHwty+pzzwkUh6viJJZj+REBslNkqUJURZgkqMSoyJgE4MnZjVRFlNlOayyX0AoszGvMxIyEgwkck5JqLEGP7+3//73H33G/mFf/Dzebne+c538vhnfwuAz372s1x//fWVRFgHzp0GRfI5b5ImJE2iRkzUiElTg7kSY67EXEqUS4mytCJ0TUzXxCy1DEstA7oCuoJGiontxz9pVeVDH/oQd999Nx/5yEf6OT5uXfvc9+wcwxy8b0aq0DSGpjEkqZCkQhzbj2Zg1mLMWsyVxHAlMcSJ0iGhQwKZgcywxgprrJBKZpemR1KLY3U9rUvSfjKEiJSIlCUSlkiIkogoiTCZQVsR2opoiaElBmkoyBLIEo0opRGldo++KLFhS/Kq4tqBhXJUECVTaKD2E8U0ohhpJEgjIU0N2krQVkJbDG0x0BCUJZQlGmJoiMk5el+p3DhdUU/nURd7LkeCJCmSpMRRkzhqYhoRphHZrWO6EdqNSFVJVdEIhCWEJRqNhEYjgWYGzawXrqSA+dRFH2Kjd79RbkWKEiUpUZLSTTK6SZarmjEGzQTNhAwlQ7Fb8zVRbWKWI8xyhEap/dTg+Len0tN6lhNVkKiLRF2WGxHLjYg4th81imYRmkVkQAaoKEabGG2iSYwmMSYWTCyURb6YD8eK8Lqqiiap/TQFbQpxHBPHsW1vujHajUlRUhQTaS7HKBGiRGwMoVhzS+vckDtHDvkAb8Pq7F8B33CfdwB7gS8CzwJfAG4cl9cDDzygxpgN+GS10v/xH/+xAnr48GF985vfrG9+85v1D//wD/XcuXN67NgxfcMb3qC7d+/WjeeYlXDJhhyfjt8P//AP65vf/Gatyk/V6HAYVbP+48tT9nfZucF0piSd//xJCcc/+qM/1PPn+zkCX5+OoxnKbxTHWXyqcKyrp5PIcRTnjZDjTDlugBzH8/ujdXpatS6Olt8Q3S1+yviP0fHStIXPn/zJnwzheH6iuliPYwnfMl5l54bxL7l/FY519HRyjp7qFuBoJtDVmvpY1qaM1tdxj9Wolc9ofqo63mdKVf+U4V3mH67ffdt8eNvb3oYxJV1z4Atf+AIAR48e5amnnnp5I8s1K1ThB5bjVsXb3vY2NB9e9TsefPELX8hHsFEUDd/tc5OjCsetrKew/Tm+7W1vsyFS8ha1x/GLX/xCvkpt69fFcivAF7/4xfzc1q+LwzkCHDlyZMvqKVwbHGeJha+mmGFs45JctzrKeGwWbqPKUQyjXOKIP5CDsl4PZOD3+NuPeFZC6XTEeIzOs0xrR3Gc+M7D/+gvz8w4Fs4NWTBS/FlMsnXk6E+VndPZyrEmx3pyrNMelKQdJd+yCjrV/d0VtSOHT9rmSd9X/+ERyjvsurliypsNPtOxHIdct2lQIoOyNW5D6mnfH30NUD2+dVKHvfkCAgICAgICAqbAwi1Tc3YJWxBGDuWuUUj5yIIRgyj3hw6em+DRzkfPSuwVg2XzZZcSHuuTjTZCDU+5ASixNUkJf5+q+EhKR4jrrqhVivlghBwLhwflOMyyOiqf2WHWbU2JLVFGMZzg/rWti/NoT8sq6gzvUVtRrwWO06JEB4e8U0ovmzOCZSogICAgICAgYAos3DK1PRGsUj0UnoVWGd2W+eQMnNMy60jlUsweOoaH+3OMd1JJvgNnSwIXbhxKHC8GyzfMRqMD8taaI8shpZg9irq67sfQMoxySem7fB66Og+V8Ppcal4bxX4rY8Y8NuVjWSzH2alq2Tul5PRg1Z2zTDa0M6Vq6HRbNBtLTCQJKHlQVd2Xiw14vftpRyubNFUN7c4aS81lJudY7DS4EwOHpISj3x+rb5+lUUUoPMM6HIGhqzzqQYf8HpVu4O+ZlGPIXSfKex7l0cLXbPOfjRz7chzxd8m5EZ2WmZVojjpSC3Mohw7kOzjwmOqOU1w8ZLZ7smIM6P06B/a+8+vfpMPPTIf8WecZT/7MK3Esey8M/NrMHO3l63VVZ133h2U352YgTPMFBAQEBAQEBEwB2chRm4icA64A5zfsppPjJvrLeYeqjo2JLyKXgafnVqrZojbHLS5D2P4cq+rptcAx1MXNg1AXh+Aa4bit6yJscGcKQESeUtUjG3rTCTBpObcKP9j+HKcpZ+C4ebDd9RS2P8egp/O7diOx3fUUJi9rmOYLCAgICAgICJgCoTMVEBAQEBAQEDAFFtGZ+vQC7jkJJi3nVuEH25/jNOUMHDcPtruewvbnGPR0ftduJLa7nsKEZd1wn6mAgICAgICAgO2EMM0XEBAQEBAQEDAFQmcqICAgICAgIGAKTNWZEpGHReRpEXlORB6bVdqNhIjcJiJfEpFvi8i3ROTn3fFfEpHTIvJdEWmJyIuB45bleN7xa4vIvxqTz6bkB9ufY9DTa4Jj0NP+vALHBaECx2+4zzsqZaiqE32AGPgu8DqgCfwlcO+0aTf6AxwA7ne/dwPPAPcCvwT848Bxy3P8ZWwAti3N71rgeI3r6bXAMehp4LhVOP6juvlNY5l6K/Ccqn5PVTvAvwZ+bAZpNxSqekZV/8L9vgx8BzjoTt9O4FjEVuR4ELiw1fnB9ud4jespbH+OQU/7ETguEGM41sbEq/lE5BHgYVX9kPv7p4EHVfXnBtJ9GPgosGfnzp033X333ZOWdcPxyiuvcPHiRQ4dOsSJEye4cOHC+7kGOTp+HwZu2Llz5+u2Kj+Ar33ta6vA49tchn8POLzNOYa6GOripkPQ0x62MsciTpw4wfnz5wf37l6PKUxkjwCfKfz908CvjUr7wAMPqBqj1WHyjzHTfdR/tPr9f+/3fk8/+MEPqjFGH3jgAa3K0YzlaAZ+27JNyzH/FJ5b7zMbjtX4DXKdDb9pZWiMUeDy1pHhQP4VODoZ/ufqHId/is+8KIOZcSzLv1Rnjf7e7/2ufvCD/1PtujhtezNYvs3U3mzl9nS2dbGE4yZob2b7zpgPxxm1NzU4juJZODdF3Rsp04rvxV4xLMcyboOfaab5TgO3Ff5+jTtWJW1FiPsUf02JGoa4gwcPcurUqeJ9Z8SxkKPWK1Ol3PvyG/3kJuBYDzPkl2c1oQwdx2W2jAx9xrVl+EaqctRivv33KbvjvKLS5XfW9eUA4eDB13Dq1AvFSzakvZmDaIdikrpYq2wq7jNpCQtZsZnqYlnBpse0HB1mr6ebr72pwXHUW3wmb/jRuefPbmY9ihzTdKaeBO4UkdeKSBN4L/DEqLRT3GshOHr0KM8++yzHjx/HGAP/f3tnFyvJcd3336nuuXeX3OWHKJq8ImmJX2tqV3JMk5GCxDHI5YdkAoIdgQlsAYFehLzEgA0lQRTlxXoIoAfJshBRCRzYACEYcAJICAmEsSxSZB4ESpAgiZJImstdisvlakVSJJf7de+d6a6Th6rq6Znb09M903fux9Z/MTt9u6ur6j+nzumqU6eqI8fvL65m3aDMr9/vg9Og3S7DZXY/x6iLOwwXqS7GdroDOc6CdNYbVTUTkT8GvomL2P9rVX12Str/06oz6OO5Kjvh/lr/3K946/gP3Snvkrny+jvYc9lVLp2YDXlIiBMr6lJdqTRN+cpXvsJHPvpRjh8/DvC/mnBsRLGOW5HGAjA4/w5n3ngBAEsOwOVXH2Lp0st89Uf7xOXRlIy4qTbWrC3HO++8s6EIteavIkMAstVzXHjrKADWZADsu+I20r2X+mpX8XP3SgsZ5nkO8MZCZehhB+sMLrzpjrUPwPK+FUy6VFn/OWX43xvpIoy7MTemr70a8nTt1PbX6Bcc3bk9l/4aydKyr/rGsdt4/jJydsjVcfyvfLSlLrYbfHp5VjdWwHM86zxk1p/bs//XMYHjGAMUZCjI2tJn0sVmDbXmr9Gz2epZVk87XdTcZX7JVbeQ7pmsi7PY0851sQXHfH2VtbOv+DPu3N7L3kuytLey/rPam614ZmjxzDjNudfdMwPjzu276v0s7bvcVz8Zva+U8dDedMuxptrDWmipPnXpgHx9jcHqa+7Yel3cdy1Jr9reTO4DdOOhmmufKVV9TFUPqOrNqvpfpqWdp6ytwgMPPMCRI0f44Ac/yG7m+MILLzTiuBPxwAMPcOSFFzh29ChMmarcJTL8T3VpdwnHXauLR15oZm92IgK/Y0ePwS7WxSMXRTvd3RzbYmbP1MwIU7K1aep64P6adR4Mm+eIdRnmvretqmjurkva8/fJWA4gTXukLeenp1KctoLSjy7UOi9Ulq+Rr3uOvv9r8wzNBgBIr9q7US5qWge8lcOwSfraEcaoDPN8lWzdcfGUyfavk+RuhFElw/Fyup5un85xWqPw150bnDxfY7DqOGa+bfaWM0wYISaTVXEzZDjMXCbeOLXZh3bq22HWX2X9gtc767xvWW8dMa7NmiDHCg/VhjrBxnrNEifSkb0JcrTZGoM110iDjbF7M0yQX4UcN6mJurx1qsOrmS56Lnk2IPO2JihjnmUkTexpY6LtBNmdvfEytOsMLngZetkv7x2QJJ5bIcM6e9OoVo0xd25eF8m9Lg764bCwqfnlGTpweikTvDdQsjcdc5wKndIyxp6LuV1j/Vzfn3N39pb6GM9Jgte/QkGairEN+/g6mYiIiIiIiIiIObB4z9RUtBy1qGBSRyNZ8/Pa5DTqUzaeN+1q6YRWHNUl96lyIUldb9yshSHYoNS7bhaTUTdG7nRxiOqUEYaOfNtBDoRhlJdhlhWjxjp+I79BDf/u+A2HwM3y9BwGOSLnALcNMDjPnKr7Sxr7L7qWYcVdU51uIbbIj4b9iD9bX8PkbwFDDyq2j+aOoybOCyeFnKo5yHgFOm2cVSU2Sebbam4xcsEdZ8HjMWgmx4XbGxro4ui35gMSXQMg9x5/yftgLy3ycydrdHF+P0tDtNPFYEe0n2N01R3bkFXGhtCvySVO9Whsmb3xfDTPCu+w5MG7OkB1uFq1UdGdc6zKdHos2Ai8vdG1AaJn/Uk/K5WvozboYhBu8BlNItONTV14Z2q6moUFyVPyKel03nc5Jr3MXzVgWjjdFuzNbIpCxCLYgWssifFuTU2mT5dswGSSXdMP+dUHS/q0YshXfVPUdcD3qVrzm16fRaOY0ZUEtW4aQbJSJ7F1xTZBhjNa/lBeYbJE6IubPjBhKswyuvvCTPVq0pomZ9GJvSlSG7LBHnecu7aqNm8wkGlVqU5R++uNLUAQScjx/KznJwY1o3nVYmH82rWLcnOyubenuX8wY9rJsGHNFgff2Q/liyG3qa+LlyMCZqs5Tp46na6JY50uBVUfCrLu5zIxFRzrB9kyKaygJeI0X0RERERERETEHFi4Z2p653/aKMNlYEJQqzGoPQ9Av+SznraEtVzStDp1584My6abcQzTIWIMee7cmdaPJC/BIqEH3nhENcmdOb1GG2vXrKS6HEL9RQxWzo/URFI65NelDBvmN1YVVcv62lsjJ1OuImntfetGhpVoPNAPUw+jIzoLrK+dBsB4T2pPM4yf3msqxw16OeMrrxoV2TTvIEeBPP+VO8Z5GvcYKYLsa4tqWKeF6qKO6ZjAoP+2O/SD/b3KkN+W6WIHKNnTQXYGAO8kZtkOZvBMLYJj02dGeB4Op/H6gzP+OOir3QZyLN8lE6/U1aEIE0iFfuZCJ9Tb0SVyMO3szcaVEzry1RTRMxURERERERERMQcWHzNVHydM0xiGohNpDJmfKDYhFkWEZmO2UKn65J3NDZeu1DIs4nP9gRGsH0H7PS2912ZyIG+7OsnGoN8azB0SMc4vUQZ+M9LU+mWtWk7YNuM2V2bPr5EMCydOjg/PIA3z+zMN7SbLcGFj/qJdhsBWPyZLDJqHka8tpQ2j5Wbttct4k6n2pvHPFkbFSp47j1TiI1RGA64b1L5De9O5LopBB8OAZQASbSy7jRm3ubK5CBRVQH1wvRkMeQ/rtf04NrU3WthUKbYLMH4rAUlaPhfLGbe60jK/IIKJQfZjxrRoq5bcyy+1Q5vapq1KKdth8qkVqsTip/kaJSrmRmrS+IcuQhr2uQnJTbNG02AmcNNQP6MyVHD3l2CKfbWGO7rLtnRLj5ZQrxz+AaXQ63teNiuuNZmq3ZDlBHTtdvfhnDV5D6cw3V+GRF071cIfrKVqz+92nxmtsypGMu4vzzFRIYTAWutd7SMx9otXtPlLHJ1aEBJM6GTo+GqhhnVZ8M/QrJ36zoXAcLWmn2KytKvzwnRxY5GN7A2GxA/e1NhSshYktynHoIsGSHz/wharp6V2JW01FhE64dvZtBxDSISEBTwJiZ+LFvrD/OfuL5Y5N2cZp/kiIiIiIiIiIubANtxnimZBoYUXCjI/92X8cleZeS32gtByJhNRMj8KToppMJnBSbGg36UxPz8iEcgSN9oPoymQDQHOtdiUqdoOYSRsj4IUrilDl273mTGrs2t8kGsU9XvahI3d3eRJCzkuHE1Hn6GtKtZ7GI1x+9mYtmEFi0Tb2V+RYodpDZvzt90Je9G62Haq1ii5n3MPscfbIzSkO6gIWVhBEHRyyns4q7GAab6w6IiW3i6j5H5KWk15D7uWNZs0zdcS0TMVERERERERETEHFu+ZatLpC/EJJQ/Vhh5rscw1JVHXAw9hGtMG/Bs7oPWVatufnyW8oHYe3KQYv5ll3vOjjaTZ3HCH+9CN1apd2kp+RZxGgli3q3RmwvvbuuXXeQxDy9GwqpLnbqmyLTjaduFgmzXcrQq8hJHwg9r2GThaodgg0Pj4sNSUHIwt4hhH/ppDejPYm7rSRARJfPxi4D1lI8S29qYNmv2iw5E/1MsSKDxv4hcR2LC1xbSSNkkXu7On5Ytul3crqT9lJ6cv579VHEv2po5jEaNpEmTgd3lf9hxNs41JN9emTo6Zmh6HGlKXYvlS/zYCG2yqjKRshI7UMXqmIiIiIiIiIiLmwOI9U22m36XUT53UVVUF/14sY0KU/5R53pYjxLYd1+kUZWT0H8rY6H0LGVpULwHAaFa6r818dsPRcwN0xi/kpwq5e/dXGub5tb6UzeTXDEOOY1QnIMf23Ws6kl7wgNSPhtt6NGbiWDMMbR6K5z07YtGeGyGmuR8Nq23kkaqtUxM7MAmt7I3/qipGQnYWO/DvAg3vA7P5eOr6AjpEI3rl3496fmCHq6r63iM1hZ9UHDVL3wzN7E059TQZCvhXrYRNc4dxjBNL2HDULH0zzGJT6zO0ZN7rlhRbXdja+MjF2NS6KSNpFi9dyJFCjoW9oZkujprUbvRye07zFZjeeAQwy97t5/d/UTP5hpahlJuIUQNXWWMdfqfF23H3ViSYn1H3S3kb8CtSKumeMB3m+RmGS8+l2TRDHTZjqXKrkq2Q+Haa+M4/Fhq9XXUkr8kJZ3e7B8zYjsL0mFUS/24+TbzsMotqWL4c5DitnLF2PccO6J0pe6iChSQJhttv56HlBI2eUluDup8xmFoVDE6GxbxF4wU9zezRpupi3SMjqJpaZNlxDC1SRWlW/63k2GQSLPwAQk/81FdatjHd1ax7jg1zDHsuKiSpf9+pH8ShZvjcoOlzo5vnaJzmi4iIiIiIiIiYA9twB/Ry4rqeeBgNW2zmNyrzo2Gxk/uI22WQ2NBX6/5Xi3o3dHC61XEczaIcVNzBlE5jNOCn4Y3tiniPRjGqyFvOzXSSqiWaeN2LDfMUCe+M8rsvi20a6VmW4WTMxFFlar5Ts/CeJ8WSLLnpaPp+OrrsfWtaww1bYjQKK55Qtzb2pq6UcNEiqTObknk5al5ft+4cyJ2guqZe76wl2eM9pwNvY9ROvGsUW6iLjRDsqSLeO6wh2L5Z/Dlby7GJTR0+F2XJy68f7E3TYrbomaF1wSClZP4ZYbGw5GYydC3Ym6ZT7iEzWhiIekTPVERERERERETEHFj862TadALrAu58DzxXi/Ev58tyv2Q5yybG22gp2+0yUpyEogduc0wxqgrLsrMi8FWSjX3igmJDr0ObMX9nYSieX54rGna0DFysFtelYu57KMJmMT/dLeNtl2PhtVHo7XGjKAnvrzNS8C68VhUlNH1v4vwxUy3zK0bBYVGEwSw5viZ1XJOeKd4RVng/asZwbqA4rqCze87a2ZvJxWnhJBNncgAAFb9JREFURQXjtwqQJJhPA4FjbZhG94anWU4tRvu5RdVtGyDGexnVDNtpxTYJm62LXXEsXnUERfyiZt4jLlJ6ZtTY0021N1PQyDHlbarNIA/b6DgvnLUMnxl19mYTnhmjd3VlUy3Gvw4oWXaLe0SSUludV9/aMdym03xa9bUxI0DynMyMNv5pEf0bFWMLelUNpxTcd47V5eK4fGlqMeXYw45oNgrib8FPsJA6ZdC+u2ZHpk4my6kpv+5WngyJNZveCwbakvjA3qEx0FLPvoZjuFL7w89hvmftuwSXetERFozd77LKXAcrt1K8P0uDzk4bzeiGg5nRyN7U7i811lbFIGafO5eH+9QHMFfblBH5FQfdKGN3uujrb0DkMnc8IrcmHTL33bUudsUxdOoFi/hVYJqHTmRGWMVYG36+qfamGWrlGDpLKCrOpoZ2am23NnUmqFTkqRVHVfcOp6IBEEOKWwUe5Og6UuG5GYhMtqnAcD/L8bCCluYnTvNFRERERERERMyB7fluPo/6Xqr7EhRjQnC2DyokL02B1fjdyyPgmuFrd+7Mhl6NseRGQXp+P5RByDMfLjlXL8YpHDaOmucZ+c/BrxgcuQOjWuwRpj0fLClg/fRRYubnNxPT8pJ8GR2tTJscGzYtzwdBE7+M13sZRUyFDIsCK3PeMIqa03lTNUKrz1KLkWHw/xYeJ1UkCVMpjmsidviut2JE6X8TA3WeuIVAp72rflTuQoYJS811+D6w4fYPk03qqLmZ7olsjhrfzVR+HsFrozlJ4qfAvPdGyIZT7jWj/dHaTOLXsD4Tct14jgb2dHSLDVHAT9Ga4E8Q7dSeLppjaZ0L4LwkSXhmlPaBs55jMrMcpxrAKSgRaZplsEvjzw3sMCyk53XRGKwPhRH19jYUNM1FPadHPHqmIiIiIiIiIiLmwNTOlIjcICJPishzIvKsiPyJP/8uEfmWiLzov6/spEbqe66Tu6ljH4sk7pMnkCf4KdPp8/whxYkTJ7j77rs5ePAghw4d4stf/jIAb731Fvfddx8HDhzgyJEjtOJYtdFds9AD/xuUPijWWvdJ3MetVrYMly1PzvjEiRMcPnyYgwcPcejQB4b83nyb++67n1tvPcD9999P5uNcNo/fuOw8xGXnssxxXjdFcJ8idfF7VHO8++7A0ctQpeB44IDjSPOd3MaqPrnsaopONqrquYCqcVtciAWxWDts6+r/1f2GJ06c4O7Dhzl4yMvxL0rt9P77Z2unbeH5uF3rB+4TwhQs5DYltykmU0ym5FbcaxYVv8WHdZ6t8m7MYxwPHz7MoUOH+MAHPjCii/cviuMI3406ltseue2h4mKl1JrS5Rl10duaW2+9tSNdnNZefT2tDoPnAcRgXVSRi58yoJo05hc4btDFguOMujiXPQ0yHN5obYK1CUgOkju9LNnbmTiO2ZvFPDOCAfEcS3IPNkWNuI9KcX02m/oXQ45d6GJT+RUcc0LMMDiPk9UEq0nxrLDe1siITa3XhcbVmIImnqkM+HeqehD4J8C/FZGDwGeAJ1T1VuAJ//eORJqmfPGLX+S5557ju9/9Lg899BDPPfccn//857nnnnt48cgRLrvsMtihHNM05Qtf+ALPPfss33366VF+hx2/w4cP88tf/nKrqzoz0jTli4HjuAwPH+aI5whcu9V1nRUjHJ9+moe++tUNHHdyO4VhW3322Wd5+umn+WqJ4+FdwLFWF++5hxdffDHq4g5AE447uZ3COMeneeih3WdvusTUmClVPQWc8sdnReR54Drg94G7fLKHgaeA/9ik0DBSHzlXkz7PMl498SoA3/jfXwfgf37tbwF45/xZrr/6EABrfhPEX7z+H7js0ssB+Jd/+AcA/NG/+iMArrvhOpaWlkfyv3ZlhWtXVlBV9u3bx/vf/35effVVHnnkEZ568kkUuOqqqzh58uQfNOY4fSLfpfOjwtXVVY79/CgAj3/r7wH4u8ceB+DM6bOsrNwIQN/HMZx67QXetd+turn/9+4C4L57PwLATTffzP59bsWRmISVlRVWVlZQYN/+/UN+jz7Ck57fJz/5ST73uc81odaSnxsRnjt/gaMvHQHgiae+DcC3/u9TAFx4+x1+7T3vA2B94Oa5X3/jGJftd6tR7r3rdwC45777ALjlwAEud0qM8bEPIxyDDE8OOeI5fvazn208ippKz492BgPnRXj79Gl+/oqT4Xee/h4AT3/3GQBW33qbq99zNQD93NX97TeO867LHMcP/dMPAfDhD7nvm2+8kSuuuAKAZGlpI8cgx5MneeTRRwuObdtpLV9VvwIIzp11b2c//uoJXnn1GAA/ec59H3vphEt/5hzLV7stEXLjOK6++Q57L3Ft4Jb3vsdxO3AAgOuuu4mb33cdAFdc+S4Arl25hpWVFQD2e44nT57k0Tk4ahOPImCLtnqOl447bt9+6in3/c3vA3Dh9Gtce/373PHAyeWNX/2cKy91cvzdf34HAHfdfa/jesstXHG5a3JJmk7WxUe8LqouRBePHf0HAL75pNPFb/+d43nhnTMFv7XM8Xv9tZe5Yr/bJuHuez8MwH33/p7jd9NN4YFar4sljjCLLra0p2urHPv5iwA8/veO2+PfdN9n3jnNyvW/DsAgd8+C115/iSv3ueO7PnIYgHvuuguAW266hf37h/Z0Iscxe7N5z4yhHF980cnxW//PyfGJx54A4MI757j2Pe6Zsepfs/b6ay9y5T63+u3u+38XgPvv+ygAN998I5ftr5Pj/o44Tkvgbarf9PdXb7/J0ZecTf2et6k/fOYFAM6/+TbvvuEqAPoDJ5+zp3+Jf2zwj377NwH4rX/sdPK2G3+Dq9/tmtxS2KamtA3GvN6pVgHoIvI+4Hbge8A1vqMF8Evgmlkq0IyAYvyeEdbvWKv+ZXUJPSx9APZ6p/FetaQ91+CM32vD+pJcMFoodaNb9eWXX+ZHP/oRH/7wh3nttde41hv21O16PBPHeniXrObF0uk8uKT9/iCJ8VMqQM8HZfdYL3Z8D9sJDMLLOktezXGG4/zCg+vaa69tN7XQEIV81RYvE7W+vhLeHWUU45e29vweNynrGB9A6LcRY+D3Z9K8/gFZx5EOF11o8R2W5eaE91CbwDW4peUCvpmig3Wf6Ay5dZpvzzpJ9f2u05lC7jlWBYtO4th1Oy0CW3HEjM1ZO+91kdCZ9DppL7B/zXeistAmT9Pru3PadwZsve8eWv0sp993v0/uH4LGDJdOL4rjRrJK7mVFsSdYCE7uI+vuohm47x7nSHKnq9mq63QM+q6ZWTUT2+pW6aJoRpF95tunX+ShRsm9fib9VXcpP1sE1su6k93AhvZtamcTF6WLQ/i2mWeI55hnrn1m/hmSkmP7oc0GW3QOvL2x59yN/YF7oFir2KCLFSUuup0WIfyaoSG4fBD2q/Pbr8g5t9cUsDRwMk5ZA793WOrfMGF9+xZmk2Pn9qb4DnssWrQf7Kurc2ad3qVmDeP1VLKgsGfIMzcI1XUnrWzN6ebAWjIvb//k6XTnh8YB6CKyD/g68KeqeqZ8TWs2IhGRfyMiPxCRH7zxxhtzVXazce7cOR588EG+9KUvFaOtAL8iYkdzbMCvEjuFH0SOu6Gdwu7nGNvpRcNxR7dTuDg4doFGIwNxLoSvA3+jqt/wp18TkRVVPSUiK8DrVfeq6l8Cfwlw5513zuRJEzEuWBdIxY1uVy+cBuDE6yc5etJNH4W12j1Jud6/l8j692cl4nqnZsJOZIPBgAcffJBPfOITfPzjHwfgmmuu4dSpU6ysrITR9yZw9PVLDINAoO/qfv7MmwC89OpxfvbSz3xF3ddSusyBWx2nvvdaBWH2jBkuB23I79SpU2GU0Sm/UIs0MVjvcTN+fLd67i0AXv7FKzx3zPELnp2lZInfuOVmAPJ1N8XU8wGaiRGkYhzQhCNQOeSfhWN4ICS+LkmqrFnnWbOrzvt0/m3fTo+f5KfP/9Td6OXb23MJH/yA80zle50XIPW/US8XTPHuvqEsF91Ow7YjaWhdPYP1mznm588DcOGsG1u9+otX+NmRnzj+/ldOL9nHoRve62h7D1WqblS7Vyw9P21iTNhCYut0McjTlLasyNecXM6cdsX9/JXjPHMktFU/yu3t4eAtN/k83gZgyd+f2o0dh63TRc8vSYstLBI/zbF24azjd+I4zx717bSwp8vcdpuTkxr3eyz5ttkTNtiaphzpUBfLLMHZ03VvLEP91k87e3P05Ms885Jrp+LtaW9pDwdv9d5EG3TRVS81glQEh29ZO/X2xrWRsJmsk8/6BaeLx3/xCs+HZ0aQo1nm/bd5D6p19skEmypS2cFdNMeyDgIkidAXV1frn3Or77wDwMsnXuHCPzzjK+q+kr2X8psHbnXl454bqXoPspWC72agyWo+Af4KeF5V/7x06VHgk/74k8Aj3VdvMVBVPvWpT3Hbbbfx6U9/ujj/sY99jIcffhiAN998E3Yoxyb8Hn744SJGZyeiKUfg9NbUcH7s9nYKu59j1MWoizsFFwPHLtFkmu+fAf8aOCwiP/afB4DPA/eJyIvAvf7vRpjldQImVUyq5MsJ+XJSLPe0uYVBAoOEXNV9REGXQZdZ3mdZ3mfBZGCykVXAAd/5znf42te+xpNPPsntt9/O7bffzmOPPcZnPvMZHn/8cQ4cOMCZM2dow7ExxH0sQiqQCiTLKclyCj0DPUNuLbqeoOsJfbH0xWINqPRQ6XHJMlyy7LwIxhhy1dJWA834PfHEEyGOYVP45QiJsSTGkpqE1CTYxGATQ55btJ+g/YQ+lj4WTSGjR0aPPcuwZxlsKthU3NL8Er82HPGLKTqFcR+VhKXcsJQbjNmDMXtgTwp7UnKx2LUUu5ZyoZdzoZdjloU8T8nzlOWBsDwQbJK6j1HUgJriJ1x8Oy0rqueY27zYEuHSzHBpZuiZlJ5JUXL0fIqeT7lgMi6YjL0iDMQwEIPN3dsuVpM9rCZ7GIh7FVRmzNZxrECOkoqQinC5XeJyu0TP9OiZntPF0Fa9LppEyOmR08NgMViyXkLWS7Ay+t6n7aCLVhWRHJGcXp7QyxPEeyYyzdH1FF1PWVfLulpIFbF7EbuXBBc3ZJf8h3x76WJhT2FJrPukCUtpQt5LyXupm+VYT2E9ZV0s62JRUaykWElL9qmHTXou4Ds00BYcN++Z4db+56okYknEkmJIMdjUfXK12H6C7SesqWVNLTZRcl0m12V6SUovSYdyrHg/2ZZwDAFDnqOiLBlYMnApPS6lhzUp1qTkgK6l6FrK+cRyPrH0UgHTA9MLj3wGZg8Ds8fFfRoBI+Pi7KjupX1jNvtzxx13qKrV5rDuY+3o8TwfrfpMqYW16urejKO10/JtX2/rP+W/x6/ZinT1fIe/aVOOd9xxh893itzGy++AX9W1pvIMeQA/WKQMy3WfWYaVfGeX4QjHqt+wYf0249Pk92zDcXpbHZPpDPamSb2rZTehFlusi3X8tkIXh3l3x3ER9qZ9O90JHIdld/dcrOdTVdd57cvI3x1xjDugR0RERERERETMgcW/m09p4V+Tka/R44r5uqoQt8qy2jn4qgIs69NPK0MqLtfzGX/7U/0GD+WTU+oRqqNd7AFbyne82MmLPtzlsUt1/EbjJJvJZjaX7hwyrNiaYnYZ1tVnThlWraoqstRKHgEdt5iKP8ZLbbYPz9y1GBHadDtTWfcRwc5iP7pCe12s47djdLGK44z2dFSE25xjgG4Wx3mfGfU2rIpP1bOhOmXzkqWWa6k+LThGz1RERERERERExBxYvGeqs2FXOaPxTQ3rXFSz9Kbb3dPK+VagYtxQMSoun9pAd4ZRYsCmDvg3oEIWkx0kU/Johs3lVzH2q2mLzWU4Wy3a31VTaMWlMFirG/lWZdHkWvX2QzqaaKGoYFnlrZp027ZFhddv0qXWedWjrRhns6dl1NjTUiE1W1+1rsGWcaxwJW8Xjs3Q4NlQMrHjtqgiWVun4syInqmIiIiIiIiIiDmwzWOmmuZZMQM8sYztPGQcq5uWe+kVI2Qd63uX/25Js03y2UU4id947iHt+NhiMfzao5R7VVt0F2gvw3buqpk4as1vqdW+pjqGldlMuX/knJb+KjKex6vcFepkzEZSHXgam6A7c1rmN36wk3SxpqS29jRybFNytwg8RCfrv9bXYcO18u31LrqZsPDOlMJIUFcI7tauDeWM2XVltrXTgG7YWCOtv7bJzx0dkWF1LeYsYcKx/3sBz9XtI8PNIuu1bsF9lOnF1UzrtazrltubBbfTqIuNc6z5O3LcLLTmuFkGqvPfOk7zRURERERERETMBem+N1xTmMgbwHngVwsrdHa8m9F6vldVr552k4icBV7YtFp1i9Ycd7gMYfdzbNpOLwaOURe3D6IuTsBFwnFX6yIsuDMFICI/UNU7F1roDJi1njuFH+x+jvPUM3LcPtjt7RR2P8fYTjfv3kVit7dTmL2ucZovIiIiIiIiImIOxM5URERERERERMQc2IrO1F9uQZmzYNZ67hR+sPs5zlPPyHH7YLe3U9j9HGM73bx7F4nd3k5hxrouPGYqIiIiIiIiImI3IU7zRURERERERETMgYV1pkTkoyLygogcFZHPLKrcaRCRG0TkSRF5TkSeFZE/8ef/TEROisiP/eeBBnlFjluErjhuV36w+znGdho5juWzq/n5eyLHLUKXHAG3I+lmf4AEOAbcBCwBzwAHF1F2g7qtAL/tj/cDR4CDwJ8B/z5yvHg4bmd+FwPH2E4jx4uFX+S4eziGz6I8Ux8CjqrqS6raB/4W+P0FlV0LVT2lqj/0x2eB54HrZsgqctxCdMRx2/KD3c8xttNW2O0cdzs/iBy3FB1yBBY3zXcdcKL096vMUenNgoi8D7gd+J4/9cci8hMR+WsRuXLK7ZHjNsEcHHcEP9j9HGM7veg57nZ+EDluG8zJEYgB6AVEZB/wdeBPVfUM8N+Am4HfAk4BX9zC6nWCyDFy3AnY7fwgcmQXcNzt/CBypAXHRXWmTgI3lP6+3p/bFhCRHu7H/BtV/QaAqr6mqrmqWuB/4NyVdYgctxgdcNzW/GD3c4ztNHL02O38IHLccnTEEVhcZ+r7wK0icqOILAF/CDy6oLJrISIC/BXwvKr+een8SinZvwB+NiWryHEL0RHHbcsPdj/H2E4LRI67nx9EjluKDjk6tI1Yn/UDPICLlj8G/OdFldugXr8DKPAT4Mf+8wDwNeCn/vyjwErkuPs5bld+FwPH2E4jx4uJX+S4eziqatwBPSIiIiIiIiJiHsQA9IiIiIiIiIiIORA7UxERERERERERcyB2piIiIiIiIiIi5kDsTEVEREREREREzIHYmYqIiIiIiIiImAOxMxURERERERERMQdiZyoiIiIiIiIiYg7EzlRERERERERExBz4/3d6yObGgHPTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26%|██▌ | 51/200 [03:03<08:56, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 51 Train loss: 3750.0143\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 26%|██▌ | 52/200 [03:07<08:52, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 52 Train loss: 3748.5434\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 26%|██▋ | 53/200 [03:10<08:49, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 53 Train loss: 3768.5098\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 27%|██▋ | 54/200 [03:14<08:45, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 54 Train loss: 3756.0228\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 28%|██▊ | 55/200 [03:17<08:41, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 55 Train loss: 3723.4896\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 28%|██▊ | 56/200 [03:21<08:38, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 56 Train loss: 3716.0842\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 28%|██▊ | 57/200 [03:25<08:34, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 57 Train loss: 3680.9559\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 29%|██▉ | 58/200 [03:28<08:31, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 58 Train loss: 3692.5682\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 30%|██▉ | 59/200 [03:32<08:27, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 59 Train loss: 3692.8695\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 30%|███ | 60/200 [03:36<08:24, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 60 Train loss: 3680.1582\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 30%|███ | 61/200 [03:39<08:20, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 61 Train loss: 3683.7855\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 31%|███ | 62/200 [03:43<08:16, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 62 Train loss: 3668.7942\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 32%|███▏ | 63/200 [03:46<08:13, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 63 Train loss: 3624.9806\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 32%|███▏ | 64/200 [03:50<08:09, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 64 Train loss: 3645.8128\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 32%|███▎ | 65/200 [03:54<08:06, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 65 Train loss: 3618.8245\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 33%|███▎ | 66/200 [03:57<08:02, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 66 Train loss: 3585.8390\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 34%|███▎ | 67/200 [04:01<07:58, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 67 Train loss: 3569.0584\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 34%|███▍ | 68/200 [04:04<07:55, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 68 Train loss: 3492.4459\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 34%|███▍ | 69/200 [04:08<07:51, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 69 Train loss: 3481.0924\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 35%|███▌ | 70/200 [04:12<07:48, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 70 Train loss: 3413.0706\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 36%|███▌ | 71/200 [04:15<07:44, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 71 Train loss: 3370.1745\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 36%|███▌ | 72/200 [04:19<07:41, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 72 Train loss: 3317.5028\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 36%|███▋ | 73/200 [04:22<07:37, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 73 Train loss: 3274.7025\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 37%|███▋ | 74/200 [04:26<07:33, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 74 Train loss: 3227.9801\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 38%|███▊ | 75/200 [04:30<07:30, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 75 Train loss: 3152.3159\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 38%|███▊ | 76/200 [04:33<07:26, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 76 Train loss: 3171.5020\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 38%|███▊ | 77/200 [04:37<07:23, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 77 Train loss: 3127.4684\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 39%|███▉ | 78/200 [04:40<07:19, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 78 Train loss: 3017.8191\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 40%|███▉ | 79/200 [04:44<07:15, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 79 Train loss: 2907.3863\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 40%|████ | 80/200 [04:48<07:12, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 80 Train loss: 2952.3883\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 40%|████ | 81/200 [04:51<07:08, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 81 Train loss: 2840.3833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 41%|████ | 82/200 [04:55<07:05, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 82 Train loss: 2835.3773\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 83/200 [04:58<07:01, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 83 Train loss: 2698.7593\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 84/200 [05:02<06:57, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 84 Train loss: 2676.6835\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▎ | 85/200 [05:06<06:54, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 85 Train loss: 2686.4679\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 43%|████▎ | 86/200 [05:09<06:50, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 86 Train loss: 2650.6864\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 44%|████▎ | 87/200 [05:13<06:46, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 87 Train loss: 2555.5597\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 44%|████▍ | 88/200 [05:16<06:43, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 88 Train loss: 2559.2596\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 44%|████▍ | 89/200 [05:20<06:39, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 89 Train loss: 2559.2467\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▌ | 90/200 [05:24<06:36, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 90 Train loss: 2520.3299\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▌ | 91/200 [05:27<06:32, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 91 Train loss: 2491.7058\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▌ | 92/200 [05:31<06:28, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 92 Train loss: 2460.3424\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▋ | 93/200 [05:34<06:25, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 93 Train loss: 2464.5741\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 47%|████▋ | 94/200 [05:38<06:21, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 94 Train loss: 2425.3397\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 95/200 [05:42<06:18, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 95 Train loss: 2405.2165\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 96/200 [05:45<06:14, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 96 Train loss: 2389.1514\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 97/200 [05:49<06:10, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 97 Train loss: 2378.5552\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 49%|████▉ | 98/200 [05:52<06:07, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 98 Train loss: 2372.0996\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|████▉ | 99/200 [05:56<06:03, 3.60s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 99 Train loss: 2331.8757\n", + "Epoch: 100 Train loss: 2327.7387\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAADFCAYAAABw4XefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXn4ZUd53/l565x7f0svWlpbIxBikYxalgW0CJ7Y8Rg0bcmyDQlSYj/GoIzl8HjGzuCQeCycPBP8OH6smZgEZcQzGeJNk8HxGDsJOGbsQRhvEPIgwMRGmNbWoiW1hHrv33bvWWr+qKpzt3PPPXc/59f10XN1f33W+t63qk7VW2/VEa01Ho/H4/F4PJ7JUMtOgMfj8Xg8Hk+d8Y0pj8fj8Xg8ninwjSmPx+PxeDyeKfCNKY/H4/F4PJ4p8I0pj8fj8Xg8ninwjSmPx+PxeDyeKfCNKY/H4/F4PJ4pmKoxJSJ3isjXReQJEbl/VomqEl5j/dnt+sBr3C3sdo27XR94jRctWuuJPkAAPAm8GmgCXwEOTXq9Kn68xvp/drs+r3H5afMavT6vcXdpnOQj9scZGxH5b4APaK3vsP9+v22c/eKwc6644gp9/fXXT3S/ZbCxscGJEye44YYbOHbsGKdOnfpZuLg11lkfwBe/+MVN4BcuZhuC11hFfFkcpM4afT7tUDeN3Rw7doyTJ0/KyAOnaJ3eA/xy17/fBTyUc9x7gEeBR6+77jqdpqlO01RrPeRj9y/yo4ek52Mf+y19330/qtM01YcPH9bjaDTX6GfwHnPV1KMrn4997GMjNQ7X13/tJdpwiMZufWmaauCpMjY0v90oqmTD+8bOp+NodGnxGifNm6PT4TTqMcpiOX2DOmdqvwn06XHK4kRMb89O3ixPplHrOeTTeWosf/+OxnmUxS5tM6pfB+uY8dJx+PBh3a8t7zP3AHSt9Ue01rdprW+78sorEUBEgCEfEcR8ZVtnTXZ9EZOWovQgI9MwoFEYkvKca3dpnRVGTr+uwjOsTfLJs2Gvjs51Oja0nxJ3n4QBGxbeZXQ6+jVS8Ht0X9f9dmLz7awY34YU2hCm0+jSMguNmaKLReO4pWCMsjheYrvK53gpGnalsWzXOVnG0zhpCmUyrT3aZlmou5jOjo7JNXYu0V3+Jrh/ATPJqyXq7kmuOd455QjHTU4XzwGv6Pr3y+22GeAEzP4lzOP8jNdeey3Hjx/v3jRDjXNEU1poHTVOZMNOQW4yL316+pw7SaWxUBvOQGOH8mq9xvqTo29+ZXFJLNyGE4bpTEPt8ul82sMDTOOZ+gJwg4i8SkSawA8Bn5hNsqrBm970Jh5//HGefvpp0jQFr7F2dOtrt9sAl7OL9MHutyF4jbsBXxZ3BxeDxkmY2DOltY5F5CeBP8BE9/+q1vqrI08c2UrUhY1tbXfquA3AzuYF4vNnAEiJAVi//GU01veY26mg58Y6+1/nj2HDcmEY8tBDD3HHnXfyzDPPAPxWKY1lmsJOR+4uuy/aAeDcN0+wedr0BOKoBcCV176O1SuuBiAImnQJsRp1b0qGuFgzjXfcUV5jKXnDjahNASRpbwNw/uQLnD9xDIB2sgnAVQdvZO/B6wAIwlVzW2Xa/hPZ8I47SJIE4HQ5G5bB2infiACkicmn5198lvPfPAZAtLMBwJWvuIk9VzuNK+Y0Z6cukR3TzdCGY5JrT7tJpxEAF06e4NyLTwIQt6zGaw+xftXLAVBh057mNHauWV2NvXY8+/zTnH3uCQCibavx+kPsf/lrTTobJq9qUT3nQwU0FtU5Vt+5E89w/gVjw/aF8wBc8cqb2Pvy15g0NtfsNfJsWFwxzLcs9pJryzQBYOPkMc4/bzSm5y8AcNkNt7B+9avMcarhLpKdOsp2jkXkU0e+RvMM3Dj5HBvffByA6Jyx4+WvPMTawVcDoOwzQ1dVY2FeNfXNuRee4tQzfwVA0jLPkqte+63sO2jKYlan6kE/86i8OglTxUxprT+ptb5Ra/0arfUvzCpRVeKuu+7i6NGj3HLLLXiN9cTpe/LJJwFeWHZ65sFutyF4jbsBXxZ3BxeDxnGZJmZqIrQeEYc2zKFhW6pJy3gu2tumR7Fx7gxRy/zdTI3XJtpzSdYqVQ1zMwlcuzHn5mPEGM2KXJl2Y9LeAiDeOQtAe3uDdmx0B5HpXSVphI5ML8T1gkVZc3b9wO4+M5U36vca5pVKzfa4bXr0kbXhTus8CUazio3XSgeCtlq1MjpFnL6cPsASbFgUUJPExquYWq1pu0WamN6Tio0eRKMj08vKbBjYXnF3IZmLEUtS4GFME1Pe0sjoStotdGy2hbb3mIpGx06j8RJL0OstNjsHNy2MIo3WjonVmKZtSMw2LUaXBAG4sqjcNmfHrry6NI1FvXxrQ2s3UTGijZdKB/aMEHD51NYxufm0EuR5F61trPdNtBBEpr5pN4wulKBtuZTQ2iwb1ehkkUrIzcmvzjvc0RgjrtyFtk4Ngazu6dcoFdFYkFczja1sWyBGT5zJaUBsnxt2nwSumTNfYf51Mh6Px+PxeDxTsHDP1FAKxkjRSda7jWzMENq0PoljGnYsPNFGjmkh2v1Ze3F4u9E4NQq6jWPPmBjhJhl2PdeDcvFOgfWuhQrXSXTJlCAY7EEUNrxn57rRMuxKhcFuoG3PIjVnu3H7AEGnbgzf9PpFVE4PqWA6NaNsODxpk6GH5lXoMrGNv9BK2a5hx3uhRXV6iE5sQdJlCe63/J8t7dnZ8YiSeR8TbXSpQIH1SBVOh8ddoloa3eoxWV4NVohdbz4xthUVgOqrZ3K0LtkxNWSj8xYafUqtEjvzxu7YEPq93rnVpIvxW6JrIzfszabHaVANtlMXU2r1qzDXs59zsdHHzJl8c9oRGOu91zqgZb2JaWIMKqrZ44nq/e6+1hI1FtXTmR1NuVNhk5bNoyp15U5lGkWGj0bNI69WpzFVRNoJSnc/T+x+jBBabevOs672hLircusLlBwSqLyc8YVuOrnIJT21BV2FZI2NRHcak7pf46jLz0risGsVNlh0FrQaBOY7TW3BDgO0e3iJa1B29HUyfPcNxrThzM0r5Au2DUV7v8Tm2CDstP8TsU8rdOdAOpu6LjO4b9nZFDoVt3J2dEPpHRtrsWJ1R2MVkl4aq9EVsSR1w7AKiWxQurINZ9LOgT0TCBgiugqGdDY0/9KJe1AJRL1p0yJIUPDwrQTDO+OZSTKbCso+K2LdFSpRVWmOgk59VhYTVxbBzsdCx26ijGTHVWO8cjxc2rO8KoogsXZ0zw0JujS6MxfTjfHDfB6Px+PxeDxTsCTPVNmemfMm6WzKuHIuPmWXAyCA2E1fNlvSdqur5V2yJV7g2pzdCFHBUCZk3URRbkjBCFKqiVLtvmtolIzby5hNC33U2bn6RLJlKtyQSWjdz82gSajs8JDNkkLa6WF0XaMwBUXu6UUN1Yrr8bt86lzsIVhvjbuqEpUt99AZ7hszmVMxpUY7fOc0KgJSG/yZRs4zpTru9lH2K5Gk2TNKow0dsPnT2Mwc4rSCDPaGR02yqYxjwA2JGH2BUpl3OMbUOUoFY+bPqszosUivRpSC0NYzdomdQBqDQ+51Int22HwaNMBOutKRLZ+qS2MByxxyL8RptHZUCEnqxqRtXtWSo3ExhdF7pjwej8fj8XimYEmeqbItwawPn/UMtR27l9D1GAW07f3bHkVKmsXIEvTfa/xW6NhnjGjs5kfbdE7IernWQ6WCkMR6dVLrrdKpxrWFpUyPv9T+ckzdlnfpdb1DFYJycShmV6I1ovu8NqPuOtNO1KQX640nctNylQpJAxsXZiN8E1Lcmx/LLpg3W0r8noU9fpdPO0tzpIGJ6dMtZ890PEUL7wiPENmvUQISm1fF9opTnXQFAFc9tqiPzLntbNggcfGLWVxR0hkkWEo+LUFeWOXAMV02tNPs3TT6NHtg1JXe/CcqRKd2CQ+rMaFjx4FYzYJrVoe+ulVCUhcr5eLCFIjuPX5R1CMAvcttlw2f2CDeOE5puYDJ1jkA9rSuQkt/4Rj+w0rx7vEZeq0RJd4VBBd4bqfw6VSjrcZo06w3lcbpeGleuutauobAzBbVNSwXt83K0dGFFwHQ7bQzMarM1WduxFEtYikeOsweTm4mWwCJmZ0Zb5r1w3Skyw19dd9zoUg2QzJ/6LbzcHLHpy3TAYg3zKrLaQRlGsOS89eiKCyV/RpVgNiA+3jbrD0lutEZri2jcdF27ERg5+20X3ZISASxPRrdskNgBKhsbbDhgxnLtGH2oC3Mrx2tYmeDJNt29jCqsCG8NNv1JMJqLJr53vWsdMPQ2uZTpaUrn+ac2nefpVCYV90xbjJIgLIzpJOWXadQAghGzx6eR6fAD/N5PB6Px+PxTEFNPFNkwyHKuvhi1/oMQ5TYoQU3dZIUyYbAxrjJrJh2HCzrINmeSCMgVTv22k5jMnj8snEdPz0iaL8/cL7RIAiNDVU2xVVnNp9JT2nsS4w6QRd7NPqvEyqEnd4zJO3SOHlKlk1mzkaIssN82GUDRLp+naoLKSDzWoQBibKrhie2DErS2V9JjSUmX2QRFQHaTXZxa3koBstszqmV0F6iUKogJLKr12fDe1IiNqNOBCGpnfCSZIH33QfUTdAgEgSkbs2+zI7Spawgr84B75nyeDwej8fjmYKFe6YmCyfqirex0+rtm6FYDxps2VbpzpaJ02i326R2MbaAJsOYW49qZBy4FI97u1WXradtNVylYceJN9273qI0WxA2r008z2Hv4dfuuKZcZyhfn/Mymuy33ljhnPU0bm0aG8ZR3NFXqjc8QrCeg5EzuR2Vuns/ZDEKK6qZeaE2bT5NWilZjH2hDZcfw5CtLp/ndbTxRM2ggWhTMre2zwCQtOPCuLD6aDTHNFVIaGOKWjsmToNUumJVqmhHF7Dr/q1zQlLMzoYKssk7O/bdmYpg6GrS0nvhCtCt1S1W2btPKUXDLhi8sb1l9wQD5uk1W4U0dufXgXrW2jEICZWJ0dzcOWH2aDXUVlWzY89CzUM0hoGiEZu/L2ycs3tkaRq9Z8rj8Xg8Ho9nChbumRo+Mu16FHkt0e7DXI/fLhWworJ32Dl/VZxuZsP95Vqii3ZNMVZvWDeaaLtMQood65cYKYgLGCst4zIyJkxwaoodjmZvGoaI7UUlbukHHXV1KYtuVlLfPDtdXTNQBvXaLc1GtgBkmtq4onC4DaXr/9WghNexEWYOwNi+hxE1fMp5vTTasthskia27rFxNxLKUBXV0wggWSxbv4dKNxpI9g408x00FEM1VE1aD711bCY1bJDilkSwR4YFGisrUroq2F5D6jDEZeLU1cVBjtc0+6N+GgmbpHbGe2JHNoIwINd7CnPXWMEAdGHEGFHnOEC1QprhOgAbkXXZ7uxA4l5MNLgq9vy97rNdOValAQ1tlg7Y2bAP4nZrxB3mOc5X5pjeZkVRUHpIk6Bh9LW27NooUcTwR1TJNHQzu2XshyPDZ/SqtJENlbQ2TYCvjpLhBbyqdVtXQ7kfpRuo0HRo2lajIMNfJlpDjYFuIg03JN3qOmWIk7/SGqFfZ0ADaZqOTdu+KJegOZBPKyurBIoQFRkb7mybsIlc+1W2gTFIvzWV7nRQW06jymkw1kfioEZpZO9bjBNbFoOcJs2CNPphPo/H4/F4PJ4pqKBnirG8CGqvsLK9F4DV9X0AxFGbNO19l10+82qyjnPdTnt72JCYNBXBqvG+ra6YHpXWac6R4999IsZyvBUO9BkaioYynqmmOzyNh54z0dDJQnonBYtcNjVh0+TTsOH2RsOTVbHXYvUwbGG9hhCqPQCshHYShZ0IMuRCc0jcjBiiURogNng50MaLat4rOWxIusIaySmdgV1MFhC7Srh7b2bxFWpEoNHunYtWY1AwHF1LArLFVxt2SDMYWMi63kigUXYxa21HonJGMheG90x5PB6Px+PxTMHil0YYI96mKDjbTTlfW7uE4Brz95kN0yuOL5wlstN6V/Zdai8ZZOdmfciceKqlIV1xGv1xdmGD1f0m/afbZlr91a0tdGoXRlxUGh2T3FC6vDZ9+oKwwZ4DxvO2mZoeRmv7AjrN92pU2WkzzKMRBE3W95t8ui3Go6FQDH+10LwSOD+CsMney+wSHi7IXhVorLYlgUHPTRA22LfP5NWdll0sWEuBjOpr7EYFAWs2qLdtX11FV92ZUR9JA0ZUKmDNxr1FO3YSgRq+hE4t6NcYBKw0zfNhM7Njnu+kRoYc0BiytmJiNINt86xwSyflnzhfFj+bT4/fdikczFIBSszwyXpoGk4X5CxJ266Mal9GmpePOo75ilR4Q73piiC4HIDLAjOUKWFKtkhRzmXm2lCc6OcqWhZdEGvDPTaAWdI2JAU3qVJDuCTCZQDsic2QpgpkqA2rkiXHQoNoUwbX3cQ4obPGV9305KEB1gCy99UJMqAxZ7pLPUiF1A6BJQ03IzenMVVmom1V6K93UrIXV6s1+wiUaka8lKZ/VmYKJCafOmm5dqwTORpT+/aT2OXVJdrRD/N5PB6Px+PxTEG1m+OFgeh2DY0oRbSZArq2sh+ApLmP7cSswLwveZk52q5FlTdN23jLhne1xp9VP4FbQeuh90mjmDQyvYx9wQFzeJQQ2zWnmrh1tjr37PW69e4bmuSyjCWtYB0td0SUEG+brLgf44GL4xYtTK9jXa/b++boK+uhKnoL+SwZcp80Sogjo2NveAkAcWuHxAWH9vUaTQ6qaPd/iEYdp8SxGWpft/k02dnK3n+m+vpuo8rdUhnyhgIdJ2xvm6GEfakpk1FrB1d63XIePfmzwt7TAX1JwoadSd9MTZmMo2jgPRKV8+oXMKBRa1qR8fA3EuMJT+Oo1n6bgRKZpuykdjKI9fon7Z3szSHZedp5dKptQ8ixY5py5rzZGiemjknaEcFq33EL0ug9Ux6Px+PxeDxTMLIxJSKvEJHPiMhjIvJVEXmv3X65iHxKRB6335fNLFVaZ56aof4EewyqiTQipBERru8jXN9HIKuoVFCpkLRaJK0WpNp8cjh+/DhvectbOXToZm6++WYefPBBAE6fPs2RI0e48cYbOXr0KDPV2BECDPNK2X0qIFjfIljfIry0QXhpg0QpgrhNELfN4LEeMu1Vw/FvHOctb3kLhw4dytV3ww03cOR7jhDHRdPY+5I1gcqh+0Sh1ndQ6zvEezXxXk0bCNstwnbLLJMwJBjdYWxYoPHGGznyPd8DzLEDWuT9UorGvg0a+zZYuUSxcokiCgNUGqOyZSD6gwJ6N43UeMMNc8ynLk3DNWoRmnsu0NxzgZX9ipX9iqihUDpBZa8k6D+JCmos2CXC+t6zrO89S7JXk+zVtEMQnSAlNJbRd+TIGGVxUlz9OZBUzZ61FnvWWqTrKel6Shw6ATk/TM6mshqZZ1kcwdr6BdbWL9DYp2ns0+ggx2sx5DeCiuTTIkRYWz/L2vpZ1N4EtTchabhJTrOz41I16pS11YS11QQdbKGDLZKwqPDONzllPFMx8A+11oeAbwd+QkQOAfcDn9Za3wB82v67loRhyAd/6Zd47Ktf5fOf/zwf/vCHeeyxx3jggQe4/fbbOXr0KPv374eaagzDkA9+8IM89thjufoef/xxbr/9dl544YVlJ3ViRmo8epTb3/pWgGuWndZJKWPHOudT2P0afVnsaMSXxUpzMWicJSNjprTWJ4AT9u8LIvI14Frg7cB328MeBv4I+Jlyt+0eZx/sjQ/30kAUmcU4n3z+GwD805/+Rb70pT8BoLFqxoi/5dZvR77+PABfT48DsKKM1J/4H3+Mv3333QDs22/iOg4ePMjBgwfRwN69e7npppt49tln+fjHP84ffeYzABw4cIDnnnvub5bXOIIhMRkA5y+cAuCnf/6fAvD7n3iEq5omPmP/5a8CoCUpL/zVXwBgQ3F419/7uwD8Lz/1P9NcXcmuf83Bg1xz8CBozT6r77nnnjP6/uiPALj33e/mAx/4QLm0lxp6zl8GAaDd3gbg5x/8BQA++vB/4GUrJobh0oOHANhp7/D0X/wTALYbJjbsh9/1wwD8s3/8T1ldX++6C1xzzTUcvOYao3HfvgGNGnj3vffy/p/92dn3onJsefr0iwC8/e6/DcDXHn+Km172SgAOHHw9ACdO/C7PPPFFAMJLjJ4H/83/DsA73npXNuPIXf/gNddw8OBBgFyN6Dnk0wKN3/zmcwDceeT7AHjm5De55ZU3AHDZNd8GwDee+l2eefrLAKxeZmIa/93HfwOAv/Ft347uW0ri4MERGpmjxpwFV589/jQA3/nm7wLgVLzNd33rdwBw+SuMxkd/7kd59oWjZtvBqwD4s8//MQCvuOLl2RVFl7AhcO+995YvixOguwrlf/7TPwXgru/9fgCihnDnd74dgP1XvQaAR973nbx03jTubr7lFgA+9zlzXjNcyWznTOnqUyjW+P73v39uHo1ujX/86U8D8H3f9zYA4gC++/CdAKxfeT0Af3bfIc5unATgdbe+AYAvf+FzgIln7ITbmD/KaJxfPh3U+Fd/+V8B+I6//t0AbEnEd9zyNwDYf9VNAHzh77+Fl86Y5+HLrjfPkb/8C1P/rDfXO+8JlWpq/MPf/wMA3vb2vwVA2gz5O3feC8DawesA+MGfuonTW6cBeP1tfw2Az3/WtA+UqLnOsh0rAF1ErgfeAPwX4Grb0AJ4Abh6jCvl/F3OB2ffvUmY2PcOrZwlsK69C23z8Dm1dYp9l9gTTpttbRtweOp8i6QV2jsP/qDHjh3jy1/+Mm9+85t58cUXs0ZWGIZQVmOZmMwC2YF9ifN6e7/99zZamzRvRGYoIUzPoqzu1E7Rbm7YyLth/kbJ1wemMVJ2aGHamFp37toFU5cGySZtbUJcz9mGVjM6R8Pq27R64i3zh6ghN7ebczVqbRpbC5p0IbbxrhJjkyBpE2sTUL8dmQhfaZ8lsDWYWwViz3arR8sw8u2ox8un45CTX5Vt7GmxkzuiiNiuKN1umfdkEp1D2ZMSu8r0+vZO7zVzbzQ8r85NY45It8SStu/8CrcTdlKTRxO75luQbhI4jXaoby17A8NwZlEWp0Uadq0sqzOIoB3bd5ymZhJPSIyyD7W4bWwXkDekWa4+BaORRZXFVdtItiu5qwR2UrP20mXxObNNR1m1qaNNu81NbqFwKYjF59NBsuWVQpPAoKVpR50yCKDSnawspokppw064SFFU0GqoFEH9p2mNq+qWHPe2mr/jmkIB5KQLdgfmfIpmUZVLHJKSgegi1kI6HeAn9Jan+/ep03zMbc1JCLvEZFHReTRl156aarEzpuNjQ3uuece/uW//JfOfZlhZwLUWuPGxgZ3330PH/rQh4bpy6Uu+sBpvPti11jrfAq7X6PPpxeNxlrnU7g4NM6CUj0DEWlgGlIf1Vr/e7v5RRE5qLU+ISIHgW/mnau1/gjwEYDbbrutwP00ykNl96fmu3XGtEiPfu15nn3BtEp3Np81CfvG11yLmWbDNNkv2Ws8BGvtBrheY1d5jqKIe+65hx/+4R/mHe94BwBXX301z584wcGDB4nMG9TLaSzV6h2uVyWmjXv0+BMAHH/yBY7Fz9rDH8vOD+yLiPbtM143AtMDCYLBuM4oirj77nt45zvf2aPvhNV34sSJ7Dcbpa+cV6pAn+1avHjeDNV+45kXeLJ13B7+lQF9e/aaIbDQvX+pkZ/OKIqHa7zmGk6cOAEmBnCkxjIKi2gk5hLfeOkZAE6+dIqXXjxp934pO86t5H+Ze29W0wxV5z5sRKwd7x5qx7Hy6TjkHB1ad9pzJ43tTp86zedOft7u/Xx2nNNyoGE9i03nNs7PSEvTmIN799fJ8+ZhsH1hi8/8ySN27yOdA63GlQumXkpk3+DFrNxR+sYpi9NoA2gnpixubhsvRhIn/Kc/+J2hx7fsStO6a7GEPCuW0ciCymLLrnLeWbFe8yef+/+GHr9zwXmHu+rRnPJYpXzq3hd5ftP4OZIo4c++8Cd2758MHB9tuFXRp7PjIjXGdkHOnba1Y6r5j5/49aHHt7bdLbufh/NbHqHMbD4BfgX4mtb6X3Tt+gRwr/37XuDjs0/eYtBa82M/9mO87nWv433ve1+2/Qd+4Ad4+OGHATh16hTUVKPTd9NNN/Xoe9vb3pbpe/jhh7n00kuXlcSp0Vpz3333jdQInF1OCqenjMY651PY/RrL5lNfFqvNbs+ncHFonCVlhvm+A3gX8FYR+XP7uQt4ADgiIo8D/5399/SMaDiK/Y8rNFyhUbQgTiBOUCpFqdQE0qUppClpHJHGEe00pJ2GrFzSoLFqPuZmwmc/+1n+7b/9t3zmM5/hDW94A294wxv45Cc/yf33388jjzzCjTfeyPnz55mZxhGEKEIUzdB8tE5yZrTqbOZuksQkSUw7DGmHIdJnVqfvD//wD3n961/P61//+kzfpz71KW644QYe+fSnXRzDaGY0xTRQQqCENDU2kyH60iQhTRK2VrfZWt1G9GAm+dwojTfeyCMmEPXEwMnTIgzk2wBFgKLZMh+dF4kP2fTrOI6J4xgdaHSQH3RXxo5zy6ciA73zUBShKJpxQDMOGJUxojQhShNEpYjKX8pjqRpzCLUynzggjAtm8tvyGacpcZqiJEFJf1yR8NnPfm50WXzkkfJlcUr2xCF74hBJBUlH99pTHZPqOC/LZ5Sqbx55BOZRFnO4QimuUKrz7BhBpBOiYctcWKqWT/epkH0qRKUKlY5+rMc6IdZJTr3boWoagygliFJES+4zoJ9YmU8PRRl3WrTWC/scPnxYa53qyUjNJ835FOxL7af73wPnjbpzmmqT9rIaZ0U6+Cmjf8LfuIzG6WzoyNFUpC9X82S3BB4tp3GOdNtpCTbUXuNsGKhHpi0XHcqXxTmSSZqdrm4qURbnSGXy6RzxGjsfvwK6x+PxeDwezxQs/t18ZZYNyGXYm+eLhxb6D5eejeUSsrzXFnXfWA9uGnr4vBM87fUl5585+vqnsfatgzLNLZdKd/pzM+gu4GLTuBtZWH3i8dQf75nyeDwej8fjmYLFe6Zm3snJ6wGPipAeMxFzfqdPOarUO5zYvVjmqPbQAAAgAElEQVRA//W6VwZ1Xqvuf1fp9/B4PB7PxYz3THk8Ho/H4/FMQY1ipsbBey3qT94rh4b92+PxeDye5bHwxpSG/Lff7iJ0n76B1ay1HhpbPU868aSSpWOSe5vTut5fZq+sqzEeOhM6NjTaBmKNNbilTnp29f2ms7WvDMYEa/c1/h0yjVZc3tyOfI09X11JmYFKka4XrvbfbzKNYq873on2y+nXnR1jpyK7hmTXHDaPZtwSqbUufDXL+Ohc+3b+7i3rk/22Yy6+P3ONC2DMTDIXjXnlaGAyT86+ca9f9vA5auyRI72Ft3ffZNcvgx/m83g8Ho/H45kC6feizPVmIi8Bm8DJUcdWgCvoTecrtdZXjjpJRC4AX59bqmbL2BprbkPY/RrL5tOLQaMvi9XBl8UhXCQad3VZhAU3pgBE5FGt9W0LvekETJrOuuiD3a9xmnR6jdVht+dT2P0afT6d37mLZLfnU5g8rX6Yz+PxeDwej2cKfGPK4/F4PB6PZwqW0Zj6yBLuOQmTprMu+mD3a5wmnV5jddjt+RR2v0afT+d37iLZ7fkUJkzrwmOmPB6Px+PxeHYTfpjP4/F4PB6PZwqmakyJyJ0i8nUReUJE7p/VsYtERF4hIp8RkcdE5Ksi8l67/QMi8pyIPCkiOyLyvNdYW40nrb6WiPzaiOtUUh/sfo0+n14UGn0+7b2W17gkSmj8c/u5q9QFtdYTfYAAeBJ4NdAEvgIcmvbYRX+Ag8Ab7d/7gKPAIeADwE97jbXX+HOYNUNqre9i0HiR59OLQaPPp15jXTT+o3GvN41n6q8BT2itn9Jat4HfBN4+g2MXitb6hNb6S/bvC8DXgGvt7uvwGrupo8ZrgVN11we7X+NFnk9h92v0+bQXr3GJjNA4NhMHoIvIPcCdWusfs/9+F/BmrfVPDjv2wIED911//fWTpnXhnDlzhnPnznH99ddz7NgxTp069W4uco0HDhz4WF31AXzxi1/cAB7e5Tb8ceCWXa7Rl0VfFiuHz6e91FVjN8eOHePkyZMj3+o39xcdi8h7gJ8B9u/Zs4dHH310jLM7bzGc1ZxDGeNth7/927/N7//+7/PLv/zL3HbbbZw6dWrINfs1fqH0Peai0SSq1LFlNFp97wEuG9+G3ei8r9J0JJV/W2W3PnON/HOny6fdTKtx/BeB5tjwh4G/yLn2btI47Noz0KiZsI+Zkx6YZX0zk7Ko9dLrU3PunMuinuxF7lk6ev6Y9zNjurI4aX7taJysTl2MRsuY9pxEWx633VZuMfRphvmeA17R9e+X2209aK0/AvwI8KUrrxz5epv5M0amu/baazl+/Hj3ppIa6/OG8zIatdYf0WZ5/R+Zyoaa2bUYS5Kjb5V55tOpNY5/gRyN38Lu1zi/+kabEjxNKe6cX/4qiyyLs9NXnsWWxVlWNLO1Icy+LE5szwlOXLjGCSucRT9upmlMfQG4QUReJSJN4IeATxQdO8W9lsKb3vQmHn/8cZ5++mnSNAWv8QuLS9ls6NbXbrfBVB273YYr7H6NvizWjIu0LPp8WkONkzDxMJ/WOhaRnwT+ABOx/6ta66+OOPb3Sl7cfBXsS+MWAKeef5qzLz4FQLJjtl11/U3sv/qVAITNVXOeqM417TVGuQHDMOShhx7ijjvu4JlnngH4rYVqTNoAnHnhac48d9Rss/uuvu5b2XvgIADBAjWWdXnmnDu4MU0AOPfNJzj1ja8BoGKTzqu+5TBrl15jkh6E9hrZ1UoP+XXrS5IE4KWZ2XDw/MFtaQzAuRee5Pyzj5mNqdFz5WtvZfUyY0MJGvYa2ZkTabQ2/NdL0XjiCc4eNy+GT3fMtitvvJk9V70aABU6jU7PVBpnVxY7J9pUDW5LkwiAM88/xcnjfwVAsrMFwNXXH+KSl5vnRdhcM6fZstg9/jJK6/zKYsFQUH9dc+JpTj/7OABJtAPA1dffwv5rTH0aNFbMaZm+zvXH0Te3slhQr2prw7MvHOP0c7YstkwddOVrvpW9VxqNqtG015Cea8LoIeqF5NMCe+rElLuzLz7FyafNSL+OjO5rXvt69l7zKgBUaDV2l0V3kUpozM4f3GbrmwsvHOPs87a+Ob8BwOWvPcTel90IdGvsnDtJqEhZplpnSmv9Sa31jVrr12itf2HUsdPca1ncddddHD16lFtuuQWvsZ44fU8++STkuKO72SU2fH/RsbtEoy+LNeQiLIsXfT6tq8ZxmXsA+qxJE+N9SiLTK9RpSpqaljfiWuwaHZmeVqoCoNMrdt4b6PReqhbhpLXR47TqJCWJTWtcWW9OEiWkxlWe9ZZcSxyrGbo1apaiNLf7lNpdVhMBYnWlVovWcdbLynqDytlOsstOGVs4Gwo0YvNmqBQ6MdtS5ewbo2Pzd0ejs10dNBr7YL0aShRgNCahsadG0LHZr60Q52msjMYib0Zq02494ZqYUGxedR6ZIEDb8ulsm1ffLK3CKQgcSa2+NNq2/04wM9jB2RLRWT7VNn9mNuyuT5dqyyIbxvbblTWdlUWt7D7drdFo6s6nnYstU2TBjA/tNNpnghIaNq1R2FXujEcQxNo26KpTs78qQFF9Y+2oAggx2zabtiyGIcSuPWDr0mAxdap/nYzH4/F4PB7PFCzBMzXKQzJs2q5tSWvXyjY9vyAIIDb7lD1EqSDrVXTGuIvvOdv2+KQaXc/DepqU0RiqINOhMd4nCaTjqXG9Q+m+Tt/9l+WYKtppew6iGkS2x7QSrNgTVZeuAhtWwrVRgHIeigZt62lrqpXOPtXf+62mxvzYPmsfq0GCFdrWIxy4WAyRzn7p9IIHr7U8jYVlEeeJsWUxWMGGoKC17fGKAunTmKOjWo6p3rqmU582SF09mlgPjQoQl09Fer+HXnvBKosrGvN/N0ohAYkti0Ha5YVyXuECbVXw3uRLdTpcPm3StokMoi7PlLOjqn99o9QqrcgcmdlRgq46d7EaKzjMJ+T+lK7Qu0yQFQINkQ28DqwbUKmuhkb/j1WFhsYQja7Q2zTbOg2tBEltRbBi3Zmq05jKGlouf6AHdC9cYtHCJy5tLr1BQKNtde1L7LawY+ui27hLTprOqSiYROAS5EZKlGBHvmDVVgaB6misagVeaEd3jG38BxBGdggsdA/fcKJ1pRZJJwR3cKtLeuqOUgpxQ7i2vtGiTOem+4RCoy2pZ5ODy3/a1qcEgrIP3zRwGVY6D98y+qojD+iyoe7YMLQTXXTDBc8rxNWnpRJfsQZjX1nUEhC44U2rESXVr1OL6hvXF0tc41AIbKO4nbph28ZgXl0QfpjP4/F4PB6PZwqq55ka1jJ1waviXHymJRpIAwK3DID5VhJkLt2OWzq70LAbj9g/Q0YtVyuuh2TbuqkQJSZANGwbF6aSABX2ut5lpAu+Ck7qzv2zHmCa0hYT4LvWtvaVIGeYr4iK9RSd7WygZypCS28CsGZtKCrsaKxqb7gI6dWotdC2f7seY6AaWY+/nPdt0RpHrAbuhqKtLgFiN1nCTZDQ3eEEmXu46JYLlDhMnasz3FC70RcS4CbyuPAJkEHbjUx/VeoauupTZ0MhwgxHh1H38FB/uEQBFSuK2TCf/d0DJaQuYLvlJoqMeO4MUDWRzladvBU5LzFuEkxQyhM+j9zpPVMej8fj8Xg8U1A9z9SwcCKH6zxoFxzZQCs7fbmlsmOyxmtRYO/AjWfEqAb9KI3ZNHn7TyWkdvxbabuApQLRfZ6okcH2C+xluCQVzObtmEaR2OnzqV432wJVqT5RLiU0ZstWIMRt2zNuOu9Fl8aqis0PKOo9xHlGUdmisoH13mgljCdu0T/EiMLobKy6PONiY1Gs50YHuqurW7a+WRSj9DldrtcfkoitT50nQ+msrik3oafM/kXSVz+qIPPa6MQuJKtkvGdGleR10zWC4/JnNhKiFAO/RdUoUd9kGlVA6oJSI7s0SbesBUusXmMKyVyVRbMWnPtdo0l3bNBd7NahAAmce77ELzrrjDXycqM0uqOsRp1mqy2zthcApUKzpgblKrjFl50yT2FXgYPeNqsty2XObl2TCHJ0DTZCllE5lCn5Heev7JhVetW+q8x3EBRqzM6rgMbC/OrsqBTSMsPRhKZRHATh4JD7wNVZjjR362wCR9GkEDsBJAjQdpZb2rZ5Vje6yuJwZ39H62LFFudS92DqdER15PTZNYt0kNWnpQYzlvGgdg/YgjXDsgYjAjt2TSk76ztQXRoL0i85fy2MEhrdMSoIs9mmenvb7go6dq54nVpc33TKZJCaI+zriQi6Q3xy8uo8y6Af5vN4PB6Px+OZggp6psZDVIAObQ8qti1xFVB5d2YhvUHzijBbuDZdcT3kxtJ6umNRwnmjpEGi7LBQwwZnS5cNq06Rxi4btmwvKml2r7BcphdcAcrYUQW0bSCzUl1rMFWeMQJzVYB2ebVrqRopU99UyqD9uIwaogO7Urh7U0F3AHpd5QEuhUqFxHbl7DDsXrtouIe/Ch7UjMKy2BnKxL1pQdzK713DfFWnhEYJAiKVLfpmvlX3yYulDjWdx+PxeDweT2VZgmeqfAxT9rYgPdhAdWO/DaVI7JLEceu82RcnXc3EnF5GFRrnZTTaXn2U7rC5aeJt9lxqlhBQo2KKBjYtS7Qb34bBd6CZfWkaEZ018Sfp+pbdU9A7zC5YFUZrjHWb+IKxXSPurMScfyX3j3ppBFDnjZc42WvKolLBgI7qaezSBqBzlkuwZTEMFEFs9u60LgDG01GuLC5Ja1bXWHL1mb2hEtwS7zs7ZzrnFcRlLl1fN1316kAIXOZdS4g3TVlsp8aGovXQ5PfqrwJFZdEQCFk+TbZMzJQKBstizxWrqtHFT/WJVEoRmsdG9nxUEi6tvvGeKY/H4/F4PJ4pqHjMlOtJ6Jzp53YGTrOJSsOefeFKExnSTuzro82Jca5fpNGiFMouEKhS826+cGVl6H0K2uXLJXsVRZ/CQJGKWdAyVmtmk42dKrxOFRmmUUBhesE6MDPdVLjLNDYC0qadVRNfYb7raEeR4TOmGk1iuzVyCyQ2glxPKiyqvhkTYXh92miQ2letuJURwkZYL30ASLa444CHKmhkrwISuxRL2BisT+sRk5o/w0+HDRK70GzL1jMqGCyLtdA4ZIafDkJ0w87gD8xzMVvIOvcy89VY8caUQxi6UIIO0TbTuEpOBzK8fFc4zwwqtBVcEiJuFdumfUluUOBUlM65dUB0k+SscUWvvNK9IyxHX6ULfDGKFdKzpsHoXmBN3nuyaqSxP0Y0YAXsMF94ZctuHBzKrIXGIQ3GQJoo9xJ1OylEgsbwoYVKSh1en4Y0sUvZZY3Futanw6KYAxrQsu8AXbcBzI28fDrHpM2ZQBqdhoVdg0nC3VWnBtIAa740tcs/5HVQF6TRD/N5PB6Px+PxTEFNPFMUDBFpVGp6FSu2px9K0ZTzqrbEhy/kGRCTrpieVGPFLoZYGLxcVY2G/v6iUglqj3XlrhnPm+ToqxMDGolprdqp5utu+Qc1cHydkSBFN6ym5j4AglosjVAeCSBI3LsIjXUbRV7iqlp2WH0aQmAXJW3Y3NtQg8uU1KWuySXoaFYurGCX5VMUpNvmmZFo8612nUZNEpmymNg8W1gU552c5d3a4/F4PB6Pp/7UxzM1hEazwcoeu6T88+Zb5Y1/Z1TtTdhd9Lsz7L/VCkSR1eaiQvNiUTIqrDEHWQkJ9KUArCnjeeu89qBOSgpYUXDeaFuPbbHrHsvfBSJVGMKWCQQN7CssCDpVTB0lDsSFhSEr1vsmmzYWJcipRusoFggbDdbWjOd08yX7LsmcwOU6MWDDZoNAjM1Uy2ztvIIk78wa0CdSBQF7V0xZbJ1zdqy3tz9P46qYvLm1ZV+3ppbXpKl9Y0rHnRccRytupdeCWQtVLiD943vWBZ9utWkk9kXAe937pYoKRoU1khP6ut1GxacBSC81FUA9Vs4ezoApN7dpitEYHVi1W+utsR8dpSg5AUB06XUAQ2fV1hWdgLYvV01WTZlEcqrRvg5RbUggtTOH2w0bpL3EB9QsGCiL7RQSs4ZW+5KXmY15NqwTfSJ1CklgFmGKL7UzJQqfGTUgR6NWZj27aN3N+OtoXHTR2101ncfj8Xg8Hs+CqUlzPGd5cEsap+jwMgCkaaaeJ3FMv28q6yhqvYCpkuMPs+W+sd4O6YkE7N9vAnpbsVnpNdV6oJ+xWI2TMMSIKmB1v3XXtk+aI7VGrIZ6dfL7u0/mS4WK5j4z9LXVes7ufB3Z8hdd73mrCwM9foRYGc9imnzTbNN62Oh1tRmyzpROUjZNNUOamr5o3I5o7Ok7zn5LVYfc8+obTH26k1gxdkJPob7K1jUwtL7RkIrJp0lyDoA0TQcjJ2pUKAfyaZpy7qRd5T0y32mcoGo8YjtgzVRz7px9+0liNSYpblR60fWN90x5PB6Px+PxTEEtPFO5naiubQ0bu7DXxdkozIAqDMTeaDqrxc6vxzHGdYf0ELv3JXGLKDRxNgfU5QCoUe3gKvaqBl0ZAKTtHVpiur4H4r0AQ1ZcrrhvI9eUZmO8dYFzLaPtZZv77L6K6hjFsA5/0oZVU6WsRibYPj//1dGOdpdOWG1aj3HT1DFpqBmqqYqOqbx387ldpKytml7+9pqpY3Rg9hiqJmYIRTZM20hoPFOrsfmWnHxaM8W96JiGm4i1YWKndJDzo1TxOVESrRNWmibdm3ZRa50XFrYgjSM9UyLyChH5jIg8JiJfFZH32u2Xi8inRORx+33ZXFM6R44fP85b3vIWDh06xM0338yDDz4IwOnTpzly5Ag33HADR48epa4ay+g7cuQIcRwvOaWTU1YjNY7C3O35FHa/Rl8WfVmsCxeDxllSxjMVA/9Qa/0lEdkHfFFEPgX8XeDTWusHROR+4H7gZ2aZuO44oiQxMxL+j4f+FQC/+PP/m9neDHjzG/46AKG6BIAv/+X/yvkNMxb+3//Ij5jjf+kBc0zQ7HRa7PXDMOSDH/wgb3zjG7lw4QKHDx/myJEj/Pqv/zq33347999/Py9/+cu5cOFCSY0luqP9MRla8+iXvgLAD/3gDwJw/qSZcXL53iu46c1G4/lnPgHA15//Sy57+fUA/PHvmm2XX31V7zUxXrgwCEbqe+AXH+BDD35otLQx6bbhmZNnAfjWb/s2+++XAFhf3c93H/k7AJw89gEAvvT1/0y4bjw5xx57DID9VxxwVx3oSZax4QMPPMAjjzxyzTw1PvP0cQC+7fVGY9u+sX3v6qXc8f0/CsDT//ofAfCVJ75A83LjaXzxyacAaKwZD6R5I9D4GsfLp5NpTWJTFr/rO/5bAL74pS8A0Gyu8bYf+HsAnDv9GQD++G0/Qdv+PJ/95P8LwOHv/i53tYnsOD+NXWXSpvnXfuXXAPgH732v2bDa5G/d8U4AgkuN7d75vts4ecHk5Tvv+F4APvbbv2WOUUFW1kUgDEuUxQce4EMfmn1Z7K5zXJ79jYeNvvf+TyZPpisNjnzn9wHQ2GPK25/9D2/m1AUTy3jHHXcC8Ju/+VEAwqDR0Wdvs8yy2K0xtq9R+d7vMXr+8+f+DIDVtT187/e/G4Ctc18H4I/v+Qds29GMT3zUaLv9+7/fXlJ3FUUprXERZdHx4D//CAA/87N/HwC1ssKP/uD7TIovuxqA7/vJ6zjfMrPfbv+eOwD4/f/0u/ZiVF7jL/38PwfgH//cPzEamyF/5/t/3By31zwr7vrxg2y2TVDju3/kXQD8yq/9qrtYrgdyVoz0TGmtT2itv2T/vgB8DbgWeDvwsD3sYeBvziuRYAI5Bc1OCDshJA1N0tBIBGkckcYRiWyTyDYqTglSTZBq2u0W7XYLxaBYsZ+DBw/yxje+EYB9+/Zx00038dxzz/Hxj3+ce++9F4ADBw5QXuNkBguiHYJoh6SJ+ay0SVbapKrBatJiNWmh11P0ekqQhIStbcLWNgSr5jOEMvru/bvv5uzZsxOluwj3GwOIjhAdkawokhVFGiSkQQIErLR2zGc1ZWU1JUgVQdQiiFqkqklqA5un0mi+Z96L6tYYJhFhEqGaCtVUpGFCGiZoFbKntcWe1hb79mj27dEoFMHONsHONloF6Ny1bsbTOF4+nQxXFpNV89EqRavU+NijHYh2uKSxzSWNbYJUodIElSbEhMQj+m/L1dhtSTt0pzZAbWQaVSRs62229TZr8XnW4vMEaYxKQaVAfAHiCyhSlF1Cofv6Bw++rFQ+nUdZzKOlI1o6Ig00aaBREbSTNu2kjUo3UekmksaoVKNSTRJdIImG6TMssyz2mJAUSImbbeJmu1PfpAG02tBqsxaYj0oVQZIQJAmtdkqr3aeteyS3pMZFlEXHyuoLrKy+gBaNFo1K4Fy0yblokz3bZ9izfYaQBKVBaZCdM8jOmT6NYj4V1Sjrm8j6Jk6EJMJWvMVWvMUl8Vkuic8SkCIaREN74yztjcWUIxgzAF1ErgfeAPwX4Gqt9Qm76wXg6pmmbEkcO3aML3/5y7z5zW/mxRdf5ODBg4BppbMLNA7Td80119R6aKGbIo3UJE5wFLs9n8Lu1+jLoi+LdeFi0DgtpTOziOwFfgf4Ka31+W53mdZai0huyJ+IvAd4D8B11103RVJNu+/cORMcefqMaVXH7Yjf+9THB44O7Buz23ZBz8GFBBhwIG1sbHD33XfzoQ99iP379/ceavSW1DhB1KkIgZj3RF04ZVyxZ0+ZZRDO6L/giWf/oi/pgm6a99iFRS8k6kpGob6CdvWsbKgw3qWt00Zf2wYNnm69wL/75K8MHN9MjbdN9ekr8tSWsGEus9LYaJjA650Nk08j+3b6063n+Tf/8V8NHB9bb9RA0qbTuJCy+KIdto2ixH6f4Tf+w4dz7msXmm2s9G4vuMNSNPZc0aTuvDZp39wxQbxpssVv/T+/nHdfAKLUapTild+XnU8d52PjgTm/aZdciRM+/p9+Y/C+9o0EW3ZZCJ336Bi/Ps1lVjZ0Czie2TATlHZa9nvnRT76Ow8NnKrs2ghJ7ntB89O7/LJo2NpnhmQju+BqFG/w0f/7g0OP34hywuuHmKQqGs9p8/yIbEcjIuZ3/uP/OfT4rQUvVlDqbmKWFP8d4KNa639vN78oIgft/oPAN/PO1Vp/RGt9m9b6tiuvvHIWaZ4LURRx99138853vpN3vOMdAFx99dWcOHEi20+NNY7Sd+LECdfLGKAO+qCcRkwM4AC7RWPd8ynsfo2+LPqy6DXuPsrM5hPgV4Cvaa3/RdeuTwD32r/vBQbdQ7PEjoVfuW4+KhVUWtC3tWPcqdohVTu9Q+n9h2rNfffdx0033cT73ve+bPvb3vY2Hn7YhIWdOnUKSmucLGYqaqZEzZQk1CSh7ozT581oRaNVjFYxoiJERUOvW0bfw//Xw1x66aUTpbsQkcztohsa3dAkISRlfKJ28DtQEUG3vtwZviU0mu85BIZ1NCYr5pOG2k6ZH4ENtnFxSF0XHTh09vl0QmwAYqo0qSqh0WbisNkibLaKj1ymxp4AP/Np7miaOxrRgujR5TrVAam2Qec5y56UzafzLotO6l40e9EoLagifVaPlhQt6ZD61GytSll0sTWJJCSSjLahrWsbQZtG0O67Lj2CK1MWLTsbbXY22qXzqSQNJClewbNqGptRQjNKRh9oUZFCRQv0TmmtCz/Ad2Ky2X8F/tx+7gIOAJ8GHgceAS4fda3Dhw/r2ZF2fdym1Hx02vv3wL97+dM//VMN6FtuuUXfeuut+tZbb9W/93u/p0+ePKnf+ta36te+9rV63759enEa097PUB39n3zK6Lv99tv1rbfeqhejb/aU1Qh8We9ijYvNp7OnVhpzy2IxtSqLE+jTumZlseC5UESt8umEXAway2DTPrqtVOagWX2q2pgqQ9kftIqNqbKU0VjnQqG11sCjehdrXGw+XQ6V0ThhY6MMlSiLc9SndUXK4pTPhSIqk0/niNfY+dR4NkW3K1MPbuoPcKzVAq95ac/RWC9RHs/uooarRo/FbtcHF4dGz0Lw7+bzeDwej8fjmYIae6a6uRh6FxeDRo/H4/F46of3THk8Ho/H4/FMgW9MeTwej8fj8UzBwof5tO5deXUg/k93Xg+UrakuOou/7l+3tcwqN2UQd8W+C+sJ7tDRaC/ZL1LrLh2S3WfWmvoZ1Nj3suWSaD2HF0bm2bf/B+n+97i3H1PkPDX2sNs0DtyE2Y5QT6IRxg80dvmxvy6apEbIriHZNQdS05P/y98hq2u61o8auG6e9KH16eS1T1aXSXfdnXe/8e5h8mn3xcqe2JeG7h05+oc9W3ryz9Br9t9iEo2Lr1Nz9415/dKHL6K+mTVjaPSeKY/H4/F4PJ4pkH4vylxvJvISsAmcXNhNJ+cKetP5Sq31yDXxReQC8PW5pWq2jK2x5jaE3a+xbD69GDT6slgdfFkcwkWicVeXRVhwYwpARB7VWt+20JtOwKTprIs+2P0ap0mn11gddns+hd2v0efT+Z27SHZ7PoXJ0+qH+Twej8fj8XimwDemPB6Px+PxeKZgGY2pjyzhnpMwaTrrog92v8Zp0uk1Vofdnk9h92v0+XR+5y6S3Z5PYcK0LjxmyuPxeDwej2c34Yf5PB6Px+PxeKbAN6Y8Ho/H4/F4pmCqxpSI3CkiXxeRJ0Tk/lkdu0hE5BUi8hkReUxEvioi77XbPyAiz4nIkyKyIyLPe4211XjS6muJyK+NuE4l9cHu1+jz6UWh0efT3mt5jUuihMY/t5+7Sl1Qaz3RBwiAJ4FXA03gK8ChaY9d9Ac4CLzR/r0POAocAj4A/LTXWHuNP4dZgK3W+i4GjRd5Pr0YNPp86jXWReM/Gvd603im/hrwhNb6Ka11G/hN4O0zOHahaK1PaK2/ZP++AHwNuNbuvg6vsZs6arwWOFV3fbD7NV7k+RR2v0afT3vxGpfICI1jM/FsPo3cFPAAABrhSURBVBG5B7hTa/1j9t/vAt6stf7JvuPeA/wMsH/Pnj1XvO51r5s0rQvnzJkznDt3juuvv55jx45x6tSpd3MRarT63gNctmfPnlfXVR/AF7/4xQ3g4V1uwx8HbtnlGn1Z9GWxcvh82qHOGrs5duwYJ0+eHP2G5ilcZPcAv9z173cBDxUde/jwYT0xaap1mup0wo87fxw+9rGP6fvuu09rrfXhw4f13DXq1Hwm1LoIjdPpczLH0zeJrjx92oi4MF8b9lJem/uMT44N//gi0DjnstjHiDy7DI2zKYvaVjklbVjHsrik+mah+XRJdqy0xinKYjc27XMd5nsOeEXXv19ut5U5thZce+21HD9+vHvTfDVq+5kUsZ8xmEBjrcjRt8pC8qkxZmmTTGH7HI3fwgLL4pI0VrO+WazG6RFtPiOYtmqCZZbF8ZhG69Ly6XLtWE2NsxA7BtM0pr4A3CAirxKRJvBDwCeKjp3iXkvhTW96E48//jhPP/00aZqC1/iFxaVsNnTra7fbYJ77u92GK+x+jb4s1oyLtCz6fFpDjZMQTnqi1joWkZ8E/gATsf+rWuuvjjj298a8ifnK2xW3ATj93OOcfvYoAMnODgBXv+Zb2fey1wAQNtfsNaTnmgAixf3pMAx56KGHuOOOO3jmmWcAfmvmGq26vNA1ncYAnP/mM5x99msApFtG44FX3czeg68GQIVNew2nR3c8BTPWeNttk734W+cJTBMAzn/zSc4eN/r0RguAA9/ybaxfbfUFTXeR7NSOrPL6kiQBeGn2NszOz9mYArB5+hucfuorZtu21fi621i74jqjQoXuItmpo/KnI8eG/3peGtF6sDw6jSePcebp/2o2XdgE4PJDh1m/+rXAzDXOoSxmFxiqcev0Nzh7/C/NtgumLF52462sXvkqYLEaZ1oWtSuLT3D2mNXXMpqveN1h1q6wzgXVcBfJTp1E33LKotG4cfIbnH/O1DexrU+veM3rM40SNAauMUl9M+98WlTfXHjpSc49Y26rdyIADtz4BtaufKU5bkZ2XKbGjZNPZfWNxMYvdOB1b2T1MhtDLoG7SHZqWY2TMNU6U1rrT2qtb9Rav0Zr/Qujjp3mXsvirrvu4ujRo9xyyy14jfXE6XvyySdhxPDILrHh+4uO3SUafVmsIRdhWbzo82ldNY7LxJ6p+VLgkUqMRypNTI9CAgiVaakmodhtCmLj1dEqstusVOlqP7oW6xxbq8PRPV89WI+U0yo6Rdxv0jC9Kx2Ajo02bTVlGrOjxw6hmj0FPUSdGn1KAlRqjmutGluiOjbMbKZsTwNZrulKYXVYW4ooGnZbe83aKwwgtceJ++7kT9crm2dvalx6rWnTrI1GFSqadtvmHqNDNRqZBzLTVpkymE+hRgkI7QGtVXtIGNZOY4bt5TsveKCahDadrRVT3iRQkFh99JfFquXTovrG2hAQV+6cI1E0OnFl1eqoU32T2dE8EwJRBLHZ1mqkncNi81tIWHU75tFbFgNpENjRmNg62oSuvBpYHQuqU/3rZDwej8fj8XimoJqeqcIIfOeFMXE0YbBKOzYnqNT1CgPEjQlnPcXBlmgVvDe53jebIhd/IapB1DI9DmyjWwUhuP1ZyztHyZK7VPmmdD2/jr6W61ElzrvY0UeF9fWkoWdbb+9WBU1atvcYaretgbieYWH6K5BTc9ejcz0/Y6cgWGfbls9GYm0bNLP9xWWwohqdHV38hWqyY8uismkWFXT256S/MhoLbNipa1bYtt6LFdWpTzs2LOh/V6Is5m20Gp2NggZt69UX9zxRYcdLU8f6xuI0appsOQ+OO7xsfVNVjf1lMWiwnRg7riobV6tUsf36rz9DjdVsTBUgyojXSedhFdjGVOymTUoAyhWghSexHAUNRueCdAHlEgiBdVHHbjhIq46rsijPMPKQOVEk0H6nnWHZIEq6NwFhZutaks0FcA+rgDAyBT9puGFs1ZVBK2nEEXQmPACgAprxNgBt6VR8Rc/fjKpqHLCjEGoTYuCqIE1YqixWEqchG2VWNGxDI11ZtdsanTGMyuobHhpCX32qRAhsBIEOs5ZGhYe3StCvMVCEbTPRRTdsQ6OnvqkhA2VR0bChIOmKc54ESyuLfpjP4/F4PB6PZwpq55nKhvlc0LVApG0gth0qElEdD5Y9q7CRqnW1WuxZy9q2wFHEVq+OWnZXaFya9ojR6JLHzYgyQ7XKBQMq3AgttlesJCxlk6o6NPpTJEBqAyJV7AJhd0lfxuVTgcR5hCM7QcSE+y4rZTOgz45Kkbh8mdkxqFb9MRbOds7TD5E2E0MakS2fqK5QgopSWN/0aZSgM4rhhvtUWGp4qAr1TVHoRDaqoQQ70o6yAdlKhdmITT3za58nHCG2E8xWIuOZKvvcmAcVLyEej8fj8Xg81aZ+nqksxMSNf4ckdsqk2KmgGp01XqVMTErlGum9vQxRIdr2FrXTqHSZlfWXh+sAFawA0R0YmtpAQon7Y6eoaS/K0hUDlloPqmSzzGusKw8dkDp72z90j+3qVAb7yMIwQnRiA4zc0iSqpMYq4+pTAmJbx4QuDklUNVwyRZSqb+wxEpCmxnOqIuvxl+6FjueSwpnR75/JQ2lFErmlHuzxIp1nRsU1FpKN2ASk2fPCxW12+4cWK7KajanM+gWzT7K1hxRi3dGpzTxKhV1rLg13vknOXwvDZYiCVd7JhjIFbVcj1i1XQEIkGD4zY7BiWLTGEkVeOo0prO1Sq1Mp1Zl9k5P2jqwK1ApdthxUax9SSiGmPYxu2fXDpHtoIe+yFdDmKKFRggBlI5mjbbuGWNDYdRpdizHdcWWxeJivMhrL1KsqQNn8idihk0D1PaTyzmTJZbFEa6orfemW0RioFQCUCgqH+aqhsS8NeXbsqlP1jnkLgTT2A6CCoDA0pIoaC8uiKGTbTHgJwkuAfjsOvSx5+qfFD/N5PB6Px+PxTEE1PVNlkE5PKgnt8EnkdkmhQ6ZS7twyDhwVkgR25dps2ayaDC10dRiLevuRskGSQdcKtUWyqihZGG7HICAOrSejnXSdUDNkeOdfVECk3NCXW8en8FLVpEijKBKbct1TJvPVVFFjUTYVCYjsxJAg6J3sU3jBipGvsfuZYWwX2HWXRKnaZdZRGttuaTT3ZhAJBo7OObVaFGRWFQS07VJBzYYTuzz/kPdMeTwej8fj8UxBpT1THe+LzhkeNvsCJQRt0zqN22b8VAWNoWPDYi48j+ROSGdaOQPxUy7eBtSWjUWJztptjaE6qqUxi9ztOOH6jKmU0GibbZEb51chubbL/qiKvm6k87P32VKJsGKyJ63tc+bonF5UpeIWcukYsj/eTwRWtsy/Ns5vmW1qsDc8z7iF2VCkUQhtvE1r4zxgp5z3X6HKGrs89/1lUQTCLbP8SoB7/2mOvp4/qqRxdH0jotGb1oO6dgEApZrUrr4psqPShBvWw7jX2FMFu6tOBU1w3i4VtGLKYp4XdVEavWfK4/F4PB6PZwoq7ZnqIIgNYuj3UOmwgbbjpomdfRI2GgxvgVex9W0ZMktDByFJw/SGkx0z+yQIi3oZFdbIYJiYDkK0jXtL9DoAQU5vePAKFaZPpA4C2g3Ti4plDcj3aFTddj30G1IFxE37no7A2DFXYx3s5+jXGCiSVeOxiTZNWczzvtVF40BZDBV6xeZTrgXqn0/z6htszFSaXA6ACutd3wxoVIokMF7+OL4acJ6pUVeoDzpQJKvG3Z/oy4AhGheUV2vSmIJhkdqBNLNFiZR9sSN5BaNGeWWg/pYmktj1UGjZjTkVeI0quG4UDWg797ypAAhznKa10tdrRUWIRMZmqTZDC7kaa0WvRpEQZV9YlyROYzBwdL3o00gDZasZse8hzBsGqw19lU1AE33edGzCK3fsxrrn014UDZQbyrzUTpTI01ir+qYXJSvIhl1/8QobX1B3jf15VZpwxtrxcvtc7FrzbdHKdlcp8Xg8Ho/H41kwtetS9XttJACdulVQTdswXOL0yHkgAdiRTAI7lBnsotWzJdAd76Jy71iquw37xqMViH1HltgXEXYt4FFTr00voiCxzgw3Ul2ZBStnhdIkLet9c4vqdmXV2qtVOlupP2msmk2yy/JpoNF2Kn3QNMPR3YHLu0ej9aauGDvuNo2oFBpWyYoJnZAl+ofq/sTyeDwej8fjWSq180z1E4QBjdjIiC/YeJsaB4TmocKABkbT9gU7FTQvZqou9LkXRQUEqbFhe3Mz29Z/eL3oi7VRihVtek/tM6ezbQOH1xlRrKUmKHvnvI0n2lVuG2OzdYz3tHXBLh3QvRhi7TT25dNAwcY+ABqb1s1Ydxv21zeBwoX0xWLjieruQe3TqIKA9JydILHuXl9VczsO5NWA9JypU4MN9wokGTx8QdS+MaVj0MqUjPaeTiDsbkInoDEa4z12vK/OputfMyzVaG0aGNEeUwEwarXeupGCbrwEQHyp07bLHMMa0rVTAMSXrtqNu09jsnLG/Lm/aTfWWWNfYUxSaDwDQHz5a+3GOutjsL6JUiQ9AUD7kgNA/vpEtaJ/lnusUeGzAMQHXmU21l1jn0gdpYh6CoD48sNm4xIbxXX/dT0ej8fj8XiWSu3cG/2dDJ2mbFlPbWSXDUiSZLCV2ImInWfyZsLAYu+pZqdtTJWkJjg0TRJsrHbtGLShZiMyYtrWy6iTNHNOZZMNFpO8mdC/IjFac+6scUXvxGYoU6e601mso8iB7rDm5Atmhf6dyNqx7hoH7AinT2wA0FLmu84aB7OpsGFXB29HT9ltujORoGb6IKe+0ZAEZiiT1KzUr1Nd7/omZ0tb22fGtvFQGTvavfV5HGYMvAVFhC23b+dJ+wc5s9TmnjTAe6Y8Ho/H4/F4pmJkY0pEXiEinxGRx0TkqyLyXrv9chH5lIg8br8vm2tKtc5pmoJOY8KmImwq854+JbmqtP3kvYH6+PHjvOUtb+HQoUPcfPPNPPjggwCcPn2aI0eOcMMNN3D06FHmrzE/fVonNFc0zRVN2AgIG0G+5Yb8RmX0HTlyhDiOZ6unLDplpWk+oYZQg85d+mHID0R5jcBCgrGE3g6R1ilBMyRohuhox3xU91umhr4cPaMy+dTRn2id0lxZobmyQtLaJGltotXww/OonMY+tE4I94aEe0PY2YKdrbE0Vr4sJm3StQbpWoOVM8LKGenJyLOy4SLL4gBpjFoHtQ5rwTprwfrYLprK59MkQq+G6NWQRtSgEQ1/l+swKq8xbhM1QqJGSHgWwrPLSEWHMp6pGPiHWutDwLcDPyEih4D7gU9rrW8APm3/XUvCMOSDH/wgjz32GJ///Of58Ic/zGOPPcYDDzzA7bffzuOPP87+/fuhphrL6Lv99tt54YUXlp3UiSmrEbhm2WmdlN2eT2H3a/Rl0ZfFunAxaJwlI2OmtNYngBP27wsi8jXgWvj/2zv3GLmqOo5/fjOz223ZYgmQMiKCYP8o/rOVBhJQRIKATcqjmyJJxYolhBgSKpC0BZUaAYsGaBA0QcGstZZAC7ZKkVBq/5AQpNIKCkHBNNF1W/qi28c+5nH849yZnX3M7uw879z9fpKbnbl7zrnns/d37p5777nnci1wWZCsC9gBrKhu9Ybex5cbg7LirlUAPPHEYwDE29pYvPAWAFLBdPkv3XoORwf8eIaVy78DwOoHH8iXOHIKumQySTKZBGDmzJnMnTuX7u5uNm/ezI4dOwA49dRT6e7uvq76joGpc/lTvnvu8rG59nF/JhCf1srCq24CIJPwTxC9evOn84533X4HAA/+5KFcYcPeWl+K39KlS1m9enUt1Ib8Au5bcR8ADz2yxtewpYXrv/otYMjvj984nRMpPxju9lu/DcCjj6/NlTZqMshSHVetWlWzs6hCxwfu/SEA9635AeDfGfXNzrsBGJw5C4Dnln2C/rQf53fj4q8BsP6Z3+bLKMex1nGKc/krEw/f/ygAK77vvSyRYNniewDInnIeAF9um8lAxo8Vu+rKqwDY+tLWfHFhd3zouz8G4N4feS+Lx7nlBt8+07POBmD9bSczkPH78YbOGwDY8OyGfHGFjqFpi4HghfMuBuCtd/4CQEtiGjcv+R4A+3v3APDi4hkMOj/h7PYtvwfg0quv9m4w6opHWNpiNuOffL70ki8B8ObONwBobW3jyiuWAHD8yLsAvL7zNgacT//nP/j4nH/5Zfnywhinzrn8MefiC73jX996HYBE6zQWX7scgI97dwGw7bp2BrP+iueLGzYBcOWihfnywu7Y8Tn/xN67778NQCIxja/f6Nvi/v27AXh5YRupILjffNXXcd4XfYyPFavVZFID0M3sHGAe8AYwO+hoAewFZle1Zn6LwU+X/xRrDQYMxnzgxzJGKu3XnRz3f8RENkss6z+n+08winEGpu3Zs4ddu3Zx0UUXsW/fvnwwJfz7/mrgOLpi6bbhjpaJkQ4O1ifH/T+mWIFjduDosPxgRR2L+Z1xxhl1u7XgTvLz1+Ruc8WzMNjv150y3f+MOYcFjWjw+OFJlT+eIzV86MIY+rPHWnqDT8F0HQ4+Djq/Z8X9z1hhXKcOjCprPBobp562GX46i1xlLQuH+r33Z4/7mIyRzd96zvY1n2PLjFzsBfsxaxwa9A8QnHvC78c4Q52TTN/BYfnHc2xsWwzeGdkWvNPMcnEaY3DAH38+GUzHEneGBceawVRmUltpVFv0BHE3w9c5f1s9GycWnKi1Tw/aoosRCzoaGZs2qa2EIU7jJ/mHBnKOlo1Dv99/pyV8vMaz5PdjJpMalj/MbTFft+nBfiyI1ewxvx9Pj+XaopEJ3ogyKlJrPBC95AHoZtYObAKWO+d6C3/nfNdxzFvpZnarme00s5379++vqLK15tixY3R2drJ27drc5cs8Qa+9qR1L8BuTZvEDOUYhTiH6jorTKePY1HEKU8OxGpR0ZmBmLfiO1Hrn3PPB6n1mlnTO9ZhZEvhorLzOuSeBJwHmz58/0djFCdk74K/W9A/6nnW/O8xvnv3ZWHUG4Hh+As/Cxju6IadSKTo7O1myZAmLFi0CYPbs2fT09JBMJkmlUlBzR1+vvX3eccBvkwF3hI2bnxojuU+ftunD8hf+LsdEfj09PbmzjFFUex8e7LegTv5MMEWa51/6ZdH0vZnSTilKccSPARxFtR3/1+qnesjmrspkBtn4u8eKpj/cP2JFEeXGx+nQ9bcDbf7x8ryjS7HxhUeL5jw8kB2+ogkcj7S3A4WOgzy38ZGiOQdircNXjOEYjrboKxbM1kE2uGLRnz3O0xvuL5prIDFCqMx9WI+2mHtP294DRwBIp/21ijRH2PTyr0enD46ZLcH7+obWj11+4+N06M//0cf+amImuLXZlznKui0/LZov1TpiXp0QO+ZjNXj7R2Gs/uqFNcWz1fktIaU8zWfAU8B7zrnCo8gWYGnweSmwufrVqw/OOZYtW8bcuXO588478+uvueYaurq6ADh48CA0qWMpfl1dXcyaNatRVayYUh2BBj/zUT5Rj1OIvqPaotpiszAVHKtJKbf5LgFuAi43s93BsgBYA3zFzP4FXBF8rx3Bs+Yt2Swt2Szm8rf5xyWeyhJPjXFGXNATf+2111i3bh3bt2+no6ODjo4Otm7dysqVK3nllVeYM2cOvb29UCfHGS7NDJfGnGFunKsywc3VmNmwN7uPpBS/bdu25cYx1Jx2UrSTmjhhQHzAL+NRqiPBwxQ1oWAfuN5+XO/Iy03FcZlpuEzhWI3R+zMUcVpQrb5DffQd6is9bzrhl7EKCwibY6Z3kEzvYMlZXaoVlyq8OjXcMTRtMTjWpBJpUonSx2e1ZNK0ZArTl7cPa94Wgdw/CWcw3mF0JInpJ0hMLxhrO8b/mVDEaQHOMjgrfTybpTNYujB9SNsi5PdjKp4hFZ+EYyKFJQr/z9R40FRutHw9lgsuuMDVh2zVSwzqHiLH6lOKYzP7OeccsNNF2FFxOnUcm9nPObVFJ8emoFRHzYAuhBBCCFEBEe1MNdELh4QQQgjR1ES0MyWEEEIIUR/UmRJCCCGEqAB1poQQQgghKkCdKSGEEEKICqh7Z8q5iieXHlli7k3I+UcUh3/OJSn4XsYmJpW86o7kPYYtI39X+L2c8ktNWgu/WlP0hUfFkjeh4ySRY/PTlH6TbYvNeryZTPKp4NissVoiujIlhBBCCFEBVs8esZntB44DByZKGwJOY3g9z3bOnT5RJjM7Crxfs1pVl0k7Nvk+hOg7lhqnU8FRbTE8qC0WYYo4RrotQp07UwBmttM5N7+uGy2DcuvZLH4QfcdK6inH8BD1OIXoOypOa5e3nkQ9TqH8uuo2nxBCCCFEBagzJYQQQghRAY3oTD3ZgG2WQ7n1bBY/iL5jJfWUY3iIepxC9B0Vp7XLW0+iHqdQZl3rPmZKCCGEECJK6DafEEIIIUQF1K0zZWZXm9n7ZvaBma2s13YnwszOMrM/mdm7ZvYPM7sjWL/azLrNbHewLCihLDk2iGo5htUPou+oOJXjiHIi7RfkkWODqKYjMDQzeC0XIA58CJwLtAJ/A86vx7ZLqFsS+HzweSbwT+B8YDVwtxynjmOY/aaCo+JUjlPFT47Rccwt9boydSHwgXPu3865QeAZ4No6bXtcnHM9zrm3gs9HgfeAM8soSo4NpEqOofWD6DsqTidF1B2j7gdybChVdATqd5vvTOA/Bd//SwWVrhVmdg4wD3gjWHW7mb1tZk+b2SkTZJdjSKjAsSn8IPqOitMp7xh1P5BjaKjQEdAA9Dxm1g5sApY753qBnwPnAR1AD/BwA6tXFeQox2Yg6n4gRyLgGHU/kCOTcKxXZ6obOKvg+6eCdaHAzFrwf8z1zrnnAZxz+5xzGedcFvgF/nLleMixwVTBMdR+EH1HxakcA6LuB3JsOFVyBOrXmXoTmGNmnzGzVuBGYEudtj0uZmbAU8B7zrlHCtYnC5JdD/x9gqLk2ECq5BhaP4i+o+I0jxyj7wdybChVdPRMdsR6uQuwAD9a/kPg3nptt4R6fQFwwNvA7mBZAKwD3gnWbwGScoy+Y1j9poKj4lSOU8lPjtFxdM5pBnQhhBBCiErQAHQhhBBCiApQZ0oIIYQQogLUmRJCCCGEqAB1poQQQgghKkCdKSGEEEKIClBnSgghhBCiAtSZEkIIIYSoAHWmhBBCCCEq4P/wxzHkrPixiAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50%|█████ | 101/200 [06:05<05:57, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 101 Train loss: 2308.0462\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████ | 102/200 [06:08<05:54, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 102 Train loss: 2324.2892\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 103/200 [06:12<05:50, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 103 Train loss: 2284.1214\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 104/200 [06:15<05:46, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 104 Train loss: 2265.7720\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▎ | 105/200 [06:19<05:43, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 105 Train loss: 2280.9683\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 106/200 [06:23<05:39, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 106 Train loss: 2278.7626\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▎ | 107/200 [06:26<05:36, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 107 Train loss: 2257.5211\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▍ | 108/200 [06:30<05:32, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 108 Train loss: 2234.3032\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▍ | 109/200 [06:33<05:28, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 109 Train loss: 2229.8583\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▌ | 110/200 [06:37<05:25, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 110 Train loss: 2219.9134\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 111/200 [06:41<05:21, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 111 Train loss: 2224.8225\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 112/200 [06:44<05:17, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 112 Train loss: 2214.2873\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 113/200 [06:48<05:14, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 113 Train loss: 2215.9229\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 57%|█████▋ | 114/200 [06:51<05:10, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 114 Train loss: 2185.8746\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 57%|█████▊ | 115/200 [06:55<05:07, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 115 Train loss: 2155.6337\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 116/200 [06:59<05:03, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 116 Train loss: 2166.5751\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 117/200 [07:02<04:59, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 117 Train loss: 2183.6833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 118/200 [07:06<04:56, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 118 Train loss: 2178.7413\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|█████▉ | 119/200 [07:09<04:52, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 119 Train loss: 2176.9099\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 120/200 [07:13<04:48, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 120 Train loss: 2140.1265\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 121/200 [07:17<04:45, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 121 Train loss: 2156.4029\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 61%|██████ | 122/200 [07:20<04:41, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 122 Train loss: 2173.6097\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 123/200 [07:24<04:38, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 123 Train loss: 2193.6018\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 124/200 [07:27<04:34, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 124 Train loss: 2173.5100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▎ | 125/200 [07:31<04:30, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 125 Train loss: 2156.6492\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 126/200 [07:34<04:27, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 126 Train loss: 2154.5458\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▎ | 127/200 [07:38<04:23, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 127 Train loss: 2150.1409\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 128/200 [07:42<04:19, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 128 Train loss: 2116.7759\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 129/200 [07:45<04:16, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 129 Train loss: 2135.7731\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 130/200 [07:49<04:12, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 130 Train loss: 2134.5957\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 131/200 [07:52<04:09, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 131 Train loss: 2127.2941\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 132/200 [07:56<04:05, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 132 Train loss: 2134.8713\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▋ | 133/200 [08:00<04:01, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 133 Train loss: 2120.6945\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 134/200 [08:03<03:58, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 134 Train loss: 2106.6445\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 135/200 [08:07<03:54, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 135 Train loss: 2097.3347\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 136/200 [08:10<03:51, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 136 Train loss: 2101.1914\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 137/200 [08:14<03:47, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 137 Train loss: 2117.9972\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 138/200 [08:18<03:43, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 138 Train loss: 2132.0983\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|██████▉ | 139/200 [08:21<03:40, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 139 Train loss: 2101.7289\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 140/200 [08:25<03:36, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 140 Train loss: 2107.9268\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 141/200 [08:29<03:33, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 141 Train loss: 2086.3469\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 142/200 [08:32<03:29, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 142 Train loss: 2075.3563\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 143/200 [08:36<03:25, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 143 Train loss: 2090.5236\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 144/200 [08:39<03:22, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 144 Train loss: 2110.3560\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▎ | 145/200 [08:43<03:18, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 145 Train loss: 2131.0744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 146/200 [08:47<03:15, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 146 Train loss: 2099.7526\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▎ | 147/200 [08:50<03:11, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 147 Train loss: 2102.8599\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 148/200 [08:54<03:07, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 148 Train loss: 2086.2113\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 149/200 [08:58<03:04, 3.61s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 149 Train loss: 2083.9986\n", + "Epoch: 150 Train loss: 2059.0031\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAADFCAYAAABw4XefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXvQZMdVJ/g7eR9V36Pf3eputR7tR8t6WMiSWgjwMIslZGu0gxlbJhYwRrsrRjE8BmYNHmxmIzC74TCzAQOalQ1reSA07ETMgiHCZm3stY1gHDw8kmyBRzLqtqyW2q1WP77u711V93X2jzx561bVrapbVV9V3fo6fx3VVd+te/Pmr87JvJnnnDxJzAwLCwsLCwsLC4vhoKZdAQsLCwsLCwuLWYYdTFlYWFhYWFhYjAA7mLKwsLCwsLCwGAF2MGVhYWFhYWFhMQLsYMrCwsLCwsLCYgTYwZSFhYWFhYWFxQiwgykLCwsLCwsLixEw0mCKiO4noheI6FtE9MGtqlSZYDnOPrY7P8By3C7Y7hy3Oz/AcrxiwcxDvQA4AF4E8HoAPoC/A3DzsOWV8WU5zv5ru/OzHKdfN8vR8rMctxfHYV4kP87AIKLvBfBhZn6H/P0hGZx9tNs1+/fv56NHjw51v2lgfX0dZ8+exbFjx3Dq1CksLS39CnBlc5xlfgDwzDPPbAD4yJUsQ8ByLCNsW+zELHO0etrErHHM4tSpU7h48SL1O88d4R5HAJzO/P0dAHe3n0REjwB4BACuu+46PPXUUyPccvwwvxgD+NSnPoXPf/7z+OQnP4m77roLS0tLhTkSZUsz4PRt0pv46Op06oPm+Gd4/PHuHNv5Pf3UU7llZVkNOUYfGpRbn6YMH3/8cQCAUuo8tO62X78tOA6ip905GnBWZceKtBZ9OH7y8cdxfEs5AobduORJ3T+0oNnfPI7jx0dti1lMil/vemT56dMLtsWnny5QC8572zJQH9kZFJGhLm8YjgZb1wfl0yrK8ZM4fvx46Tmm9Un/a/nQF8ePHy903tgD0Jn5E8x8nJmPHzhwAIBWTCKSF1pe0wAhc3/5QJlXP7RzzB9IpXfS5cu/cYGQw6vH2b14dsiw67npXZu/HwZR2+Jo8ismo37nbReOvVCcY6YGaXuQj4VrXwzt7a7QBT0wOEegKc+t59jKraimbIWetpfXqq9bhYFk11afbsh7ZhQuM6OvoyLbhxaXXfbq7hiOY0fNtrDvGUQ/i2GrOQ5bu/S6gdrg4BjFMnUGwLWZv6+RYwVAXT4DBJ641aZtyJriyJEjOH06a3wryrHIQ0Hexj7z712X4TnOBnL4+ZgBfl3H4zmYiAzHoKeU+b8fZlZPGeWSo8BUaVh5DvM4mmhb5NE5NlGc7czp6RCCnBbHoeU4ISPNKJappwAcI6LXEZEP4EcBfGZrqlUO3HXXXTh58iReeuklJEkCWI4zhyy/IAgAYC+2ET9g+8sQsBy3A2xb3B64EjgOg6EtU8wcEdHPAfgCdHT/7zHzcwWvRsdwURyjXUef5nvznsQAgDhsoLGxBgBQFQcA4Fd2wnE9uVDmv4pa/m4vmsydM/Zh13Xx2GOP4f7778fLL78MAH9YnGMvcL4fWA4mkeYWBTUAwPrl81g98zIAIHTqAID9Vx3D/IHDUk8fAKBcRyg4zd9RyuzmejQc3/GOd2wpx9yFDW38wvo6AGD14lmsvfaKPoYQAHDg6jdg/sDVAADPrQIAlOcKlzx++dOPLL84jgHg0tbIsAtH812cAACixgYAYHXpNay8+m0AQCPSMjx4zZuweEgbd12nAgBQjpYhE2UaQ3GOW6unvTma3z6OGgCAjaULWD7zAgCgHmjZXnXNm7F48BoAgCN6SkrP4ThThsE0OPbqe1g/LBCHui2unnsV6xe1rtbXVwAAe6+9ATsPXQ8A8CrzmkfKkZo6agqdNMdefWubDDeXzmPtvO5rGpuXAQB7r70Ji1ddBwBQjvSrwk+ECCBLa/JtsQjHJAoAAOsXz2LtvMhw+RwAYM/1N2Pn1a/X9fR0W2RSLdcD/V3pY9VTmOrk9a36LYk1x82ls1g//xIAoH5Bc9z5upux6xod/O+4wjHHfldajua7OAIA1JbPYf2clmPtsjaM7b7+u7Dj8FEAgFJaV4fhOAxGipli5s8x8w3M/AZm/shWVapMeOCBB/DCCy/g1ltvxXbmeOLEiW3L0fB78cUXAeC1addnHNjuMgQsx+0A2xa3B64EjoNilJipETDgqJA5nSFGMrswVpuwXkMU6Nl/FXpWCCfSM3sApBwpQ8aNQ4xIt3wMmzsFjpEE2iqzWV8FAISbmtfG5UuoJ3rmWBGrDpMC5HOCQOopM38HgOGdveeEfMe5BDlBEgq/mp7RB6t65ltfvoxA6e/cWM4nB4i0zJv85CsXOfx4KNkOj3yOrGfcaIjVrbF2CQBQW76EQGaNrlhVSblAIpeSkavRW5XDZ6JC7A5jrYm1TkaBtrQFwapx38AJ9HfMzfPB5l3KoXJswNApSQZEjlGk+5moLu+NTYTynZE1J5zOlpNIvytHrKgZOaa0x8ChF3Ln+KKDoVjcIrHuN1YvIQg39XXS5wAAc7sMTdAnZc7pODQx5FukRE/FEhxJfxrVVxGF8ln6FiBMzzfPmtSbkSU0VZI9rP2J5hFLW4zDBlielaGS/tNpytG8E3Kei2XlKP1NLG0xXFtBLM/KGPoYVJT2N0w9LPpj4FiO3szCwsLCwsLCYkYxHctUixWhV6xUMz4qCfWo1Pi9IbN8igM4oZ4Nxo7MDuOoaZEy9xHLFFH+7L45a2yvSeeR/uhmQcjjKsfiGInELXBDZn8ysnZcharwiWO5Og4AktkFefLe3frGLUxGHY33sZDkGm0SsMwsOJIZg8S1kefB0RNFJDLD5yRIZxRGluS0ybR4jYbA4BzBDBa95EQ4etpa6PoeXDIyFI6IUpmYWXA6i+qmPhM1vuWSRBojk2h9UyIfz3FR9bVM65siW8To/LF6/a5lsDA2j1Oiu0jl6nfH8+GIRcpYGpmj1MqW6izlWDVabjApjl1m+sYyYfpFkZvy/VQnORIuTtJM45LyKYGFtC9MrJr0H75ui45XSeOhWCyJ5LgZS2n3Njgt62L23nlHjRyV9KmO6yJKxCJqZE0qfUZ0yrPzPmXjmHqXJHZWVXzEJjbR9EUZOfbqRsbBcUpuPnT71XLPYU7Sfp3ROtCIWSH0dOfmQx5SRE13SdugDUy9f8H0Vx7+Z+76POj2bIJwNIOniihNaAYRhKSiRRWz7sATgvjzsubobKF56jKZ5tHN5G6Ou75xvUoH7gGQh1UUaXdfkgAwA4wOftNH/lgqSfXOLAZwEwnY9RQgg8FYxen5KDKIytyzRD8B4ErdY+nQlIvEE44VMbUrbj6kppVIbhgYOXrCzbRFt+nhimJ5WCVJ5xijpS22L7bpPDRpGA7K1fwcNhMbSgeQoQkpiJD+Hk2evR5HJSCYqYOZhDnCi10HKjALROTsjAxL4n0uBlNpZQZJoq+OA0rkeShckzw9nSGQIwMmGRzDdUHpYi393OA4LpxgdasxS2pjYWFhYWFhYVE6TMUy1epy6nYGmqboTCJP4yKKZdSdIEayKeb2qqaTRJvwKpWWEgdeCjlCDvtud+ppplUOlDMHAHAj+UaCsj3Hw6bwViRpEAAoMxtR7TN/yq/FuAMLu7qFdB1Jlv87Roaoy3euWSoNJ3XPAiq1THV37+Xef4wWkF4pH0gpkMzwHZm5G3eCQwokLlqVWjSizuXyE+XYxYLQL02JMaPLeWam6CsPKjFmGzk3zlpJTd371WgSjgbhmEeSCDCuITlPKd23uMoDjFtdiSXZqYCooI623X98HHvzI9P1GwucWEtd5aWWHDLBykhyZvvlMaHmL6NveiCIWy1UvvKgqnqxkiKzGES1XtvynnvTyVpauz6P2i3bmofnuHD8HfpSdRYA4CgPgwlmsoLsmg4hdU1qKGlrnnLgVnYCAByczXw3iCdj6zhay5SFhYWFhYWFxQiYimWq8DgwM9pW4i8lk5gylDQAST0NqpNsrFCgNCiACgQV9rx3ZrPXohhorEvNepIj8WASd6JMvI2roIRHnOgloDHHmULaggrHPZsYjKC8KSjhZ+JqVCxWNkel1qfYLDTgGOlYn1rjASYyWerCsS0CTw7KUaZmILnRU+HouF4a15CwiQtLOmXWL2Zv6nFH1IyXaYvXgKtSaymLaSqhMEcvu3OgPt9vHXIl2fm1sf6y6Kznp1k5EkkvkKhMvE1hrlOWY1q9VusvuV4qzsRY/5N44D5wkiB0q16rtcZYD8nzQSSLliDJn6NsWyx40zKhzTJFrg8iia+VhRIJss+MshHoJUdzgulvjK76UErSJYhno/W5WPSuW4Mpuvl6oW3gQw4g5tj2B2sSu6nLz23owUcUh3BNoLrJGeIMaoTjlrfxodkI0saeBuxKNuyY0lwpoeTYSIIgzQIPWTkGp7uriLocH6XKg11DKZ+ma8E8lQicmLxhOsdNEkRpvpc0T1GaW2rM/PJvUeAalXlGmdU1xl3kpkG/YUMGjGHSNG2bd9X9xuPI2tvlRvq9qGshHcw7aVuMQ62vMm4c/N4TAlE3mu19UPOBbCZtJms4opwerRePiXA0w9Jue522ypBVhp9cETakrwkHfEBNesDf7ymcM3Bk8/yQyZt2afavN+V8mgiIUrd6b3ma0A8XifBNJPcbJV3CPzpv1VLmxNB3NCWnpQYIB5FZOBGaVf69OY6TmnXzWVhYWFhYWFiMgOmlRigEMwLl1AztSGbhWEmEq4qhzCzDrLiHA05M0GH7ELSwn0/eBnfz9SkxvzhCGgTpSJqAOJZRt+ukM2MTgB9x2CxRFQhK3sqR+FAxe5TOKMy+iYmYZpXvw6TPYsl6HiFq3qRtZtml+K3FsHGJZtZkgnhlOTZV/NQ9xjKL0mkuBnQ/TxDFze7y7rpwjDXVcESccUGUkGQfpFZiaWPkOGngOerGVRT1yStVYmTCDADtxjRp+RPJYh8lxcyL5WXeZrVxXMCkJxGrTcRJT9lNy1iTW4meVjjT/7gpnahuQieSnilYyis/gzbXuetByTggEjnGSTQ1ItYyZWFhYWFhYWExAqYXgF5klJ1eoJrL5E0Qs/mbGWGg9+eBv6C/i30k0MtCTZbmNKqyy7C1OfMYfVjbtQhq1rmTNjVjiWRndl+SkVb8Klhp3kFk9icKkaSBwIZbr+XWE4gnMvwyQfutgdomY7bm5/maU7U6B0+sVXVI8rVGlNlOsfuYf2z+/WE5prNgsaSKlbHqzcGVndrN/pJhPYDJJOB0iwPrVZeR0afgAeM0XOUhFjkGgQSEBmEzgW6vGkxtWkyZtSZ5XNs4OhVAaTk2Yp22Pw4isAmK7RavqL/cwnoXBBGoTVF78fPcCtzKoj4m+71x2MzwnhuPOXUhdsoQyNFZYxl3PChXPyvMXnYU90kuO3WOzXtnueY+R6BTzDieTv9gAtBBQBq3mmuamrZtKiPHjLJ2ytG0RRfK07qayH6SSOLM83CyHK1lysLCwsLCwsJiBEwnZio7OkxDk/olCmzGZQB6fyUND1Sp6mORWeFH4FBiHFKGffzhXb/OzOy2CpSGz3SJn2oubwUA9isgR3+G7G8X8iYQSyqInJH4eGfD/cpsEszlma7mM1tYzEFJQs80hiGpg8z+dr1m+2ObKRbgWEAvSJI9kl+B50msmCxxi6MaSFZk9rK+TXU2nLXEAT1nivB8OLJkMY601YYpaF7bUxenPStGC9eOFX6mTfp+GqIYNoRjZo/FfKvGtLm1xsnkWsYNP68CV6xsAUusTRzAxFG1y6m7zXFKyKS06ex7pLZuBa58DmOxhCcZGZado0HG6tihr64HJb9FzNpqw1HU9VlWPnapsnZ/Vjo+HOEYsKw8jYJMYuO2EsdMckoB6MNnHTW5QNI4ujCAI0HLgQSEqs1NoCr7Epm8E5I5fNjabi2o0CDScFWRgnj8UN/UHdzC6gaUPLjMnn7UevGU0WwM5q1bB64SB6701fWGmGs3N5uDxFz/0NQJFhtoGBmSl6aCaEhAaLyximburJyOvAwcU2Tk2TU1kwKJizqqi8I2OM1YnH9RmTgaZB5SHd84IJnQITIRvs0M6R0P4lLS6+6+JTjp5tyhLCJIwvWmnnaUNa5KjopmH9s+0iBSQFVP3pJEUngkUTOLfbOEtg9lRGsf1OxFHMCXsIJao/ld26Rtqi7oQugjR9HVxqZJqbPeMfke/8Rbw7r5LCwsLCwsLCxGwJQsU91N4fnB2Z2XmqBWnlcgRwebG/dJwIyq7CvlFR6NlnBkbtxhcx6cxT36kEQsN+IGEsnim1/zsvBpmt27faWqLpydmp+KZcf6JALToNlsp4UeHAXKc1ARGSrRzSCIgC4cyyK9TvSw2jgKTkV2JhCrDSPKt7p1/FUydElcSq6CK2EFSWz2Do0zHNsw2e3NiqMHP7+q9ztzTR7ERtSdXynJ9QYpgu/o4GyuiQcj6eTY1NoZ4NjWBZEieBI6kTS09U3x9NIGbAXae1lShIovuloXd20YYRy+pCKwlikLCwsLCwsLixFQvpipfsHZMMvrddU9UqiTHnlvStqAuShEsmevlLdQsDbts+dRRrcDDP+zy8bb4xjEvz1XrWJ+cQ4AsBSuAwA2zgV4gwRPoldMSllAlHF9t/7WlUoV1Tk9izrXuAgAcJfmMgnmusQylA0Zju2ydFwPczv1LKomW1hES0tgE9c7S/OajBUZyHJ04Yll6sLGeQDAruWV7sH1pRVkE+29geO48HwdF7Zcu6S/S4Ie8TblJtluoCLloLpDW/rXGrqvcS+cx/Xt102ofluBdMscIUnKQXWnXlK/FmmOjY0NtLfBkouuDe2mKYK/oJ99G4EEZyc5W+bMEslOZUVl1y4AQE0WSKytreLglDiWx83X8l2BVVKmg/YdVOKrAABJck6/V4G40b7KoVcOpuwt21flTNBk2O2WjguvogeHC6wHVZvBJpKgR924nUeJoRz41X0AgN2xHnCEUQOIZ2iA0Q9EcDzduVV93ZGHjSVwnPS6arZABNfTnVvV9HvResfimkkFhG4JOnwLBMffDQCYl82P9R6ZM8AlF52djpL8RAu+5CmqnW8u5puBeVs3ZJmS5JmqyiA4qV3sccXsIMtRubqfqcouINxYmU6lthitHLXLfd7X77z+6nQqhZmaDltYWFhYWFhYlA/TsUwxd7eY9AtAb54IAIjCBJU5PVNcn18GAMzRImLOBBYCYJOzSOXftyOYtl/eq751G2JW0y2GNWFUqtr0PrdXc52rrSOQgPuFHCtUHztcqcAMVOY0P29Ru4kWKwlimQ63K2m+W7Zc6BAlA46jZ0++5EiLwnOoy75nfhufssYtZ5HH0fNFjtCuMKa4qwOdevUDJUFH/h4GqnPa+ubIhpKcdC4iaHIuuyQ7Ox0lOe1cV1vBo/pZRJJixmu7qvz8msgydcSiQdrjjka4CvPkMc761C1Ych3NIsvRWG3idb2SoBGuTaFG4wUpWfCS6Pfa5ssZuelzJiVHa5mysLCwsLCwsBgBfQdTRHQtET1JRM8T0XNE9AtyfC8RfZGITsr7nvFXF9Bjb9ZTRma47m4oJ4ByAuzddQB7dx2A51cAh/UrJv3KXteG06dP45577sEtt9yCN7/5zXj00UfBAJYuXcLb3/523HDDDThx4gTGylEscrnGKXJBbh3k1nHVvqO4at9RJOTCjQO4cQBO4tzZsSn39Cuv4G1vextuvvlm3HLLLXj00UcBAJcuXcJ9992HY8eO4b777kMUReNil9Yl7/fXiRCF3/7rcNX+6xC7HhRiKMQAJ8hEaktZaPmxTp8+XYgjphb1QYAKABVgcfEQFhcPYaPegBdswgs2gSTRryzafq8iHMeupz1BIKcOcupwd++Gu3s3oqgO4gTULr8umAWOyq1BuTXsOHQAOw4dENNpl9bbdqiono69LfYAUQSiCAs7DmFhxyHU1upw4gCO2eMtixzK5WuLnbIhCkEUwllYgLOwgHBtGcSceiQ6Lm9DWfWU0LQTKgqhKERS8ZFUfET1wSxTZeXYAooAilDdsRfVHXuxeX4ZxDGIJ59Wp4hlKgLwi8x8M4DvAfCzRHQzgA8C+DIzHwPwZfl7JuG6Ln7jN34Dzz33HP7mb/4GH//4x/H888/j13/913HPPffgxIkT2KlXYs0kR9d18Zu/+Zt4/vnn8bd/+7f42Mc+lvK79957cfLkSdx777147bXXpl3VoVGUI4BD067rsCjCcZb1FNj+HG1btG1xVnAlcNxK9I2ZYuazAM7K5zUi+iaAIwB+GMAPyGlPAPgLAL9c5KaMZkxSu7u9W4xSIrP2lZULAIDvvKaXJf9vv/oRPP3sV/RJoaZz7B8fx/fueT0A4OxOvfT1Ov8IAOBH3vkuHL1Bf/YrOibg8OHDOHz4MABgx44duOmmm3DmzBl85jOfwZNPPgkA2LdvH86cOfPPinIsjrzYLP3XN068AAC45wfuRbim48EOXf1GAMB9P/I+/P2//WkAwPPn/gEAcO0Bzev/+3//FPsPX5WWdKgLv09/+tP4i7/4CwDAQz/5ED784Q9vLbUso5YZn/78Z3+hf9sfede74cZ6Jn799bcBAG77734Af/MzbwUAnF/Ty+zvfet9AID/5w+fSJfgG8tNNxm2cHzoIXzoQx8a6yyK22a2r53Tq0uOvelmQJLnvenG4wCAe/7p/4B//T3vBgB8+zUt6wN79WrG57/xTSzu3mUKBVCM4/j0NGXYsUL2kX/5zwEAv//4H2CXpLh42/c/DACo7DmPP/2RgwCAINTxYb/64f8dAPDBD/yrtFQTzlAOjlk56vd7/sm9AIC//PJ/we553W98//fp9lenJ/BfnnwPACCRLZ6++IU/1+f847szfR0V1tNxtsUsTNW+9e2TAICbbroFjhy88U3fBwD4wX/64/ixa24FACyt6kHeof16dfGp09+BI9vrmJiUsrRFA8PxZ39e6+nvfPz3MCd1/if3axWqOmv41I/p1W+R9EX/8n/WOvxbn/jdjhWoZdFTA6Ovb/6uGwEAz/+3E5iv6Ai3h37i/wIAnPr0l/D5v3rYXAAA+Oyf/ikA4P4HHuiIKSorx7/+a/3c+Eff/4Nwpcp33fEgAOC7v/de3LugV4bXQ73FzBuuuxYAcOKlU5kQza2PnxooAJ2IjgK4HcBXARyUgRYAvAbgYOFy8v4yQWLIH1CZH8GToDpOdO4MWqzAS2TPM+nIwnMBzu/Ty3prMsBapasBAHVaQcLXyT1NHqPmfU6dOoWvf/3ruPvuu3Hu3LlUmVzd+ApyHERQefkQ9DFXArDJSZo2RAmYxIVLUI5sRCoelCDQnYHy8gyOusxu/A4dPjhW10KrXA0/XX9FCUi4Kkn3ULl0GW4ie4PJ+fVN/RDLLiLI+6W7cjx0SN92gnDTPdvidA/FcEOboHdsBFh0zYbAmn8Y6cGIcpoekEE4DqanwyArSZFjYHKlJWCRYyguob1hDF8UtC4czV6arcHnnSynxzEL4RjKRsAMsLgsXdJ9kN/YhBJKsaN/m7mov5uhl55O2s3npzvCcxqIHW1oGe7b2MAOpbleFB2uxxL42yeot0xtsWLqzE2OYaBdX0d2BPCM7sp3gd/ZJ+ehHHqq4cbNnzRJF2ldBgDs9dfTgbLRrkW3mJ6ViaNP8hwAg82zYU3L8XCwjjmlOdXk/HqSVbPxBaEXDkAnokUAfwzgXzHzavY71kPG/HAfokeI6GkievrChQsjVXbcWF9fx3ve8x781m/9ljFfppBOY6Y5rq+v48EHH8Rv//Zvd+OXi1nhB1iO20FPge3P0erpFcNxpvUUuDI4bgUKzQyIyIMeSP0nZv4TOXyOiA4z81kiOgzgfN61zPwJAJ8AgOPHjzMgbr5mqmhzE3NBz7pEgZ49fOHJVwAAT331aZw7v6S/a2hLx8WlJXzrH54FALzpTXcAAN74ffo637sLFMk9qs0GHYYh3vOe9+DHf/zH8e53a9fLwYMHcfbsWRw+fBihdlEU5DjicmGp3jee1a7MlaVlhHXNbXXtGwCAE49/I+2QjBVjz5zMvCoe2hFGIR588EG8973vzeV39uxrZpZRgN/QlFr++PJXvgMA2FzbTPc5+7uTf9vynuW3GmhXGDnNOUDWRhKG/TieBZqTsi3nmIe4oWUUNAKEDe3m+sa3vqrff/urzRNFlkFFz1NUNT82tx/HwfR0REgJL13UM98oiHE50Kb1z/zZ73ScrpTmtBJu9Cy2XBx1ESde00b4JE6wvKbnvH/yZx/rON1wvKy6cyyip+Nsi1JSy1+ba7pZxFEMyfiA509p/fw3j30V7UhEhuTk93PlaIutly7FK1I+UA/0rf/08492vTpq9L51qfRUsOE20s/1hub4+H/8xa7nr0lKgW4oI8eGWH2ZgVja59df+ELLexZJWN+qW/dEkdV8BOA/APgmM/+7zFefAfCQfH4IwKe3vnqTATPjp37qp3DjjTfi/e9/f3r8h37oh/DEE08AAJaWloAZ5cjMePjhh3HTTTe18HvnO9+Z8nviiSewe/fuaVVxZBTlCGB5OjUcHUU4zrKeAtufo22Lti3OCq4EjluJIm6+twJ4H4B7iOhZeT0A4NcB3EdEJwH8oPxdHKljUBZzdnUUGujzKh6j4jGqVyeoXp3Ad0IgivSLGCAGUSKef0ZMK4hpBd6Z3fDO7AZ5CuTLS0r9q7/6K/zBH/wBnnzySdx+++24/fbb8bnPfQ4f/OAH8aUvfQk33HADVldXMTDHYSEV869m+Fc3/ftdIcvqw9hHGPtwuVWsht+f//mf4y1veQve8pa3pPy++MUv4tixY/jSl75k4hjGRqn5h5bT4s4AizuDjqDtDkhqhCiuIIorLWW1y7AfR8hiikmB5hg0x0j6ctRpEEJFCBVBJZ1NswjHaegpRQkoKpL6IAGQwE1iuF1SeZSOo6BSJ1TqRazNmmN1U7/aUYa2qJFdRA/wPIPnixsPApcQuNSMO82gPG2xjeOyAi8XT624Vo2wVs2PKSqrnjrrDpxMtZFsAAAgAElEQVT14hknYgoQU07KC5SXY5r2qCAann6NHcw8sdedd97JSZIwc8LFIOcmna9kC18tZXPbS8658847uSjHrUdrfTpeed8NgSIcx8MvgyynbvwK608nADzN25jjdPU0gyuBY4rh9bEbStEWx4xStMUxonx6uvWwHJsvmwHdwsLCwsLCwmIETGdvvsLB2SZ1AXe4APNKKGr467iWetSJ0DcofvzILEfv9dONMYfGxJDlQO1Cn2FeWWR5XBEczQfu/G5bYLvxsbCwGBTWMmVhYWFhYWFhMQKmZJkaFFkrRVuSS245qwPtV+Wf2JmIsHwoa722Gr0TOW4/XAkcDa4krhYWFlcSrGXKwsLCwsLCwmIEzIhlCii8iV/vq1qv7bOdhYWFhYWFhYVFP0x8MKVToE87oFswpnpwW7kdWydw38xRYwW1ZZsftC5NfrInW/s4lHO3PezwzFLuJs/Dgjrj79P7DX6HgThmT+3gOHwdOjEmjmT21it6obx18Oc873tvpGVQWma3enC6f0JxMHPf/eMGRttvTtkwBMMj/Q6DB9wPQHGc/FrQRd809y0ov9fp4+DY84Y5x8bNEZxt3dsSE5fjhGHdfBYWFhYWFhYWI4DarShjvRnRBQAbAC5O7KbDYz9a63k9Mx/odxERrQF4YWy12loMzHHGZQhsf45F9fRK4GjbYnlg22IXXCEct3VbBCY8mAIAInqamY9P9KZDYNh6zgo/YPtzHKWelmN5sN31FNj+HK2eju/aSWK76ykwfF2tm8/CwsLCwsLCYgTYwZSFhYWFhYWFxQiYxmDqE1O45zAYtp6zwg/Y/hxHqaflWB5sdz0Ftj9Hq6fju3aS2O56CgxZ14nHTFlYWFhYWFhYbCdYN5+FhYWFhYWFxQgYaTBFRPcT0QtE9C0i+uBWnTtJENG1RPQkET1PRM8R0S/I8Q8T0RkiepGI6kT0quU4sxwvCr8GEf1+n3JKyQ/Y/hytnl4RHK2etpZlOU4JBTg+K68HChXIzEO9ADgAXgTwegA+gL8DcPOo5076BeAwgDvk8w4AJwDcDODDAD5gOc48x1+Dzhky0/yuBI5XuJ5eCRytnlqOs8LxlwYtbxTL1HcD+BYzf5uZAwD/GcAPb8G5EwUzn2Xmr8nnNQDfBHBEvr4OlmMWs8jxCIClWecHbH+OV7ieAtufo9XTVliOU0QfjgNj6AB0InoPgPuZ+afk7/cBuJuZf67bufv27Xv46NGjw9Z14rh8+TJWVlZw9OhRnDp1CktLSz+JK5zjvn37/mhW+QHAM888sw7giW0uw38B4NZtztG2RdsWSwerp62YVY5ZnDp1ChcvXuy7qeDYNzomokcA/DKAnQsLC3j66aeHK4hH2xS3uUFs8Y0WP/WpT+Hzn/88PvnJT+L48eNYWlrKL3ubcxR+jwDYMxK/tl1wB+VJQ2ySmeXXq4wtk+GUOYoMfxzAN3LK3k4cu5W9pW0x/XPAy8vdFofYkLq9Hi0finGceFssaX+qiyxJW2xWqPA1k+U4HV3N4vjxYsnQR3HznQFwbebva+RYC5j5EwB+AsDXDhzou73N+EAY+Hc8cuQITp8+nT10RXJk5k+wTq//E6PxG6KCIyKHXxVjlWEpOL4JZdbTIWDbosaWtMUtzYZTnOTk2+KImIVnBmM0eRINNJACJsxxSro6DEYZTD0F4BgRvY6IfAA/CuAzvc4d4V5TwV133YWTJ0/ipZdeQpIkgOX41ORqtjXI8guCANAtarvLsILtz9G2xRnDFdoWrZ7OIMdhMLSbj5kjIvo5AF+Ajtj/PWZ+rs+5nx3wHnkHAQBJHAIAapfOYe3cSwCAzeXzAIB919+CxatfDwBwHF9flo5Km2X2cze4rovHHnsM73jHO/Dyyy8DwB9OhKP5LhKOKxewufQqAKCxehYAsOvILZi/ShsGldJinATHoibPzEVtNcp8FUcAgPrKedSW9MSmcVnz3HntrZg/eJ3moJxsUfpYq+22K7L84jgGgAsTlaFwbKwuoXZJcwxEhjuvuQ3VfYc0iy3iKDL83alwXLuE+iUtv2DzAgBg15Hvgr97v2ZBhmNWP9NPPe8/9bZoOK4voyEcw3AFALDz4E3wdu4VFppHqdpiL3eXHDT9aWN9GbVzrwAAAqwDAPYcvBm+4Ud6/s2GywCyHG9b5PbqdJ6h74nG+jLq0p8G4WUAwK6DN8PfNXkZTkJPg/pFAMDOQ2+Gv3uf8BA5Zvub9MMUORbQVU40x2BzDfWLmmOs6gCAHfvfCHd+h/AROQ6hq8NgpDxTzPw5Zr6Bmd/AzB/pd+4o95oWHnjgAZw4cQK33norLMfZhOH34osvAjnm6Cy2iQw/1OvcbcLRtsUZxBXYFq94PZ1VjoNi7AHoQ6GHRSqOavq9tgkACDdWkIQNAABBj07hUHOEy4l8J+PG7Kjb3GeIgNiR0YtjqDmGm6sAgGB1CVFDf+ZYcyQVN8uYJo+uyJthiFVR5BXV9cw3XF9B3NCfYzYyTDL85PKSiC5Ti67H4lDziDe09SJYuYC4rj8za/5QcWdRZeOYOwsWjoHmGG3o2X1jeQlhTX9maaegJPMzdRIqA8deFvCoIf3Mmra01VeWEUhbVBzocykpB5EuyJ/l66NhfQMAEKxqfrWVy2hsahm6SvedhSfvOTo8KeSraZsMRU/rly+gLn2rStbk1BBgw9cZb2WHRa9nRiDPjHUdDN5YuYRGXfOlWPRUJZ3KkO1vOg9NHLm6ql2JCGpaVxsr2gNVX1tGFOjnhu+IpW0vF2uLYyBrt5OxsLCwsLCwsBgBpbRM5c+kxMLEMmvwPACA8nwkSo8JY+hjpFTqL+3lB57mSLyTIzdnRqbuvo73Ul4VIC2qBMI/O3vqRWBKM+ZeM0WIv568Jr/YxNOY8b0qODucokWgF8fUElqp6L/9eSSbWoYxGytpwbnMNDnmHUzaLBYpxzmgodtgEog8s1UuoZ7mg4Ekbn4GgEoVAEBeFRRoa0YcxnJGwSVH0+DYxZrBEiPFLDwr0hbdCpQjehpmz+nPcXr9aRfraRK3HvLlcedXoQJtJTYG1MJmhVK1RQa4jaO0RXhzoIboadsp/W80JY65upqAxbKWiCWYfXl+OD5ILolC3ScxwmK3kvetZFjKwVQnOGVNYs5TZlDlKpBRqERcS3Hc/JVK0TkPBhOM7EhgOXkq5RZFojRJUihfTxlMt+0gGfwq4UkegaTjS4Qf4qgpuzJVviAMR0eZQb9KByFJIByTGE3FnnQNh0WzLRr5OWQ4EmDEZ3rwJC55E8zrwJsDpGZbFI4+wOv6WCz9DifZ/ma8td0aNNfTm4GTK/xCH0hkkG+CenWoxIzpKQPmSascLS830gNGxyNwrDlGielPZ7EtNkHC0YllUOwTWGYycTKreqp1z7jhzfPQU5pj7DOChrj3EgkPyQ6gJ8zRuvksLCwsLCwsLEZA6SxT+cs+CWbcR22zYtdxAKVN8FEYZM4fZFjKA54/LHot36XU7aPMEFdG4o5SgCspHsTkyVnzbqGp/6Q49li6a9x78qdJ6eAqB8pdANBcog0Uc/NNy/LWl6OZ5GZkSI42wcdRdsafXjiWeo6Crm1RXLJpW3SFo+OAxMLBgQ6yN0u102vLgl5LsKkpt3S2Ke3PcVwoR3hIf8NRkGHWneNEdTWXX6YGxtJmaiP8lOPCEcEmgSwYSX1hhW+OibDsKUOCebyR0nVxfN3+XMeDIyEGvKL11CyK6XtLU/xQFR4G/Z4ZbW3RMf2Nk3oukob0N3E4ZT3N14v8fkYsw6QASW9kngjsaTk6jgdlrKgN/Tw0gfij1mkYWMuUhYWFhYWFhcUIKJ1lqitS60saPKXfXB+OLDE3QZWRWbKcPb934VtTx8L36WbVaPsg1jflelDQM3yO9HsUBxgMk5tLEfqEq1KnDJWSIEMJeo2TYjIska2jFcLRxNyQ60OR5pZIMtYoDspb/yIwHGVxhHI9kHCMhWMcFwsInTh6NkVK421SS6PKcITMgkPTFsNC0/npy9q0O850Nal5EQDguC6IJH4xNrIc1Lo4faYAMiZw+ZCYGE0fiswzQ2QZz2h/08axqaduqqeJWIfjqetpfsmtTbGtggSQtEU2fakjC81cD0q+i4yutkTbT1ZXSzeYIupm0sycgGaAL5GL9OdLJN9UWOwHmlbD6D7YaK2RyVIL5SGRBxYbjhE1C8lpIO3jsomi/2hK/592AB4SMm5MMbeHvcvotUpzEuivp5kToTs5s9oUUZMjp6v/uhcxNY4oOCg2fmnykJB2uXOsze0cxD0XB02PY5+JjdFRUy/HrKL1kZC4a0Od94Yb0RTlOIybgprPKjNhE/cQqJLK0LhMOIgyK41Vs4zOUieLnMzWbSfI/60rhAkuYkh/kwjHRtyzQZdeT9tXQVOmT5WcdxzGzYUVPe40Po5FdLX9+2b4S/o4NIMpeEhYczT5puJ6o5iujoGidfNZWFhYWFhYWIyA0lmm+iOdUuk310tHhEFdz/hjDjtOzymhhDZbQduMn1wPSrIRRw1tjo44yFg/ehY2njr2Qb/5lD4pw4+EXyrDRu+ql1V2KYxlIytDbUONJCA05nrvKdKscfT8lGMsAehR3CcgdMoci7ukZXGI70M5kuIikrYYb/a/ydgwbOHU8paGFFR8OI4Enie6Hw3jes/7TLs/HVSG5PtwpD81rsww2V56Sp4P5YibL8y2xRnsb1JVbbUSqzkfjiupLcS9F8XrRYrCOMhay5SFhYWFhYWFxQgooWWKmpP1HktfTSyD6/pwKrJLNGeuU939pVPPIkgEavPP53PUHFzlg9S8Pq8hWYnDOMOjbBwzMRnpVt95HPVJSnkgSY3AgSw3j7v71ynz//RQTE/NSY7jQ3k7AQBKLBqIuaucSsExo6dFZsWu48PxNUcKW4Ptcy/L/D81ULPf6BXHaGI0PacCx5P+xnAMw/JZh02sHrh3bF/aBjP8XN3XpPyCRibWpmx9DQrIUE5TTT0laYsIDMcSyrDl9sXaotFT16lAOYv6oImZallI0HZd5v/xoUv5fd0Y5mEifalYUX2nipp5bhgrcb2ORGKmnAnrqrVMWVhYWFhYWFiMgBJapjLIzK7QMfOQ71wfjiQNDFki+sNGh+Wn9aoSoG2ETJy3w5dw9Hy4nnCEJJmLN7quPikNRwDNWQV3nT2S48Iz/JReIRWHmzlnmgvKxbCInsLJyFAZi0YNlO5U3zavKQtHapuz9tJTx4fny7Ykjp4pxvVVpHvMtCdiLQXHplmjt3VD5OP68GQfu0joRLXlzAqittJLQLFY/KJJG1CBNyer+SQ5aVxfRnMPOC+37OkiI0M5kt81mvjFCjxf8w0lVjNprJZahgBa+xmgp7Wfsnoqqhs3erXFra7sIDCxl/2sqIJ0m7Uq/Dm9sjZxNZ+otgwkxgJXybnL+FDuwVSK7nZcggMlGVLDdXERBUEzrUCzhLYPJUMPMy7BSTP2hjUd7BrX683lsOl57R/KhIzrr40nkUo3PW6syWAxqHeXYWlBXXtzRQqOrx9SjQ0d7KqX1s8Yx156SgqOPwcAiGuSSytYB3Erq/JxbA74zV9dE9yTA7eiOSYNCewNVzqeUeXhWNTlrqHI7eAX1leQ5p9pf2KUhmibjvV4MBM5cKsSNiHB2WG4DCRm4pNXYpmQ0dceHE1bNM+MKFjt0RbLwJbSnFKdk9JOKOXCrWo3HyT8JXJWgFCu8juKHyusm8/CwsLCwsLCYgTMiGUK6GqsdgjenA60c2OT1TboOK+Z17IMI/Au6JKEjhyCV90FAHAlnjdsbIDFRE0d+9iVmCPQKUpF8GQRgR83XWB9HBOlRoe2KoJX0UGvvux5FtfrALUnmJsBGHdDu4VKEdyqbos+az6N9fWMnpYdmXm6ybrcbgl3FNyKcJREupvL62DZoYBMMsi0xDKxbmplN9cfOSpti56T5WcyhFe7lFk2UKY7be9PFVxfy7AiSR9rl9fBkr2fxJVZThlm0YOjUnCr0qdK5vfGeg0sJkYq7aO/zUrcw4pKjtNsi3NajmsrqzrlDAAHC61ljlmOM9SDW1hYWFhYWFiUD2UdnnaFSYmQbt9ACpUFPQLfkO0PLi2dx9UdPvQJVnJEtHMEKVR2aqtG4uljl157DdfNrOGmNZCSQfBEhqHM8JcvXsTh9pnEbAlRv3GWo55FxZL08fwrL+Pw7WlAS8t1M4Ecju6cng16C/r90ulXcDQRRe2RraR8MEGx+q/mzJ/giiW8snsPAGDp5AvNZede9uqSIqNjaRtM6am0LVZ37gMAXDj5DcQSP+W0xvTOBDr600x/U9m9FwDw2ksngUgCw8zOOpOs5IjofGYQfOFI89pqc+Hb38b13y2W8HZnRunQ7Bezi1+AjKWKVOqVmt95BABw9qW/R7S+BgDwF/e3lTnM1kvFMXODKYOsmVq5OtCuKqsXsHFuKnXaamQ5ktLcKvO6gUSr3+mzOdwMIEOQZBFBVQYcav1MoU05S48WjvpJ6+/cDQAIL788+zIE2hRVcsDsvQoA4L7yAjhpc/PNoFxb3GLC0dutOarNr6QbdDtzk6/baGif2KDJb488jDaXkEjW/llGqwz1yN7foweM6vm/QiID4ll217Ry1I933+jpy99EkugBY+nHUnnICy8wunpA6yoHIcLNFbmgvaOxbj4LCwsLCwsLi9JiZi1T2fm82UXal+DIRvgdJDJ6NaPFXjvXzwLM7u7VOR2IfuHCC4hklmEyv8zghD+FSYPgk7a8ra+/gETWmyuRYtO1O4sMAaONc3PaMrX8yjOI2cwUdVOcfY663nN7tNl9dW0JQaCtGlVZqj2TepoTsT2//1oAQG0zwMbGMgBgt7jGZpJjCiPDqwEAYaCwvLIEADh04JqWc8Dds/iXDq1mGwDA/IHrAQAbmwHW1y8DAHYv7mmehhmTYYuVWP+xsPcQAODljTU0xMI4LwtFZpFjni2/uvMgAMCJduD8Ky8BAHYdfbP+UjX71nH2q9YyZWFhYWFhYWExAmbWMtUCEgvNgvabXrp0FiRWGzhtFMcbgzZG6PH4/G6ZST3/l1CR7HTuz3WeOgscufOPqsyGX/tvz4BMJls1w2qa5SjLfed2vwEAsL72WZCRoVvpvG4WZAjkThUrC9pqk8QOVHhBju7pvG6GOfpVmQ1XFqDCF+W81+l3k3B2liw3bfCrEvc2twAnOqkPxrfod6eZPmBm2OXI0JvTVhvXrUAF35bzjur3WZRhTp9aWXw9ACBmByo8K9/tk/fZszDmpfVwfW3tX9i3D1DPAQCS4O0AAFXNPD/G6KLqa5kiomuJ6Ekiep6IniOiX5Dje4noi0R0Ut739CurrDh9+jTe9ra34eabb8Ytt9yCRx99FABw6dIl3HfffTh27BhOnDiBWeVYhN99992HqMdGmGVHUY6Y0dhLYPvrKbD9Odq2aNvirOBK4LilYOaeLwCHAdwhn3cAOAHgZgD/B4APyvEPAvi3/cq68847eVQkScJJkvDXnv2v/LVn/yuTUuw5+vXWu9/Fb737XfzLv/L7vDi/mxfnd7NSipVS/LrrjvDrrjvCcRwzJ4l+CV599VV+5plnmJl5dXWVjx07xs899xx/4AMf4I9+9KPMzHzkyBGeNMdGo86NRp0d12VFxIqIrz9yA19/5Ab+5X/zH/nwnqN8eM9RVsphpRyen6/w/HyFG7VaWkZRfh/96Ef54MGDPEl+q6vLvLq6zETEisCKwG96w938pjfczb/yq3/EO6p7eEd1D4OIQcSLC3O8uDCnZciJvHggjgDOTpJjGAYchgErx2ECmAA+vP9aPrz/Wv7Ah/5vPrDjGj6w4xomUkyk2Pdd9n2Xw3q99Hpq6me47lzcmXJcnF/gxfkF/pmf/m3+riPfw9915HtYOQ4rx2HHUew4il/6h79v0dNSchQ9M/X8wbd+f9oWK5UKVyoVft+P/iK//c0P8tvf/CB7foU9v8KOQ+w4xP/+4x/JcEz41VfPlKottsvwZ/+n/5FdpdhViqtzc1ydm+Mf/ZFH+F13P8Tvuvshnptf4Ln5BfZchz3X4f/lf/3p9FrzKltbbOf41tuPswKxQlOGD/3Yv05l6Fcq7Fcq7DrErkP87z/2ay0y1HIsmZ62cdy7e2+zLS4s8uLCIj/yzz/Kt1/7Vr792rey47rsuC67rmLXVXziua+Xvy22cTzx91/jqudx1fPYldf99/z3/NPv/BX+6Xf+Cu/Zu5/37N2fcrzmxus4jiOO46iDay9I3fuOlfpappj5LDN/TT6vAfgmgCMAfhjAE3LaEwD+2ZaM7gqiShVUqdLcbwpAbbWG2moNBzfWsUgBFikAy79G5KERebkm6cOHD+OOO+4AAOzYsQM33XQTzpw5g09/+tN46KGHAAD79u0DJsxRkYIiBW3Q1K+gFiKohdi/uoYd7iZ2uJspxyR2kcRux552Rfg99NBDWF5eniQ9uMqFa4ID5dXYqKGxUcO1q6tYdBpYdBrpt3HiIE6cdDF31sFQlCM6fE3jBZHS8sikQAjqEYJ6hKuWVztlmCgkiULHxscooZ4StZjLIzStKVGYIAoTuMvLWKisYaGyBiNHZgIzQeVEGZSOY5ueBRxn2luCJE5QX16Fv1CDv1ADEAGIkLBCwgqyb3da1uHDV5erLbbSQ0IumBhMjCSKkUQxNlc24Sw04Cw0AIQAQsRMiJmAZdVRVOnaYpuebiRhk6PIcHNlFd78Orz5db2pM8eIWSFmBV6Js4VBy7Fketomx4jD9Jhpi+ryKuYqa5irrIGRgJGk/Y1KZq+/8auLqRyRJECSYGllE7zLAe9yoJI6VFJHnBDihODUGST/xoGBAtCJ6CiA2wF8FcBBZjYO2NcAHNzSmk0Jp06dwte//nXcfffdOHfuHA4fPgwAcF0X2AYcu/E7dOjQTLsWsujFEdskTnC76ymw/Tnatmjb4qzgSuA4MoqYr1jPqhcBPAPg3fL3ctv3l7tc9wiApwE8fd11141m5uOm++TZZ77Bzz7zjabJps/r8FWH+fBVh7Vpr819YrC2tsZ33HEH//Ef/zEzM+/atavF1DdpjmE94LAeMCkqxNF1XXZdl8M4zDVj9uLHzOw4Dk+SX32jxvWNWmEZVnyfK74vMuSsl68wRwDRJDnGYcRxGDFRMRkat3QUR6XX03au84vzhWUJgL9z4Ttdze1l5fj99943EMdHP/axUrdF045MHX/m539pIH4/+zM/3+ECK8pxUm0xpSr1vOO77x6I4//58d8pv562yXFx146BOH7rzLfLz9FQNW6+b77CyiFWTrG+9eCeqzmOY47jeDpuPgAgIg/AHwP4T8z8J3L4HBEdlu8PAzifdy0zf4KZjzPz8QMHDhS53VQQhiEefPBBvPe978W73/1uAMDBgwdx9uzZ9HvMMMd+/M6ePWtmGR2YBX5AMY4Acqf824XjrOspsP052rZo26LluP1QZDUfAfgPAL7JzP8u89VnADwknx8C8Omtr14PVGL9KojA1688MDMefvhh3HTTTXj/+9+fHn/nO9+JJ57QYWFLS0vApDk6BDiUDbfpiURexK0+4SL8nnjiCezevXuLKl4QDgZazxMrQqwye9llaBblCGCygWFKvzhvXXYOzDQqz69fWj0VRMlg51fqXsexsnOM68X7HABw1lo7ndK2RYFqDOZejBqZR4gob2nboiAMCnaoAlqbwbYYD9YY5+qdmy6WneO8A3BC4KRYDFRdjXlLpH6mKwD/CLqZ/D2AZ+X1AHSiii8DOAngSwD29itra1bXbD2+8pWvMAC+9dZb+bbbbuPbbruNP/vZz/LFixf5nnvu4Te+8Y28Y8cOnlWORfjde++9fNtttzHPID/m4hwBfJ23McdZ1lPm7c9xNttijjskdUF3fmfb4uzrKfOscux0N/fS1SIo6ubre8JWvsqqNEVQ9Afd7hxnmR8zM4CneRtztHp65XAs62CqKGxbtBy3HtMbTG2L1RQWFhYWFuNCjhtlRrJlW1xpmJ6u2r35LCwsLCwsLCxGgB1MWVhYWFhYWFiMADuYsrCwsLCwsLAYAXYwZWFhYWFhYWExAiYegM7MoGkGL+okPoNfM8jp25wjg8e2v1FZcEVwnLaeDoOyt8W8+o2zLY6DH7dWgwCAOPc7AIPf38qw8/Rpt8WJPRcxxI361yGrqyx/Uesp+pj5jVuUu1f5xUlay5SFhYWFhYWFxQggHmDkNfLNiC4A2ABwcWI3HR770VrP65m5b058IloD8MLYarW1GJjjjMsQ2P4ci+rplcDRtsXywLbFLrhCOG7rtghMeDAFAET0NDMfn+hNh8Cw9ZwVfsD25zhKPS3H8mC76ymw/TlaPR3ftZPEdtdTYPi6WjefhYWFhYWFhcUIsIMpCwsLCwsLC4sRMI3B1CemcM9hMGw9Z4UfsP05jlJPy7E82O56Cmx/jlZPx3ftJLHd9RQYsq4Tj5mysLCwsLCwsNhOsG4+CwsLCwsLC4sRYAdTFhYWFhYWFhYjYKTBFBHdT0QvENG3iOiDW3XuJEFE1xLRk0T0PBE9R0S/IMc/TERniOhFIqoT0auW48xyvCj8GkT0+33KKSU/YPtztHp6RXC0etpaluU4JRTg+Ky8HihUIDMP9QLgAHgRwOsB+AD+DsDNo5476ReAwwDukM87AJwAcDOADwP4gOU48xx/DToB20zzuxI4XuF6eiVwtHpqOc4Kx18atLxRLFPfDeBbzPxtZg4A/GcAP7wF504UzHyWmb8mn9cAfBPAEfn6OliOWcwixyMAlmadH7D9OV7hegpsf45WT1thOU4RfTgOjKFX8xHRewDcz8w/JX+/D8DdzPxzbec9AuCXAexcWFjYf+ONNw5b14nj8uXLWFlZwdGjR3Hq1CksLS39JK5AjsLvEQB7FhYWXj+r/ADgmWeeWQfwxMoiz8QAACAASURBVDaX4b8AcOs252jbom2LpYPV0yZmmWMWp06dwsWLF/vvzjyCiew9AD6Z+ft9AB7rde6dd97JQyNJmJOEkyFf5vpB8Ed/9Ef88MMPMzPznXfeyePlmGwhx+I8B+W4FTIclueoMmRNYm0SejotjiLDvxwrRxYdK8i1/bxhMNm2OBscx8GvG8et5sc8gbbYzjHzd//+c0b1dFtyNFS7c+RcbsNzzELqPlY33xkA12b+vkaOFTl38iB5DYAjR47g9OnT2UMzwrE40SE4Tg9bI8MqZkKGxZHD8U0YK8fWSrK8uqHf90Uw+bY4hCBGxGTbYj6/cWYdnHxbFI6Gao4iErZW0lPT0xyOlPPaCkztuUikXzkcu1zQ89utxiiDqacAHCOi1xGRD+BHAXym17kj3GsquOuuu3Dy5Em89NJLSJIEsByfmlzNtgZZfkEQALp1bXcZVrD9Odq2OGO4Qtui1dMZ5DgM3GEvZOaIiH4OwBegI/Z/j5mf63PuZwsWrt9yv5O3JAIABLV1NC6+CgCIaBMAsGPfMbgLOwAAJCNTTkeozVKJeo9aXdfFY489hne84x14+eWXAeAPJ8sxBgCEjU1Ely4AAGIvBADM77oWTmWu7bLxczx+vOBm2r34GST62yhqIF5e0od8zbmyeAjK9fOKRJYpBuAXxzEAXJiIDNvOSeII8dqq/uwlAAB/bg/IcfNOx7AcRYa/u2UchV2R0EqOYySbG/qzpy9wKzsAUpmSWgtrUptiWxyEY5KAG3X92dV1dtwquF1GE+BYuC0Owo8TcBBKhXR9leN36viI/La8LTavK3IWONL9DBypMznZr9s/9O1HDcarp+mFbbXrAj3QAZSpe4bDduGYe23HBwDGaTM+S9VIeaaY+XPMfAMzv4GZP9Lv3FHuNS088MADOHHiBG699VZYjrMJw+/FF18E+rhHtokMP9Tr3G3C0bbFGcQV2BaveD2dVY6DYmjL1DiRb63RR4PNdf2+ch4AUF+5hCiqAQA8R0aze+PmzGmMI9FRkMtRZhL1dW3BaFw+CwAINpaRCI2K7+nrdyaZUnpwnNLv0FuG2oIYrLwGAGisL6XVrM5paxvPX9Wz7gWYjx29OEZ1bb1orGiLW7C5BLBY3eYW9amVXSCnO5NScOwxNYy1qwbR2goAoLFxAWBtMa7M7QQAOPsWQE73OVsZmmkvjkmorTTh+hoAoFG7AJILKvO7AABq18Ges/ppcyzCLzL96uaS9jMAqM7tBgCoxb2pdbFX+dOVYXeSxsIf13SbDGqXQKppHQYAZ24HytiPtlahB0djyZE2GTRWoURkXkW8NF613w30ewkaY88YzFjkGdWhlLGeViAful8HpG13HBztdjIWFhYWFhYWFiOgfJapvNE3J+BIj7iTRN7Fn89OBQh1nEYUmtiACIW8rdMaiedxTGIkgbawRYl+jx09e0pQBcV65hg1pIgkALO24vSKWZiKdSNXhjGSQFc+ivQsP4L+O2EfKtGzxjDUlo1qEkAnzM0ih0WZZMgxkkBmvw1tXQxjbbWJQ0BBrACRfuckAFhbGnsKqFQcE3Co5RbWtRzD4DIAIAkTELT8Iolp9JIQ5JjZYk+SBc4ZA7py1G2wXtNyjDY0x7gewlH6mlhiFr0kAJTMjMvGsSi/1UsAgCRI4LhiXfU1PyeJQE57W+xxrzLoKTjV00ZD2uCqyDBMYFQyriwAAJwkBlT3x2FTcuOSIfcuswtHxGI5lf4mXtZcEw7BEo+pxCLlstcaG5ZTA2C6HPOt/U1LFADEa7rfgQrApt0tCFeo3vdoqQsKnlsM5RtM5YEZzHpg4YiCuNK440qCqKENbDFr95E265rAwh7Fou8pEwNzjERcJK4YDBNRFJ6rI9jUtUygB5Mcx82Kl4FAH3CSIEl0w1es+TkyWOJKDcGm/s6VhoN4nIu0xwOOY8Qy6CcT+8m681J+HVFDvouMns4gxyRBHAsPIyORJ7kRIhlMqkg67aRowfJeAl1O4ih1YaKh26SRFakYIevvnEDkyAWrXRKOHMeIGnqgwebdBGSrGKEMhN3AzNzMmntg6pUvCI5jxKKLyaZMUqX9AQkC09eKO56rNCPMmuAkQVKXCaosbolkUMXwAE8mNLJgAt7CrIivCWawTLCjjWUAQCyTuAQ+HF/3M05FZNtn0D9OLbZuPgsLCwsLCwuLEVAey1Ru4FnTbEwSYOaYMaWYoEPHTwNcuSZusbA+6M2xtWPV/PJaAwi55Y2UA+Vpk7MrYjHm1jiqg0jPrlhmylG4CZ/3ysVFzZpbxXEQfjKjJwXlzQMAXIlwJWO+jWtQjrj86tpCFYfrcLFDyprGdGpwjlAE5Wm9dFmulVl+FDdSE3tSF1d1uAFUF6SsGeFIgHK024B9fcxLtFzrSSN1lcQ14RhtQlX6BL6OFYNw1P0HAalby/Gl7mLJaCBOrY6xWDXisAblVTAdFOAnvJquogQk9XViLTsTmNtorAGxPj+s6fAJL9yE6+7c+qoXxhB6ynEajGzcXN6c5tUI10Gs9TTa1FYOd3E3HGdx66s+Inpx5DhELNb+RPyWJP1PnATi8gLCmg4RUXOLUKo1nU7+TeV9Ql6+/MB6fSyJGggbWkaBuG1hnBfYTMN/nJrm77kVkOMVqwvy6zMsrGXKwsLCwsLCwmIElMcylYtm3BORjMbN0sc0uM4DyVTRJPKMJSivpYzupfc8Z+xI82xSamBKA3ZlhK08N12ZnMSaYxJFOYUUudGEkbGadfITGbp+Kt9Elr0anlNDIUNe+/RGpUuuyZWmZWToeGkgVRKb9ylzLIRWjgQyIVLNhKMiT6U8xKTlZ4whSRwVmwWOSz2LyJHbKkgEkmSO5AvHWMuRIr8ZCCsxY0kYTo/jIHpKGX4iQ+WJJTESnuQiSSSOylg9pq2nA8lQQJSaCkg4snCk0EUc63g3Y02IoxDOtIyLkLi7QTmCAVkMoVzdBiPhyEmESGKNHEjsWBxDFTDajKstFvONtHpsOIlT65vpP2MpJI6SNM7Yc4zOJr1i7MeKKQymhnE3UZrnhIzyyEOK4IElkDmJtFk6rgfN7K+m16CcodNUg/Habp7p4NJHs+HIHjgRs3QgHGs1sHCkHI6ZYqeEdn4ASeITghlEVdK/E9af44bOyxRtboB3Cz+TpThv+DsugoWKNV1x05WZuhYkf5ST4ciJLCgIdDb7cHMdlZ1FOA5DYKvQyhGkQIaja9qidqMQ1pDE0qU0dLBouLkGb3G//j6nlxv7hKbQPENOSl2ZDpT0M6aHTFzjAqwhXSMRaPdJWFuBv7hXLu1cuThW8RXiZ2ZinfzYjIddTUqpWrr2I2xofu7mZXjzu6WoHjIcF9FBZNjCUcjJyu9UhmoTLBOaKJaV4JuX4UlutJ4cSwDO6qlxR3vCMZRJQBgikQFjJAOOsHYZjoTH5HEsBdJBlHm2uXClDzWy5VBCCFQIlhyToSxCU41l+O4BfX6P3GjjgHXzWVhYWFhYWFiMgJK7+TJIPX4y/jOuharfzPti9rKLN5pW955TijLNN5DxMogFx7jB5nw469kcWkAQr/XkWAoXZgdk1pTDz92U3DYks6hoteO6iWIg90n2mPxhZn7i7lPzPjyJn6xLBGUUZmQ4FR9YEXRyTPe7FEsTuc226Na1bBvC0Q1XuuTImQwKuU8MyLgyGZzuZ2Y4ajk6VbfJUdIJRI3LYByVa3veoHjFC6IYv1Y3HwFgYyVO01qIO7riQRl+sUkfsJKmpiH0smiMR08H45h5M23QLIIx/U3FhyMcA8n55tRXUDXn9bxPCfrT9DlBqYWJJCcheVqODjvgQJ9ocve5tVVg5+F+xaIU/Y0x8yQAiW+SXLNnpOgqO4gb+vxQMvm7tRpYr6mYuFfGWqYsLCwsLCwsLEbAFCxTXYaLaSB2n+vkzVHNpZAwyz1l6WRcr4PTbIF5ZptxD1nzy+9LUca2Jhjbkdmw71bRcGS4LWkf4o1aaqXKFeNYOQ7DjzIzY0nAKhYN360icESGJsC+1kAiCwpMotbW4sYsw0LF58Womdg+/bfryew4nENEklBOFkhE6xtIJAGmyssSPiU97X+OxCeYr0SOnldFKBxJgkbj9Q0ksW6XzhQ4Fiu+M77PWKSUFOB6ItCo2pSjWDLijU3EsnuBmtuBDoyRY7Gi24IxAaT8RIiuL31JUkUicThK+pd4bSXDz7TFssnQcMwEMIvl1KgdVYylqopEiZ4Kx2RjFYkkYW3KcIocc625lPkfYCKQxIW55ruKZETnKhIl8WDCK1wNEO7ScXD+vKS6yMYVTbpLzQuob/tIitJUBx7p1BUOyT6StTmgJvu8RmbP3jpcie9zhSNlOI5TjNYyZWFhYWFhYWExAkoUM2XiabhPiEVrTAq5c/Dn9WqiGHoEG9Uup8kSgUre1dOBMa5xL+sUmhYc8RUrfx7+vCRjU9pCFTSWwWbJstfKauoL+PqFyKTWG/GFewvw5zWvDegklo3aElisNmjb7Xwy/Ia1Lhohi/VGtgQiL4YrHGOILDcvNRPM+vMF7j4Z9DcSt3GUNkZuDGdO84gu6WPRxhIWZR84x19oLWbLatwLw1lR0xmsMhxlFZSbwDFtcVn6m/VLmJdVtl6bZWr8HMfAT2Ro+AUblzAniRMnz2/QuzQ9GClHs6WTWL/JSUBVkeGafgSG65dQkW1K3Dzr4qTRvsIUyPwMxkKl0jQALOcrCRgixUBF2qDE2wbBMtxNvco2tUxNEx1KSqllMY3LZAeOxIOxGa6QeDEoAfuykn9Vt7+NeBVKtp1ZNHLMqk+xYOqhUKLBlAGlbq62lBMd5wGAUi68ijyIxBQd1hiQTY+L7JU7OWQaOkxAea/TDUcPXlWbOJUsBY026uCGBORV2/PkbGWdB0HRAbE5XTpyx4U3JyZc1i6hYO0yeFMitkvDD82BbrdNOZsn6jd5WDmuj4o0bk82A66tX0a8Kpt2imm6Iz/GNDAKx3ktR0/yTdVWVxAtmw7cZOwvD8fuikot55mHluNVUJnfBQCoON8BAGysriNc0ukuqjuu0udPe+n5kPxctwoSflVxUa+urKNx8SwAYG7nIX2+8NvKfRW6I/8ufcMK2vqLlKNXhVrU7S1ePg8AWFuro3HxNABgbudBOX/6j8dWju3uaEIaGiKpWIzr3U3moaDbW7KmNz9eXQtQu3AKADC/S8sxzfA/AXRKMU+Cre5acgBmccnKMelu4CPNegEE+lm4dnEVmxe+DQCYW9QpEtz51klc6z23Tnutm8/CwsLCwsLCYgRMf+idi4w/DL3dYuQ6cKsy45eEZBsrq4hZXAto3/usBEtbBwS5DtyK5lHZoblePncBYayD7jw2Vo2ycKSm5a3A2cpx4Mi+hP4uzWXtlZfQCPWMykv3IMwJYJ4WCMXIGWud68CpiNVmzx4AwPLSCdTqOknpHMuS5TS4GdOnOQxHceV5u7TMVpdeQG3zIgBgLrlGn+eY/e4wdY6FKRpLuOumLll3j9bV6NI3sbmpLVM7Yt3vQJVjn7dB+ZHrpC4/Z4+0u/PPY3PtHABglwT6kr8rc9W40eUufa1v7eeLJdxzgTaO6vJJbK5qPd0ZaEuqM7e/191LCRNs7XguAK2nSjh6yy+jvnoZABBtank6/vXNi8e1J99QoM5Paf5g4eh7MHkQ1G7dFiurZ9BY18+NxvLLAAB3/qaOMsdB0lqmLCwsLCwsLCxGQEktUwbZGCMBt1o8iBz4CzqYbmHv1QCA1579OsJVnfTRl60smijBdBhAM74o56scju68tkgt7Naz+7Mn/hKN89rfP7/3mvYCMHWOmQSBHWjjB3LgVPUMY373tQCAC//wZdRfeQkAsHjgKFoKGygT47hAXaqQH+9H5MKpaqvNwi7NcUX9NTZPaf/+7mtuBAAoWbJdAgliFI7zoqfrClh/6QQAYPe1N+P/b+9cY+Sq7gP+OzOzs6/Z9Xpt7BnbgMFdipeQ2IGG0OZDwHGVuoI0eEMr3GCpkEhpK5GSSiXNhyBVbUENAaKiViSp5Lqp0g+kAaluJB6mUUAgCI9gr8MaO4vtZXdt7673NZ7dmbmnH86Z2TuPnZ33zN79/9Blx3fuvXN+c/7nzrnnnnsOgN+2TDWFo3IPl5r7aPbSmtRDIS5HOwBirDVI9MwHAMSvuhGAYEsovX9ju2kutRKnydvS7/ILmhbgji7TrybeFWJi2OThwraPAdB+xbrUoVzHb4ypUipv69Tyji34W81PX4ftV+OEurlgHWORPgA62zfY4yhUegqXOjuW2n9RpaZ68uGzfb46k8bD39vL2NAgANFxE7vBrojdLejKxdrk53JHW7HvW3bH+9QUOr6Aa1o502eqZWOE+VNvAXB51JxnWtaZPnDBzl506mDuAVoL5WkJ4w03eWUqD/m+eRtAwY12Tp54knh0eoUDNDF5o8s0IrZsNJXDxGIb0UsfAdDj7DK7pXrmNfwMvgKZd3EzOlcGbJO09q9nbvoMAL2OHYvJtxrCtdCpwTp2myZp3b6V2WnT6TUZNx3RfS0defZrNopw7DI/tqzbQXT01wAsXja3wtrbmuBJory4Co2riwFkm1pHexHH+p1EJ14FIDplLgCC3amLOJ9rzr9GFcrsjst6aU0BP799KMTpuZH5M88BMDN+AoD2jfYCTvmb4/ZQ9mfrYjqog992EdG9NxIbMbeFLp05BkBHeLvZ0tdae8WVztlquVgstIP5XQzY8qZ7drLYOQzAxdPvARC66loAWto3ZaaFFdJTBssqun4PSqi7gPKlb2sG2sz5Jt6zHdVjHgyZOG0uVH1h47a+vTv9BHlpqS4Ouc0nCIIgCIJQAavhUj+L5a832npMy5QvEeL8h+YKseda0+yOrZFqrU2zcFOzvGPQPrYcat3E+aGTAEQ+aUaBVcHu9F7NbZi3aQqAgG2ZCbVdxcxH5taJEzOdJn2hjvTmze1Hwc6x/hYz/kt3+9VMnBsBYGHWXE2lrxCVSs8O37TxWsjRzp/VHbqG+OX3AZifMLcY2tZtN7v7/E3suHyMpkjdYujuuoq4ehuAi+fM39AWczss0NK5dKFfkxaqckqDe/vlr7xTt4nWdW8hYbtLjH1kWjTW7fgdANraNywdoWZ5WYxj1jlTLXW9L9Sio+zw6KHuzWzdYG4HfXDGxGv39abFv6tnx1JKinUsqYmlGEPlCsmlgxc1Ao117AxtZFvYdDF47+13Aeg4+zoAW679g/T8k+78XNLMk7qqzbm5lHeFWxMLHME6tretY1PvdgBODZs7NxPvm1bjtrYw7b32tqZt0dKQ4+F2LiUd0jIlCIIgCIJQAStWppRSVyqljiqlBpVSx5VSD9j1vUqp55VSJ+3f9bVPritd5NaVA8ENBIIbCF2xCfzHwH8MZzGGsxjL3FDrjNro2bNnue222+jv7+eGG27gySefBGBycpK9e/fS19fH0NAQzeDoC3TjC3SzfuuVLAR+w0LgNyTmZ0jMz2Ru6HIsxm/v3r0kEgnqiibnEkT5W1H+VnquvpJo8CLR4EUWpi6wMHUBtGMWKCsP9+7dCxSc9r6KGLl8eah8rShfK11bNhHrTBLrTBIdHyM6PoZOLKATC1mHMq6rKU7xBcEXpGNTL4vdIRa7Q8yOjjE7OoYTm8GJZcar1hpdE8dqXT3nwRcAX4DWni4SPdtI9GxjanyMqfExFs4Ps3B+OCclZ5qtLObNvNR7flB+WrrbSfb2k+ztZ3pikumJSS5/eIzLHx7L2zpx9uyZBpZFt5B9XdAxACpAoKMV3X0Tuvsm5hOzzCdmmRl8g5nBN9Lzhbo5e2YFx+tqURZzT5hKFdHQafPR3xpAhXajQrtpaXVoaXWYOj7E1PEhktFLy5xTb6e//4ZlHK+rrmMlDZrWUbUE8HXuwNe5g65Nm+jatIn5KYf5KYfYufdw5udw5udyXDPQyi6lJaGYlqkE8A2tdT/waeAvlFL9wEPAi1rrPuBF++9VSSAQ4LHHHmNwcJDXXnuNp556isHBQR555BH27NnDyZMn6e7uhlXqWIzfnj17GBsba3RSy6ZYRyDc6LSWi9fjFLzvKGVxjZTFoaFVHadgHb/zHQaPH/esYzVZsc+U1noUGLWvZ5VSJ4CtwBeAz9rNDgEvA39Tk1Rmpsj1f/jw/UF2fnw3AAm79rbf/Rw7us26/3rltwCYnTaDI27cHmFkyDy1oWxdMhKJEImYe6ldXV3s3LmTkZERnn32WV5++WUANmzYwMjIyB9RF0dDyjGZiHOVTd/4JfOU4nV9N/D7/V8A4J5v7wNg9Kx5asoXDHLytHnMd8vGLYTDYSIRc95azu/gwYM8/PDDdbDKz/133wvAoZ/+GIBNm7dx+8f2APDuow8CcNre+15MOPzVP/4dAI9+w2RHJBxeMQ8PHjzIN7/5zTq12uTe/X/5yCsA/OGXPg9AaF0vN//2JwCYdX4JwIljfwrA9Ow8V+40/f2Gfmn6NSzlo26qOHWrnj9nBjzs/7h5vNzx+dhxjemnsb7XDP8w+O63ADg/MZke1uTsKROv4XCYSDgMulkcU0OY2POOhviCmSrns7feYnzOnGHDVvPk2yf7bgPg+ENfBODU8DCO7c/x0/9+BoB9n9+H1ppQKGT9zmXG6b31LIuZQ7RordGOcf3zP7sHgGd+9n90bjL9w27deTsAQ48+AMDgr0+QsMf46gNfAeCfH/0e4XAErTVdaUdXHmrNwXvvrXtZdDumOHLkRwB85Wt/SzxgBlz9zI23AnBp3JxvfvnefUTjpnXqY58wZfKNX7xKOBLJzMdzqXw8iqacOC3ikT7yb7LUOrUUpymmZ0zF/K67v8yJ4eMAXB+5CoD2pMmC4197jIvzZn67DjtMzff+6Qn++N4v4ThO2vGcdTx6tEzHgsPauPqF5WsWyh3hw3VYUyb/59kjPHH4UQBmT5tzUfc6+wT8bIyRS6ZF/PxFM0Druo42/uHJvwfgwICJd13mVFAldUBXSm0HdgOvA5ttRQtgDNhcVgpKJvNHqrU9BD4bQAnzd2I6yjXb7HgbjikgSW0fZ150HyOX4eFh3n77bW655RbGx8fTP9AB0zmvTo6Z+JQfpUxhTgXZ/Nwi0Q0m+/xxMypxImm8WjUEE9lZa95bzi8cDtf/Np+rA7P2j9lUGr/F6AITPjN2iC9m51xMLOVb8NJyQ18UdqTeD124O2l3XLCrTMFPXl7kfMw8PBBYNNvFLjvpXR07vIcvz8i9zRWnrg6krSYW8ZtYcmJ+Ji+Z2+xt9kc6OpeauBSchBn2ok3lZkt1HKvVGdrl6Df55wRNfKpFh7mLxmOq05x3ZifsNmhImtfd8WTGEdN+n8qK08jm4stiLZ7GsBXHtnbb2Tqumb1obj2PfWhGDp/9yMYwGp00+embmcs5VN481Lq0sljDJ06usHP0+Rc0MzMmD0dOmeESopOmvC46Dtrm4eWYieVUGQaX46c/bR23gNZllMVqSOZexLUHTEW/x1FEJ0w+jsbNuta4cZ6NL5JcNK9jqcmD/SPpY2Tn45ZIBE0tzzduj2Uqka4aY7phZEMXE+fM78X0nBkPbnLCPMCk/Unmpk0FazFp5/LDITCd6ozuy/sxxVJ0B3SlVAh4Bvi61jqjw4M2Vf28dxiVUl9VSr2plHrzwoULZSazPszNzbF//36eeOKJVPNlGvv0xqp2LMIvL6vFD8TRC3EK3necm5tjYGCAJx5/3NtxugYcBwYGeHx5x1Udp7A2HKtBUVcGSqkWTEXqR1rrn9jV40qpiNZ6VCkVAc7n21dr/TTwNMDNN99c9d6g8wstLCTMVYJOmsO/9c7Peeudn+fdPnopnnd9PB5n//79HDhwgLvuuguAzZs3Mzo6SiQSIR6PQ4McHUcRxVz9Je1V4Nlzv+YH3/923u1jUQfHv5ixbiW/0dHR1FVGDjXzc11ZOD4zXEDC5uXE1Cg/+99/X3ZXfzCZtUYV5YjpA5gnKbV3DMVNk3osZmIwGh1n8vXxZXf12aZr/EvXPM0cpwAd2pxs5+fMFfDCQoyZU5MA/IbBnO1bbDyrzqXZ6+OJBPsHBqrkWP1mDZ89bV6cNlfAl+anYM58nS+O/iB3ezuYbqLHfDfxeJyBgQHuuece7tq/H8iK04/Gii+LNWixSV3lzwdMK9TEzEUc2zLz8ti/5tneJGI+1pJek3I8cOBArmM4XFpZrOGoGcFOcwvowswEC7YF/I3p/1x2+/nJWZvGQGY+ZsdpONzwspjC12JammKLMDdlWrvfn3hp2e2dWVMmJ8daiSeTDNx9d17HcF3ON0Vmvq2cX9vXR2zOtEQNn/4wlZA8m9s7VaqTrmtSA9CWl8IUxTzNp4AfAie01t91vfUccNC+Pgg8W1lSGofWmvvuu4+dO3fy4IMPptffeeedHDp0CICJiQlYpY7F+B06dIgeO1nkaqRYR+BSY1JYOV6PU/C+o9aa+++/n+uvv97TZbEYR1Z5WVzJcTXHKSw57sxyvOOOOzzjWE2Kuc33e8CXgduVUu/YZR/wCLBXKXUS+Jz9d93pDGhwlFmKYNEfy1n3yiuvcPjwYV566SV27drFrl27OHLkCA899BDPP/88fX19zJi5/hri6PNp4gtB4gvBorbXykFpP0qb/hvF+L3wwgupfgx1QyuFtlcIM4mNzCQ2Fn6M2U2ywyyWV14tzhH7MEW9cDvqVmUWv0b7V75QSyYDJJOB9FfS7HEK4GvT+No0TsDBCTgrbu/YxYfGh14VjspnlmRQkwwu28Mhh7aWBEMn3uXw4cMcPXqU3bt354/TF+tfFjOwAadbAuiWwIqDM6a+gYVAkoVAMp2HR48ezZ+H113HCy++CEWWxaqNDZkHpX0o7QOV3dKdnwWdYEEnePW1X2Tk4+7du3McGx2nKZRWKK1Iboyh7X+FcJSDoxyGz7/Lfyzn+MILXFeWJXNrcwAABPdJREFUY20H5/V3BFl0NItOKirzu6a+hySK1kSU1kS08g9Pje9Sj+Wmm27SDcNxzKKdsna3aW8iR8e1pFbV3nE156HWWgNv6qZxbEwe6lWej83p6PWyWMivPM/mKot5qNCxuePULk6epVhXxynRsfzzdnkU4biCr1OCo4yALgiCIAiCUAGrcG6+Mmm6ub8qpeBgI97Ec3555kgrNBeWV/BcPkJOfnkuH7Pnvste70E86Zgdpzr/+qIOVeo+9f4eU0MqFLituYJDKYrSMiUIgiAIglABa6dlShCaGi9d/QrezU+veuWjnq41HJm0IOJYkBIefpCWKUEQBEEQhAqQypQgCIIgNJS11OK3iiih01Tdb/NprQtOJVDeQTP+kDHCfdZ75v0SP7/EcU6MI1S1gGQ7Qnq8kNzZmFyOxfYvLGEwl1r6ZfbJ1nk3gdr6mc1THW1VUYdf2tH+ye77qJbSkBrS2Z2HeUkfQ6WPmZOOjLgo3dFkYw3j1OWdtcnS+5D+wvI6uvdbjfno2tUcU1UtH9N+WZP5Zhw3n3Se80n6hdZZ76mi/JZQmcfL+bwy87AYx8wTZM6qpffKy8MlCjmWPjCWzorrnN8oneuhlU7HZb5PLPCVFE3aMn2wcnLQvat7Pr3cY9d0KPgaIy1TgiAIgiAIFaCya8Q1/TClLgDzwMW6fWj5bCQznVdrra9YaSel1Czwfs1SVV1KdlzleQjedyw2TteCo5TF5kHK4jKsEUdPl0Woc2UKQCn1ptb65rp+aBmUm87V4gfed6wkneLYPHg9TsH7jhKntdu3nng9TqH8tMptPkEQBEEQhAqQypQgCIIgCEIFNKIy9XQDPrMcyk3navED7ztWkk5xbB68HqfgfUeJ09rtW0+8HqdQZlrr3mdKEARBEATBS8htPkEQBEEQhAqoW2VKKfV5pdT7SqkPlFIP1etzV0IpdaVS6qhSalApdVwp9YBd/7BSakQp9Y5d9hVxLHFsENVybFY/8L6jxKk4Zh3H0352H3FsENV0BMzIq7VeAD9wCrgWCALvAv31+Owi0hYBPmlfdwFDQD/wMPDX4rh2HJvZby04SpyK41rxE0fvOKaWerVMfQr4QGt9Wmu9CPwY+EKdPrsgWutRrfVb9vUscALYWsahxLGBVMmxaf3A+44SpyXhdUev+4E4NpQqOgL1u823FTjr+vc5Kkh0rVBKbQd2A6/bVX+plPqVUurflFLrV9hdHJuEChxXhR9431HidM07et0PxLFpqNARkA7oaZRSIeAZ4Ota6xngX4AdwC5gFHisgcmrCuIojqsBr/uBOOIBR6/7gThSgmO9KlMjwJWuf2+z65oCpVQL5sv8kdb6JwBa63GtdVJr7QDfxzRXFkIcG0wVHJvaD7zvKHEqjhav+4E4NpwqOQL1q0y9AfQppa5RSgWBPwGeq9NnF0QppYAfAie01t91rY+4NvsicGyFQ4ljA6mSY9P6gfcdJU7TiKP3/UAcG0oVHQ2l9lgvdwH2YXrLnwK+Va/PLSJdnwE08CvgHbvsAw4D79n1zwERcfS+Y7P6rQVHiVNxXEt+4ugdR621jIAuCIIgCIJQCdIBXRAEQRAEoQKkMiUIgiAIglABUpkSBEEQBEGoAKlMCYIgCIIgVIBUpgRBEARBECpAKlOCIAiCIAgVIJUpQRAEQRCECpDKlCAIgiAIQgX8P8z6ZLgMGu6CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 76%|███████▌ | 151/200 [09:07<02:57, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 151 Train loss: 2065.1667\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 152/200 [09:10<02:53, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 152 Train loss: 2061.5811\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▋ | 153/200 [09:14<02:50, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 153 Train loss: 2064.1517\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 154/200 [09:17<02:46, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 154 Train loss: 2077.5969\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 155/200 [09:21<02:43, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 155 Train loss: 2072.4356\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 156/200 [09:25<02:39, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 156 Train loss: 2047.8531\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 157/200 [09:28<02:35, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 157 Train loss: 2061.1302\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▉ | 158/200 [09:32<02:32, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 158 Train loss: 2069.8052\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|███████▉ | 159/200 [09:36<02:28, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 159 Train loss: 2069.3980\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 160/200 [09:39<02:24, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 160 Train loss: 2065.0577\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 161/200 [09:43<02:21, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 161 Train loss: 2066.5313\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 162/200 [09:46<02:17, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 162 Train loss: 2059.9744\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▏ | 163/200 [09:50<02:14, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 163 Train loss: 2054.1571\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▏ | 164/200 [09:54<02:10, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 164 Train loss: 2056.8596\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▎ | 165/200 [09:57<02:06, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 165 Train loss: 2045.7509\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 166/200 [10:01<02:03, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 166 Train loss: 2044.3063\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▎ | 167/200 [10:04<01:59, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 167 Train loss: 2059.9163\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 168/200 [10:08<01:55, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 168 Train loss: 2055.8316\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 169/200 [10:12<01:52, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 169 Train loss: 2054.1673\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 85%|████████▌ | 170/200 [10:15<01:48, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 170 Train loss: 2057.5113\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 171/200 [10:19<01:45, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 171 Train loss: 2039.2451\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 172/200 [10:22<01:41, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 172 Train loss: 2048.7624\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▋ | 173/200 [10:26<01:37, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 173 Train loss: 2038.8059\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 174/200 [10:30<01:34, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 174 Train loss: 2045.0179\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 175/200 [10:33<01:30, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 175 Train loss: 2051.1847\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 176/200 [10:37<01:26, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 176 Train loss: 2047.7569\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 177/200 [10:41<01:23, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 177 Train loss: 2054.5523\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▉ | 178/200 [10:44<01:19, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 178 Train loss: 2054.5020\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 179/200 [10:48<01:16, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 179 Train loss: 2039.3899\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 180/200 [10:51<01:12, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 180 Train loss: 2031.6774\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 181/200 [10:55<01:08, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 181 Train loss: 2032.9211\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 182/200 [10:59<01:05, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 182 Train loss: 2044.1339\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 183/200 [11:02<01:01, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 183 Train loss: 2031.1374\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 184/200 [11:06<00:57, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 184 Train loss: 2026.4737\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▎| 185/200 [11:10<00:54, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 185 Train loss: 2011.9869\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 186/200 [11:13<00:50, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 186 Train loss: 2016.1472\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▎| 187/200 [11:17<00:47, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 187 Train loss: 2029.9464\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 188/200 [11:20<00:43, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 188 Train loss: 2050.0365\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 189/200 [11:24<00:39, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 189 Train loss: 2049.2701\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 190/200 [11:28<00:36, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 190 Train loss: 2027.0438\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▌| 191/200 [11:31<00:32, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 191 Train loss: 2032.3673\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▌| 192/200 [11:35<00:28, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 192 Train loss: 2024.0881\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▋| 193/200 [11:38<00:25, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 193 Train loss: 2026.0871\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 194/200 [11:42<00:21, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 194 Train loss: 2024.8037\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 195/200 [11:46<00:18, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 195 Train loss: 2015.4725\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 196/200 [11:49<00:14, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 196 Train loss: 2007.3981\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 197/200 [11:53<00:10, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 197 Train loss: 2016.8807\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 198/200 [11:57<00:07, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 198 Train loss: 2011.6728\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 199/200 [12:00<00:03, 3.62s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 199 Train loss: 2007.1013\n", + "Epoch: 200 Train loss: 2017.4889\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAADFCAYAAABw4XefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXuwJMd13vnLquru+5zXneHMYPAYgB6QGBAiiQcp017ZFAyRhmJJhUhv0JZlrEwt7V1pVw5KDJHSxi5sr0Su1qRJG4qwSUgOhL2ylqIUhlYPypRErmTJlAGQFGWA4gxBDDSYF+Zx78x99aOqzv6RmdXV3dXd1d23u6vv5DdRU32rs7Ly63MyK/PkyZNKRHBwcHBwcHBwcBgO3rQL4ODg4ODg4OAwy3CdKQcHBwcHBweHEeA6Uw4ODg4ODg4OI8B1phwcHBwcHBwcRoDrTDk4ODg4ODg4jADXmXJwcHBwcHBwGAGuM+Xg4ODg4ODgMAJG6kwppd6plPqmUupbSqkP71ShigTHcfax2/mB47hbsNs57nZ+4DjetBCRoQ7AB14E7gLKwJ8CJ4fNr4iH4zj7x27n5zhOv2yOo+PnOO4ujsMcyvw4A0Mp9ZeBx0XkHebvj5jO2Ue73XPw4EE5fvz4UM+bBjY2Nrhw4QInTpzgzJkzXL169afg5uY4y/wAnnvuuU3gZ25mGYLjWES4utiJWebo9LSJWeOYxpkzZ7hy5Yrqly4Y4RnHgLOpv18B3tqeSCn1AeADALfffjvPPPOMvt6WbvhNbTLuFEDZ64PNZKbL9bnPfY7f/vznefLJJ3nooYe4evVqLo7PPvMMqKzfXpLTpDfxUZBZps997nN8/vOf5zOf+UxXjgPzA4bsow8NXZzu/J78zGd0Os97Fa27bfe3cXz22RxP1STHzbX5U2fX54Tjk5/hwQd3Qk/TmBDH5MOkOUohdfXBvHVxAD1NNzo7Sbmf7CzSMtTJd74ujp9jx4cWDK2nheKYX447z9FiPO+SvBzTePDBB3OlG7sDuoh8WkQeFJEHDx06BIBSSpNJHcoeAz9BdR5Koanlo6doFiWzXINy7CqoZvnsv3Eh+TXSvHql7/H9wPxolec4WHbw6/eUZsJMZOlp3lIMr7s9clbt3PLk3jtNfjm25zkBjn3k01qe7hicY4pb3iIMiKauKlPPcuhqF4yipy3tWv9S5Mt5INm1lacLis1xTHUxX0nYaY7pdnQ4OXbHcBw7SjZljvkximXqHHBb6u9bzbUZRecPfOzYMc6ePZv+auc4mjxV52Bjh9FbcRKOTcyYHAfmV2YW+Am5K/3MyrBoHKe85/vk5DgdojNbFwfAzNXFPpa2LNwMHIfBKJapZ4ATSqk7lVJl4H3Ar+9MsYqBhx56iNOnT/PSSy8RxzE4jjOHNL96vQ5wgF3ED3a/DMFx3A1wdXF34GbgOAyGtkyJSKiU+lHgd9De/b8oIs/3u6/7QFRS/2d9HQMQxzpFFNYBqG5c59ql8zrvQF/bv3InlcUlADxPU/QC3/zt095DFUAlT25+FwQBTzzxBO94xzt5+eWXAT6bh2MeZDr+m2tiOMaR5lPbuk5t/bopaw2AhX234pXKAPhBSZfc031jzwuav6PJU88Wdf74TY7v2FGO2QsbDL9IyzIMtwHYvr7G9tpFAGr1DQD2H76LYGEvAKWgonkFRpZ+Br8uU31pflEUAVwbqwzbyhVHWl6b115la03raXX1GgD777ibuX1HASiV5zQPI0NBdTgLdJuKHZcMNY3+Vow41By31i6zeeUv9Of1VQAO3nEv8/uPAOAHWl+VshwpPkex7Y3leJXNq68AUGtoXV255fXM7VkBwPN0XfR8O05VQ+nq+OtiW5o4AqBR3aCxegmA0AsBWNx/B77RT9uGJDLUQtTXbGY5ZLjTdTFpO3slMRzrWzfYvvyS/mzq5/6jJwkWlk3xbflVKuvBOe60ng7CsbaxyvY1XRdr26ZNPXYv5aV9uvi2nRHLo5lrPx/NsXLM4aOZcNxco3pVW8hq2+sA7L/1XkqL+r3RbGcG5zgMRvKZEpHfEpG7ReS1IvIzO1WoIuHRRx/l1KlT3HfffTiOswnL78UXXwS4OO3yjAO7XYbgOO4GuLq4O3AzcBwUo/hMDQWRLp36zJ6otdRExA0zcgqrAITmvLW1ShxuAVCOdd9QRQJ65JP0vG32EqikV97SK+00TI0PGd1uiRspjnq0lFhu1laJlLZSlYxVRxqhNdYR1XV6jIWqVJlH+RMXbRNZw4o4JGrokW61egOAqL4JQG19nTqajBeWTHofFRuuxgoZm3w9pcDz257JZGTXE5JY3SKrpw0tw6heJW7/WcRvjpkMV0tCeVMn0wUCcau1Jmzo+hfWtrE0vNDwED9V+aSZB4zNEXQwZFmI40QejZrW0YbV1c3rNMzI2KvpOqZir5Oj9OA4dV1tyrBuRvTh9pr+e/06odLcg9jUsb2SsnC3jfJT/CbZhLYj+/Whr4Z1o5/but2p3VilXtP1U0VZTqs9nOP7phgfenGMTDtjOdavrxLWdLupwtCkjVP3mXOWek6xemZPaBiORo6NqpXjNcKaefc1wpa0eZ+zkxzddjIODg4ODg4ODiNgiuaLVmT2JxPLRITEDX0tNBYM0f3AshegjE9NmFgFasSRnuNvGmjSVqgBR1U7HIimJTc7Dx5FxMaaEdXNyNdYJyrlCvG2sc6YUXEcVlH+gim08QfDN1nGKDsKSfmnTGqgIRl/SSxIrEcPSqzvk5FRqUalZkYdseEZbQKLOgvf8LPCzBhOTH6w383nzY7+rP+atrT5foDf0N8lspF6897EF6UHi65m3TEh068v+Q/7i1uOgR/gG33zlPV9qGfIpUgcM/4QSfwykDaOQUDFcGx4xvod15N7x+GLMRqyrMQxcajb09joopi6pYI5fGMBQJk0UQ2firlmMykKP8h+e6RkaKCM5d4LSokvrUS6TRJppN4L07Q/dUMXH1Rps2iXtJxUpQJbxm/TyljCZj5FopYgJ0frQ+uXm6vilZ2BSsl8whwL05lqRasTWowgtpWyjuTmR1NeiWheN27htjH1eZ4+aDqhqZQNrllVxlVpur3au3fKBEkK6ZdNw2ymLSNPEZc170ZVd7jKKJTpRKnAPMtL59bmMDktJFZ0Saaugooud2ym9ELfg4rpEBt+EnpN2SX+oOlpoik3eJmiVEmZPd9OQ5oq5nlQ0nwj25eKveQ3mbqcBoHt+BmOynTi8f1k9BLazlRMWoDmVJyXVWZfCpoc7aIHzEDA85CS4Viz7VSqvuegNNGOf2Z/WBIZ+LYTFWndlBJIpOUZmQUwekFMW4kLJMNu72ArQ9sRFt/IMPAS3Q0bevpWYikElYGR1EWjp7E5eyTvhygyhogsORYJ3V6PbRx9yzHwUEp/jsUObOKMDCYDN83n4ODg4ODg4DACpmSZksyPzWv2opkWUSpxJFd2yXlsl4kKUtU978Cabqnj++0jqabjZO84zp0jrp2a5MueLTRO1V4ApszSMFNdyvS2PY+4pkdVfmneXBO8krXcWOuHsRQoDyWdVgC7RLrnVFI+JmSNcDKXYFujmecT22kha5nBjJiUT8M6hAZmWjIAz7fO2CnrTnvGrQUwX41x9NVreXJqybtKpu30V77nE5mpFUrm7qBpfUsS9poBY5zW1PSDenFshmyw9Sg5K4hqdqRvLIxKOgxTPR/NTnMcXFcVKrESe8n0QaLIxNax146GVZSk67RQ9bNSj0eOvUKTKOWBsdYo1ZquEQthTS+lt0NtkcZg03sTmqrtGfJBNfVS0nJFyzI2iyaw051xPfVeKA7H3uEQVOqTrYPNcABN1xj97ojTU2C59G5Clqy8HNvDcqCIY+2Abhf8xFF9wKn2nePoLFMODg4ODg4ODiNgSpapVE8wcz8Va5Hwk7+scSLxBRLriC7gaUdmifRow0dQWF8pc7Z/tzy/y7Ll9iLmZNWSR8ZNbYuKzcXmiNdMcevl5IAKjT+DgNiAh2bE70ncwdFLrBxep5/KBJDJr+kh2PQPMn5vKrYBDhXKOKOLcUQnDlM+U4Zf0vef4rx/Nsnml8nP3mY19JvWAOrGty+OUiPK/vIqjHeVUi3nxHfP80FpjrHhKFFEs+RF55iyKiW+lpabXUjgJ3KMjQVZwrgzj6Qd6cZlvBx710VSfijW303raeD5NGxja6w3aRl2PmF66FkV0xYN+w4wvHzPA6yemmDIxhF94IdPG8n7o/Wd6fulRKZiQyNE0YDFLgjJtjaVhGPQtFIZa3EcNgY0+u4cx+lN80kPElZBJNW0qnZToP3k4Yk29TXCZpT0ZqcrSdbMu5d5didMtwNlYTl6SWGTKUzrTBcKUtURpeNQE4kX44Sjl5qCANt4dBZiqmF9lJdu3vT/1kFUPFSoY4c0qjpeShyHzWnJ5LbWl3hL9l2u7zx6N+Edv7vlqAKU6JdT3cQsEmldbdT/0RMSYFL/+nBsk4fnBckcbmg6GhSVY0+oVBNkV2U2O8d6VRTUTYybOK6n6qLNokeHceocFc0pEyM768CsAlQSKVzra9SoNVdUqe6TGR31dMzo636hUm0r6U5VOWkrGyY+U9xopNwgemSZ8Wm86Nfe2FSt7wDPKyXvz7BmOEZhrn7G1NWzA6262pRjKVmYFkZmmq+R8d7IynEMHN00n4ODg4ODg4PDCJiOZSo9Ddarw20Hvh4Q6z98Y5aOzFQYnp/ESLEO6+J5aa/Dtsyyu6Q72lEdxqdNNXvedrlyZEb1sVJEZvrExtfCUwnHdgfL7g/fIZZD++y1mqITM7RfIrJxbIyFSqS5VFmSEeaYLYoDQNFHdRNneZPKLxGjp2rFROsV0lbSwg0H+3NMTVEDKL+EMnoqbXGMioa+zU/S9phpBBsGIgiSGEXKTA3FcTT1SB0DQ7XWxWTHhFJAbOun2UUijmv51nZMmHs+mw2pqTATVqdUarZBdneFuJ51Z8ezJi7fTDeYrHRey1mVymBD5hgnbWtR7ZpFxqdCoc0BXZVKiYtB0t4Yrl2zyPi0U3CWKQcHBwcHBweHETAdy5Tq/NyzA66awQ19O0QyI0U/CCDWc8INEzk8rNeITFgBD7sEeIAytWHg0AjdHpZYWKQ1QKAtQOJYZ2MH2BEVhLWr+nO8BMBcFCWhFLzESbaXn8agJHpgKH7N763/STK/HwREZs67WtMOoeF2rTnK6hE2YGrz+0olYTp6OcA2fVJ8xPgTVavaFyWuh6kRZbccmB7J3BxtoNISsanI1ar2Cwtr9WZYgalw7K+r2a5hKX9Nmos7fK9MbAJ4Vrc1x3q11gwqnOWr2KcoY0Fefqq1DfGDcjLKr5l93iqbW/RqBacW9b0vxyQh0Gx3/GAusTjavTMb1c3evjbTa2jM47u0qe2pk7oYJL5ijZrZf7HW22ozzXYG8svRys73y8k7s2H3X6xu9TYSj5Gjs0w5ODg4ODg4OIyA6YdGaDNNpTrgbbeYXqlddWIue15AbPZwU/EVQK+SUnZnmVL7iLHbyLGHVafrN8OitzeKDR3gifaxicWnIZpjZcsux26AnQK3HDv8xKY1auzjbZOyZAD4foXAhLdgy/i9qUaygihr9VMh5vdVm+aIdLK2+yYGZQIjT+y2RyqiZ4DKIiyrSVsb6bLALyXPsg2cW9PWDaGBonVvraz8pwfV5Jb5tR0N2y0sSpR8I8e63cKimgTw7PKI9g8TRD9+bXUxmKc8pwMDbxlDRhStp/a5K2c+Y7rowzFJ1uRaKuv2Jo7MCupwm+a+mu25FwGq+Y40V3rXxTKBCTcTN4xvbdSgfyCJaWJAOQaVRI7S0PoZhZtMS44F2psv1anqbcc0H3SiKIpgW0fsrZkloIvb6537ufV6IU+jQe/5kmrt+MW1beSG7ijeMM7L87W9tAfPnn4nKoVcL+Gm2VYpMwUW62m+eGu9GVcqi8LUX8IZ6NGHVMrDrh3Yjq4BENVqdDMOF49eyhTfLYXng4mH1jAx3+LtauIk2pG+KBxz6ao+eX6AZzZarUe6vYk210mEq7JumzJRy69fZHt0Z9E3L+EwNuFKrvuo5P3U2vmfKRnaMvtBspOE3X8w3FxtcmxX16JwbHO57zVkVZ6PV9F1sR5pOYa1ax2LeKb9muhAmxzJ7A7Y94ZPUF4AIBI9eIuqG83dP7JvGxvcNJ+Dg4ODg4ODwwgokGXKIp+pL4m67Pv4e/cAEK9pR7tqqJoBEXsEmcs9rBprj7Z1tJG+ll4CyuIKAN5Fw7HeYE+v6ZPiDDXM/1lTYHY0HFBa3Kcv1fR0Q63RQFTUkgeZfxUJ3XVXeR6lip6qZcNYHONG03KakVch0cMpXXke5QXDsaZ1M4rCGeLYy/pmrRo+5cVlADwTXHe71oAuuloo9AzGahdKBJSXdV30Qm3Z2F6vEZt9ND3mM+8rDvJYUD1KS/qdUTIhWaqbtaS96eVUUAw03Tl61cXKwl4Aytv6XRluhc1g1iZd085YUI693GE8j5Kpi5VYW1PrG9sIVo6lLnmOB84y5eDg4ODg4OAwAiZumcplDOo5b9qcLwWolAOumP3qLq5fAOCWOUEFrelask8+5Yy0N3BshMGhlOrYPds62y/MBVys6GXYZ8JvA/C6qocKWgO1NfMaf3kHhmqOfZq7vesrpVKJYE6Pgi/XtQzVlQp3JLJrd0QpIkGDLv4pnu9TWtCjpzXRPlONRqNDP4tMLUEXjsr3CCracnHD+GmsbNc6fKYKzzGlq+110vN9yvPaT2MrNH5h117tbgEvINmWBR0dMvSpLGnLVLxHj+w3Ll5A4taAj8Vj1YYeMkR5lOa0BTWuaN3cvHKpw2JXeI7Q3VdMeZQWtNUmnNNp1tcuc0u7lb+A+tmCtByzOM7pUEHxvH5Xbl4+1/G+nhTFyU/zDRQ9u4epz/5CpTKVkp4Cm6vqilGN6kjdNG7zvR5WhGm+jOckymJWYczNs8hhAPbdOA9ArRFDaF5S7dbMoSOUTwleQKmyH4D5mn5R1aqbEBkZtvObBXTI0sMv6amFObMiKq5vZPTnZ0hwHdVT4Zd141Y2OxRE9WuzFx28F5SHV9Yv4pLS5/rW9eYWhEZXZ4ZqhgyVWUQwXzoCwOrm80RmdWZpYbLF2xFkdP7txtWV+YMArJ8/TWz2dvVmsb2hrVMFKLPqtFzWnePoxvlc+9YVFxkcjbDmlvT7cfPct5DIuL9MWI5ums/BwcHBwcHBYQQU0AE9jf6O6GEUsWgc7by9+rx/8SCxnQLL2FQqGSjn2nCqTwF2Ej2W1e87fAyAV46cAeA1e25JosBnZTNLIw9BmFvQQ96KWUywUGoQGcflTpYzwFA6raoVM7XgRXbXczpo5FXJQiCDY1DSU5k2RloYb3WEP5sljllVMjChEeb2HQCgeuNlQuP0GrTdpwqvq50ytNOyi7e+Rn/zZzWqNR1+Zs5YyGfR2NgafUbXwYXXHAUg+q9V6qEOrBWw1JJ+ljimkbjCrBwCYO3Fl5K9Mm2bmliqZqEyWqRV1pR78Yh+P577yhqNSMvRR79TJtXeOMuUg4ODg4ODg8MI6NuZUkrdppT6olLqBaXU80qpHzPXDyilvqCUOm3O+/M8cCAjj/S6QX/pqwqe18DzGhw9sMLRAyt4pTk8BA+BONZHj+zPnj3L29/+dk6ePMm9997Lpz71KQCuXbvGI488wom77+bUqVPk5TgsutEN/CXK5YhyOeJ1t97F6269i/LifpQnKK/LDySSdMn78jtxgkceeYQw7L2r+Lig8FAqQqmIgyvHOLhyjAbgieBlLePOuJSXI1mGrjFAlCBtIQGUF6G8iKW9e1jau4e40Rk1WyHNhRdtyMNxEnpqkcnRyHFxaYnFpSVq6xvdFXtIOU6SYzZiIGbvvkPs3XeI2nYNFUaoMCMKehvHotdFDS2wheVjLCwfQ80vINuvItuvtrQrOmmnEItWFy0U7YuPhPnlI8wvHyH0Pait66MdM6unmuPS/ltZ2n+r3ksyCvWRA4XlmNGeWDnGXglqN/SRdd8YkccyFQI/LiInge8EfkQpdRL4MPB7InIC+D3z90wiCAI+/vGP88ILL/DlL3+Zn//5n+eFF17gYx/7GA8//DCnT51iz549MKMc+/I7fZqHH36YixcvTruoQyMvR+DItMs6LPJwnGU9hd3P0dVFVxdnBTcDx51EX58pEbkAXDCf15VS3wCOAe8G/rpJ9hTwJeAn++U3yLxlVkdyfUNvN/IvnvxFAD75cx+j4ukR4R3H7gfg0BuO8MqffQOArUBTfPyn/hkA73nnd+IHrQOio0eOcPSonjtfXl7mnnvu4dy5czz99NN86UtfQoCVlRXOnTv3fXk4DgNJjfDW1q8C8C+f/H8A+Ll/+hH8WK+m2bt4mz6/4SBc0EuzX/PX3gjAv/7QxwF47e0rLT4bR4/25gfw2GOP8fjjj4+DWgJpG8V+/RvPA/CW+x/EM8uh7n39AwB89/f9IN//o/cB8OrlywB8x31avv/5j38fzzd+R0ahjh49movjRz7ykcmMogzVd73nXQD8xn/4DebLWhff/Tc/AsDinmd56rv+FtA0nj717z8LwA+89/s6/BjycBy3nrbAcPwX//oTAPyj/+lDVIyv4nu+938B4K57Xs9f+dvaB6VR1zr83/33jwHwS08+2REssHAcDTY29Ej34KHDel9M4L7XvQGAv/XDP8373/hXAXj5lRcB2LtfL0u/cPYcfknLXSmVW0/HXRcTtNXJt7/tv+EP/uSPAKhU9HKof/jDP8u5X9Jt0a//wSMAhA0djuY3f/u3+Z6/oa8VtS62tzuvOfgarl7T23MtL+pQHj/2j/4VP/03fwKAP/zT3zA3agvOxVcusnJYr/obhOMk9dRyFNOQlCsV4ki3qbes6NXuP/ITv8B7j+t3xflXXwIgMO/C7a1tfOtnTDE5toe4OLB/hbXrqwAszms/xg//5L/jpx/5cQD+09f/X3Ob/h1ePX+eA6/RfoDj8BEbyAFdKXUceDPwJ8Bh09ECuAjGM7EfBvDHzAqMEJjlnttV/SMqX/BjE73XOIFGV6pEW1oxZElTDExkbeX1fviZM2f46le/ylvf+lYuXbqklUmEQHfK8nEcEWVfOypvbr0CgKfAi7XSB0YxwnNCvao5xhd1g1Bq9N+ENJMfcOTIkYlPLcTmpYSKEyFHW7oMCxs3WDAdyNjINQybL6Ve6MWRCS+6iIxTK5BSZH1tX3mbkrlWNV8uqkqufLtxnKSeJmjY5daSRFjerOuO/n5vk3lzrW7OC1E+V81CcTT1SIgTMW5u6H3dljY32efrffpeMlG0Y1Nfe40ei1QXE3jNqcoo1Ew31q6xGOjYaGJ2VxezqqDeqPfMrgh1sf09Eppo7gANM9UeX7/KcmnVXDUbWCcbMg7X3kxFT22Q+9Rbs1rVfJY3rrPH1/XyfLK4y+620ToJ2o5CcGwTpN2PDyBsmB0X1i6zp6SNEWI3W0xWwIx3Vjm3A7pSagn4VeAfiUjLhKTobnHmjKRS6gNKqWeVUs9eNhaGomJjY4P3vOc9fPKTn7TmywTmBT7THHPwy8Ss8APHcTfoKex+jk5PbxqOM62ncHNw3BGISN8DHf7qd4APpq59EzhqPh8FvtkvnwceeEBEYsmNOBaJY4lTx/Wr1+X61evylkfeLW955N0SlAIBZQ7rmqbE933xfV9WDh2TlUPH5N999pfl3332lyWMGi35xbEuT71el+/5nu+Rj3/848nj7777bjl//rxIHMt3fMd3SH6OgyNdntUrq7J6ZVUO3vVmOXjXmwWV5tY8lFKilJL9h26T/Yduk69/7Svy9a99pY2bPnryE5Hz589LpVKRcfFr5xjHsfzCv/8N+YV//xuiuvBr53n3vffI3ffeI1EctcjOIg9HoDpOjvb3tuV7w9sekje87aGe/KzOgpJfevpX5Jee/pUObnk5jltPW5gajv/0E/9M/ukn/lkOjvp439//IXnf3/+hmeK4enlVVi+viu/7uTju2btX9uzd29Le5OU3ibrYJKgPW8aTD96fW46AfPbpXy1wXbQcW98jew/szcfPrAa5euPyUBynoadhI5SwEfZtU+3heZ54nidRHCW6UFSO7bq6tLw4kK6url/NlGM/mLL37SflWc2ngF8AviEin0h99evAY+bzY8DT/fIqKkSE97///dxzzz188IMfTK6/613v4qmnngLg6tWrMKMc8/B76qmn2Ldv37SKODLycgTWplPC0bHb9RR2P0dXF11dnBXcDBx3Enmm+f4K8IPAdyulvmaOR4GPAY8opU4Df8P83RdZK927pqXTfuiXYvxSTImIElEy89uasvlZpIZIjaULCyxdWEBJp3n5j/7oj/i3//bf8vu///u86U1v4k1vehO/9Vu/xYc//GG+8IUvcOLuu7lx4wZ5OY6KSkmolIQ5YubIDuuQhkSbSLTJwqllFk4tt32r+KM/+uPe/E6c4Hd/93etH8PEUApiSkHcIeN22J5/bH4RlXFDXxkajpjFFONDq++B2tBHf2gd9jcr+JvZflN5OE5STy38eoRfzwgL0AWluEIpni2OUtJHf23ViJRPpPyO9iavnk6sLra5yswN0kAD5bBzf5ni1MVsRHlV1bxW/LDTtauoeoqnj7xStOY3JXToQuE4tpUv6v9qbIEXjTkSRx7z1U4dA0/ztSCx8XU92qeRuh1Ne2aGXbPLo/Oa+nbEnJnFuRf/9u+G/I3zcNxZfhlIc9hhfiIiwLMybY6D6N6AmI6eZqBddjvItZAcd2Nd7IVdUxd7IOE4HAqjp2OE4zjANJ+Dg4ODg4ODg0N3TGFvvmHjO9jljRkGzAEs03rxwYBlmNq2RW2bmkGKv6KD+Cztr9QNaQ7JR+n8bqaxW3j0wK6RVQ/cFLraBbudH9wcHB12DM4y5eDg4ODg4OAwAqZgmbKebsMi415jrVEd4dlSH0d55IBOmeOF6vJ5N+Nm4ekw+3C66uBwM8JZphwcHBwcHBwcRsDELVMi45iKbs8wy5dhB7N3cHBwcHBwcDCYwjSfDsewm5HwM73GrL5Y5uyj2JO0fLczv1ZqS9m2jCUtP0AaAAAgAElEQVT9Rw6I6B2dpAe/7BtbTqnySMd3fZGsRzB7pqnu5RBADahzIjKWzTC7P7DlxDDrJAZVlLFwbC+D6vxu4hxh8BGcLWvGGhA77d9jKUgrbD1J5blTuur0dAy4GTh2FIDdyzFdzjFydNN8Dg4ODg4ODg4jQE3SSqSUugxsAlcm9tDhcZDWct4hIof63aSUWkfvWzgLGJjjjMsQdj/HvHp6M3B0dbE4cHWxC24Sjru6LsKEO1MASqlnReTBiT50CAxbzlnhB7uf4yjldByLg92up7D7OTo9Hd+9k8Ru11MYvqxums/BwcHBwcHBYQS4zpSDg4ODg4ODwwiYRmfq01N45jAYtpyzwg92P8dRyuk4Fge7XU9h93N0ejq+eyeJ3a6nMGRZJ+4z5eDg4ODg4OCwm+Cm+RwcHBwcHBwcRsBInSml1DuVUt9USn1LKfXhnUo7SSilblNKfVEp9YJS6nml1I+Z648rpc4ppV5USlWVUucdx5nleMXwqyml/k2ffArJD3Y/R6enNwVHp6eteTmOU0IOjl8zx6O5MhSRoQ7AB14E7gLKwJ8CJ0dNO+kDOArcbz4vA6eAk8DjwIccx5nn+I/RMUNmmt/NwPEm19ObgaPTU8dxVjj+xKD5jWKZegvwLRH5tojUgV8G3r0DaScKEbkgIl8xn9eBbwDHzNe34zimMYscjwFXZ50f7H6ON7mewu7n6PS0FY7jFNGH48AY2gFdKfVe4J0i8sPm7x8E3ioiP9ot7crKyvuPHz8+bFknjtXVVa5fv87x48c5c+YMV69e/Xvc5BxXVlZ+ZVb5ATz33HMbwFO7XIb/ELhvl3N0ddHVxcLB6WkrZpVjGmfOnOHKlSt9d/Ub+0bHSqkPAD8J7FlcXOTZZ58dLiMZdDvebuWBvLsdfu5zn+Pzn/88Tz75JA8++CBXr17tkmcxOLZuZLxzHA2/DwD7R+Jnt1QekmCTX/7dKtP89K3Z9xZPhsNxNDL8O8CfdeS9UxzbdoIdlOsOcczOuzAcs3ZI7o1p1MVp8YMJ1EWLAevkMPppMXt6mhQo9z03A8c0HnwwXzD0Uab5zgG3pf6+1VxrgYh8Gvi7wFcOHeq7vU2hcOzYMc6ePZu+VGyOioG3OM/DUUQ+LTq8/t8diZ8wWm844ZcfGfzmmAkZ5kcGx9cxVo5DFLLldjVwwzb5ujgqx8Fvn2hdLAa/YtfFITB7enoz1MXBOQ6DUTpTzwAnlFJ3KqXKwPuAX++VdoRnTQUPPfQQp0+f5qWXXiKOY3Acn5lcyXYGaX71eh10rdztMqyw+zm6ujhjuEnrotPTGeQ4DIae5hORUCn1o8DvoD32f1FEnu+T9jdzZq5PvZJEDQCq69eorp4HoLa9AcD+W19PaXE/AMrT/UWlvFTWOud+5r8gCHjiiSd4xzvewcsvvwzw2R3jmGPKS+IIgPrmGluXzwBQ3boOwModb6K0tM8UP82tmbf+LvmU+YxBOeY1eabu6f6d4VfbuEZt9RX9efMGAPtuewOlRcPPs/wsh+H4RVEEcHmiMoxCAKob16ivXQSgvq057j32+iZH5ZscR+NoZPivdo5jcl/376yebqxSu27q4nVt+t97xxsoLR7Qpff8rnnttJ4Ow7Fnu5Po6ir1G4bjqt5Yfs8d91FaysOx9+h43HWxJz+JAd3W1K5rI0NtzfC7PcUvaWtG47fzdTG5UZ8yv2tyrF+/AEDtxjUA9tx2L4GpixiOWRV7p2U4Nj3dXKO2ZvT0hqmLt79hx+U4FY5Wjls3EjnWzXtxzy33EMwvGyLDcxwGI8WZEpHfEpG7ReS1IvIz/dKO8qxp4dFHH+XUqVPcd999OI6zCcvvxRdfhAxzdBq7RIYf6ZV2l3B0dXEGcRPWxZteT2eV46AYuwP6MMjujeqrjaq2PoXbawDUblwnDLWVyrM9UGn2Onv1PyVHmnEhe6CvL8aNGgBRfQvQI/6objiGca8Muj5nAlPGbc/NKJ+5FjWq+lwzslxfJQr1iErFNm3e5+jzpPmln5110cquUdVWqHC9qafEVob5Cj1djpkkgbSeburz9nWiMDQpsjj2qHEFqIxZTONQc4yNPKPtG8QNyzFquT/vc6ZQGfUp66uoDjT1Ndq6nvBTiQwHe840K2OmDLPam4bmjWok6XKVeooce1mHOzhurBIbjkqsPHM/SJ8LxjGqb+tzbR2A+voqYVXzFtu2TrEuuu1kHBwcHBwcHBxGQAEtU9kWDeuXYec6VWkOAC+oQlWPjCW2PiwN1MhBFMaJLmWTtuG5r8Xj+QEq8M1XZh6YKNW7HlMxdxqmvIkMg3LznPwkejQshJMu3Q5Akvl8KycVaD1V/jYq3jDJrGUjxXFWZAgpK5LlWDF/lpsyFivHaLAsd6yQ+dHLEm59S0jpamzbGaurKspV8Glx7MXPjqeV3+QnxnIaJ7ocFl49e3Js01OCCrHxW5S2dmfm0NbeYOtiUEasT6dpb7W+9n8vTrMuZsJwTPycrK76ZYQNm8j8n6+9GQeK15nqJmsb1sQvAeDH+kXklRSeuRYaE6dEpMx3hVGJHDCdDOPE6ok+K99LnLBjZV7AcTwdc/oosDL0TCfRM+ZnXyWcY9NpJpL0CoEJFjIvuihqoqeaox/rcxgoMDKMzMtKIqGY3PogkWObngYKJUZP7XR0LClnzxni2s4xNhw9lfARyzGSZtylWUHCz3Q0JMXPOtGHqbqYA4V7CbfL0LY7gcIzncjQcLQD8ZmDan1n+OYc+R4K06ZGTY4zp6cp2PdGk6Pq5DhFXXXTfA4ODg4ODg4OI6A4lqleSyGVQllztLImPzvd5RGF2jFN4oa5FtIcluR89iSsPHkj8drRhmqGdZBQOxNKXTvcxTKo6X0CVpC+/KxMWvmhFFFDyzAOjUOhigccRU3IytOToyKZNlGt00RKqSScR3IeeCpzUpasfiEfrPySob/52yc2U5hxbOQ4sNl9sta67g6vrSEqkqlpz0usp1G0nUpRTAzFz7Q1Uaid0nOuk5gCBtRTr9nuWL2Mo5rJI/XOKBJytqlNjl5yjs3sjXVOFymo60Q/jqrtveE1XV5i0W1p8t6QRsftk4KzTDk4ODg4ODg4jIDiWKb6ojly0mczf+p7YAIeRjVjvYkGHA0XZUBie96mQGJ4eb6fWOaG5lgEkl35BUnQypnmBykLp9XTJkc7apSGtVBFqVLnKX9BOFq0W6Z8H898jmtNjgNmulOl2xkkHK1PUZBciquGY1zQEX8etMvQ85v+mQPKsGCSa6Jdhn6QXJOh25sJoTOGb++Equkf5nkzwrEvWq1vYtvUIEh+nriqOcZRvro4Dl2dnc6UrRDS3qkqYzUtNFNFUVjPFW9isBfZTiBvzWjnWCK2TneRmeYLG4kJv9cM5UR91BMZDcbP80rJipPmdF+9ePzSD+zDMSlWWk/NPaGJ6SNRmMsRcvLrDGynV3JNYdmpTM8rI2Z6M4zNFFifxq25xmA6r2Kl8oWmsQ2555WSQkczwLE/v9YXlfJKicyjSOtpHPWeOpkev9w9DZ26RYb6cxg362Ivt+TCc0zWeBg5+qk2VcwUWFH1dND3hmq+F+0gIKmLNn5YzxwYC0c3zefg4ODg4ODgMAKKY5nK2wFP9mkzpr5SCXzjkGajL8fpkVSvUcZwRR0aykZo75eudSm5Ckp4yRTRgKOMKRjfFX0otk8tBKXUcmzjENpn6mSa/OxTe3P0Ws4qKCG+kaGJOi3S2+w+bY790eoYShCAlWMjH8fCUkvQ5vya4hjXrPPyrHOEZrypZl2M7fRQXGx+fesire0NQdOikehp3MdxeUY4JlYbv9Tc79MuXuo3HV10PW1zsldBCZW8+8003xTl6CxTDg4ODg4ODg4joDiWqaRnLUkXvPvycxJHV88vJ9caNR3VtrG93dsXZWrBLi1HcoVJsE7nnlfSoymgbvYnaphz95unOMxQCpWHn/Vh8EvJaL9u97IzISB6PWOqyM3R6mkJTEDL2obeV7KxXWAZmuerNj+GbqFLADzPB7MwpLF1DYCo3tuHYfrDYZWEsejZ7iQ+RQF4Nkiw3qk+bvRbjj1Njnn5mZPngw2CXNf8dCiPnl59O1HQ4ZGzLjb1NEiCPze2bHtT635b6v+pYQiOdgeNuon2HvXgaG4esZCjQaUc/Hq/F5u+b6IsR7MnYXUr8fTMZjM+js4y5eDg4ODg4OAwAgpkmbJQiW9RTxcjuxIsqFAq6/3P4obp1cZVVJe9lqY9Dk6QhAnoEXguZbkpmT2X7Nx+3Niit+1uysjFrzm/XzJ7n9m4cnFYo9D8YCCOaRnGdoAYbzMrHJM/JWuFX3MlWDtHibpbGNW0LW8JVOupJ8eAwOwNFtXNHnZxd+tbMTgOwM9P8Qt1qjiq022lWzH4kaqLBn30NDB7ZsaGo5gApb3ynjra2hskq/VoruYL7DujYfQ06vHOKCjH3m1qmZLZo9du7RQ3Npo3tVEaN8cCdqYgVeuTUzel8TwfvzQPQEP0hsfh9mr3sL0F0ZkmcixD93z88gIADRMrJKpuoNo4Ts2xviea07fdVr4qz8eraH71SMswqt5Ipjlbc6I4jVuC/jLUHHXFb4iZWqjNEkeDHtMNyvPwKrou1s0GpFF9k44X8LjLOCpycmxE6wDE9S1mimMvfiolw4bhV5sxftBXhr7lGGuOUf1GZxZjLeAoSL0fu7apHn7ZctQdxai6zuzIMV+b6pv3RiTaZSKsXad954xJcXTTfA4ODg4ODg4OI6CglimLZryErpETfJ/y4h4ASnXjjLZVR+wefl3zLBh6jhYVpflFACrGibmxXU1x9FvuK+bO4CoVm62VoVIe5fklAMp1nSispmU4I33+nqNhn/K81tNyzexYv1WbPY5ASpAd10sVraflbZ1Ghw/IE5q0YMjBsbRlONZrTZ+EWeHYlZ/XlKHl16hn8JsBnj04BnOa43xNvzOirSoZtXa85RsZ3dtUlKJk2tRKXb8fwq3ubgWFRS/Hey/FMdJW//r6NkLre3FSmKEW3MHBwcHBwcGheCi4Zcog5T/S3ktVyqO8oHunjbLukTauXOycNy36IAO6O98pRWDmhsXXaTZWL1NYZ9A+SPZYShwFVTJSbARahjeuXuRopwfhxMo4NNocYdMcy4vLAMR6EMWNa69y1Pq9qdb7ZwEdckQRzBnfvpJ2yl5fvczBdk4zyLG5ZFsRGCux5bixdoWVWdRVsviBb2RYS/E70MFvUiUcHVkcA2N9ixe09WL96iUO7QKO6broG44yr20m66uvcngW9bRbm0rzvaiW9Xnr6vmu948bs9GZSsP+sKmKoXy9amGucgiAzSvfRmLjvD5ZS98Ooa1TBUlclNLCfgC2r12cOYttO9JTt8qsIKrMaX7RxmVS/ZCZRRbH8txBABo3LnVbeDJTaHlXWY6Vffra9fMzOcvXgZQg9X6gUK7oaVvWL80+xxZ+uq0pl83LeOPClAq1w0grqolrN7d4BIDa1b+YfRnSSlGZmG/ledPerF3cdRytHCt7jgKwde40RIbkhOfd3DSfg4ODg4ODg8MImD3LlEHaKGP3klo49BoANs59jcjsQ+RhYm3MopWjxayh+73zB44BsHHpz4nMnmCBEaM1f87KdF/raNiMFPdr6+LaS99GZDqOhDuKDBnOHdB6unnlG8TGWdKfZY7phSKW4/IKANcv/VkqIvGM6GUmUhxNjLvy/F4ANm6c2QUD/jQ/rYuW39b62dlsP3tCE5k7qNvT6y/955Tj8i6xMRhhzRuOmxe+nrQ33m7haOS4cPQOAM7/l1VCE/ethLYgT0p5d8sv6uDg4ODg4OAwFcysZao1VIL+f2n/bQCcjRrJLtIYJ7wEwuwMH6Xzj4W9Zo5/exsVmnDhJtLtzCGD3+IBLcOLL3wRYhPF3hhtZs7yBj05vrK1hYqMDI1P3ExybCFp9HT/7QBcPvVlMBZGa5mbTWRwPHArANde+XozKvXMNC7t6OS3eEDL8MYLf74L+GVj3rwzqtVtMAGR7f6SuwULluPWFtj2xnLcJWKtLB7WH7wA6hvmol6YNimKfVs3pdRtSqkvKqVeUEo9r5T6MXP9gFLqC0qp0+a8f8xlHRvOnj3L29/+dk6ePMm9997Lpz71KQCuXbvGI488wokTJzh16hSzyjEPv0ceeYTQds5mEHk5wuzOp+12PYXdz9HVRVcXZwU3A8cdhYj0PICjwP3m8zJwCjgJ/BzwYXP9w8D/2S+vBx54QEZFHMfmiCSOIymXK6L05jFycO+yHNy7LD/70f8gJ+98i5y88y3ieYF4XiBB4EsQ+FLb2haJY30YnD9/Xp577jkREblx44acOHFCnn/+efnQhz4kH/3oR0VE5NixYzJpjlEUSRRFEvhBwvGW/Qfklv0H5P/6xG/L8VvukeO33CNKeaKUJ0EpkKAUSFhviEhsjnz8PvrRj8rhw4dlsvxCiaJQPM8T9ABCbjt4SG47eEj++b/4XTm8cpscXrkt4VcqBVIqBRJFUUeeeTkCFybB0eqY1VPP8xOOR/cfkKP7D8jHP/Ef5ejB43L04PGmDINAgiCQKAyH4jgNPQ0bDQkbjYQfIHcdvlXuOnyrfPJTX5Slhf2ytLBfdORHJaVySUrlksSpOlh0jtXqtlSr2y0c77ntbrnntrvliSf+QOYqizJXWUy+m5ufk7n5uQ6ORa2LW1ubsrW12cLv5O2vk5O3v04+9akvylxlQeYqCyl+8zI3Pz+0DCdaF9u4eqrZ3uxbWJB9CwvyyU/+gRzef1wO7z+e6Kny9DELdbHZ3hiOqTZ1ZWlZVpaW5Z9/8otyZOVOObJyp6CUoJR4niee580Gx4Sq5ri0uNzUx1Igc6VAHv/pz8l3vv575Ttf/73ieb54ni9KKVFKydqVKx3v/jwwZe/bV+prmRKRCyLyFfN5HfgGcAx4N/CUSfYU8H2DdeNGhUIHD4iSK41aTKMWU7lxjb2ldfaW1hFic3gIXrJBchpHjx7l/vvvB2B5eZl77rmHc+fO8fTTT/PYY48BsLKyAhPmqJQ+YuKkhduuhWzXQhbXVtnjb7LH38S2fyIKEXOT7X7l5PfYY4+xtrY2SXoJ0rsvbVdDtqshe2+ssdersterIsk/LcMsc21ejsCER1HKHM2Nt6u1kGotZPnGGnv8Lfb4WymOysT772RZND3NLqXGxladja06KxvX2ePV2ePZzXIFxNNHBorLsZPt+maN9c0ah7bXWVIhS6ppTRLxkAyORa2LyvxLY32jxvpGjYNb6yyqiEUVpb716DaxUdy6qJFub+qNiHojYunaFfYGm+wNmu1p0oZmTLkXTU+Tl4VBmmOtEVJrhCytXmWvv8lefzN9I91qcuE4tiGSRvI5jIQwEuLVS+wrX2Ff+Ury7k+gPHq3WqNhICcGpdRx4M3AnwCHRcQGILkIHN7Rkk0JZ86c4atf/SpvfetbuXTpEkeP6vgVQRDALuDYjd+RI0dmemohjV4cmWE/wTR2u57C7ufo6qKri7OCm4HjyMhjvhI9lbcEPAd8v/l7re371S73fQB4Fnj29ttvH86ul0IyzRdFEkeR+EFz+qTXYU22jbCe5NGO9fV1uf/+++VXf/VXRURk7969Laa+SXFMTLaGY9pk2+tITLZxmGnO7MVPRMT3fZkEv2SarxFK1AhFqf7c0vyyZJeXIxBOgqOdZbUyVEoNpKdR3DmVmYfjZPVUH2G9IWG9kYsfIL7vi+/7Q8txGnWxulWV6lY1N8dyuSLlcqUrx6LVxe3NLdne3MrPr1KRcqU7vzwcJ1YX27jmbW/sEc9CXezgmK+9sdN9s8hxYXFuIDmub12f7jQfgFKqBPwq8H+LyK+Zy5eUUkfN90eBV7PuFZFPi8iDIvLgoUOH8jxuKmg0GrznPe/hB37gB/j+7/9+AA4fPsyFCxeS75lhjv34XbhwwY4yOjAL/CAfRyBzyL9bOM66nsLu5+jqoquLjuPuQ57VfAr4BeAbIvKJ1Fe/DjxmPj8GPL3zxesOUUof0j8tgIg+lHTOl4oI73//+7nnnnv44Ac/mFx/17vexVNPabewq1evwoQ4Ns0U5hjwPu0r1ZwbzsPvqaeeYt++fTvGIVd5jetMbn5G5pnf5eQITNQZJdHT3HdouamMG4qnp+ZfdxeoLvdZv7CM7wrH0ZpFB+MYK0WcoatFr4u50ysP6RLqoqh1MSnfwHcU/53RUb4hWHbkUXCOUTSY75MXec135DjQz3QF/FXz/K8DXzPHo8AK8HvAaeB3gQP98tpJj/6dxB/+4R8KIPfdd5+88Y1vlDe+8Y3ym7/5m3LlyhX57u/+bvlLf+kvyfLysswqxzz8Hn74YXnjG98oMoP8RPJzBL4qu5jjLOupyO7n6Oqiq4vth+NYbOSd5uubYCePm+EH3e0cZ5mfiAjwrOxijk5Pbx6Os8xPxNVFcRxnAjvqM+Xg4ODg4ODg4JAN15lycHBwcHBwcBgBrjPl4ODg4ODg4DACXGfKwcHBwcHBwWEEuM6Ug4ODg4ODg8MImHhnSmRsUR76PDh1DHPvIMmnxTEpwHjvkfFF6igMbg6ODg4ORcDN0d7sbo7OMuXg4ODg4ODgMALUJK0oSqnLwCZwZWIPHR4HaS3nHSLSNya+Umod+ObYSrWzGJjjjMsQdj/HvHp6M3B0dbE4cHWxC24Sjru6LsKEO1MASqlnReTBiT50CAxbzlnhB7uf4yjldByLg92up7D7OTo9Hd+9k8Ru11MYvqxums/BwcHBwcHBYQS4zpSDg4ODg4ODwwiYRmfq01N45jAYtpyzwg92P8dRyuk4Fge7XU9h93N0ejq+eyeJ3a6nMGRZJ+4z5eDg4ODg4OCwm+Cm+RwcHBwcHBwcRoDrTDk4ODg4ODg4jICROlNKqXcqpb6plPqWUurDO5V2klBK3aaU+qJS6gWl1PNKqR8z1x9XSp1TSr2olKoqpc47jjPL8YrhV1NK/Zs++RSSH+x+jk5PbwqOTk9b83Icp4QcHL9mjkdzZSgiQx2AD7wI3AWUgT8FTo6adtIHcBS433xeBk4BJ4HHgQ85jjPP8R+jA7DNNL+bgeNNrqc3A0enp47jrHD8iUHzG8Uy9RbgWyLybRGpA78MvHsH0k4UInJBRL5iPq8D3wCOma9vx3FMYxY5HgOuzjo/2P0cb3I9hd3P0elpKxzHKaIPx4Ex9Go+pdR7gXeKyA+bv38QeKuI/Ghbug8APwnsWVxcPPj6179+2LJOHKurq1y/fp3jx49z5swZrl69+ve4CTkafh8A9i8uLt41q/wAnnvuuQ3gqV0uw38I3LfLObq66Opi4eD0tIlZ5pjGmTNnuHLliuqbcAQT2XuBJ1N//yDwRK+0DzzwgAyPWB+xPuIBD3vfIPiVX/kVef/73y8iIg888IA4jrx3lvmJJrF+E8jw/xsrxyG5dXCV/DwnWhd3gFsrx3xcJ1cXp89PZAJ1cbfr6QjtzOxwlKlwTMOUfazTfOeA21J/32qu5Uk7BJQ5hr1d6WMAHDt2jLNnz6YvjZejmGNYDPETDcFxeBSD3xyF1tPBb8/g+DrGynE0DPMLTboujijFJiR/bhOri1IYfmOui6Oh+Hq6IxIcGBN/L46IHdP1PhilM/UMcEIpdadSqgy8D/j1XmlHeNZU8NBDD3H69Gleeukl4jgGx/GZyZVsZ5DmV6/XQder3S7DCrufo6uLM4abtC46PZ1BjsMgGPZGEQmVUj8K/A7aY/8XReT5Pml/c8CH6FOP78L6JvXVCwA0wi0Alg6dwK/Mm4TKlqEjC9XHUhUEAU888QTveMc7ePnllwE+u3McJU2jSxLLcZvG9VcBiFQdgIV9t+OVKpZJW17NTJsUs7kOyvHBBwfbTDvrd099CRh+a1qGISEAC/vvwC/vLL8oigAuT1SGBnEUEm/f0J9VBEBpfj/Ka62COyTDf7VjHHvVwbY0cdQg3FwDIBItx8rSQbyg1FL+Vor6r53W00E49tZRmyYGIGxs07hxDYBY6Wvzew7jlcot6ZXnNf9sy79buzOuutiTXzMRAFFYo7Fu+elrc8sH8fxya3qVkuUQ/Ha8Lg6gp1FYI1zXehp7ui5Wlg419dTK3PKYBT1tJgJsXbwOQIThuLiCF9j2RmXcJq3f7JCe7jhHgzgOibc39WdTF0tzyyjPtwR0nknmzb/6yXEYjBRnSkR+S0TuFpHXisjP9Es7yrOmhUcffZRTp05x33334TjOJiy/F198EfpMj+wSGX6kV9pdwtHVxRnETVgXb3o9nVWOg2Joy9Q40at3GtW09SmsrQPQ2FglrNXMlw19juNmd7RXx9M+Z0Bfqp1AJkVzsbGtuYXbevTU2FwjivR3vrFkyB7JyTFHmjEgU4bmWn1LW2jCzVUAGhvXiPTAAt83Krmv2PygtwzDqtbThrHUNKqrKNGFDCqLAJQqe/MNZ6bJMfOi1dMNfd7U8qxvXYHYcDRWRVk4UHg5dkIQo5Db168CUNvQ1pqofgOUtmCUysb6vRQnv4myAp1i25ILenqG2pZpR42e1rfXkFiXvWz4ycIK+IUSUAcy9dRy3NAWmsaW5hhW1xArw9KcTrsgXTLp8qCi/AxJXdQWmoaxRtW2rqLMOyOYW9Bp5/cXr/x5kHA0beqGfm/Utq/ie0aO80sABOXFlGWqV57mvIO/g9tOxsHBwcHBwcFhBBTSMtUJSUYZSZfSWjBUCdhu+U6IKXYXPNtqI8aypssPYjn6c6hoyySMTPqQPByn8yv046c5xIEeQUgwh9Q1P1HWD6mB9qOGQsow0/IWEze0lTQM9UgxUsZaSoCI4W38wkRiVJEtGFkc44ioXgWgUdccQzGWYfGQWHOLjQ5rPW3zt8mQ59RqawtHo3thSFgz3CLNNfasI00ZZfynJNayjeMQz3JUidPUeMudF1n8ooiortvM0C9+ux8AABsfSURBVMjQ6qRHQCyGl22HpIGItgD08zOdCjL0VOIw0dMw0lwj46sIJZR5n0hSF0Og1bcv81F9U4wJWXKMY2Ijx3pNW4ejWHNWohCTLrb62sLRouB1MYqITF2sbRsfMCNPFXvEpk2NTF2UOAKxfQOb12Q4FrAz1dvWqnytDL5ptKOSQtX1SzkKTacqjinkC9gi2yadfPKts6dnFCRQSKgb51i0A7o1xRcSXfjZyu37ZgrIONNLSSENLa/YNAbJvF/ORxVB2hJHSYfJM42WL8bkHEDc0N9JZGUYF6PgXdAiRuvYGodJ4+ybqRJRhqPvEdmG23RCJIoLJaN2tHA0Kqc5Wl21dVHLLCqHxLF9mZmXcxzRya4Xa+lyfQeR5ZCd4mcd6j3PytDoZKCSoknygkrVxQIKMUtPdV00eurZjq7mGJd8uwqtyTGtp4XimCFH26+PQuK4tb0RZQY2vpcs5pG4ZtIXtS720NWoThSajr7pJMViBiqBIjb9AAkN7zjfe2McKMjwycHBwcHBwcFhNlEcy1TPpa0qMZsrY0a3TmYKrzm6CM3II64XresN9HasR3koTxfaTv14vh1teMRJz9tMFUU19N6MuZ/OuH+U3stavSQMgGemTHyzFLmGR2RGTyq0S3vr4ytoLmT/XpJhik6WwysPZSwZNuKBhJpjva4SGarEslEH5pkecnBMPtslxT5+YEb6ZhToh5psXZGMlMU4v0ZRjYClkcs0PAbhaKw1fkBgnK/trB1GdvXGNlFDW90CY5mLonqqIVVt59xFGhJd+LX8Yae0TLvi+WD11Dffmfa1JjGx4YfSaeKwhlIDyFBkh807A9RFq6degF+y7am517QpjcY2kZmO94wM47hGwOLIZRoe3Tim/4hbLirl4Zm66BtLvti6CM13RmT1tFp4jpJw1GelfPxyWxtp5FiNaonrSGzsQnFUwx+oTd05js4y5eDg4ODg4OAwAopjmeqHZMBnRhvGT0P5fvJdXDPz/lGjWM40udD0VUiWdvr67Hl+ci2qab8w6+g7UP7ThAJlg6j5pg9vHOwDLyC0I8SGXqotUUieMhdCvClHR2UtqL71lTK+U55HbBLaUbGE4QzoaWsBlafA+CwoGwAw4VhqjhBDy7HRzKoHSZUjzVDINfBsXwTgoYz11HJUxgIQ+AGxaTajMCVHizzF30GKgxiBVBJoUyXtiQ3iGFkZqoDY+qYYR1+JBtTTaeqyfT9AczbDLHSxsvT9EjFm8YuxwrXIMN+DRi5qGgMZ82xCTyWhOJp6auXoE8lwdXGwNPmRh6Nd3NHk6OFZnyrDLdHVhk9orI5xI6MuTri9mZ3OlG3Mkx/ZVBBVThr3KDIrqOp1etX+fhFep4b2DqOdFlOlhE5Y07F94nq1afZVnXE1xstxGNNoSn1NI+eZzpRSQdLRChtmFVW9Sjll6u2a21RlqDr+bE7VmpeVmapVBBBrvuGWjl0U1TcpcSA7LybAMY8Y258tHtiOhuVoHHwVfuKsHFWNHGubyTXl95gCmyJFWiJdmz/bdNRGAFcSIDp6N+GWibNV36BiOdpVfD0pTlhnO/g1ZeglU+9m2g8vibEVbZkVf7XNZPpFSQH5dXmmStpR866weip+IsNou6mnZStDO5jN4liAjmLz1eYlbi8deoqfLFKKbDy4akpPPdWaZ8ZjJg+hcxWsl1xSlmOgY4MptsBwDBOONygt6Ta1F8dxqKib5nNwcHBwcHBwGAEzZJkysN1Us/eVVwqSKRVrxoyjau8AxAUzSDVhrW/GdGtHVOWgOTVmQ0JE1SnOEA35RDtQoJWfVymDtVoYh8KosdVx+04UITeG8ktUyU2J7OxUbaWEqtspCMuxmjjRTkNP81Fst75JYkW0llM7jeKVA1TVLl82elrfThyfVZb1oNtzJgrVcgIgsTCa0XDJnCs+qmosF8bZXjukS2ceXR4zNaSmoxN+fis/VSkl/GwMpqhR662nHfnvLIbyZ1fJf4nl3k6FeRUfqsatwOppmNLTwlnd2pCoq0LMe9DqaZNjgFczlnCrp/XtnnKcPkfV8WiFnpaG1ExNiqNqmKk/bF2cHkdnmXJwcHBwcHBwGAHFsUwljoOSvedZR3Lr01BJggY2jJ+G3jOsVybT6Xnbp/alZ0ceZvTo+XMo4zBp9yQMNzd75zSFie/+/FrLpMyoyg8qWFWMGsZPY3u96adB1l5LY+Y37O9nrYo2eKexTPnBXHN+30R7b2zfmCrH4Sgq7BhMmdGgZ/U0KDf9bep6MUh963pzsYTfHn156ELkL+2QHJM99pQN3pmSo+EYmvamvnGjI3hidhl2nms+flkWQesXZAIiJvwqiRNvaPZBrW+tT42fzj87397tTfMeL+XMDBD5lSSsh13QU9+40QzCWlg9bU/UtBLbk29mMLygyTE2IYMa2zeITRghL+vVP3GOWZLLKoPhpOzOIOn2xgbt1LzC7Y0kVFJm92aMHJ1lysHBwcHBwcFhBBTHMpVAobLCy3cks0tCy5TK2rs/bpiAj/XrzZVubSP+qe4tldv6Zn2nzFLeoEypojmKnSMO0xwzHzN5WH4ifWTXPgc+R3le72y+GevVKGHtBkhzL63W26cnw2RBTT/zovXpM2X3SnOUDMdqrM/h1moSdK59NDwZjsOM+EnJLzUKBvxSlOxQb4OVNqrXk5GxX2oNpjcZKY7I0fq8mX0ig/IC5UUd+HDrktbVRnWtuey8nMVxnExHlWHTIgUQlBYoLxg9vWJluJYERMa0tXnKMHb0I2nrUOpdAeCX55P2ZtvoaVhL1cVSK8fi6qlKyVFf8VJytO3NtllFXNtcS0IIUF7I8fSdRvtTcszVKNV8n5n3oYeWT1CKKc3rulhbXQOgvrmahJ7xJ8yxgJ0pWjodAEiP+uL5+GX9g0pkNpndvNFxQwHcBlNQyZLWni/lpEEvJYoRm/AP4TrN/es6VvJOma1KdYh78rMv4xJByfCzoRE2QggNv0Jpqe3o5usQJ52qoExQ1lGkJdSbktZvREjNvoTb75/A/m3dkLtT7KVPeEGJsulMSENvStq4HiPbpgGfb1syMVWf8wEHNnaxRKlMEFhd1XIM16Upx4WCcBxWhqVyqi7q5eb1tZC4ajpTbfymG11msLrYjK3V5Cih1tPweqouzhVEhpB/9NYmR79UoWTaG0I9XRtWq8RbJrr9YnE4JvEHu7/lzcm6vdi6WKFUMRHdIxMaobZFvKnfISzua7t/J0vdCTfN5+Dg4ODg4OAwAgo15u9EDpdmz6M0r3vgcyXdS92+vp4s61UZDpPFQNvIrscIUnkewfweACpzmuvW2jqx6JGUb8yeRQymncfpXnk+wYLmN2fOG2tXiGI9ivJY6Hrv9JBzOho7mgqaMty7AsDa+W8ThnpEFbCnJX0hpKjXJedIl7K+mdFgZc9BAFYvvUS9rhdNlOVQM9/WD1NETpIpK2p5aS8Ac8v6vHblAg0zMi7LgWa2MFUDY1KOgWRYorykZVhe0jq5dvkVGmZngoqsNPOF6fMDBq+LJYJFLbvKHlMXL75Ew9TFEvsz75sm8ooxLceS5bhP18Vrr3yTWlVPh83JYZPeWr6YohXVnHrMQLWmtwuXAmTBctRty9q556luXQNgTm4x6SfD0VmmHBwcHBwcHBxGQMEtUwYqHe6v3RdH4Ve05SLYZ0YZ3/5qsmQyYVi0rWPakeYobaMs5RHMaatbsEf3wLfO/VkSRsCvLOtkEypqPqisk0YPfuW9ejRRPfcVoqoZKS4c6MyjCEjvA9aODI6+cc6uLGuOYf0/U7t+CYC5/beMsaDDQnWpNtn+cJ4fUF7U1ozy8hEAor/4E7ZXzwOwdOTOJN8iIdvZvxvHEmU74jcca2e/QnVdj4YXD97envmOlnVwDCrDEiUrw8XXAFD/iz+luqH5LR0+3p59MTBAXVSeT2let5lze44C0Djzx9SuvwrAwspt4yzpcFBZIW+hmxyVH1BaMByXtJ7G4ZfZvPwXAOy99YRJ2X17oIkjk2OTWPqdD9qXuClHzVGdfZaNV18EYO8d95jUk+E4G52pFjSdDsH8wMbsV96vK0a0/gViE+fGr9j7ijgJ1gUp51EwJTccK/tNxVhfJdrQzpMsvWbSJRwNvfitaPOzbG3TuK73sJs7cHtHFoVHynQNVvs0x9J+bXYnCti+ZCv+m1vuKzZaF4i0tOMm5tvcQTMdJBW2Lr2sP77ubTrJTNjDe3A0q1ArB/XAJq5B9bLuMHL8TenbC4zu/Owq28qKlmEURmxffkV/eef9+pzIsPBEs30N7DtjRddFqQdsX9R6uv/OB1rvKzT618XKip16Xmb9/GkA4u94O5CockGma7OQXlaVxdHIcZ8ZcJcPsXn+WwDEDeMGUzauPm6az8HBwcHBwcGhuJhBy1R3zB86BkBto0F1U5ulS8t6dNVzr76iImNEVVnRVqjGZpnVC3okNX/kREuymaGYxc9M1cbbi1x+8RsALN/5JpNs/FF7dg6ZpimAxPxemj/Gq988BcDhB7UlVVlT6lAbkk0YPZZtV4wTc2npGFdefAmA296mp6WVDREhMt24b3nQg+PcXj0arlQOcOlb3wTglgcfMbeVzW0zwLEDurzzlt/CYS6e1hbUW62eembRy0zw6269KZsFE+WF13DplJbh0e/UFg0rw1mviyWz8GVhz21cOf01oBnWwwuMZY4ZaFd7cAxMiITFA3eyeUZb38It7ULhl7V7wbg5OsuUg4ODg4ODg8MI6NuZUkrdppT6olLqBaXU80qpHzPXDyilvqCUOm3O7etJJ46gso+gso/5/YeItr9FtP2tzkQZay/Pnj3L29/+dk6ePMm9997Lpz71KQCuXbvGI488wokTJzh16hSF4FjaQ1Daw/KxW6ltPktt81m9B1OciobexjEPv0ceeYTQ7Mk1MUhnWb1gES9YZO/xO6luPUN16xkII30k93UKMS9H2kPijxsZHJVfQfkVDtz5Orbrp9munyba2iTa2my5rR1F1VNF54hPBfOoYJ5Dx++mWj9DtX6G+to16mvXWhOKtMizeBwzBGjgl5bwS0vsv/W1bGz9ORtbf060uUW0udWWRZNj4epilvAMvPISXnmJA7fcSa36IrXqi4Sb24Sb260Jh5DhVOpiBrxgDi+Y48Cdr2erdoqt2imijQ2ijY0kzSzVxSyooIIKKqwcfy11eZW6vEr11ctUX71Mi34Xvi4aPmS0N34J5ZfYe+sdhJWQsBKy/srLrL/yst4pxO4W0sZxJ5HHMhUCPy4iJ4HvBH5EKXUS+DDweyJyAvg98/dMIggCPv7xj/PCCy/w5S9/mZ//+Z/nhRde4GMf+xgPP/wwp0+fZs+ePTCjHPPwe/jhh7l48eK0izo08nIEjky7rMNit+sp7H6Ori66ujgruBk47iT6+kyJyAXggvm8rpT6BnAMeDfw102yp4AvAT85llJmlkufP/HRj/ITP/3TQHP3+n/wt/93vN/Qviif+Q/vAaBR1wEg/8f/9Ud44p/8S6C5JPro0aMcPapXAi4vL3PPPfdw7tw5nn76ab70pS8BsLKywrlz576PKXC8dOEcx27Vy3Wt39D3ftf381ce+jsA/Myj2rdhc0PPgx++9zbO/5n2p1JK5eL32GOP8fjjj0+CVgI7PqjVqiwvaj+ayIwgHnrD2/hb/+1PAfBdP3QrAKtreuny/IFlNi7rlYx2Gj0vx4985COTHSmm5vnvfe1dAPz5GS2blZXD/Pj7/gkA/8Mn36u/++Yf6OSex4vf1r5Gtx/TvoBF1dO079t3veUhAP74K1/R5Tl4hH/wfR8C4Kd+SRfpvzzzawCEIvzHL+pyv/1teqVf8Ti2OvbFcczhg1qFVm9o68XdJ97AD7/nfwPgR/7yowCcOvUMAN5cmdVXrwAwNzfPkSNHClYXO/ndcUz3cS5c0VbEu47fzd9/t35f/oO//DcBePFFLV9/fo5Lr5wDYGlJ+wIWty6as8Cx12hfoYtXVwG47dbX8sEf+FkA/ue/9j4A/uvzv6/Tex7nL1wA4OB+7dNZPD3VSLsV/eSPfBCAT3xav+/2rxzmh773hwH4Pz73CQD+8D/9EgDVeoMPPa75/+xP/QQAR4/219XptDdNki88p/2j3vy2NwBQnlvge9/2NwDYd7vWx1/7Nd22Xltd4+hd2r/47Cntj6vS+Y2IgRzQlVLHgTcDfwIcNh0tgIvA4R0p0YCY///bO5/QOK47jn9+K1mbOHZjkcS1SU2TGqU4kKAmoT60p9KG4oNL8aWXkkNooJDQxPRgaA4mp0LrNLdCSwrCFHpJoT4YikMKAR9CTe2mf4xdu01ILKPIjhLZlqXV7vx6mNnVyF7tzu6sZmZnvx8YdmY88977aH5v9vm92Te+1lPsUevj6sIVvvpgOCzkrEaf0TGfrHZM74MPPuDs2bPs37+fubm5VjCNj49DXo7j1bWu5uZwwcI1KhPhrMTm4bvPWscsNNiIjfx27dqV+TBfM4THK2N4s35EvbFzn38O94TDJeMefrZ+RLDibVJZo5MjOf7oIqB5XcLyLy+v8rGFMxJvIWwIB9EfohI491Q27jguVpzGvqUs1p0OLN9e5UoQfmFt8fCz+UpJc9jeYc7jYjmGVMxiN5NwZfHGCsv3hjE6QdjIb0THjDegYu1Hs4pUF5tU4l8skd+NWzUWJ8Ih6PEoTpt+WxrO2AZ+ULS6uBanQWuoJ/y8ubTMQjWa1y6K0yCI6iIw0WFEslhxuubYsOZwc1jhVpZW+N/SPABj0Yz99ehCmjtbg883SKtojmvUt0Tv/fTw3tqo1bl4LWyWPLUj9F9ejt13a3c4DvCHBYkfQDezbcBbwMvuvhj/Nw9bMW3vimb2gpmdMbMz8/PzqQq72dy8eZNDhw7xxhtvNLsvW0S9WEPtmMCvLcPiB3IsQ5xC+R0VpyPjONRxCqPhOBDcvesCbAH+DByO7bsA7I7WdwMXuqXz9NNP+6AIgsCDIPBf/OqXzYZcouWFH/24dW6cWq3mzz77rB87dqy177HHHvPZ2Vl3d3/yySc9L8dP5q715PjQF754l2M3v9nZWa9Wq56H3/LSipuZWzgTa9fl3vGtfV3D2dlZB5azdPQgcI/K+ujUHn90ak/i63jpw8t+6cPL61yLGKdxx+lnnvDpZ55I7Pjue6f93fdOF96xWb76asO33X+fb7v/vkR+YzbuS0u3fGnpViuNItfF+mrDJ3dO+uTOycR+C5996guffdrTNcy1LjYCf2DnpD+Q0NEwn78+7/PX5wsfp/G6+MpLL/orL72YuC6++tpRf/W1o8V3bKkGfvHcBb947kLi74+9j+z1vY/sbfv9sRFR2bu2k5L8ms+AN4Hz7v567J9OAM9F688Bf+qWVlFxd55//nn27dvH4cOHW/sPHjzIzMwMANevX4chdUziNzMzw44dO/IqYmqSOgKf5VPC9JQ9TqH8jqqLqovDwig4DpIkw3zfAH4IfMvMzkXLAeDnwHfM7D/At6PtzJm40duwe7129/NEp0+f5vjx47zzzjtMT08zPT3NyZMnOXLkCKdOnWJqaorFxUXIy3Hjx0rasjK2sm47id/bb7/dfI4hcyoVevrF6mrl7ufekjoS/ZgiM8xa4/JLt7eydHtr4lMrtTqV2tqzM0WNUzfDI8fl2jaWa9sSn1tdrVFdrbW2i+rYxAzq9XHq9WT3ncAaxH+aXfS6aBWo1yao1yYSHR9UGlgQYLGpWYpaF1txalBbrVJbrXY/CXAca9SxxnDVxZptp2bbO05/Eadaq1MdgvtNnLFqg7FqA6+A5z1rZpLuq0Etm9HVlxVJu/rydQxiS+8kcczVL+rC7tfP3R044yV2LF6cBjGn5q6yOMbqWw6O+fi12+6PYtXFNvdOxWlXiuPYJD/HvNtyQgghhBBDTanezScK/3aldBT9/ViDoHSO1ma64rI4WptVv2N7mF3L7henjYfidAhpd7+5a2VTUM+UEEIIIUQK1DMlhBADoyz/w9+IsvuNCqN0HbNxVc+UEEIIIUQK1JgSQgghhEhB5sN87t7xVQJlIDfH+DxNvWbfw1xWZfeDHBx93Uf0As7+0kh8uHv0jG1GntFEYmuOsYdF14l3SqPXLMNXgzfn3hmI6Z3XysJ84umvK2Yz7+Z5bZ6RjSdtSSdcYy3fZoqJQzZWlnjZwj/WukOiXR3K1ErDWmlu6OfxlBMWNbe62LymHYS6pJH48OZ17DNOW9eq03XsGqfNNDbvOrYKwubVxTt3ZlUX1TMlhBBCCJEC8x5aXqkzM5sHbgHXMsu0fx5kfTm/7O4PdTvJzG4QvrdwGOjZccivIZTfMWmcjoKj6mJxUF3cgBFxLHVdhIwbUwBmdsbdn8k00z7ot5zD4gfld0xTTjkWh7LHKZTfUXG6eedmSdnjFPovq4b5hBBCCCFSoMaUEEIIIUQK8mhM/SaHPPuh33IOix+U3zFNOeVYHMoep1B+R8Xp5p2bJWWPU+izrJk/MyWEEEIIUSY0zCeEEEIIkYLMGlNm9l0zu2Bml8zsSFb5dsPM9pjZX8zs32b2LzP7SbT/qJldMbNz0XIgQVpyzIlBORbVD8rvqDiV4x3plNovOkeOOTFIRyCclXSzF2AMuAx8BZgA/g48nkXeCcq2G3gqWt8OXAQeB44CP5Xj6DgW2W8UHBWnchwVPzmWx7G5ZNUz9XXgkrv/191rwB+A72WUd0fc/aq7/y1avwGcBx7uIyk55siAHAvrB+V3VJz2RNkdy+4HcsyVAToC2Q3zPQx8FNv+mBSF3izM7BHga8B70a4Xzex9M/udmU12OV2OBSGF41D4QfkdFacj71h2P5BjYUjpCOgB9BZmtg14C3jZ3ReBXwN7gWngKnAsx+INBDnKcRgoux/IkRI4lt0P5EgPjlk1pq4Ae2LbX4r2FQIz20L4x/y9u/8RwN3n3L3h7gHwW8Luyk7IMWcG4FhoPyi/o+JUjhFl9wM55s6AHIHsGlN/BabM7FEzmwB+AJzIKO+OmJkBbwLn3f312P7dscO+D/yzS1JyzJEBORbWD8rvqDhtIcfy+4Ecc2WAjiG9PrHe7wIcIHxa/jLws6zyTVCubwIOvA+ci5YDwHHgH9H+E8BuOZbfsah+o+CoOJXjKPnJsTyO7q4Z0IUQQggh0qAH0IUQQgghUqDGlBBCCCFECtSYEkIIIYRIgRpTQgghhBApUGNKCCGEECIFakwJIYQQQqRAjSkhhBBCiBSoMSWEEEIIkYL/AzVw47aio2DzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 200/200 [12:06<00:00, 3.63s/it]\n" + ] + } + ], + "source": [ + "epochs = 200\n", + "for epoch in tqdm(range(1, epochs + 1)):\n", + " train_loss = data_loop(epoch, train_loader, dmm, device, train_mode=True)\n", + " # test_loss = data_loop(epoch, test_loader, dmm, device)\n", + " sample = plot_video_from_latent(batch_size)#[:, None][1,:] # 128, 30, 2352\n", + " if epoch % 50 == 0:\n", + " plt.figure(figsize=(10,3))\n", + " for i in range(30):\n", + " plt.subplot(3,10,i+1)\n", + " plt.imshow(sample[0][i].cpu().detach().numpy().astype(np.float).reshape(3,28,28).transpose(1,2,0))\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHkCAYAAAAzRAIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xu0PNlV2Pd9qh/39Xv/ZjQazUgjCcsCJJ6RiQMxscFk8XAQi1cgXl6yA4g42LyxZDDBy4kNYdkYY2cBisBWYowgxAsRguNFsFjYCZaRBEGg52j0mpnfPH+v++pHVZ388bvTdfau29VdXdX3nu7+ftaaNXVudVfVr/Y9p7pun13bee8FAAAAAIDzlpz3AQAAAAAAIMINKgAAAAAgEtygAgAAAACiwA0qAAAAACAK3KACAAAAAKLADSoAAAAAIArcoAIAAAAAosANKgAAAAAgCku7QXXOfblz7kPOuUedc29e1n4AAAAAAOvBee/b36hzHRH5sIh8mYg8LiK/JyLf7L1//5TXt38QAAAAAIBYPOe9v3/Wi5b1DeoXiMij3vvHvPcjEXm7iLx+SfsCAAAAAMTtE/O8aFk3qA+JyKeC9uMnP5twzr3ROfdu59y7l3QMAAAAAIAV0j2vHXvv3yIibxFhii8AAAAAYHnfoD4hIi8N2g+f/AwAAAAAgFMt6wb190TkVc65Vzjn+iLyTSLya0vaFwAAAABgDSxliq/3PnXO/TUR+dci0hGRn/fe//Ei28rzvHK9qzqORXbYihp7Dl9amul8NmVqm5zDJJl+jN7GzlXtacae/dQ1a610xmqdQy18YndV3ERM7Grvc3qElvDQ8GiVT9uCsTMnzVX1uaWe4GLb6xbH1mJVYmLnljVezn8Maxc71WjrnImcT+zWO1ZVWu2DwYmrGi/vvXRZJ3n+Dy2xh7nNzyHVavS5s4jbKc05V0Wjuludz3g5r6XloHrvf0NEfmNZ2wcAAAAArJez+YoOAAAAAIAZuEEFAAAAAETh3MrMLMrVmPteeqWZs768+eM15nUvbT54nd1M3++sc1i90yb/Hje1aVN1/UpkAkx3VjkCdfpOq7Gr2mzw+7SKUVy0X9XbyfLGhXqK46iKo0icsaw+jcs6x2fV5+Y/hlXrg7NPyzrFbkasVjwPfHn5wnZHMYyZ7tTFU18ZYR90S/ocMmOvZ7SfKtM/e5ZeGeF1b3nPU5i559a3yDeoAAAAAIAocIMKAAAAAIgCN6gAAAAAgCisXA4q2tBgrniMKQLzl61aETGcZNRH3KKmak4Tq5VhB/RNjt3qX9wgIgQSmI1vUAEAAAAAUeAGFQAAAAAQhein+DabzdPiI6B9PlnMc72lLB2p9uDgzmT55tNPqnWuq1979forJstbexfUuiTR4Um6nWBdR7TqE6Vmt5XnTFW+d/HXLoev83x9+xhwE7s8K+IxPLqj1g33ddvLcLK8e+VhtS7p9VW70+1Nll2i/w5k41r61wTHXH5i+Pmf/yZqxc7236zog2l6rNYd37mt27efmiwPRwdq3dUHXqna3d3Lqt3rbk2Wk67pg52K2Jl/2/k97n056sVOvVE182yo2oc3n5ksH93W4+Xg1k3VvvrIn1Tt7SsPTpZ7/W21zvY7H57/Gf+WWiWZIrdw3E6Rp0Xsjm4/q9YdPvdJ1T7av6Xa9z3ymsnyztUXq3Wdrh4/nStiVzU+WusUN5GGsQvem6W6zx3dfl61D59/XLWH42LMvP6ST1frti9dV+0kKa51Scd+56HjwXi5wHbyTLXHA309G996erKcJqlat3f1EdXuhGOkOeFhnxOx4TGxsge5Tv2uxdIxNnajo7uT5eNnP6bXmevi1Qc/c7Lc3b2o1pXHuaJd/rWriF3kceMbVAAAAABAFLhBBQAAAABEgRtUAAAAAEAUos9BtfOpa02ZrjV53OYq6rnj+bhoj9OBWpea9tFRkXuTp0dqXT/XfxNwWbDfTO/T++n5G75r8geS6tyPqRua8dJo1Mjn8Pl4shzGTURkbHJxwlzG49s6ZypzOl+4F+RA+rHO9QhSlO+9dxTsJ8hHFRHpbe2otutE3w0XVycPJ9fnNDPneDAo8jey0aFaN9zfV+2RFAFJUn3+Jdf52y7XwfNBTnlujj+xA1ApFzzckGmvQj9b2PR84cyOl2OdP5yNivX5rF8Xb2IXrjJxtCfcJWsdgAaCk156voIZL8fF9Swd6jja05+k5vyHsbNxLo0TQTvyPKl21Xm+ghm3TADGw2KMHNvx8lA/X2FsPu8kw+Ka5MxnlsrYNfnAtsHjZdjvRsf6WpYe6+crjMyzMVJXxL1rrm1y2dbgC59vYU/w/LFb51DVu23Qr05H+vN+enxXtYd3i8+Yo6G+Lqp7gZkHsvgZ18+jiRvfoAIAAAAAosANKgAAAAAgCtygAgAAAACisMbJbzXnkpfy0Ew+aJDXKKl+beL1fX4/qHPpgpqKIiJppt8b5vjkma7jV05NrMorPaP8gRZr6tXabeVKm/9WxC43+W/ZyOTaBHlpW30dq/xY56Dm+fTtus6umB8U+xCdF+JN7pCzCawVNQBjzxmwZv+2FK+wNWq9yUl1vugQScf0lZ7OldsaFrkg49zEMdP5WCJ7utkJYmc7YY2cqlWPXb18OPva8Hfa1gHWOcGd4Bx3xjP6htex1C+2df0anHG/4jmQtWpFT22I/a0NY9c1faNj6igmzvTnIHazz+iC57zRQysiMDNs0/M97XMzJHiGhe1zXVPfecvEbpwU2/K57XNV9UtX7Hy3qs7zFvS4lqfBczNsbrHpZ65rrn1h3qMbq3W25nRHgs84a1Z3tpnF6rOX+pzhzPNHkqCdJKamemaea+LHYcNsePU/XcyDb1ABAAAAAFHgBhUAAAAAEAVuUAEAAAAAUVjrHNTZgrnktiyVresXJlp0dU5hInoeugvyPbId/TeA9FjPM5ewfqmpZepMXoir+HNCeUZ6DHPUmxzD4rmuXtXQ0yet0zf5M0GNt8zUScz7Os7jQZF32rc1Fp2pzxjWqS3Fzfxu2Zwe+/J1FqZU2fNg4tHdKs5xbmqbph1zkreKXJt0oPOFfTqjn4W7LeV6VLXXLHK1uqDtD8U5TTq2Vqy57ITjXk/HNbMpqLaOdPA7smZn/3zYPN6OrTsbtG1cTa5canNQw1iWckNN261xv6pQKwXVrrOxC/JMEzH5/Oazhu+Z2A3Dz0YzruMthSeGTyyN1Er7np5T2LE5p5keE70p6+2zoh9mmc4Xts91qDyrG5LXeKrFUlBLfc7mevuO6Xfdot/ZsTUd62djqNhtUChCfIMKAAAAAIgCN6gAAAAAgCis4BTfiu/i684KVVNXTHkD89W9Dx7Z7syUl9yWxwinDg/0Y7+79tHSUkzJ6HRmfI+vjslOC20yB2D+qR1nVWSmXjUb/WL1+G5zTv3YlBxxweP0zbSnfKinZ3R6O8FrzT57dppocAyJmSZnp5T6+ae32elWjUppVFp8il15SliFcCa0OU+5LXERdFEvul+JmWI9HhbTesNpNSIi3s4wNb8jLvz9SWb9Da/GuYm9dIktW1HnvRUlC+zvqP2nd4K4Z6mJa88cRbdierbdcJMqM2ozKzD1rVHsgn+PHV/s1G0VV72ZbGinqJmp9cG4NmuG76LOL9Vl8f0sOl6WrvmlMj/Fem9fW7rW6eui88F10ZnSbFXBK/2z20rzia/P1YpbqTSPua4EU0NdaaqtNjafN9PhQbAds1dvr5NTG83Efm0z6sXOqOiDpY9ydn3QzsdH+sXm2pfnYVmuZQ2YcZfl4htUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBRWMAe1xmOyZ04zD/JpbJ6geWWYllYqh+F1/moSzutOtvUhZXreeSfYlhNbQsG0g/Xls9BgjnqdJ5HPv9VG6Sf2pZWhtPPmk/BR3ual3sQ57QbrzD67ff3aIKcqMTGvil1i801K7SXlF5yT6ZnSM15tcxVNmRkXlHdyuX6ceymPtFP0Oz80uR65efR7qcxMELvS3/BWOzaVanW6GW9WpXoq8rNFRMISQeYx/TIyZblyU9KrIte1Saxs5uXGKOXxTi+nZa+Z4nTschM7n4Wxm57betr6ec2+Lq66inzPUlm6MFY6Nh1bIsisz4NnNfjU1HqqOqbSNb/J+Y87dvWGyxn58cF5suVHbPmmrul34/DDqclr1H3utB3Pu269NLrUVZyn0md288yZjlpvx8s7+pgyc+1bhshDzjeoAAAAAIAocIMKAAAAAIgCN6gAAAAAgCisYA6qTRRsMIla1X+bkXUUJCiW56vbnwQ5bH6o1oxNPkdYQ7Wc2zp1szNzhWpZVu2jM5vfbmMX1kacUbM2D+KRmnWDW/q9abHdfE/H0cYu0QU+9fGVamvOf6IiK1PVLptDVX5BsWROROLNe9O7k+Xx4Fity00Oaqm2rGos3s/KY0jswWuWmVO9rXCViZ0L88B1DtVoZGpreptTtSTRx8qwx7twnb8Zv+9BO0lsQWE9Jqam5rScRexWLW6NVNcX9mEuvb0GmTxw7/WYOBoWn1vCeowip13rKg6ihuXV9I6RjV3Ftc3koCYmdi7Iyx8d6fEzG+vPnxI+O8M+C6OG1bu2aU2ubIrN0Z/1HJkkeK6JWTcem88p46IuaukzSpOP+xWt2PANKgAAAAAgCtygAgAAAACisHpTfKtKl7Q4I600+yEvXmAf0Z55+8j2ou079hSbqaHh1/x2unJ5HkWw2FYJhSVqUGamEXWa9E47Jh5ZMO0sN6/NTNkENY00Kc2nmtpsq4RC8/fWEMbu3GaB2LIzQT8zcfQdHatMtopGMN1XpDxdxv77fDjdqsk/fsWmPVltTfgtT2k3Wwpil4su7eTHZjp25RTU1T7fbWrtslhZwqtnXqvbPh2rdu5nlSvZTG3FqvwZpoiVN59ZXNdMGzXTtV1Q4iI3pZ3O7bq+zsJrji15aD9D9nQ7D19vysrkuZ7iG1761rgC0ExtJrPoDdvxUscy6RVjZKlMV6qn0tup9Qsf0swfxItvUAEAAAAAUeAGFQAAAAAQBW5QAQAAAABRWL0c1Kr50zYHw1akqbUf+3joIAfV5rCZ/I5OmN+R60dHj0c6RyAdFTkCmdPrErE5PtWHPLcG26l3DtvL33PhnmfGNSzxYmLTMXlQYbKo+XNNOnxe/yC/MFncNrke0jGPhg/262y+ag3nlsbYUuzcjGBV/j7Zx+2HuYwmrzExOVVZNpgsD4Z31Lr02Dx63/b1cL81TsOKp5yW2T4YjHv1cnaml1QQEUmC8dObUiWDgS6bkI90TqqKXZ1YlX6wZsEL+6C5XjWLXVC6xOSg5uaCOxjoEkHpsMipKucSL3pEEknsljNe1qsWNL2ARGLGuE6ic71z0f1qcFzEbjQweYyl871g6a0YwtZE1WcUWTx2pfHRfobpmjz9INd7eKyft7B1qMfPRbMty11sxYNXEbuFK3SdbClkyzt1utvFK8261JSZGQfjZ2UpvJmHtLqx4htUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBRWLwe1QRJqs5zUIEfA1KWyd/lhTbFc9vRm8uf0MQR1OJ1Jr0p6Vbke9eaVT89Oqef8ZrO3Uy3OdU1dKl/kc+Smnu3Y69htHQU5VKbGn0nhEQljN7O+rVm9Xok6pt0gwaMi/63T2VLtblLkesiRqT3sTOxMfcZS7ceqQ6porR2VK2fUyXN0pg8GOVVdr/Or5NjmnOrcb7dowd4Vzsuprc1cuYo+2De1NP1Q9zMvRduJrYlK7O6ZEatamwpra5rPLF0du17H9LvgWRk+H6hVzpvnL9Q6pqmNNVCR11hrM+b5CvZa191R7f520T4yj1fIsn3V9qqmrYl59UHVeO0qqsgDb7TZ6bHs9bfVujzTe8rTMCd1/hrS6xQpvkEFAAAAAESBG1QAAAAAQBRWcIpvHW3WnQm3Uz1tMQtLkBwfqHXDoX6U9N5xMQWj/PR2c4ALTz2s997oNZqyNn3adG5i4+/q6dh3x8V0w53hZb0V86cedYi1pvTO8YZV1tbj3e12ElsqppgSM8h1mZn8SE97Suzf6eqc/nXqV000mMkdli7xJhTH2U3VzoZmDluNv7ESqhe0MxXRmfIXYspfjDNTIui4mCrqzDTvyv1sctxaGy91M7FpSl2dIjHKimthdqjHy1InrYhPedUGBbOtUk+27EzXprcUU0XTXJeZGd/R/cypmaL2KGxJqToHuUaWVD5IRKcHdnp6qnaWjVQ7PbxVvM/O8K0aPtcobnyDCgAAAACIAjeoAAAAAIAocIMKAAAAAIjCmuegWi09Btxu1eTTuE7R7ly+pNblt3U+xyAtjsnbx7fbxMZ6B7X4eyu3u5zNNlMnAc7mWRTn2PV0bofsXVfN5KkidoORLqFwqUnZhDhP6hlZ8PHupbwcPZT19q4ULx3quA7HpvyFs2UTpsdjkyNVbfGxNcwf7m3p0k5yoLeb56ZEkM3Tr95TjddukAVz5Wzed3/XxG6ox8QsC0oGEbcFLVoOw+bC6c8s/b2Lqp3kxdaOh7bPzT9e4oT9PNYggdjmD/cvFte6JNV54Mf7Omc/D0o9JaJzIGftd3O1d9+grnUX9L1BT3Qe+OCwiJ39jFIdmfWJG9+gAgAAAACiwA0qAAAAACAK3KACAAAAAKIQfQ7qUmsxuen5HNVNW4NR53Ns9YvT+lw+UOue2r+h2i/ZLrbsutXbrVI+TdU1rhbWJFn3jLjwl2ZGTlVYl2p3W3eHp7YOVfvj6WOT5VcPTN3Nrq0NN/1vPxtbX2yWUv0xzatY6rU9kz/c3S5ycZ4d6T7nntO5Ho+U+llVYT+CN5caeY1JkA/X291W6257XQd1bPKHq8ZIQrUA2wcrYuc6eozrbumctruZrsl4/bjIqZpVB5XYzWHGeBle+6r6nIhIf2dXtY/SooZtfvMZs98a32sQyFO5qvMy8zOL+bx5ochBzS/p6+DBU/ra5/NUpiFSc1L3DcasHP6g7/S2dc5+vqXjevjc01O3W9ps5drVxTeoAAAAAIAocIMKAAAAAIgCN6gAAAAAgChEn4O6rFTKsjq1NO1bzXt7Rf7bVk/X0twe6Hnmg2xU7HFk/l6w0+Qfu0l1UCvMCmsQO7+tc6j25AHVvnL3ycnycGzqnqYmp8qUVK0+horXYj6JqYO6dXWyvDPU+VXDgc4tlsz0u6rYob6ZfbA4/52erg23LbquXz46mL6tUj+iYzVWGTu9stO/oNp9r8fEbBTkEzMGni+TR5r0dT5czxXt0dEdtc6Waw/HS8LYgpkfRU3ucbcYI3d6L1brbh3+sWpnQU3bnr4sog11cvgT/UFja+c+1d5/8iOT5TzVnzeTDfmMwjeoAAAAAIAocIMKAAAAAIhC/FN8z8yMx0PXkGbFHJi93ctqXXJZt6/uFV/r57ZUiX20dMWjyUszpmq8t5YVKDOj1Jqprc//lQceUu3HX/zxyfKLLr1Ev7kzf0kgZre1z5uzur1bzF/auqynje72dKmSzOn3VkeS6NXm50+f2DKP3k/M9OtShYv5qzVQ8WIRNWLX7ekSQYnX07PTvChdYjdbLikVrCNuC6lzqe52demt7SvXJsuDu59Q61LRc3zDD5Hl0ZHxsr566WZhyaa9h1+k3/m+oWoPhkWKxLZJYSJS7auMnLmY7b7oQdXO/qgoUTlKdRy7otMpKjNdVhjfoAIAAAAAosANKgAAAAAgCgvfoDrnXuqce6dz7v3OuT92zn3Xyc+vOed+0zn3kZP/X521LQAAAAAAmuSgpiLyfd779zrnLorIe5xzvykif1lEfst7/2POuTeLyJtF5E2L7uTM5sU3yq00OWyuyOfIEl0W4cFruuxMEuTtJPYgclPKhDzH2mrl4XTMvP7+kWq/+uFXTpb7e1fUOpc0+AUiWa4xZ/7W5lyRJ3XfdZ1LfOfw46qd2PNfhY5Vmzc5vlWd0iU6v+2CyR/Ox7bGRcW2CFZjtWLndGz2LujxdLgfXAvrhIYwngH9WePylfsny3ee/rBa59L5+yCxOwvFSd69qK91bkfXkvHHzwSNV4p+sQkOieCNVWcT69bORV0iKO0En2mG+3pDF/V9RMVmV7rPLfwNqvf+hvf+vSfL+yLyARF5SEReLyJvO3nZ20Tka5oeJAAAAABg/bXyFF/n3MtF5PNE5F0i8oD3/sbJqqdEzKPCive8UUTe2Mb+AQAAAACrr/FDkpxzF0TkfxeR7/be3w3Xee+9TJkU5L1/i/f+dd771zU9BgAAAADA6mv0Dapzrif3bk5/wXv/L09+/LRz7kHv/Q3n3IMi8sz0Lcyzjybvnl+dDML9gzuq/VNv/XnV/skf/7HJ8pbJqXrkoc9X7ftfW8w7f/x9H1Drjro6PH/7B//+ZPnrvvxPq3Wd7oz81JbyCVahDKqvyCm8vf+8av/jt/7SZPnH//u/qdZ1cl0v8/LeS4vl196n1skNna/6ov/scybLP/sD/0Ct+7SX6fyB6tpxK5xA0FBVHP/wA3+s2l/w+frvXIkv+t1rPv0/Uuu+5Gv+kmp/7V/7LNV+5tlnJ8uf/Vm6v/7u//tv9H6CPBFHns7pTBi/+uu+WrV//Vd/fbK809dj3uu/QvfJvUvvVu23ffE3TJZtyv7bfvGXVfsvfn2RbUKs5mRi91M/+xOT5e/+b39Ardsydby/7qu+U7Vf+RmfPln+om/W+anjkR5rv/Evv2Gy/C/e+la1zm3wmLiogwP13YHcd7+pgZnq8/9Zr37tZPkbvvWH1Lpv+Zz/VLU/8fhHJ8uXr15U62586gnV7vSK/k0fnGLGMxH+3Bf+GdX+nXf9P5Plra2eWvfffOvfU+0n/kXxeefXfufL1Lp0PFDt//Nf/avJ8n/+5/Vrid3pqj6ziIi86L6iTu3zN59T6y7u7aj2d333z0yWf+grvl+t+7f/36+rtvh0svjU40+pVdcf0J9VVyl2TZ7i60Tk50TkA977nwhW/ZqIvHB1eYOIvGPxwwMAAAAAbIom36B+kYj8JRF5n3PuD05+9oMi8mMi8svOuW8RkU+IyDc2O0QAAAAAwCZY+AbVe//vZPr8wy9ddLvlHZn2kr6drn4ctNbt9FX7eHBLb6tTvLuT6y0noqf8Zs8V0yqyI/2Ftr+gw9MdFtM3XHI+X9OvzuSA0/U7e6p9ePT4ZNme0iTX06a7wbTR9An9GzIa6NjlTxXTNXpj/fsy26qf5eXLzZQ0cWZ+ZxCe7ChVq3bNdLddM5U7D/pomuo+uErTY2KVpcPpK0sDr37tlf6xaveC1w/Mm/eCcl9oybg4x7aMjzftw5FOe7iaHE6Wd8xrR6a9mzV+PAYUPW55U1bGdrvDg9Fk+cLhoVp3paP74MeC8kK5uWZSnmQJkullfrJUR/Lg9k3V3usWbS/6uui9jtVoPBLUM+s+IhXzuSUwNiXU8jtFOtrF3i3zav1aH+75nO4NloGrAAAAAAAgCtygAgAAAACiwA0qAAAAACAKjcrMnIkIp1OnAz13//9+5/tU+/YztyfLz5l55Z+68U6zteIf2OnovxdcufZi1R74jwdv06UzZiIXRERExgOd0/bz//RfT5b3bx/oF5tHht8+eKxoPPWYWmdzE2/tF48Qv3v47eYoPnfGUVJmZpbff/+Tqj0e2nya4hz+waPvUev+4Cd02wpjeTi6oVfyJ705Tc/i/9Tzt/UPgpcej3Qc3/6rP15jn7qvDPpHU16HRe2nxTm2FRVGY53X+I7f+FnTnn8/R53peXaoLxvq2OSpbmeZbn/okx+cLP/1H/6v595POtb5qW5G9TucpjqT8dmRzg0N++E41ePnW//5jy58FIOUHNS2+SnLIiLHJq5/95987/wbDlNQd6a/bNXwcQsAAAAAEAVuUAEAAAAAUeAGFQAAAAAQhehzUG2ey7JSKavqnlqdns7X6JVqEtXZ8vT13ut8yQs3difLztSsOrNUxRVPidzq6fO9berBtcVnRe243Q9f1Cs/e9a7V/wkn4Fet7qOXxNh/mou22qdO6O6zKsvPDH6pDmT6t0evZ/OIXVQ29YZnU1uaC8ndm3yPd3OWx0xC5lJOj23zymrbEYxzW37oXhJ+unu7BehlmxZw2fwK9FJo7+tmxvfoAIAAAAAosANKgAAAAAgCs6f0XSByoNwpYlzE97bKZjnNUfEn7rYYCutmj31uaXzZqdcJ9O3G8Pv1mwVcZ0x1abS9BmOp4Ti7H+nbVkcazViN6dSnoBdL9PXr1js1ipuIjK7063WnMGNit2sfjf/yihsbOzWeLwUWcPYLaqyv55P/9yoPteE6q9xjKUz+t17vPevm7UNvkEFAAAAAESBG1QAAAAAQBS4QQUAAAAARGEFnkccx3xqdRzTU2bLljRNvjy9+4zOUyzhaI07dfH0l4bBrJGgGklOwMaadf5Lq+PL59hcnP+VRd9ZXVWxY7xcT8Ruda1p7PgGFQAAAAAQBW5QAQAAAABR4AYVAAAAABCFFchBnVlY6xzUOAaTr+rq5C7G+E/f6NpTVQGIIThoB7EEgPkwXgJoH9+gAgAAAACiwA0qAAAAACAK3KACAAAAAKIQfQ6qTXlcvXI/M4trLv7W8xDjMQEAAABYC3yDCgAAAACIAjeoAAAAAIAoRD/F1/IbXeZktVTGyszVrjNzuFb1HW+btuzP9O3GYcZ5qvgHlP898/8Lw9iVCiM1iF0tFf+e8nmY/uKlxjU4EOf1UZnmwr/jrsaYZ/ucW72ciMXN+P13UxtLVOOXb+VjN+vfWvXPqdXX5z6iZprETjXO6IDtOQzHppnv1W+uOv+NxtPgXJSG7JbGy3vbXvBat2p9rgnGy9W14uPlvPgGFQAAAAAQBW5QAQAAAABR4AYVAAAAABCF6HNQk4R76FVF7FYXsVtNxG11EbvVRexWF7FbTcRt/RFhAAAAAEAUuEEFAAAAAESBG1QAAAAAQBS4QQUAAAAARIEbVAAAAABAFLhBBQAAAABEIfoyM977ZW791MUZr4ySK/2g9JOW6DPh3PS/cSw3dmpPFcdwRofQwNnFLtxF9T6WFztf2ZxzVTTUWaTPBcdxRoexIMbLacf8aElnAAAgAElEQVRwRofQwHmMl/d2M30/xG4+ZzNemn2e27Wucq/mGM7hEGZwUxun/mA5xxBFnyvt+dTFU5rnYnaozj928+IbVAAAAABAFLhBBQAAAABEgRtUAAAAAEAUos9BXS536uKprwzmu5/XPPMYcgLObj91TD8mZ3M9ln0opx5D7R+sMVfZVKv8+cfOKqdVnEXsYvz9qD6msN9FMV6WfsB4eeoaF0du3HnkKq6GVbvWEbvT6fOi+t055TUSu3mF9w3mGQPnFrv572VWCd+gAgAAAACiwA0qAAAAACAK3KACAAAAAKKw4TmoK+ZccqjQ2EbnnALnhH5XXwyJ3iKEalURtwWFJ+68Er8JXn32nMWQtL8++AYVAAAAABAFblABAAAAAFHY7Cm+LZWO8Xmm2sODW5Pl45uf1OuOD1T76kOvmSz3L1xR61yi/37g/fzTQM6nHMZZaa8UQhi74eFttW7w/KdUe3i8P1m++vBr1Lre3mXVdq6Ina85DcSt81TulkrH+Gys2oP9m7p968nJcqnPPfzpqt3bu6raYb8L4yhy2u9a8YP1f0x/MF621OdEREZBvzt69uNq3eDojmpff+RzVbsXjJl1YmWt93ip+QbBU+Plge5zw1uP6/bhXdW+8tLXTpZ7e8u61q1b3Nq51vksVe2Bid3o9lO6fVzE7vJDdrw0sXOdYj81rnX0uTnfa8fL4POliMjwTnCtu/O8Wnf5kdeqdm/v2mTZJR21rs4xblLsGn1mqbg3GN19Uq+79ZxqX3rksybLvQvX1LpmsVudWPENKgAAAAAgCtygAgAAAACiwA0qAAAAACAKG52DWmsueTDHOxsfq1Xpsc61Gd0p5pmnw5Fa51KdCyI+n/8Aa0wdt1PSV2ja+Uy10jnMi7PRkWqPB0Xshnd1Xk46HOptjYPYNUnCmyHc9DrFTWTxPiciMh4UuaTpsc4XHt7VuYppWuSoJjZWvvqkLnrKG3TXlVDvV754cT7W/cj2wTCnKhvp3OIkNePjkvrdeo+XNc6ZHS/HA90eBn1wX+fCZanOt3L20rakIXOtx8uWrnXhdU5EJN2fPl6KiEgeBG/GeLmode5zInXzTqvGy0PdPtaxy4LPlF7seFl1Upt8wFz8rdFrkHOapzp2ubnWZcG9Qj7W9wJe9Pi5tM+YKzRg8g0qAAAAACAK3KACAAAAAKLADSoAAAAAIAobloO6WE7AvWY4t1/P23a9Ld3eCtpHeju5yTn1PpyHbpMy5jnOTbFg7Eo5viZ23SJWSadf9VJVP6qUL2ARuxOL57/Z+m/h+Xe9bbUu6epcORkUeTs+t7UEdb6VW1Zy3MprUuw0fK/pDB192UmCtuvq+m5ia5tW5enQ55ozfdDWzHPd/qnL995rN2audZLaF6CRqs8oovqO6+rx0nX0czRcrmtFiw/zGmfEjX7XnBou9ZgXfka5t9r2u6AWt/18OetzyoLWOgW11ovteGm+8zNjZDhm5vZziR0vXRC7Fk9wxZU5OnyDCgAAAACIAjeoAAAAAIAobNgU3wbC6YV2ilpu2sFtv3N6ylqW2ce5r9IX7udo0dmGdoqaiV0niF3SNVNrnH5t7ospFz6vKA+EQpPZs3aKdac3We7ketpZ0tMvToLXpkM9fc3bWU+lR63TD5sLxstEj4GJ123XCaYiJroP5s5ML7T9LvLH5K8c2+cSe20r4uE6Zmw1cc7NFH3JqqZjE8d7GgyYpfGyiF3HfEZJu+bFpt9lQT/z2TpP6IxEcEpnjpcmds4XscttWa68aso+cWysNF6a2OUmdklwXTTXLm9jF/Q7t6Gx4htUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBTWOwfVlq2o9ebpc77tfHD7aGkfrPe5yTlNdU5VXvkY8Dbnna9YruuyYmdzUoPYefO+PB+qdpYWpUzybGS2M/8x1LOC+T9B7GrFzcZGbE5wHizbPmdyqNKijILtg+WyCTaRZJ6DnYP5HY4+X7JRn6tQ0eds26e6X/mRLh+Uex275Z3RTRovQ6XaWqaZTF2XjXXpkjzVsfNh/13aOd2g8bL0b7P9KshhK/U5k/9mno0Rts+uPNCqxc6WL2uyrem5iaWyM+a5JuGYmOemzy2pzEzZio2Xhl84ePbfOqNMV5DrbXP0s0yPnxS/4xtUAAAAAEAkuEEFAAAAAESh8Q2qc67jnPt959yvn7Rf4Zx7l3PuUefcLznn+s0PEwAAAACw7trIQf0uEfmAiFw6af+PIvIPvfdvd879jIh8i4j8dAv7OV/hXPLEzivXOQGdoAajmLqb3uSgSlbMQ1/uzP3VywtoRanEpfmbTBC7jolVKc9xWOTH5anJLV5a+syGxk1E7L89zN+w9Rk7HRPXIE8nG5q8xuyM8nI2OnRBTpU5Ed7kUCWdTvBak0t8XrHb1OCV8sCnxy4pjZem5ve5xG5D4yZySo57OF7aPmc++pk6qH4c5KCauJXPcFvnfINjF5qVg9oxsQzW50ObS8x4eaZKsbN1ULtTX5oPTOzys8r9jlejb1Cdcw+LyFeJyFtP2k5EvkREfuXkJW8Tka9psg8AAAAAwGZoOsX3J0Xkb4jIC4/nuy4it72fPFbscRF56LQ3Oufe6Jx7t3Pu3Q2PAQAAAACwBha+QXXO/QURecZ7/55F3u+9f4v3/nXe+9ctegwAAAAAgPXRJAf1i0Tkq51zXyki23IvB/UficgV51z35FvUh0XkieaHuajqGkWLb9Vs1+RvJEmQg+r1a9OhqRWXFfPM20xjjL3k4tmxdfyq8hp7ap03r02zoA7qWOcH2DpaxK4F9kQEfcmZPucS+yy2Ih6pqc+YmVqbDQvYFccwx0/itpzxsiqX+F676He5yZXLMlMH1eR+h/2uSb9Z+T5X6ivLj10yY7ws10Ut+l1pvCR297QWNxO5WeOl2W86OipWZeZaV7WfOse36nGzfcPWRW1rL85+vtSx80G92zQ3tTSzdvIYy2XeVz54ypK6YOnzphozzSnMiF3Jwt+geu//pvf+Ye/9y0Xkm0Tk33jv/6KIvFNEvv7kZW8QkXc0PkoAAAAAwNpbRh3UN4nI9zrnHpV7Oak/t4R9AAAAAADWTBtlZsR7/9si8tsny4+JyBe0sd3GnPmuvrU5F7akhZk+0wumYHTts6SH+pD8kr7GX7nphWfETvENYud6PbNOTzf0wfTC3MSx0SHN8ZOVEh5+m9Nlgmlq3ptH7ZvYSfgoflPayeemRFB5T/Mf02Jvi9PSxstSrSfd6haxS0rlLvQU36VNe1r54GmtdcGKkhdh3O6tsuOluda1VDZhnWPX6iT78HOJ/YxiYudNmS6fhdOx2ytVYifF4jS2z5l215YIKvqdH5vSTm3FjlDNqTp2LoydGS/zob03IHbL+AYVAAAAAIDauEEFAAAAAESBG1QAAAAAQBRayUGNl803nJ5j1STXo/QY8E5xWp35G8B4uK/a6bClXMYVenT0XOzc/SBCzR4DPr1sQqdjHr1vcgTGwaP308GRWtfo0fvrFrvgX1/V505pzr3dpNTnbJmZ4rXj4V21ZnxsHuc+9Z3zHNI6xc6Ol2Z10PEajZdSUZbL5MaNRjpWY9Ne/CDWKW6nCP59zrdX/iIsm5B0TN63GS9HA93v0pHOJ25wEO1sJ0b2utdS7MqfUUzsvF4/PLg9WbbjZSMbHLtQrTiWSpXofiZJ8XlzfHRTrcpGpqTawtY4biKytM8spbKGYQ6q7oPp8I5q5+NZz8qY+yBa2s7Z4xtUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBTWPAfVsjWK/LQ19fIcK/Lhup1ttS4f6z35LJxnPv9OV3dW+aKCHAFpL6cqjF3S3VKren0dOz8u6lJl6aHZUD7/Luc/ujUwvc/ZZq04mnqZVbHLx+b3Jde5cI7YzcdV9MFa46XJqQry4XomjrZmbT7Wud+MmXOoyOcXWfxa50weY6+r88Btie9c1UUlbnNp61kMM3JQbb9TZb5zm4NK7OZSkW9bL7fY5jFOj50tz+6zxfO+3TrnC1eyn1lMs9azGKbnoHbNczOykf4ckueL5Q+vU9z4BhUAAAAAEAVuUAEAAAAAUdiwKb5W+FW4n7qmvHbGVoPHgCdb+mv8UWYevT8sHgvuZkyIcVMbG2bGlLV65YOCaYvm8e3d/q5qZ76YbpgNDvRWfI2AbHLsqqbZ13qce/Wj9zu9ncny2Ovp2OnxLbMjYlffjGmjdTYVxK5j+tw4y1S7Tr8rrSF2J6aXX6szbdSOl8mWjt0o0/0uC8rO2FJDlUe4RlPWmmsn1aUcO53OMvZFrFJTpqsqduU+R+xOVVGSZlYcnU1v2SqudSPR42M2sqlINcZLnK5BCa8wdmHcRETGmS5BmY/CdJYa9wZrhG9QAQAAAABR4AYVAAAAABAFblABAAAAAFHY8BzUUHuPlg7nmW/tXlbr+sc69yM9Kp7F72vkwc7KV90sTTKGg62Y3I7e3kXV3sqLPJ3RgX70vhedK+dEPwre7Gmh41tPLeWBd3S/6u9dmiz3RnqYGx3px7d7px/vvpnZHg01yakK3tvb2VPrtrzuk+NjXTYhjJ0T/Ttg98uYOU2QU2VOka9ISnWmdEl/54Juj/TG0kHR78p9jr+V11bR50Sq+53NQe3vXNLtYRGP9EjXLiF2SxDGclYiuIl7b6sYM/vHel0+NHVnzKdINFQeMOd+fRg3EZHekYndKIidfUDHhsSOkQUAAAAAEAVuUAEAAAAAUeAGFQAAAAAQBXJQ5xXWPrL1x0rTw4v7/t6uzmNMt/Xc8f3bz06WXzIr+42aYvNRsbIqYmdyqnrbOqcq3ym6y+GzT1RtdtrhoMqME1WV11jKh9stYjfu65yp8XNP6fdW1YYjdoupNV4Wr+2aWpq+owNwcOtZ0apiR/CasudQ5aSadd1tnVM17up+d/f5ot89OCuHitjVV6oPXijlEpvX9s3zFoLHLcjdm8+odQ/a2sNhk7g1Vtnn7r1CtbrbxZg57unnK+yb8fK+qvgQu8ZK15xSXnhwrTPPW7CxO7j93GT5+oaOl3yDCgAAAACIAjeoAAAAAIAoMMV3IXYqzfTHu7tOX63r96+odnb3yeJ9vrrMBtowPXblmdq6VMz2hQcmy4dPPKrW+UxPZ6usMoPFhNNGZ5RUcJ2tyfL21v1q3eFzj+n35qbf6QoMaKzOeKk7Tm/3qmof39TTsxesKIUFTS8KVb7WbW3r2GUHxXTDGTNO0bJZJbtKn1O275ssj+8+rd9rY9fw2FBtZiWTIHb9Lf350t95Ur+WKjNnq6LjucT0uS1d6kn2g363mVVm+AYVAAAAABAHblABAAAAAFHgBhUAAAAAEAVyUJfMJTqhbeu6zoe7/dGPTZZzr/MYbSpcmKNKCYWWVCZV6XO89+KHJstPvPe2WjfOhqrdkeLR7+RbtW9W6mHY73bvf5Fad/DEH6h2lqeqnUiRv0rslqAqIc6UC9q59pBqHzz9QdXOfDZZ7prLWSmnn+A1VzFe2mvd9lVzrftYkfvtzbXOla52aNXMJFTd77avFWPm4XMfUOtysZ9TiN1yVQcvLLG2ffG6Wnfn6feZdwafITclkfFcTY+dS0xpvJ3Lqn1w9+OnvOv0ra4rvkEFAAAAAESBG1QAAAAAQBS4QQUAAAAARIEc1KXTs8cvXH1YtZ86fmfRyHQunHR1nSQsQY06ijsXXzxZzk2NVBne1e09XQOwcp+bklDQolkpVeFPLlx9qVrzqWysX5qOdHtrb/qOiV1zlX1Or9y9/GLVHh4fq7ZLgzGzuyVYshqx27um+91T7w+udbmpG23SGHneQstmXuemx+7xoyO1ztnPKUHtYvK+l2FW8Ir1u1dfptY8++F/b14a9DvH91PLVxU7c627pu8Nbj7+h5NlWzt8Uz548BsKAAAAAIgCN6gAAAAAgChwgwoAAAAAiAI5qAuweRbe5NP0t4pcqDzL1LqXXNd1qr7j+39usvz1L/8cte7JZz6m2t1ukahzfKRzsTpd+7eGzZijXpuNXbB87aqOze07t1R7b6eI65vf9M/Vuh/6su9T7X/3h/9HsEv9O/DMk0+q9rUX6Tqd5O2cTvc7Hcft7V3VHo+KurTXL19U6773zf+ran/rZ3+Fan/wE++dLCeJ3s/h3QPV7m8HeY/E7VSl8dK0t/rFOcxMftuDV6+p9vf88C+o9n/5J75gsvyJGx9S6+yYODgsxsxOz9ZuJHanKceuuNb1evoZCbm5Dr70Pl0H9Xv/u1+cLH/1S/6kWvfMzSdUuxvEbjDQNaaThL+rzyWInTfjZbdrY6evUWG/+/4ffrta97UPv0a1n3r+k5PlTkfHZjgYqHbSoWbqLLbP2c+Q3Z55/kXglQ/oPMbv/EF9rftzlx6YLB8c6Vruvb6+HRgG/Y7PJPOxsRuN9Ni1vb0z9b2f8VI9Jn7Hm946Wf4zu7pG6mB4qLe7sz1ZPjo0OeMrHDtGegAAAABAFLhBBQAAAABEgSm+bTDfoNvpNKHBQE/XuHhwZ7J8qaO/mn9S7HTUYkflr+1X92v8M1VRnyTzpvyIkY6LKWzZ7WfVuku95/VmXR42zDEwzak5fU69ZFNeJzIe6qmHW3dvqvbl3r7ZVh4sm1gxvbAxO3Tl6nxrx0M95Xfvtp52f6kTTnWy01FtvwvapXXTjhbTVF3nRESOBzp2l+8WUwovJ3rq59Ola13RzwhNG+xZzE991QsGQb+7eFdPBbWfU25IOJWYzyVNNTljB0e6ZNr14POliMilpFh/YPuv59rWVDl280dz/1BPB77/uPhccsHpsVSPniJ+TWO3nv8qAAAAAMDK4QYVAAAAABAFblABAAAAAFFw9rHI53IQzk09iBiOzyo/Blznc/T6vamvbSJ8vP441fmSif1bwxmlflQ9wjrG2JXSLoIfXDLlSA729aO823JrX+erXt67qtpn8VjwWfuIMXbqmMzx9bZ02YQsnZ6TWodL9Hmyj43vJEUa/1k9zn31+lx1mZmwbIItVdKELUcyTov8q/J4SexOUyozE1zruqYsRZuHH8YuTXX+1XmVTVi12IkaLnW/6nRt7No5fjte2tgl7uy/E1m5a505nMycw25/epmZJjqmBNB4XHzGpM/NyRzTcKBzgrd3t2UZ+kGptsFAl6CMMXYi8h7v/etmbYNvUAEAAAAAUeAGFQAAAAAQBW5QAQAAAABRoA5qG8xt/rJmxqs6qHYn/KlhPlV1UNtLf6uUZNRBbcqb/IZlpaPY7TpbPxMz2dDYU7i88bJix+eUl7PqwnJ7y8wAs/0bzZTGy6XtSe+n9DmFsM5k6wufVYnLcg1b1FW61p1R7PI1HS+5rQEAAAAARIEbVAAAAABAFJjiuwD7+OSO01M2fYulErBcYSyPDg7O8UgwSxgrO6HFPoof8bDjpTPRy7N2SgKhfVXXOp9HWOYBhSB0ielzfEaJl+1z3c5ySgKhfTZ221tbqk3s6uEbVAAAAABAFLhBBQAAAABEgRtUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBS4QQUAAAAARIEbVAAAAABAFLhBBQAAAABEgRtUAAAAAEAUuEEFAAAAAESBG1QAAAAAQBS4QQUAAAAARIEbVAAAAABAFLhBBQAAAABEoXveBzCL9161nXPndCSR8aZ9VqfF7rfqpcTunlnnLPLYbWzcROKIHX2uHeGpibHPmRe7MztINEXsVtd5DAsAZuMbVAAAAABAFLhBBQAAAABEodENqnPuinPuV5xzH3TOfcA595845645537TOfeRk/9fbetgAQAAAADry9mcpVpvdu5tIvJvvfdvdc71RWRXRH5QRG5673/MOfdmEbnqvX/TjO0sfhAAAAAAgNi9x3v/ulkvWvgG1Tl3WUT+QERe6YONOOc+JCJ/1nt/wzn3oIj8tvf+1TO2xQ0qAAAAAKyvuW5Qm0zxfYWIPCsi/9Q59/vOubc65/ZE5AHv/Y2T1zwlIg+c9mbn3Budc+92zr27wTEAAAAAANZEkxvUroh8voj8tPf+80TkUETeHL7g5JvVU78d9d6/xXv/unnuogEAAAAA66/JDerjIvK49/5dJ+1fkXs3rE+fTO2Vk/8/0+wQAQAAAACbYOEbVO/9UyLyKefcC/mlXyoi7xeRXxORN5z87A0i8o5GRwgAAAAA2Ajdhu//6yLyCydP8H1MRP6K3Lvp/WXn3LeIyCdE5Bsb7gMAAAAAsAEalZlp7SAqnuJ7fsfnpzbP/4yJuPo/WM5xuOn7iSJ208N4ZuqHZvmxq4qbyHnFTu8zgqGppDqW9LniOM7pMCpUh4rY3TuGczqEGsqncJNiN30/KxE71Vhm3IqT4Vz1RMGziV31PmKPXbnLLSt2+kRUxc773PzkbI5JH8OSdtmiGGMnZ/AUXwAAAAAAWsMNKgAAAAAgCtygAgAAAACi0PQhSWvMzNMO0mRtxuxZTUN34TGdTdrNipp+npxJGlhW7M4u12ad6PNUSk0/hzzws8vfWHUVsTu38dL+gNidrjgvVX3ulObSMH5OM/1cMF6qHZ/TfqepPh7Gy6lH0dJrm1isz53SXJo4xsv298s3qAAAAACAKHCDCgAAAACIAjeoAAAAAIAokIM6t3B+9TkVP4otrQJYKvsLfw79jvy3BcUwXhK7+iLocyLEbhEx1GQkbIshdisqlvHyfHa7bHyDCgAAAACIAjeoAAAAAIAoMMX3BU3Kj/hcNUeHtyfLwztPqHXD28+p9qWXfdZkuXfhmlrnnP77gffzH5XbpClSLcUujJuIyOjODdUe3r05Wb700teodd29K3q7YexqxE1kc2NX6yzlmWoOTeyGt58slu8+r9ZdftlrVbuq39HnpmhzvDy6WyybPjc6uqPal17yGard3blYNBgv59ModsWr09GhWjW6pWM3To9U+8L9r5osd7Z2zIb1+Sd2LzCxWnQGoXljOjpW7fGdZ1Q7c6PJ8u6Vl6l1SW/LbLw4/+Xjm37A5bCtbxzr/D6f8mbVLMXudtHvUknVut2rj6h2px/Gzva50o6nHtJ6x66lPneKPCvikx/f1euc/kzT27k6WXZJ9a2aPsbqA9axiztufIMKAAAAAIgCN6gAAAAAgChwgwoAAAAAiMJm56AumP/ms5FqZyOda5MFeVP5WOcEONH5V0t7KrWdOL9OeToNcqjy8UC1s+HBZDndv6XXjXWcxY2nbrfVsxv++9YpbtIsFyeMXRg3EZH04JZ5bRE7520fXJJ17nOyeOwykzOVDfdVexT0u3Sg+6dPTZ9rMyGoartrFLsmfS4b6mtbGsRubPpcOhyaN5vY5cG1zx5Sk9O91uPl4i8eHxexSo91jv7Y5OxnmX5vJ8h585fMQbQVuzZ/ByJUq98Frw1z8kVE0kPdz8YHN1U7C7pVp2M+0l+piF2jPmfaaxS7Jn0uHejx0vaz8aCIpfP6pHW39lS7t3W5aLT5VWJbvwNngG9QAQAAAABR4AYVAAAAABAFblABAAAAAFHY6BzUReu/2ft61+nrdrdo+1znnOamBqC4Ij8u8ung0Vg8blKqlei6QV2wrq7vZutU6U2ZOKJ9pb4SxM7EKuxzIiI++C3xJi/Nl2LXTl7jGqfl1BfErlSn0o6XQduLzi0u1aSTTNC24BznM/pGmOPmeua1x6ZtY5dPXbfhvSWwWN6iiIg3Ob/h+fY2N7GzrZou07lzEvYzk8PfVuzW7zegndjZMS7vdvRruzp2PngGine2hqd9bsb0OqgbrVa+cNGv8rHOu09TXRs6Kz23JMjt9ibOpoatD6+ha/yMhCp8gwoAAAAAiAI3qAAAAACAKGz0FN9agm/UXWKmiXo9BcMlLlg20zNSM0Uta2d6obV+02cWZP7hNh5J8Dj9pKtfnJi/36RB7Hy+rPpAmDDTWMLYdUwcs47pk1KszzPd52zs3Ob2jjPhEn2ZKccuGC9FryvFjvFyTu2cJ9fR03g7eTENLeuZ/jkycU3NlF81fXj1z/BS1ApbdZpJJ5xKn5jpv+Za51M9fua+KNPFtW5ODWIXpqR0Ojp9xTtd7s6bfufHRTvPdZkuVYOmRes3Xs7P58HnQDNNNxEzXpp7g/COKx/ba5uJczhebtIJDvANKgAAAAAgCtygAgAAAACiwA0qAAAAACAKG5WD6us8SroknARucthKuXLFfX+e6nnlWaof5+43dG75bPZx6Ytux8TGPp47zBc2JWhKj3vPikeK+9Kj9wnkRBCsZtlLFbEzeeC2nQe5cvlY5+WUYwcRKZc+aLKtMFYVucQnP5gs5qYsQp7a2NnH9kNEGsZOPWBBrzFlK8LYOfP3bZ+bPEdz7cvzoM1wObHw5xIbq8T0s2C7ickl9ua9earLZUiQZxde9+65WPNA57VamY3NPk/a2AXPwkj0djtdHbuheW+WF/FxqX5vbvIa18vivy/VsfOVzfBzoi0xaR63ID7VsRuNgnxh0+ecyfX24XgpOxXHu774BhUAAAAAEAVuUAEAAAAAUeAGFQAAAAAQhY3KQW2NzWMs5YIEeTo2N25o8nRMnb+2xJ29cY5KsQti1elWvtYPg9pwS4rbWpiert3eht30erb32sVrw7iJELuzEeZ2m35kaxF3i9jZcSsfmDzGbDn5w4yXJ+yJsPnDary0ucS6mZf6XXDtW610w0jZa5lphv2sY8dLW7vd1LAdFjVsfX5WOfsb9EtQCl1wvTI1vcV8Lumaa13qijzHfLyv1vnSeNnOOd6gSJ3yj53+3JLSmGjyhzvh82nMhrOxzkn1aRC7DR0v+QYVAAAAABAFblABAAAAAFHYqCm+dnbnskqXuKT4Wt/uIst0mZk8a6dsQnkWwqrPAbDH3+pc0WIvwXlKkp5dqZppXsSuPHVm8TkY6x27FuMWbtb2uVIZhWJ95k2pkhaniaqjWPW4tTdA2g2b3diUiF7YUNNRNoMAACAASURBVOuy/Fi1/bidsgnr1+faMqssVzDF1+kSC+JN7LJD3R6FsWO8bF3F9GxnUyCcudaZcKTDg8lyPhqY1+ZmP2Za47yHGE3cwn/8WR3T9P3Y8TExU3ydM+1gW+lY97nUxK4fxM4tGrd7b577vatnxr9NVeWypZ3MVHrzucSFt1y5map99LxqZ6Milj25Vu8Yq165QrHjG1QAAAAAQBS4QQUAAAAARIEbVAAAAABAFDYqB3V57KOmi3nn9vHtpUfv5y2VvFidaeULaS+rsaJEUNfmoOq4hvlvPm8nd/i0Q1on7WYSVz3e3eR6BPk1PrV9rsWyCWscu9aU8hhN7IJ+V3pMv4ld3la/I27zMf0sjF3SM7lwJnY+1bHKsyIfzqY310qLInZTTM/1tp9DXF/HrlTaJBgjs8zk8FfudRVF8C8I8xrt50lblmvL5H53gjebZ5pkY/3Mk4VFcIpKzu0X0U1ZPqWf2fJOW8G1bmTeKzZ24Xip/7GbMl7yDSoAAAAAIArcoAIAAAAAosANKgAAAAAgChuWg2pzNIJ53WY+e61cuVJaYzDv3OTGpaM7ej8qZ6DJZPEVnmg+j7Cmm5mP3yivUdVBtTlVOnbjo7uT5XQ0XHyXc/xkbdh6pW3FzmzXxk6C2nGj47tqVdYgdqccSIvbikupBmYQuyZ9zomNXVA32tT4Gx0fqHY60DlVPjiSepFYs7jZfhacl9bK2YrOa0w6W2qdN3UVxwNdk3GsYtnsN2idLKlqdGW9xqSzbV6qY5cO94vlQx3HRke5QjUYZ1nW8xVKa0zOfqe7ZV5RjJnZWNeNTo/3VduHdVBl/jqoUfa5GH6X7LMwvH6mTGJyUDvdoN/l+jcmHelr2zj43OJN7eGVj92c+AYVAAAAABAFblABAAAAAFHgBhUAAAAAEIUNy0G13KmLInVz5Uz+T5D/1u3omlVZqreUZ2Gdv/kLO5XywzZJKd/KqJUrF+S2JjrntNvVeTp5EDufNqgvRuyKpiyaB277nI1dkafjxzp/I89s7ObPHqLfnSyac1Yrz9Hk7STBGNnr6T7nUxO7sc5JVTueEZrNil1FrBptNqit2dXXtl7fjJdjc60Ln79gcqqkIqdq7ePWVr8qbzjYhf6o17Gx2zL9blyMp1mqn5tRjl3FEaxz6M7o+QrOPF8hMZ9L+ju7k+XDXMc1HernL4jKkTR130uHsb7Bq3i8QjMmXzgx5zgJrm+9IG4iIoNct9OjW8Xxmfq29tk2oXWKG9+gAgAAAACiwA0qAAAAACAKGz7Ft0LF9I1ZswHUo/i3dtS60Vg/9jsfhtMNq7+aX58v7pdswZI0pce529jlReyykZk6U7XduV+5icJp9ovXeirFrl/EbpTrKb3ZQPfByqn08x/ChqmYqi31preFZbk6W3qaU+ZN2YShnm5oS9ZMP8INVjWtXkQqZtlXbzYxJRT6e3qzmS7nlB4GY+aMHW1u7CpK4UmDqYj2d8BMEez0db/Ls6K0TGqHy8xM8Q1+DTaqhJq1rFJPNiWia9JZekXs8rEuCZQepHpbYcrERn/6n97P2ppWLyLlKb/B1Ppu/4Ja51P9mXJ0t5iO7Ydmiq+eyW3MnyoYO75BBQAAAABEgRtUAAAAAEAUuEEFAAAAAERho2eh1xLmF8yapB7kDPS2dF5O/0jPB8/HQZkZm4NXmju+unPJz02d54mbXI/uto7dzrDoLtnRwLy5Mru1Yh0KNi9Er/WVsdMv7u0U+R1bI50rlx7pvMaGhTcg0ihnX5LivWHcRES2Ml1SYbSvY+elyKlyFaVKELLj0WK//zbv28Zuu6fHz+M7RTKjF50b52aUvNhcFWNig7ImNnbdnUuqvbVdxPLotnluhtf5cB0p+uj6ZL+1q50ed7Itk/vd3S1it72r43hw+znVzvLic0siOu94sy2pLJeJfBKWoLR97vJ11b795GOT5TTV5dW6ot+r97M+vY5vUAEAAAAAUeAGFQAAAAAQBW5QAQAAAABRIAd1AW5GXmPY6mzref7D3ki1wxyBa7Pmjq/P1PJzUxU7m2vQNfnD+W6R+7H//NNq3f1VwSFurQhjV85H1Se5E8TO7+i/w+3feka1H6iMHcFbSFiL2Kyqil3X1EF1F3X76PknFzoGVKiIlR0Vdehsn9Ox6l4xOVWP/X6xnczUZ7SfRIjdbKW6m0ZVHviM5y10L90/WT564n1qXTbWeeCdrYvTj2GjuVMXT2lqs3KLK2LXv/wStW7wxHtVOxsUuYy93WvzH9MmmdWvqtSInb032LqoY5eOfneyPLyjP29uX9WvXVd8gwoAAAAAiAI3qAAAAACAKDDFtw0VzxB3iX58fr+vp9L4gxtLOijMpap8kHmc+/beiyfLw+c/qV/L8/XP1KzqQS4phrb+zn1q3fj2U+bNduMNDw6VKmNn+tzWpQdV++iJj+g3Z8Gb+XPrEtgyJ8G00VK/0QHoX9Wxy/Z/c7Kcj3SqS2fL7jfcOB1yIeHU7ZrTRreuFte6fP+WWpcd3NHvvfCihQ8Rp6go2SVSHbut6w/o15qSauM7z0+Wt6+9bPFjxOnsVG4TLN00Zbqu6s8pkhWfYY6f/qhadfmRz6vc77rgkg4AAAAAiAI3qAAAAACAKHCDCgAAAACIAjmorZiehOpMTlV/57JqH+1/qniXzaNb03nlq0MHYPu+hybLdz72u2qdl9y8k7/9nKug8+wEcRMRObzxh6qdm9glxO4c6T63++Ajqv3kf9D5cGle5DL2pK83xYB6rnbu1/1ueDCeLA8Ob6p1vYu6JE0YOsLWgornZJxm63qRVzo+1P3q1o1PqPbOi181dbOErgU1YrdlSjvlx/qZJ89+9AOT5Yuv+Fyz2QblVXCiVhKq0tu9qNs7xfj5zIc+rNY98Dqdw+/CJP41uu7xSQwAAAAAEAVuUAEAAAAAUWh0g+qc+x7n3B875/7IOfeLzrlt59wrnHPvcs496pz7Jedcf/aWAAAAAACbbuEcVOfcQyLynSLymd77Y+fcL4vIN4nIV4rIP/Tev9059zMi8i0i8tOtHG20qhI69Lo9U3vq7vs/OFl2ZHBEbefqSyfLg4GuLyZZptsJ6d2x2A3iJiIyODrSL8hS3Q5jR5c8V1t7uq5fqV+NDoIXX1CrCN356m5dUe2dq/dPlrPjR82rXyVTEcgz1+1dmixffOhhtW54+G794vxLiuXEfOdB7JqbkS8cSro65/Tyy1+h2odHv1c00m/Ub+6asZVE8OZqxM6ZYtDXXvHqyfIzn/gttS47OlTt7sXivevU5ZpO8e2KyI5zrisiuyJyQ0S+RER+5WT920TkaxruAwAAAACwARa+QfXePyEif19EPin3bkzviMh7ROS29/6FryQeF5GHTnu/c+6Nzrl3O+fefdp6AAAAAMBmaTLF96qIvF5EXiEit0XkfxORL5/3/d77t4jIW062VeOL8PPnzWOc7XTP3V09zSL0mS97tWp/+/f9zGT5C3cvqXWDoZ6KuL2zM1k+OtRf8TumYCwkjGW3o7tD7nX5kSu7u5Plv/33/i+17qte/Bmq/fSt4lH8zvwZKB2NVTvp6FJEmCKIlR0wumZ6Up4Xsbt+QT++/W/9D7+m2n/hJa9R7adufnyynJh+NR7px7sTu/rsU/AvXSxKbx0c7qt12z0d1zf/jber9nf8x982Wf4PH9Z90pv+e+vZZyfLl69d0wfB+DmXMHY/8aM/qtZ9/w/9kGoniT6n3/7NP1Ks+3VdNuF//tWvU+3xaDBZ/qt/6zvUun/yd/6xanPtm832uadvPKHaDz2s0yDCkiNf9cVfq9Z90Z/6r1T7735l0ZcOD+6qdQ+8Rm/3yfcF10XiNhd7rRsOB6p9ca9IbcjMmPenXvuFqv0N/8UPTpa/+K/oqdu3bj+j2jvXiuvmwbN31Lpy6IjlqeyJCjriaz7tlWrVBz+uyzddv16kt3zfN/0dte7bfvLr9Xs/9DvFLsw0+48+9jHVftlDxXeGsffBJlN8/7yIfMx7/6z3fiwi/1JEvkhErpxM+RUReVhEnpi2AQAAAAAAXtDkBvWTIvKnnXO77t5t+JeKyPtF5J0i8sLt/RtE5B3NDhEAAAAAsAma5KC+S+49DOm9IvK+k229RUTeJCLf65x7VESui8jPtXCcAAAAAIA116gWhvf+R0TkR8yPHxORL2iy3VXjasy/3z8YqvZ9R0XO1Z7TpUp0poFI84cuo4qf8Uzw0biIz4Wbz6l1l7s6J/jpcFvexC3yef/RCs+bSaqqit1wrMvIXLj1vGpf7ujYPaV3ag9ixkGirsyPp65LMx3X/NbTqn2lX/RDLzr/qkQlgxPHpnZ8df61fVbDjVtFts+r79PXOi9j0w6Wn5n++4HF7HR1SYvS6BnE7lO39LUu6es8ceeLzzSl7dzK7E9Qkx2puonudz68LJoh8Ok7OndUtovnmnS9fsaJzVN2w6rPQ4yfTeVi+4Z9tk0x7j3ubqt1PdG53nnwS5DkejvbtvTTClndIwcAAAAArBVuUAEAAAAAUeAGFQAAAAAQBWfzRM7lICrqoMZwfJY9puGxzhbd2duVZehvFXkjg2Nde/W86hlV7TfG2FnhMXY6iVm3nH3muc49cLZQ6hmY9fsSe+zs8XVMPdLWjt+cpzxLzeq4Yhd73ETKx3jhYjFeHh2WM+/bsn9U5GNd2Na1cc8qL3ydYvcP/tFPqHU/8D3fv5R9vvHb/qpq/8zP/k+qfVbXvlWOnT2+5569qdoveuC+pez3/ksPqPbTt29MlmOIm8jqxW400DnZO3vbU1/bxE63GJcPRwdqXQyxiz1uInLKszIKn/bqR9S6j33kU0s5hEc/8VHVfuVLXzFZXmYcZ2z7Pd77183aBt+gAgAAAACiwA0qAAAAACAK3KACAAAAAKLQqA4q7rFlLpe2n3PId9skZ5fRQA2xts2qYYt4ZdnZ9IckK8ZP+9tCj6yvv382Hx/SEbU029Y/o+Fy2BnOfhFqsWUtl5WKOU6oP9yYzcMMgnV0vJxn1VjJKJ39okhxxwMAAAAAiAI3qAAAAACAKFBmBo2s/GPAN9SqP3p/k9HnVhexW13Ebh6zzsPZT6bnWjcnex7c1MaZoc/NKTwXpVMWX+yEMjMAAAAAgFXCDSoAAAAAIArcoAIAAAAAokCZGQAAADREwaaVNSNXFxFb09jxDSoAAAAAIArcoAIAAAAAosANKgAAAAAgCtygAgAAAACiwA0qAAAAACAK3KACAAAAAKLADSoAAAAAIArcoAIAAAAAosANKgAAAAAgCtygAgAAAACi0D3vAwAQHy9+suzEneORoI4wbiLEbpV4b2LniN2qIHYn/Iz1Z3VaZh1H+NIgdhsbN5HqcxZ53EQ2LHZ+erN0FiKM3bz4BhUAAAAAEAVuUAEAAAAAUeAGFQAAAAAQhehzUDdqXvmaIXarK3H87WoVEbfVlSTEblURu9VF7FYTcVt/RBgAAAAAEAVuUAEAAAAAUeAGFQAAAAAQBW5QAQAAAABR4AYVAAAAABAFblABAAAAAFGIvsyMz3P9g1ZLl/hTF2e8MkqlszL7BwvSZ8JVlLVYXuz0MfjYg9NAq6V6ghPlZjyiXcVuWX1OiN1czEmqih3j5Xw2ebyc0Vw56iwtabwUOa9+N3+wViGObmrj1B8srsa1DkCc6LkAAAAAgChwgwoAAAAAiAI3qAAAAACAKESfg9puDlVp46cunvrKIKchhlyP8mlZ5nlacD9Li53ebmk3kcXKmn1alnTe6sTjXGIXf35q9WlZ57iJrPJ4KWJPzeaOl+Xm9NziGGJ3bte6KPpddezUKjNgEjsAq4xvUAEAAAAAUeAGFQAAAAAQhfin+GKCSSv1lWb/nstRGPYgmI50jzkvxA5NEJl5hWcqil6GFUWfA9AWvkEFAAAAAESBG1QAAAAAQBS4QQUAAAAARGGzc1DbKoVgHu+eZ+PJcnp4W63LfKraWxfumywn3Z7ZsM7o8FMb5R+cXxma5fNN6o/YMgo+nyyn42O1bnz3pmrnrnjtzqUH1Lqk15+6H5ck01a9cBBTD9etWY5jo9jpDalmlg5Ve7xfxC53+rXbF+9T7aRjYhdyFX3wlOPQb12v2C1rvAxjl+7r8TJPMtXeunC/aqsx0/Zte/4rBlDGy7k3NlkMr3MiIunhHdXOxMRu7/pkOenajx7Tz3f58E3sVGN94ibScuwCea4/h+THh7odXOt62xfVOpd0zNaKcz4jVOoH69znADTHN6gAAAAAgChwgwoAAAAAiAI3qAAAAACAKGx0Dmqt7I4gF2R8fKBWjQ/vqvbo6Lmikeu8im5/S29299r0A2qSktHmtlZOkCuX5WrN8Z3nVXt4UOQqZiMdR3E6J7jX3ykaF/R2baKUC//2Y/OI1ixPamlyfY6HR/uT5bHJ7R4d67bPi3PeD+MmIn73umpLZ6M7y9xqjZdB7IYHOjdxfKRjlQ6Ktrd9rrett7trE03rHFQFfgXuMWPV2OQmjoM80+GRHktdpt/b3d7V2965GuzH7HdTz3ebSrE7KpYPbql1w2Mdu05i+t3Ohclyt7+n1pVzUBfE7wCACnyDCgAAAACIAjeoAAAAAIAocIMKAAAAAIjCZuWg1qkplusabtloMFkej3ReTup1DUbxxX2/t/XGxOYuhusr6jGKSJ0kjbVL76iMnV7n0+KcpkMTq2yg2nkSvNfr8++8jpXPi7p/to5cYmMX1t50G/x3oJl9LswXtn1O16VNg36Xiz3/eijLfRAr0+e8H5u2zr9au/qli6oxXtpxLhwv00zHMXM6ziLF+Xcm79ibOHtTRzp8b5NRbqPHy+Cc56bPjYY6Lz/Li7g6b2sEm3rgdvxUsbM1v63FrnXrHTeRyvHSXOuGx0W+cGb6oMv1NSn3ZlvBtc6bz0LizcdGN7VRae36HIBWbfAnZwAAAABATLhBBQAAAABEYaOm+FZOnjFTa+wUznC6UseUQvDOPHa9U9z3Z3aak5liGpZBYcrLdJWxM7Omw9jlJq6djpmKm4wmi1nfxDy3U+GCqU522lNltJpEdgV/K4JzPnOSaBA72+e86TtJUArBu5F+bdecl6AZTs2+1za/MNYKnOKzUGe8tNMAw9h1Ejv9Xccu7xXjZ26n+NrYZXYKcLDZjY6br2hVvlR8FoyXJo6J2GtdkM7S0X/fTu107FynvnCtm2bB8TLT/ShLTdpDMBU39+a7CDNelsbedBiunHVUANA6vkEFAAAAAESBG1QAAAAAQBS4QQUAAAAARGEFclAXz1bxsx7Zrtbr1zqTV9rpBnlUJiejk+rTOHLhS01uVqb3k2VFrkdXLlQfbyPn8TD+JcWutM7kKnaKeHT7O/oI7FuDXJvR2JTDGOt84W6Qe5yZ/J9yR3JTlms6t2StxX9fqvPfbA5h8eoksbncOncx6QQ5bKZ0z9BsNw9j5/R28lTnxjm3pH5nf0/PJElyieOlVIyXie4BnV6xX1uOREzfGQf9Lhvr2CQm3z83eY1d2as84sWt2nhZtdKWNrPXuqIvJV3dVzo25ze41ukolvuVZDp2WfD8hbOJm8iqx87m4YexLH1GMdc6xfS5QWbzg3Wudx58d5Gb13akYj+NkJkMoMA3qAAAAACAKMy8QXXO/bxz7hnn3B8FP7vmnPtN59xHTv5/9eTnzjn3U865R51zf+ic+/xlHjwAAAAAYH3M8w3qPxORLzc/e7OI/Jb3/lUi8lsnbRGRrxCRV53890YR+el2DhMAAAAAsO5m5qB673/HOfdy8+PXi8ifPVl+m4j8toi86eTn/4u/l8z0751zV5xzD3rvb7R1wO2anmfkEpP/ENQRc11z2ro616YT1GvMzd8AbJ6OT3Xux//f3t3HyHWVdxz/PTO7M2t7Hb+CCbZJDDJtA0IhTVGUVghEWwJUDVUrFFSVlBeFSkZqRUsL9AVQJRS1gkqtCpLbJqEVL43apOSP0AZRWlrRQJwohTg0jkMS4veY+H29O2+nf+xk73nO7Lzu7M7d2e9HinLPnDtzz85zz7lzPeeZ4w2eg9H6zBHkcyxbSkm33L4oVoUk3yqJnUU5VxNFX9dIukc9il1I1pxrMay/dURpOHFe1HKmTlr04qGlD/ocq0IUu3ra5yyJXbwGYN3nFsfrPjYPnDSqY5N7N84pVMlJ0fKnWjxe+jimfbBYjMdLv29I8sC79ruhWfngrVjKcvrC0bXOkutV63iZxaqY5EDWw2iudcvzOv1ZrthZmoMav3DBv9+FdC3cKFYt42XVx66W5Ik3qn1c6wZ8z3PxGQVAbg2ag7ojuuk8IWlHc3unpOei/Y40H2thZreZ2QEzOzBgGwAAAAAAY2TJv+IbQghmLb+N2svz9kvaL0mDPB8AAAAAMF4GvUE9+eLUXTO7UtKp5uNHJe2O9tvVfGxwy/nL453m4STTlRRNFbWQTD0s+J/mt2iaWkiWpKnPXnLl2tyltvtaMW1fH398DmbLLFvo0rh1ml6VLEdSSKbxFqKlTCz4ulD3SwTVZi4ubFcrF11dOY1dfNw+//AukydXtw6xM2vf5ySpEC1lkva5QjIZJETLY9Rn/BTfuM9JrUs5WBgsduM/Za33vyeeup1O1bZ0vIzG07TP1S+3Hy8lqRT1u/Q4fcVu3EIV6zJeuunYyb8Vdxwv0+nYjWQJtct+jKzOZuWW8TJNqekjIOMVu/Ri1mmSWzIdO9nVotgVJqZ8nWb8zknsalHsqrPnXd3k9NbkuFEA+gnGWMUNwLANOsX3Pkm3NrdvlfTV6PH3NH/N9wZJ5/KbfwoAAAAAyJOu36Ca2Zc1/4NI283siKRPSLpd0t1m9n5Jz0p6V3P3+yW9XdJhSTOS3rsMbQYAAAAAjKFefsX33W2q3rLIvkHSvqU2CgAAAACw9iz5R5KW23KmoHZ8tSQXxxTnVKU/vZ/kpJayeptNl7/wP9ler2T5cUHtj9nN+Oe/xdJ8pQ67JrlNaZ5pYTLK0yknuXKzSU5bI8uPqyfLX7TmDnVoUzfjHLqUtS20xi7OqZpM+mDZL6MQxy4o6XPVZPmLZI2IgXPachC3FVuqJNW6zky02XmZGdfvZn0cW8bLWrJkUNTvlpb+loPgrZSW4TNa6ilZuiQdL+PYFcpJHOd8udZI8onja90S+tx4x673a1ta1bpMV5yDmva5JK5V3+/qiq91SZ8bWuzGKW4Ahm3QHFQAAAAAAIaKG1QAAAAAQC5wgwoAAAAAyIXc56CObo2z9MDRWnHyuTWFJFeuMJGtFRevxyhJ9UrFlSsz57J9Gz7fSkWfF9JRDheDy0PsLP03mCS3uFjM8t+KyVpxSmJXi9awrVz0a8M1knyrgnqPXev7NPpYLl/s+smrTte1zPpHoejrihNlVw61bN/anF/zrzJzwZWHF7s8xG3wNrTmtC3l2ZlC2qYkz7FejGKXrhs95/Pf0n4X4tgxXrZ75S71UR5vlxzIYjGLXSHpc2nsGjV/ratePh/tWnV1hX4+iqz62PXTs/p54WTNb8viEYrtP6NIUqj7zx6hlsWnlqxnG5LY9fUxMoexA5BPfIMKAAAAAMgFblABAAAAALmQ+ym+S5k2t7Qpa+mLxcvMJFNpkqlOxcls2tnE1Hrfhpqfhladzab4plOiipPr2jenS3PzIQexS6YUWTI1tKAsdhMlH6vShg2uPHMymxZVnT3r21dLpj2V+oldHqM5nNgNq89JkhXi6di+z01MJrFbn5VnT6d9Lo2d73cqJVO9Ozeyj31zbpgDZhw7S5YuSaYXFqO+Ulrn43g5GS9rc2d8E+tRv5vsHLf8RyoH07Nb+pzfM77WpX1uMo1dw3+8mLuU9btGstSTkrG3TetyrJ9WDqmjpbFKX9aiZWbk+8bEpJ+OPbnOX+vmzmSxqlzyfS5dpqu46mMHII/4BhUAAAAAkAvcoAIAAAAAcoEbVAAAAABALqyCHNQlSHM0gs/1GDyvsdCpqMJEljdVSnIRQ/WcK1fPRT8FfznJy1mXttAW3RxLaeyiaIWlJTb6UpTXWJj0uXETEz63plHNlkmoXUjOpbkkB3V9XN956YaxE+drD6vPSa6jtfS5NHZRflyj6pdJqJz1Syo0ZpMc1A6xG+9VEtK/NYnd4AOmLxWSPPAoJzXNaww1P17WzvklgVy/m+owXi5SHCvpibm0QTJ63fbXuuKkzwOfLE3759b88k612dmF7cbMrN93w9q91sVL+4SlJX4nxaycLstVSGNX9jmoqmdjZjVZpqtx6ZLfd8PmDm1o31oA6IRvUAEAAAAAucANKgAAAAAgF7hBBQAAAADkwnjnoKaGujBq/LrpuqhRTpXLz5DKV2x35TMnn17YrlQuuLpSeElynLaFNWBoq2smL5vFLs4dlqTS9CZXntqYlc+ePu7qqnWf51gKW6NjJMfskio3Vlasz6Wx2xxtX+Hqzj5/xJWrVd/vymFbdJzkuGspdmnuaJwHPsTXLRSz2E1s8H2ufMU2Vz574mlXrtayfjepLX0dd5wt02jZcbycTGO32V/rXjjyxML2XLIW8VTYkRwn+gvGvc/F6bbJ3zq02CXjZXHCf/QL69PYZZ89zh496OpmZ15w5anw8ug4aS502o4e2goA4htUAAAAAEBOcIMKAAAAAMgFblABAAAAALmwtnJQl7SmYe/rcBaK2dta2uDz30obX+bK9R99Z2H78pljrm76ZXuSVyaBQ5Ksr8D1vpZjnAsnSaU0pyqK3dxzj7i62Qs+L2fD9le0P9B4L6aZGE6fk/qL3WTU70obXurqKj/6X1eevehjN73j6vYHWkuhS8Xr2/bzvC5r4cbrok6u2+jqpq640pWrz3zblefOnVrYXr9tdz+tGm+DxqqPPmdF//Fhcn0Su2l/rWvUHlzYvvT8j1zdpl17k1eP/u18LfW5lvW/O+n8QcTHLnnddLxs6XdZ7Oy5ye2U1AAADdRJREFUA67u4qmnXHnTVT8VHSX5zmMtxQ7AUPENKgAAAAAgF7hBBQAAAADkwhqb4rsU8ZSpzlPW/NOKrji13S+boFBe2Jw5+ayv+okb/UvxzwkDaL9UhtQldgXfPcrbs5/eb8z5XWef99OzdfW17ZqAng2+zIlFsStv832uXqu78uVk2RntuS7bbulzBLNv/Sw1lAxypW1+qZJQ8X3y8olszNyy56c7Hxc9WMJ4mVzrytu2JvXZNNILx550VY3XvdmV3dDLUiVtdH4j+loWKu13m7PYWckvd3fp2GFXblSrC9vFkp86TOwADIpbHgAAAABALnCDCgAAAADIBW5QAQAAAAC5QA7qINK1MrqtOxMpT2925cnpnQvbp5962tXtvvGyP2xpOjqkP2Z/S6+sYUuI3dSmLC+nXPb5VScPP+HKL7/+F6JDlpJDErvll72n6zb5WJXX73DlE0/6ZRN2XV/JXqUw5eqI3SAGz2ssbfDjZWm9XzLo5KGs3115Q9XVpf3O9XXi1psljJeT6/wSa+uvyJYBOv3ko66uUT3vyoWJLPeYNMYBxbHrI26SNFHesLC9Yatf7u7SMz5/uDZzcmG7WPL7EjsAg+IbVAAAAABALnCDCgAAAADIBW5QAQAAAAC5QA7qEPS1zN/EOld+ydWvXth+/vA3XV3l7AuuPPXSabWV5piQY9VGf7k4seJk9v5v2fUqV/fUY1915fqlmYXtiY1JLlxLk4hdT+K3pY8wFkq+32x9uc+T+uGJe125dinL/Z7c5HNQW5DXuKwKE/7937rnJ135+WN3LmzXL150dRNX+Nzj+JQhUsvPJsquvO3qbMw8dugBVzd76nlXnr4qXru4Sx4s/a6rfj6jSJIVs/VMN+26ytUdO1hz5QtHsrWIy5v8vi2LtzNeAugR36ACAAAAAHKBG1QAAAAAQC5YumzCSBph1rYReWhfd8myCVHxjW/4GVf37UceceVt21+2sP3Bd37E1f3nwe+48ncfumdhu5a8Lw988z9c+c033ujKy7UcRqfXXQ2xi9vYaDRc3Y7tW1z5zPlsCuGr977W1X3gV//Ele/8l88sbB869JCrK0z5Kb9nTp125ampbBr4KOIm5T92afvS2F21M+tXx0/7qfKvjKbVS9L7bv6oK//D/Z9b2H7qKd9fi+v8lNOTR44ubE9Pb3R19Ll22o+XO1+63dWd+PEZV96dTK3/8K9/emH7rq/td3WPHfx3f9hC9u+xx44fd1Xbt2xzZWLXTtbGtLl/sO/DrvzZ/X/lylu2Zcs7vfcdH3B13z961JX/67+/tLA9W/HLB33kk5925U9//PcWtlvf3uHFcfXHLpO29/GH/dIxr78xu76Vpta7unfc+POuvPkV2Wece+75M1f3wpmzrnzlK/cubD936AeurjV0w4kdS4EBufNwCOH6bjvxDSoAAAAAIBe4QQUAAAAA5AI3qAAAAACAXGCZmaHo8CPu1kiqfO7H7OUsv+Zow+dbTQZfrkcvlWbtblzC8imYV0hzVdK3NIrd+Qtzrmp23Ywrl3RuYbuevM5EPT1usa92olVL7GJJn7twqeLK50uXXHlC5xe209hNJg8Uid0A2o+XjZZcPl++ODPrymfKWV54Ol42Gv448b/GlkTcBtN+rae6+TFQ8te+uZlszHx6xi8rU6z7JYJqUT+z5JxY3zin9sg3HERt0l/PFLKLVL3il5U5dNrnb1+3OYv77GxycUsvopUOsSNXFECEb1ABAAAAALnADSoAAAAAIBe4QQUAAAAA5AI5qMPQYQ20i8HnbzSSXS9cyNbAvPNv/3TgJsxO8m8NS5Uspam5JIcqjt2xY4dc3R/98a09H6cy69f1a4Q0bwf9SmM3E72njaTTnTzxQ1e+/fZ9PR8nTbGq1LN81nVaL/QgHS+jYq3YedcXfnzElT/1qff1ftgoJ7Uq+txAOlzrQtGv71xP8rUvXPzxwvY//ePnB25CRZMDPxeLW6+yK8c5wNWaz9F/9OFvdyx3MlXYMEDrAKxF3NUAAAAAAHKBG1QAAAAAQC4wxXcIQsvyJNn0mNnK9Iq0oVytdN8JHaVhrNWWp3s0LJleGBqL74ieWfJPbbVKafEdl6hR8LGzdG4xumoZL6M5vpVqWcslRMexeq3DnmjHxS6Z7luxjX7nDquvLUW5QuyGrVj241qIx1NmwwMYAb5BBQAAAADkAjeoAAAAAIBc4AYVAAAAAJALFjr8bPyKNcKsbSPy0L7lFRbdlNSaFBm/F2l+T+sDK8Ja8sky4xe7Dn9Pp9il70MOYtcpbtK4xa7L39ISux7rFn9g2a2tPpfq9Pd1GC9bqhkvl9+A46XEtS5X2i8LJWnVX+sArLiHQwjXd9uJb1ABAAAAALnADSoAAAAAIBe4QQUAAAAA5ALroI6cLbq5+K7kUoxWh/e/pSp/OVRrV5f3m9itIn28/4yXIzbgeNlSTxxHyzoWO9cROwCD4RtUAAAAAEAucIMKAAAAAMgFblABAAAAALlADiqwLMi9Wb2IHbCy6HPjgTgCGA6+QQUAAAAA5AI3qAAAAACAXOAGFQAAAACQC9ygAgAAAABygRtUAAAAAEAucIMKAAAAAMiF3C8zE0JwZWv5FfMx/lnz5G+PS5b+3enbENS5fuA29bFrGru4LglkLqMY2hfT87Dj39rtOOl7ET0hdAlzJy2nQOg9eOnf06kVrX1ySNL3PzqOdTu/w6KbbXbt46ROuTb5V15S7FyTBo+bLVtwcqilv6Z9Mg7WCrRnvhG979qtf0axHFXzzV+EOu7c8txo/07j5WLP7bRz3O+G1+e6tiJ5bod9x+xa12nnfq516Rg+qmsdgHziG1QAAAAAQC50vUE1szvM7JSZPRY99udm9n9m9j0zu9fMNkd1HzOzw2b2hJm9dbkaDgAAAAAYL718g3qXpJuSx74u6bUhhNdJOiTpY5JkZtdIukXSa5rP+ZyZFYfWWgAAAADA2OqagxpC+JaZXZ089kBUfFDSrzW3b5b0lRDCnKSnzeywpDdI+p9BG1goMAt5tSJ2qxexW52I2+pF7FYvYgcAwzWMUfV9kr7W3N4p6bmo7kjzsRZmdpuZHTCzA0NoAwAAAABglVvSr/ia2R9Kqkn6Yr/PDSHsl7S/+Tr85BoAAAAArHED36Ca2W9K+iVJbwnZb6wflbQ72m1X8zEAAAAAADoaaIqvmd0k6fcl/XIIYSaquk/SLWZWNrM9kvZK+u7SmwkAAAAAGHddv0E1sy9LepOk7WZ2RNInNP+rvWVJX28uBP9gCOG3QggHzexuSY9rfurvvhBCfbkaDwAAAAAYH5bNzh1hI8hBBQAAAIBx9nAI4fpuOy3pR5KG6LSkZyVtb24D44pzHOOM8xvjjPMb445zHMvtql52ysU3qC8yswO93FUDqxXnOMYZ5zfGGec3xh3nOPKC1aUBAAAAALnADSoAAAAAIBfydoO6f9QNAJYZ5zjGGec3xhnnN8Yd5zhyIVc5qAAAAACAtStv36ACAAAAANYoblABAAAAALmQmxtUM7vJzJ4ws8Nm9tFRtwdYKjN7xsy+b2aPmtmB5mNbzezrZvZk8/9bRt1OoFdmdoeZnTKzx6LHFj2nbd5fNsf075nZdaNrOdBdm/P7k2Z2tDmOP2pmb4/qPtY8v58ws7eOptVAb8xst5l908weN7ODZvbbzccZw5E7ubhBNbOipL+W9DZJ10h6t5ldM9pWAUPx5hDCtdG6Yh+V9I0Qwl5J32iWgdXiLkk3JY+1O6ffJmlv87/bJH1+hdoIDOoutZ7fkvQXzXH82hDC/ZLU/Ixyi6TXNJ/zueZnGSCvapJ+N4RwjaQbJO1rnseM4cidXNygSnqDpMMhhB+GECqSviLp5hG3CVgON0v6QnP7C5LeOcK2AH0JIXxL0gvJw+3O6Zsl/X2Y96CkzWZ25cq0FOhfm/O7nZslfSWEMBdCeFrSYc1/lgFyKYRwPITwSHP7gqQfSNopxnDkUF5uUHdKei4qH2k+BqxmQdIDZvawmd3WfGxHCOF4c/uEpB2jaRowNO3OacZ1jIsPNac43hGlZXB+Y9Uys6slvV7Sd8QYjhzKyw0qMI5+LoRwneanyewzszfGlWF+jSfWecLY4JzGGPq8pFdJulbScUmfGW1zgKUxs2lJ/yzpd0II5+M6xnDkRV5uUI9K2h2VdzUfA1atEMLR5v9PSbpX89O/Tr44Rab5/1OjayEwFO3OacZ1rHohhJMhhHoIoSHpb5RN4+X8xqpjZpOavzn9YgjhnubDjOHInbzcoD4kaa+Z7TGzkuZ/eOC+EbcJGJiZbTCzjS9uS/pFSY9p/ry+tbnbrZK+OpoWAkPT7py+T9J7mr8EeYOkc9E0MmBVSHLufkXz47g0f37fYmZlM9uj+R+S+e5Ktw/olZmZpL+T9IMQwmejKsZw5M7EqBsgSSGEmpl9SNK/SSpKuiOEcHDEzQKWYoeke+evB5qQ9KUQwr+a2UOS7jaz90t6VtK7RthGoC9m9mVJb5K03cyOSPqEpNu1+Dl9v6S3a/7HY2YkvXfFGwz0oc35/SYzu1bz0x6fkfRBSQohHDSzuyU9rvlfR90XQqiPot1Aj35W0m9I+r6ZPdp87ONiDEcO2fx0cwAAAAAARisvU3wBAAAAAGscN6gAAAAAgFzgBhUAAAAAkAvcoAIAAAAAcoEbVAAAAABALnCDCgAAAADIBW5QAQAAAAC58P9oQVhTBI4olAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "imshow(sample[0].cpu().detach())" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHkCAYAAAAzRAIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+QZWV5J/DngYZJwBAwJIiDFScJKxI2CEwBW2ZTriQrEhJIyrhYoLNKMmQX1x9YETRmmWxMhWQjJlQSZRKIk4WV4I8AUhgloslmKwzOKCggyOiECAxgYhRFFxl494++NPdcpn/e7j7vOffzqbLmvPfe7n5mnntu8/Wc55wspQQAAAC0ba+2CwAAAIAIARUAAIBKCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKqwYgE1M0/OzLszc0dmXrBSPwcAAIB+yFLK8n/TzL0j4osR8TMRcV9EfDoiXlVKuXOW1y9/EQAAANTin0spPzjfi1bqCOrxEbGjlPLlUsp3I+KqiDhthX4WAAAAdbt3IS9aqYC6NiK+MrS+b/DYjMzcmJnbMnPbCtUAAABAh0y19YNLKZsjYnOEU3wBAABYuSOo90fE84bWhw0eAwAAgD1aqYD66Yg4PDPXZea+EXFGRFy3Qj8LAACAHliRU3xLKbsz8/UR8bGI2DsiLi+l3LHE77WstbG8MnPW5/SuXnP1LULvamaf6y696y696ya/67rLPtdd8+13C7FiM6illBsi4oaV+v4AAAD0y0qd4gsAAACLIqACAABQBQEVAACAKgioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqMNV2AZNm++ZzGuvjNl7aUiUs1nDv9K077HPdpXfdpXfd5XddN9nnukvvnskRVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVZhquwAAAOpz1zUXNdZHnH5BS5WwWHrXXcO9m9S+OYIKAABAFQRUAAAAquAUXwA6wSlr3eWUNQAWyhFUAAAAqiCgAgAAUAUBFQAAgCqYQQUAgB559OGdbZfAEumdI6gAAABUQkAFAACgCgIqAAAAVTCDCkwU99IEAKiXI6gAAABUQUAFAACgCk7xBQDgGdzuAmiDI6gAAABUQUAFAACgCgIqAAAAVTCDCgCsKLOMAHu295r9GusnHvt2S5XUwxFUAAAAqiCgAgAAUAUBFQAAgCqYQYUluOuaixrrI06/oKVKYHKYYwSgb446452N9W1bzmupkno4ggoAAEAVBFQAAACqIKACAABQBTOoLRueZTTHCADAYh294eLG2hxjd+y1lzg2yhFUAAAAqiCgAgAAUAXHlAEAAFqw1z5r2i6hOo6gAgAAUAUBFQAAgCosOaBm5vMy85OZeWdm3pGZbxw8/uzMvDEz7xn8edDylQsAAEBfjXMEdXdEvKWUcmREnBgR52bmkRFxQUR8opRyeER8YrAGAABWwNSa/Rv/gy5bckAtpewqpXxmsP3NiPhCRKyNiNMiYsvgZVsi4vRxiwQAAKD/luUqvpn5/Ig4JiK2RsQhpZRdg6cejIhDZvmajRGxcTl+PgAAAN039kWSMvNZEfGhiHhTKeWR4edKKSUiyp6+rpSyuZSyvpSyftwaAAAA6L6xjqBm5j4xHU6vLKV8ePDwQ5l5aCllV2YeGhEPj1tk7TJzwa/dtGlbY/38ne+c2X7hL8z9fabzPstpqb0b7lvE3L3Tt+W3XPtchN6ttrPOOquxvvLKK2d97bt/+68b6wP2+ZfGev0c74MrrriisT7zzDMXWiILMN8+ePN7X99Y3/jQ0//+c/VtlH1w+c3XuwP2f/qejOf92v9tPKd37Rrnd5/etWupvZvUvo1zFd+MiMsi4gullIuHnrouIjYMtjdExLVLLw8AAIBJMc4R1BdHxKsj4vOZeevgsbdHxEURcXVmnh0R90bEK8crEQAAgEmw5IBaSvn7iJjtuPNJS/2+ABARceyBf9NYr9n7Oy1VwmLtnd9trJ819Y2WKmGxFn5CIcDKGPsiSQAAALAcBFQAAACqIKACAABQhazhksSZOWsRNdQ3n8VcOnocNf5bzPV3r7HeUavRuxr/Heb7e9dY8zD73J7VWO+oxdxmZhw13mam670bNmn7oN4tXg3/Ll3/XTdK76bVUN9iTdJ/b87zd91eSlk/3/dwBBUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBXcZoax9O0y4JOib5fenyT2ue7Su+7Su27yu6677HPd5TYzAAAA9IaACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBWm2i5gPpnZdgkskd51l951k751l951l951l951k771nyOoAAAAVEFABQAAoAoCKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqUP1tZkopbZfAHOa61Lfe1Wu+S7TrXb3sc92ld92ld93kd1132ee6azluA+QIKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqIKACAABQBQEVAACAKgioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKjCVNsFTJrtm89prI/beGlLlTCf27ac11jvfuzRmW19q9vofjZM7+o1V98i9K5mo72bWrN/Y330hotXsxwWYbR3a0/4xZnt5xz9stUuh0X47OWvn9k+5nV/1GIlLMau7dc31oced2pLldTLEVQAAACqIKACAABQBQEVAACAKphBhVmMzkzNNx9HPYbn34Znh6nbXvusaayffPyxliphXPa77rp/64dnts2g1u3J3Y/PbI9eN8Pcd70e2P6RxtoM6jM5ggoAAEAVBFQAAACqIKACAABQBTOoQO8Mz96YHe6OY157SWOtd90xet9TM6jdoXf9oG/dZX74mRxBBQAAoAoCKgAAAFVwii8AMBa35eouvesut1TrB717JkdQAQAAqIKACgAAQBUEVAAAAKpgBhUAADrGLdW66biNlzbWevdMjqACAABQBQEVAACAKowdUDNz78z8bGZeP1ivy8ytmbkjM/8yM/cdv0wAAAD6bjmOoL4xIr4wtP7diHh3KeXHIuJfI+LsZfgZAAAA9NxYATUzD4uIn42IPxusMyJeGhEfHLxkS0ScPs7PAAAAYDKMewT1DyLirRHx5GD9AxHx9VLK7sH6vohYu6cvzMyNmbktM7eNWQMAAAA9sOSAmpmnRsTDpZTtS/n6UsrmUsr6Usr6pdYAAABAf4xzH9QXR8TPZ+YpEfE9EXFARPxhRByYmVODo6iHRcT945fZX3ddc9HM9hGnX9BiJSzGcN8i9K5L9K679K67/K4DYKGWfAS1lPK2UsphpZTnR8QZEXFTKeXMiPhkRLxi8LINEXHt2FUCAADQeytxH9TzI+K8zNwR0zOpl63AzwAAAKBnxjnFd0Yp5VMR8anB9pcj4vjl+L6T4NGHd7ZdAkugb92ld92ld92ld930uSvPb6x/4szfbakSFstIRHcZiViZI6gAAACwaAIqAAAAVRBQAQAAqMKyzKACANAvjz/69bZLYInMfXeX3jmCCgAAQCUEVAAAAKogoAIAAFAFM6hArx294eLG+rYt57VUCYuld92ld911+Clvmtm+54Y/aLESFmO4bxF61yV690yOoAIAAFAFARUAAIAqOMV3lR11xjsb69uvekdLlbBYw6esOV2tO6b23a/tEliiqTX7t10CS6R33XXAYS9suwSWQN+6S++eyRFUAAAAqiCgAgAAUAUBFQAAgCqYQV1le68xD9dVZqo6KrPtCgAAWCBHUAEAAKiCgAoAAEAVBFQAAACqYAZ1lZljBAAA5rPzpssb63UvfV1LlawuR1ABAACogoAKAABAFZziC0An7bzpspntdS89u8VKWIzhvkXoXZfoXXfdfe3vzWy/4LS3tlgJi/G1HVsba6f4AgAAwCoSUAEAAKiCgAoAAEAVzKACE21SL+HeB1/bccvMtlm47hjuW4TedYnedde3HvpS2yXAgjmCCgAAQBUEVAAAAKogoAIAAFAFM6iwDNwbrrsm9R5jAPTXEadf0Fjfdc1FLVXCYh238dKZ7e2bz2mxkvY4ggoAAEAVBFQAAACqIKACAABQBTOoKyAzF/zaTZu2zWx/9OyTGs/9xuU3zfp1pZTFF8acTjjhhMb6lltumeWVEe96542N9XO++eXG+kdOmv09cPPNN8/5cxnfXPvgtks3NtYff+g1jfX6Rey/9sPlNd9n51HrfqixfsWGG2a29a1d8/Xue9fsM7N9/tv+ofGc3rVrrt4N9y1C72qz1P/e1Ld2LbVvEZPTO0dQAQAAqIKACgAAQBWc4luV7h6K74PFnHJx5AHN05wO2vfB5S6HFfKa37m2sX7jr/50S5WwWLfvfLixfkVLdbB433ns8bZLYAn0Deqy4WVHN9ZbPnZbS5WsLEdQAQAAqIKACgAAQBUEVAAAAKqQNVyCODNnLaKG+hZrMbOMS1XLv8tcf9daalyoE088sbHeunXrivycGm4zM997tGu9G7Ua+2BEO/9OfdrnRvW5bxF6txz0bvn1uXd+143PPrf8+rzPRcz799teSlk/3/dwBBUAAIAqCKgAAABUQUAFAACgCu6DCgNdn2kAAICucwQVAACAKgioAAAAVMFtZhhLny8D3md9v/R+n9nnukvvukvvusnvuu6yz3WX28wAAADQGwIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCmMF1Mw8MDM/mJl3ZeYXMvPfZeazM/PGzLxn8OdBy1UsAAAA/ZWllKV/ceaWiPg/pZQ/y8x9I2K/iHh7RHytlHJRZl4QEQeVUs6f5/ssvQgAAABqt72Usn6+Fy05oGbm90fErRHxI2Xom2Tm3RHxklLKrsw8NCI+VUp5wTzfS0AFAADorwUF1HFO8V0XEV+NiD/PzM9m5p9l5v4RcUgpZdfgNQ9GxCF7+uLM3JiZ2zJz2xg1AAAA0BPjBNSpiDg2It5TSjkmIh6NiAuGXzA4srrHo6OllM2llPULSdEAAAD03zgB9b6IuK+UsnWw/mBMB9aHBqf2xuDPh8crEQAAgEmw5IBaSnkwIr6SmU/Nl54UEXdGxHURsWHw2IaIuHasCgEAAJgIU2N+/X+LiCsHV/D9ckS8NqZD79WZeXZE3BsRrxzzZwAAADABxrrNzLIVMcdVfGuoj9ll5qzP6V295upbhN7VzD7XXXrXXXrXTX7XdZd9rrvm2e9W/Cq+AAAAsGwEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKow1XYBfbdr+/WN9aHHndpSJSzWg7d9rLF+ztEva6kSAACYDI6gAgAAUAUBFQAAgCoIqAAAAFTBDOoKe2D7RxprM6jdcf/WDzfWZlDrtX3zObM+d9zGS1exEhZruHdHb7i48dzUmv1XuxwWaHSfs591h94BtXMEFQAAgCoIqAAAAFRBQAUAAKAKZlCBzhudoZprJpV63bblvMbabFx37H7s0cba/DCMb77fZT4j62XWezyOoAIAAFAFARUAAIAqOMV3lTnk3123X/WOme2jznhni5VAfwx/Bjo1u7ucnt1dt255c2P9og3vbqkSRhlf6Y/h3vl8nJ8jqAAAAFRBQAUAAKAKAioAAABVMIO6wkYvtT96KX6647FHvtp2CSyB+SpYfmbjumv/H1rXWD/68M6WKmFc5hrr5TNyPI6gAgAAUAUBFQAAgCoIqAAAAFTBDOoKO3rDxY21c9C7w/xAdw3Pfpv77i73je6u0fuijv4upD1HnH5BY+13W3f475J+8Lttfo6gAgAAUAUBFQAAgCo4xRfoneHTCZ0C1R1OX+sut1TrD7cu6San1ddteF/yu21+jqACAABQBQEVAACAKgioAAAAVMEMasvuuuaime3RS79Tr3++6+8b64OP+MmWKgFon1uqdZfZ7+5ae8Ivzmzfv/XDLVbCONx25pkcQQUAAKAKAioAAABVEFABAACoghnUlj368M62S2AJ7v27/9VYm0HtDrMe3aV33eXemt00fJ2MCNfKqM1zjn7ZzPboDOoD2z7SWD93/c+tSk3Mz9z3/BxBBQAAoAoCKgAAAFUQUAEAAKiCGdRVNnqvuNu2nNdSJSzWcO/0rTvsc92ld92ld911+Clvmtm+54Y/aLESxrHrM9c31mZQu8PMviOoAAAAVEJABQAAoApO8V1lU2v2b7sElkjvuknfukvvukvvuuuAw17YdgksgVuXdJfePZMjqAAAAFRBQAUAAKAKAioAAABVMIMKy2DnTZc11uteenZLlbBYetddLsXfTaPzVXrXHXrXXT4vu2lS9zlHUAEAAKiCgAoAAEAVBFQAAACqYAa1Ivd89JLG+vCXv6GlSlisr+24pbE2x9gdetcdR5x+QWN91zUXtVQJi3XkL104s33nB36zxUpYDPdn7C69667h3o327YHtH2msn3vcz61KTavNEVQAAACqIKACAABQBaf4VuSRr9zRdgkskFMNu8tpT921/w+ta7sEluh7D3rurM9NyilrfeTWJd00qbcu6aJnHfKjjfWu7dc31n39vHQEFQAAgCoIqAAAAFRBQAUAAKAKZlBbNjzLaI6xO8zCQV2+eP27Gut/c+pbWqqExZqUmao+WPfS1zXWO2+6vKVKWKy5bl1CvV5w2lsb69HefenG985s/+jP/Oqq1LQaHEEFAACgCgIqAAAAVRgroGbmmzPzjsy8PTPfn5nfk5nrMnNrZu7IzL/MzH2Xq1gAAAD6a8kzqJm5NiLeEBFHllK+k5lXR8QZEXFKRLy7lHJVZr43Is6OiPcsS7U9ZJaxn4bv62eeqlvc16+bvvnAF9sugQVyL+LuevaPndBYD8+gfuuhLzWeG71/I/VyX9TuOPS4Uxvr0Rn+vhj3FN+piPjezJyKiP0iYldEvDQiPjh4fktEnD7mzwAAAGACLDmgllLuj4jfj4h/iulg+o2I2B4RXy+l7B687L6IWLunr8/MjZm5LTO3LbUGAAAA+mOcU3wPiojTImJdRHw9Ij4QEScv9OtLKZsjYvPge5Wl1lG7zFzwazdtamb1d/77FzbW1/z9XbN+bSm9/Sesxly9vOGS/9FY/81Hv39m+4L1C38PROjlcptvH/yVU49trNeu3zyzvX4R+6++Lb9xPj/1rl2L6d1Fv/W3jfVn/vuvzWxv/K3fn/Nr9W5lzdfHbZdunNl+13u/3nhu0yb7YJt8fnbX1q1bZ7ZPPPHEOV975e8/fTr23/723zSee8s7fmbWrzv++ONn/Zk1GOcU35+OiJ2llK+WUh6PiA9HxIsj4sDBKb8REYdFxP1j1ggAAMAEGCeg/lNEnJiZ++X0/01zUkTcGRGfjIhXDF6zISKuHa9EAAAAJsE4M6hbY/piSJ+JiM8PvtfmiDg/Is7LzB0R8QMRcdky1AkAAEDPLXkGNSKilHJhRFw48vCXI+L4PbycRXrHq3+qsZ5rBpV2/eEVVzbWZ/3SHq8NRoX+9PrPNNab1rdUCMtqn6m9G+vHdz/RUiXMZ+337GisP/Txv26pEhZr/TlPz+xv2rRxjlfSJXvv9fTxqyeefLLFSpjPPXd8aGb7L/72Gwv+usXMKLdh3NvMAAAAwLIQUAEAAKiCgAoAAEAVsob7F811H9Qa6hvHap3j3da/01x/v673blSfejnf36VPvetT3yLscytB75af3vVD1/s4Sb/rRvW5d33uW8Ti7oO6VCeccEJjffPNNy/b957nvbe9lDLv1T4cQQUAAKAKAioAAABVEFABAACowlj3QQUAAKA7ap/jdQQVAACAKgioAAAAVMFtZhjLJF8GvMsm+dL7XWef6y696y696ya/67rLPtddbjMDAABAbwioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqIKACAABQBQEVAACAKgioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqIKACAABQBQEVAACAKgioAAAAVGGq7QLmk5ltl8AS6V136V036Vt36V136V136V036Vv/OYIKAABAFQRUAAAAqiCgAgAAUAUBFQAAgCoIqAAAAFRBQAUAAKAK1d9mppTSdgnMYa5Lfetdvea7RLve1cs+11161116101uRwLd5AgqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqIKACgAAQBUEVAAAAKogoAIAAFAFARUAAIAqCKgAAABUQUAFAACgCgIqAAAAVRBQAQAAqMJU2wX0wfbN5zTWx228tKVKAAAAussRVAAAAKogoAIAAFAFp/guwZO7v9t2CSzR6OnYw5yaXbfh3ukVAEA/OYIKAABAFQRUAAAAqiCgAgAAUAUzqEuw19S+cz5vVq5eo/2YayaVerm1U93MeneT/QqAGjiCCgAAQBXmDaiZeXlmPpyZtw899uzMvDEz7xn8edDg8czMSzJzR2Z+LjOPXcniAQAA6I+FHEF9X0ScPPLYBRHxiVLK4RHxicE6IuLlEXH44H8bI+I9y1MmAAAAfZellPlflPn8iLi+lHLUYH13RLyklLIrMw+NiE+VUl6QmZcOtt8/+rp5vv+sRSykvtoMz/EcveHixnNTa/Zf7XJWVGbO+lwXejeps3Jz9S2i/t6N9u2Y117SWO+1z5rVLGdVdW2fm2/Ou8/72ajae6dXs6utd08+/lhj/dk/f0NjPcm9Gjbf7zpg1W0vpayf70VLnUE9ZCh0PhgRhwy210bEV4Zed9/gsWfIzI2ZuS0zty2xBgAAAHpk7Kv4llLKXEdA5/i6zRGxOWLuI6gAAABMBqf4roDb/uItM9u7/9+3Gs/17bSb2k57Gscknd7W9VN8P//+tzfW3/3mvzTWferVqK7vc6P72XOP+7mZ7UOPO3W1y1lVXevdpI5A7EntvdOrPXOKL1RnRU/xvS4iNgy2N0TEtUOPv2ZwNd8TI+Ib84VTAAAAiFjAKb6Z+f6IeElEHJyZ90XEhRFxUURcnZlnR8S9EfHKwctviIhTImJHRHw7Il67AjUDAADQQ/MG1FLKq2Z56qQ9vLZExLnjFgUAAMDkWdAM6ooX0bMZ1GGjcyF7Te3TWB/zuj9azXKWXe1zOeMY7V2f5ni6PoM6apLmr7q+z31952cb6y/d+N6Z7dHPw9HPy67reu8maT8b1bXeTXKvhplBheqs6AwqAAAALCsBFQAAgCoIqAAAAFTBDOoq69tcY9fmchajzzM8fZtBHTXcu9yreS24Y3/5j1e7nGXVt33u9qveMbP92CNfbTzX9f1sVJ96N0n3jY7odu8mrVfDzKBCdcygAgAA0B0CKgAAAFVwiu8q69tpo10+7Wmxhnu319SaxnPHvO6S1S5nLH0/xXeY0+q7o++nIk5S7zKb///3sb/yntUsZ9n1qXd938+GOcUXquMUXwAAALpDQAUAAKAKAioAAABVMIPasuFZkC7OffRpLmc+ux97dGb7ti3nNZ7rWu8meQZ1VJ9616e+Rehdlzzx2Lcb61u3vLmxPmDtC2e2D//ZN61KTcupz73r27UxhplBheqYQQUAAKA7BFQAAACqIKACAABQBTOoLev67Eef53Lm0vXZuEmaQR3V5971uW8RPi+7ZPfITOptQzOpz/6x4xvPrXvp2atS0zgmqXdd38+GmUGF6phBBQAAoDsEVAAAAKogoAIAAFAFM6gVGZ37OPiIn2ysf/inXr2a5SzIJM3lzKVrMzuTPIM6qk+9m6S+RTR75/Oybnd+4Ddntr/zrw80nvu3Z/5uY73v/geuSk2LMam96/PMPtAKM6gAAAB0h4AKAABAFZziW5FvPfSlxvrua3+vsa7xVJpJPe1p1Fy961rfIvTuKUe96rcbz635voNXpaa52OeeNty70c9LvavXaK9G98Hh3tXQtwi9e0qfRiKAVjjFFwAAgO4QUAEAAKiCgAoAAEAVzKBWrAuzHuZy9qz23plBnV2XezfJffvi9e9qrL/5wBcba72rV+37XITezab23plBheqYQQUAAKA7BFQAAACqIKACAABQBTOoHTI861HDbEeEuZyFGJ3ROeCwH2+sDz/lDatZTkSYQV2ouearItrZD+1zC1PjbJzeLYzeddN8n5fHvPaSme299lmz0uVEhBlUqJAZVAAAALpDQAUAAKAKTvGtyHynomy7dOPM9vW7Njae27Rp3qPlM5bz39RpT9Pm+nc47AcPaKx/+dybGus2eucU36ddeeWVjfVZZ50162sv+73max95/Admtt/86yfP+XPOPPPMme0rrrhiMSU22Of2rAufn3q3Z3P9uwz3LULvajPXv8tfXvhLjfVd+Wsz2xduOn7BP2Ol+ga0wim+AAAAdIeACgAAQBUEVAAAAKow1XYBLNz6czbPbG/atHGOV1KT+776SNslsEz+628097v99juopUpYLJ+f3TTctwi965L/9JsfaKzPP/+/tFQJ0DWOoAIAAFAFARUAAIAqCKgAAABUwX1QK7Ja9+tyH9Tl17XeuQ/q0xZzH9RxuA/qyurCPqh3e6Z33bUavXMfVOgV90EFAACgOwRUAAAAqiCgAgAAUAUBFQAAgCoIqAAAAFRBQAUAAKAKbjPDWFx6v5vcZqa77HPdpXfdpXfd5DYzUB23mQEAAKA7BFSKHXlVAAAF4ElEQVQAAACqIKACAABQBQEVAACAKgioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKiCgAoAAEAVBFQAAACqIKACAABQBQEVAACAKgioAAAAVEFABQAAoAoCKgAAAFUQUAEAAKjCvAE1My/PzIcz8/ahx/5nZt6VmZ/LzL/KzAOHnntbZu7IzLsz82UrVTgAAAD9spAjqO+LiJNHHrsxIo4qpfxERHwxIt4WEZGZR0bEGRHx44Ov+ZPM3HvZqgUAAKC3puZ7QSnl7zLz+SOPfXxoeXNEvGKwfVpEXFVKeSwidmbmjog4PiL+YakFZuZSv5SW6V136V036Vt36V136R3A8lqOGdTXRcRHB9trI+IrQ8/dN3jsGTJzY2Zuy8xty1ADAAAAHTfvEdS5ZOavR8TuiLhysV9bStkcEZsH36eMUwcAAADdt+SAmpn/OSJOjYiTSilPBcz7I+J5Qy87bPAYAAAAzGlJp/hm5skR8daI+PlSyreHnrouIs7IzDWZuS4iDo+IW8YvEwAAgL6b9whqZr4/Il4SEQdn5n0RcWFMX7V3TUTcOLg4wM2llF8tpdyRmVdHxJ0xfervuaWUJ1aqeAAAAPojnz47t8UizKACAAD02fZSyvr5XjTWRZKW0T9HxL0RcfBgG/rKe5w+8/6mz7y/6TvvcVbaDy/kRVUcQX1KZm5bSKqGrvIep8+8v+kz72/6znucWizHfVABAABgbAIqAAAAVagtoG5uuwBYYd7j9Jn3N33m/U3feY9ThapmUAEAAJhctR1BBQAAYEIJqAAAAFShmoCamSdn5t2ZuSMzL2i7HhhXZv5jZn4+M2/NzG2Dx56dmTdm5j2DPw9qu05YqMy8PDMfzszbhx7b43s6p10y+Ez/XGYe217lML9Z3t+bMvP+wef4rZl5ytBzbxu8v+/OzJe1UzUsTGY+LzM/mZl3ZuYdmfnGweM+w6lOFQE1M/eOiD+OiJdHxJER8arMPLLdqmBZ/IdSyouG7it2QUR8opRyeER8YrCGrnhfRJw88ths7+mXR8Thg/9tjIj3rFKNsFTvi2e+vyMi3j34HH9RKeWGiIjBf6OcERE/PviaPxn8twzUandEvKWUcmREnBgR5w7exz7DqU4VATUijo+IHaWUL5dSvhsRV0XEaS3XBCvhtIjYMtjeEhGnt1gLLEop5e8i4msjD8/2nj4tIv6iTLs5Ig7MzENXp1JYvFne37M5LSKuKqU8VkrZGRE7Yvq/ZaBKpZRdpZTPDLa/GRFfiIi14TOcCtUSUNdGxFeG1vcNHoMuKxHx8czcnpkbB48dUkrZNdh+MCIOaac0WDazvad9rtMXrx+c4nj50FiG9zedlZnPj4hjImJr+AynQrUEVOijnyylHBvTp8mcm5k/Nfxkmb7Hk/s80Rve0/TQeyLiRyPiRRGxKyLe1W45MJ7MfFZEfCgi3lRKeWT4OZ/h1KKWgHp/RDxvaH3Y4DHorFLK/YM/H46Iv4rp078eeuoUmcGfD7dXISyL2d7TPtfpvFLKQ6WUJ0opT0bEn8bTp/F6f9M5mblPTIfTK0spHx487DOc6tQSUD8dEYdn5rrM3DemLzxwXcs1wZJl5v6Z+X1PbUfEf4yI22P6fb1h8LINEXFtOxXCspntPX1dRLxmcCXIEyPiG0OnkUEnjMzc/UJMf45HTL+/z8jMNZm5LqYvJHPLatcHC5WZGRGXRcQXSikXDz3lM5zqTLVdQEREKWV3Zr4+Ij4WEXtHxOWllDtaLgvGcUhE/NX074OYioj/XUr568z8dERcnZlnR8S9EfHKFmuERcnM90fESyLi4My8LyIujIiLYs/v6Rsi4pSYvnjMtyPitateMCzCLO/vl2Tmi2L6tMd/jIhzIiJKKXdk5tURcWdMXx313FLKE23UDQv04oh4dUR8PjNvHTz29vAZToVy+nRzAAAAaFctp/gCAAAw4QRUAAAAqiCgAgAAUAUBFQAAgCoIqAAAAFRBQAUAAKAKAioAAABV+P+dwRKZcL7t4AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [1.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [0.],\n", + " [1.],\n", + " [0.],\n", + " [0.]])\n" + ] + } + ], + "source": [ + "imshow(_data[\"episode_frames\"][0])\n", + "print(_data[\"actions\"][0])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/English/prepare_cartpole_dataset.py b/tutorial/English/prepare_cartpole_dataset.py new file mode 100644 index 00000000..5f2b0d6d --- /dev/null +++ b/tutorial/English/prepare_cartpole_dataset.py @@ -0,0 +1,34 @@ +import gym +import pickle +import numpy as np +import cv2 +env = gym.make("CartPole-v1") +observation = env.reset() + +episodes = {"frames":[], "actions":[]} + +# for 56 *56 episode num = 500 +# for 28 * 28 episode num = 1000 +for _episode in range(1000): + frames = [] + actions = [] + for _frame in range(30): + action = env.action_space.sample() # your agent here (this takes random actions) + frame = env.render(mode='rgb_array') + observation, reward, done, info = env.step(action) + + img = frame + img = img[150:350, 200:400] + img = cv2.resize(img, (28,28)) + + frames.append(img) + actions.append(action) + observation = env.reset() + episodes["frames"].append(frames) + episodes["actions"].append(actions) + env.close() + +data = [np.array(episodes["frames"]), np.array(episodes["actions"])] +print(data[0].shape, data[1].shape) +with open('cartpole_28.pickle', mode='wb') as f: + pickle.dump(data, f) diff --git a/tutorial/English/utils.py b/tutorial/English/utils.py new file mode 100644 index 00000000..d5470417 --- /dev/null +++ b/tutorial/English/utils.py @@ -0,0 +1,43 @@ +from torch.utils.data import Dataset +import pickle +import numpy as np +import torch +import torchvision +import matplotlib.pyplot as plt + +def imshow(img_tensors): + img = torchvision.utils.make_grid(img_tensors) + npimg = img.numpy() + plt.figure(figsize=(16, 12)) + plt.imshow(np.transpose(npimg, (1, 2, 0))) + plt.show() + + + +class DMMDataset(Dataset): + def __init__(self, pickle_path="cartpole_28.pickle"): + + with open(pickle_path, mode='rb') as f: + data = pickle.load(f) + episode_frames, actions = data + # episode_frames: np.array([episode_num, one_episode_length, height, width, Channels]) (10000, 30, 28, 28, 3) + # actions: np.array([episode_num, one_episode_length]) (10000, 30) + # HWC → CHW + episode_frames = episode_frames.transpose(0, 1, 4, 2, 3) + actions = actions[:, :, np.newaxis] + + self.episode_frames = torch.from_numpy(episode_frames.astype(np.float32)) + self.actions = torch.from_numpy(actions.astype(np.float32)) + + def __len__(self): + return len(self.episode_frames) + + def __getitem__(self, idx): + return { + "episode_frames": self.episode_frames[idx] / 255, + "actions": self.actions[idx] + } + + +if __name__ == "__main__": + pass From 2eed5828f6a98e710f0219226a2cbe884350f792 Mon Sep 17 00:00:00 2001 From: kenoharada Date: Sat, 3 Oct 2020 22:28:09 +0900 Subject: [PATCH 6/9] add figs (cherry picked from commit da5f5c7087ec7c719b57558f04190185519cf70d) --- tutorial/tutorial_figs/vae_graphicalmodel.png | Bin 0 -> 36613 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 tutorial/tutorial_figs/vae_graphicalmodel.png diff --git a/tutorial/tutorial_figs/vae_graphicalmodel.png b/tutorial/tutorial_figs/vae_graphicalmodel.png new file mode 100644 index 0000000000000000000000000000000000000000..3e8900a1a7d2fe0fb6b9cc7e90766764df1df952 GIT binary patch literal 36613 zcmeFZg1_i72P3L}9B9%#Z&rXa5(`m! z4?#04)Sg?##3Pn3+et*GP>S=;bI?l|=PBk>Ogy|?&ajfdK6fZnqFz#BSNhz=#N2Jh z!&6$tuB3m48EX4Y(!PeKM~jD?%tMuvlQK;!PA3W59c@h@WtG?T5q74x$ela8HMh4C zcf^Lu2RjbWE^lw!>u+yw-O2CV`OTKQXpbgwZH)f?E%6JmuG(fgNONUnG#2m~8x1|o z5)BGIp@ZKC;1><;PC_Ue7Wf+uer0nZ|8o?=oO|bgKBFI@PL$G=K_bE5nx;->W_Hf6 z?OibP*z&-oepqVhxacS=37gv6vYWiJe`&_B6RgO28(Q(UaY=ya6TXk_f2%xL)7dD%JX#Bpe7XhfY}nG0*kKK=J_@GmjC z*Dfv&!Wi+MPyg~y1J>`EL`S(as4%CzX*Gl|rng96~tg|?dD93-^nK;g2jWnh_p%A{C*%*5l6k*M!nw!j5iAIe^H)sibg#}w5V8-# z-zcev(mzp`Uf66>K3n|#>2|bn|6sEYhf3J1(M6bDesrpCr;yr8@A{_1(*Ok=YABor{a-&u@Z5yeVH1;l`2gs@eo6`s$^Yjl{1Ac8 z!rVql${+FXqw-*Q&cDZkEByb%|No`?|DM?dQX17oMAMN!;S^C`{pAxUH zeP$|5f=?U$ZoFn19P{1U&4x)!bt>O$eKs^Gd-j2W&+0qV#RuK$qUF1ey1Li+$q9GS zDU=~x^pXffD5ow7?A3$7XCJf&vxJ=2e~(F|hTz^GN{Bb(7qa|b5?}NB zn{KS#Lta|b_x;;O#5TT3l;C%)*(!itLfl0fdz!Q2?->7ACsUOVQ48f465%~ z?OTpQeNJaAG}P4M{`93XYd+01*_o*>&T?P$)F@WTE~tNt4?;n>7zhHD7DI3(4I8#G z`Br8B!^CtRi=h}Q5uZ6mCf4G2US;~;`?cer^aN(B&fN;8IpN`1Xvs+f>0DT_0zUMS zw5W$-FWRmSnv-@J_q0Rt$mvoIy_l1elPJXa)1V)ruf^@nx(ML|@{nJxXYb5QWY$E6MH+KO>`DjNmG^E$L=SeoVsVmrUy^U>PTd1MSRtC9E%MJg(q(c>N|-!uZ_coi zyLlU^!+-wjxN{e;%z&?RE5~2FgtET(-n$F~Sli#rT`4mQxD8lEt^Fqw$#)uay#_HR zKQA}brH1ss3wY6lTSldyQu%xoEqF@bS=r&@c%$<3_rjk2xq7Vr7%B>_HXl~op)X(X z4c!-9rD~xY8j$=Jc*l2^5U4zj40Z{5L~h1Tg-@lIx^`|_2^FtYExu4`P0~a|?u&Og z51j^R)lX!|r!XZhxAO~51CzZO9e|NwCZCyf>wKUx=+v`oM3k66Z@EuWoTOQ#1bgVv zfgXCga+~-9f>UNTA~=~L)T@CU%&Ih3;q$3)^UbUz3$q^;d0iw_0lD0Mdt?C>q)J8YI);=+$Y7c-MFh2haQAYAm-Y zkPU722*sx;+W+bJvsp+#8>6T6f?fhTl%BgW)4KJ}J7KV1KsO*JPVQ zS2ZCg&x zMi-a2UTkJ&+(wRHnjLA86YFAks8eLs>|l&-FLwr?NVT>19pMQqxFqIf4+UsDv%bb& zSJr`OX>`%OguvygAXfWxiJFfohl=YQBDe*UO=HFQU4_Y>DBhL0c2KWl;Wi&3Q*YDg zO5yZAwdwqZ=FqHyWDT6NYyPsTM`y_Tj$3oiplRwmOBI-uv-UH=nA| zIJKW0kI`gzxI&RwS!b!uw@@`loXAXUEsE#W<)58U(Zh@nDWCC7S{!NPuJ19{0Th^9 z17%Rj+P1u6b89Q;B6vG~>@a*6%h;gFrE*%VG za8Rm|Ut@llVc{VL2+9xNB(|%)%iy!dOg^UQImnVP^uPU!*myJ4U3V;xfSVqvi5ZGl zA|y0C4;r^veS@Z6MYuzFvra}Mn2{Z+Q1g*Aq8?nt{QZ5Qtt^@Rul{m`eZ2zn4l+9C zhs_BGbBUAaQBq{8B4QGUH+lD&JntKN;nXk)v*UMxcU1QH&D8vw10A?`QGX ziVBR2RKPj+ro;bwzC4i#;9zC#GO5qC;OI3fNK>Y~X%Ozj+nO z(KhXFd!`v&p*%A(;scV)6_)?)jk^S2vzBcq7i`+@(=W!+oX&*Mi!925PWTE)T=-)Y zhVwe&d-ILXgg$@FLdw0*4)#m41tXc082`L=$|n**VDLN<#G5#H9j3_M*rVZIf}f{4 zLiyyeo1*x+zv2-n0U`ucl%7D^=mIuyvUG_r;jWjm51Kj5ja>V%qK}T>TYY;UlJ6UO zw~0`lc*M^olz{5Rah7pW=e1~O{ELYqWyLPXEHrZo=^%2_H|f7k$j2k`N%nL`Jac@G z2i1;$-L8RZg0o9O@(XLYaGZLQZ7ARI65+|yIKP|A!Jm^Ks3r;&-ed^DYr6->=go#w zbh`+1qg42EsLyMN&$ZO`;@H&vuaCkIO4Mj!L2mEOsrQ1qL!SY3YK=9k@!3#Jy{|Jx z)apW^FNVq*Higw87pYP4M@rpj&N0x4Ou+*c_;_C8zz^}!Hx#9{KkBSZKdfyl_pK~5 zvWu}KTTw!bIry&hR?@^V0YIL&$JDDN+2boie$q*SA8o0ZrB32x2r8p-F|^CHm|b*_ z0ZzV5ux^f&xV@f$y)z}{b?yEPob&^lho1H+dwK5)QwY(crwv7K z={06fbP`Opli=?FR6UGJ3xX!7pkXZ<_}`q=am1;u#fTgTJ~So`QXf*ijtKR36;Rhp zeX@V)pqSv~D7ZGjIz%Anuo;#5+j-BUfh{MmT$Y8|N-i3YoV#cKNw?VL)%jYiw>Z2b zZf51F?YFufo4L9#@IJK10848#;L(CGpeDlEGpLOg9YO`LZOiJ;lhx+YiyEmh@vD!< z7yU?1gB+{k-@+#dl5)|!PsM*um!}E zLUf8c@F0G=B7?XbEi^kX(cYRpbPbIy{9uvont~W%m)!5G6q~-=_rdO^Kt5Wb$d4f1 z_YT8_Iw`O-f3^&_{h8|i1Y3afQaCYnU~0%pZWCrxZhtQIOHx@l4^l`k9>A_$#O2*F7 z5FOh@m$F9_-N_t8bDwHy**%2DawH^NGOKciuF4Ac+4SmM_M64KLHInWpRIMeW&n;< z`)2pfp4$;q4&NnxVOtx3AnO29II&?VzBrn#H51T#L#6b8%$6?~OImMf;_8sggr$eH zHe%4i^XIYaOVMFy{5>k7`7k8={ba56^RXKZyJI#>kP+=*JXq5g29DmFUoN^AZcpdz zj{)9pV2CVKC25W*DVSD2B7OR=3=#N-SZymW+==f%hr{sQ&Y_dbUT!Si_tM(;1R>5g z->|5CXiz1AsSk_nw9vC|jraFG0V3|%JG(PXj;cMT_uLdB78J#7qzGUw=dztYd~HPd zBZYf3rTuldBeeITf`t-SqZyJ(?6cA$pm3GtZ*tW4>N%`EaBHuER6S&Pa-~}w!tPQZ zOl!I>o9f&xib?k+L=Pb|)cG?0QJ2R#Zof7A?1!eR*yMype0FPScCf%)L^rhUd^Hk+ zF|NE^u@9cEp8f)0X}&8GGPSj_QRh#HM45o>;1&-uED^1o@lGub4X^X*a~DJa0xFp8 z1Rr^CEP_BdLfKmmrJvs|`1w`*c_FtWTXYM9h&PE%CP2Ja(_N$-hOE?n=XtbLNy4uD z(X=BwsOqUowlpzO@eBO#^ZAq=wbD#glBi+`}?L#y3`xv6Z0qrQ~^bk-|DSPI7Bu-H9}YE1K^pC6zR0W*sG0B|$P zQTx_3%FlUEYt4MYW;ba1&fhxKAr*`{2oR2bVtzKr7WD<4|n9{9S7HRu4!g9 zy=GeCEX?G5^LsXBgdUse7L=JUK$Sn0T4?(8X;MZ9s#tW}s(6D#uod~j~5D+-z&NUk)TEqddd*a@V4srY>qOrG%?lR9n@vrzRqwGP#)C8m5)^ zuhMZ=&W+hIjyg+W80L{`HJro^wj7DIoU+9L#k;wQ$n)iGCLR} z7Ho*jxmvR{*R|`!?G{@+Q>eU3>Oq*leAVKHs#4JLf{`@3(2D$iI|0cOv7_S+LYADI z1Lz^d1>QooVDmQX7{Nmsk(_M=XJX2K8ePSU@7n?*ZGmDcduS?0O7}zWJ+7U(`p*c} z2DIi+qi%|7D??JEF>w`|O(ULMntui!#U@=xQwnJu-a#9^%5CUXaNsP_ZK32b9!)Gg zL$6JFEq2VUX<4yEzkCOB-qn|)B2ubXU(SyoeIJ7Ggc_?FZ%IF7vs!Fv^tsxvAGFqg z!`J;SeQvaHLPbPb*!5?DkeOc1>v&1e09>DH2i}BFIsJ8V9)K8r#KkZY2QNdGyyVv~g?jekMS?K#4n2`F>1f zuY-D=goR1P1%7|=!*dQf1O|uGG|wB6Y6izouAg@RA>^(ckdD?o6QEW^%J$;*+-DS! zR8#B8(RtdPvH|MHiMab5&SV{4_n7#O)YMvj*sIigomh4L&b>dq_htO+v37RN)x5T%cbZjKw8nyV#a-O)65~VfOv5BiQ#YxpOp~l_ww?_&`mUvxwM{SH0{E^Ng&|OclwJ@VU3tt< z;gp$mMUL_#=XiRaZ*wZVJ)`o?Jc^dNRx!PAorq30+?>!hhHXi=^n3e!t zRWR-j#ZNJczr+EAipve#=R~Dk=dIBgHl2FA?EEhgrbYC!)BCxBfv>Be!>`i{zu~4x z0-CJs?(q%Z-pi*^WG1f}&D9-@nGoCnO3|(Ley1lCfE?nktk0phb60i;tx`j5=jv)t zk{(!@)cA=@Ul1Q%02)iL%yP0U8NsTK?lFquvI5)hwJu|0bBu2M@l5da{ryD%_j+U- zgE7VXr0c_2>dusw2KNoj_|{hjO%bXBX%3X9dL@+HdpJ!Ppd6Y_T&1?-h9k)|dN)U~ zW!&Z#9YIT^C}MXLX0iinUVNk%PdAl0exF#Qm?qxkyprQ+NF&~`l` z0iGY;x53~2&MRKYv92$Sr}n@8CV^jT2}|)h-J3BD52VvC)j-JTaN8X;?XnLaya%M* z+a)UU_tBhwQ;#(T_sO=K zNJ&XAiyDF7=Sao}?Z+A#dhH-ON8THyOc>MSZuvdecMMq(#HEyljeQdo4}ha+&u`VH zD)4Y}^pW=stu(J4?(=--V#98a19tpNXA=;tRBH+3=sEOmb~i+u>sJW!{az&~!Q2~o zZYn?(NKoVy=+)b0(B;P}e&=f$?4mfx3wy|d;$8DzyfN{12L%lNO3Qz(dRD+3hnP}A{2jnlT!QtVF6u)K4 zUlrX1k1gSQmV}|*mw;Z;hQABP_1Foa3;G?ge8^6J-X4*dXA%qTcS#y2<~;b#;_Jy8 z2sk(#h@GO?A@43$XAQp}`Oo$w({JT~nl7q=V`9MD_x7QNFK(FZp3XX~#RUK1)Ldo^ ze8emGwfR@uRm}p=VG0GjdTL(HqeVO~cYEw>*^An;4toO1F)E+K&Z9E^N5h2)3Gv;d zDp%2HD)z1kv$fVDPY}G&m$IpKx!I=&mB;5gh(8PX)sByH^CQnY{rBHKY zeqKzIAeM|IZIjX6xREqDST)6Mj(IoW+qZ?f6p>C45=11`&3g!Ou6wG zyaGT{wlA_2Ny833j2uC7Chu94s^ta!IatuEHvKA+72LT7!qw`mi&AVe`MW0bQ)I#1 zxy?*fFXN|IJn}Sr0Qn-nIGTQ#hziIY{uOcW@nv28#!&LawIm44-Cv*Dls*)6$fX_e z2{!5k+;^#v;Ksp1U%#!sW_i91CyYK2&HaoXUHAh%IuAP8V_}$^!1=TCrk^ZakC|RS z-ox~}+85|IH$635?Rgt>R7$eKFK!-NUizJ*E*W|)3F>+3r-8Nu9uO~qS#z>W1L$VM ztHthc$L+6qDGVKBefhECR-oQ9PC*#7I5b7yy^dD{s?B>;q2=W^f`o8ALK9e4S)ICX z(CoI~V`ni8XboEje7l1wz(Csx^(|(Fo&nC79t~21Tyd6!h|{1I8>_6=DSu~H742Gy zl=g3nTPV-(r}o$1oBtFxd&dmVa(t(Pul~r9Vv3O1F98iENDPF=kx(xBI8F#~4cCvj zPfPsbxXp&hMEx@6phg_-^NwKv`rplgrv)Mz9eHAu8O>O;`=Wf2R1p0GWOn6C#fdaD zJY+Wgv%1RD-Knuj3O1kjQPdKPrJ2kW2mIo8YZ+Bk=G{n;aZ3v53Hd+Jp)*44+W4=3 z5-KgFlJl4kBr$9LkxJPGmaA9x{IeZQ^&|kW5`u1>w)#{&TtR^PdIL&9I7tgl;5t!7 z^)KvN^MxkYJVhhFmqI^7DeN3{%pbPWSNhqm_@*dPHAyY!BnMQLsegYsd^+o}4qwKH#RV{eA)+QP>EPiU z==F)3c?AtZ-jVjh^NRiPe^z|nNpl^FG@PdgV-hR}T8lN`wV2O3I?AhZ+ z)xt>N?ke+H`+Sz;^vO-#bqN8#z`YzT#8pV8%cF7pxjfm$HS}_WAPVi5+T7HUFg?JF zPm?ErYDjgq-rnAFY5QBg+2896#7e4xo9++`^ODbRWu(N&{lmUpb3$8{F>jzJKSpOi z(@E!i15J?b*neI>H_S;M-D~#_C~y5`)>GxSyTllZk8nv@9Y#{Eh>ZMiYE2U-W(fK# zC!%Nq$$*8yO>&S4@mZ&|041Xw(G5T>Ygh1H@ol|F z##01BvQ5mf{glp8GVGX%XfO{10I`pmiyj3E62G1(iZ;b}Alp2Zb{QdC3kSXd6CG|s z0<~@<;&FKeeLBBwhUoQScgmp_et>@xuxcUxcA(*F9KIHk!G{ za-Ity&gxt{m;X$g#@0qFYSFm;WHoA=uNBS;`e-!XNxBd#ekuRX|F37KN}&r;RM^BG zsZErM*vWU79hNI82=Wo3TFOpm!Q^NJG60GPbvS=$xa}51j&oB^*35f^r`P0C%4@$k z?>g+rdm^)AIbC7GtDBfn4B+VTto7%ax;)3VzA8Xa%?V-xfBY}lqtdbe#+da?@Jm%s zt4SGTkJIV*+k|lb^Fo4=+>vaNsY)S1%m8T!y_y#=S%tAUM4aRZc9!R6dW@Nrl*d}M z0OcBaydcDRbA+g##~UbA84Z0E3~+fVEWI9d_yAhr&b_GRGEbVbmL^*Xx+;ePHhp)JaO z!KXk+m3P8l z6D>Qb?&(y~!^4@;Jy>0jd*c%mAK~6-PbyN*?5j~B-Bd!;i*bCt3}&(={uY?YMv9pr zS&A)qtM&L<<%kk^NiQH%2JYFWMCW`GFMF{2J)ZWw>j17tb&uq`xx1nIo?a)=ajUT% z7!cKcnXSsSkVC8467@$Y9BQictYex;r_rg9()GJ~mF*n=oV4TW zZ~OKehGdp!RsXyyNf)SKBAiNKlP<7d|uh40&G@ld!7+OROn)q%_2jk)*E^@pyg&)0aBKSVcIXQ^@z zJ$otxzzb1JVK-pe7*2Ip>c$3dWE(Z@KS>fsi#C@8dWz!79QO!w4-%;O z`SP7~PLm*OmA&)4pw)=*czQJ!V8zV$#LXE3dx*9tiep<&XRTxIy&PNtlz&_|fyf9K z{-YM6fw8evQ0onV?g2_36j@fjXhFrp4N_4D4?v&q)VXM3^r>hBwcY$Wg7=&g%)ew< zM&PKfxYCh`Q({(8iMWxB6bK>#(%AU$xoteFS*XxN5G>XX%%QRP51uXrM*l_*S|U5%7{Y$vtd`Mn*SQT{!A?fqAV1 z=`RK69*f|QdW*4#UvOFGH#NJ6JNQ?t$HeEJNp-S+cuUNvAq9&~WR|Bf2kE{C4}nVu zR=UGe3~+=w)*)$*ok}={9V8YIPT7O`#_A7J+)kz!AAwXdioq2M?s*g1Fi-4Uz#0dI z%b^_{GAd`Rzc2~L#D4|OcKRxX)mSv#GXPlrAt1Z4a0`avAHi#QU(FdLrfn+C9$C?g(PgilZRj5&8S-sT)a&;mAI@pFKcE_Nm8U$`t zPVV1SsCd=@=mSm7X}_D3=Tqff!M|!OC)SsP@46}X%L60-Kd$Dv%{jw+JQ{us3Js%0 z-!p^2u2lw*^b&!EyWfB=HkebqnFz;X!>{>3j5iTO?rEgYU8=$zsS9-(Rl#vdxt6;*}wm- zs;E%&W~O%RAvy-a!z`o1H#IU6QwxIY!M*9qM>ZU}(i_`mBPU+ig#$^MbdO zC5?-m_qE!z4CLe{_-=ZsX0ZbBo|DcN2GEzp4Z2jdWMyuwEBvy6YV`9u|AWRvSIL*#vq(~K|ocTfZXietM5gyCCxsX!iqKbbfY z9HH^iH0XCg)WM`|p$+UIo^Jhfe}-qvv_Il(B>i!-=(OhaJ+;c0Ptv)~B9ziNrCO#- zbE9&rf&oG5UH}?soIovhx%lZXh-JLZ4_Nn?NlXPBe$!2N@_@D|&@U9TyetUbhHK-aB5@vAwhjiXg_U*Av32nl{$g2bhbq=$;$6 zCcBZUxw*MDl&wCz`^0KlLDSoQTgm)7a5ZHmbnOHGuNEa?3{tjijHNDCfAoRWl} z*%_O}=P=NQO0Y*WZ20a&reyZLUFJ`kbS?9h`1g6Rfq?Cxut`Q>s^75E-x&fdCArFM zShy(K6>2WOJbN20uoyQ}Z7~dB^P_SIk0Pp7;GdFIdo3K-7!%kIDD@K()aE}%L0zB` zk!JhM#Yl%W27}z+W;Ckg-~4#>s#u;msjPEhE?QvWk{wk=SyBd(}MV9D?56Td0MpB=N*`Z4X zdxLG`w~Cy(03FkxipRK%YZHH(-kub$GKYE7Q7Q>KEK7pc2m5(qukes@jr^zhw!6;R z!mdz%hsoG>5PB{Br=KLIrWVgc8#6#p=~24jHOOeQOMuf}M^)$ke=p=fcY)aigFQ}` z-fxHUZ)senyr#zWE>VvFyrl+9{Fj2bj_D3IiTwi0MX}3ww_mc~4fr(GPYNv%ze@7y zhBi~k6eT&@&fm`iBblu;tFI}H?pDIZ(>9R_@>)anO(o~agble)88G@)1g;;*ZPt%_l`9ty%@x%3AEwjen!dd)KNRw%QN-(Zj8>^f#*|-fDgW${MA=Fx0o)hq0d@t7#jz zSNdEy)fcoyh#Yp@sqH3q3^y($o8CV!bGE^QyvkGL?w+ufUxDbiz9X}!jWp0=H3)juY8H4i1?=5yRIBKQQaLz41It96 zb~ic|0agL3k?$_*`FK+HkT`@)=N|8D_T3Y$N?XOAN?y>EiaTe#nkqx=R{XX|tbVCh zl+XR%m(%TOjompA#%q2DI6NE$0g`E&Dv7le^ciLWy**?276fBOROp{1`Jo7Kss)IY zt9WU>iIOmMKAy@tUq)E@Fb9m=X#I2tF&Vm4hH-!7MyGC(Q{G_iF)!rNY-&!T=tdfA zJdpEk@Iybt!5@kj<2LvNQ*ItZ__nTnrC%7c93c26-BPBaumTu(088$;z0g~jjpwP* z4A&`9e<)^Byu~L^YI(^m8n)Z_!v(Kb++#ee2!z$Fl>O(p#EFP{hn8^bh`RmEdL!=5 zE`dG@Lj&j8Em_aS>Es|fzfp>Ke- zEwNuPe%PQeOZrK_5w<{=Ji2Qd&aVGE)nFDVAbmw{3}Ij5@!_wGCY zc8l`Xim12c!MfUf*rr}pmDO%Fzv?pq<9`Dn1T!?NT_|CkQdI*)z&DE|Kb;(Qg0{qq?dCwLpc5cqSLKuR;#Vw5MQ}GOJ&qpJB^H zHm=1wN2CN)&6Id-*|IEN=x2#lZw{3Aj?QIJ;aUKcga$iLLrW&1zDtmqatU?w`5VIR zbF*0a2)!0h!|acI|GAp1=LRl)b7SOVAG5Pcv%^ILsXWnZ`hR9cQ9YA#ar;?#M$-Yrg67eo#53>_>ZqTi{Mt{B*}mkcA>rG zg~`g~>SP}`n_jP#>kgkbzo<&mJCiRMQocj4R#;`4vOJnyW%=FUKkI|4=aQdB+A4$f zp{8V%Dl8F1=DM+!`g{vf`4+SCF6y<#DA69%`+p`WBOXAW5LDdIFUvu^7t>e9KL%($ zD0SOqx}~LMo^4P+WwQUIp;I&EnCY}wB;@dzB}uaJSfhLrmRFzw5F4{#Q7H*qm3vH4 z9UR&D=d56;b}DIo1p~F%1$4m7O9icLs&8R?i~G}kd-<92jl^>gR_oh;m+v*)(#q&; zGpIEtBwg9qZEIhBd>{2%z-_^|lSF=pj?@67wkUCDg0ln@CL0r{BGcrV_c+S038CjW*{Dz|*vuvg0q2$J{ z&mo52%so{dLlD_jl_UCB?U4Bf=^^b8xSpVlK<&82^R?*A1UZ*bp-eeg&k!9 zc1-A~egWqsTvm!e$FfH?n45n&eL`=eRV#mKIHfA~55Af})@z_m1j04JD4#=y_LfGPzSHEf?S{3F1&2G#C@aPA?97fW2q(LhzxJ*~E0F`fv0H5L?j{sk!D}(oK9xLIkiaPwy8G!n$ zm+1}#@9Lk}Vh*Z;gqgLmMU=UMp8$J6@*nMgtuXo50Q$HY@HDSZ&#V98#=%9F^}zf- zBD^+a{|rEbz2XNkBwg(9p4h*?I8Om?^Z)MKxXPAvtc1G%N-oMJ<=)2yDHl zMV1uBlHCh*wfGaaTqc1a)0(OESHrWD9Wr!$tJQdfxu0?S&&n2|wjwY;`r>z))A3FW zuEoRX)|E~o!h#1JOWqw7GR}z1Z#BXsQ-=NJ*v|?^1*;0dnsYtsNKZ=3Q<9eY`TXpZ zoX2b`E4E;^)m@QBKmZoasjXXM61?}JKmereV?+N(}j%*4NM$kOZo zk=;@*SK~>k*zH=v)hk0N;F%0m#XgYd9r&!058C;pC5heYmrmz%0T#~;)!$6z!I1j-r`lszd&Xgct*Ue^L_^TR?rl)e!@Uflx%*TwyM@h2w`soj z%iXc3`w1{o#cv6PRlYq;x>FZQGbi15-E`p;Df`Dul>>{~h)VodwkQjX(}A!rMZC4e zwsvN$a6Kj&lqk&K^SqT=7`x8%yy*g?A zY62tG3db01Mj%Z6N|6czp|XN>SWq%}ndiZ1sovLI1m&Nmc~5C)PWB>MzAWyScoSn4 zD4nruxNaK{mg#)slX!FnA7C*uEc?@}B70-&y=%+dU>yZ@-=C!@t-F>+ACb7yFFiWO zO?Z|ky;^BzCNhOY^rqvRa%V_ZR((Nra+!e+Wp2B9!NHS2+lQF1f~&@^K>eZESES$Q zG~VL*8@1G;f4<5L@p91IH*ks9`kiU}4u+RZLQL4cVAtT?@e67krg2a}Y_^7fr(pZ47eOBBug83`Fq-h-b1VG}kOAH>uF@@YC&EFzqzesj zEg%f+jl4e$6fze3){~TLz}>tU2I|MForUIl4zF*m-tMSICdFB&X_K%)j`nK}r<{+G z*+cyHKzgonTzlGh@2$6({iMfo5I zLIU*O6k3Ph^k>8_*kpDqG>b0RQxVNp_hba^736X+7xEEXNp+#pK^MDb-OG8Q6%9)b zBL(5XiS-TjZ|}tg#A3Hx{`@fB;Ao24J7QKZ%uYwIQ`NAUVZA;o@(T~+Xd+M&NQJKe z=P?e*W0?pPYwXxhRm>dVon(q^$4(|`k9t#16|(zduud~vwm0FWL_50vX%=BVb7|+PFxKSB}$hv9!cYJ>cqG|0F<6* z<10Wc9AK-Trvt6D%_sum0l$q7ydT#avXN}N*b#WgY-hX>oI@hC9B@YgE`1aX@c^9u zaGmYn=~5)3@Ri54bLGw^?G>Kzt*!P!h;M;XFy>#&S539Drs`rH%FVvPy10 zvhy(4Ad&T0F*k4DbSMif(947oJR^>{s#~Q7`%#X8C_3bOw!oOoLhiozM8l1t7_@Mn zE%|eZdHvxuKHtudT`x#fNpSs%gTeRsypt#bm zH{o=;B=ODWQMvt8tVG#JB=ZHFdj)|gVt(~RM^me}O6o>})_VvXby3hUT8aplGD&G(*hp`Eh z4e=y5f1HtIlr6Ro&*HQwJiU=R`t15C-fwuA9i>L4ZxoF`UD~ySp2R2iJ-USo_tJ%& zi%^Z|e{DT*>TQ6IehmBzC&gR(7|^x~SEu_MSDNT!_E3lcu(bupt*O8B2Sn{9FuB*kq*d^7sAHK)o zXCV#jrclr(+5PlHVijS{I$S;~-|Z%TB|Vaq)MYk|KNOH!M{?UFEn8eb!gj75G>6+| zzEJ7|@lXf5@eJ$BHF7mI2AwX%PO9-oK9N-o+$~@8LCv~3@|21K%$~2Arl)_;`AEV` zL@LI>oZ(Bi>{nwWcas>Z#;Pbd1UwACh?l*6 zMeSPvJw8?tTavU6iU@8fK-{*$&bGMRQO|WCv^LTy-EsBes-$KvR={k ze!YV7#?QqMuNB3^sLhdvoE!LxI!br+vm1AEZqj}Xb;)p`t z7w&U0SwH%bo*N3{DH__@X7Rr-6{}W8su3kE)J@1-Y0tUs<6_sZDm?sht3stmeIH^@ z6*m7|UbP%p$Oj4|bU8wDMy8hft{)8L=L5EtNV(_%Df5)_0nTpcPMVlKCgT zMn^PyT~CHszqXo${K~z_NTqDyXAD3KL0BRmG=x$E0(wvkPhO_{R1sp!J}P#m-+0)C zYy0v&?#~~eGEFjFT?%!aPxj}YgN9YpXb0@TprA*XMXF0@`3^UiClDjPvw7!Oneub! zl{Rvw@pZgS<4>>1AdRB#QjPt;-iSC;8)1Uj50@RjRc)FAPljwFiQ=4wHa_PRZuk3c z^}m@-pDH!o=4Qy*uxpZH$@YI&_>n5dk0B(-&jhryK!?^9CcS_C!0O!-mLu{8UV_^V3|d zfp~>`L}bHg0VvbiM>Gr6S{meHAAZ`mg56|%(X8(GxDY*^HVv|_Hn!*kJD>7wCkPa}=NBVrLS*|G{aI3al-(;tccWq5%+ z+Hg`;qY8L)pVaNyHli76S}J~k9vK8zNOYDofF(VqXkxp-)B5z0d^`nuen{7_$)Whc z>E*Tl>V}LyK~yY!{hS77c=SpP}yxJyr7-#_21NUPy%Yrej__^)O)(+d1AIVuFPXPsP zL&2+M@JqA8`0&Nf(GjHIrjV4c*Cs_QvW*9;_h3;OxdQZg!D4yjVL6V#At&i%j;5*I zUm#2B!J&8a(u!`EZvR?LH|ZrTFX2+Mx}Quw$E9?;K!RPg*28#D=@rGchY_jzbVj}> z$^544h4!dku#H|^304R4U-UXw-W$o!S^HX5c1($4_NUZDx!UsDH?0~)vyA&=bmQ?; zu|VJNvg;4lZFjm}cLkj5j6Kfm`uji zDrs_vnNtlpBWol^5~)FDy=&~%!IEF1*ykpS;4Y8)p@u7&-o7)<8;i2j9@DagO>#Wb z+UBJUb_^?Fx3%8q*rHtr#AePsR&R{88A#z3x<8n;9tN&4u($s;##0%jggmhlxNpO0 z=y$P^pt3e4u2RM~2Jg^b2JO7xMn6mW$RBkKmx8vK@kVEhnWa8eEl#o|?_aI;1wIn` zEvFfi_He_b_@-9-nX1A%UN<1UhU}+!*3l%PZ%s`Pg6&)R%zW|F9@EKde0Xkhph>A^ zS<8&cC=G^t!w0r}*>LH=MK_W(yNaq6jRk^3G!u!L+cY)!m$(#cSGoLXvA&nK-)nLq z06SKcoo8()St(4X1~GESeNpB8)e-sNJGP;`MC^+rnIQ#2+ zlip$8&zfofpv6A2PUv{)ihJu%+`PE zs}OIKr}u?f_$SFfG^xdG?)H~TvY!dYBZnQ%3j;nJ$1TriNPHhz0lQ0BJkT@E0Pb+= zBexg;s#8q~stv_Ee)W}JiVPluGr$jHCF?A*dsw#A$3URBi5z#nTs)R$as|?Zc5Eqm4@g$<1^5U+$0Xee|#h z;%x=+C;##rcrexBoT!6R?l+#U$+t31%wfeN@@> zuFasOtG;aGu*)vpv+`Dk_o6Fsi^-2B%B!7@S$v88gzRS?(B!{^%YwMYlhS{$mTs;5 z^HQ}y%BVg3D&axYNq8!^QTbpT>|MXO{ykP(7^s#3c7P0)sOL-9BXTON0|P%9t%GLo zO5TmH8rSlWNTNr^&ReV)Ru)Vtlbqi7;0+y2Z^|OqE-Ekxq3-k({)~0UHVw+Y% z&N8gaE6K<*=Rz!sd2#NUR~+tvaOL1OR3NU*`q{UzfMg`i^1>|EC^ea*Z9p@}-S;9H zVUQ~&rl?~Haq~MarS+x}sQ->x*lQ({_vHIQk_R%rN^0gvQgC0G=H9PH&9CjRCy{`5B5Cf83AbO128$kR_@3u0 zVYL(fCsgAUV|0`}w9~HWmh%mj{LYXojOq@ZA9i6QK$o*q$w>0vOXBiQdm^J?ofVF_T_DF}2_2E{%h(UDz&x*qe4)$^v9W4uwE;6U-K!c53y!Y~qs6^#Y^RK8m zMJ{ozCNgFu&LuRa1_oA^Iy7H3uP~wPBK*0(USFwj$==1tdq<`x%>UECLPz-UhHeJ^ zT0(Q_5A3F!iE+U-;tb8#<{|3!bcT`&{ld11dr(zX1u8BR`!E-GQwG-o{CGlAW})Ch zHhYn^1k)W!yUre(ZKx%#W@{JIPw?7()ZX#t&d6C-dq-7I%GJ)GtgN$2VXuyUYu>d> z&nVrz1&l9={V||0Z5XNk-O5c``c9%Ip?S_76YB zyAGj|7O4~6U%BBX+lzLy<;_)v%c5~HH7Se)krod*Z^~ergQwuy%R!%zJ9ECjs*G3s z<-9{>prItsQrq?TywWMO-~5L7#@Y!eLAY9YY^#z_%b4&`5zr`E8`9S61vCh@B3wJ4@xR}p&QDK6ly$g5%=8dgEVjNbnS$ifzkRfJN$h6UbX*RbMt-%mPxG2g7SrBw5wyeGf2J8Qnj7%3k|y^$xIy8H6-K)Jq`Yw{+Z zj!B}s;ADkMH3bWGHt(DNl>C%pcoadG$=M^h#8*38;H~zq-SOURN{2UL_RL$x2i;)K z?I-B2bUK$_2uM|8GBxUuoT1{k-)OzTu9a|g=J70)pEzjCP;7X5fC@tK{Or_lnCT9Q ze$V6Dbr!e@b=MW9srk1gSVx*SAIhqp<@^4R)TMI+hhd^z^Gf^2q>fi6Z~wWXXp$kz zKV`@jA4GS7=W^yzSEfp4OnE2m`t2H*JMItoL#GrcQpVO#mrkx%rr4PGUruK;a`5l< zSa{lWdP<1yKW*(Q$xDwh6r;5I)VheFxUMD4!bxKF!cx%(pB|ew0MbR$ZZ$_FJ(Pkv z?LD6a#yf1URxt9q)SuC%DGms4-*>RY);x1P(>Dpb+(ctEJ^s2ovL-svv$?A%TY!z< zDQB4i+badN$>M&M&hOvTfllVyIP#E+sm2m92BFwnM(K^}8X@-gOH3yulD7zkPej%@ zFV``LZ7?PWby4c=Zw)l@nB$Fkor`eQA3u(hZTX%-o`8+C}k|o_1XEcGoI?^spkpKcLWPtMSC~w0OO0 z`s3b^efsl4e4NtKSqv*2IUco4n9xpqs#uA;?8T~NdF2OnDUvoOp|NZ`eM$=AdW^~K zTQqboNwmh^1(xci_-1kCtkqRGo)~pwoT*XQm4Bh!F;xz#aefg(Mgq^)ncIuLUvsAD zKh+wm7LwWJZjclZ`3e-ID&&Dz4%fI?kh?>6nLDDRGuEem;RzIgtQK>Y1 zkUOt=J~8!*vb@CS%XLyDm(2uu3yT!?C`tRF1V1-uN+z3|*XVm9_TEp@ip4 zI#^MdyZ*jf5;oL!A}f#KP@d*=U7lDOHo51!E}ly~#fgjFb0T!AIrGh77UNR zPA;g%I=pzTI9M|)?^IEqRsAj(L;lKmO6Ky_?*6>AxNt+S?)R_ht{%8BlWnf@9(`rx zTK#slZV^YZl?S`M@Kl)2olS{jk#y0~E1gYv#%Cbv?zP+-mTYZ{IHxmCEi&xm#(84edMRN+}l4Tw+K(r1f`F$6#`bVF(1r)W|Ws6N4!<=#1 z)jPkwPyeEu`TD3aWY%H9M?Il$c(G%i(Vmcd#HwGkF*jDMeQg6zQTXL`?|fCNSv&ss zi3RLuU-D^wRSL^<7?-)NRY`uo744#7_uUokwhumIgUUg-z$N2OC z(nS8DUKJ*?Uy4kUOZ7_47g*dSTKwJ^&0&xBt1!gkbR>JWbbT^v>u*xLA5T8_2A@~T zRkmr#HS7HML(`gHk5#B6Pi9B{*p7plE87n?)gc4}Q1EN~L+DSP0~Oo>*Y%He5+S~L zHnkn+WNddx&Y7p)H?k)WXg1BnDZen9OKO;m)yX;3Nmp>S%WjHCF5@=|Efo${HJR0> zR_NJlT~qC8?kE|@p75V(e*fSoUt!fX5ML^Xa%Gd6ZH*Lj=|e62vNhW(Q?9URjZt`f zxv8Qa^TqNs&&)-}y;u0qLbchfYh0>r#H63Fk}C z=C?NSlX#t3a>J68OJf`e3v(|`JFC2Pz8~v14{X5I#U+DJG{?l?Hx1$Xcs7D|-sH!NXS2>X4S0kICPEZRaRLbRRTTk9_r`$EZ z)Vg8y-Ri4oW#*Z7-OTC4jOe2q_kqQwK2rWVa5?F-{ka|UR0l=Npa+`dKhZ*Ik z`LTHo!DTbWw-4!j)r9->t_OS}xjFN^PW0=c=XWzwi)9_-sg9SIe`NksPfYmZl=bZ0 z3qpc~xE&@U7nBoaB0bVRkImfjD_V zf}hiXW3k8h9sQ>p*Cq&ri5i;yy2{Q6UymD66!LOc8@RlXkto<*yBzH%y%2rB^a{pt zT+2B!v|gJv_6Kh4c36np4;KBBEgce^#f-UjogD9z!_Pd+J@vzriu3=tuV6y1`aG$P z{AIa!!R*UlX$g z7wK6gMiCg)uwUf2UM4@B4J_r-qn_=gi+29JQ(n|bQ@!`)(-M7`t*wa6So9lgCL&yv z>mi%2GbWEGgT1t%`4&xs$yMeQLZb2172}n!+e>BSJEao02gco}e}--LSq4nwS!&jE z+*|sW>BVMXmFDq&v7Vak$vACXwy*zOr3EXa@wMMZt`ioMHbX{wx3L)ivHMugm9N{tvxDMJ;dM(7%u=~q zvR~`@hb{7B3wej(HC^9;pF}F9&nHS>NLzeu$f%K!kf0PE4bD=#Cy83j-|&0%%CSnd zl2NT8iQ&U>P24N5n&eAX&mOw6PrPE{>E^23xo#$B?xLCR`+U>)&-3JKcHdNb1y;^n zo9@U6(^7IDyZ3ZVJ?MTFVI>IC13#&cdzGo0z@Rbu8~Q8#WBjrKh@3rhCY&FNbv3OF zz46W`W0&dU^qB7F!QDwilSpDUh4p3KRpakm-QFqZZStOv+Jp<8G1dwLvsV(_xJ7zx zq$=Y_3rg21KEIMQub%Z+^yCiwLcAI8J?EFp7uaaV($f1Iv>rpQeHr$g*e`{{p2SUV zTDjeLYBRYM>joIL>epOr!)EwXQ~&Tf5N3ea$=UaW-37Wv(wjHk9r*ek!X&aR~4@R5W3 zgIVo*^Rl39it$+*&-{}u5jMx)D^#j2gSdze$d0^f6tlU|8Cj$JBBml!tzD9b*D_66 z>eKlj)#JDj-I2&U-W5Mc*N8U61*U~%JszZ*dIUUnW!l~i&DnjZqcAsXw&~V)8$|0V zcUXgTo>i-O_GkTwUH3~Z-c_%4QqT98v~nG0ymG{RcQLGgIk3f)U1QjFVl<4GlX+E{ z!otfnVRQD>8gH84qfpN8^iDLx*t<=jc!Brp9Ckl-RnjlaQkhq~F6nzO(BDQU$W3oEOi@l7C* zE_cd&x=NvF=yZ)DyjgKQMs-WSpCAsq)7sMbx>~-;iwlH}j)CtAKob&_`q2627j^=K zzEI`zId9-XI-4u64X`N>$}KzB*Cx zq0r55uNXb@B_>a0Y@|LjsTxJ$Yr`ML`CXu%w5GLPOiw)iVcyoHyi>0FO)i&|hO3lX zP0d%b;$PN-enw~KLz)K9*4u_gy)!Ph{C_@kzuTON1>g7BjVT?Tw0t&rY@JN#XzRDx zxc9XnSWutMartt=yN@Dk;!@e@oFV#k{N&qLw&mzW(WTGF`;GC)V%4){^(Xn{N9pGBUpX~D>bYnJD?&c}49Fz{30v}5y%F|<6z zo!bW`iRa`a+HQ)iJ-ETFVcKyHhZ%Y{qL12bP6VaY3@DCca6%J z9-C0p*su?z&>8m)LbKju{Fn?E0ik^3XIHYPbc{UO@7yF+py*=7kNEOO8WWe0AM}wvMAr&v`Ok5b^1ejT?E^GdHT<9v?jLg zRg1)=33%OTJns_9En%Gq<2u(ScPXJ#z5qi`)^u-YHnxqt30?9tEl=Q;B@y;0F6EMQ zyK?@OoIkyKsV(_QV*%k98Fqu@<2QWM_4`ALKi_B2152`}s(P&_i0kXrlO_j_zCTxS zK9#Dse0b%t`c){w1>at*SJA$|VBz`;m!ypSwTp*J;}_%PD6ZTU z;SG!MHF=~SpT93@RI5K~%VqZB+ioArsZ&*~Gp=4b{in9K<2imOq^E!EyVN{?)i?Ny8acsC zgw}Gv;*xCbkAK_*oWhAUoL*0grh zT(p{PTmP4=CiX)#`DUFWuUpOjPS^{>mNT#lJ!%f*9%x<#vb8h zH+y^)R-u^w?Bayz1_6KXNg6W^i{AXqU^I1ymE@|O6^3a}r5SYjWu03m1kMArh9C6g z18&3?$GYAP*vU64jl0HO1#qCFz7S$d+tTb;B*v)HP|Dk;L76~S0{HGEQG9-K>_ZJ# zzxxB-a>coxaplKVgL_I+yL0het^Z_ zqw-|F_`(aOyi;$pt6N7?1Re_C5;uM@PhqU+`?^2SYjs6pH>>=eN|P z1MEqkVS^~)zqG`uyvXI}tC(hr2tD-%;QoH`WV_|lcgURcL0Mt&M)ol8Gs3*FtKNJ% zCd2bGg@w#<-iylGP2rSNZ|=HobLl;xc~2H4hTo3*e~FDCOjF_eD_cfsa+xjH@7@56H?o7QtuIxmnbUi$j& zGNhJv#}_p4p48X|t8xqKed^9(K?nAU00E(6mrga+=JYYFScIh=5*ji%O(l>9H)70 zv9n*!yY?F2Zf8A>L?1OEa+IQ!#Mh<97EdwXE}$13ogMZrB4hWhDeE|S1*keEpa7-L zTI$*cfo&ma*xrbTNa9aI%#RHUt~0&Bc;>ha6X8;I35=ZUo~4Gv-((Gk@jjrH=xj~-qhX&evrJvTFs z>Uk*sDfrdvDcj-qa_>}VnIHil|Ke<;9G4?D0jekz7cmRDOP6Epee%W^Zz}7)yp=i{ zy6@AqKJ{R)wTSy>-C4_DeWNL&X8EbL8f$rc%ck;3JND5T4@SpJmhu*Kw++@jm_gB}|fvV$n z!huhJKTA2xS^Ywnwo_La3l_05{SFSas0Zfg%fRT}chNl}ah|CSM>OQa&l=K9()zR? z`_%vW9CmNM;_s>1AL}`xRrj#-7E0XCm@K2~BKSTy_4`Nvrm^?F_W#S3iDSq20L1W9J05lXfLP7e>u` zL-yCdf6O@seV?)ufvQxMc?hil!^MjoMdN=04qLkn?lY@SEInSu?H+#onpRtbe8ZLK z)r)Po)6*vDhYH8vCipVw2h7csCUO~gz@Y|#zE5^WhJ%)dBxBAAr?y=&kM@XS$rnu5 zU%q;lfFUA0;g~G^&+P9cn!PPU8o%?Hx8Hd^;gJM4oF!%17X&b_xF;=cm+G5Z-7xX) z-3hHvEpi;%%L$Egeos9X*ah-Zdny(g*=au;%?e(pm)iZOo&vEFV)C}Pj@sVM^>a7f z+04OvqvLk+)R8Jw)e7~P#u9VIYS?4{iq8vmHrJini3~`Vc0{q#-Q@{upPltPFHWrv zvta8rWtvJP=}{P$2@;i4Bu(jK(XYH%VLnT4SK!j%|*fTA%le7J?d`A&v;%SXGBY?c-ew${UlHXw_ z+u8F@G}u-(pYGcAlZU;p%6%PJC)*e4k_XxUjk(`{uD#&1o-WWuDUB*)5KoRBcQQvL zyEcdlp-&Cx`#&>0uD$g5S6(ww;`i}_s^o8b2t_=g)@4Bo`HzF4MA}|9ds1^-8e*t5DDZr`DYlW3rGYx$hgO-~!1}(ucTa>>lUQmsEW;$6qK6x^t z?x2VNPJ&JvjS|;I&G#>6&fDt-DIw+HMu@iJyLycH>rJ zu9j0WMaiS#XUy<3c~#U22vsuhYP}hw2|=X*%92m4^I!ECVCelYzm98cK;&XhkNy0s z3H{|J+E{EZd+W@~pfhI|ULw3YfN4Z^!7nu5U8&e^WK{DyGnlOkz5;C_=mX3VPDlCI z3L`}2^q;?UU|I}zc%uJDpA?`V0);5_{yOvj{Q(juge^l($oL<9(tngrGBB3^-@l}l znC;drf`puro#6cJk#KWt7>C=4&TmOhj~Vim=6q^|>j+*qI%JQ^th2V6IT=Xs+?%lQTv7PBx0$6ns!_eg%z z20-nC5rD<5ZN39^{})i`<4t(1gG2eSE_DG*)S~OvJ;(YTSw+DMusVi7UKYDgqjMO7 z{wa%9!J-m^XQ{Cf8!AWjqCE4B;6x^;K`l@8&%}68alAxS9P=$^!}9c$XsWx88;>@D zrw%+Bt`eIcH-Ir_^PM>r5K3RUgcp#negj|4N2TQY5=|nJ0fpT|Su&S93jq$qjX2C^ z_4?>oYBnLqJ0{IoHP#)Vh{z#E1h0IF8<#Llf#UQ;QE>6Bi)cYbOMmUbW&ML6G#g8x z{S7y31T2f4D|ZCu8nRQhK_6-{RG7Sh4{MJTV#_I)0E>?f8uORAm;XFcc5;ZfPJ-26Qu+1g{15qwcT_V-j zYXHOXD~$sF*ebFq|3=;h5!6!#wLBGCq#VF*;sq{Y{B)gL-Ft~&5Il2LSPi%;;acD+ z5F^Bo3PkhuVaM``JpFq#(vjmeooBw;JEt~RxN{fkU_>eOLaqJJB%F?NII*8Ae?d4A z`@kR)#VBlhu%FhJK7ij$hcS`Q1KS%>aQm`GrsPFEsEl+-Lh6_RU13W7x*1Ne?w{?U z%-q}q06h7B&Mb!v#@@@UaKk9Wpl9Km=yTU_GIGUI_iZc3qJ>Vgt1U{mVWdv_nInSt820S)MU2!cf2zM=%<#FG+m^m zyC9>DgstaB02w0~Ju+$@fxCT}+GD!6rspNSrd>-waeA{l7kg7jWy+amSW*vUTjB~J z(~H*l(%$i2Bw)k7^A=9ozXh{T>m_w)VP8{b1ai*@1T5|LG8z~UGQ@yh#0^(gF+)v& z(RrNr)2slFG2Mhiqhti;emRy7k)&IaI{lIDwdVmH7}E=J`W_D!8QvUa+3Xwndw_m^ zCi1=0P95Q&X%%R++d02SWKf!5PlleEOcawbN44^@({C*rq&qQw+4E>6HocEACqRT{ zyki?S97ImMDG#UKYD%=Gt}l$?rVT8}zJAIS<$+kPnZ$}tUzRyj!JEGmqHpX1@Z)pZ z`oc&!)XnU8)3FNTvj*TJuW$i3)$s5(cEY>ZjDagw2U_#3qCY-~{@t%F0h(VJ_1%7& zUZ8UY;3MpT7r5z$N7n-oIcEsxQBeLX;qR=mxArl)ua@_Mtby$FzqFdfPMR7T)+`t0 z5aI@$%}3G{%X{Jlng3DK0d<>94X8ky#n3;h=}$&gyP>X+kJ-E{nt2xtMGs`N5czv_diwSyR|o)+(!Xm% zT1DE*Yu`U|BRi1B_jrDi{cB$mKPe|=%cAK2Ypb5BG&`^`uMpN8C(9pm=*1jEo}BH6^xr1p6@Kxz4poNNyIN3tV2*-M?x^f<4jS=1nY+gBRS7 zS4re=LBQ+SBchR_+io)b`S~uuZNDM_aoz5n7*4~_TEB7c{=GuQ7j^kotvCWQEYSIw zmY&pA4U-TXjdjIJ5fe3mn4TZ;UL@v%bbF`O+zPv^u{_8<* zluTA$-aFfyOD-YNFb}Wch$?W{M=1X`rYj7&sDtE z-{{|o`g~qdP~eoIg%Y!*uOEF6ZgzEb?NmQ8wb{-pnfypF2K%i6YXa_+IzMPXu}lNX zv4Q*i%iA@%*l2p9Ti7YFP9DS5(0}UEa&H_k!6J0?dROB@HXimccK^FSLca=2L2@#2d9Vd=qWXw?Qu181PB=3f=t>*bw^*Bc4Z z^2b7>7~!$6JtC8$zmEdHGX{)qD2s3fc>}iIkZ1FJoA^$wA%s3Im|*Nsww3dxt3 zK=ct7_H5~c36UhdG_qt`-`~VTOU#L#|A|b%7I-9C0ZF1RaAjro(#<^wsna^cC`k{j zt2;JU*ctlD6$7x)t;leRx_Acp^P-ZTSAj!V?y+ZCq|#t!1?p6d#r;#U*mKqlkB4*~ zzli_9@&7@N&!=$=vBgz%l6d0HA_3)F53`72;9mG!KH7vq*22w&fMBK&n?RvUZ?K++ ziXPD<#FM2QC_k|n>#a-jdkG^Jq=?1JY%sHrgKdT0Puu~bs@-VbU2?mv$Y1WV)xuM8s^#hPLB<3O&s*gERNJvPt>R6Xo* ze^-(pcAvJ0)Ir$lzv|%Hu;q(bctP_1iLpF3!xU&5qVZ~nWP_*e)OQb(0-4pM4wM%Ivf@!u|;Ymtt;>>DFs} z)a&tT^mhhq!4D zE_`K_4P&c1`kmOZ`S(v-Floa-HkJme&a4SL;b$u*g{>|y7ueX^8Z_e47tyWsNK>eg zK8XUux@zbrg2rucF<-F_VQJze?<;c#ykl3HS*OxNcLHoYL3;m~pIA3I=!y6Opu3Se z-$6scit*v+i|WOX_%+GXI>p63&NiR;RiuRt#T5gto)f27>m?T2lo?je&D(2IV6CWf z{(O@n)bkoOH|tBjTQeqcjXD5SIdTxK6o+?2Ug!2Y+$j6c>$R!EwEMbN28pww_dh#y^;Bq?o}P$OcxN2WC2OK13T&kiqHqoCNSft-?OT{#i(s z9o)o(c%i!8pzz7LUugMS+`4iX$VEP>M_{3d-lW5B{I_9^324UrT3UMKl2!R+)(HF= z@><$=KLU)nocj2`Un5>|O|d-86~{ttVVuwtBAR@X%@}N-KckTHJKUP4R!?W4O$LL% zQb4CriYB-&%IW!8p~me7d4s13Y|&mBCc*nJ#8GHn=*CN@%s|8x0Lz||mTa>I3d!rq zUZnVg28uLmhy8t)N-q+hlI+pIv&F!(rOa951Y}@-EiO{leR~*7{iJ@7?ZI4{|2=kS z0LjAvYcF9D+$vci6dVSwu!_ofvoFGW{|#BY9-wQ5o&H<8+f>%b6MlubO*um&R{?~Z ztY#;v!fxHr8ZyioR-gC=jGn2L>}5Q(%G{^rG~UBZR+Z1tMkJOIFT%g%{rD~VlzY!@ zol>(YQIv8pD;HQ(8S(@I;H>Kb?R=OlB2C+G!!UcJ^z`(c;gP6?5zW;v&`JOI!32;8 z+sP7u2P=g$$FBKXanDfsh{Wyk&~?WlY0WpPli==WuCse#~_1<>8iy%_w#$x#b((aU}57O zgPHr8PR`FjBp3i-a;lSW#dP}L-j^|;mXUy;6KVgYz703XHn9v~jsKB0%kK~Q7V*?{U1(lBkFsVaT}24h330!iyO6G zy;+--hf8KIQW%(2PW-CBMokY(LV?JnE)Px6C{8bg2J!lnjpO>ge%|g@5+s&{ExA-A zY)JeG`WS?)uNAkz9F;qUS|@{+@2K5jXjST9Z8Urd*qPsDDUm&W4<=(JEFT*T6d4)W zwG%;5xrUdQqLC&RKYkd1O2cgAmOcbvJ|~A<>K_3VJOs%Xl7Wy$YtKKhSS29f(%fe& z_APp0!SR}a_D(Qj%8wCKeu3m6V#>i=>K~T@hdHdg^dgeS0k}l(!x6jqCJ_i14xW-gH6*aQ_Lttl-WzSsz3g;ZS^d0>UM_;Z{Uu61*H3PKV zP%agq1~k3}fNFfHIB7Ci{EuzC%4$adBbEc!vBG`T8g8qO*%XHpIAr>L+uY!VabQv1 zZqDLB2i`yq(d;!Xui)>64;8_`ds3-$5pj8t1XWRX5eE`~(175qHk_`2PQPt9RjcZ_UP;d@Ux)Wq=^F5G=q zw=$&2&9!qswP}2*Q{dz3eM|e-;<{kuF`;~?;?0s7rtKlJtM8_mIuzuIRVoHK$r|A%>?zj?D~+~e`%O!fFnfys`a<&y*)Z24u3 z$H3%QkICy~I{4b}C6z3+JA$hN_EKqb|019`8`3+q?1N{N99q3grUW5XNj`O1Z||kj zyF1KE6_V@g0O##!v}fP@AG^*;BSif-HVXE6-JTy{EtqJ3!-J8UD=%JU;vJZ`P%j*^p`csGepYFev~{F^&5> z{mxH}p((F-xw7lnIjlD6PIC@O2=M&xYaLse_(|ObO90GDBoih0UZJABZ7Lm1QRP50 z*@dtUL$7j$6g6qtRr;K`sy}Gg%9?gDx9tRnY3>~6<~KJsid|e>vuLUs2T@q5XgQ=X(g<&pD?Xd(Swt!^FK$7G~!98 z67$m&UBaF+o-SC*vG(qQcAqS8ZO3hy9o(}Y8;KJ-1BesT(27CwMAkI-8;fQRA-Gn@ z8D)a+5mHLbn`N-Ss<604CDgB=BuK5HsY_X?mWu|9YTAb34fppgH9wp~$-*U`;EdT< zR#OKeDVxt((ft-chL_!gzC(}ydw%^-OP7K`R>FL&ouI+9aQH6IMec_E=w8^d(g{t+ z?c6yKJTa%ODo8?mL&f{TCp{Yz6&7F%ti)78x07tfuHGDhRD0z$TvA_$P82TfM=7)7WXV>O0kQoA=sN#@ijQ2+)vP4=t2=VSYLiTF7>V10gey zF^>2hf4M$nLY9aZFv6;~w6ETJU1L^>Gf3Q$2sum*o(;-$JPe&ZJFJ-*le7FLH?6)V z0C7si4XXU7GLTHU+7}}UVHpWyvx0)@KkF;ld1$_ZDWsXkNP#|n5=(mYebisKY4C!= zaKJGw`dIf43+wWAd1(nP8Zt&YG|?L*3RkMl#}AmpAW+i|72tmUg52EQZeq0R93*(E z91o<0U1{rI?qdZENx}KO-^H>!I7JosQP|4dv(TT;OboIGiba|{9RWF+;x7^$x|aFwhV->4ePJ-WgN{}J zTU2noN`rcfu~s3`97J3H`SS;k{0mGO9;ST59|{l_E(`Gh16F__$%59erzv1T%m<)q)Ycve$3RvumwW;VT*2_xi)DUJRa&pL_xu8vehQF$E5srfz(ksXX3ljq@BWZY>` zwT8H*gUQpA)<3P*_DAhgoT0~GiSXhf(rnq45k`~T$atrC0>R-(=7cJM#bYZ&al>E5 zkp%4efO06DAcSD=eX?V#1UvIyACE>P{IP<&th(p`5;SBd7Olii-tqU?MAC@_Eqr7y z75bC)AYv557x&=<=ipSq#M*7*pF;m@g@FsQ($|V~QagmU9W>h(HpM|aEdN2_16rVK z(sHgjK#)ya5|1J38pN0XaZQ6H#cODho*WJ1D(6Y*P{atjH-55Y1s7IN>H|1b5PQ_| z*cQJVw0bg{^N71{f>#<%g0E94+02f8B`OsV&?~{$H7Ba<5|9ooOiLd4fNa_QK%g*D zZqeXCPZN7BLxUXk6oP`_3slPVQTQk@A~68_eN<=E==}-q8;2j^W~Md^Z`U(Yg__<3 z_o3+DmRnQBLkS!ts)aE6!kc`5IJ=)wX91QO$+DXzfaje6S#r6O+MkyoNQYG^Sq(l- z5B#4|NAOfDG6*EWkNC8aqz+oqKQ7kfPZljo1t1wZD$rAyfx^HkKz$nyqhHt0k6$Al zIdyScA~DvMv(Ny0TN_uV;$I`wa|*JFb##*Ap(SDY6MbNNDei;@*3`61>o_y zvj*C`^(9VP{&X=ELM{zArfLT6c^A7trsUB&JuJE(#3pr}w2FKZ^javSy8z(t$0n^H zoydIm?sqCDyN6NOl7=3i;f81t+0zl#kR-X|wq;;P3;vG3KAa(r9$8mVnZ$y=|7s0< z4o1uEC+^s#gR^#2eVflmIF~5^PO~m(NkkGikF*iIsZ$aQDaD!`RHFnI`2Hq!tZMaa zui?o#wDRd;*A8V!T(DzJ>XEu&6A3O%ae|HHbG7}MY-^PnRo`9G?Mgxdh4-hIAJ-Q^ zP{2%XiA_yU#2Nrmw+Ht(aF8GIgPD^BgUo_UNLM-5LzX#1UmSt>3B^)lr1ue?yEP5b zMMxweXTx#tDlrT@pTp!xPdLe@+y_flT0ZM2e))HrUo^Ddy|4RjUyfWQk4lPk7i0FF zot-}%5J_U8T8Qacm<6k?UqSkBpZg3BBbf$by~x4C)!_%=`(7>dDfl)4ii72g)a$Ex z))uh$(ljZG>72nw6@)=+DU;zvOS1k39GeHXcEdXBqe1g0pUV-A_=BRPLuV1w53HGI z&|^FFx&Sbg-Xf>?W@jH3JybkEs^15v>^jPd*d5At7NJ?f-oYJhT%?^1gy(q`m9c3b zp@T^j(l8AY4C{7key8ikGN~d+;?o;`c~|-cPJe$F6r|VV11{ipgZu2g>Ij{bt!Luk z;r|w<6U2?Ms}mp{EV*6yg=UZ@G|Vk~qy7+TL%zsK1NA@&mq?BPiE%y4SdsQN+!yxc zDoXOL>lN-@uNloA^L*|fG3$yu@J_8zyO@KNRfViUFbWoX4gol1BkwMA2EYSQ-*t>d z*l_~(<8%6MU@&DWiV(&ChxUh+I>YjtYm1>s2Qs%I`R(}~{bvU&a6mCnHyE3Yybyl_ zk0BYPtV1M+gWZS8(ia-eQ#~Tj(=g9oGC|@aBnh6?`BbyYTBDj-G2Z=;(!TpsPMOZb zpP}53xb4Gau0Mw)Uk!ZAk6meMv_`zYWgab$i9g(&++?BVS5J9A`<()!f~U9HRZ4fk z`mZ~zavIg^!t>F_2sFq%8lFG@GvF6dKpO{#iW4|3K|RSc^if(UTmqWkH00qEzg@_V zl+5@oWk@@rw?e<7Q+!x<4>VCJ2bA}=6a!kM=J?Sg`y9B-xP47wna^%a%-ou36M4RKZ{7&r$*+crf2e=lZ*-rDuO)p%_B zBvdZ)XtEoDxFPVD8uHvJ_0K*PPi932uaO#x$mf__SabotkBjjBZ~y#MGFZ_*aHQr8 z7(8Z2qZl&u#UX_l1v#oeqUF?~44;*AjxGU@tl)SVV!WB+-p_{FDsuHji~_=yvuPq; zuzuFW;q-(nd;gedUzb7cHOO$Pg8X-mm@zMIv3`RxVspQXY%qW08Gf`XGXa9hy?8#8d8H22;%hQ7aKk zA-!4>p0$CTkx|;ez4Y^al(yz`dryUBq(?;E)@Ma3*#3o3OP406%I#!~wWV-VXYWC5w0*k(v@&gZ84K_>|&gq8iXui6X@1GuH1wbK+EKBcIsliJRL7p;qf8aJ_khlq&k0E90Hd2^yq`!S> zvfiTtav~xnF_NCr#}F*WL6Th_?vLt!J%x-G+3DjdrcxW}+pu!Mj&-YCc_l&bgUR26 zq(8&pLZ6IS(q$RH{ZDlAV_{W)v)R`|efjb*{c?Z%h2y1~`LR>TzDp0{V&j1;0d|}e zC7mqP@`mKU|B8h+fQ-{qWilTkh|0;4DR|L+HAKF7B6MgIvf SWFx?W|H;d!NS8>O1pZ&E{aa}O literal 0 HcmV?d00001 From f8ecaa91f57100210fb2c933b98d28185afb7b99 Mon Sep 17 00:00:00 2001 From: kenoharada Date: Sat, 3 Oct 2020 22:41:09 +0900 Subject: [PATCH 7/9] add tutorial figs (cherry picked from commit 51fba7e2e8a0061f4fafbf6b6b51ad87f567c6c2) --- tutorial/English/00-PixyzOverview.ipynb | 5 +++-- tutorial/tutorial_figs/pixyz_API.png | Bin 0 -> 68639 bytes tutorial/tutorial_figs/vae_loss_API.png | Bin 0 -> 59286 bytes tutorial/tutorial_figs/vae_loss_EN.png | Bin 0 -> 64611 bytes 4 files changed, 3 insertions(+), 2 deletions(-) create mode 100644 tutorial/tutorial_figs/pixyz_API.png create mode 100644 tutorial/tutorial_figs/vae_loss_API.png create mode 100644 tutorial/tutorial_figs/vae_loss_EN.png diff --git a/tutorial/English/00-PixyzOverview.ipynb b/tutorial/English/00-PixyzOverview.ipynb index af603c12..c45f31f2 100644 --- a/tutorial/English/00-PixyzOverview.ipynb +++ b/tutorial/English/00-PixyzOverview.ipynb @@ -10,7 +10,8 @@ "- Model types and regularization of random variables are described as objective functions(error functions)\n", " - A framework that receives probability distribution and define objective function(Loss API) \n", "- Deep generative models learn by defining objective function and using gradient descent method\n", - " - A framework in which objective function and optimization algorithm can be set independently(Model API)" + " - A framework in which objective function and optimization algorithm can be set independently(Model API)\n", + "" ] }, { @@ -1343,7 +1344,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.6.4" } }, "nbformat": 4, diff --git a/tutorial/tutorial_figs/pixyz_API.png b/tutorial/tutorial_figs/pixyz_API.png new file mode 100644 index 0000000000000000000000000000000000000000..2f038a702fdcff96b2ebbb802a2ade9ce8127865 GIT binary patch literal 68639 zcmeFZby!qu+c!)JL&*#|fYgAbzzite3?+kz7@#OIq;yG0=YT^a(kLh`A|>6OA_&qg z-Jmq@0{4FIz3=z==R3ZCUyn7;nzgQV#o6b1{T3m2@2HTIFp%Kj;E=1SBJbhg;B(;M z;Oc@1fh!g~t3tpJB@0ExyK0Jxtalx3O)acUaB#Sz&;|ySYB#vs4Gj$p+I#qTNE}@5 zVKCTx2HuVJE%n{?Z3d03G4XnO(@^j<{{2Rr46TMQmSkAgqauO!d^J9SoEL9iU9+-! z=C%5PuuBrP&+Wr^y;O`|^&EG$WZo~Gl8~^Kn)OLV^?RJ=4V)sSP@izTqD7w{%iv#x zU`gUe8N7#7l=Ec9Q#eIeqJ=4aP2sgTMb6QY%>z+C?!J`wX>0l3rouM(qxtL2WFJR0 zqU$*{*I7r!>)sY|3rlAp8z9izIV7oW9qtk&%7n^`y5yIqM^LDqM91;t&MgtF|lzp zw{@b{F$@H{8nU>rVTH9Sbf+OWB0i0T!I2p3KT3gvTO1MhH zE?YS|%SZ@j36oA8INLX1}r5ub+CGH`W|9TwwB@Huo zaU6m)TM5pWR}uyrsKM2L%v3&Mp2g@pKl7W|HGHcp1F{5Fp4e>(ZQAEb#R+QGuk z$->r#^`c)xBU@)DX&CHcp#S;zXPzdm7XKN^#__LZ0SgqoxFd)VfD8Ul-@v0%7gr_j zTDY26=^!nv0rCK2$cVvjN?o@9zwZ2J#6M3ya5QmHw6z8vbdvcGegAs+pEv*e!OJ0a z|1+fU&0GH*@*j8pdQwX8V&(s!#2+$WUIpkZLn0;kKRlBmnT;iVgM%Z7qlT2f?~1!t zV-~5`=C*NuXA~z;a|P7;t6pu;Q!a93}v|>itIWF5Wzm%=xNnb60+(hMQrO2n^$_lQ>roGW~ znD>dWf0Otwzi(>ISU!58I4+^0a8$kN@U@DnSWW%;DT`*p$g7Xb$q~W7k5vA}E~LRM zq1zYpKXpzUU%d)n`uH!FVd{~v$cfrk_ZJ_9)vtQ( zPB!R^N2%t0{4XBdVq;ajN0r}s|KFp%r34uE`tCRJ|JVHgQRe@*5JVQJ75tH~aD2Q9 zyIb&?!kRs_V>8suO^nW zuLYGWyj2IYudGLSy7J$Bez$UC%41jKNrl6Q6#G{CGJ^&@$(aDEqgx^`e{YmNdgj(L z={iULr0Rt=Hy;B8+xlKD#;QMEsm$Zhp=#QX)DO`BicWQ3;d!~$K(yY;_o<|~SEB1@ zUmA-H1sZo=+QV$J89rb60t6F znRIKL^gcgjEm!G^TpO<#0G}aUF_B;k==0G^=RCvPKf4pCun#p0vT|>rOYn=GHfw$} znEI=BjF_b{r9&5l*m?0ayJuFu=UI=ISPTsgIw75mPmlJ?tj9zwZEe2{Xv#`MDRyQn zRhZqHGd0s}xKf;=dr~C7=s_en|1z2WoUDpM=1vz<0NAAQ*WRc5!~OodiKq(Bev7QZT1uEiq(v{A-^{QV{( z{KA3CeE?*e_xgujz>(*|d@AIm*mn*?8pICgW7aEI3rHI)lIxKK>_G{f`x{l8K|AT$ z`~p%WoSA&3Wo3l&J#L_p1YtA6{+>h<+IONNBFxuE)2A003Z_aezr0%XWDE5v=b}K~ z{0WkOm?##clTrKGW2JF3wxg1+U{U&0IdjI%wCCPglkr4D&fwCwWVG#dr@zL085`|e zvGk{=uL^^^zI{;lXA9wi$!JRN53(w3R&CZsidxT{G;kcHt|kyFkM&9IcIT2^86LQE zFkqT_{28|%skuirN0zy#;ppi2Kp9uK(Mh%Y%E0Ck;~T6s42`v}ty7P?K|JT0zWeAH z2x*?H$OXNBVfDHggfhn)cT>5^ZVrx1616S+GU?t`UK{~c$bQ4wTXBAN++_3u**`f{ zBM*I@8vNtw7n_vRl}B|X{nWH|ZB-SRk4nse;(&Iqv$Gtkf}4=!p_?4qqRm5}yiYA( z?sRY|PGB4ioXS(%$w+&1B!6ZcJYMlDRD_?O{jQ^M`+A4q+Az8V+=pb<0eS8Ahz3h` zpN7P$@_o0H?KXc^={UA!LEF)``vuUa?>sS64yO5a zQlSy(=p{=O_YH8#_xPlzRWAZDqj5b?ZoKImvHmhaOQvm4Pqi&Qhuyv{i+F9{5=ztH z@u<@e;k}sRLa2QdX6wPer?&iqQ}8HNrv9Kn|I1|UR+~QevFFDUy%eqswZw-+ve9EA zW$17rP-}3ePy5osWKOTccZWy0l(;|qAK*%T| ze zbX?>mL+Ko}HHY*Hcd7U5k@iecG%#w9JIt~2H3$mUTe+NRfQK7FH};|vT18E5d3N^8q@BH_kCUY(|^>^`{Y(GdfxAPd0Dm067lNv@X+9Ki%% z|5TA3cbd~^y=q({scger^K6kk49C=XrZJF>s+Pio=x`%0$yB@~+Nty+O5LN3Wb0Q2 zqW)}RTo@HdyO~2fJHEF0>K&vicrTs+DF_SBCUiOYVl_e;0IrhTrvG`xH_XShhG0My zPKx0`uC~eiLR9@4wX_~u(>3gbkQ@HaW|Z|n$Mf!eRiwBAiHPJf^7#tOZD61wI9_<8 z&%C4K)w%=U4@4s!xn-9Lm+H=sx!zS9u_-@;k`pkruDsGeG2*6zL_nrDggJvPlp_um zyfW{x^&)P}OUK9dxe@S;F=d+B2Pfr7K-plDH}1CG{W=8Yd3UyuX=50d-Q`ldn^I5p zIfA}9+wM!suSik1tJfiH4SGhA@Qip)6svNWIqfPd<}Enq-Br7H-3R#$>0%{;Jj%!_ zC=2q6In_X&PJAEK;9CEic;QweYr}l|t05xx{AfZOy|zuPI;Cg3Sc_N#w)7UXC_bCz zPv6U1hna`% zOv~@cO;*oVmjbNNQrAhALp zNbCb~(491kT3oav+HGRe#B9Mi?|LnVYiRM@@}Wh@Xv zh50@>u!}rrO*bS{7lXZrjG&5}B3bQ*KR(%%mGpBpO@uZk9>IRj1c|rc7^K4)wgZ1; zdd5FN$}HM5dCJ`k6%i588n$eC>$qVr87vOpcTg_hVZ^LF?T_7xwy)00J6mUJ$? zS9cY^u8)@rL&=)yVUblG<0;BcD(qTVCi}oGrE>Nk9W2`+xC-3boUOrCPx zQhf6wMz5Q4-yrNN9%E`th>U@BSC-6v&Q{EeomnZ`(t$@vhR`dv+xxGpv(`a60g|4I zwSzniY@_u~HGq*)_jDOYJOr(Hpa1q2rF}y6blPL59%B$Y?J@k+<;uG-v9pmrFWQ3h zW-b{Bfv6k!!`p}i1(gwuE9^dkg6u}x0M{N{=14{H&%@;!kGi-fc{ z1h4*x!aC5aOH~Dy8NH}IKiv#AA8M05+cwBv5==M2ijKCGx7;vf&2H=SKHIg!VhCD^ zW9r3@*UV%rNofT@3x;=~wz2AmgKq+KjowMLMtB83b<{34G}^3KOucJcOX~4ElWa6sgYGbi(UrDg-0!AwVT(^dmQ^#3eYf44%~oievwuA zAb!}jaSdf^p&Cq83q~77*vBNl*Q`p?Pln{0g?vW653Cx)cr*(rgj8*M1ljRwV63{y zOz{nGPeK_9Xk^teeGaApeeJ?gw*&fk_!4eAh;bBfdBaFR>H*%~#KHjwCT#*pHs@Rs zw$O^a-o0C$;bWAJM9F=sNGSZyR)9DjbeoZ#=QC>b)eJ^E)_`jCagbqkW@6eP(GW*D zTQZM7_3CXF?MIoaR}>Ree`z!rwZSv5v9((8ooY0yMp2|EsuHYc2Zuy6K-M0!=w&)b9&3&#XgF0Zi?_hn$Nw?d;Hev z9!G(@JnV@oWaL^TnIl@vr!BwzEfM7L45QugW@bX=kf-9SYsHN>d0QE$*wdBbDM!^O zpilP1r&uV_{+lFo*prZX0}l*Xi&ncJlxiWe-MIMB$UUlDnkW z?2#_8oHV87B z?RQk_wdqhDsS~xPX8VcYhIE-~b5UX$C_%aeDy6ZS^#~yWZ$xUDUK55oWELA@+S5Mc z@{wJG$nBUg&)f2GRf3@>vf>N^ zl=yrNIpHVXQ9%`cop*pB%7fCN6Qu07q=0o|wE;(hPMod&p_kJHz#x=RucYYrW3E69kCe)>X0$ z@uNmu+mt~Qg1ZoGgb9x#MrN-{Zss`Vi!Rzr8%0(f<}(?{OX3ML1ji4{$wHFtj2I{m z*;FB6pf01&Q>!W@@5oVe3IXitvL`bXELxv@I~i9NODGK06;$6OGPmNjk|{pwezl9> z`mBLjy7zEmV#Ka3txxQYOpqpO55LvFlnyz4fURVmMwpGSXQ9X#wLnLV_^A6n+iv;I zag;@K#-RS@Tfkno4=q3~v&pn!b{ z#=DsY#wgr`*jTIG+fg4{a!IG-e++GA8@?x??9;M2?yS7UCILucuwB#FLN6TcMze9x z%<$L{+;l0VwDwciz70hL|Bi+1IF0wgOt7L%{FO|VDA`7G2)1y(K-8tG!+-biMj8Ll zTVFL%AT0dueBTjHGYl{G~L| zQE4FhW-scm7?z*?!dHksN7$iPNMSLOBU&Yn%(F35x^(i-Faoq2Fjz(0;cp<(bioug zAMT7VU*FmJXzR&`k;z;!cu`)AwR>;X34>@Hd^$h+WPk$iV#Ejp2F!H~dPLvKT?GgbjC(}eTSB2Lq3_0AubwC!nNWuSEdX10e}`j7Zp;CRWW= z4??zPHUzcbf$xJn2<}tAGY(~&*^q&O*g_B(EvmAW>$U`R1GboZ$Oe`$;`BHk-A8)% zN@;8g0a|pl_lwb#mO9{o^KF)M$VO2Nk-{6g#`q=T1=xwvtc{cw?Tg&dft();n3U*j zVTBkFu}eZlY8l(jJOq0z&9E%|Ll}>=Ra;le8G1o+0`82`_M<1Afh=J*qrfqPwUkjS*V)RVRf2MBhC*Z46VL$mC&%E80o3T_cf1 z+gL?L#4gKWyNbfIH3j9QLuSYXt9PxU$M8X~Jr?;spscm$I{aolYzLjM;@_l`saNYV zD1W(c^;`+4&pb4K{RxD+iw8mlP|SKoO)>op=Qkq!tf=6_mJE5B&nOQPA}2-POD^Yo zRc=H=>Jk7c!l*pc3!ag~I=WLV;GqKAE zH`yv4j&2(zB7OlhIn|-?V4iSNh?= zw7x2+B(sNm>bvxlCX7=y2Y=4rLVI4t+X#lRNjuxi@~{6n`ZMll{k0j?ef*|Q+PZl8 zRua#yfrVwoW|@VrUMp4YZA^zoHrb+W7NRhg;%-DMbz>URm{^g(G1J%34iObg({mFI z4M!N3EGr%r7o2Sk^_L)u(mnI_(`#c@Vgr`I!}S;m!$x!Un|JK1(Q#sLkV)ArbI{_D z{tq&-EkCB+VVwd6x&?v3-ALN#n1yo6dbvSD+S-1SC>4*Za0Z#P#oOZN@vn@ z%&(2m+ta?VX@rWbGv_n8R%m;QsTa2T*6X$>t-oX)-e^=Di6ptNo-?5mDwPRbww*2s<1^(Dnr1jK=U~S(`<|!06a>~g8K#@`#9td zhC6^x0b&?j9yJ|dJRUb{%S)PlT*QBudLfQ zX0k{2gINbh-+qt3=Av}|7Qz*1*6>yHGyjLh)~SoS*65eIQ|sfS;X0cy;|{NSk`V(N zCw-Dlv3XByYf1%o16)Y8^pVh3A4?0a6ASig!(E`@07EM1 zurwAt%&+ieq#zzIv{!_xW9)Y_^i{WJu1G=~u4)Tg{=6|(`tlLCrB$TQ`$`ECfQ`@!9&c7$+0QZn%@!W>wORcWsA(o6XKG%KKJGnd5Nv&DW9--S1RPRTPX`BAh|) zuB@>LbB_3dv^{zwCR2(-%VCo ze%VSPxPm;l=jY7POFyf=O|{R<^c(wVMXlMd+CmiV|KbfJdpzH0Uj^1;sWvVCcX{pV!G8KIeXs*kA7RG!{l@Qs&MHhfFKzM`e^^gzI%Jx@)~f1Cdf z5~H)J;2CoB0fPo#uj1xKb>=Mtu)XvB>$eIZ-n%H(QnIEurrT|7QSrYh~fhqwc<4zq9P~gGH@e{X44n`O3 z&|dgOVpZ0H3ATHX%^j5(IgXsfsE0&gYw{2t|RWf ze-Qp(d*WKaEW#Di{~L+G4mcR&_o{i<{@VZf3yBDf1@8Dz~qHE*p(hH{Id_> z{2DOHd2SAg{{n2l?*VI44lU`t$f*8th+RxlOV#P$Q%4%S2iAn8ws?K1*ngzt;(xn~ zNoGVY{d?+|dew_!KhHPb|AHe-a|4r9Ve9|LfER-ULJ#cM{jY@oro!|;t;Gm^J$@e# z4OBD~5ls~;ylcDXT+A=Ld_!IIhKRad8lOEjZ$IiU8eUTamaWQsq;biDw`9HwY?g7W zg&rGkO(;GVZQu*)wry~IjO=?{xs0^jn-jTi*0Dz%r&@ZDmxB_JxGb*#>rwq683{t$fKAuq{2{AmTw^*g!|@y&w+ zbBoSLt8Zx>PR3_~OllZoWB4CBF9z5V0Muu zzC7O@`n>D4I=ZP9B@lt3K3eowTQ>I`?wgoap0~G5^sKpcr>;RLhU*Ee|HpaY5%Q8m z1`5Dh6TVJ-YQ5OrtM4bMq^LF+!T;onH2z>RCi+;j&8Eww>Zn^4_IfW{rN$(2@hCA$ zjm_U`j8k^g=M&HN^3#fB-C?%XANv6+w}%ehy2fLZ(Ft+I9=Inc{oewP4mX{dF4OlA zbwF)qf7Lt|xUe-f1Rh!W9(}cwk6wIo-Z)HgUiX}2XJS0n(Pa66{1&DvfzAoysg3lk z{jMqAN8WnlyxQRD@w38>y~kb7(VAxE1;^6@qC6jmJk2w{yIB9Wc=mE4Ir(RQ%%P2W zrrRJ#Mvk7R(>@SB02ML;fLbAAzn@oJ$Or-6pMJmSP*^v+W$+m!1$w$>(nG zGq|s>GUU$$417#gTGbXPxo;XLNWL8Q!uavS1BsYYuhRh=0ZD6@`p!MQT1=h)qaRwExRo3@CV<1)# z^=Y-p<9VG))nutvux8csv2{z8lVXKUqbTE6cG!N*2|atUN9T7+QP`qeEV|+YBi+k@ zj9S4)-_NRLJ-IADizJ+j*T89tL_9g}g zsXp3FI^;=O-@5#QH8K$zh}N@t`wu$(OE7&BPg$B2V2lC{-z;3 z;gkIH6Ad%H?u@c=xQcA%p&P#KR8lvJ+)^nzfye7KK_>9kl^xro;@f415|o0Ho8Bc- zGz`0On#V?mKl86ke2cSkar~xhHY99E&xZde&Vj)>LGKf#qh&n9j{^pX9;ES-sWnE2 zY2OfjnQ$w`{-cVDRQ}YQw`wdv_6z0<;CeT@Hw!b7AKeFO({xllmKTLXHdiez17Q@f3aC;e)MZedmG3JwfU18s0sLOYu_2s` zlqO+VYx46G^!_1n8kYz5=|V(rapbP7&4jhg)bP2_eV66_gk{X7J(bfSE`0e=v#m&=@5Cq&+U2Qveu-}Y@Vk7q+6!ScC2cMjId2a3^ zPeN8aJIK{C?TeBq(!wR(Dm05FCiJ_c((Uj4i2JfxZRoDu?sDX)HhK2;8EWS7>ZWKg zR~=pa%Qc<^wJP!F+wIukvnO|UReN+<217pjWgXM^D+LbhM_kgO-X181&5JD|Z^>V9 zl2wj6J#uraT`|doqSln@CG+k+;h?@3SG?8xAFRTECPudJS^S!$fyvbs^_ z5LkLch>N{npI7l>)aM#NUON=D~X0c68ib}RMHEs=+`wiL5t4_4hs06E#7*z_-I_};|_PY zZ1KGRNA@PF8Ben|!(N z$9BLu-6$hvC|xxWcv{A~Qblo~NIWKTL^VKhjrLcqGRF+*5LNf~{v)A@=5g)_r17al z>f1>Mv8~7^d7IC@$g}ir%SuRD+1Hyl4b8q9MX98I^mZlek~YG4p^@0)tJ=;N zF)k}5_k5K!NzrKK3D0WE%ha7KtD9~C4PT4}M{+q5?i?m!mt`h8z6_EtH(AGb;uxKI-qoV09F@Y_qAl?oZrM;fc z$)kTTDK@8&_WVUnosH9ZV@>G+_;q^B{=*B-Ar15{NVY&H5F6vKOHS`D zNkffG_fx)o_ar=}mhZc1+RB+*4%gVBX4-YEPBT4YcOJpte`@rXpu#iuX4(Ef! zSG4+6-^7+29G)IaR|>gPRJ35e@@_E@&)2rHa{6?GRaQ-`HQwms+f{Pg#Do zFZiqFDC@YAzKr-GfVaD_534|k+v-k{;{~{4s#Lj8TfG5Xsl_HXMK(bybSD<8imHLh zpZeQ3iVJE4E7?X60m(rxEQGXe!-NGXG#ywT->G?&e1J`IBhG08Q>6)B1PhjFQ3w@Vp+wG1anaqTc3j_DgI^`~=f)%!iMM+t1Euzq;Te zu-U;)ef6BPq{q!KH{HM0vl2xv)m_ zL{`|_BlL2U7*l`15t*G=yf;Wc_EE}mCXJPM=-_O6KXZ>B``7sKe z-w(aTHqX}mJ9Bvz6^Ky-oyW9MVUBM`-}BYp%vNyz6WP}D0%E`Q|@zMCu+XY%dKUCW`;W$QHQ7Dd}UO#s-fgDf&hH2Ikd z@&2y)XNvYn*0c#UfpYYOjIE`ew`|ad(h#Rsp#i#Ju8$PzL7jg^$4KJBGLLMFtsss8 zgN{rKMSlI^KjUBteK(S?@5Xd{u+5rhZpHp;?KpZVl$i3i=#pU|0?MXB=jyUkCIzCU zdzV9A3g>0o^X?)`Vvv2xf1wTkIp73%8H{->3N6k#f9L}T5|8|^j_qlawf$*iQ#ZR4 zk`}6dAGC63e90It6jh}MY6yS{CL;v`T*HQJ)TLaWP__SddaQY@+~vGkHorj>R3jhg z(YrI^*_8T8i29F)OkHS*%X!YPi^1Vm1V1VfW3}iXJF9{j3I$^Tiepoo>5sFGHwT(> zK90z%xoCP934rE51Q2^auFCQd*!)zMu4#Gj%U=jRa_feg?q7tl2XZ}hwf}wTi&bY| z_cczD)y}opON~yoiMI|hR^(60uKr`1TE&2gBPQi@Q!kb=7$8^F8=XLvZ}W{rlprCI zT1zc6=cpnM6_Lu8`#xOaPfq!^44BaKu16J@=}J6DBub+QIgk@)qhlWE_h}jWF;?}7 z(08H7AM*76mPNq+kvaM0UXq&qPW^B=2c@$qGtcrpE2uN{{jiDh_2mozTSEY3tyoqo zn(KgQ+{ClCwl4ELe(~~XIm>$YXU~h{^)F*ZCS5^s%g~y{vRVM;_-iHa(`a{s@H+6l z@g+06$+@Q-A(Ur2U9PChWV=juM7`rZ`D^$S$ngS>|$w}$l`#~CQG zbf)tSL@Xr(cO-i*5KQ12ZaN4oQ6YBj0#^E* zh!+7MaNAJ9Q_D})JE4YtHnoSQ^wFbN(F=c)pSub`yhVWVq5)h=6#;mnKh|oZ^84u6 zSeuPWuuie)l!tIU1jY;vyg-bXSOCB_#+DJZ1j(V_`q-Dgt4tEq-Ca3Zsn5BR?fjgb zoOCQLEiv4N^BZ;NXOa47#f+4qwb=UIdSCn?#7LdDHyqyLwp#Po!Uq$9%HT(0K5w9k zV0hiY7Nw}seP5S zSbUQ$dbdYK8yO|l=9L#X@Ru7Ei+)-^icHkwL!FmDycq>>vg(4wbye4iO{j=pewo zO6fqtZe{V{zJG=3QZxs7im3S z-tQnSo^#v3W*BGP>ALNDzX}U^Bbch`&Vyvfh1ZWpxn#COSRJ}P zo^l6+b`_sNlShip#sGD=mT8D^epSknf1NEI4((T~VPIrb9GmfDWwBBKodW`-VVXU=CqS}E@h6TRsHkI6acs{;(4@pTY#m^5pEtY?OM0hNct;K(4(PO z=6KDp%bP=}QRf@Qqo>XfpnO&+AFazc%Xb?vSH@ENahG(U!OhgN9xv=?c0XWy35Zvt z1WB`$%N&9o_#;P$dCOd|EUc3gekItom#JEg(4(qV^edd0XEviL36lgchLOA&P z_l;*xl<$nw|4hPeFAPdc9)Wp)$# z0;;w_7Ma(ikJpNSoo;$hrMk|BupXSB^qotg!WysT>s1Ir6FzzE=gnNbiN}C0v|KD; zU4opgJ#N|KZ9dgM-`5W|2jRKw=YAJ)9O^bO;!P+}@`S{p(C#ZaS$+tkw!GC(buviP z_}fTN#6wiaN?#=F-Gs-jC4wkA)6n0@mzW}hA`A$j@f>ccx8yadK_8EZw|i78p#5mO z-G}DW1xD9!^oKcpbSR%xkY=-vP{FcU_loPQEv#WlZX&QW5P+nmm;b?g8!+?pAOr4a z0C*bwRL*txggjFh@j7%OE8em%`DLb@y?_>Rv&= zvN$x?!BQl<>4IDY8A^wPVRTUpqmC2K!-3U5Zo3u+1z4CM9nAUqX?LtA#u#AaP?mJX z!UnyD@IGC03c6-tYnU{k(uTa(wENq4_lNbrFxr%}?Li<^nOglUQkI0fO=Yc85rMVy zj^#%6n7j7Uq*Wo*U>f#?orv*^Jk5!@jH0okfSH*4*mhqZFz2Bl z)&p<|qg1XBjxq@LA|vuT6~PUoH&<3bBU1phUmnTMT48!rvOHskaV=k(hc?pUs>-0Y z4Tt$NeISVG3bt!zw`mTAoHHqfDKmAQUj&%>8mNNbVa&s|>AJ5rrdcRqJOgB$-%WlX zmhX%eN{2$PcB-J-%8crN_>vkvQ=7QGyXcac&X$QVM^(UButeIOt~Ml9wruqw%!ZM0 z9D8k?bhc%u)&z~RVf~jAlRAgW(`vF1`juM_8eX1gI5)Bo{%}6RSAI|MaS3+`lQNX0 zS!|e!$){&*vzjSa;uOHemTeq&=JzEnm zR(uwZ#*$;j^e=b%TN#1yV0#Fi3zQ7ylnB59Kwh4bHnZdSSbB-}%3rC^4Dw z3w##=H|_@)Md7RmvY+BH21v~&FG28FY=F(-p@_}TeV!YR?`+{b9LS>!%#8t_SY5QU zFf{36`+vrrc67IqqdqOA7Y-f__G;mVlr~76eAhpH09Pp?Z&G+-A&mA%;M;}^o4Q8m znpVR-H~91qZ>MR&7!(3lAJrW_z?9V|a+4{?^QVod`Z~;D`UCh+)tHv3T0j18vfF%% z9(1#rv9T-}vp=`)cOj;LC|7Q8;QG>o3+P{PhC(%T7*b(mmUjlMFgWcI$e>wrw=2S@`ei2{dD zZT*`4+WVM0BtZn)^0A-+#b$qZ*0q7<`xxk578sF~w#nEpYhUt1cvxr;38&`D6sBcc zq0TTgo24~|#|ulIPJw)a!PDZjuD@2FWQpni%4HuVlWEvF&to`B8x)lDY%t<8#y;Z{ zqT6o9y_?gy-T?9a6&k4w)vx}c@d^zHdBjc*9hxAfN%NpH^8U>LXMl+HP<9|QXq7;I z2lhdrGI$6HU(Djwm)^t;*yVZ*E6JQQ2!+CFOstx)(mp!rg%RnsktTd9&WAnl=RtnE31epNRE zF&I)4uOXNr!RXlN$C>v*tZ`_1kTDs^8U0bkJ~S#waDOnG{zYDt(3)=H@8 z_l~{4FP{Y_OU9N)<<@ipVLI-y^+Lzr@AQ-WIXAxBOFnnSpC-%A&>)@}Q!yiTl+3Me zZzN5e2H`Q%Lk#^WORPk2=8!JH@6bO&hQc}Y9(9(A>HmRMeZKux#QS6GbIS*UfY~Hg z#9`~W`NmZxNpdj$YQVG4;?vLpdvHki{^C^;mkRWK{Qlr_V>aCsV{mnot(E!}X&z1N}gY9S3)M1EPy_4Y!IP)G))RlB1IBU9} zI2)eAec0;09~EIV2Di`G5OF9MvICcoRolZoYncmJwV-RG7fkLtPO_=wiKm3=?X@L- zw_MwG@sPpNw302tCpJ@GZV+oxm)W=K)cc*8b{B$b#Sjk%a!P7WGl9Pv@#k*=@Jl-D z!Y$?-Zc1Uf``J3%+U@u`$(nk^Ot4D$50cX+FEe5tE;2IJhCx^BYbU z3iYtBaRRyw0hW5_4JY11yeMhI=iqY8QyBgDyH*2M%8K0{(hN$MkVXtEbH%YY@NOny zhWrRd0Y&Dr0vU(Wk&)nS57(VJgHtgsD3ywUgX&$51LP45isOXVTz%r}tkx%K( zcybuoyh;g03Jr4E@h8_JKf0c2keSRjmr-t;O<|NeSDnQKB_fdZ zRQH7AmAn#ZMwGR)(^O}z9dFbK?y;jo5yg&zf3Z`KquaEdXqZlDoE3vZy3b7thZ4f*%b8S@RCN>Sl7(l*YUBU=WnG&yI^4BH-=&}4;i1oouZ4k+bR+?%Qc&`CVF z4~kPh>G^v?-k3ddnQt`oAXxb19t)g}B3%(FJ>AWT=h2JjB!fPp;l$VWHEi}U5K%2j zP};n3K>JzxBQ&oh&_U^tM(VqC zFL=@R($4kCl*Ad6*ej#H2rk%6#ccPio;ye{`+>Rs92o;!qnVb=CkGQgvf8;7AF&oP29QUI`I zBupZjPUOAATsY>Lyugm9Yp2P<;=h}Wc!O?&WGYSW-! z1Whx2L=8URme4535xa~|lt_$@x1T*)((oYi@sr=~Nd+J+ns6-uW`XK!3b-dg@uj&N z{-Q%x8EwF>ND04q72elgnRUinwNukZz#1dFUH0<$xutj0qQF1Eiu}^*br<$mt_OrP zEVr1;Ec|HceTD6Qg+F%b`jIbu;k+j|mu`j}_|$qdu?`|z9#x}+ViH}d-{p4L#Qffczy!G&+vSfQ+442M z^NxYy1<(Q2Hz*Gp&O23|P05&y9pXs9zD|3Kay7)8AhrG5Hs1XJMiV$^?47_!1`s7_!?(_RPnFckPH=Zz9HLDJIUDdxRkfx16IoUM);$4 zIUU1C`jMwVDl}W-2?UNwXm`$Ms`>%jpT1b)3&~WAL_MyMI5Yh|UJjaszg`L2hM>z1 zen+s3|4UzdTIs8HmrOofguXeOwwI0ce`HSBRMq!mJ0u3ygg9KnU@!b?&+0-6EwE6g z=PNH^^Yq|6dT0!DsV(E%HvI!D832dN}aC^E$=qCYANw7nC)kJwyY1KTqqgM}a3J)QzT;czx zRhu%<#j|~E#Wxvmy>B1X&=ErILVRl*9q?1o2Hzd;azq~4Q{c-X2csdrsdugVIfI?M! zwc}vP;!7?#JxV|@zA`-FUc$&S<2dwW(Bm=D4q|<*DZEqoK?SS~z2p-gRjZ$?N$>je zD`!hwg%Fd>B_4B5t#cmJeW!F-i0k2-(uD+){#)kh}FSFeON#SCjy2T&X3oAfj zpbNUq_VMHYsR2YhrV2VVBYz71pXk*IXeaiI#qN=BEPp6*jv1iqbfKK^8fGT_^!uB02GU-D<0$|7 z-PmJ|$fx8@M&6y(&h�L+5hYuC3#mQe9-S&K__EMgo{hQIsx5%*t>TU5S}^y{`_{&-G1^HYFU{90+D%0%@Lr(B-e zPyG@`E@eT3Vd&3~s!RXIY?uyA&Ex_77(nA8f-Lz>By-SEJu=j>Qs~njzqd_wKT_Pm zQNBh%>)7^m<5+k%j?A7{KUrS7sa)B86DNBQyCRdAeM0p7V>a(IS}ZU{N)e$Ee{*}t zOu$U26?p^!Xu$Gap9%Jv^P=Qvc5BJ=o9U=od=rKYdk3Y?jk_cs-j~H!ZU?or>g&pX zRMh5HG1)%y_Qc1@CM|v#gZ&$|Js?WmibH>CKoWwHG5B=9&+mz+h>~^BLSp-_o*%6y;sLJc>6Q9w%KTb!zGre(+480t0 z5W@ZvE1Ne5dv#@SMykTQ^}##Ucx!#6rNxPkq3b%)`W12D(*wahHZS4Dt8>@#fMA&_ z@>mzx(2Z!1v!x@KgL^{vHfpJ5`vDdEmgU97YvG3ezTTd3=#INZf^*?mPLd~%8r%ivJYUz{s|#QD?91a+ z%MtePzkk$zvcXPT0uP`CjQ;4 z+pXd4onxd~@5ztO)7Fh=^@c<4slq`FA9*|SOtrVy*Q@9Ed~mHVxSzB6AEcfG$cKgL z1@E>V9jio>u-*WDsUpXf;jG!y|3D*IcmOh!S+LL<*u=7~h*wk#MZC5AbuGS5-oN!P ze5yPqJi**Me#UfNvT&s{cB*HITPQ17yd)$+s8qSz8`LrSbm|8ashh=DDrV|S@HPL# zci(l6Haq2YBZt>_6k!;ukqT?CN4Go90eDBD7pzK3+1XXyqlM@t7OsNV#b7U_XC&y~ zmh3hv`!%2Eti6mMrz}uxQQ&Y8)9`*i&!2MAEWlb5{I$f<@`->1j~A|3Ap(zDKz6!2FPpYscF4wL5EKRXsm?a5};=F`30S4=6I zONk5*CD}R$rGPe?#?_zaFvz;mPPal7hrkSXmaCf$;gh_2=e97@d+v57w_e$W&Ms@*;F?8fHn0? z{+ctsICIP++t}RKr6uz{4@YJW%oTEqzO)pa7{@iYnL;{V1Zc%Ies?R3kxDQ_0i^5V z(ptCSqiyC1C2M(&^weIliVK~#&bJiRKZ_jyAw?ikG|ec?Td|B}urT18Z^$ zfJZ4Te|eNPf)n@&78YqtPO?OSrtUj%q?n%9+tO0RF)^pr(#-TdOw@7t=iq zO)=`aEANsh-@)?^KGl$O&@#{TQ&At#!qpsHBZAJ04_g-;zId-8!D!HLxij4*U;71ePCh}s)E{p)81*m+Du`dN0}7itp6q9m`Byf zT~n|>JM3;fTB=4Fd&G0-nnJgrK|prE0PUPR?OKSb zU8b4yW%Gu{6r6N+s_-&;_(AlCJX-RS)RC^P7Sie(FDPpWyqs&SbCYx3yy_L6$^;Uk zuzW~=i~#^BLxMh3^Si&W=SAljP?K%lx)17qAl;Pp{10A>h>YPD8EmBK zxpcX5pMsl)P&ynQvha%KYQUqV>PT*kTVo{*Q%szpYm{v~$bYT?=fLcnxezxfaH+_h zc42FzeEzg%|BlAO`F#06dOpwE>bQc@;`YT6$2Fgn)FMQ+%Mnh}S$t@2JaIj+Q_o%& zR2$l@@K^ry29a;q@x2vp*HtU>kI|%i6W^R3{(LL;kF;YHjp%r;!D>JG<*Mp6mmsXf zb>C~~(mq~1>VnDo_`!CvmvI@a%P?448=p)0@?c+;0gnr=f55=o7V zM@0V_*Aj&ccQMZMneSwOU6>=8&s*x^;_fidw-+}J-->MVY7ZC}zGGz0Z|#7Cp|J|V z?#|=Oq%`UdV(+6l*=w~X70v`Er$1dP(=M#lTGa2HX|D-i)Y9f>VQr_KFg4ssZg6OQ_HOzt@S@()Jo>%YF4WGdi}{BZGM`RliRBkZhI z?{q3S30NEm+;BGnkdBUdNH51d1ele=TZ-#?OPo!b^W4^IUKf;YXzvJ>cX8h6p0!`G z7WAj%q?;danP4-8SFrpN`cJXa01g}$^!n}Ns=$$be3P+rO|Sg09kki*y@cy9sMw`* zlRdkK7ax?3BQaP(=brJ<2`FEqw8bmzTzn1kn?H_Jw@x!`RvH=4! zkj>b0+Z=Y*&~SX{dq+!>h4pVocH>>@2`;~7|1{u2T{=6@?nTmFW&PowjsGEt5b1xZ zvvYrX+!fc)P9ArR5#X%Lu)p)xKKn)%*ITkq*l<#vPU_O;_q!n2EeG=sxDp z{Ge4T{~!8^8}X@wShU&M1Z|lj77bC2J6n}gZL#;3H{@QAW-D$=@5dI|Uo%I6kR}#w z&!yzDJf%`~nDvt@zvb&CU5lq?!AUC9Zj+&ldQl-y?e7nBh}wT;gYLZ`LYl|qE-t0k zrnS-hri8RT>g(ObZqz;;l?7yN+P_#YFb^67C#j5F+NYS8S4QF3Ayx6_8donDmU8On zw%6Hz!;Sqs1a2oq@-!Yba8n!O`?rp2FH0s$w<;Q*f=7}hnR1?UtF;D@Xs`%dII?6Y z{fh_!#R1#X;jU4oeldQ*=3+aMar{%@jZ(DdN~w(HcHx6=m*O3OSa=MjsL)nxT>|oQ zsb_Dsdm0|5e|+TQHV&23xX-&^y*!aB#Q6`Gq<4s1Iy0fxk%U@kQFh=sInZi_+U-eX zii7)s`#%l#Z`i=uw(hZIX5K?>@3DXDe-9ssED#xBxkUW@ABw*J#Ge1rpQsNS6Z-#L z3KDx*}iyNqU@uDsJ`Y%eC4m<=Pp=3|-GtU2J)=`n|wNvAEG&UNK{_|9U1}54J zi9PyO^_+j!@_)~9m9q|E;siU zQeWIBEwi)y=RM^q5X&o-WJONFuHa$jf5DHe)}tF+bueZRxJl@;G)s~UsTyYE|Kke) zGcJLsF)9>#__6%aZvF2e>-hM8p2$D${;k)4XK*OsnoHt0gg*B7{qNxuA`i@OR^*ck z-M^aVZ)6SV0LdsoaWc244*lPI{GVC<-)A;46AV^1W~1p!d}&gn9UL1oPEAd{|6J#9 zJWOg~W{GxSq28F5Mg=fI;z}^YNLyH1mVaO|2C#26wYBW&1Dc+m^+!``Zvnp09}ZGd zQa>I!JlRvnz29`aS@?nT?+sRxKi?-s9Na7KF+ma9_*(>%`^bE&q53afqwvmxJ#~)M zj;c{{D1KiocnhcSnh!GotbRJss>>9^`aDZn>@}L<8`eB1uKyjtN%^K8LKPeGg0{Hc z;{rvQ)8l+s?_Fr|uQQMCji)2B&kdcNoHE~fEi`&J?#)(n!JNBaNmSanO**VjY03N$LZy{<>nr?Vu!?4~&MmnbU;j^)ZG+V}2E0EoDS zo5%xo52;#xfrir@j({EfyGM37KlQ6GjhC33HIC*#CLmnoxw!a)I}^oK6T04WdiG-< zRi_>iN?&i_;pBTuLDZG;x?X(2dp58Y^2+7jXS7MLWZNeM$g}hc3kx4XgD5e!XCGBB zG#|{gK$;ix9yUM7bA3q+v0{8^TNAV$ha@s_L&&1QNj8ml&U#%Xk+4rTb1QgvI#OxUmqde6ojss!;RWYkl#`QNDjOfK2e5~v%_+7x zEzypfgPFD)=_eubG`+v10R+fzrgRvm7Qe%K@7D*BKxDf*i;I^4R1foP?WKUr{uSj= zB;?OZ1pm(>8Sb-}f+YC!HF;z60P(8F>5!Ba0A=*db98YELPL*Y*uN*lKXw&c*jQQW zE7GpTItebJBXB;SGMx$Q4J!@AB`%M#b9%VDm&7dGv(M@}3zK`xKM-l(INCA^{|B zNvoUqHjg3;7lhx7sTf`I6--)AU&%CX-apId+{ZnE>?4;N0>$?sQ`oA%m@h-6h7Ec> z+$@kQa)pTllvQ#`0{NC)i%pX)dSFQ~7=SpwNhpOM^(FJpBwNgvFWj#4o_BcPb~HQU z4H?|(+gC?GR0^BfHAyM|*htBQ+r*=wJuim4>Q#_H zgj(_<^Kk$SuW2-h(~#%~Z{ECjSLDEzbW87%P*MCM)7~-@JYoQ1`-Ox9CoB0nKKWWw z2ZnOvhl(30P>r)f&_}(|CZ5>tlu0oyHg%Y5na~byTqnoFZUiB}QZHBHfrYD`1? zg4{=yZPP#-LOUAO`DCIc$f7!s#7PuH_eR?GGxlD#Jb->`#$PW-kmSl8_-#ItM~Oei zVl`6Y#bmSHT7#3Tr-;*$U?N2gv0iNYrL_!|Tn*!L&%1e6MR^bQ<-aQ1H~EdOV^;@0 z!*y;q#*XE-#`Kzt*i+2X^L5Kl%`X z&qn$sOuFAVjO%`}$0fq+pt!N;8{Z(Lfe>a2YCJ`Xhp_*nsb{8+VR(a%R;!wQp~{od8(<|LrW%o5dFiO9Aj^qIG4Lw@kuUA$GjU!u<))=IP}jJZwrP z_?#|{eEkM4{?F;CqkQzPSDA#(XCYEB*arUsx=UB$z2BxbfKn9{YTT7=#A<03yYbdFK(bum)J7m$3jc^CI9!3%Afm zOcgYiA~CZlUbeTR&j`<(kZ}F&yW(qG(YTP+h)$>Mz`@} zit%IEj^@Jlmk;+N!gtD>mef1)_W;!oXdE%sdE30wXe%0Q{Z4{sL9PJ_ws5J# z=`}g(i%k#mwgf5mcVbocB~XhCuYe4FA!{Da0Ht6+C*4Yz9ZAQ%UJq%n)2+)Yz=`U7 zX)_niDAVH23SUkD$<8>2qfu}Gj#ET@+6R8|MG!LH9q7qE)Q}VJ>#VfN5@e(juX#3e zt%xn1)*pWj4WRfm*Z@$=yR|Fb+Ny2zS9F(nq^myqnOI&M5oVSAJX>(?TWYZ!*30?!9v(E4t9){ z*|XZC{VA4Q-5NHO$v&EFkLQ z>PV-n0Yywuhi7Oq#AKdJ{^}*C)zR`74)g_jIH?uYTQ)8n(v=ip5BaMK)l+;$K{&>` z|HUcoU3&sms2v+BL~;rAE4K9_5e;WSeY@#GKg0Q3kIRn^=9roz%Edr5;e6$=pE%s! z+CU@#768^HFeuv|-v^@bS-4j&TyDu)P`LtcDOj-$;N26EWTyY1&M)%HH#P6lFCtU# z9kyb0e~_WOh3?$O>m*qePY=cGc7-~~J(e}S z{ZjbhYM?b$#d(IVrR5bN!J7!?7F_SkRsb5D8Ei?1?!{bM=a{pLd>>(7 zV#99JQ>K;@ExK!wnN5#r|0enxF{($(8bp#T6WOh-em`mLRBc)X5KZn@&;7RYOYfr0 zbnDtZo}0-IA!01_^@tTizN31r--`@4$&FXZdKqA)Rz=h6kdn3w6fs0hc=KBZIA$@l zokO1e*QhwIDdkcRHcD1x7%rSmnTYl79?MiaHXcxb55QVnn`SEjH}4q5pSrZ;X9RoYYPG#ZF^CgB560H1ld`3OT^bGyn7xI@n|`GEikGCAK_TO+ zsIX790FbsicQMBM*UpQhy$yCMlIWxdgK_OVF`cMnF`SBvG0!A>qlAUCZC^0u1~>f{ zgp3&IwY{Rx{n|{T1ExLpO%yXTV8c7Z6})}F*u258jYT-!<;dr+6~+VZ3p6(qR{%%J z3NLvUOo&*mML_W>uERSK&ghdwbz~7%BF+sX1&O!Ch_HrKk~XDs`yh;{t<4D`9R2P7 z+MZ`)`tR`eC}a)v1w2U)bXwVyXd(c8JRYV=$NW3HA-HGFnqk8u87&Yj7h>)uE72AP zVT`x{$zR*{ZF8TWaw!A}Enfh5QuJgOOG0p(z!JSw}N1ZOi94yxej*{?LX(_)&J*2k1!aW)xJpvj_ww=lLfS1o)yA0SYske7dNc& zg`eT-fZIm8wlR-qcaL;*L03E?Ozcx|ksyAd3%-8|Bqf-BJ|?&3`?#}q0aQIjT! zw|0`^wx$Bfd)l8hiqP)Ao`foA;I#)MW)UTXD~vw))fbj~{1oUzL3&~g`gnLTpx|Zxn*_3bC3^8h z#Gp=-pF{@O2yd4u{?Mf0pF3>y0u9*{1x?8nEWzUbhBl4Hs0BjLgGh!LkY8s-*t^oA z<#$Lkr4q@a?7Aw-6D71irC~8=T~659;`it9Y~v1I13vxGOU$l8B*fZKIedYpEY6*k ze4j&c?J@$F6BST41sypY%zM6!@MveGt9z-uv62ZH4YIp_WT#fdvHi{sOy@0&v6ro-6DE9|hpR7l zpFrw5?A70nd@=`jrJ05({T2XXt5&s;K>wOzm|+fMbjaWXj3gf^_wx~HfUqHsGuV&B zlYGLaom*>FLidE!DfeXpVZUkb-Fa0b_Fg76cqJBz@Hi(G_>4sm`#1Rjh-v-9Bl(lPiA6)j%`d1+9|G`ccsGIH7C65HXThr z|E8ll8|X8yOnr?fDyvgam5GfCo0BOJHb|{K8;u#jTau+0cPyRba=9?a^u2j7J!tS_ zukA(}Dki^~@BfsqNm`+S9vdL?Mm!2qdDJvHIf;UMa%=0BV3%koCzt4*t}Cb@SAE-k z(oG2Zjeb5!r3e3vREdBu{vHuMlR_hNELtOVrSIUTaO79T&F1Xn#rfWTZCv?HipRN* zh38JsLRAY&yt7d^Uuinf7j!ZSJ@tJ7V>IMATm&aeD*}wLYPoYl;TN~N9>-V{1Gl{c ztF)clG3cknVHva=RqBHsy*+?W+BG}SXUB{<-HJQK)tc$~>WJ+%DgXRYm59i1y)9BH z$~t)10CFxO=npTy5wT*E1uo&n{4oQ0cb}J)o4bs=iN#JVzvnlvP(y2z9?KNEgc5=G zPuk5dbV&aoPrOeNnP5X4y+b|UI5H!VH6ov1oDOl)lTzjq_Tsq1j1WG{S6G|EI}n=& zi53VgPDhP4wElwpQcyvDvHAAlEB;De3)--`e3=N2*=N(k3}LU~@$PTG?D0mh zkdqC6F0i7opb(QFr3yy12jrjYK;A=se+DgvsUfyTEhAr?xp)ouc~BsAT+h2acuv_> zD7--#6+$NUirAFJ*!Y&+R+47Ev?}+p!}EY{iGpM!IeXOwC*&Z8Z{N#h!9nkYFTSOD z<&}BsWE?wr=fcd)uuxv`%4&>XuJsFFj()M^{$iXm)bw0@|{=oO0kN;;hEfWCL@$#~I zX^i)KPw^jt6RXVXDa80EO-js{OHE`*349y#RdirKP1pgie7V=*ADSVo0Cj{2fC-h{ z1erIbnidra&XVARxrc^_45nCkPIdSU7DEV7=wrzD*p(qhr}ArbyumbiW{B*v9+FTe zW^wnYu|OE{phq|AhSp}kIqGw87+Iu9yXz5g-mL8RyZ00q>;slvbvU|toT_F;Y7;^1RzWNzZK?+6`Z$s#hB6%Dz4HSVwAR>7;d&Qf*?5p&KWo+-I?34Zd zPkeS1ep5vK^0o9Iwr^5f+sqZA8q*y8_FbLsMO$EZmD>HAxyzXY50mE-f)O;RL9HJt zs^s^+3Gt=sSqZh86AYH4B0fdAbQn;}ZIO1HXWB@N37=0<>n~f(o+{oLoFbql^&qwH zUtI)fyR0B&vvHWWC)$gVNPS)B@~Oi?b`A|spV)ZyBu8R=>cg}3?-NhBL+~gw>j^OB zrB3^1Uw4Wsbm%jSGrvTXdgN!O zOUm3Fp{K8PuZQC!dXxAhtCh{W87}$5Gwaiun%U4^Cy#**k$JnD7DeJTxdbm&Z0lHb zVt<;=?Eaj>w>QADW&SKm{yXEDMiYq!X3=0!gc7x!rz$c;!gQ5-Tlg8$GbAQt6q60g z6g(PL8Wv!~nS4R$k7a{O^$Zh{YV`+&fl<9mTQ0d)DOljT@F>HMs}%;>^~<{N^|sc0 zPp6a35$I793E5+2bfD>RGq$;W>J%0O7&uT`iZ`S#IKhxtH|NP``zfUIQ9(R)vI)#z3Q zu>q)U%h188rN`XWEqMg=*P-5c(IVnP(~Il4g?Ekn&+hkDjavLc(x zv`F}VMYtb_&-L)qNW#OY`OoWTznjbSQf|L~ah?xSj)%A|;F?n7P%c>sz}K`zws&O6 z)6$F3tb3=;RYktfnIQ0MxWd_nebfkYtx8u}JmX(4^2o3F$oS-JJmtdC`>nd>dElw5 z(WrliPxYRpH)g56TwC~2%S8yId=jz0wbSt^042C!5lOY$Bli&BYJ07~)P@Zb3QmMQGE*@L3+ z*Tn4)pT14w))5U9;&X^Qj&)jJTsyR7Su!*<3K(OR-;?c7PD4^QC#OIp#EGuwNTCPY z`llKh`*FHL6H6y47L^1xk|MLbMFS!B{kw#==qy9O>uuSVdN9$KZsVYKm|-3KG%ujc zb(;N@hrATNRu@Hc`8(xB^rtOBh(m(@}mA8X$Zv%WoE1I zs9n>&TvvyrhD&|My_iIQGz^WL{I3>Max)mpexnQldtkKB5J^RvTD>c)^aE4P}q0EfVBu~6`UV$HOZ<}pKv%m8> zxO`wbRuURxf+k>i^5-H)?I-UPmPkJDLOO-HBi?&EDk~*bWco{$uZNq4ktVm_7JXOD zM_!RNu?m?J%h%-url@pKX2YD)W?nbHFI$KN z0|ml{o;Y}nWWDEFPGe*Eu!8=T>^$T>xSZGF_a=$M!J_Qx4!@118sr;zo}gn-Na&b_ zy{2QbNSPq|$h^*7twDyt;-z5*3PT6=Mny-ck6Zg^dP_bw&gS&XHl|X-b_7-u)Hmlb zCr#BQkV$@$e!iO&`oxy#)bo7sY?uJk>PY&%Ea-6j9>KFyN8_Py%Z4K-^?ZTp#^dJ( zA4#0PElnM4;Qm>J|B#nhaWZDcsWhP<7hT73E*7Y<^?2GB1Pi z-0&X@b}kFm$f_b|%4;phPR;gAt`v2D06kr#E_zT8Hvo$ z+=?NP_^c^1E@KI4z+Qy%$|5ii`F-gE237Mf+rvx4$UJiEI$Hjw6iZPOsj+ra64@+N zfy_J_aob7=BHwQ`W_C)VCz@#;(!}LxP%X0oQr;W1NLK=ZIBh<2jC2f>!6r2U)=3l> zCiiGl^25GR=IfR+-iCEJ1)l6$ib9vz5b-?;Xc7N)vll+xEe@U`b@(IT;Gp_BWY|7W z4j^06CEtzsK^lBZgXSJ6u+%V{{Z4Df97eJ21fP zp-}Mkpx28O#D1Te_I$-WXhur3?$tNlF43q&ynfC+X+>3Uo^|_U;}e;gX}s@h76-11 zJvDV`k;=-5SoM?ZoBOzkCjY(KFPl9i>B$3 z_S%Z~dT~*RE0LUHd%BVmw{X%27q(p`wepotk9meu9L7Uo7sm&O3w#tMKb#`}PG$Oy zzJTM;qU;Th&PrmDnIVvaNIYLm!~B z5tzu#krWcxe@}El{@fGO2pu2NUo|9>2xyxijY{B_y+Fi7Kxfi^-;x<1)f|!Ia+pDd zO19S-;&nutazp8z%TMQ=PbzILSlh$rI|!!7?FC>MTOo z;x{%-(dP@{9fAu(?fEJ~W4tn*Zm51YLNbGv1&`g?LVLUW9{c@V)+Vw~1NWsreJvwE zew|B7ZH^@S@-CxsA$0c#l9c=jK~rtybK8}tS%`){x<%9n@jiLJ@hz-E&3bj$M1Rm0 zk)LlC6-}iOd~IU#0y=n~$CR1eoO!g1v^O2Ki>NXWZz)^rg&IBtR^2mD{@Lg;zYzB1 zDRdj*_+D{v)fmB1UQre56Y7%n0;yjE0^`n_+?v_dmaw&w4ONPbI?sIKF57yZD?_*9 zj++>T#628ES#K=@@#VZPT)cTt;-8>uA0d*CP*a6d3RkmRp_w&(7n=P{nKp~WWU40O zN45G?2qXL{pKW+hxUOe2RzthYA|eu$SNqS4)DodMRf*bZKh0xgor`8vmC`MnvvQl~ z(hIInaC*#*wwDFVIjKC@N0rmlnzG>m>AglxhNMUhzPz?EV(n_pnybB33 z5nDDW4%VH45eZ)}MK~fRRBMC}&fK1_6xq7UzY(Zh{r+kH;+O0^BBnTc^`2D_UMKqZ z`$rB6{_My43KtdM_o}vg@`w#7q2s98CpxRPty{3gv1qm_cdqB9Cyz8FT;6gxdqXZ5 zeSAZ65amJ2GETX93d)L(9g)DqTh}7Dhs|*f@1>6jpY48f&7Gu9C+zdOjt*>gnh7ad zuuQ>67HRoYV22c#vW#fNhh}BSH66pxNqL{IFvDoy-dOKu-gtXGJalpCHlFY|#;CCA zLbh(=b6eHxb%9X(PzkG7N<@i$Rpv;;J0J7|1Pw!oAe734vUDu7QD7>a)xvDu`VZrr zO)xNne)2&iLmJ7&DU5g_hb*xB|Ru8Y+~1 z$p`wSYExZX*}k^YH*t{ao0th*Ct1VJydHP>F8DoC^wiQXA#KQS28it&&|%#>lYRNk zBdXS;{R1P@-Za~3_8qs2+J)43bUP}(rnpc$tvOcpgDZI9nm^)`o^Naq$DR#6T6$?R zsntz_BVH!gvzB@Z2Rt(~b&2=-ffkkSW{#|OqC zqC9^txvW-{srJGk+kU6KFbBM!7*VpT`bns9P}EoCdt3}PQZ_2J0`M!HeM9}O^=4nD z)q^^;(dByxbd)Y04f-5jJG}Y6&edUe>(BCPeJ05;@I6)Kh3@!{FzLE4&rRe${guf3 z$DG1Z#}(a~8JPzgXQW}&(@?eyr!wu6MtS!r6xG^75VRSBS3RXB$q9iZJ(s*_i;hZl z%YUm{oI^KitIcBXOZeN@CCh+jrowf_6Be;s&q_IYj=ME@UQ0I!J*8{I4^Ft<+zyeu zvcs6Z+#ly!2X!W{LB^)>ZYkA0k*N`!?3rG zlZ2>rr&uX**Q(Z`Q;{bI^f%ML16(?=y0aB+q>wpF+IsMN`1d1f2HH4_ZTw{$UY`|* z3IdIM5eY`N4b4S+AA$UgV-v83uW8msugnEX#RqaqmQ05yGxLTA_h;z*PTwQbZ{#*S zv$OB}X_ap}Rh?h!?J2W0P8y>ebn3+LB@AI_(y-6H*FOx~Dx8s_1jdk(k(nAr6wJu5 zawH#gl=+93!e*IjCWa7M@XoZOpsVI<`}k4Y7lF^yp6yNOAqX;5Cu}R7mA@@COSQ?T z@3IrNTwe{qWZOJGvmNb3AmO`TugIOV_D8O%#Y-G|Yj;k;DZZYv@$>J`Q6*0u;9P}~ z_C$%9pAI%$HV7krQ|soY;Cy}iW}DoLhrpEslibaO0lV(PY-wKC@eN%q;zx)r1q9F+ zE5W-fbKf2()cVWTPH~5ml#wxRU<^_BYa$nghtzzVE8daC>#7{%y!scMZ#RNUwY};@ z3+_H*r6hrV3s_jXkcFssA+N-V0{X>Kghj@p^Tw_2w-n4Zf>-nqb-JOLu!5)kk`=Ev?oWhlsV%CTwGYxQsP9YtAXv=Vzk|u*ei#k7ZD+RW06*GBa zEVU%=(t{4WJBHPP3nsb~GO4fdq%$q3tRT+>oGmml`qJ~q&io~ol*K`$7>XEf7O;j37{`>n~)hOnM{P#vB{ZQZpA|g1wb`PH$ zK5ygc*=uq6-yF?s4mSUx3V(6HM8|cbN8t^UqKB8VkBk)N&_fKPdC%DI@mP_8>=`G@ zb2z;iIn%jp7&V&Pwb$$Nz4YNsZCrl=DoY=Bw60?k&dC{SoW4>uf|jmNe9H7UhCFLc zktd}w#uilX{D$HfL@Wr?8o-7k4x0+z0V}{J9N@b?>tanqD`qoUVMntJ3H6HlPP@}?0%HhrUn=2b>6QN z^o=GtF6fy&eBXH(ho+JiBC=UBsd+4}L41g&S93EEa*pZ%eD>9T*lRod(fLi(2lN(K z>j?VY=;aTGG5X(=P8O^^4tg@oicD8+AKrfI3sqB|sah_d{O)2si)rj(rYdwjxOX%; z$XmyIo``kl$+mZ`!#t-N_{Q4`)*wV=J!k3hhOiN_>Jk*}|CuyuX|75NY%kThJOZJw zW*yJrs@1ZTR`zg&)oYq|oVc`|l)N%p7>{#!)+5LEOQ3wG8BM;jt&Ak^ zo_oTCZ}(ZkYSlZAd)vna=s-duTnVBx^X7^BFh^$prqYXmbImwNOv*%@Ve&ez1FPew z94+faK)8oQ=afVV!&MmCdy@td8QbB;<0Lfs{+#7w>^D48bZBJc z_wvYW!WfBloJGmQrO?sl zD`}{t=E_9^JD&h+v;t^Lm-OAqX(wVpsg9kxWv=H-inNZEsUUjhsnlmMArw3DIG%ed z^3Vm1WV=*OI=|6567mHx^9d!u`@++22(K_Qa%h-_QQ9&=#M+p>AdH9 zRC4a0k++(=yFmq2*VQA_pc>`12d8zh-}4@%@SD_72d2m(+L|(9>MRB$wSF&-Ig6e_ z443gj8%BJQx#=~p4oBNWDlH(a5aI(OQoci5R_ zJ3g{Dv2>uE;#$F`$6mg4?CYPQJ}aMrFq{IFfkT{R1z#YH%9Vx^cHa}F7`}pY(N0u} z?OCMM8_FikWx`)HpibQ^aZy^foOtwu9MCAaO=2^Rl>MWIOK6m@wS;+Q_QO9jmWs{| zcnkBKXn#ZDy>+BebXVTaN04r|ywh5KRL%ZadzX@y?;hlJT!c&{zjrPyxlo-JLAi`J zooKynB1j{5PNF*xo$1mxLl@@B8nxpk<>|lB2JtsimtHs`(-tOv8xkv_-W{YbkzI>& z-AAPjvXS@8Yot#}<5p~JpwpLO?5yph0k?g%Ugwb+lnd*a#U4tK|Zq> zS*-bOaWs$TLG59XXh(6Fy!J^5PfTS`loWcmN4tWPb}2d86*QvOS(&j^C)7R7XNraPnve=64Bi88W)$f^ghT@t#>Qd+TV2-|0edp7~vMA9C{k!(F za={)HdP4^j=FtSWj*}A%-Wz;YzSOzOD;89?`k`=qOJk#b^u#aI(yAq#Yt}H3!M%Gg zTmh>i_RJ5zU^k?qqDsP3(9mA)gpUS<*j3H(EAu2}iyV6_flG<~pzjigO#kU=0`yIL2 zb?Q@KTGHR%o4(oa^>t4)hl-Ts3JN|{Kz}SRnVk%OZB>Pz#0OI74qBFY6@#EJAbJPc z#vSxGD|m6ofoEcNr$tluXp(Gv)~P8@D(esTVCJ52fDor8-A;*Eqp_8J5DW6i`537X7er)XhnApI!-$GctcgW_PP0O zt-Jf1^SA(6Hq5EoS0=*N7*`%v$aExBI@^U|ndT0sk&WeK9wEReNqng!f=e?ym ztK#d>otGJk5 zWH~f%0^bit2+k}XVSek{eMHP;e?2dfudl!mujWQvL!mYzo za}NI+X{$%~dvpKAF>e`7=C4|g9-1lb%Ki1p4>zfGVHRc=cO@!<(F9R6AnHi$Q&g9n z5>rOT{Ydp5%~oj-ZK&DAdS4wrero84ABL~jz<3;c;ZMAc9_pJns@i*7J@seO(A6Eb zQyjK5k@olZ(372|aSqw-ET1l{ZbKUd1$_yB{Xa~7by!qg^tE&ff~1r*NQX2-mz01K z(hMox-6frZ)KJ2R64FR_H%RvoLk~IBz&F0Xub%VYJTrIhJ@?*o_TFo+wQw;lOk=Dv zdi)vfUbqnUVZw6-zW~D=8|Y}4vuy;TfqgPh2fxz{=!{6aX8W-#547&U)Kv2*V;q>f z4sHFAHnL*z{9HY=&p;jvvw%?psO!%G{Z@%FLl7hnv-lq9s~d#!!S)d5T3&KYqfetT z>RVw&J#I7sj_<|GEfqO|^_c{?QVm52*q9odQ;m?Fa=0?hM5B6@#F@kHOx zcyP~clCaEaZMBz;y`ApR3PE|S*><^$cB}aI&*UBs_Yf&?LVa~(1pf8*=;v78TP|{g$53x<@(^6f(*VpPU_EB|YDA?RD~Z6+uQo;~NO9C1;HMTD`-bvtUoA zzOC=Se7V;!rQBds`l+|JM>~FZKjtuWj`G7<&)3G9a@IKnohbFFKT6QTx8#3U%S}Wj zv_l4$XgnR9gR0)-DACtFx=sVlBr^DD?X!%fEoi`F>6^}p$AR?EkzCU1Ytutv zzV{C|(r3tI_St6<69rh=DR*LQ`UG|Ioom6jZ6&UPpc)E>9mN4 zuU(?-uiwwULe{*$pzu@7-`wEYS+Z$VP{qE5xTa=U>GYl1axv~FEOyO6xW?xrkJ22unw9HD`Zzw-S3|hJeSDX11}m|3y&_lE^6xTMY3Dh# zO`ojFT9)mkHg7(N=JL4BdL?3@EjB1<+e-+ACrJ={B?QK$)hPn)=18o%Q!ZN?cR5N7 zll*GDUnd?I@1PIPkTboejDuX#Jh-_m&&!_BO8q?DfBfC+=3{9%`n`9PR}zk#Xf6k) z#rVuOUVVimABDhj=54{m7M=KDgo$~`E;^zdHT9&uYql-G@xZu^<+*bVBe3I6$^D>C z_aFr2k}6&r_|eF|W#&fO(!|dyZEMuCN>|FL84`#Y$RQNLkjN;nH}JuQGwZWD)`W9^ zAHM3k*=T^n7krl^O3F2N8>6$`{kCzdq|R-aYMJHdXo5cLUYDijsBV;4bhjna5uwv9wCI-mUt>UF!~etQCUB}mo}|>%Gi!=4g${Oi!vrkI!d&% z(#`njYJ`0-D+KNdk!I4bw)cGKAvC3l7QF1MK4&Lzz}~ZBPmeiEQFe%MP&_xYm9TWz z+hAx2wq6W4`)IC;Lh2b07Q?h4tFuubJ;?Vu$yF4)2#GMSldwgU3c4&N*f}U!J|{fM z(*f6OLdNbe(QxoQWVX{1;C$a#v9 zgbub({=T;`x`)uk|C%^)qW7`Kt;v~zzYfi{0$X3N|NXA8YxQqnRYiU|h1qhyl7+QY;!xf< zY|v5M&KL8E=8Uw8jr|+wK|+TDM=hJR+OT+owU*-=?HD*P(&<};Xq+d8IU_vUAqqqp zTVjtT2Y`!9a;|w3vmVu3y6>JWv_AhK^ns5zi30j6UWZY*H#V!5Ctv56KxT;k&%d=6 z#s_PcceCCnZ>z0Gh%q+HrRkLJS_4 z@kI6Wy?(>8d%Xd-8Xt&%=Q2`9)V0G2YWQMnRxt?&4bsEY`w6B5v{P(-E+$kYHb^h7 z_VB%jpN)R9W4Fi$Ymf@khILA?Xz%zl@46GYDV4ih<@nWd_Amd)tO#VfPF#6;Dtlu+ zYSb?V58s3(_pM<+O?(OYENNr&`Z+R3Tc@b;0g8l9&mz%tPEKT|d>yTRZ!)@#U<-gn z%VsdBFuxdbdkb$@A~^aI^8E?~`qRh{&(@eZOc3sw5dAHz^XEp+-DSnhGJXahfaL#_Kk)|(TFR&2maiSY}qbaxgR=kKLfdWQq#W@ zz%8!M;yHaO`ods5WnjiuuXW)!kKhN_FiTs=!8ofe7a_*NS50QhcT!*8LI|xR2k8$I z(yIM1O~@!$o`?P<5C3-Cy{w$e!cTpwXqzz=o&yxxGqdkklqS)b)X(K*!0X*myX?hz z(}uOxn}WqiMRFKLcpMY*CL=@Ccd+y}K*FxJ4~Z;n_?W+z2vhzZ|9rsO(>atjCY-9= zhAzn)?=nIz*hlxA&9>Ve)=md@NO&&!veD;b#WZOxfn;@cgXh)?^Uj{{{dPdYz$cGW z$<2+oBR)r57cB58AM)6jK^A5e%d^tx%w^)aAdo&c|D!y=D?ial%ei3*<2P4+5Tm+1 zvetr)zhPKQ-*#w1#$U_ajJ@nt&b;llp1~uJnuO1-v43Jpd*5G4cq=M?v|fz`ulS0! z7wy=}wmrqM_3zis6yJ=cYdp?8ju;884*EVrs{3;UwvVgi#DiaG^!J<@0(*`&LFZcS zZPl|3+**4#wjwvKqc(0d+@-!)!mS(uKf3g3>j7ISw}i@3Jw!_#S8*sUi@$paCN>{w zbe3kEcNtlrW8eBbnk|B3+L(cInhIV=i-T(b5`!iC9=n#p`cdW#kVr%I2vNy^c@!(! z$0vhxiVdb6Z@S)*=QP3xfdILdE#~5T(1=8i4Y`=v5OGRMplj+!BlcDQ*_X&1>HMf< zCw}cC@2OR{KLIGlAh`}EF-54FmPcQpP$QPDI#g47s^StHugtC68*Z0KzdvVgivn5oks zIF7UAuNU;PR$y3(P)x(ydnBcCw5Vc1lb=i`#G6)4xA~s%d+36H&17GW+d$MOr6-L! zJq|P9{neO-7e^RwSWz7`C?9i$h@ESWlQI>rs@mzTRfV>9cz7y4B9WMH!T9ksu|WR| zyoD`C=sobyOy~lZFfr9U&E%vE<{n*GpZyet5(L2vVf2om22hMNe#$vFR4VNkkK6Lu zL|)GS8Dw~9Z(kcoj~Xh8(>e=fZc{B|6qy{u6Cj><*yfJ;sL0kU6!`eaHj2SS6nt{L4BEFQMCz{t>> z^sEIO{BabwJXau5dJPu407UoGBD;}9^eM4O&>7GCJB`bL| zu=;jxxd`6&0`OPDfjAekkm=mSpfTBOmsoFFK4&iw)Ee1bKP9eZrAz-PICo6Y>@7M$wnZ2lw>2C^q0*Vq#~e@Oq? zlh~}k`YXx@sa-IT=U|NI&@&yfMYAU&6>hMgdj~-Xj$m!|eRC}hcAki1m8^%0Ila7w z`Yd^OE{7RnJ+G6h^?3Ah8|$mE2aN|%&;@g*;(7Bd$?q-5dy5ISvpiQfqK!UpLoBGU zH*O|#>t%G6utuY~`XO62TQB+7WM)=H+-MZ7wF#all&;>(D(SU|y!045&Qcyupvgwm zZ2s|_`!fd{^jZ3|_x>Puajx<)FputE6`WHGe=;wyP!5amaAvW{e2)A4Li`%+yng#Z z%*7?BCZQI?rwp)8n%EuHzBhfhhBy;V(Y!L^G408( z?Cx_+XMatzsS#CL_NG&lYCZiUZ(^Tiil4jQA(=NLm8#oY-5ggv4BMF0_X`?Xt2>UV zup6-b+H+fQg0WYwlIdiWIag%}3V&Q|_;VGB*cbPf$coAcKs9UlmUDYyY$s^U*TiG# zyz9ApKa}SmH4Rw?srwIrzQCX9(b=}287_AE z5;-u1kKKa$R%z z)ZoUTPD?gkf3<&zqbwxV!nz7ynY)B0zKNazI^3}efm(zl@4MSC`}I0Fja{yf)_Km3 z8UptZr519p>5TkpRcCf-mHcth;Gm@(RSt1DK9~-0ZM0Nlqp(DCdR6uh zHrY_Xzr6ASf8@w0X>9YF>BeMg;C#OT2efhpJ}GII1l~uN8VQ{T5Al>2ZDcRR@zvQ>sxI zu>s;T&}am7uwM0^SNeXc5Ja=pL@14)EasWCI|=5s2e@Wbd=hH$TzZa%vd#bB~#aBf*14&7|s=E#rm;tcuQ%+n?9-Fl2j*i(G* z`wPkt2*J2tI3_*=Tn4Ew!{;bdGhdWF{hCc5v5q9VSUV1HVtw>{FYWZ-?u@$^)0^&KvtWHJ@c)OdHVq&uPu`2UGmE zwAX=q7j+q5%tJX1mps;fUT(Tqy~ARu{KBQ@iY@F=I7C z)$2s;Uk36)i(0j-XNkBv;LNDp_EX2q64LO%0lXER_WU+YC*}Lb>w)S&aRR4x0l!)E zg8H-T0(x#;J-oj50L`1|Bw&dCMn3em@6FTZQ*REQfUu$Np_o|8HP)cP z{DwlCB+Y6<+x$i8i08$@=UQZH#Pkohl1(i^0+;Xq@8D&}wCG$*0w_eszB-~jYMqlTB5iIEj!;PS&B3wcDgGOP6Z;?1j*K}z3}pxB(l(N@QdfJyh8AYM4PR0DiQVNrsW%j3 z3DY&6%_bt74TSKw6Y6_frVDA-)gaY4UhQ!`oc&SdY5Dg<%oopf9IGtMTzMyHa)zoj z%lyyQ;umIubq^>-cs$|d`qU(|CLEX==Ko6GOe~epz2#a?)fursU&_ZGuo&MnLjPL< zkicoblH$w_bR3)FQRp1Sl}kS6VzuIHRf&a}3b5dp`1A5$%~v82Fgek4;|j{ukdpri z&-(s_XXN<<^=~zXp@pku_CD*~*Y+1?=u-c6_9F3b0*cQYYbXL&;D3#v$VsC%J^A_H znv?!7w9~LoRV?78RiZ2XuukF6pH|%+bZ%b2;WF>1scS9_{l_Al`eS+l1Dy}e(cQ&))>Cig!mpz)zrhilnJ z|6TsSv->wj2{8|3w{N?Ej{kww|A6ZMZJSj{Fi2D?SVmK~?Yh+K4gd%Id3FqAR>oZOLp>DRyG zBcFx$mS;$dDFZSrOw7cg2JUe-jY^YR9syc_dh4su)2@cG`nrJPg_LimwUeYmZgzM4 z?gJY}e5Qw72KXq@<$KWMu5w?|ekFWAnJwE?HH{`pFb9A@vk+_fJFPA?Em9 zRKQ}5RhiK*y$X%JTz`$`%W2h_jg1Xeeki&(QuQUKxGo5B=ka(u<4pW_&wWBNv$Esy z&SPA3?>o{d%?jhU{e0z0;`%>7CwAsgoyt7KJ$%ng$YCK_x5`A)DoYAJ^Zr=%BhRKu1DtEY^wY|NUN%n(;#?DnwQsZ zmQ5*=;mG-qpr5t-Pk3Y+*>iq=Iq|qCHRAD8;8R+W)0#6jEjqpF)7|_GSK~@*(Bob( zz}S1$GmF4ItK@qR2x-7`c{>pd$U}+%Alp>;GiwqnYE3URnpLQn!o!ftAr0T7>4HRz zJ^y~(55wdBc6keIqfcIK_Oze-bB8F)zboTh9$0d!K=SmFI)H#%%ezg&;BSwcbdU5G zU50Dt86HUe5UZ!{g-=!W;^xxCmq=%}ckoqjQ$J{7^t9&Fr6!o8svPK%HVN|(Ciketj7mf0CJe*Uf>-+J3Ex!EsZ~I6Zoysd}3bm0; z9!(D2@>we`CCi+uBt9YIx~cV1Bc^?Q@Ms;8?CYlFi&bY%uJrnR)R=esX8OaD2@?C<6{ zYn=Mcx185hlx;g~Dpl9{NrxlD)e`66`{n(a;Jf|Y?}Zo8vOnldJ#syZub=*z$Y_ir zIe-sp89hjpRjNJp>(_5B7vtjYVR&4kg-7E?wqi8f#NLE}8?(Fhr~BYN^d6+S%*Mvzd5c3$BwM-T zCaz>x?O5pd5Oh_W%sl8y@GG%f`-aYqhvziE-KGDG+D4%XM8xy zk=xoU%!NOv!B6*#IEY>0j;xpbRn3nd?XI%_;?-!zjn*1-uN&8M0x+Q~nQcc_`=vQf z!*@5?_LVBAsb4uDfeOgw5V?PhYP2ThdDnX`n&{x5@f0!$f460lCR{ZK5rK~=9o6MvZ=w?D#^&xZv7$gdXz zt3~geg1kHOs{UT7rR>Ri=jTCx1nRYuyCx=dD_}0&c69Ew<0Zkb8gD);@)Q52L|YhS zrGdQh>?#x-2tseTS@lMI4i9u5W?6WsT%GpXT%QhdYCWcNv^FMcu7aj|N%)r5RnSco z7JAKB7-pKB#p-R}TMu!foz{ISxI_y&E{?8lgn#Vh@R(KF%`6xjgif88Ck*+N)y+J{ z2&Yf;G(oZRgV55vlG1w+(|E8Cy4}=&q=v|k%X&)F`E04ithI6TGw){pM)CyunL2q- zY`4en84WwQL_bEaAUzQ0z*>;>K54&oD%b_|$M9gN~hWI#WEux_N@ zHt_U25bo$w1pjQ_p|#RG2*+_a@P1?E03ZeKNALh`q~ojDHZ_ht@5X%M`y!P%Nr6nI z+UPDU`c{`1KM$ZSFCFskjNWu~6)tvCnYu$%Eio&NU;yKxhgXX4_{|Rm3~R&bd-PDV z!@MU*P0To9?yO=Nd$AJfcNhe4W1n~aH?=zAAh?mvBNQW0RW@CH^*Ryh@2>QYWZOmXR>IRiL5wc}^=-u>PwSd5*WAUBzV@adj~>e2))-eQvvH^#axvq?*gH^T z87XPo1^Zo+P$xTzVN1*;L=tFW1@6Cw@YFdpbbRQ5JQp~+b~R9pRLppe_g=_pWx=&9 z(Iz$=BQtHPQ=sx}!FG9heoOBZ750`&_0~pt#q`pinFUGo9^XOyb=P zR*>GjH)JL{LP+Y+m?dDZ%<4#=rW0Dn9vm7>J^zvuC@{HA1GAo*Q3 zP#N-EGc)L{rC~LbE>olomT(xk%(B zXBEaMoi^Q%*4PrB#4+Om<{$Y2qw(}?$0Pv1t@P=Z-~p|kDl8_|+)X`7O9bcKDQlo~SOI#m5k|_( zmu&__3()v3E^sqaChns2v;4OF+qjKThMT#@_OGPlRgVW%v<7Q`1Du*qm*(cypAhSN zKOVyA9?Y!2l~IT7FQp@DoFhX^k9dpP1d;%EwkK%rS~t#thlUsDl-*{MMJ1ob8%_sn zrS2N7sR8APl8ASdG?eN{ZIyBR_kX*N(t%n8OAT}zOZHW&Re{IqJg%rX6iU+|f}0DK zkT`~7K`ZA=6%}E;zOgUbg3!z6`8ICxhB2D};UFxO7cBQ0YO0#L*y27L8yWf#95Pv> zezagAJyZYV`u)=RmGrM4v~a0Kss1{(UClW_DT8qJLU23gV!D-lgZL>jrcYgD&KgF{ zy1G6nqMf?@U_uwsgPB?@!#Gz=$pheb!mR)*v#5;F+kZ3*52PYdN$}&ulP_rM(x{fM zMrLh@F`5>UjY&YarIT~ce)unL8K(*ppYmK^3*7(p1p9kr>B4;^*`q@up-&;%jON^m zRDT)oAl;knS2_+~7C1!;OI^6<##nC#klt25yzKZq|7|ddnWD;f%zm0w&nRVFlJ&r= zO`nS3??59lkEKGx)M>vO-Qtmh9mgNG$lQ?QIMWA<3{sKF_Qz}mn&!P=MAg&R<@-S; zKx%^jMb@r2qFd@#j!|I1Dhgd)wDhj}jLcCa4HrU~j|?UBYCu6Os52Bn?Sx*cXk#Yc z{O4njncd!4eg$t4@^sV39_&F##hvwByEP~GL9#Ulo0|z4bjt<G@rqn~UgC?xx`4zEmkdn7Q#?Z5GgYLnm!Jqzow#q=c-b-)} z05$-bo9egYE3Fw}-X z2%ZqZqlA(oEb}x7jNC})I}YwvGS9-*gUuk{{dVQ(?%vb3_&I#G8}MsUP`7@v=?rI-A+Z0^*^m<4OrMXx;y$z4l54m=I|b$8L5F>q|B zII($5fn6s(L51SC7{~|GULdz`GYSjH48LSs#UM08VO^E43MD!jbO%fS7&2|2VSPI8 z2xNe@GPWUQu_l^jr7qt*qL2r76;e6-^ic7eOpXd%Qnz-qw>K7*1o~#5ohL1%FFVIc z{;EbT9d+3tg_Hz4CI01yh9P}}@Gpf#`E(t>-oco$`wnlWYD*}{7dz1|cm6R(Ti=zg z@Z>*;HVg@PFF+G2w?WZdg42rHZKevV@G>u%E~+_+sYiakWPHbo~* z#S&Tx9m`LHmF$a$e!CGrYUuM4niB<>y?Hm-PCPzzzXoqFR#a%hVYV)!j_VmtwjX($ zR^;eeUrZn;)5P13-L|hh`dxD3h3s&IY!Q@~BpMrd5Kh!p@GX-V-nfUu2ga0pNlie4 zCUa|Hgc2e~0k5Q6`${=KEj0X&iX{9Fmw6<{u+8sdKPv@E_o>0Vud)8^eLaqr1E!4m`Q9Sicm2M|1YXNCWxE`ZZsunnAr$9a_!iOzb6o z%_!t>zq2WqVtmpt5OE3V3g-d7?xlW)`~GRhib<@?^XDUGCbd_8L~EBTJM>8SVXADy zKrsmzdCI0vV5jxNc4xTjc+f>i!v~GW{T=KTBqX2xnxXihfP8>#jBPEI^o`4gFzzGO z`iITG!s_3Rb z$96+ZJNtwTVM*t?3^aZFYx}#O*;94+(FP4VZ`%Ck)rV;jB!s{jf}zqu^*xgr+IK>6 zqf;A~rU7StJUGfwlB>Z;uizcMAm)lsx6{lrOA1s`NoxL}O|GcPZzK=~!~TAiV#WlV z<00m37tD>1{u{z%O{AA!U3dC37NlIZwgQUYwiZ%iUFziDeIO8l;rjR6eJ1lTdxFXf z?UM&>k|(C>O%x45a_A;*;GB}j2A2#vIX#;eJQ7%#=h9A4g-dr+?N|x-sD;#SFjNy0 ziYrJ8O*XykWlhDmRWnWY?Qo7?1Ti>o4E#D02;!-E-~XkmQ<~+Bl)5wNdiF2YfN7vm z_vszm@ub4iWFsF=E_cV)IcE-r5X5U;U&P%qN&TwK5ruwr>yL$L!bjrx-1~9LU37c2 zj%BRx+_!U5O?6$)e1{Ox2BXgYq3d`r^vt^#g57-4t13}9Jzex5`ip+#rmRgz4bz4` zpCiV{es*cNO*BSh@%mW^hoehuR{^NVG;jk&gm114*ZAgd)nni;=@pC&VX?w}8BX3Y zC42`Q5rshwT_QlJ%o3i9C7D+1Kg)t|@EmYkUnTjupgDQ1)%L4`p;(|ZR3B)5RlqIB z{?q`iWOvocuMSb4+$UhUt!ZqQoeM;(hJN8-8~mduXzJDmUNmVRRC z;h$jFsQ;yFVLmRb?P{^Y7vJ(Ta8OO}Ci_7Vz?i*1a+5HjzbFSwBl3{c8jf4*i9wx0 z?F@ZELdPt3!&m$^XiRp0xc7x_*kg=l0E12P3xYG7cY+3Rcssn!AVzyI_);l29q_P8 zxHnqn<@SF1$R}z&uE30c-AX{@MMO0PFFj(p!Ov!htd5tBytKzAhOfEaFz{17_fn6u!)j)Ua<1C_w*%FTa4$h{=#0-1|jA=#%#-U&uFX+l@^j5E=Cd>mQp z9a{I1WI3SAzoxM#WU$mtcCwzGH5YGKt6;IrVfD@dwmn}H9wB8VJQd4Xgkd7bs6@Y| z*~;QlpnN8b_J#Z8S23>;Xohy6C-A&ehCNGaLPg{KY*3oCnF}~g9k#(<8+oJWMI6lg zI~ZB=0Qv5vn%W+mdfRc61)W40A;(p81IWKG*$Ru3@tRog-H> zz|NsxPVtIM#9NcMsQq!&>}C{ra5A1qfi`GRm_}BU%$gX2XOt_JrExy+;#JkUsG zQsPWpDK&u)zv2+R+dd%IAF~2_USb3jW=#|5Uu591rh?&vGk`G@Fe86ye!bSNwk&1A z^dIJU=s5q}1Kq8SOnp*-u}{q4$;GJ>>hGm%R^cM{8&4JMcNItP$q*q`LlxiAXvu7+ z=(sf~ef#us^=q*lNF+m8p|+5@%4>vTG=xKpt^@J!#<&}gGp#YeQPCuR1=iT%hoN}Y z8$d-HWEesv_iV%BGz-_I5HnI^1g~kMIUH4^poTeNIPF*qfa~g{5-R5=zAK)?376`{ zZIDjj&PP3Ko3D@IdZCz<1*ZF`B4`3WP{}Sdq?|wjPVK2B);LC?i=|K`0!vDi(cOcy z6_NRLZd%jhh~NL0)8S`G=6Y!59oN;^a3>GV_rP;N8tTM9?UNeruiGI45X_gssBM9) zaPG&fpv_(%7(+)Gpd^jaG1pFoAXg}g`?7tJ>MofMJ<|i@G zPsG@NwSFS1?Y6_d}NH_Qi ze58`6!SF(QU8f~WZ!srt{J#1-bjV%r(NY(+JA1AdZcNXFzJTl!9xYF1Kbv5-?r#6af^?^z1zhWs>3s_Mw~} zEemYkV4@HGam5FKXl27=tM)KrO5E7NCd*UwR|+9r9A@e z^zR*_9SXNSHe6iz1?;(L&ubV2bcQj=>#ogH+N@>lC1CPuCGIstK-b>0=dA*2ute*2 zozZv}8`;+h9cT1Fr-n{?VoUr$b_;S^C7V#WRk!;Q*&lZ+cutmyJ&Eg&WyR%*|)=q3Ijw_mi2m{PzmbP3VG z4PS|hv9|kbYXmAG%z?9}*ky2X>*Jk_sb#LrT8HzKDwZ%|hs*noEIzo3H564b{n4Ch zh@1u|$)mqGNg}&81?F6C8y*EsWQ9H#c|)+Iohf;Q#nDGy=g2$;;n$B>KH&g?FO(1-TPX8>T0bS6Vcu;`$EFM)Ok<~QRB_x2z(wxRauG)STBxJiwxrF|x_Fd@lfd%ZMo z)zsCs2ji|MZ|F$g3B&gpzqwK;?0(yHIm2mdfqxk(kFoe&=UwMB=OsDenq9!sCQWcA z<;pY*0tHkf7+0x9r-9Lbx4B)LDeznwCVSR0iQd-r9PFdU+m~ohIKJP2$Gt$&{G0WV z&m+x9-t-EF^EhC7BQyE&lCW7tWGd4Kx2jADYqO7d`)emz6|UmOh(h$V>D`7N@;26A zsC3N-1UL~kL%5nk?7LoP?fP%B1IcoGiZ_&DGMI}DLb0?~X)yfkcLarmYx1fcG{2m_ zCAkVM>+_@F6q&tKq}B0dES=DP5tW=-p9z1wS)*1n^NZ~hSF;o>kUC=Ssr2P&?tyz5t47<+IS7Fm3J;pzQQpy=yO*n6Rl zGpY{PbfRLIh)|@jbBr1xJ&~3B7dG@P{3zleD?V&AdUgx|I%Yfzu<+>*2~0!Ja*s_n zHf$rqA@qz-BpugkG?aNeSKO0L7uKSA>qfzDuQ<_n(;dvE1PsAMKvao zw3m%RL-}5Usi)7j;AOa+1}QFGRSU%kwS2@&7L`sPt)EaiBFI~}*#3C&EFk9~L*%IM z47thf_kt^6QscGgraH=_rD}4v3&dOFS#d~y9RHp}GEF~zFr+y6jOS5dSD>aiS>ZRb zVu&!<4Gu+V<;}(a!7$>ei?NmX&|I>ANrG012Sw+v(-LniN zWrej*Qzr`+KW)1Baer}zg@%oFNh9WW%dj+!RnkcsFoTjSKnaj|9U^x@96?D=U51zM zvbtR{y{3K7WDiY>K10U}2OjgHt&6%4>o`283_tA#<3(~v^bxp3iTI*=dZ80SP0fET z(7B}8B=X$3H!SdARJCYk4C49r)YdGZ29D^$NEU$*H)8sEwZ*P2%g}IcwjsRcupsYE zt^n(uXC@pE@;u2E2}J48By~18fpESjUQ4L=B3fWAQGX|jpi_Hz7Wue@v2Csg@tp&{ zQZ~UkCz4v8!@ZPl_XTjo2hudRsBAwtV2sA;iKnB?R~Y zPmd^zfN_8*G?%8qN_h;48B*f3u_7MT2PhjN)1urK1rw4gm}M90-TWbE>~;UC2W@T< z>%)}y4b3R733(GX8x+t-u@N2c1Ng-47v4q!><|s3I{tBbYuF7YlJ6$J+aSfr4+#fx zVc?t15wuv0-Wh+9&HQXCwT(isVJKa)q1Ci?A1cEzSW7%=NqCwfb*_`@?!mrX<|LlP z(@SB!yqk)n%tnZ+8A3Ev-GM#FiM>r5y}{UVmQudJ2PN--^_AmW>ey&sRwEhqWSBEc z{ERi&Cfh%rs{xja)MHW6w4+Equ=j6*G*N5$NH`+@ny~p05O)=?un`fUL`JJnK9v@6 zU->ut*E}P3z<;h8(RbnU4qL>pMsbPfUGXd&r_vK#H4-}8uxD!Iy%=EKe7ccW$-6+3 zrI|S1aVz|^%RCjv1@vZGGrcqCWLM5S1rfnW_u3@%0FK;WSIs9yEyC0vSlDdTNEHVKP71}*#wa&o z?gS!3+fhKKoEWJ=QOG+l>M0RpKHbETrMF7X1+0X3lR^ODldbf0p&^b(`T?Jbg};TF z@iCl3m1H)BvmE&@BUvzpZZ1vdp^?Q)FbyzDJaNOohOW)IU>2+K?A@mo$|uh^+ZNiC zIVP7iz}L##v##+NreRz+jy%xrEVhU40+73xeHwQbV{pgQeMi1cs51dpm=T%W%G#Xv zEtQGrd;UTI!m%uWRIt5UiTXVOcA&L2s5qM3MyGT;oZxwi`Q>a?h-`=qU`Vz$0x#VY zC9Cfju`K^oUsgZfjggtTM6CaWvov)W>{+)Uqgx{ znrbaHDPZ`)-D}x*4DtL>*pf=iCu3!3Fil2;gMj`IH!KsdGBAHsB9?33(S>$zACoc$ z*$@`r_8uY*^sS0tAFSNb3Lw6_-c81X9aOb-aw)B1IQxXG%h-6lfwH8S-*N%MykTF% zK)RM8Wd`wSCXwPn3WZh|SwrpNIhs?6_7nD1P+2cZp0}u1yvEa8W- zz|e&Vov4tS?<*%w7l{G*Wj}JJ^D4K!wv0T+2@1QnbD6T#WWQ|UbUMTe;h-$wSO|P8 zs(aX-IgLn=t|ynRcuLuv`?Er^=+oMjRaEM+%+p49?RE-C4#+ai2<-|nWS3nqTfg@QKXA9 z!A#n8`|{24b=BX4`7awro+$+F4-cfIiI=}j{__t@UBHzws8rFd)qLZ$wc zShdo6d@SedMMb4rlAF<*p)n%P7UwziyfgM}?KOPjEGJBO$%IC}&%1_EI~k<75G?hc z8)E)F2g9VZl=ctNmksu)aG6LYVD6|gZ~Vr5yMu@vJ~^O%4*-_im@1JG9|K*hvla{|y?xj7~@d0V7}mQtOwZpxjD zK&RW!#$h361&vHmZGsrlNT{=TC=?A#fGYuy$76cpAcW4yLpzP7MDn*PZl_i)1)9-} z<3V?yT3iDz_tIe#So3(R%q!;*kXNYL^gi~ntK}vMkn7O8WL>opL%Z|RH#qIofE)v` zF$&k{J2jIUp6FgDI(oB&p#IB5pMtOo1hgZm@3H@$z$psJl?in$HfbrMdk z;m(}kVnXy9D4Hhfr`G6+`oN-e=9kHX@4hgIzDcKNP*cQKOx5Ne8|oZMUnd^ULwWIi zwC=@+FrXX}hNb%oHPws%qXm$R>e_NEZIyWl!e`y=c+efBo?~9)KOheh~Ii{6w9lcWJI_FAk`;WE=E3n!m`w zGQtuKw|s0bU_KMic#0~hUXzH=`u2N*ez1LQG5*8p!}#g;`qW?d`cWD*^=y)*h6_)- zHkff*N7!iAI6i+L7gfAd`fsLgq!*04Zp!G0(Wj;Q{ce3Rq7FlDS)viKt+Xt%fS(92 z8wEu7fKSqc=Nqe01%m8W&;W&EwP?RJ6$VyGV#DSBn`5DT=ch`OlvOvL9_oSWyAOkz zzuKV7r(*>_5tPB?J^|z(9+0UYOg(EK)ZU8}F+pf;QC6 z__NZqmH?zuQyLi`evh%I^a%qoZ7@1qhH?7xt$)HKqkB1V7TtVlxxmv`C-!(C*0don zYDiZ%P^Z2Ebe#aso3BR!=+#o>`5Gd+V_$VijQW(t3&WLF?v+j&aAIb-)@+xw=t9<5a{LMUIPb{#6Tn1Uq0j zwPF{s>kYHb%x9>Z$SSePc=f4_acDS`sP_ywT9m7NcbQJ8Ou;Y9!SSXx!MU4!03f($z9uvj~Lo80uWueo0Cic2P$Y1KwVhVJZ%s#OX zc1p%qm#Wv<@N9(3XzY=FPFGqU+}~eD2Npt35IfpaT|G5(HYbSJOv$3rz z4dL8WI3ZH#W56;yji*YyY$sDSHI?x!>#bl8179tlgF#n)!@CC3pg4)Hm&Qq0@63wF zJuvY5ss$Oj>{w^wE5{lV!h2#fCqbY-dv(9NwFkpMp`TEU2bqkskE}GDR1Ob!bL0z9 ze4#`HD?CW}gyrPHdei|`vMT9%njoj6i%`iSTT`rD(%fo=``nH!!fCpr=s8e_5Py4w zU*h))jZ$=ekm4c2Rv}{ro_khMy(8+fSUIpU6lL~cTpH_orJpK9 zZQwgDomu62Fa*5SGpn=x!$0#1F-S3B`aXpKE9!0+VoUX~bRr0t2)(cK1n(fmx3$ml zlipelyPs^L#RvtdO|4^eSd}VE-t3ORfTP3Jq#FRO;TW_bYQ8X03ir&7u61tNLuXmr zW9HqSh%d1!$fr4iS<=J>Lec!MQzk1b)-6|s3RGBbg-?3;v+WDM&N$0!oU@VcnMyXd z;)Gz{TaO7r+KDdo(7Jw5x3wCZIPU5vL)EvPZ`j;P<#Zy#s|(DmAlPgJp~+g%jrZtO zx#QEApGaR__Du_EF!}LeqUX+(1Ov}nI&gUJh-f|79fb$BTB=|0qd;pXBy%?5UbhLDsE8huohsFenD)c{VU$p$Yy!k7*kzea3YLiiwn&igHV=Amz zCQ3L3m(;c- za?$HU_1BVmvG=eszFE5B22pAgWZd&O^ajM*GBX6K4vBmDT{Dqb%$>F#%nRDa8{;x( zu0oZ&lcs@R0;%~2+KW@ZKch~bD$$(`30J^`%J@{1pK$7e#8-;g>H~ITDvWv0nRujD*<4t<9(IZm?(qBe(lw~7B6cP3y!0a z<)&)SyHAu@B1TIeW_Qf&sDeWe_rV~Iz5IDUIk9$rT9K`XO(Fv`$eTna5vU)^t6LkJ z4HVOTJO}DgRw1dBJbj-+_;Q?0PQzCa1BVZ(kwdIkd=~cwXAlxWnXZbuJ$F5cxJ$n}j}bky|4gk(M%>hI~K9TPinKoQL+Q6e(u zO+EnR0K3)C@6#{sNkYPqf%qCU%s~baCYpW%9{$0W!f_{IyXe&Aez&`E*9mGMSvMno z}eFDuO1}G7~b>udVizYG?M$eAx$!<7f?9QH^?7%IDYTbV$&!%VOYGtiK zQ0RI6v@eAKdt8hO?=ioOh!hxa3V6K8pTPZEwA=d9qN(u4>VN_T7q0oZt?3rnp9*9u zFqd~M=cnP~SBleSbHCY9BQlXyKru*^W+$eN>J99c`@%jtM6Kdjn0CgyG2X`mL2)LM z=V>kq!C~uD%W7i%Rm2Tse{J5Bp8&VAO*7M3NMldtFTE3$#GFLsS@gi#%h)N1%#tVY zbBz$4@`(=hS_ok#f)?=V;$zU(v1C*$QH?agWY|es{CsevAf`BBFGCaKqnX)iif(d? zBj$4jfe<%k3;`by(Py3|j}$(^PDr1f zIh2WN^dQw&fPCam9Lv>GJ6UPK?ctw{uBCCb2361Gy`T`KSaT;|r4-y<%3FReAq`n@ zpq5O0mM3lFLecqFXYYGpJnO|ebxzBPLmqXs%@{Gxs5mKn6Bm)kiyrLqSus+Mu*!C1 z^SqMl`b+C%kFEN+Nb?Og&Desv-ed%RDudh^gXS=~iTs`*@Mc z$;Wf|VhEY~`VM$I@IE3&I_^fOzo?42)YLI!7jZn^RdtX|IE=FrSO4+RST#PY(FOuv zK0<;Yl9VpvU1xAm$z-bT?|}ZZc|SM2#nh%#AChY)g05?QSD=ipod!&JN3WzJ2&TDT zg)ZZKg^jOOJ8pkX!!xzDdPqfa!PKou6be(+c$3A}W&Kh&aI)Iv=mYb2R=o4hqUvu-{2fuXEJ)N%12SQ?eHGGv>y|8 zfeuuIF|W2mxh^oHLMh~OWJ5c`cm=C%W2W?JXh1Jz3)%Pc>_hY;N2IecPl6Z_y%rBj z1inzVc&f(x;y;>U zrw%ja8`}SN8i$gnxzEq>>gg}}Cwx7&8!jg(5`M5v@Mog`FicHwPfJYur4QSy{1>z_@+ z4V6qYWRiRRW~r~BI6TT0K*ho~9vLX~Q3z8cH&`Yn&c(HA;pQABO}@&0NIwjtCfu~L z*%_;*cl$#rX9JJwNI9$SRCoXT0;j&83q;f0)t}6MMUwTN9)F#X7MAqLgWiet9R083 zK$@BWHrqHwyM|dy9KQ7&v_rr=f2UPESvKCi^DxS12l9pqlW?4&KM7vt}0mmXimm(ep#{Q`!A#blL zwA6ci+jt}O{}8R?$J3(86L*E|0f`sn7cl!~>KbU`LbU5SbTqval6^=hvh<2*sOn1{ zadRJ#sG^VB^spU5noo&~=Q=zS$*A5*Z`#Ru`hoeGO|FPdlgwQB2DVkKY{hC;Em&-J zU-oNdB_40WmfeS5-o=d^B$*+CbqwOCSkKo*GCS?5^9-S;wVLcdcz-j6XaBytKV|YC9>oXupM6OgpZv2tvW< zzVklr{XAdq-6GSW`puNXYTjw6=7Je+&|Ezb<3pr9yiebAElT>TP}Al@chO+(b~mHp zvW)&=rcH7#>9miTfp^T2G_Hc^ERUokrlzhCspU~UK~I%3Fs75Ot6#ZI&T^70#= zD%C5TTO0a&BQ|Y`ZU*4SkdRC$@gmy=@zC#EJjs$J)6I$1yiWcY4R35ler}cL+>7b^ zCG%7xKVyX3&?3g&MjN&eH2UP4xY|jQRv*Mo4uI)vqBOO-yq!lowB%CrqIju58%u@X z@@J5)pUlq|3x0_0ok8#7Hpqw+ZEiqye6K^vLX~AXbVIV?k384F$xY|(r|(*nyY`^D z&T?Ru)ZL$y_x+=^#u;F({7^O^y31#CIm~JZ=W^Ivy?)rbky%Loc}CYKLITc!u3vi? z7&%!p;s%+?6W@;_%k?Obo+ldV=CkkiDyvG&*XikUeZwpOv1gLNkD^SzxBo~0`NA0V zdKue&mu_+Kd5mGJV$}|(d7y-;h$;@_$jMvnfFH3e_hbO%J>+cs_j@VeQD2<=dl z7DC#=F;8D)4)RmWK)5XpX72Kam4L?Fn8kVTfB;+YoWkfnaA@42Qd{1H~Y_~ zv-$hGK!K=TRu~HI{6<`0;xi84O9`{{)5n!gf9wie7aAHg-Us@8m~%@g28?8^3;Ury zoy2kD(mUYL*v;JM*lU07aVf|@wPP=K{Q3;jM|z(gUJVroF+sj&T(pA?Tk}FluUC<{ zy`A6^sKV{~R|2mIeP7*Y@;vJN9U8p9g)p%^#m%?;p`|QF<66`uu50JOyE8C9hp&nM z9Ol|#w#ztOruUfZ0o9mYx_Mf{cMSH$;!=i)O2d9lCKCw8*SmwrSsxHtT5nKp1Vo*DM<<}aTjE$R z*F}OSuj6a~F8}PnL@z&O*Q2roj42t0G<=9YcdX(F(>^|+ry)ZN(+|zn9^<)k^}oR{ zsahs+ef6l8^X&3!^r|qwm972OC0%Rrxak!1BH-9Rp|n45F_UM>QyG3txRPjqM|b>3 z``u?^S6w9|L{~7(LV&J;2ROFrmrIlO6P`2D{*P)3e|kK+sdu@5bi2Tq zR0+D9+3zbG%hV#hTR<|v6!y1*&UE%^kywR*btIj>H{z4u#@|f4Cx?{RtD%mM!KB@C{ToEg>R3tEaEj(^KvF#`#Pc6NE6T-WX!lxRlHuf{h8&as}yY<0RsH z2e(!Ggr@O=HgG?mLjFNxcbd9AXu71QiaIBfL}?h3U#tt-S8MG&bdf%<&hEfX6ko_@ zB1L?9(=>GskumvQ@9ezx7$AnVQyqp2KDzvA6!U1Me}>W4T~#yotpKxS-Kv>_`-g-+ zh}=xM10tV4T7Rm2_Pz?LFHYuKwDIPVxPx&Iwp>@Yv8T@hl^$JI^% zvxld@<`)#o_2~aX79q1z*NRBIjWZO#dWkiDR6@N$96N zJ2@F4>RKJqGf*&E5BV)jrHwdTa{u+4!X=4$!G6t5AE<*U5R+zTs_ksxroo7*jC8Hf zuL>Q74%}@3;3pUNAhPNYt@9bfO)gzu0sSGFyT*1+}X;h$4K6ESTjROn7=+y*&$v12CV8?|Sw z!NyPJt}oXFX9v%gurc$Vo|alK*;{{oAY6}Pyu`u=FeVa&%E|&!(Z8_P(5Qbt<95)X zSN|%ru50)8t-+lRY^dz@kTLG37wTP``-JgUx+o}&MzX=O<9saPjA)r*ry%dvte%ql zoAv-#pVBF(p21`P6KSU^#ER3hf4&D;!};m3kD|ErWlKb)K-MwW*Tsi0bB_lQy~_jB zBcn<2jLXzj_(Ll8U^qmw;W=Y{e9a3&W?4NN8_tPGqe|M7tb#eMAis?uQMwCL2P~G8 zs*i-ncr|l#B%Z!GH%7P!@*g*4PQjf}iMn+IRp+Q$d=&v}4UOMAo_Kfq`#!m;Mmxvf!rKxInk;Ny ztvGWp19ogU`}!t^t`UDEY|%%wH9EJyPu=+aoXhOHnv^%s#$rK@mSsx(S3p=8*6HwX zb+UH6ZJK(f)>znM){Zxtq=vSVWRSQ=!b&ih5ttc%VwVyPu?mxAV~HBkwO1htQDh)i z1t5z8a+D?eWtw9-nvb$+U?cJx_BAQ86Z~r0zj51*u#C5($;ehnW04g}V|^OakYA*j zEP2bbuK=W|aUavFULpQ=8U8YSG^2m|Otxis5JX^(2U-! zr&nNJOVO?pmP- zxZF8z-ch?***VHY-A7(F_k24zL*iSUsTqlI{Hu-;^#al82j*Tf= zvH%9OB{9;=r#iJYSeWTFjF`ec2-nRLpx`yygUciHzti&_nRKIxM3RaX~3(6kSSZ6Nwxd-bquFDiQ#X( zcpmJ>jb%OaN&H)mk#XRX%MVfWuqS&-7AAA&-2jwTsm=GoxfCeZEnbIz{doZ5tC{N< zvx6MlL&d7?!@8)}Lth*Q{dJOVseCQM9Qt&;&&`>9r%+Dy-KJbeakOuK&@3L;_1b1F z`wmv5fAEvh7U})g6WK44>Jv7O#(Q$;05mP%x9s5b37~D}i1cXlpP5i;9Yy~X`mThU^jg~lC^JAK zo%*NXq&)_Y~w{DC?V!iGU$3joz$gPn?E-f=eP`pMZ0 zx)@|1!Yu~_St%3a3|Isbq;8CU&%*pWB$+1?th0j`JO%d!9Y%kxee*N^RE{Xf73zx& zt}(iWv{*k#_0^dm(sa$e7wlNE7uubC8mujQ=c)G3f2n?}xXL1KI9S)(PiEnDlt{&S zlnjC1c0M7-JMI;tJGXbn6&R9TNHs|weYw0u>IMw9pfBzOfu7Bjr}%#-=}^iTPXkW< zhqked{d%HFJH@SwroWX&v8XE2ecn#`t2pABIB`=vbzh|~z{o$ud6v$ZkGv5j4%;CE zRwRvEm+rLxi&o$3JmW`Ibq+jceVM_Q+a&Q}PNR*)ROjX98jeQUiWF-$?Zgk%2|b#o zov}N{*k{OtDKVa_`;pTP&8qT5$tzuBEz!LrkH4(|aNM_Pe{|^L_tLyyw6pPrb~61UF3X~PsG8)+?z^vo(Tsyimm5*^JWD_3laV~_H%PzS3T+8Q{haes zoq8*hmrf$|=?w|aoQ5dqo!S|I-cv_(BfPNiy!Eh6?%fiq2&nnHahvgi6mN1WJ6%xG zVq<`bv08o17hV&|d9k&9Lh+c(nk)y5*%w9PH1CHy4q6ciUt5{$2?KtRFFjh|M9o)l z&owpm(qEgDwFe2};NY*)q#oNlIUb{&wPakQwn+i(RgC(cQGxj7G#p-oId2s%4hqT+ zKF*){z6`oALlWf4@7Q7!%7eZwHuxJ(2p&(ov zcwVoUt9MpyK=zxiKMDP8_oD_d0)4Nz(ixPSly*yttEds2y!yS{ouTw}1(}9khqBUq zw?Bj?`%QaIvnj3A`5aq4Y53E^SS}gVgqR)Y0LrrW)pm1Ny+%|zm@Tkbc6SEtFnozB z>34m)OE6ED@oCDd>GW_It<2-BbU9dsjiu1V<|!u`8@rGs{52p{;R}{;D$y(~FFzV$ zL}ckXjJH(DbY~Y_r^$ngbU=0TpE52ReKC4fDRKHM&=Zjm)3cd4vMuwLofVZJ9$FO3 z^Go_}P$wrkL~`~fJ%E&+LOS%#=*jZT#dA}D*h2Yz$*yJ86(5wf?j^anD0J8 za`el2kOcjM7_LeV6KnM6XJpH^@~`%Wc=gP#^9NsTNq9+QM+=u!+LoGYX$@|+wPt|@(8hVqWZLWjl7z} zV`cHw)4f|c4Qv{3@DD9d@j&N2!Z6Xv2Xu`1%G1i73XVzZulOBS%pj!zbSq2NLUrMY zMkKU=<45D+mMJ?sh*}|@qxn3Y)JviI!FliE zgiIJGk|ghPOr~>QXpnBDLGX{Tf$*1(t>b@ofNB`%D>C;BW51R@wpN&qd1F1wTon?2 zecTMwDxNzEmtOUp(qdhJq->+vml;;^NPf`CKd<10)^YmQ_%Tjc&DA@AnT`3SkCLMa zwzLT550KIa6s_O!ZBC{5Y%$r8G=5%P^)akcSjLbCz{TKk&2r<7tB1t+R3cg;X3h&U|`cf52#-LPr9}}Vj)sX47v^? z1HA0ely;)F6fXhU%E1>10cvG7z-wE2LVK>kRJ4HFKbeIi6G?0KpAZMQ280u=t~uWy zH@IRt_nQ?%=zgl`0Gzh7Rx=l-PGo6SYg`SY_ss_?J>YxdA|aJDM#jf7)ty&LMLl`r z*a#aN=a9GQ54dh^cV_epio#=sl^(_0qTOOttL z6fp_zGuFLO6}aZEx;hEIZR@_muw5qpQQNP6k8dYAI8Q;T62F z$LUh(x5)(25sHdIEJhP5&0Pt!)}$;n@Q53Q>krpR$LsiH$$i|GO}>CRO3$++$)&;k zttF$o(f+zFIOKcr%f^jX*7T!>L#yyWOS-b>&cyyvY;Dejruyu!aOfJkn(B5cDJ>ES zZK`-}H;}IcpPxhh8U_QCdMb2pD_VohfTSsk+mZO}LoloR>7M@hcEERA z`R-?8NQIAq)TE71<{M|&%u03xRI=TtDeJEtyRVOS9b!@4{-zqcy_hd~hKE@~rps4N zHhvn4rW_)`_a#+_K`xUc?~=FU%K9fWQQ*fzk6xm!XnDu<8i=7&VK`Yns;(xECKQN{ z6UL4MHVn!J5|gQsQN0RsvRLC}QKIKz44FgRu2{IbF1!g9tB-M?$%i_o_Y@qRt*der zbi7vmI~Xir9$NJ8O`sssA@F?Bww&-tM%SJ?CoI$0RE~(bi=l^nHV0Soj2JyAsC}!d zcYw+X#tC~sl1R}__x6}qI96GIUj;aA0erREy5s}LJ~FzqVq(>FUWe} zI5nTtU=TIqEb&Aq1AqqCoWI8d4B@OWA4Xg3Tvhc@CD@MhIF{0t}9DjSI(evgI+wJ_x8g0I*Ph+IKxI?B$rjzT4Q- zS16COUi=)#57PLxKpxK@%6Xji`+kf5$>>U3ek}4g8wsn|*$7Iul%38QV+iw@Gr)W! zS||UAK>F&f44TbD3mqcBAJfH@jb(&*q%#{Uk+d0GRFADds%4*pKIWN} z6L{=o!PNyt(oWvx)^4V5%5>|DJNQNNENQC@zFZJuWH8>#N3TP5tUdDSaJHcZZS^Qp zOSzAubi_ZNyYA)reB3BmAPjQSX~&$E(nWGY3nbqTDx&)>o~KIID4n1BW75Y~+VJ#v+u5mEf0hK|kg&1~IVHR5 z`SRF3@D0uR&ZLZt&3L~)`Z;MdF+F5l^b0Xe_dG(nh5nW_AEwwP)M$^`r0nGICQIm3 ze>y8MBh6>ypKd?zqmFHtA7hCMPsz7)VhLO%Rj5`t3!%>jTU=TGl3ua{u~4xoFNj2m zyM-|VFK<(*^SSGp-`g+`Vn{eLsr!Q@O;io$KhHU72$bM^R(P63cXMTTd>-1J#OUmz zOk{T%&6TL?b2~#3?*sLZYO2b2_#==DnCSH|rhyw;6}nHh*fbo{m`=jMZtfRksj^vj zVCOtNrsWQO-}qcqW9&izRG&wk8z>icft15p;}J{%hgp72D#kSP&u7S#VE%?+{l-tX%Ky$fYPiI)x0D_F;Cll}~N(WCjBit(D2 zmn3$!o1=>e1MZ{|>%_TyJ!fG7-xm3c_*w-jp^{Jw-}#Wh*1o-|@wZlBOEn3|D)@3S z4BZs?9wB=AaEW6;?Nn;n7+C{@^~;!(naY3@S_t~sVJmkR>)efj!g1m~u|93xL$~%5 zZ0vFr)=HRZ2ZGx<6h{Ff%4Y(7ed=xp5_h`bQd^vSUp|5kiF~_FqF^aA!CBAM<_3!R z2%2{rf`O>^esVG_U5<%z@CEL^WnmNn8;Kn-Foi+uU5nIuhp=`L%sk z?uSu|Ps3LV3@Y@{xWVV7Od-tAaX!zv8bK21s^9;|B*B1G;@8wpGDP{o1YvIV1dlPQ z9GugJzE5$#t!nMe;`dPgeDP+S^5Hjz%V0-v3g|+@>A?7tCkxKvtDmxa^QdrDpM4b= zg^&oM?50;_#po!sAn!!g@*S>B?c>Jv4#o#RlA8$nt*Sr3(9btN8^G7fUZjynxVd#N z)g*0HFg54J;10D~7W@44oc30Anqc?}LKtR^Y2}5Kx|*ZHhx0euEom(MDt4eTV>8~J zk-O1YIw0SIGtxU#w{pf$_S;a<>o4xn_u}Y*na$_fnt}94>2HWDwUY_gEYgA7Iibcb z!Fk0!j^8J)!Z?}4+XN9pj@GMf+{ORVTF|K4X2bu^^}#nP<*_DVTcs!jV}VbsS9mk} zrBENvV>#8`o3U4HdGmo+R&090``hoNRqp%pa=P08VQjXPv^_~RGz;yw)H5Z>*0Yiv`IGUf{)kFWrbH#3 z-|h<*Tg%2b&J@ZUU5w5R75~)WPk*Wc;!&+fgPP?BsYvHY0#U+*8`>KQA_1p(iE9ds z4R+Y6HTGZtUTWebWU!$^uHI?nM)$=$KewA+d5d#-9JX^qoG`1MF2IZT)bBSHiqVGB z6OgYC%WZ<^h*J2UfjN06C@>tK;ng91jqQV^8!H~;4@Jx(@;c`|~O5k~55 zC{ph1rS|L*^@?0r?tbIA&BZS$X1iEuP1zHBSkBMKWV<>)oYk|zL666SY6r$WxB5-% z9jIk{01F9W%pXz@$rn#7T3BT!*R8BYN1aJS^8NocMXjr!#KsESVrV zWNw+G55+7$g!;K}f73i8n>Ev@Wo%rT(coG#4PrW~!3)&mt)}T*vZh~!BBQKg z(FPcRx8i9fV%LOk95>lPbuHGsHA>EdY0v7S7Sr(dtDIZar1iM{Px~Fk?)K;_!zGCJ4O~4*=vjZR;{Uk;I7)LMLZlk11xHBFr|`!1P6>^ zzNSr$5%700^&6i#ScgnmeVw@X?=wdBdb~mOJquj}60EAj3e)hKIH$<_>G;ef(zIM% zaQ>koK{>a&+BdFf}jW+4m|Y-K7gDG~j}P{_;3WDTOA;`pFOOvy1}jX%Az2+QAhjh$-T*if)Dz6X#9MmUF4_P{kllo%$&^3 z6(bp7pL*GXQElZ42V>KD`wF`;DH$}q*wiFeJXaT*@%Sq$D4;m3!=&M>DYme+aF#UI zX!&Xei_vd)JE>NX*M!VPpjH5LwQaBTg~`YE62Ge&za`Cz?8R~6B_gU<{2%9{9$fsG zWX+)o?8?}V*%$I3_cMzn_ix@_nt6JO%8+v;ceVRttcj7gkex#wK3|sUYfG2Fh^2$u z3+f&!T2O7_!5C8C(Lhu(44;77I_I13qB>`yy~Efa<%S{b$`eg;xwNLea}IM+gjOEA zBh;GH&^Jz9%rXfgfg-4Z*Y$*BqE&evn_3b{sx*>r)mc(bZrN-SEZ^T#%&qI^Kt7&F zFM2i4vBHl$);ijI`~JLwI!3KH##gkQ5jniqXVUj+9iO~i4?rGFzN>fB^SXG-F*WdW zE^Bxmib=}6Nf3}eZzNT-gl48=0RD#6o-2WQst^&e7UuBKW%9Zx;fPbN<&gx|!=v91&si;TLg# zPz#Au1r*7u8aga{K6i5zV6}jwTf+004X2qw#pID8OhoXfKLkn;?3XBPXV6A2GFp6{ zr7t9rW{{AvAH{U$*%%E!P5E>knnP9U&=0uC_`yFf-M)kdsaFxuQ3do_y_dQSO}FpD zWp-i1sSNbdmY6W8la>Z2)x;E4EO;CQ95#HKwg7QfPq7QS!f?^ZJMYZ=lXc64VR4({ zQQIRQ2uznXxz$#T#zNyh@ zZueS2P9<^6oLpf4xIOtakz8PKqVwzlS1BsqOaP9n&x&fBfgnCo4Id7k)CjmVbC*kF zh5639)*ij%N``;b$ehu4KgxND6{v!10RN6pKrP+qYL3*4EaCZWSYJx8yZ{;Ry|8&q z!K!Dlq<)osBFA*~6|Bq{X5Y&?hN^R+7zD#vN(C(%GcefQ7mpYEy2Tx8W+nL$x-cv? zqD)D3aej6n{3lJA#u7nSckPI!?V|A~>Ui!*k`~Ks#{3WJRoGgoMI-(BXAq8AkBG&n zMM3EpmyVh7{0xOu>X|ACu=h}^CUT7!rR#DOHBs(Aeg}#2=RMn?kq4o~tbZ0>%G{Ol8`E(t7!P!bPiTYd(_6G9f zuiA4@kmw3|G?!>>Q-sS7`B-2bI&Q+5Y2f6=!Le(QKhnb6Y%IPyxdg!Jw(W!d zIhGHVhV?j$K7lvB%Up)7E&Jf&dgG!T{l|wz^2X<*izMt2ELsU2aEb6$^m1(pYy`Pj zI94g~fp5t(;$gDyI~p>5Vao~6FZhjtPcVPOEMM~DP?C{lJlw!cokX2nur$yoK7_eB zHR7V^)Gu<}F;Vg^$tYe%Fz&cfsm^VY;x~&YD3kS(x~2^Q zX@U-;oPcU;l)UduJNjQiH_Wo}M2mm9?A0q^3}<|LM-wN_e*kWveg?D^x&P!n60RsS z9rr2W=E7r>h%d6w(2^#^z0S*z!$b(juT@SMv=LPub=GR%Tk&EhuZ?sd5V7By zoka=h9DIc!VR1XVNq0(-?)t)QvJk9No?I?!r}R0z+G%3f7TpU~seT=@QOgxdI-j{> zFem1>uV08}g{izLGp6GTkj#u59XEUo0V`qOyR?$6FoYeIxkPz-Y=lNAMs$mqC=%|=ti*I17%?g>eJE*!wo11|zMSm*&KvI(P}Cb) z&CW(XFH{e0YMiGCa_Zl3l}_ythgl&YrC+h;78}2rf#xZqDqC>Op+ZZHNNhE)651KiRw?TO`fsdD=ey^>LWE0(Dm(q(V?1P6k=bqOrdVxr!LLfEIuYki3W(M58c%9kOO z3V&3UCbT(>b1tKWZDdGXB74fwj)vvu3E26pO)b0K1cUqf@q73j*2M^ws%@ReH_EL+ z93op)NaefPo@-cSN+93&oc>zUH1aTGo*z$E&C}P^k3d%CX=gH;vmrS?ZJ0>>XbLAG zIwaQLv3^662FzIu;Cc{Gx3eY=7Atne6V0#>Ce5MpZ`s};J;0S60JhhbOlVRg*iQ8T zbbXm1MN8fcN-WWVsBd8(Q#f_HYTAQAMzoA&o*E>Fg?J?7jltzkDwc8|7x3DG5Qi4L zqZ8a*5>u5wc!Oc{{n7?`k2^`JFvI!~5fFBx=(1Z(PIE_#fqbaSs7a#gt_wQ(w~e(| z2av8F&WDQptF6!(O0p=O{0(&#=$pSmt$IUi46@#XR)CMrj%4C;Y*Lv?qgXHYNvWL< zPgv8{A6*WazOMSMn3fp3b{0mF_PtI8^x@wl-DY zozN53Fw9-W&LRqrmkdVE?~y6P(s>FHuDV%lx;?SOcu)eufmae$ z(wf{)#o|sFE@WD`#3loC>S`}ls`*?QExS@K6?jfBE$KPMzQ{&f2|q2v5k3jBS(@j1 z1QH$*t@g|vNCcg{*WYB`>MOlp`GuW7QYq}>m=e@T5>Te!H#GHo{mhwyC@1w=&i5Bz(>GB2#|C*Y!YtI5hk7hf?^ZRCi(5zMz20V=Aq zIu@Lf#pwzbpt=z>b9mGGy#5gCjFD`a9dU=$G<+LMyu@xHk0=0_!miU(D+(gkH4L*=%36+X>&^_+ZEb2t&=~V{Jy>{h16S@`` z+voyD3oN5+;q{ehIhGN$xy6=(u(Wgks!%0=6S*P6UJa#J14vJ7KBMiZbIB25KY0%0 z@GX*XCJBhf#_B9Cap_cBM&Rr0p^JKINcjFiqq|-L1T%!L;018S?Z`w!_^=X*Z&HK4 za*yLazTF5KBo|}8+)jSdXZdTJE;+T5l9vDGirF(P{+!tMIeyE5y+dR0a*9)n6>Dhx zg@`9W>gE~!NeKjZr9feHD?Kmy^VQ1siMU^gMcXDmJ%9Ah^Dd!wzWp6nuYmqoMb&4q z_RyDsJ?zSB4P}HK{leDudn4HvAg(~+*=VZ38NK?R?={4ZIL!$2Bb^mj^vaGyTyEi6 zA&Oz7d3x1TPeKL;uNxV&WYf;?cXJlpH?kKIdA85Ik5K7H3?P98jrwlEgu}%Jy>yw& z3Ko`CE|{yms?Ln7>()x|mf&SNN0pCX2B#hT!GxNk0IuX)JR!1D=NoOb8i`abqu%BE~(&_eZaez!SGtz{= zPL_LLMD!u_&%ExlP|au9Es)F1(tOUkJTh6SIYAb>E)5iUOHM{PPbr&qKUAG)Krc&Jtec&A1&WBlj zifoye}3h#3^YZyz7SQqXwe&(Q;p3kqfQ&b~{{0Rrmu_=01Byq!H?1&oQm|f1(jdC=KbP6j?ZU5JV) znu-g0d$V#a$H^o+RZ>E=1D&vfG^z*!A3XThNzSB**oa!tsP64zJZfxNRfl*-$8L(2 zk0SqSvNS>#%@ta+wJDtP&6kH%1Xqv|d)e;}^lI@a;xE90THU^J?S%?is5%E{M8PXO z206Bez@W9+TYS!FKQi$8Po4F)+c4ChOL(&A=#9!5_+NlV@-dMG8T#qrx_E2oXpaP} zICLYnc++yJkUyt*Y%OHi^fZs@9akk6(WSa2TvfWSBHrsC5K zRMDRxc(fXw*L8-i%SreKw|9y?7oq_-D8xrzsznb8!V2kQ{#)i4z!zH3E0a~1W7Hu*@c_rWB@&fQBnF3#P|5HbjkCi)YZCc@hHIXNp% z4|zzi0>hDC*9*pPnvB(z3JEonvu;Y08@hmH`|a~nOXqQGtaq`O@bPynbUoxC@hqj+ zef)p8@xxZ$t&1)X|ME-160Qm<44WV{y+Si^6f1&o+1s$<@P(tay^GT`E!Mh^nMh;l zEmxt!ydG{8%R<-TAF7~LLv}a5xF22&ki~1|L9JL=P62WuzSHEhmX^S$bXP?pRdlUTSz&8ct>9#j= zA}Yf+*u8_2K<1+BJ&tN*-Xlk_Qo~yT>c#t-w z|C31alI!p0ND`mRYC zVkNB_P~}5w`XwIjs{h94Z#NTo@Pm4%9#;Z__w_9$@(98X;1>LEmT%7Sk-jXsooGil z6mQ~5$8MK58lJ3NZ4JBMM+SOuKaHFTO?1e(O;20=woD35;qikWwVPKhTpa z%GO8J_`s(%3ROxDXN8W6>PNhZxbNCvA;j>)4ax*b!?C~Hp1|3tXiP&tBh*%4N_;zjrAKN{T${x5chu-IcV-C%t?yO?e7cB&3C>PLxyUNWN1-#jg%8>oxIVk@ zRdFr(dY@&dgms5UY69g$J9qm`Pf zs9yA`?{Hg_P^N{7Tre{SL7g^1R`2g~o{1aZCXXKzl!>CXET}6C3=lgBT0J)F$lTmf z7oiZ}+x*_qk)J+ENOR`66pY+u%GKG;w~P2@j;tpAB;-3QA) zoj&G_I@+(1{*T)Kpsrj10mglt%JQ853qSjxFj|Bn18H(#QD*)BZ1Vr3Qr|;r#ftxp z;aGcfSy^ALI})wynE)A0zkS>KAwa@y{p&BdkHcJ<_xd{54Dwe49hU{YkzA?bI@~$~ zCcZeL`HSw#4`ZunGhJ}jYy?NEHzB+i{nFk*;zRq$KS*vg#8cMtayGrpMdBunk|Lp@ z(?(nMY=&S+`m@ZZHN00?HIdoOv9E75Y=cV71An(k(enD`hZJY7b7K#-2j zoxUFQ`QaIAGMj0R)z;>3aXq|yJoE6m?w1W^Cmgl2rpWCUE&CUHe&Ek6!9yr~Md>$+ zRk`S{7ZQHV*FZGi?i1ADa-a9%eze`jzHKY~kHiMWX#QK;PTP+G!&Soosp`PX4C+x_ z>)$58e9T&YyE_G}4am?1ROVs-x~-pEl1IixG~^G1WyHld zJKSG(8oO^}m&%im)`F@#_O@kz`}{$${~PQDQmFmhS!ORQNFVP!9Hs{!^p3d*FArmv zZr&uwT)*}j4>14Fn8=94q6xT4nrRagEMtw`o4)bXp2PCYP4rxmH~$Y*__Lw)g*^e`6q~3IaUR5AM~NM~+OKJVSoel(ZEqCx>!a_nq!j*q1^A-sS6#^XJV4wm2 z<0J+jAt52lT1rd5k(ZXHedB0nW@%%Jgv1hOY+yhn&&JYiXlP*2J;3?|%hBy^XlUeH z1HZPGj+XwGE`v7OgcKc}MKXd#l=p2&xhk#I);N*0S1^w5B6(Jh@2<%alr}bczT02X z`h*ovS^QZUs|3hjB9NCWe?vbLp`mpW(`wf?d_nrLhXj)i_m2j_*8L|p3C_?6gfZL1 zKxz+&e&d)dAi+@Md5HqdxSEh)F7dHHM&l;mcuD$qb&Pe%J^nTMWB6IRzmq&V zj*x-RBjAICgc2W&gbsWY0Uw!c(7(^3Lb6f*eT;N-f1%_%X?c0z`<=0)sj01#g`G2J zHnSu!)P&`G4QGwlibBSA5Dr5VJ0nvLcZmJ{El48nLck%!)Y*{M9b#kaB;+ni_vZ>B z;Q0R6oOHB*E^)RNrPFx*hF03n(UkT%$1@HtIx#F-T3QiD6EmT=GB5shJMfbzorSZr zy$~m-o0}Vl8!v~Qqd6zHpr9Zp7Y`>74?A!LyOW2lv!Oe?trPuUgZz6O8B-@?M@xHW zOFLWI`*978>|C5h>FDk!`k#M)t<%)q@;@`#I{j-~zy>+*&v0^caB=?6*ubqK_rDc- zW9e>cqakAn0mK8$A;!%sASm+ZhX2>8|4jMUt*TC@j?#7z;7(_;{|NYBH~;UG|IZu$ z%&GaGIeDJ*{O>9M*O`CaDZ+Wb_5US`zvTSqw}7Cmh!Sm`%p|G<;5-IFVL`u;T_I6DX?2#scC4d#S%asmd{umd#~B(|(UZ zhlY#XN^0Ce&0UTi4n=*~fp^ioz>TjtKIi1BTzfw2m38SoD7v0mA$;6#m+3Jr!s}Ho z&Yt*Gfi4z<0Td?jH(xDMv}IFLZ{lSB;kx@Vh`~G-X_5atB>7YZFE9TO!^zMF!h2BucEk4@VIu&MSL$ZBzI^-ls{>Zv zoeeqqJNf-}4*P=y8idq>EB@o(ZT8POK!hUyKZ|fM7JX10akKR<>*~Er+RW^?x~s8L zJ>8@D!^#+DY4UP93az<#lIO zrMgruzf=;f?@sc>tLC%xnf^g{rX?4R6arcz!GjheoHdKkt@CDtkIT5Gx$45@pj$y8 zo>2bPZ)S1L+co~??eMG1*Ol)$QZeK`pC2q*kMR;J>79(PnOR|yLO@$uK5qjZQyfn zr-G5yi`&)Bx4T5{jXx7h-tX3~XO2~sxD;=#iz7T-e#$eeir*c^D6By$HWzO9+{QNZ zvh*PJyYSVNptb!=zrU4CEJl$J02;y}+;<}}zVB~$%*6{!T&oHb(L*sO@0ZQ^=6bBu zw@T>n#{=O&xcJQyej&yDL9kQy(?Z36u=O#2z~wBIWbC$Q`X`lYxQCs#d z4dS9}>*G76@3t<5+N&OLWUVIVzqQkCf(fi6&RZHx#n)U6)d? zxvly0Cbvtg(QmKE?rp^p4gq^L18|_q-?;gjb;9hQVD~iaURVNqQ21cQ?P;l>t}fzg zqWR^4OT_>mYif1^67!X(lA)TKVYYZ z?7bTZ4rDYw%M-t~6wFdnE0%zKjL_XNVhpXnJ)2Q?t7)eyxL2Yvbn%PUtw`QM7V{b3 zn-!W;*Ga>WBP8DcFI#Cr$UdAfN0?7ruTS~zdo2{+V@P7rwCAvzG_-u8rt^70{oJnY zm}-e*V!Y+`rm|mMdf;_=j89SBD!ZNFJ5LzwpElz2XCuaEh5EMzjvU4QHWRg#+BW5~ zRmX$E>cV?9#yxPKA+Py&gRQr1q)l(ArTC;B|5-di7;Ij{=>+b@6 zXILValMV0~i;yR8b3qd4MnNFANV+x{N^)$T2)r*pTCzghVojG`*01%?js z129xQjSo`L1h|=`#a%7TS*#a`v+8Dc{Kxf6xOS60f)4QAjD7F*c*u69G`?tM-3ryd z#y#HcH*os>Q%Gsfxjr@;EluLkUV-`y^vi|6AB@04wE$9O0Leo9Vt zJ=1HiKu%NqR0ScTXj51Wf2vuL3mpMf&p@hmU5?Wh8tP8Ia_ZXG^}M!y3u(GsOSP=u z5~LIUd;hB#(y}%>H}6|b`wi!mCg387 z?)KccT&s&~^Y3AZ1T&x(3~4@Z+*f5zx0mWEx&^dN3j`nZx&@Y_4y`3D(q*7!%IOH~ ziWXc;+1l1ec)BcyF{>?Hbn-t%o{`2A{6gtw|0g8qH{}@Bs;YpvO?=_VhR2 zhY1k))GSe!wq-ZxgTIZ`WDE`oQWS>I(wzps4~iW3$D4WuvFhYZ8-`F7Z0oEGF;bi= z=wH1RR5CcsCVLUr;zW5(n|oH`)@beVT~lz1j1R z?_Yt|7k=56H~X`*LbQPXO5NwuRb(ID?t!X_;Z6~yo@0e-$qm05wZrO<5=(WcyT`AL zeN+FN#LMU~x>FJ*y^5`M3#WarceO1KxDG1@g$l1$Xb>7V;!Org|5ArlX&{d83pxE{ z)r0cO)^jvX?Ru}?&Sh>}ue!=k&9r*nb9+{5G+gPw&C}BRnD%nbA;wGRG&V%!OJeAs zpl+2_|Bs0lH?JrEiyj=y0+SqfxDAZknx4Uu8*QrQTxVQL`s4d_CMjei~$m8`%H1> zkL#Q=&(a0ryyijTkc^n=!6s zd1K(xqUYedi!SjbhS)xxHJ-qFCX4F`{hQBqZ4XOgdAzwiJ^mUG5K-9~p+>dj%mDvF zgFp|=MsQ%D?Xqzs%Jw~^b~ULZ^iwjg_q@k?qT)jL#qGW4d3h)*H;?TTDOA}R?wz2A zsNXvoRWAL5xc5Nnau}g6g4@EEeN_Kvw`yd_M_0+sH>RgO%DynLuASfY41UtYNox;t zmX68ouB}_W6#!!_tuqhzwD_{_O{L|N9PN%{{TUx%zJP*F6xzC0q~XS|Y#j)lO&S;C zQt-V8BKvoz6MnZ7fm<5K66WatgVrw5Ep@oldY8TGCBRd=R?PyQN+Atk_f=oIb%# zvpxpM8=x13zyq;MEYhA*|2Lf=!A4G1-S^q|DtxCbS~cyq;3LP;?V>U`)x2ZMsZHhB z{a98`1c<>(H%dI%d0a>0{?hU?YC?iCpVLBpU7Pa^w|Nf$3>-A!e}WLexYh45Ugq@o z>;GtQ8Q=X=(oTiD)z8d@xA(uf+O_lZiX$X>nb_(a<29Rm?|OPQ%Smeuf)QMk#QTS} zcL;#IXoLF1FME^=cn1Y?ukKmL#@(+xF;!r}3#_g4S3dW?u^>T7==-!;8iZ%NfHuvK zD8Luv=I*?i^Z5I&RR9+?awc>6HM&wFZY z%Q4Eu71`*PSAz?3ex?p@uVm;-D!cZ|4OK(O9=0s_2ddHtKu+2)6KT7U-F?aE^nT{`G!Yn3q-Ppq(?fahB_u+{Pb9R4M3EFwa zVH5w+JU3P=t(p9~%yMIh?O&3$CJk_5T_qP7B>1?*Fr((5l&j8(IMqj}Hg2hwKE;Ef zdli3FF)94mZxFQ9wdBTBS~N4{y~aD%eACzb9&s#=co)e(fw6ZVRdc4c@z=ECdjIiQ zp0o!5%dfrKkQ4XJG1hACxLE)&zEDnNneY#tyi&gO2p|mg4@50li4kvF#<8oOb7g(O zEw?QWj9N$^BLb@%^4WU_9~BzUF3et#n(K_B==)4{$!SrDk!`bkcZS9j7hS8qnldHPLom8JQq?f~xFz-GmFDoB|Ksh)!i9kig-clYc+2uOYG zzYbPq`y!0Cisx1%JtZYxftHl>d82)z>8uJC5m7{F!{9Y;9e{b+c6N8}hdAE?h>@;* zJZ*iQy~7ajv!6Pr_Y$^3>=;U5sn4#pK3U~M_r#Y+K$x4ilfIZGuvSzkHkoDLhG`lS z6jUdG@Am6-+ofULs(I=e%|#1(!OZ*_yd#>d!_WF*;EwtqXxl~&7>f(%%^NY8)!DUD zF9cgnN4|NHYOrUme?3ja0uc&uqO&%svRGT>J+pO6oB5c{yN*ERbeD7)E7YqJXn=yC zaQ%xmQjYjqVc7BwH;^ECiv9fF^cB#)v}hfhvU>5diW_R%fWfbu0Ow4sxfx16^@deb zVD%o83b*yn>&C=y+QmN}+jNbzKhE=GBk3-JkPJ@W?)xE#V!dZ(=GATiOtsa6l_9*` zza3MaFZdyPQ}<3Lo^@#OukUt=ot1y?ivcJL(S`>VX(~HNXsUNP|$}@sR5&03zM1v3oZ{Cv18fUFZ6Tb4OM6hS3drVa- zd;Uy#m3`K9-e`9@AlL|cGx%Cj+V-m)+l)RtM#>6~et`CI-rW_TT{={r8#!aaU)gfm zB4Q-Kl)h&bS*rIbhsTpDU{{VJ8OfO9>-5`ub7eGO#n5(}o!Ow<-(>2dAC`uleriQ_ z8AiP#ujlN(6}#$vUb5@uLlHIV&Fp>~X)cm`vVTu)S}lIIu{?f10wosUYQo9>Wxpd- zU~i5(-(?KkMPJTCwf*alXl!@H-5^&%vWJ$J?%N}GR#L7n!~UXw!#vs&57iCM{K@8!jI)J zg4M1}3q@vbi5v%b!_UM-&**KspA8mdOrl{Dv@IUXCNoVMe!82l)SoW!o65{4??(h7 zO+l`+L*(y(oX%mmI$MMmtK|3We8q*=X?&{p)Y&B=ZT1V;=33y|nHYT_X$tOy zH)i-)8RPR!JGaYxcH9cWilC-T` zC#rVa;xPi-s+~oFj>`_*FWjY$xv^xIYJX8m{UwbbcXV8t#67r87l=rVq(3D)C{9$m zoHu6S7&L3SC&&vu^`EL9)YLJ592)shr|Mu_y<`#9TOz4G@AVn>PQnrlh6?FfEBP!Y z$0Bn2UAcINscZ#LDWQ9?gwO2o_VdW-7;{8{g)W|FRX|oACJctn$Hqvw(|A7L!QnpD zr>Euv1nhb#9zTPee6uhjrCQQc%=97)ynZh9t9xcdYD9k)#crO~!Sf*Y`8n(L&l!sXj+9@Oo$r3~%7LXp|<1;_~tf@viTXCPk_X7*OUwd~v zwrX)&Dp;z62i|yav@gr)sp4|AnWv6UX)iGqR~Ek_H{p_G8Z!5?ZF(cb5|kX4nZ* z@ySP^1*X@#$Q&Iz(i@2NDER=!sGH$)HZ{hZb=hCOp25K%wKC1SpPqYLWG-3=R%Cpp z14LKbROyuJehUlIVnEPgI|iijZs>;8e%_746@7SS$+X=c_*2n!Ne8>lt+>^%Q|2t@ znBH@!ydgp%N%&Xvw8rC%eKySo7yUxc@dTZ&(qjU+ozJ#*hA`Pd9K93?cM7G?nqvE9 zig9%9uw2x_+G%t$+YSaCyI*-35!~d|*(hkly_6k@r&W$R>0y|7T7nOrEEEU0eP22m z<9QMVu2Vu}ESP!INYI%;xUFrGwE3a~8?t0MJ%;Wn>9ec>X$sh9U>4GPcO9W|B7H*; z1!UEGVUegA${~UYdb32h(h));oa^`5fL7Odp-REz?BZ6wLz9Q8?kN%n1QqDH7g?|) zdz6Wqqy#F~3~A)lHP7&v!wN&ojw4KEcPW<@iiHc#0%_6~NKEE4>qHI|f~}Hs8z^hIQbZ~{OE6O5>BpL+ zGYClQ*Fe#9*btP8{=>>Hn?~^FE8;6s4w4tBnfT&22S&Uf8q0{DnWlxcFkoOPc_=|; z6NKkBl~$MDva)*xp9C6rKlzD%ltA^wc#=}r_A-owCo+p*a4@#1|4J)5i3%rO)^Yr@ zsiITX2j*aU;JJ7JR3dKUTDM{|pwm1#J%bKiPy4Y*TVL#A?P+IQILTzF?>$ZhQICSD z%w(OkMcuaa3+oCM+a*1J0yUF;xWtQdICTN}AC zB|yUToZV*FRBQI=t}4Qx>fw$n{sb>SQwDy83o5xVAY{c*n9W%~R%0QM$if6SKVbYKw*PJccR} z3iCv{CoL*`BMiQn! zPlnV!ayq5VTWGc-zjuDOllROA$tImJX6}5~n^!A|ZRXrOM?0WxhZ~s-c!F&B*Jxk|h&kNg5 zN-9|79iIFy0WDcwlHP=8^{z=sYX9sYH79mmC~P}WUP~{d~9Q_Gq+LZ)Q%!=2k;Bk=oxZV z9hy{QP?pCCKtxp zVdLMS){8m#y0YWx?0mO$Dd;GU@QlcE~Nnq_T^Q1|1%JJ_HhmbVh9PCY1M_6$Ue>AFf zVXm(-ji_$3o{uve_1y9#-IZ#H(e{HM&FzL9>7DHLE0QBD2=v1}p~7?*vW3+4melWQ zLGx@3H3SMU#3L!X_^uAZf4p=hYnE8})bae}p&rrxvV!7IwTgMon;5=IuX!Aio&I_t zRV%>nRieZ@-!##&ElmZZZy8{L0})WCTK89q1C|!Cxd@ZO*&&aAdAp2 zO^h*m$>j~13 zerhnmnX&b}IqV``g}^A%R-bmpsmKxZeWYdZCjA<%J8|w%e17%(uu;e)xyPb*0AgG5 zc~Exv3Gi5MPiB_*!Sdo+B1?PSSUoF z;K)k7e)^?x;C%V>aR)5;Leur!J_r6|r;;!JcDkP{4`lT_Epu1XfbP}7>nwq--ueb>OL6oYc4K6?+#8fWJA)OK<_1fkQ(K~MSy z>T9j22MZg8m@01AC_)CzwChnhu_Xi%cadcspe{Ol8&o|YOn}k|G=Us1KH9BpkVdbq zP@mTjz2B{yIER+3B|)-XqYqxcIE?3>Hci&;<%qtobH*<{sp=sMp=YU_%IG%JR?-d_+Cf(J48og~lcqD#1Dy~}U z-oe`I(PgqQT&HHlHtw0W<}btLfO?2pPS|m-vbFL7e^UnEZ|Bqb9%EjViztCkX%}=x z&udq8x8Zou*n@%w&=wjto)G<9=aF@O=aC7DWY8P2iJ4Qc1*wvsY0=CMilkbklIvyc zlOyQV?glOZ+ki8)v9Gtwp#JC>*q}7Vu@>QuisZ>W<%UquH(1_u=}x%rH#G5*K-V+z zX)k)ze$Xcz%@PP5!pjL*zKxpdtc2Z{bF z`YEm|o(H)!)`7>Y5qr{ggm{97_>eR(YGnX9`F8E)WBhcS%SoBZ^NZ+q&I=<$!{-lA zyomU6`_CLTBcL^)xd?+FrA%zhIb$N+Xgp2_spu+8+NnV#(l>*czXjY!sxLH?Ch`TD z1X|JJ#@1$KJu`B8L!ZN)n~+o|8uHI&h21HAcwS7BN@iVl1W%R`vsHygh>YMgzKA+N!Q6{}k_MbqV> zk|oRLj=f&$ag~l2KUGk%geeg-Se#)}NgU*&1&iuRSLDmSrL!(uyBZfb(=HU zCH1p#9PJf@oPi5=bMB^-U>xtWGMs_?5=(c1*h+1B!GS?82p zdmh9%H|Iffz2EGI>5huvDpAyU73jot9qH&8qiBS8s}1l;BYzd0QwOc@V&?S#hTh19 z2{;XsOY-!vyln^{!45^-?n~W)0ss@-Fc?1FzHQTLQ84l!uS4GMKg*&qrVUN=}mGgz?Wz(>4(q7vize#v1lyM@!s zFr9tXZEB6j@t1LVGG)?tW7|b4O`J%tW88i8sAFg6lL&6Rw7iy7f9*-`!hoP|5_pM! zmLfrGmV+=zO}g1kp5B)}LQrpouF0nHE&$yafM5Hfze0-j9 z_Dc)3Q@RvE=ddV}p!-`rM}8Q?T~H*RUeT7<1R3+1VMenTu@053$3UdDydFy>z4}no zya9FlG9P5Y9--BovbY?T(y**7{Bl>M$o`=tC)`LenOj`N%S z6dbyQJkYZv1+^bgQY!k7MeG1<^c4xR`S5rjxL}2A&xwm=Rg!?{-~*oda4%m!_@T)m zi`Ramo2Foq@unE(;3QCxJa;TE20=}j%Gq?3bdqEYY6)7h(x0NCHJKP_CXz^W!)`D> zM3(VzB!s2MS(AUK@!jooMuGv5~pd>r{f!z|ld8HJxZ)f-T6fHV!pp+;r=e zF;9t4G|$aQs1@tX9`U zjGqOgZh9+QVe{xdls%Ir)XfgzsKvuHPR0094v69Nlm!wkllGPlBUn@Mw>CUpvCMcj z0*UdK>iv|WZ%sh&n)V2uwehRN8WnlQ039@$;=e4EW-0FyBG~6|eJMt)5yodOW7$ zOb-31a9=OLT1UTkCi<3z8aFh+r_9pg%NTl|c8d6Jf2QQb=75p*P;?P{uo!Ht=Xj2t zo{(N`ARWuxhG&#-$(f7Jb4PcoR90Z76ZYEr4Or{FbDeS4ZBAdPNbT8vt$>LFM3&l{ z6@rgeVCj_>?`HVxMxuH}NK&eE&Et6Dmk3>l879Fchtw`I878UaW!aKh%cF@;JKIWZ z>tosKUWzRip0IOg@{CV~UG$GoR5z@$d+nBJ)MlRVE@A1SYqV`!Dtl>d8}6mZXRG|s zJ$s1(e@N$+lh*P3G?KCx%NOj|P$cx0h|3M)y)U}wl0_Sd^C%cMw=;=u3TLY?9)pb( z^w|B7iN3!#YvR?@gw?HUI=JzjlMSjskLjz#rB`QcQj#>Htz@0dx~Te^{^973JXRUp zouST(P=jyQoryKU+?>N@)8Phjs4Cd>(1Sd7Q=~1q-pf^T`5WmZ4^rYp)566C0pa=C zaO=AKwr2N<*~;P}qhj{udurG>8J}U2Uk5d>-zxCipU#fkZ9#i8ypqnHDr==s`wO(HaLaDC=NI?d)z5hI))CZH@`L30}fLaRtja=4};aR&nkSlh)N!r27@eO@9xw>@dOtA=d}rz?@q6jG^$?@i@B$8b#{y^c5x68 zXZ}jR&n1j=f=sYhZBai(E`~xhrkT2t^ga-I1{&eh*F%3~Ub zQ*7(2@2F5XBN2(u?6;obUPihKbAt;|aZpQ8R|N1Pc)m$rRcMtyTr@~omPXab(@bA} z4@)z7wdjSfS9ah(l((wj)aGr3l5!nhX9`}5v)txBw@z`oBQgMDK|kG_A91mmj-d48b{sSg1y*EmZAa=J3B@x954KuP@7Iy?LAzX4LOleg zI|wr){Kc(O=fnWO-FSm4Tk7Ziae$Kx-Pxh8Y(f`3g!Yy%! zsTb!wS-tq=?CD&;SQ2FW@y9J1RiLR4ltD&0qm~}GhJ$VHGe#cY$`SY>;5Q}ti*bQr zxo4^3F0?I^KvhDd_zk#Sfs@}-&6Cb8HbcLZ9_%<@I%|N<5rhVS|iw21vQ4=gN$C*zKLy7FvWH_H>&O6vL%5os7~c_6<#7pV@xK-QK4P z*6n*gv?zpk#EPx2)XujRg*+BicLMr<*t?!`Ih%LHtcC1+=vHgvg$K+WiCEe8KN3~K z%99#?H?!o;$&5RCf*IWzzT^BXB9e1ujNhN@^-STeo(NMJlkqIJt8T|dJ++_xOP{qb zm}^)4-&_V*#2iYugKZYn&x61Ef0<*V)N_hmkP2awI>^B;UA>@AxRus^{PNK4Tr`9NS9j(7c_+kgoJkQ-X zVM#Mhy3MSNu_)t}A098kbxqZM6G1yM!sP$t9c6ItiIFw}RoGOUAA6x|kET^SLMg&1 zVS`iuhl)-nvO$RkQl-X1^`hIvKCF+UV<=&ax~nDX6L#TH+IB>DWC;qjx%OJXF8W7< zWA7(;FdU-74KlY-Xa-@bb=@P7KT_2r^LkAm3RGrDdwkocRjkENXuQJ77)6p`vSz3k z4jQud;2|BER`v^Y(dF;08^-=8PoVWzzcob`pm0k_IqBY)}5VR8e#}Ppkhd@-o~ljExb56y-4K+qYr!9K)bL2Nu(w+ zk;qJEX~Nr>A$p5KJlEuq^QGifwyR#`khp$(?7oVf^@eMZ9AB}Gh_U%#x#?*1t-|k1 zP`XJgkt?DGq@23N<1pK|wC0Z839}sdTCzjQBeF&{wNRaswzUfG3!f01+U)+&MBd~x zqXn5*I-O{~J2hovgZ_+(c;7EbzBgD%{81RF)A!+}J$8!QA-s8hw?m68W*!{B8bNfT z!O*V`C2`)s>Mg?*Fi zcwT8#nEZN;P7yOp9Vh_HN(Q$#w9IL$ej)q<@7B6q2Db@gA+NQvsEH{0tMpT!|Gw{p zE}{Z=qi7cwxnHpET-NT;+;FLnJ85ywn%YBh*a*{ zKJSy!^h?)h#eN~C8*A!8(4qi}chDtxJt~F*Tm= zeuE1IdxwZkMT3a2x=4N8eQRGCm~!C-iBmQ6uxTD!{90**pw# zN?Au*s@#(s2!EU#sF7#iR{$|52c?y)hxP~^@qBE!B0MTsPNISs@b`W(H`TXn6zvAe zTb$xxIESrkWPd{^Egq(atxc(We`qq#8LX%2wELuff8PnTe5J3Y%U>dnLw+UA^#P}1H63MlzC>zJWswq|ws5mH7L34^ z;{8=rG7~)K+PqJO2L)3i2NZdbLOjPDHmrC{cCQ*QMdc(H)#lVbH=3u4gE}!wds!k^ zMA(Au=gA6RqqBA{w1xQ><21{OZm9&hnTGVYPj+HQnl_YZ5F6&QtD7mFq|PpBw8&gn z^qxf3zRgl^Don2Vb~iUXw1ogVUA&fRJJu*J1$R?W#kTBz&V6y1-5=P#zN5ML#cfkx zEpJUKO44R@_`0P^8D3n(-ij~THVJ8!tniZX(GAL6jHQT?x6yX?+^m;awUTH09;4}P zYec*-(N$&LKfBF;%TKZw5J5XtDXD#mmt#mAH6rKugYXfQ7gP*IP9PScpUjC}xnNh| z2X%fMx^SKt-Y10!tW1yFWtr}f@58B7e7p2bqK@@Vsip_E$%RjF?jT#szV9QOuprKl zgjH{=>&A-1i$2L}+h}`gFD4ZamZZoIlc)ud_Aetmm1mj?5lZvDCh&aYiAX^K2)W$5 zU*gg58YQ9-TAKP^xVHd@R#;PHLR5)0Yg2Xm8@_U5j0@z7ml7&=8QR7W zJS}&w`#dUMKoA_1XSM)UUjD>)l~$=0MB=R`kO8FuQTgma#uE|ea!51|2I+$4vyoqO z(fdoyxX;|*p~dEnIkAZ9v_e}&x-g>#g`!(hcU#tey}2CQQC>hS8Ts}a(W9F{-IoxS z5p~8&9_P)zaqN2G`;~vZmnZh?SwuC(X)u54>xCc6j?U` zqUst$d1W%gXZhqu^o2Bj@C~!@$kSooCs~meR%YU@=xQX9#FcHctgmz)tXQSrMw>_J zsv{2Q$Qe;ozb!u#i6(K*udqCSW@(>6DwMdkzuGrVb3(C?tAJf~A)|K2AS>QuoLj66e`>fxZuD%7tUK0Z!7>mhR&a`~RUaftA~hunvp(!#h!7aK zlDk!=!9Z*KA@VrzTL$My=H-AM^FqHg@=r?zgRiz1odUr+ZV(^yJ zzMba285p}+InA_Cv~>7bEH`g}N%Eae%s3OoMaY=#g2e%h+bF!1d37tcqJmwqV|ttD z%v+#nryE`16Lo8bRO~nlBpz4`vofd2u(Z{2pP66Yw~2+NJLzzlBpG6~sD#PC4i&Ov z$Eo#%ca8oRfOuVPsPst$R)9QJ{ajVi4ZLwR4wt=r_@dOBh5rk>q(SX-QH|l*!Kg zmZYKVf1Rp4Kk&R%9{W?bG2X;d2#p?m6`N#g@3t~ew3sbFweOWqz2%c@m4n;+((9$| zPharB))*5hs1bZxfn z&Cd1XXYEJ}?&N-FSk&oezUWbfx1ycHHz84%nC3MJxF?}Q?xw_RD)=IGHnmJ@(;r1& zH$Qb=1zryGj&qIV7n2*kuk~0ZGuDp;4qu|`^5jkpenD&}7|{BvRFcYtMYesm^IF4A zBiwV>LGt_wRTF6ac;maRy`XjSZU5H*zF{>P#aXVbsquYt(F)z`0y(PR6{sBNHX5*X z=8owL4_T4W7zunKyBvO`KkeyMx*7 ze2>!#Un`uU&9CH%-1GKsx+?3#u$2!7J)=OQYWeG7gbheYepsJM8f*TCb?3)DX$rP_ zcRP=wna83U2iC|>`ZmLqy^XlH+K`G92I5-EZ~%{?QEJ}k+gZj`ED_X$SSD?*!Fam> zw0w<&Kshg27?qQfUf1q7T_-Ivn=)4D9K^KCg~^St)-*W@J)!6f&t@_IMItPjC=9%# zxH{~K21efldNH2LH8$M0bp*_;i>wQFl$+I@WLTHvTATq5Z$=m@;l$-gd9Ez9;XB`z zeXJaQoFt5Tc0UgJXb@7Y2l54d^_eL$Mv{9GLtEG;nR8P|tam$qWqxY0P;h#m_lHtQ ztJ2H^Dddk8rc_ZYk{=2CKM#}BK$%R$=v$sfFm(%0!hhE~wzVYxHyUF6qL^fLha~Pk|0V7uoyY&wUn!m9npy;xf27 zI#u4h6SXHMOZifxuM2u@LOLhSv5ilzoE4YALoZIyRI(U5WLU{@v z>yLMZXXcz+@pz;)YywVOWbI=Y0?M05oW%ReJ`UVXIw&KMbP0&M+IP@x*nZ$6@ghE= zQ}xZp626~1CRWwvlhe3`9VGJP4eq>PqZLo=G7{`Dd1_ABjtoWD#D&I5`+C!i(~xK% zsGxR{k;}>(Y=y6{Mb@I-+3L{>yymuzB;C3wAMV+%|Rzn6t*!eZsd zdCNmi&EeYHT|0e}wn)ZWQ(rA4|5|QJ)f**5NAyRPiB7vcLuO39NAwXao9zc5>*!Y!xjh z<>Osg4&wASBu^_7zi-Ur$(z;YybEz+@Jq?#VPfu}&;^xQEH{scLxZD-zSvzTE*;07 zc52yYMpLQ}n}~q1MyOib64NI(hH3Ee0Gd}0H7-zmFV^UibR`P$d=va~q6^((QJ7sESyu@(rP2%Q!Lxx6A zpGLqe-2fIql`@4n5~b%2U|K&-$WMTpFmTn7u@NhGQ+GyX(=d;_&6D#-GNr1mJu+4q zPV}Zwuk1No`{>w!8g{$yO+8p9s6dEm#WQ%r*@vSjsY3bgdgQ9$UIHU4n?l z3ow(tRTB#tly>R1iWjsN8CHyI!`$tZFe7GGF+*y&*+({n=AZb}q8k4~;GiIHdB)W~ z7LaJgj_1-N*Mp$G03|BBw>=0)*?v^1!C({ZGi$epfzht_W(jCW@{K5RgfJy=F zBJXk>KO^dtV=>dxl5(v`M?nn%_5K3${4xE{r>gAjX0(LATyxo+ z8Ft?~6xS+;O!l%$m?%my#gb0P8gjD8G1=<~+U-~b^vK&sz#H3vN}uQ;x#qS9dMB#y z?;L}yeStIQvK_g>+{I9@P3dPj`fCr+iHjxE+>SE5A8PQToAg|kyymFSyn$lk-0X|N zM7D~~Tg{yho^-zn@DlpGJ-ya=ipbsVHsKW?YYc^rPR2dylruoxyTBZzZg{fD9!giQ zX3!}tm>bh%u6h!g$0Eg zTJ3)EGjHw3evx0LGTo>o$6f8bNxdJ}N*sj zoO(^DJAImcr=+c=L%^%~9mi9sgAVou=XQApQ%UbDz;GnoQC+;pB%WsL7@Rpbz4!#wBc@jkz1-cHJ;+w1TQWbs3n5@Nk`Iww_<~M3g_q zcop_06jTj&=XtsnGoI?AuxckYIr zz$RqE%|~uTE6Nnfp$<&B75ubA5e?JCp(QGSG!S&Qx4Mzr<%1Jw77!yQEEN!kCVZ8n zpht$H@j~}*{}Jh~XHM(hhsI>s3o_Ybmd>QnRs%EeioA9TSzMfK0A6%l|MOcD1L08> zdzvAa(_Hz|?e6yiEFe+$XMNs;Eeez=EsqvD$E}17*l_IGP#?6toU1gUtOz@hB2^xO zT2-bxxwo1_mPDOg1tZ|wu&!ku53b7nt(*q}IO*h0T_mp@p&XGO`*R-SBobg(U2_i1 z7fM={1Cl)7urj#5ADib4dw20Ze$dUou<{^UDAholVQ#TP>?g#;SU+`mOx-c;hR~i6 zCwA_Uq_YcpR%}Ex7#8}3zFUgr5~@_0qk2eH_eoY4R0Xw%Hk=?)%{||1+Gp*m>R^h6 z(APZ97PU+w6go5pbDJQOQy4c{pz6jw=e)pjTWEbP&NjZ}kuo~uqAjHlel|tKv#P_q zEgtO=-URdNE+`B8C0x144NvoLDlex9aoYFtHdexNw^Zc-?rQ|w^1v2u*XDYuXk>)!GOdQ>&mR5J8`NuOym z7+eScUjX7j9l!0~XMEV0d|h>@GtP^p(=60jkci|ZW3C+;i;^&AAty)Cs6Cn8>^nuj z_~iAzkGj9lZ-Qs~uTFeEv~IYu_hm$i2?%hB!R)ehgamp+4tp1S5lobzqEE7@Ww1Ak zI@M$TDwE=@9*ZpWg8J`@MO6*Z**~xJD21pZRcX zMTt3n3!B8^tzAIqLMK0^FAvaB5#OV;&Ep{jKE^%99$lmA$e`^IbZgfF+MpU-LYNcY z1lr^jM4_xH?!HV=Yi3=2WTeP~fFtDzKZ1^fs1SmSRwy|y#u-DK!6}fDWjF$ibjpr^ zWeihHp@4_iwwQO|6?`J7N`X_;Fi;hUuBbOTd)Jqy2rKJjC%?Z9e>Qn!PQlR8W-=b|}Le|Jqwna&Rs)>Q?I8R9+b>J3ZT2C`A&y0&`TzS9MEq8$jj1+tt zj?@r3%oWbMg)6$j7G1$_0R{3Tin-twXMmHnWI6fm`=KSqnfz4LK@Uu7zo-vA9A!Go zoJBw0VgJI3b148PFe$h%07qWe`#H29aXonhKfyD{v*3q%z52(-5Cp-m_?aFJJ!$;t zE7^1O2;n6 zktO7%V{h0?@hle$1=_;n^DO!=!x#n%*^ItEed|k?1qgP7+@Y5=(fNnK<_hM$yR6<<3ir3uO5VJUf1V;7+T1YK}`?pqqdDJTbWFtt0dP* z0O12zo&c1LzZdh`Glmu=r=^O_Tn5oz2hcW2=#~<|z3;Nimje z5IhLit}@I!?y6;-evb(WU5v_MX`X9?Aw=&5ZW-j0q}#72XyF4Z!iRxjwNuuZ^Ef$! z0w#-Aj4|3M5Dvg{3(iHuV;Xu0XoAlI2nU1nN+5czg@QL2;D;{-It3_Y0acNE41E`l3}?bt6-pf~eG57mE&AwsR%~uE>z4{MLr~!)Xnp-VrPzhx|UYL?67X+k9@D(|zhC{{%YQ zoUD-Zc6c~y#x;WdbOicmQQ#=J;h2oBt;8HO3qSfw*N|g@Gd+9%``^C=O7RlCNUyaO z-;?&!S=8vjHmep7dSX4 zzs;_JkG=+varoI+^lIoL*Qk#k7p$LjoYZH2a?(fDVLsEvj(QM)n`BPG!Gf*;+9W|+ zeWo`<77Kop8}M9@g^gss3WVDA6Z5M%juyoP;ORBjI4(tELcQQIXDQq2O_qfWsbACl z40j9b>`1(*U5hf_?KY#&JY+H!{~a|X``oqcd%L;N)ugxC&NTm{&!QFiqaD5kxjxG_ z@gZ46#>QM9LNl9#kH}wOOY;-S?k0`?_tGcDI9Ukm(wF!H)~=h>mcR$_BCFKXEaZo4 zV5|>hvxO+*+J}eg^^rm5Hd|<=g0^gY@fkbL`A&8pbm5D3F&zCAuoq1AxjAmGBd5iH z*qFwm?HbpOEBN=J4}ECCxmic(3o^lR4jYziNIOEqj~iEa{H|U)g^V{(!#0cG`@X{j zACC*#{@*fw-BTOePm|Ul>@^>pj)AIx|{?Gm9l3nkwvj3vDxOh|Iy5_vr1eK#&NPJ9lz^eJ+R!Y zQ(ri#-pNJ^&*!0q0Ud=Apl^K(I=vWC0uF6PB%07B;I8Oz)5ubXKmmiF{PKTSp_pZP zScUgsp-|G3^gXashsg9i7&V+ajshm&9xIiQf4vT?c`I5r1oHJoblca)P?0HKkc=FQFdWs$e5uzl&1Y?(f0w0gvdyBO#!A3ez`%8QITkSEda}m% z0xG+Zq#_D4M-zcMOlDKBnyFf|MSieqtc*{0n8IvBmNzaesqx${L z&-&_K^HZR!-iPM3ZU3W@-oyioQuF~%^M18qCAeivJzlb-3O}`tBdlOg7CSGMU2Or= z{8U0_lPCO@E}kqG*Z%19X-hjZ$e<`>Apg;K7V>SAk6^u;>Z0k$RdkfRXk?zF%;|kuJ zMt;G^c(%=R^BC=(4Zxp^MVxW`(MB^qb|3zXxzl#tsPCeV@QJ&w?X|=mMqO7WEA_pB z@WLeVdAVuPuE}EsN9KTmZ%!ZsDU#0^l!em9)XPoxBDWV~2`3JjRZdPC0kJ5>#N?bB zS3<#d#%YbgMd@46LC|`|c*OU8-rZL(>KIpC!|4+QuziRlB+E;dDdD@?3x#c!Uw}=a zw8)Ne1ug<7f`y9A3&9aiT^K#)O4Jp?zpGx##S1+Vi0ry{)b|@UY$)fph5R+~TJ!;*Gp>Es7Kc(Mg#`g;l`*)Z;5Bkc zpiwYU#++kD$ZWsW$1U!e_8nd1C|*&d0M&I#J%y;(=|f7hvJs`-mcrlk{hVHc`g@HcSyi^k^s1;1GG4H?$-k!RVo z@fDD5VlR_b+x$uMwmvVK?FVjlGB_&1F$psGVM*^;WaIO(%lnRzKI73itJ8h5XX#bv zZ`T(rv?CdeFC-(=y>zf$okIe}&3=vhpWnrP3m%D}ZQnjd{pO>W`|9_?F6JotKSXz- ziS844$44>~`52?*8NI_kb}yM=PPW+zXbqj}_gU*E^&3ND&(?+_(jN-$TR$NO@DdvG!orl`)8TDQBUiBM`IFib| zmW@jXX=|lQolZ1%m9Z3Z>M6`cESN)($J6&POWR~z4!VJ@eOoRtvdBHhr(PH!2OoU! zg-?pC4^aKO{CrUa;ADb3ABKWklw!rxq1qIJfDb2Rt&J(cCIDee!;tOP1Pum07~%3kh+@J)^)pfY+)0iS)>yEcYd>Nu^bcM&7+I1{{dGUv(H3NKaFTfgt0?Xt(qH}HgvuK78D6r$@OxLW;Ade>;qc*uN$8IHwL6Xc zjC$JMqi$Kjp8X)p$yuOi?rRUU)!X$Q-mC{c>em@-c8nuF6!wIm?U3=R*B77l!??Zf zb+0S-J>KU44yhMT=#u~dCxMb#$#Hf=IHKBN8!Vdagr&fX7hXoEdBu*PPxyEixWoPl z?BhN7%!8xIU3|a+k1+^*y{n(zoo3ENyYa4GI*B|sH=R>S9!(o;i2A2_$Di<1Vh+^j z`!sbAz1Nw=eBgO!i^APG!ghp^r7_mz5E&$%5xg;~53a#;>?#jhQlG-d7yM=8(2r67 zsJi?He}PvrU$KCNXZW`4q-IesdEn>-Hap)z09m_&#j`H>n2%!dRpDF6K%9h+1*bh{ zgKba`s>WPYKmUh(>RZfh*vIZb<4A^wd~2)6`RQU)L57+iuuQ0m{mbL z-C`~|PoJ(e$IQQZ*d()}yI#-Opsh|~wnZ!$Bmy8SNgt;5!nC$DU`|`!U>AjOGFh_> zN5CW}6d1ByO420vim~Vt9>ZI|=pDwC0Fo8qK?4rBjx&fZdgbc<4~~?KfST=$vgNu8 z0Z0(T+t>u|a54`Z4I=9xj3?tWuBd}RmziTBgfsK20h9gFyTWEljX4q2rS zzSb|;T8UIo6i$NUL>Ps5lXDjB1m^yCpWpB>MJ3obDW>)N)XgZ4b1)glqaLuO59s7b z`;2#FRoCl`z72g>U-Y@py`$Px7px+PrB6c^Fh;dct}zY;`m{4?vBSgt>KoOUN$VeX zpRo@^$U=gk1-Z!h9WoB1+Nsy0y+th^q-P!oILxaU;|)uJqG`^%97P*L+`Lrmbn##b z&R1735f972_LM}mB@4zICf;ps5vZXYoS=X0=!-JP#3*@zMn=GMg8g^69g#i0B}|;N7XpZ z%Q=Ecb3E$waNg}uQ7qD#KcldYdq=%%Pk#hpEHEpR;%8?Odc3;&F^ZP9-Elm8}}U^7o76MbnVNuWs9M87WFr2 zA4gB~_a+U~*4M0m$p7S>}m^IO@1MRj2D^Nr@#&`@!R=&jt-Ea zE9;h=rW=Eo`qYO%@Tr)Ex&<9AcG6)@TGgj+yzj^aPq&AeOk06SwtjPL`_RyJ4ZfgL z9Y@06RkyZ>F1oA797M18QAr`%7}5usuoi103sX#BRK_$~1bE4PSmM1=Z3Zo)uIa+B z>w6f$)41C~fd|?9vsjc{sky9A7GC)G`eu<#_O~E>S26GCUcB#m^QVuDjIoHZ>8iia z_wW+e5U>@ev*X7?%q(n@S&T*BI>rWVMY-qcfb;=-)HNn!yhdHO9KRWShcP>YRYn2h z+CX4Z+no+P@WAqU77Vx?{aKVY;KdN)qx<-7NY;NLh`vjm_%6 zOs77=XBKTQR~`CDz&ewXP~(ty6dfb0mK6ddKg!nNWmLEEqX@#d%KxCxWLkLL*r2 zI@deHN606WUg6LlWR5o4blk>lY`-)g=2f)iH4nQ7-X8vG9{DUQkIoGqYwHtPZSD%5n*YX1#v$i~?Ss}? zmC#LiPQ4s-&fAcpUud*jK^=AkOj_!)hf~cdsmt6^^`b)tzdjjDvbbxvfoomIsTR1U z2RZzs#${C7@tgkZLlk}Rnp8Kb2d(%=7V|*|9aMt%_qoq~3azu`g`m05yZI>Kp>GzG z1og;~S?S6A8$}DJ#y2wsr5oOxU?5Jm+@5V}iOD30M0eD=1T?Vz_Dc&P< z1ZVG#i#OzXeBwne3{4@UUdgFB3s{#c-}IN2P}dR>0ouq6KlcLgD3$=N1MPs%P~_soh%@sS0^ z2-=#H&PE$jzdkas$w?2roMyc0`k0JGS2(40jM_ey}zwq{g9m&vQrz=@OoPt^Y{+-b}I-Vp;@+`#iKU<(MPh1Judsp zHEi;>@eKzZ&$(~X5^b`ljz0S6A|oXzSad;eb1c!PPi=Z}6b)pZV1Paa?W3-5{)SFt zZ$3s@$?@0rO19rNHi65ici7W2GHsouPA86AL}=D$EaJRapVcV|X_P&LUSq$@((y!e zLu8GzwiVtOr?&s`n;<2+x{jaGCw((7@HjmB6!SKcLdb+s z$DHVoYsmzKF9Pr8+^o0jH*|-sTK{e6XLayHLJvAB%vSt18Gu$;wEZ@!T{etY_&=li zHmaVXzZoxb$%2(4t9{hb2(GaJ$1YTi1%D48bd~y8;Hkbm(yTA;<7b+?;s}DaacpCg z2G`@W7>mA`vYF87zP|S~X~i$bldKt4M>lHC8uS0L2pDjnTlJOch9Lw}oN>hHn3aGX zOUN3$026cm+8jW*a}celVfdJ+vxY&vCco|aGJ5ZEk9!oQJL`6u_34`|ZHoZ&E(C{F zK~AKt&Um&d*y=P;o-*tN0Aov9{O(@A%hc5e%AA7gTikD3oWSw%#~)u-$%fqDx1Hs> zjY^OwRw{*OP2N_t%aKwbIX;$uKM9wlR zB!a^FMAiuycLjv?MYb5DilTF!tt$9zl(LGx*56&vz>LE9K}%m;1V?Qt}%?9Zz0sC!Z0jkPWDR_trC{;U%y)g0 zvBO5QJE6^{sJGemIb=^@LzWG7Fw6&qY!US7D)1Drjr08AJap@7Tiwxz_$~Sn{||YG zs{qkQKl;&foD4lAVB01W)a!ckgJbRUJPVx@_6MGUUt1yX=_Z+CtJ&7jH<*&0`V?g~ z$WHX)b%_}4Y<6WmAt3tVT^}t%o6CGJyk=LIIf=LHh3!Rm)62L9_&&ahK;df|&r#S4n3B7Sv1pUe<;Va1gKr!; zq>mOJrzvD8JHuGe4R&FecWrXe-1NZvA$F^KV8M1ma~se1p$U}>Dbo;=v#vkt(??rlWu(~J+Q(2NpeQ=mHjA;MOayZ%7ITAA@9PY?pAd{} zUyC7DyZheXq-Ul7X9(2~V0We~V+rn~N*F7#YE0n>gx4J~^)OP*0b^%1QD!p(i2@QB zb@sAtA-3_2ItywPEnUAcQj8B;W#)|vKv4LC@C+*R$2Kaf(38$3yoC?(3mnYTAqCCu z^IjhdpJflngMT<^`qq>|+H&uQKm6gs<3rkBjo0cc1Jl`VoETfaWMym$h4;Q-5x0^1lKg z^dTN3FCu%TZ;kp$9=_!*Zz;xmWXJWrzj+d>xN^uajkgV)gFUQUOH@W}+TpdE`ifls|oIFTK)o$=eWJmP*Bq1}5F-y3sT zk%AKRgdm_-v$&39Nsin4IW0}i`d8wAfy@}saf>f2L0?;&9Cewq@aH?RRk{j3`q;-l zR)W0vY?r01L^~VX=7j_TvdKJ}bZqgKPy@HiD(>T$zPK7W#}Od&$uViuz=Iw)sqL_!=`l zke!x__Q-=bzDIY=lV)`G804I3mL=3Xjr*t{1;@UpeeZ3nZ|Ha03K?rG1#RR1dR@jAjS_TVY95i%<7gG&Cj0RvJcsfK8r-8zJ9X)E zvRa03_=asPQz-$(qhM`#gYu#4n?=+`e00f zHCcxyD+A#%k9kZ9t_YZ9nJof=Il(L#Kv|e{f~kbZIH53<8tqvHF`)&*oUgiE29SyD zHSeO0!w)~atdd#{>r!&Ch!>iC?kdKCgQPwVJm-mU>r>ndV~Uipb-y{*_x?U@Eax@k zfJ{xcaCJb-@P4 zW__N;7%}4TBAL$6j<%u>*IAi=?|a`{f|q^Uj{8^JJ6_|!Fg9(|6RZnaSns>f@Z_+N zn;aFvsUbxj3^(({7~riY{zK}^Yr7F3SIyyY9vI@}Oy5E;I=hrZW!wZ;Wi8ZsqHkSo z*Qp23ksC@l0N(LNpMsCjgnu24;J&{1w$)#kJ>~`MhV(bGDmW>EGi^nEoDU8KOcjeH zg0|Dpt{(U6Llkq(Ye+#KTx9{1>ue*7=b@kKc=+r^CcN!!Zz~T3qmQO3>LX_aGqfMs zY*8oLWZJlf{1$A(tIdM{1?1rDL1oio+pK@N|A$M+PHpScJZ$4x_Y2KzBjd4Q$$^#e z*Hr{X1#Q_!u5)f=TL8gWs*9cyEE+mbwU2+u9y=!;O=7W9Tfx&oWBjilj(}oU2=w)J z=7XQnsYqN9m>H_~)Pwh9KC{W_-__37f%9^`$DFY{gPg`kLomcQf`@dMf)B_?^1DwF zWU_GK=rhHq`al}Ynw~cGVedeO%DLmGd+@KywK6ud_WH-a7Pl1Db zjR!eiPg<$p4->k;yi>pHWx9^C6O1Q+my9%L_%q@OLyLRFA}m}wGnJg62i0F6E1&gS zJ9a|SNqzajz2WDek3R^HAv`&>U(M@brA-ChZTi%2`e@e#za2L2>+=vjn3-oW7T$-H zz{ogwa34PfPitRk8w;{sEXnTp=v$vQ*?oLY{E6?w?&))H(BgjeD17&zvwYF`Gdv{R zs38CSvk+y3%3|XTFdhVKOV+@}a2A>vx`raB z9Mub-mu3##akHsAHGca^g>hh!#>qi@lE zhY8~e&N8{-%pf9j$qd=w<~lxC;D>Kt_qx}W>jY_nC;RqIn{+FTl?>YUMQ-?Y#x}Bv z%qtGkkl>YZC)>y-+3Cg~e~|g)ci*5z8|C=GOMT|7B484Wv~Bm)zcWwKBSY!1!wxI= z%7B?f=0v^jMFWRgABP5Q&4t_F{`S=oM;uXfYTK4fbQ>4-J0n&fjEjX(a(x>5^~3%2 z_J$?-X|8hK>GUB5O@f_vl^Gj05=T<-mP}B8T_)JQAXCv;aFS#R4V4RZ`m|5)*``hp z;X%7eI8X}N!FIquf_C&p6E`@+U(nYX$rk9Qp{Y*aN`2N}x(i?GZv<^uik?308V5AX zs5h?0uFYY0ofkWlJ;Bd1<}%QYTXTH1jVI|RdJDe{IaURh7EIVHg2e9kZmX@GLTrby zv(RN89e3Pu<%lZtAhu`s!N4{8%of+K`7WDn5`HxH^rs?F*2eqg$NbZYfbryS8eem$ z%g^bm!2RTsV4gzWv17UdUCny%GTW0~`kwc^rvyjY_;j_5SoKW88_^CPBl88ge5R-A z13pCCJc|3gyI%juPDikz$qv8zLSX%RpM#&-k#r7!QZRg6agBLIM%RN}_509*=jj%{ z75dO(evayk-;6K0ubAtSIr`2!?T}ZJk|d!B(%VTQDaHI3FEH+*2hl083^U0{ju;?=u>L9226~@J402wx9 z-q9NtAzt>fmz7022~WmW=Ch!z`t?Ko_>aB%n%BIh#CX^WLu{+y6?Kshp$D2+bp4MP z*iGtD2iY*Hjtts%A=&eL6V;&0XtVl7DLM;u@1-+nFquJE?*&tu&|ZuY3IZ;^SG*IB z-r?z*CT?-RYcRL%jqiNtJInnZKt`F_K2ESV?=2Ti`A7SND`CJHK<_--nUc(jZ-=X( zpp`$Xz-@hlf$N-M=|FGikP2#1Jn-0MY1>0vp{O{S<_1A()r$h_TNo^ybAn8;PlnVY z1a0A=)OoZ18CHR#cS?ej?@)RMivWc4gJS_8lt|zbcr*As49mOVnEq3mu8)H6eJ7~x zTFSA_DG7Sq7c_Z~SJXG;o%~~va#YYHz`!73ump|zVqTj=&VqC8bD#U%@}Rjo<2YI^m%+D|og)2( zlYp%Z!TtB&zc>uGc0KWlPpmd98TuY@CvZ*1o9i%PyuR>-FPtb40&8tX;6Z@QcpLXD zvq1pHUbc@5sD=KuIL5g3TOYj5b=fa6f;dg)6FFdUk0BZkOP{*xJ<~qkGq2GY^f`(l zoITexi|^t^Mmf&o#V>wwk-O}*`odQ8-ah~92c0AfPF4@QWXSof?%#LceT%&2gjw{e z>t3{zFQ+Xzw$Fa{vrC`|T|>97j_XV4XMq5HFyHzX;{sc<02a>PXZJeK_?gdqX3;~t z?Y3J9q=ud#6X-sRWzEIMzU|hpL&M=qJA?!b*k`u&(l4-sp~WJ!u_4HJ*ZW@a?tj;^ zW#|x@lzjs#bvhR9v%VQmSSa!Eq@nX~x%!1(CjI~2iDFPW-MTf$K;7GR7iAK-xx zd|>C6Y<1b`VO(Xf(n%I=`jp@g3k(uB@H*MU4wf`R_e)&3%U$kLWC|I2)KN!Oo0g6P z6L_E#*?oNr9LyDM;aj%NB>skaj6EJu*n?eL*89@79HU2~NGx`zt z$NzCJUbSFC&%-Dd@8kOBJAG+hsE6KU+p(L+6>~_!ieN0eLNHGtF8YlgSUXeQ5tV+2 zv4xd!aRGG*n#Mw|fGt}i#%UaF(Y8e$ZLxRxV`RfKp7D$_hxu(56wyd_krC#&ose<7 z*tmB5t}XOg)M1~&U^!z=Fg1pP(RL`ZPtapWK*(q`;tNN^kkNcs#W5e_#=>>t17xgX zXQunf!EpsoY1{Su6t;jdL6?PM&)(rf&=uw~`N(I+yLgdLI`oJGforytezDE^2H&GE z=yks!ym>G#!6AdTf!qY|7=*x)VJkXsuw)!MQ*t>c(FCL~+bu96q)cE2nE(gFiQJqur>p&%6HP0gjf!s6>MRiTM~t4=l`IE1!5} zjGG0jm8K5`G<44Ls0EK0m*5xjf&+_(yhqU4c+m;QQf8Z= z2R&U68Z`T;|D0;|z=XZ>u!lXYd0FfK+7o<`Eyflj7s(I-Dm=#rdF^XoTlgm`(4Jt5 zg$wg_NP&Yk&3!f;J1YF4q4kh=uu|X`=T{G@XT4u*9`RTn`;#O(p91!wiJ6hibZjA;{gwNK;g$Bx;5ydBiZj{r0>u{f0KbhTeKJVpj%(? zsH|53TlTW=*uebbQ5cys=8zz)U9xmYpJM*nnX=1LauEMQHokytw8iI={Vpkl{5N0C z8@_=y#}$3&kC?XtzUH4DqT>o&V8Ra&M5W8o6j<`vj1&7R#@Ri_QxMvsj&|d>KJBqJ zED)0o{4Ha@Tm_x{CgWf{1fDId(fR0rh52&KF~^jJP;wPEQ+U2ik&-eakbMV>lZ4|Vi+afai3!e=se1Ab}V-Y_0ko)1qMkOccC-Y*| zc+MnftI;r!eXbXP7y!V<g2PjgTN9JWK%%gaam- zMId5UbgpzgFoFqz#du^eDOR9lCMzZs<4duMP3XlrXYS|t34{rlQWPd7q2V`%w*NVs z9K%t}UK*I-5BjXSg+mrkADp17g}nto6F%nNs1+?4m67RcECp#8uLO2iF*l5-prO?) zV>qN3(+wLol)%3B(1~94uEg9A+Bts~AqZT?0wqt*F%|@2ZRKHP$)sfn1+A_joH+tk z{$%)2avTpzN`Lha-wW}4fSfl*O z)VMbKIqKcqFfTb;3S&&xC7CE2-XfNE%zuG?e87Q@2MG1m30*Ykk2*M{K2v-QF8GZr zu9qDnaN<7Oy4-6_Iq{57E5l?B$Ixo*3tsSo!v73ih8V-yiZ0_0ZgqUewZEEvH_kHI z7|L&d``a(vUZf8Ubz|*3Q*scuyKOOM!XSY!RfcKBQS<1%wfONH*}dyXZ$oo*F>AmcXT?xU0{R`+hxg_#3%Sp zRvNvD?*vQ8CpgnVwi_ES_tDwDt7n8a+gWY@n+I?=m+;vnizdt2=a3`#UXjSbK4Lc* z8@fcWOJ)=uE4{*tf zGGW)~fCLGWGXn||on;YNf-*=DCAq7Bi6DXkDk{cbSVd4*5JX`Eh=2h>cq9oT!U7Tn z5fqmA2uNmt9m0SlSLW}xy6g1mzNh2u+qb*#TX3h(sj5@qtvVIH`l=4&LF!yHL)r1p zF<+!!&<`1Zbp(cY=3=F&gPfa~n83W*- z`5^J}e6wd@&U4H)5fbwZG6bHZKWE&+F)488m>k*+4C4&St(|v}yfbEHKESx){?dF7 z2DF{c4CO#S2uBn>5c;LO&=0ch9$_JE4s9}NqK#nJB>iAJWtNYh`pDdyK8`kVMyVg| zr%CmgIS*yQf)zVPsRztY8J8j3A+Pkyj4Ls;m()|rkuaJW_|cbBPiU{1mr?()Z}u!@ z!Qwt_epK3hL)oRWN3OxH8|Epzdug6Rn~26bi{r%EEc|?$iHkH*PZ&QV@TJd6WuN!k z?3y~pyo&b<4d9|<`0~%!j&}1d9bD6(G3X)T6ja`j0R~G56i^p$2MFQNXaKd5VQ@vI zX*Kw7^!#}3NgIvCQAZsWClxddRNQU~ZM2Cz!5eY)+VEm>CQ7Q0X@Zl|+UxixD?A3ViEU9Dc$ZmO zqmyJ($veusy7%6D$Cb^ZXRw149T|-$0|q+UP7Luf2xfpo`p}Y~W9@WBtdlrf`6V4R zvP@P}XTktInKW2q5I}ulu%8S(V8KKZ!7c3wojohHG}z>eHkI(H`v?l@R2VSAqNv_c zc63y{H)wX?FF%PUZn)!4J*FHOv@v)ie1snenv1k}Q@V?O;Xnt-pow>n_nWq!y#3-A zzlf7626{|B=-_9SCe-AS^!38Pf_TX@?EnJ@I(X_Q_stAxpu=W>hd_vdH3A}-(*aZ0 zQy6Tqp?n!Mvx;|M#BJo3mm!N`{%bs51P9MNc`KCtS{ z_9-TuwEabOww?S_Kbe&9JZ0Q!6}p`;r@9}?lYt`I`v|pY7qH_O!4B8(rW{!`;{8Gs z6U|99SnA6X|MUZFA4X6{I0!Pa$Kap#;XB{?P8l*C*eyW&N?VxHn8GDY zCP4^f>(i6Um-zYPeP)8lHDeHj$Gs4G5-$@G+BU{1wE48zq_>^EiRXEb7&Efyf%XSN z+I0K~3tOCbOPigJf+8=xYpo`di9tKRlmq2To5m!bMM&~M9F5o#E^dqg5YEz$=Gz3W z8P73cW2-8C(~Q#Ok~VZ!sSn^iZdU&7q&xW`9QqyFaCTgwNI@UBT50DA?KX9qaw30+ zm3Daiwj>l}QVwV81!G6X?)V{3&GMY$9EM-|LH@`OliyzUyAzRr-cN)P2!g0T)OE%Z zykGRqyd%_4`j$_8;uB$;ZMGS6OjM(E!GQ8*QJX%Du@7wrTG?q*-{@KTAnGlP@cDOw zFkyPY0SCl-giwt!8goGe1Ein2*=c>Ets^X+n^AgaXe+xhj0q8n5gu&}V`vy?+9yDr zObdYQ4rpay%{YmL%cP)$UFx@Zp1O_D7GV_q#NMU(6Ma&BT_J9sNmADD7RVzJY#|MTRtAARg)%aizM-*dX7Y=ktw!4Dry$a!=X`gQM?K82M-N z*Sv4MBaG*G2jRs#o${0So4>}Lco6)tXoFyoc?&!2m|t;334JCDa|qHf*we;0%1iW= z`v(~nyKv|u*cnJ)NFJLRxS_m3KgYNtpMUa7-$Xx1oj{;DqtXvDkEZ>|`)?Lca$`P4 ze9Z5dTOwbZ3`6Rd78+=$={t~X zv|1SIiO`loC94c*n=x2ob&o+jjU9%H$)Jc1lb5cQVc<_g#AJ=LR+6v`0SE&@D(S4! zzz@M~s|>b^t5bIhiu|(5MCZ?BgvJMf2Zct(==3G*G!4Vz9}W!8(Vm4_YV3QRe&V5C z@mIv2cqupP5sfB|I+GIW5oL$ag>uB6m$!Zp$FoUjOZfONil1p)rMA;KBLOTWz zn4*CagJ$wdp6d_n{L(%%7~xzu>Kt0Iv}XuY*mB4qqg_MUGQgoe@Ln*$AzuuBIP-Y#(ts2{ zQS`f2J<0#sY zW`=S^0Kvq+h(C7pHJmHSn5~h)AMa#-aki0P>I}yQpbbgi$otj{Lpwp6+N*IR>0~0o zgamB~`dQjm+LU$-OehQbV)_C4(qw2~$TyPiHEfD+o^#8aj{s%7@mbse!DS@ zKM{6d7#qzfy^EUm2~ZZyGZ4z~+s?R{@@FA{-4Q4dv@(<}?JjktzHV{PAN>ODKJ}uJ zVg5n-+NpEMDbUbGK105GVR#Q%6yUEuANAqmPXEY)J~AT~WYAbA?S#|J@N9~U@e5-F z4EDUoj6Lap>BBHAwB+Zx(Xz=uNe~JnLl~k8})#(;#=i6ITtG3Kp=LE2h{(OC=)Qo{h44h!iznzjf7&_HDXNXLN?0tq~g4}yeN zaOkL5nWB)=LB@29tVSUyN!#^WN!=SHcU;yK6dfVk@>%U*qKZ%wA<3W*ipG`kE+3|> zdHLFXS-Xs;>0`VYtoCpgF55bopimE~n{>!DCe%*^st9H3UmD6Bff|BG>UyjCTb~%7 zM`a%&C+Dj1q9Zg#6`mD&(!;7ND@q8>Iu+W|@gjIbaF^0fdU@|q`6s=E4F}xui_X^TcIt35(J#2lX%E8 z;ZBwz9i$22WFu1~tgZJ8f5PDpZgfzc7zP2fM@)>l=6pfEkV)rMWQc=-74gg}P2|!x zBeZR)qX=(VTx-`*x2ePW&O9W>ppzykFEuI{a3Ka!hHZ3>q2y z@$RJetC7D^wQp6H6UB#i2EhaE5<=V5UX3c}e&j2a6>WU8cD~)T5FY(I?|yp!+kLi? zKgyX&Xgd?-Mq%{Jo(U-9QWi{^ETYB7xUdrgL+W__7?Q;>!s9)_pnbw$FW&>gVq!}k z*u}zFiG>n`>&;B6M~(d8p4!$%etK!&PF&=bzk1HSOvj*vML)?*pg7z1|BJ)1xN39I?i!pZkh*B&6t=tKZcY!%-uMFwqZ!!(<400Z{ z9(fO$)6HmeQGsV0y>rab35)&<7N|#G_`(;$KKtwwg*&V|@_{qz zRFNSZUQC3%)WuE>jSbsONe6;024d6~wzME*W2+bLXn!HkAn; z3m5Gg-Yq&E23;7mSm;zI!%(LfXfe2^-lOqm9hr=h=uMo|Ef#vH*R&lBh?vCov(N8M zP7Gz#2{86$Vn-W9`$_-Qt3^fL0|YPZkU%g_AI&75w!2q`u$aViRzLke!e_=Tw4a*c zBS4*DF&05TiZf_=(RMbQ>`rzr8Ot%2V2sQ)W4(43T{}%T{RiPPH)XuaBK4q*BS{B> z4vv+=pb^e|q0@Jra2OY|_(EI6e3~7FlP#$0w5%rEKkpIcfzXzDQ#(o+lbz;aiXY`W z=EBSinUBJIyaw%N-fP07zB6v@R6xfZ69MClk^l{b6a;F$NZWYxMjFT;3SQJl+OR== zr%5Zju9%C_9?=H161W!eK_0@qj(qZAGv)+?&|Z@U<|W8MlB~1SvY?G-&dmZH@=i2u zsjIEp`<_WXiHHsnfdK`@svc*c@d98F5FuD=Y2mLP`;fbQ_~9ps#BE}H?i_SDQ{-$lbeqMxoTJqG z@wrz)N^@khjyhw;l9;iI)ncbUzAn3ZwWQ}}Dr1cirDCR(#Ds$2YrKx!sb+jCp;hRG zV|T1$v=LS|*I;@|rCu&VTi-ZV_;Q-?ftEwfpFxH9JLgoMD!+#Mb!P|=cm>9!PO6gG zPqMA!x z8N9xd@d{|cX*sf-ey5+v{ENoxHy-?2(az{d3W^1swBdtKuL2%FdMX?f;y=joMHCTz zhp zzete9GKBkx4GEqJ$%Yv#EpNI&X{p*0=?g^p!j~fq(}ulT?`LYMZWfZ$=4)PY6#w*Z z@ngB=G7?qX5aT=>d@79>kVJ(q_WMg%Duq}zbokeY;pr>`8Hl?3@2vKr65T)0xMY|< zlb-h>i%!Fv)1}>OQ*S+ShTT@UugDUM`qV$Q@k8l_@m;a^hdeVhV=Lmq>E%*) zM0~jCKZtjo$MO>{i*!3+VK^lIK&&Mo>Wnnxo}>G~42LlP&L5H#74iy6w@IG~uF2b0 z@SqJh({UR%jfF2|BfA$8!odk`;820KhFwSvO}b-kwWfVT2{(RTmezi)gHsKab7vHO zSkS0HDK{(BYXx;%`a{ZiaC-QwK+=cJv(XXNN>EphicMNFm&P`E4@o%8)i?cbckM03 z37OgV#YFY9k~Yv&9p#J=HTK!G9k!qn7#@w8WTQfr ztjJ5In$M?R9i^h8cHSZg|5R&U({bvF=YCo;CQmu47xkP=*U-lo5U6CTOyFfZH5|N# z|7+5pVjkaEvt9iu{NJ*RFZ!c;+4hwEcG;xHcyv;tEKy~zz+KU%SXU5dV-M%65Y8nU zLYG?MxU3`Txt{D)giVJlOk8E$Tk@&v0Z&%)Tc>b^H0&o0`oDP3(Dea(B9|-TAH&;4 z0ndrgey#&ghN6uiY5abH;YbKqRb_TkTn3sD!As$ozjaxfr>K#?4jm$kyGkn(o)4c ze14;L66r*Wah&ba)9nlCOJh1VU*#Y#a(b&+=r(uHRPxB zWViiAPmjS2L*DT*$Cg&CR3%hhOgyaOwq zC0lWxFHxGjImfmf79Gibl^up|5QbH*A(0e~(n&;WKPdJi^LK%!O60VM?$)wYoS0uM z0Ua);#`3wOYVU7x&J`aa{8e1Rav!6F377s*@WOL4OyYf89?>KCQL26%{eE!|U9r^aZc5_eZf8C+#+ITVZzj|b(|6@Z zRefvvue#4@Rkzm?(QywHe)f>*;&xVXXsrtp%%PeGV+N8U2T?^ZyP68ni{89Y?VOA| zop6y|N7r}`r@R)?s~wl)wJx|2yeG7+L3B-d{UIfxUvah7a59rj{tDc3&i^v!2zyvE z-tHT<#snt+N+bi;E_afOi*aZ2b=rH!Kj}do$?RZ$s?l$Ev&c;vlW#ZvJcrMxZP&D; zF)fHn;X8P)o3ZYa3A>{%7}1tVV`PMG$iGG!4u^ku3e_lOLU~xF;PfcU5>IvNAhhLi zLQQfxTXH_eGb;JO!Tse`SziXuPp9N;GzhONw)ZFczoreH%8H|Kj#)`Op)G`s6k=xP z?&8b&>a(N&Eobh!HR+SjtAIigbh+$d8Kw&(tmulzwoP1q>F)8(L3%=1bRP(32Y(Up z_+JowCkZncZl&;3=B{v2<1a>Ku_xxx0_b-(jod1 zka7_}Ua@V>RCVwVNy0}-JXl2x7Z4{2Y=~kBg`|RcJ}!;M+Wf--U61s%qe%yyb8*c9-6-+=?^$#px1TULr?kb!eZw!saJL)dSyJ%-FI z{;*p2U_q@^7F_Fv%cF*gd@3swI4@(aIkhM~v6ax_K-h>R-26>l$fCS1_sE61Mi2Y-W|rKae-E z#wm1TH!|4XY&G7R;mzCXqqGRD@!XgyyQJm?!2-mx4Pz&{o4I?cU>Ec^&roA8a=hJ- z$6$*(-4+jz+B};o z@z1BZ;_IKEf=cxygC0|$uZOdHcQwA>c&Pv7MXMammx;E%PB=kgjFz3XB;J(FrPb|s zD)2+ohT_oH)ZsSdw5r_z>tr863}XR_XCe=1Sqfecy;>1@A?2Azah?@*H9gUQKY$=5 zi=b;p^UOuzVk>&xt{)6?w2!64}Nr5P}cux z@A*mMqX-mubnLp8hybpNCw&YS>B|jo1!dzio=eS$dl-lZh+# ziE&T1AAb2+Og*xz5xM@86<$j^S;jR|^S6eO19)-va`P#59)=APM5%0Dc9ebcABFKR zg`vncDZ)_GpG=4uWCq9x>TAZi?BP<7B;GpYb6ufkMDNq0cY8=n`_M}h5u*I-+;Ygr z7Remk5ch;mx49mna9$R_Yat7I54MH*wB0m=o=2rxV-Z^GWa%t=C>^vAUhYg(O8&7;Y&C!XC z6?L(z@TOW`zsg#_pqDS<(mUH$WV7YPn#o{mcDOC#L-pu#?YghO!s0TYeNc1@G7o$P z&y~p?p<9$XjkWC@+wjHlbG3P9$-ajEpAi#TYzCTgNt(FiVCH>$Vil$H!tF@jG#^Eh z;KkTW=>(*{CQ@BmPJ*>B+qW;my`LkgOqP|!m+Gv)&$)Ic=f~I~F=#G&9nGMDa^}|j z$^8|6C#jtrsndaM-M2hkzriz&g-aFY&Q=+5?X|V!epxs5%Q{m1(4&u7)Zcu6OMd8i z%ETaddf|+L@JUKs; zADtLJOnkZbX7)>ePqY>T@kdt{_3k)HM5Hio);`2f(N4q0x(`s+9pw(8dL1jsg+z#V z=--@`UQ(n1$J6?a`8(h zTlZ%Q!20{hRH-Qi`cuhn#ce!Gv_vbk_u3!c& zKF`_^-sULQGcq#xO)VB;%5ur39mlhdEU~Ers7Da4S3PGP^0g90O&)H&3^dJ+$MP&cuwHpEyTjvajBS5Y=?9c}C5gi;x6oY*(*@vK#A(p>jY|1GaJ>9soZ$Z`@6ka|TtZ_P zCnHOVz1!^VxuL-hQY4WW?oLm+$&?GY)mXClC?LU;niGv zQfq-xY9cwWiS`?YQYb$fTz5JryUzXkcKhX4ms;L5$GA}#46E-vGpAne3F`ZeW*0vu z(>WK$o4SI4q1!)aL{%+)iliJqEpZTWTQT>Hog?9oQ-JegQ*DhI#v@aeT_TMI z?363NA7*ns3H2oW{lo$?g_S`ysP`o9?W7dK7te3`YNXaiO@Ztot;bWpqZ+PzP!Tcu zoV8C44=^)GP9BC4a5t#+K@;&UBvkko+kGD-{BnoGa;%f?^RK9TpL<1WJQn zWv%js|ltKH6MRChM~N= z`=c|YlPq3d&hvT0DSqm3%yGrMP8Z^O-ZOOPmWu?odYB*Z)k!MPxDJ zJUky^q&(9VtJLu_DXLSolw!5*{EJ;g9zpNKr|uvZ@@0AdF3H^+ozbU{h9xhFxO6T* zEBw|e5=udF?1G%#+QbM2ZP+)a6;P(;s%aU;y-q8D-tp*Lm3OW~QGi&7FYO5(&56Lb3B;C%^!Bd-#1v-p^|;mK8v z_Jq8 zt_tEc6mG!-mx-R+>W<}IXe#%6*o6*4Z@s>1)YP{ES;E;9r^kTb_%Imyj0cT6iJ(tx z&baSD7n!?#inTo!_fWPzn~U~2H)SF5qgj(SK^~!rr`rmx`fv}^S?CHq&jiBV6P$}T zBOXW}C`oMy+=Wi~NqBR981z9BK(i5fN~YM-LKQ+YYSL4zu995NKbGU_BuVnCwu4`Z zG`MX_lQidr+l&eSP!SF}-HG2uf|Gz1!SjmM6ErL$nh1vI8C%L~cb`|s zr&Fw14PrPHF6`0m4Li^0j4p7D8x{HB6UY!TfDWKpF*c?V-Wo)@<>%%>Yx>8M_3lA0 zMQ-4UGsDmivdFr_uF-ux8n>j2yVD8u;`^U)K77*A1jnLr%lE258ZEqV+C3h(PqCkP z<$(zjD2ce<$rWL7{typ&_5EEF>KF1tX%VK;Z$X(@SiLr^E9)Y67rDAqVT<3D-Y@^i z@l$A_9Y%we`|<~&u*huhO9ZS9T9iv%@i>zxHqdQO5oN^?BElKhkb=3DO2#rC5?cWg zkEwbM#zMz-4IR*V=`j%Ib zUrJv2roW%T7H~=w>5jl09Xeg%R}#KX{~@nAi2e+&JN)dE-+~(ZlBQZ=c^`vEoK1Qs5us6xDw6s8PAXk-v%ry_B|WU_hneJBn6+FUVzk1_fR5HV&NKG+bQyt z3Vo!X{!+k^GHZ@Mlx+gWN86Q_wO1B>`qMMum))&q=A0{E4t^){R`JOu2)4r7efzK6QRMwJx zWc^|18CfmJi63#j{C$?HFvI22-gA8WK?3*i;E)-ODk&Z+1nBa(UcrFKSi24O^L5RZ zLZyVvPPl7il_ah{=%b;Pb>{8hZshB8y$nqXWP@K{e-4>iRjBiOLvr-Lb&+F zpB#cxko813X>k!Es?G}R)g67f3yHA_3EAZ@{{t26N2;_gKRqkw$b zEi^*Z)QylU?O|7o$>pYvNI&t;L#4x}$p9g1m8W};8;$KA`8`u$BSd#4++NE733ly( z@Kswy80Ux_2E6g%9ng_bR1)J;t|Hyu%+KD4w3I$WG=ov&$z50)xr3}PYRimU0?7Q{ zKEg62L7py1s_%}qMC7QV*Tq5Jv}100VRayl%ij;TI;+mjfIUeGp^=BIzfPbl{exXY zmrgQax85J79+1>7lLPwwxjgx`(Z{>2E(;Y&I+Y`XuBTc~JhQu>uR`Og7v)yv=k!P{ zzekbE4i+TYw6YPqM#B+LB{|Ig`d0D@X}~{fVz|xfaDk!D@DzRUV^CdI$!q5o{;c%* zLbW)*HK}B%j%>A!3JGyHV?@0I(-JO$&3LES6jg!bpG+ch_&S8TWr)0G!^IlMs(=tb z(Ok4GIgOs*0mK}a%<&Ip(kfYh;;8oFqa#)`TJ|BtKdDC1j)A0J*9SK4Y704X_Sef8 zsmH^foQ`+JcbCO{w=egGoLf&X=CKz2oJb?y7GDo14q_NYq6|jZ9Fw3b6gr|mvK5v~ z1oDJKDW@C6O=p=-G4?KH@$0hr{L=4jxyS{W@SFep8!86FZqz9nf_RI#ge~=e7&SSa zLlSZbJ|evSZWr3RQ?lD`wd7PBmLRwB(5XCKR@m`3GtUdNPHS#>VxOX_SQDkQ*EfDt z>zUNKP!0d1Dy+>4P9c$e`*JuVavITf8oj>$pYjJ|L5Yg8^%}fqeJ!mlC>FISZm&|( z>vjR)uZr}cBUkUmHNfh?g?@fnfE{QS7$oY7$v5unr0O%L6GJAhGHo#ZwA)lDu=Hj$ zM>uAufB`k1-~cZmKN)co24Ro-s9ybJm&QIc%POfReOY*pB2Up z%T$x|$@40JHv%`zL-dmWy)ewHeQbcu#;260zdI^RxGOzCT{~#-|H~ z1oqNI2;uBq#I?R4q6;Ps*au_0c`ezxC^)<$KQ`)eLntqF5NB?oVmhF6Nyod#r8~){ z>mqiv))C#o4xESz$)7Tgrde6flu8Ju_r@1d--pZ%GKgmCXQ1yX3W{F`e_F7n4}Y)+ zrY7KaR?bAaO(}BNyv1#p`LbUfOwGP6{&-s9mfKHKXL4&yXNa_6RQ0y?onf{rJWix& zC1OWC6l;loI*-(@iKwIyokHxlp0qLFA+tsb|BKWu+E;G37wgMYLKhY*g)KXyWK=su zMoHMLRg1oSgz_`J@uH8mD2Tn?Rkz6YoP#v7Y#;m9NV*(xFon-A`tcffbE4=jd6&f< zCG=NA%Ve)JZu*FN+3NPiuRp2{`}YgE3@O9s$%`^2*s%@$(&G@9pGf)ej2%T<6ucYE zeu3Nk`w=O!sfybI`}=+;)ORp))$F7Yy=91{Vv-uwU?^poMmx!-hiWrPuLrpqEAYpT z9`(D^U#+x17Zc9Sd(Hv}fYvDAXSeBFU!*yfyhFy11 zc|+@;j@s8kQ|;ieqE;)A;_I#;avjt^9q3!o=^ickAmK z?+&h7%(7z!=CkFpV~VtuzZ0x3OmCSKGg>f)dG?%MY^_j;T<5@i5imrpnyZxH@Rt22 zuyyI+pfK;RojPJFe87P|-Gnwcm|J-Mj%={h*XHUSm|J0$O${jujH)#^&`$8hi~F*Q zIB6t?4^At-w4-EdON-e7~UY%${wwU&K8%WLC+#%26zYI{kvaEl&@*bE1$8+*Qe#bOxm zJmEl|{?(DeS55qiIma36yPLD100J#OPYm4VUoVIdlZ@qetCqu+ym^%lj=5%ORrN`# zvtu6w9oso_s4rb)vgaZveV*>;&)b)juAQ;04UlE6rX}C`+~BB1qG7csEvTN2>+)XO zN_jSM5UarM4XU>9`k$DvXVVO*{Up!k>w_zF8Ol;Uxwr53+Slivx#tE*&>{AtI7huY zQqrP^j`!I#7uYA4HB|W8tKN)_6$s*MwYQN`L34U`IdY**IQN?h!FHx$zjFR zI~-90mv&E4VydN}5gJ`jztrwm#5c?%#mQ8q!x)adUg59EWfhQ3GlO@!>q!A!s=K?F zE)>!C0jK#1``uwrpqKk`c(eQ>BzyZV<$Pg(@=TGiIVt`Liga2k;&}D-b?i`>hH+1Y zt$&4vRlS3TQ7)ZN4{Pl<4mc^98o+P2_QIm3tY3f$HJi^Y8uMA2iQs2(jc`%XsyuHn z-HON+bCkbd%wqjK+%WzL=_ZEy(mO2|gR0|USupKx8>_KkcDwqZrhd<3FJygPVMVQI zSzfO=721OjcLke3nd{*NYyQQ=&pyqZIQWS>pP$8jGF>N7d>nA~y2Oj^Cg-!L)_$TU zW}HsE6T7TNO%bl#*EzdeTNgr_xV_i=_2(@iK~7fXAu&?_u~RvCpZNhaIx1W#MmQ9? zXFkO8bHCd{HH<@aRx4&K(NeEh=x1=Iv-Jzghh>%utvt-Cwu)+h5204h+RBbD z21+^fK{F$9v4+LZw`u*_c6~fbxZGYV;%-zw_d=ZDbPwLR(DUIhwG(KEQlR>uA&Zz4D!!@8@VRm8&1q$0SPK)POfn>fPu9MNr4l{AxWRR$ zCn(UeYAKK*N!_OXF*Lr~g~S$q)K2)L!+tYzP)@3+K$6Q^{DIT2G9LCWC|~yht_UCw zT44=S5ow}2GcT_=vEzf)BXO}ybY(>0$#54TNMZjG#=V#IS$Z;f>F!??0TtEhSvZ-{ zrkDqi+==;>*aJUGq;zyBO&ut`DqT5VtbWDpVJ_?4=S-z$%-J4dU3Cs6&~i>^pMb1g zWERkCEULsc*{EhP_6PkCzFxwFrtiRp)0K=U2nI;vt9`QwJF-o{_@uCWlhmeTUS@LqDfg&Tiou-wb;+TCZkUS_zJ)wS&fXL2*3@j7MTh(% zQk9!s-tYJuPd_}>d8?o5(!=_J;qBwBg9M9hvhtDsxRDGThbfH3-5G-$AC0WL`4AouTtt?ZWdf z6mFTjtabY>x?p%a#(>D3JBZ_GEx$w9$oJ^4w#PC`36TVm{G8@pjQB49WVRY6THp_K z1#%Q1H}|^sJo9PnVn=sat5;`YD8eSDK@ay`C{3mPQ+S|kyWXHul2jY9o8>Hk#XRB9 zGk^T{@D;9Mp2Et}E9P0&b*f9V$RJz7tP<+X_bFR0Zw@0b*s3QWBP9N**LVS`h{tMi z7THv2Wt12gp!%l7L(kH0Vmj^E<~e7^y7{XyNX5=WtdEU++&QxdnH? zbaK4;eD&t1#%&q0+*m=P74WeGhypm%9bHByEy01SV5B*TNLw3Q7(bKsOSg(Sp+&Fi z)mXIJ?NZruFyfem$9zJ~C^=l%c-->+Hp75VY=&5lDYP$Ib#pq?%I0;^V-0LKXg$S^wGPbD!-P%NY6UaE$pT6s zh11x>?ZK*yv$eZ5OxMdIw|bMHYS99#zUIdBGfX>#Im^9u6WG1lYZO5>;}5EeSF@@= zX@QM)%oTgSx!Q$%Ozv?!R5ERv&x7}YS1(KBV~7~0$hEbq{g7nqhY*%$?8FtZ|8O}{ zpC5?Nj3|mcpS9^ElP~L3n1meyUJA2v&qP&`f4RW`){|C=IE_C&53Unf+Hb|goX~Q! za0UYY&7W=Dq06@rRVIX8L2BIux1>jLr8?uwgjfmjgLyuv?hXg&PYmGMfq1xuv=fG+Igv7hLS z_zW%c%GX9}KlU;b-4DXOU3eeI*MseU9G(Ly(Ih#Ht1W@MBi>IMrFyjJr>K2$K z?*bUY9FLl*s*sI;@7`qoA0SQ3UWYh+i$&xsCM?Q>O^4!2PrZHM|FR~<>-NIglL;!m zzf|anDvjNH*vWxteAOS%MekXE1ZKv6guZrPWzr5d%01jxUr&nS06vBe4Fg`unsQ7l8z?$<&{3hz#PCU51c{KkH9`4`A9oH}X4F&R=lPN$Yq+;&mQj0PU%7uA@m z0%(A+d<8ISZik5A9SjyvR$3p=fT56`lk}s`hkv0{V8VlLYj+(?JCJ1sB|FVm(}|ES zUx4y9^Lv-om>+wK%gbg3KcrO63V;4~O4^J#bqB?SmZ$jzI8NC|$@FWu#3-R(MQ1u` zLU}WEJyK#E`^(zpQibb_DH5o6?{4?*!nKc97M)bgEE{i5y+z^DSy}>l8!!5Bv*Df> z7#P+(q4ddAsQYox_{I9IrI&hc$~VUbxzA6;=kua~Vl( zkvUFMu||(w9cbNSKct{0Ew`P=o`+GXZHRLoXLCw~iLZmaPZ222MbCjW6AL=7Gtv%V zR2p;npm_WYuy_KI=+JhjhNI;DivcfTyCd=YCj}-x;7s{Bp(QvAzEf$?b;09o?AP0( z>a~RZ&k^plsAeIyGG5Ib3CwtFeT~;Wjs74><5i!tZpF}D4&&_?bYt-eN2$wRrq7;4 zC@9Yy@2BXLI6h*4|Lxf+IFBt1?nY^gA@xTtSUcvzP%fzID*`#$3q&o?i&g7M-Jo{7 zvgF{GE;N3IV*rN_|Elh|WwCORois1&%a|+nJjt&*)LL#P`Kttk@C@9vK0D85%#~?M zBxOwjcC>g}@`MK5wujkjBzzQ~AVdXG(9lqdlh!ac6LNvkf1>abFBey$6vN>)a3WO9 zZy8>Nx4$^=zE1zVblwf?DM|9Y+~CoI&8gi^A@gMTZ33&8qFQuH6k`r#%n2^IA2H_c zAedzWvkMGqLZMH>B6r_!j{5^H-=$#&F+G4twAK`$#%<%4`n%gJBVCW1E$xA#`o9pb znc5meG((i`$~jeX01V(P^7OUtE+>Lue%`0+GF)(1m8-$95=lcRN|%G(BGJIs6WkO) zOYikJ^nOIKKHUZrrpfKR#Yt;f4%ebmul1b|yXd*{W8P`;lY(0mZJ<&&HUbbs5SSA$ z3=SffUD>w}myKn^5IZD9(=FiY?P=kk9$o*CiAY}W#BUmw0o&e0i?!IQw{X42TNdX8 zK*_d%Cb)kZ!Dno@uwwe@Rhpcw*-40srMk^JbL;iD#<8**S(r-`^@5a~9M>K7hkQIDwgbS$PcZC>W_h&r18!PtYDQLXCJh+y4lu{o^ z86>JSeN{Kj+vf9&rc*uNeDDWnM-O8WW9AHWhh zEs|h$!LT<^LK&&Y5$4@KW*7hMI7NP|5}HdZhe6(+&WDt6-CtJ+>VHir=z&M;XDE66 zld9WuZhVBHHu*q3oWu2Gy@l_4zk*y~c*P1YYyUb%GzT%;>9UF83aZoN^7cMs;Ot?> zeLE!rZk`51aF@_@gP+7g(2=5=*%Gv_4^9rX2*brh&jXo*SjAspVz5@jXSF32;He%5C-$>8$X^VX~u~Z zmvofz-am(ZA92#=;CMvQXhXj)l{e9-49u1! zn+_tX#$SXiH&A#BoL9z)2n=t`;yNWBElRXihDp`qp7?rMu3+}Ty23_zIk3-L^@Q8W0Xe+Sm9ohH>gCWV@~^GE{+zN z1|ikghdqy{rEqRXFkl*K3X8(9B0W6Qrg7c8*WJw$0D!W`KXz-j*4zVg$J%>7O6`)& z?*|fBT3SJnbxYu9EKx3#fIEB)VSmt_%F*8mw~1jy!kP9#R=FPEvVKA8>|}{^@wM^H z$JkSt>@Q^(LC#PVT++~2WW!ul4O01*c%zi~>XMt2A&;#1wVa40NT~!6rKCV3ykk=A6vxQ%j6a&l2{qr?^ri=Vk9Nq#8?2w;-iM`ZI zCNn>bXAp?KT5~Fwk%FrGL3?X-m0=2SUltLSb1 z4jtf=vr9%)PKBkFJ8hA4G($>pfmBr-Fd`aZnYxsMTy#e z?ZsMRE9~mJmF;50X}ZOrU$(g_s=5J91i$zjW6RKrffX~9uZA*nTa9`5H6Omd_kGyX z>k?Uij{Gw8CqlIG*Z&ZFiGS|qSabaD-kRy+MH|>u9md|yC}0R~#PJ;^qHDw7^%@CB zS(m!jnyFTPU8?qq!R0X;e6HHG# zalgotKm&0P?SW0vwj_Zj-n&KKdFSPl%gubK?o-np$Xk8^Dv$W2h!N{KG>NLCKHgN{ z8LcL6bg)`0HG%Vz4(31_8-&MDu(jUehUy@GG2N zXd_mX8TO%)hDD-#KxQ=g$qPS=rTdXN-CZ@_k<v z49}rQ+?*%6Gfv#pSsqNVSA{$WF>47B#lh+oNg9deRu|Gl6llQ7kNs}D`JP{ddR@QY zg7z@o-m+coJu<1a=%Tl20DSV%5ej%|Q>-|Ey~{#RO>-phb><{*X$+4aR`fY|*TukS zV-!Tb20APClZTSJg*DzS z!N`+QiePW?g}j^;;!T1_A<{tFRWnX_O2b8DFxfKLjH9saBMa~Q%S23c7~A+8Yg!jYhpy z^g5ccQd1qdf8!<{tY2srTLX-8jQUBvv{x`US&C}qzD%IhN!Los`cG2<;3KLr&ta<}at47mpF6k%}vi|YEH zC1*=#cx+&#a$r~!a5tJ!`bh6_pOp7`X}SZKm>WFt7mLOT!5=>a7fwRuL^FfW02@l$ zsQg*+$p9I6o=g6=E1*>&FbwZFAlX2%IN$I9^&bDULcQAsZik6h!!E-I+}F5xC<S#3I$^DTGjH(bI{ih1UxXGbAfmf!8*%=8^cJ6ie-F|ft#eqg$TJ};=7d!YG}nK@PjvVT6i&T0SOTdFjvT7}eq~+-=$XYo?aNE`B*NU{pi9-dQ7w}lfZgt;_1KDcTA@^r#Cx!`dx^4K}UECh+-VV2k_-RFiu07;@da2xES1N>b9MLuCs@*OB&gHVGbAk zRvaxn?CQ<3I3>@_;z`r|Le5&PW3uh*bI>Ri8DO&TIek9^4SqyMyvs#XXr1QXSyB4D zq=E5KM$;{z+F88P3;- z`AwziLYkBZ4`?!9z7TuU?7tuT-nOf%>QDF|t)XPsr8>h+gDKMc{GzD@S4UEajG)yL zq5o<(Yw1rw`Ea-)n>NM7zZ?hlBp{~B5Qhwp$UbQ$0NRBachZ(S0)9qon1>lAm?()w z7%_#oahX+cr(9VM56!uJuAaN`yq&FdQTU=u(Qx9g4{qAW zaRxL7L9CYRMjRZT$R}axaf@BPan9uU9(UNZn?KJOQlms^(+0;sfiDKn1xaZW0wy|) zvXB$hc3J)CuN9B0D8zx(uJ-%x)aq_LUk3wvZ-=gOi?D|1Q~4l36XY4Cmn~DXK#D+> zimG^Qrc4@L`u?{r6}&Mc$UM)N)ar7QY-Jpu&xeGtHSpoW?^P~%`rJy;_#6O@6(n~R zX1f3WC@F8a3E0g_%SN*1#Ypdy^xQx;-(ig@e7?x8*Ae=%ClmW`%4Y{psuAg^1>;4Q z6umB$kC3PBpD+32!c*imTNm-K=a~JC*Px#MYSk~6aN13nd>rivRKeJgjzAHoVclr; zl-eVZ!yOTC`jK{g{D*r5&c#|ZE4c1U;^$&l+Y4ACecCc(KO)~s6+}85LWv=9zbLxM z2gJ%SFK1qRWQ5{K@?^nejfUs=A?Rl?a-OK2AG3HROn<)|1ZnR8KE#6ZBj7vVE3RR~ zcu-iDtQWTpuVxr;fW*E|XEF(qW5SSG!_df(FTPiR`~8J!?fo(| z*Z0dm5HD3EY@aa zB&ji6_l@`lZQUk~8g<57*3eivCf&9bdlD_yh64`D$4^FHI?rXt8$S)+5$NMU$9d10 z{EdIFk@Y5KCU&Wv59Epey%zQ^AO{6oIJvw(>jC>&URRBbF$P>fi_wXEqUk%Y@S=kM7MmNe7+6>h zvTc(qWh^Bfy9%!sf>C~69f$UVwgFxN7Y_P=tf6U?GLrE`E^IrYr;9d??*r!sNhR2H zA4WOKoK?X9#yE$6Y_QHp5cA10T8J;dJ^e{`NzIM$kEi`dU2zq`JGF5=3q*x8s8D%$ z|BN_v_@~nfNDj;Q@A)5n=#XgQ0)*CpkszJ*=)3N>tfYWnX!aa2RC z9ydx(VC+acFh+J~syRP4^X#@{+&)g^e>0~{C=^+we3@}}Y;H@ttv_MnoVEU%oiQ|l zZyJS-K&pqE7qyu6hEaYe;N5BRFvVUC23ts#M0VDCDb#L)Q63{+{SpH#CtY2r_8v>4}G2|ke zMhM>brUA-@?_^%sMp!<^+z_}JNMTV6{Xs*+e`V_Yw&z@~CX6@6`irI?dxpcI_JzD7 z6HD<5KK?&7Ne71K$ii(oWB%_w1s01(wHRNa{4K37``_>K-@nRE3Uj1T{&<;x=nc%? z|D_x{pJ2XT5_Q@f1}OghumAYi3e#xo=%~DZYRdl-Og6-4LzyBc8lb{JP%NM~+y+zdKKV{Y z_k7iIWpqEzq`&~>3)j-`7m|}#fLx_Tbvt@gIqzx~2dcN_)8Ob_3rP6loKF8zeg8{9 zz=Wx&(gq!+QM>hloHHdBSHEgMGApV!bOtQ~unHVLIcU%=0V${v(Jc6D3yi;-Bhai{ z!mxtC>R5oNcx;*kTemeRWJ%Tn8jEeaw1<^v_daL;uZ?3rN4&GR~Lriw2H;@ue5 z{(qze(w&dq2^A7=RO#M=;N%JK?i^ZXnCgDm6&DXM%2U{Aj2_O8ACP-+;RWcsAW#aU zpI-npmoDHRdS=g^r@&B>q&YhdklVtl;)wmd?eD?%!1ZbVqX_vg3ARe;T<+73Mc+eS zPk7@gI-i}_vMi4QxnGtbX93HD4%!JYA!Zly@ESsWaU3-B3!sK^5Dyw3sPQ~2 z>CfW6-RenDL0Q%gGgvk3PvVEw`umb#tmGKPJgT){a4!kP0<^qt?*sNN5MX9@{;R(z z>K~fkF}Zb+yDZ#wQ zk{n=nVjq@q(vXr4VlzCK2uJrcW-C}T%yr>k+T(u%CLmlsAY243Q96(~5|Y8gNM(7$ zY3ym+Ko$xD4N#CPJ2LaSJxT>_DX=T)6ZVJujyFbHQJD%NEnByz%F4{x{$W;sjhWCL zASC3*P`PxF+EF9IiYLtU?%w90iJ)hfL=*O>Pnk7v3%lpooc@)B;qv#q}hf2pYv8jPUzU$o%`!#|LJ$I-gqnfzQZPpkx!$G>Cc2**9f)A!YU~eoRG!h17Y` zXXDu|%zSyyHt5*OlK~6br&iMy@t0Knul3V`_4}!@W&`SjPz)Y8Nw3&^m!ma&dIPO9`{~gtahm@R|Oe^l@mpgW%M`+9?qLYp@7F;66J)V~% zsgFQ{p;KN9GV@kY=ZUVi`_cDoW^^_u5!U9Q8Hn+0lCl<1(f{wJHPeGl+wb{>2OI{C zxDJdX>3WINvBrWaxLp!?cRmT@U{o|6#$eeCJBS-{-aTBv7BnZ#it7&}I=8?{WzOD| z=YnMm`cd+w|9@0&9P|jnJehuVH83&QE{s<;@LVqaVgdXJ#B^6XMZV#f9`KH9aum~Pv_`Muz(jj)8!^gg3k;#J~0(Zf8}YUxcCKa zNd?OLsyIF*2WHHq|6gfm9uM`}{_&DJA)U}sB1^{-#yX{xrLdS9RW z`#t@DuMeO*m`R>algGP3Xv{EnX&)UGFuHvgo9JGFIJMm4E41U&j8M>aTvG}qiaO}V zMr>W!BPf%X<$)qXtx-fwz5>+_ZmN6KLK#Hh2*EB|XXJ(75>(77g?h!UHgt>tH~@7Z zu`1>}`+*f^Lq?g$7>BAiYKG4yak$AXz+(~^i3rvcP^20w4!=!35Y^0)PrvX}QxAv* zF&Gg4baM`17tAie5q?-fagt;E!LjNaaI7?8LTJHEI3#)7dv;&GjB3u@E?np%0XUm3 zo{Z3i-G7T+y47`h740n=_DWdfjGF{4#gZpFJRzNh4q-?KCu4(H(kV!EL*KQgA8_pv z!rFh3v|KhzM!z+jlt7^NBVx|SP!_m`3zJ9Y=*zeraj65TsL=_3ADvJS7ry65S3|;_ zLN1ZP^X^@+YM*$4|NgYGj1L95%>uoX=a4?^4xp*Nn;y+V+hX?othvP!tj*Y$387{6 zWdIhXbz7D!5}rT9Zr_z1FMRt)yF&4xP)-feKO{D6{ASsG)2k23khsoZx9wk~fv>;f zg^6{&u>YqYU-1PDv4q_iZoHto^Imb+9`M}4w_0}p_zE_c{%GL!dMMGY5()C2IC||d zJ4R8SDVsR)o<2cm#IK+eG6>}J_;Oh`k*j)8y1ZirZb&QlQy)fyLw*Xwwy3_~C3`pI zq`!fllyPb@Mj^WY2>*t_EbrXUhV+)Sqlr41oJT$j4b_O)jK_OXIWl`Qdt!qdbh0%p zhmt(*o>lUepT09m70rI$-kn~0(BVwhOjLo0m6I5S{%Q|zYi$&7?XP25rdpNbXYEZD zR*7C*YJW0%+L1Wr;5T|morS5?r4jr#{wbwp+MAqL!4;YA6f7TdZTVU&XZmY{hgB@o zA?-3;@cN;i?bW&$9e&0s79l8JLMU-6UBvAX!%iYP+d$!o$rC%~q}#`2OwJA3FQt)6qXVUstI;z} z>B}kSirO`d-}JPqrI@H>Goo{{wn^qFdKc5L>Ls#2_;r@I2d=8D&l(JU?#_tKQRy`F zG%m^A@mtQN?(9ij`Y%cYOX{QUy((Q=(BSC34Y?k zV}q$aM8$-0|E<;e^ieIAux-=bdkVhHxee=Eo}d_=u64=&(k#E4$QS{EF1l`TgaKX4 zXFX2l04cgzV#SdvstXSdyDcg6w9?sQ#SsJTj{rtJq(;m|KN6i!Yn(V-Zm*$ ztx8=M6Qk>Sti)8hP|{(Y-J46kt(9l_tc3zsWYm`X5F>JZh==!2Y0X%Ck%2F3oT9X#yn_KR#BVgORh-aKnY>cFzjO%xuxb{OV z1<}2l&r!BWLH32y-y8hec3c6c(`w6vg0+pMXoC^J@2F5@=F~+US5{nL>|`50Bm15B z0b96HknHZ1aI9-O=TBJmOPpzDZ4X|X(Y5UFxhGG_oubn4l^H$PMUw@csyfPJEgwx9 zQe%Tr{cQn(~1i#ajzALW}}p=W-jvW zQ$;e&x6jC$X{py9^lQ(=uwunBHSkQot%2T5ngB!9H-jH9XyHkWDE#2o;M{!nim!Tg zejmecYgRrz-k{C&io5yNWehDMfnr@K<4nVLoqGdoAj3n9=$HDt^Rh^$S@sU53C--D zb-JAkslRvw(aKy`v3Rpn_v@&(FfI*>b0dm}A7^2%8^?P}f4$W9{U2IMZ^dS12R zC7$VMnx8{ifBZ3HZE5V?ae90@H}$>0dK^5Q`yF3<)83@i)N|YQ`WSCi|f<8Xt z1Bw;7yTY03FOSijd!n5<8I0yulV&49q7|w5>^6#vVrFNQU4@e^E^l3hLy0+|`3->xZ zG#N%%(b#c~wX4z88%jsKL2=&W-7$3Rz4Zs1tYoWSO#9hIDDu(@)46Hbdn%0RrzS&j zN}o)2=tc0-=1td2j41UCGxpwpD(i#W;1Sux4cRvmu7&lysk(7bSEt~^Z;v&+47p8x zK`%2pXUnsJWN2_|-2b6oIJ@6^PQePe0LDO*0XT2=2vwt=4HO+CF4f5p0J3MRG_I|ux~HECpF zHtSaw0hZY#t^XfFw6VmK`uLLD*UTms?qBB96i`0E-ioEF8uBA&Kwi5Ewvybxln}mi zE&uj1D^R4ruk@?woCs!-JLyY6kWM$UO)y(v{a-r=527!|lDwgVF1UTD7nCMkNW0!h zgFWl|G=l`SoGV(8a`(aKQ7lN^L)Nq9kJBLob&EA83cE9z$SM^mDwxKR(b?lXRMkWx zwqX#IxpKJ}f=&!2oW}!KI!+8a6Q|8r{k(Jx67yKE@x@YD2{Z~9xG8_m!510rsYB>+ z%hAx)AZ3dY+Ou*x)6icIohj>lS?N9Dl%&@u-l+LDCD@5JTdVx{Xw7;{8xoWU3_d$M ze5s4_G?hbBx|ypIHqf?BTRT>vv<2^y|F9OFDHOCO^@VzSgFvFk zIdEn}MboyI8kSz&XItpdt68;sc*UG>>f82KX~BTZr?*Er4{z@~zd29J0_9((K?(s8 zATLzmuo%AFI5Rz(Oh8m@UQ_tZmhK=tcE*XF8g_QNz`6Lu$zhL<5dA-nf#R{AW(gve zK36wii@KZLz)oyIIn{^6sr8exPm2)`(ZF+)n#jBvN}sBCYpRKps#1!R)TG$GXh8guvrM8%T?S!$v0KL7?vK>JRO6nEH{ z^*s;XzruC|RFp~T$)r~oZQ%fSBR#>YziuGzJn*`-c(3k70_J*U1R(D0(vJWDQO*hS z)B0}_%GEs+65 zBaxA*4o}^z#VwUEhXYuPI3XKla2<`uu$APbirMBoqtCOntUlL*GYghwHEvx^a zgLX%#S)0vjq(Ulm-O7VOAkM=V!=&KsFZhp+-s>Z(TFAFO_5M_`C9`= z`?mFXw1i3=^+5)u?8J%6!x%l#r0K?i@p--+x(q8?jmI5GOVd}u@OQ>N#zoSookzas zmpD)ddBvoWqz0Rfde8^1r-?qKGLCnMj&LYXzS}w*vO;6XK0|lc#ej3cd_l@!&u+?Pi<4!k(xsqpFBiFV88B^ERtAcgIw*z5b>A!BK2p?L3!$JuySY$7wPxmHF4npEe%t&G`)~87Y{{7x z&ADVERK6kY2x2K?{3#9o6A3RxW{*DUBUJ$ZiXc7oc@}8OK?YpmdqY79&9;upr z1*?~WWq$7fl^H-45=r&-s44MZ|0RAFj_gwDR9HpB{fZYlu<8S2cY$~+UOM_ ztPg)q&>|g$7k?bn9qAneL^>$Fihvaqq<5(T0VMR2P()O!qJYvxDbjl7LUvHOZp3VdW*WNnX+cVvjxYp<3U~k_yBrZnf z8))?ERlJcsxT~YPW3Z#wzKcI4-P(GQonevqNf$x>MQst=B@MTiU6DRJDv5-!)SMtx=?BkQ@sZ`IWLh2X~yLACCih(x05wTPJw zh7&RdRmv_6B2#9jRT?KaK{e?+d8SAgnRbF||98nh#^2673e}G2?Vjw_7nqp&F?u62 z0(h5PxR^zle@+>aTYXJlJ^ywmBm2E#s_fwY5EUvtGCeXHnp~OKB1{-DcWV4oZi=cf zdNQ)D78;rd%M?{tO~_sX#v%J4!@ALwTg*0HX*gy_q;zP;Y1#be)OMAkJ*UXkUyP7(i-*tKTkl;G* zn1X;X_89>Q?uZcg;lzCi2#DXkBp}EAX2N}L=Mw$vEU9}g@xP7v-Hgh`ZJFvnS?$<_{mJIC=x59GtwLI!grseDF;O)PhuShX7|k2mT;{ zrx#EqNL}#H6)L!6{MXWg{C_U-^H3KwfB1-B$J^JL|EAOpDH%ZxDt>-`HD4ze6{FjF z|7?!?OI^^-&(B9iS~@T=P%2Pf%G=jfT2@(ESz1O;T24+9cZDP{*vro$NYV=^^pBhT z>pr)gfsVe+sau-%njo5Z}?i|NY}Ror9kJS5IERf4&y(1*P$4q-CXK zr2l02@Guu zImJLw=SN#0n8|52s%0%3nH{?I)NVoS;XMWlB5i&Ol1P3Ak|?eJ@P{XDWSn=|?;G6z z`SgD^lq8~@c**!5@9|$3S?Tdd&Pmd1eWEA&Yp+)yaq<4Y9*iTB#Jxd{;F-o>o*vh8 zvKAodZ!d_uq|%v$sR(vJ@a6n}v%){$fT(Wie>K!UF6l^RyptO+K%9(-{!iBY=Y4Q? z#u3&1f6MS+E-zUN`7&rR&hGN*Aqs*;4FSAEp$K=g7E9p9eY@tS znQp16u%YR&hrok=QN1?~su zblCZT9dE0q9ogSpn9m+#tYv$lp#BfP*t*&&v4pBO}S zTASzLR6~2+P$@bCa-N}JE`BF;z-pnIcA~ldo-@q${HK|hRAAGlK*iR@p7Bi&2 z8$6P-HcI5NeRmGgGWZbu2W*X|22JMqPBWD~)`%9Et^bx?1bMJU?^)BeN z1?oAMF~2G@WV0JGT~FExRcu|N&37GA!7R2O4tunpctGmgrj_f&{&Git3T_^XtB+ci zp0oO(OCT2|3Ns;J#chh4cEfj})+?OTZkT;OY?U%EePoZ4wfWhQV)Q_vo>s*2mw>0DMFucS3hV;Vrbo?OQgx z?!ziurDIx1I0gwfiT?8V_7EYwLG=5+cS!jc-@j?r^wVTc-X-fMDmhl| zOVct-#f-+a?FP_R!n}p#(iWUo3)QNFrN!ngfiA3|Le@Yf`bA`GVbuX%LB}PE zX^_j`igzA=qx#!REb`;Kd8v1|V^X<>?{bkm!!b#{o_4}?vf3TINDj(HW9ES)fQ5^x z1_eIsS+6wB1PF7OkUy^%LIN3Y(LCGTGX*DhM%^;Ve{KAiXPS(On)8Vu^26) zIxbG{NXxZx&_PO$XL(@Tmd(}0ko`Ej)}hL_?>sxB)*JWC+!s&_r}e#jVav=pZZ+<> zIdrP10mrZQkvbT|-C~iyA~WKsKfPT0SjC54*M}auIFC>boBnZbWM1CBDH%5!AZTR9 zNcawL$Qy(3R#?jcgF;P_yO+beHx%189ztW2n-qlq+DAThBsf8Y*9N^106iq%WhY_gxF+^cQ*rns%L^V=*At_(<|n|*{a!`9%Y&BAnYAB$KsMEb4@AMgH12rn zeEIU}FGI{gLdQ-N%30)}xW(4K7ZcC|$tR*Sey)Jj*Eo24k~v!iqFhvgoLE7Qt)PR@ zKa*ChF!L98=yuhRNxAO_g{^??g|PqEDz-NyuFFAhyJi4~l?#KXTNWnCJn8ROni5=$ z=V1I${8d~FdoT0nja(-e_7ej=YusUnpV``q&WCX$fM7~%{IMQ>F7Q|Le^2NrCvhjW zCzXbrbxSMcU@zA)48u2#hsZV0IuW(w1|Ga8m9aPR@#&KxZWfXATA(NN(T7@GceUzOrP}P zg4|y;Dk$2v=$xSkpM4*~&DwSZE*{w&7AUqA52>)UvJ4(EHL4Zq@@ZoBlN8soL%o1K z9Imy!oYp>_q=0~JVd>!hvG)G#HYjXoDl-`IamWty+fJdOX$UX}1klT|lKa!>1pXVz z{Le?4p{MXvd-P`l2IGR%FPBl!Q9d6ax^~zbJ?N@2PUa)7)xxI&p`+#HJ;6ER_TZ7w zh4D=PDT^Vy%Wk_HQMHBHA?~5?JO4ld-?Wx_d*TnyRGm((}<+jR}`=5NtZ!1~{IvP}?+BS3c>Ih4UJ_o=H?Q zb_|1sdX-Iye#y!xb@-t=^8Ul9%BWu;K5>6jqz>;vG9m}Fku&E=-%~zx`WNSpi%lRB z1>T}I%y9)g)9=?^WIgu2&8AU8TF3A6wH(cmD;?U=7P-eWj!6Imwf!FzRBEV)0i_Yh z&&$mj@Jj@8pT57q=EW1x-$F<%Ut|KgyE^|si4|_yNOOPU2OQt`F;PIOI9tdBW;Fx7 z|1v}rMC9a=-0>kkJ=fp=9V6XgoC(rH3UrIX=Cl{@+g%u;E|zhYH__KPB2+=7JI>Vv z^6W2u_)kt2MI0Hj^9EKCcaLYQ7ZPXJKv8_jigzzFG(`PHFq%YtT}h%^oZmJ8W^Gv) zs^?EDw>egjt1S`^1+QgIXLp7^iAXW{pN~gJKonJ*gE=b9z&kMR3JPqeU~0;eU6Ft@P`cES*bQ_#W-hS6oEZUM>&&E#5$H!gVS8 zpO9jQDMK=cxbX?+bfX?HC1c(xnT(zUyBDiDABK-&Xw7!}e@Y758aR%-qtO#vPD-!c zGCSlorFN7@4=4{udeEPYY;NKGlxGshZPEYGO?_;{iwu3WWyT?T9KN7u+Rvj8FA5$8 zW{+ov?leV1)&~CJJZE_D#GS{Q-oMP$UK)Hpps3ispP+AMZ)04cL#wC4_CFlAQUrzd zY4bFX`nR3S!x8T!-No^*e>_E0#{xdAE;xi2S$?kEvOm|Etn&Mx0nFzLe@70Nc)(++ zi}3CCf4SH#0U4=}(<2;c?Ga53q{%Gkfv_+w8xA|kuXWws1M9Dw)(*grU({E3ihO@q#y2bywN z{`ep_8Y1n*N`bxe5pes%%f|WNQi?4eM0MCBL+nHt-Xl4kc^>)d{ANnXbwJJ7`C49m|tecqu1B4hnVskk%b=k$UlhiA4;6mGIZ?cX@S?lS>F=T52 z4^b+>=&cMZ*rw@_u+;O{?BP0EzgzwoAeE87;!gm;(HqD#nWcAN3v?)T`l!XPd4n9=O&m+A8Jur*(nA~$H1P!g=yui`F<)Ogv z>A;(Km0j=X~BZ=NHV$~j6DUzGr^eiAw0*Z^TVN8Ea(uA-e~s%c2RMVvpB?d&4^by&PiTv z`KGG?j_SBUqJf$nsXu(S?%pY_E%R~Hf`H?e8yM`WAJr}6*f6xOL#~11!>)j9EzI%c z2MXhI>@=x{b;0n&8Hf9K-P+ee+Y6hzCB4ST9ASrinD1aW)bSTl^rREw9a3&*OWxY_!MJP>6y#|d|AUt;?g{ujxfiIHAW!Hl*Z+;>{qK4I0qnUZwlH`H zm;+Vm<{hq+)ag^W#?e9Ln3S>`Z!=p5K8ppFC%Co#irr>uuq5yhsvhaKb^l}$Z2%g4}SIj6EjEKZe0 z{)msR3fzla@UtGP{B+J4*u~cylmc-oMFX|}DnzSH(5>s^ zbRiyp4N0SaN!NX}$ix6PN~%Ed;aI$0FzG7S??hgqqsW6PbyY91>D%4{DqWw3V2(3f zH4Z;IuHt56r7X!_rq-Kopnm2&jx>2U^m>;@suvYq?BO_E3#?3cibCd{y1qvw<$2c$ zCI@>6Ru} z@;nC{EH2K&C$#k}BSr{==ler-72!yPCZ-oVlWo`%&ugHBc8t^_13-L6cb+GO)@t|R zC7mHWi@*q@PQdgXei|z)I2zi+fjpX4={7%ILqZo$>P^#dti{_anhT|!Rx#c?A1cGJ z7a^va1KREdl@6sk<@0A9`t1CIVd5W|n*-JSWJ2PB6&-^E%ilvUsS9#>Yg0h@$HpRWWN4=fe>iyi* z=w2nqMz0o`Gk25-x$V?;K8{!_D4~co_lS|+!!Q;=~(T z%kTw*&8j+Vb)7imj;XCCe=c3KmZnD@UX;H6EAy_n2-%A)m3Y&{%R=l?j%8Cd4Kri_!S+ZMSvx)_ zG}&AY-;HYIeHzxQx==++bidL3Dz&iZcV|O*0@J*AOqJ+aha2+~y)9?y(Al0hYOem8zgpokH0s*9 z42v?)O92nJ+spmFir2wUoo~a^PSG(0vjC4=@>_r8hNP-LVvm#)AlfMM5l7n}IDD7^ zZ#_rggaCy*s@B)}6elWd`R^W{f{Jfad{g>G0$R=2U z1MH%oXyo?U&MszW>g5gTEsApgt?Up@jt)@WjEJM(<56Gttc=FtWqJqW*LDBEdcGMH^h8%Un6ZOwt=bXLnDJN9jTC9Du&F$gH4Bu4@>A7$cU?~gL zu29%JREabR=zN>?Ba+!rt*VY1w6g{(KgX}-aCyTXpW#z&dqyI}50%5Gk6|Skm-b&< zPCsm~AT72h5w?B#n<@1t)ot#9JF3=;HEgw}Rtsj5>k=VmdBH1@mbcfF&BO!;0W8fb zKcA840xCL*_$kGYV;M{6Uz*xrUMc#sT=S`--ubuoXUmTJrm zo?qc@IJ*4RR`A>+6p;n20&f*{n@TaokhHL76l`}v?YP(w@OxGP z=?xg@6aAi0)vcgCt?b+CbT*?7YPdhVPr<7efJ0FU7u;W&olHWMW(RCfsuipnwmcqo zhkV#N^XL6?f(u%KeuYFDzL&iq8h*1JzEiqNHk+)eN`tkZE zpnW5weWT=?4qGxH-1a7Pt>ijvk8LsuCx>}^dJ41+*zElB61~a#54ky?lu+)|c*x1D zYXkk7BFEu<+r_Rs2a6mnd`=U-eTp`o$cDC5x|4{0u{b{(`r-N-8;*SFwIgY3 ziI-FgIiQP;vY|&OT?%gZGPLbkNJze@op#*n$HUt?`d4%H+aJg2hxzsI@bwu6d>OO{ z`c?cEwd|7t-BMNpUQ};*D4PXb_hIO_SUdLOWIOI}{!qM?*9pccK{Ya3Hr2-bRz32w zP1}7h9xe%X6xk4l$1&*)7asPiuNx&hW@&vdaO3?(j#FAjE+4cct4ze^g-)S|8^_wP zXdGxkm{f$AY+=ja(4YI_RF@i@sN*%>ikn3qAoMgi98P9A)h&6-XG^l3Y2Og4mEBae z88&nEmYaQS2>ZHx_I`Z8l5fg!(xkA%Bdy~!@Oc_^?fNV2GUL9RRSIz-cv?#Sn;4Zt z>-Bur-~b%~hKz)9wR9tSu|GsLWQ%|or==*!3rX2~^t8^*Wy@*FW7&pJ1s+}+^8okM zU0?=ByW|VvcIQ6>K78n0TT)fI`xrVEt<`B|=vwa^)-+&Kj?Q*i-uPPY?UhgPi}itC z4CSwpY~kB#YKu5^>zPNZEkZ7Bmh9tws1t!wpqXa&(HGIWS(8fG%bEzrhZvZ3){+{7 zI}u+f@{R;gytU6Y#*XPLcBgGGy!P{h)2kaO*omd}K8X5`OICNDM0+y$zJ=@KLF~rOx|! zjV~jubyZl>lvg3OI*?+K@Uk~?MM6^CQ{`~*EMdR)V(+7}j0<&9^g~^c)UTCwWAc_? z1K0s7RLAp2h%xqrflc$1&>sX!P$GK7-HaAqCI+;MHdPD8W5uR9a>2F9}FR!4H)izV>?9C-s0y~mUIpqmiVb+r{ zMKEFQ#H0kmY}1A+Uz(^FObU?Fd6>j+_y*Mc9j&@vVj~&vh0IhE?2CVqSF4w{vCI#m zC1Sp_4jT(C9(QP96gq4Hdtrz5*b;@|K(6h^t1Bx>AlC`2+d+6-K7ZDu=*3ptpYt9m z^ys3~I-SX0PJb}ix9f~<=;N=LqwC7bPv))kL9~-&ZLV*!cWf&(RG@+=l@NoL#04hB zE{NuVkmj!g>A41rKJi*gnrz>nVu0lF$L^sfJ3g_hwS>m?G7{W6FZfauRv5yAbmgw9 z#@pq3qn9}^sH9&9?hBhfE3w-Z!RT|%scVw)1}uiJ;qZU?EYRlD{>f=L{IpK(x>h`# z$MA+|0a-8KMIN6!Tc@N~b}KW3S?@%!yqBb(Sk}J9_xeTS`E={TD{n9JjKoE0n5Q|D z0Wz_#7b!?^vcXRp6Ft2K3Ke{rMis7FvB7GrAY+dcy?k!GICS4Iw<-_M zsYX#O5{G=Mamvf*qLAd>IOMfTYOO&Bl=@tC?!UxA121uDo9T)*ya>-luk(Rr23uw& zt>Oun7wwz(Rq9y>R`4UUcKiybc;_V73{lmR&Nab`W<%d$?iF$UBANru4mGpYUT+6J z8zSIl4E0)zeZ<41_TsZ@rhCM$W(;&W2LSG^uBNabLcC*SM!h@7ZCWKw&T)l2f?+AT ztxoXq1I=YX*P;}yI$e05+s9Jr_zi4ray#A4(7R4_Uo${xC_Re zO;=vyX zbeV$0;AV6o$+yrkO9L9>fZ3mC?@t1@IA1Q|a!ok_$0R8Ulqi@xpChLo)Ll#j`h{Ju zJ(?%~$4wD_#A(JpoB1_Mj=(6^D-@lC;N5uBl`m4a1_SGvQ6OoN9WRH}5PCAAvmIO> z*G$}PpI85lyok;UE=3;hD10Mwu8r^hSxyb`2VK)c4f9ABbAYkPB8!}XOKG6?ob0Df z%N_yD(=X5Km0{KM+-$3PZ-x0#6ewQ!^8-?A2@&ouQ6R%gmshhYQmT&^O?^T&*>}h( z2Ta^<8pcP`aEBorjLuBS@<QJ3qBITV*ZKn!l{kOKRnR3<%l3CK% zZYoGOhmXgNnHoam0Zf~o`(w@L0u&VM#6DDS3zO<+v3>}3ViNKsEzaNx7W<)l4` zzt35{7|6T`L|In%Zk5&yyRY%m;FYpKGg&B71JDejW?Q`u5-Ds=VtIYNaF<&rxAOZw z1hB&->a_B1ERG8FI~|M5Kkw_ZKIqvIo0Yz%gB@du3P6}Tt?52q8Q<3@c`30z*Ikt$ zpMF1^Y5}Ug(#RMSj;5N^LCtPm{cTfZ>q%dxH4dMZjw<(<0vCovhjL*M^DY+ z>xBc=kNiHnSvyR2G8MgVLVsADb$jD-EtYoaG;65CDrXZY;RCGXx5CXr)eT^ELZ(j6 zd1tSHj?>u!J}2t0&~^`;?{A_WYZ@|c>O;-KR6etfim{s&mwT2F-FGFS6r;v#y!d%Z;XJ;HjPYF<@U3TWNJPo9J=M##{2f@hbDJ6)$QaKKNOE2YP z42W(>qcQfA2vsB_iJz{g5)fLKOz!pxU*Uq!l-sKs7R!~2i4|`T?*?72@WIKN-hkPk zh=}QS3Zyve2{h^V$cSQal?cy0{2rUap3j-)jPKx3C?;PiQ($e7kHhi3sBL$SSZGp2 z2kp6i9DR(X-s*y}?-*;p>_LJ+*!=Teo1@-g@M_v(y2SO%?tT&K@Yupu)_$dsSA=B= zmRkI5g`7-0M)e0{mktqQkm_hB`|KL#An9Ib@!LGk3CjYJdQdk>4ay0*JN?R#aGWf9 zKU5>V%6M)d z@ot}~{b+`F5X5c%;hG+VeXrh!DwVSO0}qhF{FSG}7S%!j8N;4M>N%L-QZ=)Wnc+`} zpcWtS(m64dBBMjOttR2={8_TUXQy%Y!TYHZ0ae6L@#^6q>e0i;q>#;`1i+Cb03%M+ z^D$c-w89MSK`y~p3Bv{Wd%e2j{8-U3<0sUB zlgVTPy(FiS%l(%-_{h`R1-Q@FMdaOg^#g%eWADN~y8gK(`HJ%C8^T#(`{&;i162ID z>REVivJxSJOt$;WAHoeK*L&{c^`%)d+%hR)49L2m){eQ?|Yhl z#XDhAn0ZR=t-wYI^(&&b%o_^dt3QK)MBp(Vu}*|M z(BUYAPD%F6JzZ_XF$ctkAvgqhVIZOaPvMad#5CESy#vS@8skiB`=XmM*FKiu zH8Jei8KfF`VvLYg`$=a>n$cCaP?Gp9MM9pHRd(Gtthwx|#P&ixwC`5j3*z>l6Gkgy z@>yB0Mz~9!msr8vm!#exkAvJt>V0@*C`)_Q5VFza)sFm~x^Mk01ce9dwKm(mnH&S< zy{}z6V>~&oZoVViF<*DwhRd{t6G_WCv&++PKx3RFi=_X|4q?xIk?#XkInxR(eYVHp zn)QwtpbP2Ee&;vutL~j_$3|&{L=nat_E5D~uRo!mbm~))k6&7+AR&A(Eg|ktOKj`2 zl*>XW7?;bcL$WXe?LQh%>N{`axO=IS8q7xV;bF-lT!ngJ{+mZnQ5Pg=dcM|qgs2P& zKW*$)pQ{p9?SJIYGLkqsiC(DF6@o_6=H~V`Imo@5p~KkeIW{bqXiU#zzH457XBDTG zsLyggnt?Mtc<#P#4+H-XvR9ygdgUt!|F=dJj`gGFKU(?2J+tV;KANrk@Q#duInsQV%cFHR}<8m+-Cl<&?KbZ2aM&>o!6LEbUPfSq3>4hhgRW3p4=si3DM2?wOCl|JJ$NZi(yqJ_;<>NTP zB`liJ{kK@#7etcWG7|kSi8vAzT8a>T?m&IhW}$`cS|?^J0^29=9;-&t$xsTrzJHai zT0*L0y8p4Of$0dR3!K)j17-I8J=%ggneI zxIdmb;?}To%f~YLQKcn8Vojx8kDmdUZnG|mGyZW{(c*wIwGsE-fRuQOu-zp}R<6DC z=CEf5>4u&JK)c5cgM4b$UT8oJGiH4{6erXxtmtGA&9ba!`k>kyNm9AVW_fz_6ePKg z+c^o%#}o&+<+W+28+pOmH7Sf&DMWSR>}0>1vv&>vowD~+{8t5pqm=wUM|@e_%M2+P z4IC|(Xp1jlEHye!O67Th|4U)xipaoS7Xv-3B;K3)3aG`{BhRtA(Moee0%FwIWtN?9YE(17s4aPs;z4&{wVsS-@L~V%A>AG;4Av$v<{uAkkK2P&fBHu2mz(@!O;wvB3ha5PULIH*zrr)2ttSPwwDMaGKV{@sl;|+)V#-qaO?j}x4D{h`UaL!< zX6hddjML0mcD{f8wCR}LrLA^3t+WcI=m^YzMi{nuijdP7>HN516 zkv4#za$+v4Q>q5~Ota6wmeTSkMeLGbo6-cB(7<96-E~?upx-fdYaCQ{_b5$zIbG8A zB14=NEiq~+c?LTc&GfmowbpN2A++!k(bajlTp(B#xkb>^nd)HgLD)U5DgDM+!uW@~ zvP)L}6Gg4%yo#dTJ%y>)w|vaedvx!h^S?^P_zS)tkjx0ZHPM^~`%M^j<}4l8?%V8em3aQ?fe5Mz8XhT>VLFvnCBHUPUF8Vj3~ndrHIH}! zgOqj{>ov!7o%&WQLy0OqErHJ@sAFj=g7r@fB@qQ7%I($gI>P`JItO==-HCd-IsYJZ z8fYVJuBvkHuI5hR)8T%nK+G4dd3>>4fap+W)14EFGfr?oa&ES~R{sH-X??~p-8-7q zH*z@n;bzVG&orCbR~ssFYe;W!Xhz$ek^R?!LXY%MD0WgFpS>Pry0h@bHsyuS!mwZ$ zsQ>*B^3`aGr?a)gjA^>9ZVyi01=<^e4!tGPRTa9P(xKcF!)9ndjRiP~(yi3Fb1X}C z-jB3wE!+W|)<6|OA7V75&`iO6px73nnuFCO0EptT`06s_Hkm&u7_CuUOww=q00NcBx0%{gJy`Ht_#L(-NEIb zwRmUroSnyAXYJo#fUd8;Ll&*qK82Ky3an;Hs1JWYR&V-9lN-F8cqAr4QrV|twMkd~ z;61GOIZLJe%s8o7Xf%N>(~HtWJJPsK0b!jh>|9~uGK-OU_!>_j1O=<8`$$rJ5itIU z2iUHYQ>v#;5mOVVp$0MgDpPIp%T=$1^kejscq>x(F=W{NmOi@b`5DPeQWIrIA_>Gx zS-U5fJL`nna)-UqC4YE`YUYnKIye;$&J|O?K!?x` zV0|jLdaPp#S2NJ7XKcfWEG+=?4*U4AKYB*>qc}w_#YD=07*s#v!QQ(`$-R5L=JQ}3IFmp+Ompx|&(RW6)ubBxK%uT_55(AX{cNeIgna)t#ikdoPM5Rk_WYr;`oJ6 z;;`V~EndYQ&F~>~DF$Ea!j`S$+5R?XE74*pAEN;a=S)K{KtP+=7(=%2d7-G<#4*SH z64rSVi$bT#pTkUh4D6*gESYjGBom6J>y!qK`{v#Cx`k=&)CRooN#56 z_x237fyTj(OT3K~@nu{^CcE66tYhZkSM|A*1o(v-uM>y#(rrczFX8}%^CC>Zy+ zw!VA@ar^#pvfdvhAwLpCj|@9d#Rz(2u3c{#Ew>pN%yZrIwqrBQf4XntmOnmIya_oj z^M?KW_OQ0Q{%ZrN$L!|zn};Os4kkgJrI_6lzx9@#-PN*qXKLku-t_3LROcHe=mEEq zt*c%X+f^l=O|dH=@yRsj>M?(v?$ZFKpPT_d2sG`P?}~0Bf8Ce}2v^jzLJw=)%2*{h zyhYZ0oAY=?EKIo-p>YT$LO$vrBiAW9YL{ntAy_!eh?8ws>a9u%T2JaK01fO-JzC`+ z+W}jeoSGRD?_)f_<$WMqFC;#}NZ)T5-Veffe%~4xd(EHatM_)~q zYi~3()A9Hmwt#5+1%2N{U)$3KQ*0ImmX3lMDmiO ztHoyVk-1xm&*o{_*_U#T&k)0sNf$!bn0&ECfkxTi3m}_wunN)HtMO$ThzhFrLsb2jq^Atfti05EfOeS4WIb#~LkVCaJ#8uI|nCxs~Vyy>ge6U&CNYba_# zybr`~vCS@jJu_%|qhQu;$y41jW9IbU{!%4eD=qE0*u@_G$9X=kX%79}_1%H^dZ0Mw zvGn%6wJQdDI+7N1BCECwXzHV;uFpKI*LuSV&fTE1T? z4e5JTI;SBiSw)Q*jTXlC8`M(ml>QW@{xmmZxEJ|BSCF(!=JcD<^h6`4D`dsOQE^JM z^^RWujSp`d>5}qEc{aD9>fxN$YcU32v7spEHTsK$)3;gO7GZ*@kPn}8oD|v}fR)sv zEv0CaIhDTCi5YgjnKV!Km3)7cJB`z=>fKsxvcBZ)v}Nf|zPOxiUW?kZrypW6K0G^+TC-8~JnoNv1q2+oxyXEpm@l0M)0 zaG6i=+ySb2ws!9Dy85ns$V*SA8o zl*LH6Z3uNM=r^%ETz4hue{}FM%(j=qnV-VkyjV{>dM@BvW6-z4(xR@OafBhRU;{BI zKjLX-l(fx0I?R4B;nL&Upt++BrBo&Fl{Xr@uN+uWtPvd8*1;SdKhJyvRcD8)t4}(1 z8qM36<)sOYd-b7nvMewqr;bz_5Ik3M=*Ph^%m~I+oCGl1mU!S4CdG#4!@Gtdzpfgw z8_}?nF>2)7ky5v)sTF^=zCle0?C0(-q0&H-yW2Qk_Ltyyxgc8+cYNDfovDTeojSYc z6g1n!5pf+F3o~(_v8$G(MoRNr8Xp>ECPgiLq;dHLOVQ$q;_t(y1_(|c><+z{19(>Nye``RK#Uh_~M z8CY_X?`B%jo~+C3wD$U^UsA`1ns>9iepg^5u7s2$>6ONjr60=t@JU+QFYi`tLiSQ0 zJecmV<*$p%n*?EDtd=3{>POq+w)<}ssACN{R!qW^{R=_;0zoDB^&ts)*!uyS4KY`a zCvWx4H^1D39|d;P%cW%FQW5nncRj`Z!`{SepdanAZL6QpD>wtc@0J6H3!fvm$o-*N zz6*&7x~a-5&rN9FKuFp*S)8xW>0}`FA3ZCx?=3KLrO%c!T0+eZxy@ z#qNIsnXLa@Nz%j!BH6ve5)1y6LQ|>+l6D4+z#%*%@GMUkCtf=_{_SADGiS=E=u_LY;DeguwuYd9gYu!B1 zsW;n>#bag7WS?JyNPT^MkPlVG*D`uy1_`jaPhOn|K5+$~2)6n#-U`IXlCj*uB*4!S zrq*s@MS2S0Q<>P35l_K2>9}YUx%?Q4OL2MDtg!3N93o*IpvUA3YlhXL;uiT}*n4c8 z{wS`d@IZV>S@nc$VWm**a)}<&*H!DW|2jWvuip@}YA6MW!niVz-X%hBrW@~x*vc39 z@y*%KuC=vQxvxEHPpTlz_AJm>-+WvqV5aAq<}^$!;#@k+Q|qO!zvcSC{WFz8`rb%T zkG$p52I@V(4?DxP-`b49g0-dnu^LBtfR2=?ciK{mz5V%(;w`=waOF=|Xoz+B-xIr| zGPQp4><0CoEC%Zl7b5Z78$;s<{*-^1qi_lOD*pmpz5Cjyt!rt$xZ2>deH})l_NY&D zd4AU_aJ4--Zduak)uQZ>&0;{rcLgbJ9HlG<1jt4R>FC>=EWLje6fQj7=DJ=JQtR!1 zfzJlSajiVz!*5QkckNa=>G^(DJVN)iyb{U1+LLa+fBjzoePM6l(f6`1S4A7bcN)I) zr|FW?uYu%5da3kxV?pb&bI)%_H;ehvZ3`CKWX0<=uJA$JnoySFSW~)gQ720K+ z1E4Kf8)7ph+3TbpN6z1DZzM)d5{c|M#B=Swhv^bbon?M6NH_l7YB~^bgott`|zX&|~=oq?DS!wLV>?dXzH-*&%`$7T@|2rYZjxBPGs5HzYEroIcEFhWYBeT#|A<4GQhxd^tsM7; zI-vwGoY^r}dR>j){>aZWj(k0L*IrLiWs8xAI}kwK+B|g{An3D-Hk95lW09LFr=Y)N zxWhKMji-W=$H!yB9%T8<{Jh{#D~3gNMI{NgXj^?P={jHc6DH(!YY1 zP#x=;y{W-^vDdV_6ADMw#}y!=((H@&88g+xU1bTpImp+r8rbs@?8TFyCkqrcHw--)^FG96u7U*_0IdVc|@gBd%SmHJ)nF_mYer; z?YFiFQ@KpYN~V?XEiJ?Cn4!UjptHYv;r6(ONA z@idk6hS~$yPk~{!n1c4B-dos7-Ga@O?(V!S>j9sG7F2?`YP2UJr)qjV3b#cv82Py1 z=(ES*eMg6BLHO{oaSva`o#wm}3GUC~24iH<51FR1`HG|C()~EjQoRW7`bm9gPAPLv z6OuL?fyQqwF8l19EL+b`E*8hgKmUM}dG>|N9<$G0C~h~}LObhpWt*MHrQ+AY`soy8 zeb|k~JHZTyD-t*@xHA6s%bT4KUj|XSQ-OY(|7KU>%UGE-<2Mog+9zZ0Bx`gn8~Z)EZ-Y0Xja6}#6LTbGH3cuboSdUL(+IPge9{Bk4sU-ZqKE zvF_+VUDo{gUZOPyn;_*kPd6B#exxz+cl${WZgI(NkS_O;3}25;;E`l+qVk%o4`lC( zjqVi?@=%9#GufkY5QWXB`P(-FoZjp+K8REW zMb*T*Qu$J6_I+lF-!~Xu&)=P84U<$!$FS|~SuGWS(292PSDH&rX93Egp1#aSGmZhe3A0o-7tJ}7`7p~M2catZ znVb4RS-tA@*&J5l>y<=6-~{!^zBZ}v0G)(wlubXU@28QA7outoa$i=Nty1Q@;{qGM z^GMZ>kGkl;mjK))^t=sk>b0IhMv2r*w41!q*o9##bYces4s~SH`n#G)F+m@Zox``e zT4z>+7Is;^;=k?+TO>;&_(DNN$(lVz0wcYNY+TI^?c(jpkNB6qXX4~G%|42iB3k%Z zbX4Q^b(I{0LbhJFl8d&j66J?GVrxi=Yp*_fiW_GeRQX6S>Ojr{h<>sD8WdZxB6Mrd z2ECiE_UH{G^!?-&BdR>YX8E-vGwTjG_ifHC?8U-;F45f?3s#qP5|9F4GTfQanQDYu za7*5D$k(Cs^V`-=ab$?{5 z1f;(kUtMRPxh-N}*4OuHrlLFDs!T*ntnU3e1;g2u#HMP#tk>u2ob5U?8yfo+2=aymY^ngXh!6bHMIrlu#^`1zwcYCjBCQz<3Rlm8@HT(;- zucuhfp|oO^>0GE!kbpm~j%aODN<)B+=hSh@2$9rnctD!vrc<)4>USL1OyWwqKoYP) zs1o8iAFgSV=n?mjzeG<TE24!!U3jX5dE zr7b}Tx=(hrvK{1=X2|Z8+%{oqnLo8mKe+lJI6zyx8$&Q zu@?bENh$gyTUw@izo=6^=C86U&g!wSLNBP#t`2fZa)!A_HfV$Hd&^ti()wJmphF}v zkk!lZ@H?NNYyx@IJTl>9KV%KV!_sKA9SIUpE8vP=%|YC(b?wloB|)?USp50p*j+% zorCJXTnk(SX+Q~Hj&~ni6H?%Wf~Kse4*Uw_9Ew{QCbAviNMXW{aN`sz1mAuu6q^@= zjB(A#6ud~8j{w7*f+JKJz?4xb-TAfc&pYr6J`qTzv?=F1-}%lLF)&b0z9{$&v(Y7%m zYh)waek3T>$G~+QCNC@PrSM&+9}GZ&X8*&~`B?n|4`X80UqC}fs%$vprH-NE9-*6ML*tQ|H6qwDd;8`DWEUtMqYROIkz8mJ$VB^0W(Lh;D>I# z`p3o)_`t9DnI0`YY5eFbS#tCUhmBJ=gsr;Cc{*9({K$@c8{_%9zut@9{yY4<=pq4Q z0c04B>4yIO{r|PcK{h`W4q)+W|JrT-ug~UyU5EnrW%v1xEm0Ydbgu2Q#aCULeOJM9 z<4^Ah)^^9Aje-B@sAXf(t-Jf#eQ1(ABHJCd+SUhp7ry4D;E9DS{8ozrbH`EL0*HJe z^=V^HL906OfWnv3|D&~({E^{IPME)JF?>?8!ZrAWj$=;?rkRV*weA*UVd2AECGU*w z6rOS)-C2Q9zK&x!$Rsq8CFG?eZP-ioY!-_H+QQ?zS@d5fF$@&48GTdwHkB@m4(tXA z6=O1UQC)&~biYhlfi?**#t^S}=es)4ZBb27-e&?ov(bB|46!OsqxKK(jQIm z!Ut9a4x_@VrtC21YjOYuN%mVY#%QB782x)KEcY88>(E0e6LuCoI29aLLeT3l6uiOc zK7A*+DJUu1$LgYf_YI8duf8*utZFmT&e_RYa|RlRxSKITLCA2Vm>463e!ot}q&D5B zPzdA`g*jy86b(b~HAmfVrLv3>%8n7H2zXj}p?rqM(0Ap$a3E|$p~%rPwV;EcqTfE3 zku}ubP@V3f6kq$=*S1c%U^U#j_q#^@70@sa9Qsn`-UVr4>oX&5EZCu5TN>eF9A!b< z<~er#5Y0p1kwb#N3|LuttDeC(RCoV7_y}MK(i+=-DW`=_w2g=pB(p$vT^HB>ePjRA z3&vH!C&nXXcM*^oP)9m(Y#6W>cQ`x(TQZG|E2qv}u)rpO!MU|auxeK3lwKKs^l^B7 z*4B}oKv`uqOsQiN*J!(BkNW7YRpzk_BU|ywb`FGK6&cc(-`X&LII3mHJ6@&akl*K) z>VtQ6o6kdYdP=?IpWx<@V^wnAP7cS&xJH1VjzIq=3LFJA9Dy;mO_)<=u}5F&8gi^~ zrf2VQk9)MiQM^Pi(rZJ-_hi0cjm0s60%Nv{e5?A6fjLBu)1fkr(XeVki@8yOy8SFW zIr(&<0DIXI#?$CXCvFjO_r4m>0Z`1(*T?;YZ?JA?sJSegj{2e1C%iOi>d%L#K)u*@L z&N~02&q5XXqaD5kxxUFZ@gZ46#@1Y)Lo=I$kH}wOOY;-S?mmtF_tGcDI9dD})0g-I z)~;LCmcR$_BCFKXFXV@7V5|>hv&ARlI)#V2^^rm5Hd|<0fm$}c_>7(9d?&jM#_&bE z7><4l(hH#a+#fgBk<(&8Y)oS@bdBql75saj``o9+xnD==3o^k`4M%otNIO5vk6TuE z{jOd*g^V{(%Qmaur@q4kACCoU|8>cJYK^(>LIeyFBf{1e!IOR=oH;K7c_QtELCQD+ z@Fd`54cZdI&@p*T+Wll;poK88axb`SwT5smqj!(>?Mi-(!u z8P2wqUW%x%K>GMlD1uxR8@{uZM+R0`AuvV+w-t(J%rT%uDR>4FSybB%`)w}!AI*$8 ztHIp>9LI{H@w@(YgUS6m^@U^VoouA!e4bkv%~dFVeVba)>BVpoWEe6W(S$ZZc13^t zhLt)52N?O}m;c8KWh|S+YP*L6m116{?}eQ@WJnAAGxW;{8KYs{@8LAWW9Y$`__L1w zk?|nVw+NFldfWrA8dLSJg40<2yYanwwcD@V!l1@a)w?$n_!&zT=#DpWA$1fB13(yV@Wm@@S8(#(cm6<%%K78a1x**2NW_>*3FpH#^&Il zmLpC6E^>_8N*DY=L&;BLIJXbos?jkf`^W@5B=g3?3+J>lT)K6v^I03{KVfGJY`^HI zu@a;eByb&Gu0_kbo~-e`pz9)A4p#Ii$J89COI@I&H}HU7#wTZDuR<9MCX42Eiz|pUckMA73PRwSa&SoTV;_=Qr9ec7aS=XyVq$C zZ`lGYGtz@I>G?%`)V;s|Szq02ehO}N`_R93=zlcQn|NTq6n%ixZoh`G640_;9xvHB zg`bAT5mvA#i=BVUuC{1tekvui$rJv{7*DnrcmC+}c{@8W$e=1@Apg;K7Vm9=uK*@{ zw6gup4?A4U3H9t&u_c@>Ty0p)V&_fm;~cuoqgsHUavz%5;4+-aNHjSzZp??m17v{& zI%8!nkTGQcqGHa$ebrKWuzx>#@DSM~anCqQ@)K-c1z+vx6Pcr*dtLA(ADzxp>@X0p z9O_HWdyCP=k?zF%%L?9GM}EP_cn-~T^BC>U`sdHp!p$=N7@`>;yAOZX+!?xV(RWox z`NaKemo8_QA=kfg+y4XK3uDyhy{1XKCXAID83G2oKWPk}h&=;Pw#g79?={`~xxE@o zIB~+PW^&93h5b@YMh>ZQB?xR)T-N~HFMTUI2v@HfkNSSfyZgFD9m|SqIC>m^TZ1@1 zvbkiF61WGwP|{ZO1=SRaitJcc;38NeK&Z&D5D?+Wm7!yx1J3TnNeTEJEce4!P z3nx59F6tM4706g8(@Z<&ez!e_={kn=ZsDT;c$#B}CwHsBf|G-Xrt;iWTJ!;*GpK#m z7AI21ghc>nk1?{V;5Bkca8UqJW}G8L$ZWrL$F1&J_Z?m2C|*(Y-@}7f(Y=E2`{U5tZ&d0A&MDgKyKL~-O!%X2{AK(teoNeuk=gCfglfL(l6C2XUD<^y7w|0{ zzN)cZ{(@gD;f4(B`^cMY+V~2>_OX|-s%`$HdE1>A{q_qtI~E*+;0Oen`mm&TEUfYQ z*yU5lNT2a&oxSNkS+ex1^R&B*6xxvh#ut)#>0Ub6?#(&D;eNlC{m<`WzZH*Epmu5> ztA6v*%YEH@VOMjM{GX${&_wqMw&Noihbo$XY=Wg7?`;?)F0RDyF?yi!G0AF8!E1)rxf$R ztII<}_bmFZf3NzDMIAR~Udy_rgS54+(xnrP{j!iUjyxr~9}9*M*zwdn3^FtU_kwN! zYu|PX%qv3A+36NW$0?_ra^VvmyMxlbE}t)o0Gv!}=eN2Xvs0e8QQ|0;CAQV^4|tS~h6cNyRK zozcmWS77Uy13@`+L*djhPAN?%XN=pvtt2_>~kK@;Wd<+CwYC&Q?M4uUs*hpF2Z z{wl|rVYDd2p?hEdvwEtaWynyd-}~>bhlAY^K6~|xzR8ebV4!gmnNHdeka29pOJ4Gl zHdw<^U8OKwZO6355+4lpVU>F4+*9Mv7}F0%o1jVY$DF$Q*LHQgc5F`*l-WV#_VKTrOfX?1N zva^u0N!rkkCNF_x^AWG(g|V|l7xmZuY)9LR$-!0T4XmoTe@=h(gX1YX$Y*%T_QLOD z#Uh`@Folzc4_2YO>euc%^0Vq0dat@=|9X~#Y$j)WqIs%4FjVi@cX+cK?C4%+tl2S+ z?@-ti0=09-t6N`v)(_+M{O3QvweRshr*BTZa6+F&e>e$_Y)X!^8_N0A4%=YA$xc`b zws_%XbedP}2>OJNXHmQCpTfT0i_bj#iQL5pobDQf!q>a{>D_haOto9@>ZOy&V{_BF zljPC50fwr7op<~RKc(hCcfPMv_uPA(LCgoR(is-{3FUO6DsTt?&%rmYviu>Lm{xi@;{*I|v$USAcla z1t0TKEVwFs3z>$i@Ueij=Vq`Cx`EW1i|Xh9kWW*Kxefc;1!x?}@RDys^*9e*3=5WI zewUX1^))Zd7YP}gD*DVW5?r=J*rGBU8NO5aa8q<_sviB}!;-hg1GX0CB@T@B2e!^& zHipIvUo9F7b44-#*bAE~Xs27uCFkSQwdR=lw;MLers!7B!a%K#VX*yJFhvDDwn-mG z^}?vOD_}_5*;caXRcQ}~`j{T5bPzICnSyt3Rh|9pS_`!jB*0Y|~ z3izsjSsnZF_sS+HKAp1~Uwo}!u(jf-o+=yzM};s1@g|3?+9}Na?>@ibVaiE>Z&ggY z_o^@^(#*f7VfeLbw!8>Oh7PZr@M|=CVco?2}Ajq&=#TXyi z2@b7ue&r(C7~kflVn>UILvXmp0*H86rY$E@HV*k>5wjj1x2UbTzZrWnuH*)1#{&uR zewRm<)muD!^2sN+&hoPB$A0g(IY;)OK}Jetv-4W_i0~7PyhEm4eQp|uYb<}<+!roQ4w&yOitH&HfulGfXAljJI2N|yxXe--NOkh!F zG+G38$$ePjy+v&nEsL%h!*A?+7{JrG+bMwu+54MVh}+g&)+dWC{Cj<~Feb}e;C-x^ zcXTh_cfI*DMMlryXkaH0eI0h zCSbi5UAGs%8E^+GJ5yEW0D~I%7}Hj!XFl_p?dMG}-Cp!(zqA1_#t+BD1H1b8)dVEO z2@49)HT~;0(I0}zs-rDxR{3Q#O%XVoXnU{f&__bm8IuGVCw#2H!d4C|z8)|mvlt$X zApsk|F+}-&vRB_`}J=7e*tZ;Dq|TU_50X6ez%2$ z@~dKz$gwKUZxSpKFqQdP0dm*5-kCfC9on|#YE!{c%A20hwqlEspeEToR%BdPkODoW zyvME|`(B`^<~l`;7dK@HnF|)(yyIy+$w1#!LAQF1=_0Jg+H*g>qZ9^X*Y4K$@HUnf zR-XLiC%3u|O`D(xE)4VHb#;;>`>mkMI0{PHT4_G)R?(K%ZrDBW_5e@w$YgAMk*ya@dLZe*?>X7-rYU#=zjxFk`eZE0;;~%?u5}$pTCkQLwBjGx%FllGv)h3E zUGI9=mex)3LeV_s-Fy_}&^HT60(s=fCg@SeDzdxicE34PWfL@2U1X=RsIqPbcGa_+ z@5V|{OU9OB(RW!;U8b~vDc&P<1Z4_Sc(Mol@AvY{d|n4@^HBiC4oU$n56m=wwX;sW zg)JEc2YO{yyVuxPU<;3$*M&>9vsdqQ1e+A@Ub|IbuaElM9fzUsmeJsT*t2Er7%>)X zZ#sUijAS3Hqih2Y4qIfWR@?W!_r2TQq{hL^d<_L z=^Z{W{}|uEc8rcWZL)#*Px`j59WbX|V+kB}M~fWwT*Ci(_f!p-&*rH`SBLU70|6DW7)+in#~!VwHslLRq2 zd7BWri|DnToUo#p`igJSeRF?OLC z@gxIy6NR%>*#Qg;j>eFIp-&7L^e>t(Lo~T(m3~)U>)cy)tnzNm8Bzi=uYUEbo0E64 z69wqu)5pNIuv{f@rw#m4rOWsA-F|pC4rtr2^i9DCAA9(QvCfCV4R2^2K6+-+QC0fjdh|}EY3g-jbgz5=P`&yg3$0|QHrCt5H&NJ$A6TF~1c zOZ4f}kX~Fw16d~kpif2nqU-y=q0`u#k5#rg{@UJV`$J<>xGZ{yJv}3%*4gNE;G8w8CQOw?*x;VZ6%!S=6^h_00Xvc#%sMsTA4ki;g{TjYT(hp<*ofd-!0i zbjJcuP34h(eRUr{)7%wD5U8yq8T&N29-q}%OvRMVgiiNOy{Atreleb8%}^cVX!UE# z{|gZ?$bh!GE29k)2%b2zh@r75p}LTWL;54eVDZB75w@LKp_lo%$?T5`1nU!7CrCUN1lAW>VGJqC&2_e+;IknGRec?2OrlO&o1w8DhR({aorYOu%_QQgg%qM98z+tKc-z8%|XB0{^lGw{~Irh zbDPM9=(dGE0UU<0HjnHCi05Xw>zm9RHkw@sLpDXX&9ToVdkPz}Y_3ybJ}6|1K+jl# zryy;e&j;tZ+fs+>u0GUn)rb0j&O2NMg?{_Df4e;@h8_~69g+#^bv^mPnf7@%3!PK; z2cCi7P$BQ>CK+J|+1AiEn3A3PROKMZPW0k+$rtQwc4apSp!(unA1yqa%X}}qX7`pk ziMP9j?L~Lf)2s5E`@FPg*8qQm?yH?i{Wi7lT6Tc|z?@>vlb`y&>ReX`9;jjwspM6C zm-od8(1RAn1X}4H*@N9PkQd+m6&}UY5@5&{{KNM4S{B$bR>tha6HjdQl(u9hTHu?@ zPmAcpC*~2kr||#uk#3w*1bZ!{>Ki!=yMDpX@TB|Z^npC4U(7K+2D@aez?VP$QW4?43H|qB}@A_tUqurqNprb0r<{n!4$8-Eav=p7>TGt1fL+7g3qFJm! z;cFVtMc4|GlDmqr7?RKJkN@%q-#AW4A1yYnQ^-(uhOwX7n&=>{j={ zg6)LnA)cQ?zkZqzV~dgr)J{Qh!Zn1o_!D@zlq%q1NJ2!g&a zFgdK&$Q0zn)k;a{wvBu=8MQ_DQnn0z3VUd>Z=}IaB?8bCXbHy7PaFNHkG8$aJh5$c zig8FNQEsm77h^?%2;fjA<_1MR)d6xp!B<(m7C@|OPrbiS&$j<({B#ddcSb7%3GRzZ z87Q?nOvwm-cbzWvFigw=V`tS+1~a3G(h&@Gma;7$w&*Q7+i4LkW4|#>j1O96;4KO| zQ1Sxrj41QR7AdREtIj37g%9xy9L&=>1~{WeL~AdpKqK)|Wxra_^ho^rn`_ z=d^tguhmyZrL)>NF1B;Yz8G^l;K)&Rl!~z*!fz1{^s4bu80YSvTgRgM^V?StfH4OU z-U_T`NKeJu+_0O7T&gjbo!gyLUukLezk(k0As!?zDobT*jrvF)zWBv2ZVmRzf}47O z|2nd#@WI=2WsmyYFHmc7Ypm$6KmprBk=aikttvCspUYqxeQtO^PSi#V+9|*?QL&s1H1U_gq`d|I~a%Ng`@$p$vj$hZ1I+( zqwH9cwJQiShAV!O1#f|pZ8WD%*BU!msGsvbG>^t`sqc-wdK5M~dwi98s=lM~9WSwM z1W4JrG6?4^?iow=l4B1P^~vrW@|lM4HD-JuJ1P|kJAzJ|+McgYJix zs^}wLRfl8{JL=4}AzrhvO7HSj+%sohXiuHX0=4EI{|ZK~CleNpnQQ#cKcmOk2&)wG z0gu>OM21-iUZe+IFMc8Uiyj=pYlsg0bG`f74Kkmn-aAy^-0!qiGS*lM)Ykvqx{NIv zCFQ`>JR+l)(JH7-_Tx)<&gBs_xJR3I%YMvb9@7SAAN=44w+3G~u-V?Qfj^X~j3vc*2}+L@bTVWF?J2gW zKJ}@S76r!YvwB}ff;nnIV;QDZ7oO*w3otM+yYsBZh~b78$#lkbwN-Vv&Ib^K5|9?L;IDrR&}CHMvZI8Zvi&E+AsKD5Dv~BHnuLd z{rdO%f4G$F)V4nDhHbp*exaFdWIT@SIIS}K#)?3wKrQ>obw}z@B#TqeorX^OBO2}Yo?eNmFQrMH&O72L=SZx+g~!Gc8q_1P2QQj~>}L2(DR6MF@gT>$i7MUuVL}&}cj|Y&jMhbVg7M_< zl9A>Ne?~lEZgG!TgvCl{ppp~xp!&OG<+FZk$BsujX(~UsxBMLR@dx2ChbQOutA9PL zw5gzbNT2#mAMK9dx5LJLQyzo|GxMy*!uy<37#Rl--{Ys?Y3(aRV?nlyCD{dEeVfuI zyN}O_Kk@Gs9>~#;6JA`@(>@H+mzuGpZLTJ&t_ajPP#`uM|PCDK!LUeR?)SrpizeQkNn7wv*(3|y_~Q>UpZuO0 zs2HLgA9$(HoK*x#YGHQhp6++%DSBigop#!3?Y%NxR*^YXuY1wJiPp!tfm(CncDK7- zbH*8Gv^sTYyCu4fi~61Ust?A+;wQPj4*mM!etP@Jj{G!NIqY=$oPs6+PP@m94I7E` zC}2w_sJ|-{>{5`CXe>BJvVrExg)V*Cr}u0@r-$&MT_c<(h3sHE;2(iH`l62;oZ&Cf z>&#<|a_i94rEgoG^_T9#m-<_Q+HKJ@rCsBIW|{NG)z}R=>8|r)hq5R5S;kzZxpC`{ zueR|d{X}o!mpMnKz|tZKdqrT_{oZY(wIhh_P<9r&%%eBI`OWR|Q|3W!y`F-BYxJ2d zu3ht8*4irkXzb}vMR070_uC)yXA}YB$=@`-=Fpg*Ggg87$t3|ig}h_Oj0Ly)_26Z; zC%g2OuY6@25M|@j)iPhzvkGriJ9v!D7u52Zo~94@5JU5*?(^KDJUTWXPF%2=p_oaR>;7YhJn*qnJsZ&-Nvxu5&Fc41DEld+ZIED)=H z{ZK#tW3T?=FaBa1<6$ezv8{?%)I~m&9_V8+_CH==H>pP*WW!J$3Dk}uIN^Jf(?H8y zv&uygI@|Naoik-H7T}Nef)Pz(F9ryu02kjY-U&qS@N`Wdx4Pdo7~0mwm%Z#|?fo7i zMuFKHPMG)aZ7*8$kM;>v0)PX6-rZRYnNa&7Pzw*G%bVTLuqqtAQw$t?2g@^3 z1Rb0QTtWX*9ED5a&B*gWEAIkg`cF~1z6!qgoj|s0Da0X1r08*9(d4~eRo|R<@{bY9 zIYE=40waWxQZ(v|d2J3k+s(C4deW2Hhs7;g>0U+$y73o745s*(($n6u;u^<%pow9{ z_;bJS$sr31WQzH&Pl_?Ex_x#XXVI#-OufVG2R)w zjC&8M6RalV&2^YCSfBQ^r>zwHfVDO&*dQooyp4OxW)Og}m#yJ~Xr+HGh%spWHU)2U zU6zZ?AC8jwL=ITcV|axC+e&+n^gZVbK7#G-*1+Z|IKD*cX#E*O2<61p*_q*S{4W5>sAQR|53uOHT$Eodh zuS3J>J3D~{3D{@0?9wl=gP{c?w6P(`ch~z~@$P@uvSsKH8Ix0kC|x@C+h=_MrWQDuE84=hY@1d5 z4fPm%JfN@#$F`$SrR`|E&iLaofqn}CrN@?G0e^)|vUpYFU>*vZ<7d|_n~#2HBMSo2 z5A1t7Q1~n6fM`pbml3TD%pcWoy(p zEu*d4wveMO_AY;nY@<%UBak zjiCUvorvrc^vL`#8I4AK;n){4n(wMO!eiN3xK4b4j8*KwbU!(`tl%kayPluI7BD90 zvN-HnI(!Ja!dxaF`OJ71FY-y}9$z3>&34i+w%OExd-Vmq?iYAB55|%j5~wZ2X1-$z zLPjR7D7*oZS?G+&y_`5R$==h;VMH*Qw2Ux84aO2>Rhb(Ym11zMfGfkkvTuCn1nv-yaA2@lF~si_IYCEI zaiYhHx)_OsuWRwboT429mt)P58p=GHQ{N`8g$2y&WyO!7gHQF5qoJP^1o{h4?}WMF z*1hg^uXd}k?Ro+T6}+x%)n!G}oS^I|bFxJMr4(ZI#e8A>z=^ZWQ5HocXt zaS>EAAMtawTXjx(*MB^~xl$OCXb==JAIs2zh52iR6R(_n^2zOj*1EwGZR(?TWw78+ z^`mQ9(O+^JmiiA@tF3Ui!pe|xT!gW{?|tvvI(PcvKKGFQ77ok@ixmvq{G@pf1--Ucs} z95c284;&!h!J0u^zx%(&b&O79rJk;#OC}213f{_8ES?#wqyN43z33$wKb#XqJh1_zlv(qd( zTQDlyN8RKLC&&XZ?8M-plJoS(&?4NFHixc32VJ24Ie}W^jYdu>2ZJL-j_SX_yah?P z=vNmLeWUyCbD#TcWWiN^+Sj%~6rIK

kuGJ4R)fu|dN=eOclGM#OA$|E zFcke`(-~73u^)`}el2*!xD>yT7o1i+_oQQi&wBvI55m8bzleEoy5016iD?N1dcVuFHzA`-xc zpddsLDT+}*L`8#w1q39ZNJoKyV62D*MbKc2T_cL9pm|@j?|kRpSV%Jp%ScWX(Xcck&VKGHqu@cz~Zmb8`liXZ8g7j=|&E0WfD**#-m^W%OP zX*1do;?-_g?~q|c`?UjQWl{(-zo2!Gge`HIbJ23A2%`VjUbP!@191)#c{d-?Zjrp& zpPitC1THW!4?vuHmrGN@(wt2>8DEuh=0|xVo-O2vw>%prK4T4w!ukgDEoDDnBAw<< z%0YP`n=Ph!=Sv4Hw3iDmxF9cn!c!l_9}-`g49Y9~^nKJ&J#L8Kdeayq~m-rt+LMQ7fV{D0W>J zAOIa$r9su7H(i%bpgXL(TLa|M7zP!3-QT3HrA^16Q*a=HH0Tgij7g9WlS=18hXW&+ z=%fr74U&kJCK|{@BQoG3R;zV%#cmn@CVR*)B&nB!hNz?P%;4H@6HJrArV5?|p2a`u zv$|F$Vdd1oSp>Q0ysFPS9Br@P$`#GYqS2}>5i?m;-KjpVPNQb_PRu?kO3tyjF+?IUy z`_?wJOOq>N07kn~pGfQ7!j*Wmf8@S;VA5O;0UGw5&?^n{BMg&J*Isr8S@0Vq+|z>%YOR!I#0Zm0JTkxYh9;6#r6suAFJC862N> z+G*{rL-Js7uB_Q7)sL$W2BFB4=RWtjxjq!ae$+f$l+iYbcYYyimn+Vr;xn#$?Ze6OnH0)eS_d{?Pk@J!0?V(ze;XwJlyBW3X(p ztA2EcQ_qVqO+=(me{ZmkBoT*pCT#cgJNlQp7#Enxm^>nhci74_fmBb_ zJKAU7o9Z2cME?Y5?;u-=l^1{B+3wXfzq{jEYQMDuxNA%5**FU&^O@(;kEr*A@`mw| zaf7n)EX3z6 z?M51m7mVX5@TlvhP2@}s@edBhBl1a;*y8axVot6-`<6$2_$Y+XIB_mVKjuWqGwJV0Nij(Nv;W~YVlEaZ8o zDdRzXs`Qx~c;^V)0v)23Kj~BV^x56>H1&u!I?_yfviCg$We6Gl8SeAjTQWZJ0JF@5Zd=1I7(MNb@-u=sWv~ za_}C6BjpZ6U&)L2pe^+XLVb=tS(@|_c1L;-4pV0J_|->qZ|^vL;)?VholhzC*qldM zSfsKuR6Q_1H7>*L$gB6VaV61Ts;A0P82to(-sS3v{@T1u{d2#cUu9uIA2z3^T{gmF z|DB`Uej)aFrV}&JkywRO7l}4NLLyKF9|i>B=qLc$OAM$~ltBajUjAo$U)ppG#~yoZ zo=E5nRMv3{YPM-vto~JGor;EOl|TpXW#Ybi;8_uk$fwkg@=Qb1*=a!hk@C&0k2+ug zX22${NsGqF#!0DZIjMpDKKHA35knVvq=nrh2FByqvTf8XVl!C(h!AyXWe$axhRcU=u#V z1G(I!ty|LF^bH3uJp(0ePy5!_%iG63_OU#XGPpD0@KRryCeiXJeUlJah*zHV0|pCT z>guQ8{X`nPqz&qjKnBxDA((sVs_P{T+h>%ofwI+F_YF$C_|?l^<I+L6OSr-`@j=3Nr)MgccbcTpo=pm+#~1`*JPD#xye1#|Hsch1zCK%e zhj};guN@gPTIitVftW3(MJ#5qU#rh9W}f6lTN^ZaEEo*)tsIoAKF!44!lOKhqZhWq z^~@LmA*&y)_X)0z=SO=&Zh{IXEFm^O{=SH6T<+;SU6u!L&edNc4carbjxyZlviGV=< zs6Xnuv4r;J-K>qMpWZF6eB~>vEw4JgswUF%{X6&QypnY8?^1b|e2dTFf z-s^2bm@s|$%U_=B5hBeP&0G)}ApPp*sP#!-CoKL}q&B0k97l`^5n;m9#~4GyAY^z1 z)XB2wXBWUAfwggx#mb_Tv1KGtt(7Y4I-C5*bC`nC3^ zjTp~qgYeR(OMdEZ>(`!(2ia$#1{rAHVke#X74swBnHJ-aXT*Jde6PG@N40-AD!XmG zBkTb5E|kZ90yhd9-gCwk_591Lca!&^I)TJoG5sDikJf+G-S>;9JTspXpZT4H8LD0Y z06+jqL_t)!C4OxoMES$YoKYRMAYmS>zeYkU3uS8@DUYMPgOr!DgORp^U)1+^M&>lT3M5BY16@I zs5+QY#Y>zfr9(ZCO*$Q&kO`P)Udkok+M|iL@A3kZAMHz8xbGz;-`pUnv_~DCaFns{ z5@rbl{_yr(e!HI+cfG#FsjP~YwK6RAsidcu-?_RkUPPS%18Eu@87RxEJa-HKur^RL zxG~5wK~WEpjM|L>hSgT}u}mVn!%?r0t_Jo7SA=FREnem61yTh0!L9z;0EC@3b&j^H z{tSU)JE4Kau%c`YYSahq!k|XJ40zZu-Xje{xshM_@R@X(2~V3**V#VQ4!rzIed(7M zeqn9vzO)vBcRj6so6ws$%8yUo&7|{G(yY`ug#ZL+=~+smyw z!z2K$NAE`MZ4#oN(5Fsn+$fzU4<;eBBD`nyt@@N<1SZPDyV!fcyR?Y@MZQfaOs)x> zSERASY}!-_zkCZz-)*vNY+{_?J%kXJwtix}AQ47)-QZVRX$h-io~ujsezjlN!#*n* zdT;5Y#059;clSZc-!2b3DY%pFy1QZHTng^g8|4U}m8qSpPm5WUSs6>{C(Q4ZkG8Sv zuDfP!qk5UiPj{W`mp@?{Qy~|SJctE5G}MuPVoo4l^`tvK_q2bSUY(Z?z-i- zkN1LpU%luh<{#2GOr671(8R^h$k!x9JFpPo)18m*@ICi_w1|&0vIs*nUD}1yPxviy z8NV1K5cjoXV^8m2?=WI-)Cs&;`f3xdPy^%j@UI>v7c`%+bf6@m^Unxh=yn~G4xz&#jn^x|*MFJ}e zgs-r?7y4nwpWTndwNDY((&W8D*+yF3Qx-mTx5ZDtZ|zaujLo!pV?g1IBGRCanYRi< z+IodCTF4ElFzEG?!lKitMF7w=HR$uQKs;dDbvVd_L4bHUS%Fe8#Tc=dp;ag3NZE=v zh+S_;>a1@m94|jx?yYK=oFXC-Ba3|?H0#Wd5rDGR;D&9WV?;5~i^gD8hizM1HcU#? zLv_*VBhiqJ>iVGi+npf(spBIy*-6v55vA1Jt-MQ*)m1A;h_X?M zS}$8<8?vsXU3#@U>ip6xY&dw%Eo}t$vr4DOjdZBPUUWL&ULu?yB+?m{CYD|nR+h9^ z?Y2Ap+*<`S;U1T$H4s5+N~d__S-1-&(jiR<$zIY#(003pzi@ou=A|@>c=79xOom;v z7wBY5FQg_BhryJ1R;I~Y*+N9CRvksyT2LES)NOUzx0QY`DVl4f-WSZRxL;E6($guToa}_us~9U;96_k}lTwd*x$(U8t-ah#^8PS!$*WH{&XY{XVhPK8&<8Gd zhb;Cy8_&^nHkL3UrwL7lDc4~!SN2F1n(MYJBRwoY^^-yItLJ45*Dsu5p22{U6HP&V zi1GEfV-DkgV|0S3)o+9hkASk!{~{C3`^=99iTY)XT@FGTmXV_6hDTvuTiz%as^2C=SY4J74?iHyG^r}yzFZ*?+MrUHMis3go z)-VjPk(UZaf{?d}fMHf}kRJ+&HU)c!!UF`24XdF{9w2GOJ6|FXh!7gSw1zPJwEWl@ zVH>pJ8Su%QEu;o&Y-}Ov z)M1*SUS{$}v?Y^v?G-Un?sv!QzBY^$wi>Jx7lQ2E+!A(lN}o(57%;k6^a~ zCEvZ$*yMM)-qR-`-Vp?}u}!vz?Tfs$ys#Lw*Qc7)S*#dVv@I_h11&;Z#fx+yM4d9Y zGN4xPX|_cjS%{LDOq}YL#U1rp-(e7B;yR!2{K@1bLRszz82g&c>4Ws2-cOTSNYoCH zEp|d6!@Z+T-1Xg)5@DIRv%T;Ak8n0-(SL?4Jp|Ml3$Vz2$}+UM^qu`CxC@<2V>x39 zV`SIHdc!QVj+$=o58;}d8n0TIUM%BC=|FBU8AWJ*n=g#o)`eqSXu(BaWIk=@;6jsg zqn6b|yVs7C2cp)zX&A+eg--KQil4%rxv+Vm`6#?+E3}xkYhkMI#*L$ra^{#w#TAJ( zqlAJ)n?%}Xn>T5YKT2Kdqdsi0wrOd#yUJWlf20o@M6x#FgAXyUlTU|}nG-CA{#qK$ zOYk6t>m0Q#^wH+r7Ul4rG-}n=Uj6+<*iM0a2_gv;j@3Ih%~X1V6hbBqL(~e#pu#E! za!eTP09ny8ko0W6Cu}O7JRsB%Y(Rd+D_)TgmKjG&u&GkUy~!e=%nVl9_o121$T(7p zrieO4`-cXo)hSvlCMr#hL^uYK%G@MrRIxyz?$UZ>$B)Sj8rifM4WJDcSFT){N#s#A zj}64UOb~4r40L?GWkA$xw?3?ZfJ%dOmw|LQNP~cgbc4ju-5~-3(%qnR=P+~&NW;)A zoioJH`Tp4Z`Jd;U{hafD;tLG-+;OdIt!o7-V>s$o$S3+tA+0}^m0~8+<^`COb)P_W zVDCv&TThp7@M}$mfS->IwQ!-c)cuW5d>Jdz4d?0uhsKp06<;MCbry|*b;o|`Ouj@k8#JDluD=V?KZi9%9GDiNr{ zQ|Nv2irEUzhq`b&3+z`Cw@IyTt;^TXgT;O|f5Ks7Jf)ln-gUA#rR!%LJ4X*V%Q`c3 zR7bDNcj&Koe>zZ~bCPxC1VP@Q`Mg8(qnvuDIZcmF0>?M3;UHegr^T(#nY5RbQ@J{m zNzRB&;-hxug?NC5FwyoPT?$gtal3)aHwc6j=Bq72^?Zj4^|Rsm4!9xalhu*&riH%@B5a92~Ct zAUsf2tkGnz|7Z{4%=ruA_$fK&p(;Yy*C?vnNn}!V0|l}?W$rR57n~6kbQ&9 z8-~R7@!Ey{CW6yl@`r$jW-uKVzCg)Uf6w>utz9UeBnr}})G~pDN#d1V6pNfHW{d0K z$`<0ht`#cv0-UlZ&zI+j%iN#ib{_5!!kshUzbTbviVSxZ{M7~de8h!m1~!3FvRl7n zqF4*5+)!Ieh4LsRD=cCQSub)@^Nx=3MgR@4dcUH^CaCXM8gm$qQe%{aa(NP2dNGi{ zhl3qlCJYsCHO}89QX=&aiJ=?iWZNumz; z$hwtyugh2tpB%)i^NYg|$lT^U!FmMB-272sj|Y8~j#|7fN^4@;>t znj5RaVF*TjbnGlkG9RGNx7G{>{Fv0*ZKoW9CLyX;HWT)ZZW zcPgXl@){m(Ovp^``DbH=Kv~kkO=hr7t|WnbUZO>4?`W!v(s@yjXAuO9uH+X9&Qr={ z1Tz!tHr*8$?aSY-Z00CAd7Vyb)L~bf@LEP6GI__nX`(-gk-ex^bC|jF`5=@dq;b&v zb^uh}tzHHW1Wd$tv%uDnhSY{pdR@;#$?rsTNLQ35&(~wmi(&J!!w%P!ck=i0X<;Np zKIKx=FF+2?{8^R^L z=`138BhELo%b#oL`2qS!T5l=W)T9eY>lHg;O}+OJ_w@Q@UXUE0bCgH09M#}{E+>4- zU?u`u_JiX+Ur8g`X$K#kYy5CeMqTMH-&ucKBc^Kqi_IkBB{7TBjJ z#cv0Gg=mwAiP2zMc#Ne>RMY+pK@D`L*vv!6!5n#RP7|t)DVYiqYIHs3HO72ij)bYh zS5rj3b|uA@2}oxRA4wiXK*f3@oY*holuf0`<~zTLlayJrF3>Kpp(+Yf{VYAAYgnCuFMm~rRi4EMI@pVsND?pAUq*ME%%|C*R6PlzJ*JLQymXG5 zI_OVes-f8QEeU}tAjEZ8N&6TgkC}ZpeqdOeOu3dKv260FLR&wzCLr4Y19tcH`1|r& z=$?7jdTbbP%!b9^8oR{g*Nk&0?p{4@o5Q44q(D?VDho_JiIXt$A{wkK)Ic@I>Q_x- zZCH`xZP;R%^~3PruYg3xH_JSrxEOQf;^>oR}7M%KSw%zsgWfz9O zC&*%Co@dbH(EaeG-42g9ZDY41q39A9F|@q1xHHc51;!a|@L*qycVc!92-VI=xbUT1 zgMXa*ZNAy0&l#47Xve3EOGq}Hcj}%2Z{6h!>q3io9p2Bs;$fI|l#Nc*UXj%LH zsS4?7R%Oq@&cIMxd{irjhN12nvIJZPcLU^W$(~N~>1go0UNSW=gX2w2f-9AZCz(rd zrL(GbZB0t-i--lItE4eC6ff$x_*|D<_3uRb$eD#PN2w=V$+L`{O0& zU801~em{{k318F;m<^I0sk{ts=>H;HRn}|xSxs9d!4EmB+B7=G4Ecv=N=I-g778u< zkFhFV7vEE9u1K@$lMCW#=-`ytY*w~SIlgLdSX%zYb%Nme&9syz#DFv$YG^YzJglgy zD?q`@5FDFQ2x@|A_A2Qr9!-t^(e^U;lcE4y_7A^z<6HE-x+TnXWHRE)Ysl*+yMhfS@CuCWBXsYqOyo^*-qdFvbgQilJP&8XDpo{37~aJ-b9-p z==>;(^PI5K!hMel(-t)&e}SOa`e2sweZVhCHG$Jbt}$>-A#2N+-rJdYfnr};ONzp5 zeb;k`7AHJqB>y1sFYk~zrNR2mf;P&Md^@VaAcHH7P3`yg;XbcJR`DkB zqzip%6-|V?k8rh=p3D-d0`>0+;e#);uVlIM#PoP=zsB%?IqNSCVTQx8$Mw@XDNZx_ zIo~zTZ0FXCrx-1qXRudyJL#Mab%CrpxIS~CfEng&ceC|S5o%P@3L8*2ObwTe%@R)C zw;#O^1E>ZMGV}#?70OR(z)UdO8*y3=ADlhY^0hragZS3~HkeGKM^(WmrhCLD?ll7#$#@n<8fJiovk$q}zqJtTw( z7tHXN9FIyCO67^jeiJ4&6O8b0r7yrI?O6Hakceq@R?Mpg6LVgGywaBguCz?$72Ypr zx28(cj4iPGCXDbw9AByt?$%ztF#syb<$Hd-?VOnJ$X(UJTGMyv?M*1@a~lshG0rzfy>9~xWTntD44iw%+2#$KtW>hr=nHCOzv)PE+V{; zJCTi1ynk*;l}f<^`L_;yQ+`l9qIXDdHkezQTb~-?pH`L3UL7Pi=LH#y)LAxqNp;|R z-h|M!Go2&pZSHypS!{Sy*MLD3+0)-Mwu>CGep&e3DW#yB5+cywjAA2qo8%hG%OL{` zYPrMW&55FBf(rHMww=(xkM{J647ieDF9_=tS2N04rD*9aL3eZh7Aocwm8qRn&e+Rh zPI65`N9b^T%?3NPn(9gk+fO$az2n=<@j;6@1TWEWuj1O} zMdG`Uda1H{^;)}`6m!tC&mZO%IPz1bgy=gVjJERdfiX|-%w~w*k;iwAxm(NBel-4i z@Q5@ZL|>BmgEvm?r;IHf44gt+vLD(n#2hWsfhO9jw)8pbm6!6OgUF_mCwl;o!+DW~oqxWiqt4h6`ZD?cd$_Icf*e0jkV2`a3 zIt5*Af5Z;%h$GvOl`y#EdCI$c`VN!vR|WH4Ns36-TsgMnk9gP7c(~eSW)SuPdVPeT zTsn&H6=sv>dtK0z*L4Y?YX0|&>5@0N($s8ZC?{T5%S3G#-LsINp6_!aK-nCGJ4CIX zaN#gr1myw40;u3>ronpxkR+a=3h>H-c8Eyz9&T@fUGoS&DW)GAIlf)%?APPP36B`1bcp^lcNaxObgq+4?!c$xG)>|h8b8%?V{n+2% zx5OXU&p@9!-6EUfpU!j!!Bz+rJtqxJjkhT0^KO@t7KY4p2SkI!=iu?8`$&gM=~gi> zpJ{B`x)LW3jO0@ih8z8Cv+bM|_L1J1PFvvGNE3uOMYx6B73$Q-+&Nt5u4b)%L-@R< z=ZyHSkZz@ddZkuhgtm6_baQYYni?<;bsZjgwZYGxO=y&hvzr?pNd3fGMi>~B#ql~1 zch1)MH2RuRoQ=A^v=T!{E47p4H1ipwzI6*Kh(RK+@`dgO#giG8wakd?<80|foztH& zC^~_dHyR8o1{iS6_7F9GQw30E80S4CkB4*!??z{H=B=y>7TY{>;DbwOnqC{XXrjy#4Iox{C!nQv8 z)Jg3PGEC9$t2g%@r@lsomz;-zr|4i_ys!Ly?fu>LmMc%v(PS6ok1vGbOKs9h<3iRCU%ltkTD@!=iltyZfIXHgmO620I!uyPCtB+T;YwZ}U^)+Ck)1 z=u!CoutKBvfrSaUmLp#zCkT(`|2zYk9GV9`nw6T5gjiRZ>MUGCV!zBlEn38a*r{ms zK@z1j!_n^Q-er(8(!fEP#;fkfZUI~wzBgpY@0LNvdkr#Qc`8GvQLZ@ z8+aL@(#ch6MUhIf+l^JuU@VxxQ0(YN7UvY zvyX5tNmBC)XJLn#cEYu^J~*Cf6KUOCypO9 zFlHv=tH=EgyRy^|r{)D6$#YpVqC(+x;k2Poo7Dq zrZRKz(A;N)Vev5KE9wo(P!&*#*@jsy2!z&Ds-}d;Z31%W8$27{Ga{VNZ^ZTJpFLMB zIcwZ2ADAZtoob!dW}}}pQooPUKu>X~`#RA@w%NG;*u&h|Zm%AHw)w=u%(cKFnQf~x z!g)%xGCRZiNrGG`6@9>5Ccb1!LQ!|@Swnly>-VRM=5{ZZzdZ3*6eOTzRNn8UkuB>X zrYDhfTvqsF&LD3hbpicK!L{=db(byY4)Qal{>3#t`qL3^_W)~r+Q3){oBT^^J=A`1 zKJ(Yg`@tC=7+)~wD0ow9{vkfTusUDVcM{V5?m6wQbNq6KDYtxt=lBUYSbHl(Eiuz&in?iFP!JH*11$1)?+ z{`lK7CDIh)>iTZ8@@_Ly&$$inGa~5YnrJf=`Q<*_EDB?;DCW7SaW|gc(fe|@q9Z5K zBg!+a{p|7~xA}=gv+>OS>tW4h-2e!o6vlU{nx}46Nou)vm$a2QFneMyqE$VvKAyL? zOV7C^yh1PfmDcrb3A=7D%jx3Y1kZ+>0s=#$e7~VTPZ@U3q2in^#7Iyj?%T_G|8Oxf z%|fn4xMCrWg1RxTN*q!V(=03tYR91MnanTNQ-!#gn{MT?`WPvpUW=UdCn(90COVfW z66`mtmd(6F$@_-AYZffFW!28pVXgGG@CB&5dp%2ffW4PIF7)GRgliabFiyRCZ>i-u zAeW|C(3r0bpb|stG+O?kKDBn4r_r_szdUCW)xORQ1J5 z89$$J_$VU6RWlhB-5v3zdc2(2u1+?)tTYXRlhE~o$Zc06W1>o7?~g*0X6f1dGXc1l zg29Sj$i-x2SUu#T7#r&;$|mV!pQxu%BE3zQ83*3x>Oz|Gg6YkB`&@6D?87-<=@Pp| zUo|m|Ojz+;~4>i8#GoJb! z*~qV`om;b|{|&*gig+DZ8d_k5%t0E2VXY(Fa&tUTqxgmqyYXdK<+qy0r^P~s5}PR& z)Y6!Sf1Y7$a`=c@0L6zGHl5i@@nw3l>TmY#;X$l61i>t!ae_uT`9jGOAIc?3dubSc z4ODbv^Bn$?2n-UN%EzhMAH;>%GK_fU@eAq(-Wzt?f&-p`_G@f}H7>toMfJJ3k@t^= z&VZ+{%j8+!p=1hJKcFg1sM4oc?=ru( zfdFjF=-*+C-Br%)Q*Z>!^n#~c^OzD=TT+Xe+;=`_9h4{Kx`?m}_jvcP#W?6FiP%Ur z@JYol)=}9~vSBr#*p1A`Z|K?~7Ngpx3X`rj>tS0#V#WkneE|(ittyOm`<~Sj3aWT= z0XMOXfx2?zx`e#hwKz8Ac1(dk&URZm#% zS5BejR`4kCg3Kfe^sS4vIi7{rzI*F3_n$|wJqH9Yk|AvZ-k&X7?G8h1Z zGR)%lpnZMEim$J~_n_9$fSwDuu2O%lU1^Lz&*Ld&4n{$8iuiJl_zp&12WqJ>+atr(B9QA@?-l9 z2zx!)05K%Ef>YCJO>PyM2sqhiUwgGUQ zUg?~9xK*MTNahaM4MR04Lt07Zv`Fw6sv_8;hFEvh`fBmOHz|~rsnhz)u>$_)OVLZY zJDAwF20VNTGpr?GrCVimE{Mk=G+BACWMzUyW}t24vW;>{{^CGIr?q;uM$r-`-R`Ek zj!l9_87PwOjN&~3$2t1wQ~@l~B8Okh>2tZ{HOaU7tda}5g$4;RvdHd|hAy{-=$Dt7 z99ozW=MD8KBA@c!_JRtu(pPOTmc#Gu6C`Wy=DFRPie)&pl52ncZS360JX_j+Zl~%-{_z4yPlm?EQROnS50>)><=%{{ z^13O@NmOj|W$V=$NgJAvKWAn4lqCwt8XVoS6 z5>S=cC_CRy7{5)b2^E5orqrCfS1b%lhuxqZQ7s?dJmQo%Ef>D z?QE7d|5lIJ=_h5Shd}tE>IJQt+Z?E1_jrJH#7waN^+raO;#m^7W{oc?UyLzrwJ$JV zk0W3e#m!8O^8TXNyxN?W}2NyyyC>W z>ix)_{ZXWaL~h+eA+{09-a&yl1WJ!A;-oyGTYzuGp~Zbmevdl zOfsff$HEk${Vl*UY7%K-+B%~Y=yRq<<@k>$d4@yI2jY`Bn~L)96&^ z1d?&uO1`(pDXu&OEb+nM9Jk2cCIMqa4CD*7zSj6kGJ?=N5_T* zY{Sl&XVcYg38ztzBx#UrHpK<-(KXt3EvLnRMlgL@`GeK>C~VetADQZ+-QgJ57s=m4 zTuj)la1w|_e|Tur z@{u087k=JkW5gN#AdX?r_2&rZGUXY~eU_=AgxA4ZDVi0SvTM%cbtrm|5Y-wudyMTaR=b&M6`2`!$Xa|*l;bZ>;_0YBLc2SWicHap^CyD z4Cq2-dna@hs!aY|LJ~HmW0z5j--gII_;e1;t1W&Q?{)e4yb1|J8S(AQ@%>p{n_hdk*K5ofcYh1ERBWQCK24n2bFmO`rKTPns@Tk zsuPb@GmqmfmwnEMh=X}x?(W|z{_9Ts{cwIzA<52h4)f7Pb)+o-P;WCi#JjAUavk)q zS2ak5B!OQWLXg3w*#BU&C#!lX)7o7AsLy>*+^>||x&tuKueJ+I@ROb2^?VH@43*3} z8s>mSCS9LqfD%vQRm5fL2h2xM12ULwl_O+yrm{|QUz#GtwQaomJ^P?UZXNYARSZI` z0tzWAazW$z4&5&%AN0Sc@z;P^rnB0OB67NT_K!!dE{rm`2g7Ivm@^rtU8LRJf&E&w zYW0}W0>*bK0I+4D+k;|l-h8i%F_n_EZXpLmj zN*|GGd3!oN@{1|klGwN$r)~Las;>AU-+mG>>1r83YZ@(NPVhFPb`SpZ!GS9@(F<`# z3*g~QwXTR9$3&H8o|c-MD(-CPXJU0+?9@l;;^1F?W6?2lBgfk{=ljYmCX*FDv9!1NdZ40V7RTtf8m#aFa1u#q27CK&@s z0=IS<_?Tke)}x3?bJ6SB-6+2s6NrL5a%AOnAJ5CL-9P28_iIK*KfkCZeB2B~j?BNF zU93fopbW7|9(=B*`WgQ9%kjIZYK`^oCFP0dB^CXS4M_z-7&FwlNnZNb376Jc9WkZP zT+ASvLHGZ-ErvYk$!&o0NHMEq(`G;D@U8?x_3r5HUstJ*mW@C~!RZV@+Cq!w7aVzl zBq4K{ybG1uUa;C=M#~`oi|Y+mzm$MAH}=qGfwy6|nLvp#<*YCKon^3Rio7aK^;ZJj z_q7aAy#EA}|F(|ssP+$lp-1<*=8_v@d`oW}mzM8!%0?860#izJ)-n>h+RiC)8s;w$ zIBZ8Q5k6n2(Uv941t-VM{hq6x(q_W%6`yiV(!Ig@$Cdh@X98rQNKi0-!*C9n(EVNb z3$B~{^Y#0ktJ?#=ELauC`JcnmOM0o8Dv|dXqq{A@D?BbrGtY2Q=iznO{uykRR)|Q+ zXG~w!{|83=(^w5s`u_}>o0X~IlBfr&Om$$j)B0L9u3H&ylzq8f)=uF+Zh^+K27o0{ zoV4>rq}@399CZ_E%-gm3K=9`knmiy5!T&s?fBws41C+0YumE10$=kDe)~5OaJvc`N zX)RYW=$NCevWL{_6E+Z(ESc0WXldNe4)aXS+Kx+bC;0z80~Dk%Vt;DOYXYpahUcbn z>I)C3R0|-ESq=XFIJ6W~70u__Tgw02AU$k^0s-(5L=GKes|;b2zdEw~t`VSS*@qe!Ji8yu09LvnW zWBm=D*eKVM1FX&pKFy#uKc|kg64Bdfjikp&dbu`fGisaFN%uzH1&Fzg*0d8fjc0FK zZYB=4UVV?ES=(O`?M)9z#j1dpPv7ob6nN*}w=B3UjAS~p^nP~|D7~5dVu0n|e#_H; zDx|b!8h!toRkaEzfIC~ho7UV^mCHJt&**_K*Md*Oo!+z;(VriRa`j-|DaZ>RYem&0 z_N0f*9sGpqIvJdcI;WD|DChCt9wZFEMtj|;#B0*cPtiM}@znjQDH8&6I~7X2cxgb? z9ZO5jJ=}OLau@t&n({8V$Nih%Y~R!OMB~ex3lng2^n71z3UlEF&^<$7QDH$>MbkhX zDV)jQA1;aazdWnv8dvQ9+H!Q%a=4nNp9c%c=Dma$S&Ni&C3SL z(|{BbO^A$CmJ4}HacOW};%dGwsT9mr-FEn|TU{B5vn{^q8r@ty-laEw`x@?^Dn#kO zkoi43#o6}z%N(JM^48DpN`BYN;mzR+?FC=*<0hjwU*kC92|_dD*f(13Qm-!#UZqL9 zy^f{a;8sr`cX;o!aZj6^QU`Lo6xXLB<+8N3$$lxu=V;}Y;-S~Oel$cmF zuxZ~kK6BgTmg?23!It*DYJSmKA2IEm+6WaQ$weXzaOWc~L4k9 z!R>+!J59RzWVHh^_#$L&bTWjL|H7f>y>F9FJs%%f7xmBFp3_ztC8vzh6=AP2b@jQ;pS`h#7 z&`_~R|Duycf@ zAMQGHK3v>&R$Qg~;g#v}sV!eQ2Q+CUi|Z_Tn;Y!^ZNca$&yYe2u7;N!+wLNIH38qQ z1Q_kPG`W0#yR4CB+X#AKd9H^8z}naJYi}fRua*M-K2iU{@v3XP zg{3Rnh@~)_KFxM*JedLnQOk!y_A`rv`n5>i(GYDjoS8^H`P6cR8qGbt`yi#FFwsrO z2I~49kA)uoHEsa857h1W(qFh+LwU>S`(!yT)U9zKNNdE&mkU<0cgH2TgsWT!VB^{) z)pL`gzA?;@8X5f_06<%dh{x}DmKQZonnc~le(*1(?7Z0fB!BFd1?K9}a$`-uIv_Qp zGf9t2Kvobx!>ZHpR$VH%IUi0c5sEvg6ur0tW@Js%x$F+*Qp=#g@5mYP)WVxnWU%n4%lS ziFFPzyiMWIdtk<9${M7^ll}K}+uiBzL(?FUL*KUBvpreBnLo*U|HroVa+BgbX%9Q_ z6y9`@x#uYyHTa#y7S9Azy{ zpH$FEk<^}*qCcvfNAI^au(Pb^VH;ipZ}k_;dNZ?L121PBN<$|Us6=4$brl_U@tf~g%9?3{0HA4A|Pa$MsJ&iMeY#VU|ZqDCMW8HJE z5ln@1O^!j~Rbb+=%sLEw`Dw4LPM`6^{kh*guiyQK!JX;G zoZ-8G>gpez4c8bxt9CCxJhgECN^zI?X>8WrNx>zqEl4f;!3(l9N5Jg-ye54hpRQN%n$fc% zC8Gq8$Os;0L9o=ol(-4jjkepO3#Z(JAJcf;0C2{pcf)3yV})gOSPF4*?6tor(IsR=&Hk`KcsI%V+o{!u&QHd z)tC!D9V@a0UeqKVO>tI3LL=#T4u*n-o@5L&4X;DpZZbQ2k*D;hYP z7+^mPI8;*SdvN|al7Q}0!o{9|^Q|WgL>o#4tqj&W`ybm5f@ZXam00Hc*xI9tcn?z} zC=3{7L0|k3Y0IU#4jC>}eJ-&r8@4(FP~Wu(p!etNrwMMsyDHwFd=>QZMrpWFV*8z$ zxPMOpTePYUEw{--9hZMmQ#&GZy>6wX%3#Sb&syf(smr9c5bAw*7%aMOAEy0_tnbtXEg_{ z*TaVaI_)0xumMODUhsirPc0q|Uzb6H13hQE?aeIaZ57HN3>Qr9(((26LEdyxaR$taT>74Q23Ub@{K{_-VMj{QxvdQqf zyQJ{_wM=mK{RPt;9Pek!A~}$A3-j7o1!6rm3}odg%9hW}0YtZA7=POBaV;2A4RgnD zSeP?S(wl4BTLEGcBNn&oFGWGuWE)6#p}MvhZV}v57CskURB&{7VNRr_Gm~)WKHR?P zlV6~;&6}Y{O>QIai~F0bdsP*Rd!ToqZiYh-$)tk86|_0Kvn=7Ou_^@a2AOWb@G0n5 z%loEwyKgQ!z(lNGS-P7mt+faQTQO9h);tlp`AcW`4=#tKK>Qdjl)~@k2u42Y3`>+0 zQ|FQirT8^(+hoIY5om zGdjWYG`m)hNmv2g4?69RN1Eg+wPvAz_?76hqHb!!FuA~9X-)Bg-~IJpfn@Ga%fQOG z7*~GNMOj<@X5^^PmU>p8e_R8i=L<+$Q?7Fr`072GD&p*gi$%~zH;>JMNA3=njb{&^da0i(ZR`&Ho zfym@pNvXYDzjiv;M*u)&)OQ~<&oX)pJ7uaeeB?HH>$~|5G!I2LBXoWsNTidBzFv!Q zjA;J2`O+&&0~(iO?)kMDA=k}&85G*@uBSVU9++o|vhQ)+<0H9~3X%wK&<9sfVU9>K|FG7-%cXK*_&L36*}b^qJXQU#2bJY^w9N#mF`i+6@1) zs)cr#x>PV9{h<-c;Z6(bj@$x+#vusT3&c+q1ywaq@AWdB{jd2uI}Li{uCJ%_EG9fN z2S1oad}u1b-${1+;547BqJy1tO`88^ntkHYBR+dMN%2piY{L#v+B?8-o@2e-X}`L8 z8?z4M+r<(A0Bd~<>ii2=W`b&CFFPe2eV$~*6Exw-B$Nfj-;KVtF;z5IOF2yQzW(zmk)vk;sRTeK4ujWz zm5k{N8eH%sp^kNoh6cH74`v!A%|D|5|Ia0)u589}?-g8%;id+OPl;lwWRvVsJ2&}1 zwUN=TIhCly^Vej+e|&kFsAH=|;ko^j({&R%^ZvWxY=lIgg*+ku>4a(txK{W;Kx89c z^-XGl%PbHCDha?6DD<@&t^hg7qmfnerP+4mj6Pxni;hp-*}lBw^{V7D1fh)&`dk4s z=9d%~w||Z()>khp#P0N$n(C(4WDNMS%E|jjI8^e61=Cuu46DaB47)ar0_A4+;ncH9 ziko=Hw+bu`^j1T|_VKor8}l$KeLIflHB+i z$iX~?n?oIWTi1y=AcUTlyOllY9M(6aTG~pNY09zcvA+h;!OTwtCiP!lv6(^vzv*{?L@81F7x4h zRPvkGFui$9?x`LNns1Uo-qM-CuSk+Gjh0=t6j`%;aebV_0X-nl_QvRQfwIqO(Li7G z&D$MAR$lu5>szWTqC}VM*jJ`|eAnGCynA4B30RQ+GsT!M!Q_szkb~L44>TZQh54hB zhuELu@Ud`ec;9=mv>BHgi@p4=RL`rNMR}&$q)kiZs2cAN`<>8>79f6H1N#V31i4Ld z3&o5mLRpm+;c0M&xF;_Ji%?SZ(B~QJ;*sS9(wVH7$92u@)KV%>wZXPtd3CP`_0Mr? zrCuSO;Wguv#});oCo;M%l2&wM&Q}vWhaFRz7P!gjv^j^G1Yq*~R_O>xJfc2l&{Mb+ z44KQ*^^7_DubcmmFRVF*PAx`}{VC})8Cc$Y?{iHE5LMbj&?tiqQ`oi>1yuG%D~;A4 zh>NSV0uUyC@nC5fEH{42 z^M~t?_6x{esj*aAP01ouX`B1E!3*|Kp?{mr_V*~1x7#urLy!tdI&Hm=&j-PN&Ik zb?zm5l*fA>gR0BTv@MRewq^*ueiC*|Tg?iz#TCMuC;d%wjQm-F4Pe=EKz|t{(7V=` zOCoE5PPsO}XL*<7nnLjT^Mf>v^f;h^b3~}75fBYa_A1&$DndvrXTKZ&*s%ZQ{M8EL zv-q5OKJZKyjR-FootQ72cAtb@yA7a$;4YHxd)<0&`)aAdKV>YaHmGq}Br`ymX)lU! zgIgC{=&*e^)v6q1C+BD{Azqbd z(5uBAC(`B!>Jz-WhsT~Ya<%ZYtVNrs5cC2T=R+C05FPK~dS0+^t~y754LxLn@>b{!(+z62%9MqY)#bqFG9wD?voV z)EOW$>e5neR#*1=IiK^z62!1z1znNSm0oeRZoe7c#eDI3`j${ZOWB9y{$|jj{;JdA zYchM(3er1}nNZ9_3#2bXN7Ge}+cHlCtmz2@A$z4$dNR@R!s~@c5;2g_+9#lRb zRS`fH@7;Y6`os1Ji_u=!>jIZzw(e*SK#;LrAfI3>{8jkVuy2R-P@NEM+}G#&d>yTS z4(w|$qu)&c6Q8nRB`^iKphAhb%9lb^9%(k@;uFJ!9fwp8h|rEi_a)H#D9k{2(Q~hi zp8@iS#;5tSO-I!+tosItnzPzz91q>$_}yA#GTTGUC|blV`5RoP{F&_^q4osj=GFeC z#0_oddHz{54+ zdYxLO=7Viw670O!$jsleP&o~<`wY=ebU7-@<;n8DFTG(|-rprPd69y0q}5qXcJLtI zimn_1E=7~j?&Z*Xq#a)0V2POgljHfQLl)lw-s73o)(jn25I2azX)nc7Vn#RxNGx_{jz!%*62r6)FJRXwCj#bw}) zd>0@Gt`^FZ(zB48u&XW*#MQLn8%*JvyaH!3xRk&4pmj4BqH?AKtwVmry=TF26xbRW z7XxP`<BR1X)2FzEuo%>nCpus!8|}n3Pz;C!@Npq3Ez# zpp>~bmdB<^Kes!T@g*lbPbw9Xm8&JX=22}l)i~k|+hmvf zB+zw6j;`(6;lC@4xHz(cZF2{clJQs@oS-SlZK-ZUwTbRgZG}%+!h4+ct{4itfqJaoC(s1%9f`||}^yJuPs8Jxfc(%E@b+ai+2X^bdV z@-u=dY-3x-Z**^3)-Ol=d|l&Y;gC46>=M>FkjZ03BG^HbQf_%euWB`Gx48U3hPG%J zMn7YfZe-phDSvEz9W}oU;?)xr4*fG|(s7J~btA8;hxc;f;h6w8$EaO@a%a%H7J_eVf+nfURi*qwrjvTbS|=;@S>NR!`?rR z_v6Wf2-`FWRj&X-v(mi-Mb?b|b{sOX1LrDHo)f=27|6_LD}qP^Zp1$_%A-y&zF7R4 z&iz}Nw23*6Cyt>lE@O`bA7a}kKH*A-*Y;lu;}I@#a3MFLEZV0Hx4QFlU>qwn<_lON zACMtzcxMa)2;bG=fNydsJj!zU=T}Cs`-wqKeuCDvdsKl2H2bkr*1`7=A;>c450>*S z4m}THt1~;$tF@m-A=>_K_|0k7)pAUra0ul^JKCl_ZbRRaU)rc*Y6S&|G^tSP%@jg- zdrmWgI!|Hl!XJ&6m`3L?DcIRp3`-P5GxFh;TyVF`FXkvY1W)jCSm7y-hYs}V^=D{y z!h4<1Qos;s|0QN8#R*2T+A?rWaR!gaLmL7eIs9fHR!~6QM3$}Au%u10h-@v#->)q% zjwjAK&P@AfI?_BW zhW`mqnst?2Kn1+_vaU?N(*$kYNFTCZ={E^}(j@rEwQLxW;+uVfmmiSKBP=PPV?81_ z$^G;w%1?-_fc0);nh*}I*3Wx!@154+HxHgN@VkA3`4Lg;wGJdkd_D#EpO69XZJeu) zgEb6-S)fCH^2?UcO^MrdI*gg^Wm6>Wz9oZA@ORiUE!0A%S>idlWV>_{@_L9sG*>CY zW>Z}wyIdz$N|{HXp2cZeDUcCj(`0`s9p!g_qI@4;hg%KHznz6nDS*v& z27Uub|0(ZjCq_Z{e#bZvv9%V2J!BIQ@O+Gs2QCdd3DlKvVHpFYNw!izesL`$_Bn>+HYP63dp`gC`llYf$Ben( z_xrxC`*l5E*Nr{@hz-_J6(2Czc9Y+0{OYZBlKC}<2XSj*f}#n&{ANNIAz{>_cv8~T zYve%p^l=h1I9Sl0dxsEei2bk!{J41uFX0B}CvNL)X{7BwY+~pPxO(qkb;UYx6t{KZ+_&vOgOH*>}JXq>8LmF9M=iYwQ!JyKWCmSDLeM|Gu7&ZIA6YU65))DSOf-hWITdq{BC)AhkT8#OV0V-u?q z7;p(XE|KDlHRxZa8a!PSH){Yt>5DXp&%MUO7GYvtW_su1yL`Q6H@_9YH4(-US}B(2 zS7WJUtgEf7O7tV{=zdtZM|zWSVc<{65gQM9tr6RBxYZfO5lgApfqB+%IqTTp99JuW z1g2AQm?HKxwe|a-IXGw^p+~RNCNUl^NX};3D0mZ9Ag7(aUhN_yo7OZQi&0~Qq#OEC zwoHW%N;|x6*Ny&z@a_s#@gBxeIs7UN7y$V7d+DJ;ULhDEH7h03Z6Ka$hu{n(Z4MMk zj~G;Rguc#j<5gMx?$ipcrcJ!wQi8hO4F4eX1#4ZLvciEI6x{E#1HvFiXCH_d3#?q3;#CF*K>e1>yu^NV3?DB zVJW-gZG5S5GDQz(OvrhHx{mKYMbvEGc}pxwXoPjsoIN`^`=hlL4l1p5kLZ(ynpoQb zcXxIAFJ_U)ChQG^gjr$w6*TnW-@s~Tncb800$Z5Jxo;%vIm33gF<;1{*}y`q>k346 zonQJ4;d4Em%C}%^mVBq-uJ0)0m2nDem5^-pE!Nor8xz^YE~QOa9OGyH3}pq4N$?aq z&(J&<`r59;A|z8Kcf}&OSK@&=LzQ&+qp{fbId7?xgb5RBB+eR-7dp?-D8=wH&PGaG z=no5R4kwbw)kUh(pKIb>>E>*Ngp+K5S*0*F@pRp1aia3BAA!1f4js=)mBP5 ze@fN;-W7y!rO0c}$qzjS_XG#sZPktSY}}GN)oDWtb|SdGi7y)!QccsFaZFWMA|fTL z*?hD-F2zrr_4~OVQHCGeQ=4ZSP>}8aa_U`JYcciNk1Q^cI-M5&1D_^zg$}~-8J~1U zHhOZE$y9NjL}Bp~wj#6;c7EzRv8<(NzjFs>XUF6{ehh{BR68Zw{sDd^>7(32Qcma> z9t;kzOkYlQJU#Bl`wX?AEqg@jsy)1LUV~U{YxS$+d#j0KrM=_i%y!l>t&nV4jtGUzSdDJzOyh3d? zp*U`JC{t6U(ppR?@UxcyCOWO5l6NU2Zgtpmkqr#My#4j&bXClAx8jm1-{0;40|`f( zx1$$#m-D#2K;8hl&Wb~&x1%~((WjAtf}4kIlK)+{ra=t$hoT}tvWb*?@kTA%_DZ@+ zOJAtY=Osj=Yj)O7Jh}C#?h)dJj&4$zwEO1?FKADGyAjKKn}!?Th~_H1DpwOSYweM( zn>P*~3Au-g<9X;p;`As(E1j*7okVYFhQ>e31E(U>lhGc+2PI{xif8r85KU1!6=6(b zB=JIroyHS(lXE5sRd}aVIL$P0pV!1lyKI#pA0?}F|H3kKLh;y&~a zkZ`HER7hTA80b&y}+kH+T;=yjc8OReI!2ktN8kBiCI2OjyIP`K1+C z3S~Fe4ex^^PsmQu_Ru|;Y?aQsPV-2NV&9Zr3fO3V%unu{WH#Nr#?>3Sa03lO113Sp z0-nW;b-u%75@%C0YmWX*O^0h?oR(uy>QiK3mC9-#$Y(jzb}r}71P}1a@_0-sNA>+U zB(^NZxWoTaFnpQLpl1vTME$hsv`;Ba=n;VxUcQ-Wu~^j3oN z>^BA&xg>U$Lc=LUt#oU8g3?nXUM|XBnZviazS?jBX3iuk|EbT%4dklUbwC&@D5kn~ zjmn}Vr5MUEsYSK*M8&uVE;Q;Cja3m%F1#Xt)A|FeOs`h8SGyg~vZ4t^ zIOPM8bC;ALXLdL8oiWMp<8NJ=*F}sSN2<@Y*WM|-ES2^U*Z;8?>vBFfXHfjMcFEZxVdn!K& z*@f!A5qopzenXwuaPvzGfi3*F)xre?lmcDF#L)=%eVfQq(8OH$)|jy0X?vrT^U_vv zhxmG%jW)XCiDG<7xK7jCtc%dL=h}P@Ro1k=7kW?S94tw{+e1(xa^V;3p}vQyVBB;D zL{&D&i3pm!*n;H3R`bx-s7+b>Le#oT@%t9@nC17c_eSwH=rI7L?zq;dI9IRhVo}HE zlTZoV@65S*prqAez?pzmd(ruk^hS{Fo>3Jf=TGcbatcLTtrMoC7=dzds#^m{4TdwE zYIM29u3`ifowy~ZenXmG-zJ%t8fbYR*zPr_@IWkm)ri-qzAjDu6J4h#t0YZ=HXtlh zv@5Qa{+O)nfuOg0fHV~qXGmBioulY#Senbg`%SF!RAx38y9yt9YIb=XX$ z+%fv6crECx7qTjEqD9lj^}nvckE?*=n={#`_R zvc~e{-9GUkyhHA>hxc1Z0puzVvjnI3z5`a@4L{hhf@{t`o?yIdB^2`wHu?K3M)^BH3bi!UcyHzw;guGNxe=QzvEzy$Ghmdw)yYo>qFKxS` z>2B4VgzqcxA|v};gvQsm=f!PVV$V)1^|3@HK6M9VTfDO4s}pqWiVHJZlQ+z$TULx} zE&Hvm{om3JzbNreGQ6f$|FK%HhxrranD&O61ZdYki`2eTAm=`NzK*aR{KUx43e@!@ z55dXJhPSY#(-lM7`mpkT&m@)W0R!dB7SY&ycMG#*DD$18HC=#Gr8!R%m^v2S0?|Z2 z^ctoh%vVm-6B!K~LoUW+nm`wPoR~}O(@?6YTRV&|RBXOxLtCzF@@VvcwRn-tT5LM+ zriCt!gJ)e|xDD1d&0w++cy{96BWfMl1TywdXI_+KwWB{6sAJC}4TFxdK4r9mTIZ^b zPJk9q#%ukV9@n0FCc%t-@Ez3j0o}24NIZ;mp-YB3Wg=%J{bt8Tkat&)GWne5y7cq- z@4rv||4<#v6#FxdolmBTKpjcIOxQ8qd}@y`GLBm`#hW}s2j9H=)Z|TLPmPpl4==7F zcLNMYC*m5SXy?{q6SARYC&P6!0&L*uSf+zZd-3mMs4pO zL~`?~4-Ro}dxyL6nn<+f&}4k+y5}xDGfz~P@xUz+i5qlssW(7*%J25uCDo>Zx_4Q1 zrP4*Dj^lFW-0VtOr^FpUyULl@j3L=GhZlFP0^~embX5JCD5lF}y&q7!J zjzT|$wuB$V=dnf#mLEeBEOktJ`wg|vb$R7p!f>arYk!np`N6?vv7gUohg+@S-mpbx zWWEfQXqI^o3}%ZpJ0vPURpZYnOY3U3$Ex2Ree>6EGd7qY)~e(*FwjP~{k10Z$UeYW zT!e8D)$sMr?0ADDYLt~^uKpj0Bnl1s;Ava8YF(ThA4wS@eZn|i-?dpMN^*aKx@<}~3wmbXc)R3jj(OT>;krMl!XqEfjkX0znweoI3j zgL^rA2&+^sZ~;|-PRW=IVmjHHS&JviErK4hly(5M$+xYV&p~^!aw2O4q$TEHUvKM`T-gAEDU8`cEy_l!!W5tzt!9r3o#H?Hb7}q)}uEk^yE3@#J ziz~7ka}C?Jcg9u*4FLa7m%^34)ryU#x}9Qeh|7(;y#gISBYkMKT!9r^nqko3ueER2GIm zcb}zFr&;zM4$prv^r2ly%+h$rD*Q{ymXibP`^ z;8k_<8MhZD>5eCjvLXq)1n;|PrcPkaU=(zw1rr%8*p#~>-gz#hin(^nU2KQURfB@c zelo%UF7yCrOLuCx_3_k!>__vF;FVaVThpZjS}iqMk)!YsTWF(?YpfEBvn2f@Wk$oaxI$n0(#GzUhC{5YZp+;@3efS+L(j-JaiR|05tUI9a6=JqsK* z(YO8>{%m^qSq=AX^ZhYu74DbUE+sKX<*=Rh<9LwBMv_=m_xVR4iL+nA=@G1JHNk$Vz_rBZVdpq2h z$+dkZ&!y$6h|aufk#+~KSSe8T+wHyd6x(k}n_+xt1XdNUW(3Agr*I*+qQ4t3LX}mM zVO;sdI`Ph`=qBRiqBleBr!y@;;27=jial9O`uPbIRbX6|NyzIwu^l?z$(x{(Uc>a? z76*QDlFX%z%MyJz;+2hvKwU8~!@Zr3a&Y=GDL2l?-ybgG5%Zs%jU+&gc6IUqtlY0d z#c-i9E;gz!?=|*K$z~Y<2rw?N^vZfd(?&TmNk~-C(rKex-rTEV(|%zPq7>qL^OS#r zK5&CQXD=CIp1If^lz?LM?YiK0yCjm5vT@y;B9;p5ctr#gulrFLl8xzwBbSMWOTowD z5$)a39P`@N`-wVIQui7vLZ{PA4xgW;q+040+gKtx7tsiDCNe_FJf+*;+8;6CPzL(H zt7-`5arOhp2qG+45>7aM+3*4!k;+Z7tJWn+h*qOu65p6c+m9qK&iREyL zt4hct(GnX#Q0l@xUdaAky#6c7@n594tx?}0Wp3Byn38q7y3we+L&aVg0sseO=DUjG zhK>43-ZY5*k1R>?WB`#dP0WgW5_0jE)!^sm>*rr1q5h*`PHYDsT`7bjb`bdz)L+rL3%oHMn=M)0haIWye@uMYX)22IQxjr=TnNEkr+RA=g-Dr7Pcj2;o&S# zz^W!Ud?%8%X-884k&CFBIF2iC11G8zxeE!rj5k%FtG`pMo^!WcCGTzb#LMPFxlBZ! z?^{5X{R6k%l=zRfD?4*(Y1C6L*S`_7OQL16I2Fi!+na;0QcWE?jg0?Fs6SLtEP=EJ z`Bw5^9yupICyJbUd8a7OV0G%`d14cW|GuS9D9GqUzdre{#bTv9Z{M%Q^6{J9wl^`) zbG<%4o<9Kkgbc5}uTX3>TO^Wz3=MVQrnLB`esAPJ(=`t&m`p_Q)71~{0>&2mvOup* zewXg?h=S}|gizdjw$k!ADrR2j!gm#NeoRljE>d<{coz?Li@Nh5YD@b5p+t9cSi!`a zi?%HCu(w_xDLaWiU;@BqC5v5emz6L>DbJXCSE(Ydg<@-?$5z{dM)}(!2%nf z2h;_?=UOO}1G9ox1FTS1*g#P>GZdT;_cko&hHmzto|Ezq8&YU)JAJfL(ydcG&2e1X zvn8OPhPJ744-`oJMmhAw&^w$dip*@n%Zyh`oa73erLXy64KpvsX;elfWp z;ktHp2LPR#U{j_woEZ4!NhbHX06l&C`V;-cU4&Lk!hKs7%;i9*=*0IN>S)l|A13e` z!jy1gHY)j6RAIeT*FvEu|GbJoO4nM2 zMU>}j$oK$gh|s;J=WVI$wS{=mq$R-EJ{5_R<1Y+F=p1?!q#NOG1aT zrmlI5;=i|&Y5g<#`F({4?Gwf=RlRiLfE0gA!RZw^>rr(RY#P4|cEqLk5ApDMc8BMi zTwumad`%B56}H7(uCugYhrgSOsZbGLYxGvtlancLP}{wEalRT5P-V)R4!35)Q^vFb zJKqoX70EEEj0=^Glww1%VQTi z>FNVO>I(ZEWEFZbB<*S@nv`by+pB>oVM`T`))HSWcz6&ULRcw!Be zU+aN9O?hig(6wLE`ahS-t0gwHLqPvBi;fhqrW7@Xzh4dJYr`uaF`QJgQ8S-Shr-Ql zdkI#+R@at8Bfd|x6?`@0?U^gdGZyflC&w)_KG(d+x(OP4X)v3Fe_?{hZ!|O>hp}4P z&IW$`7FFa&^cD}MH#@z-N!VDb=mi@G`@yAwwzeL(kN-&8qtK2M zf4BTXY^NIC^3i z$EYT(gfQXlX`)&rmOaB@ea=rF0eS2$7Y>%4(ma;eNo-|tsrg2NyFbkVcrrvAlq;nX zLa-UTa{w6GQDG--F>Mk-Vp&F~9V+oFd&KRuZyS0USm_ehn^d?jqa@^_zm&y+Sbu{& z;QKPirvc<`OI5e(mEd6hi8bQx{$xziK8X6IN-9J#;k@x{9xM_wCWgy_m3oZuMYhg7 z1~)XD^%~Rv`qm{a%nyVvR0|qFpgQHITz(kDGM=~RW=|w1u0jW9GLW zY%>Uf6?T}a$oF8;uyb{apH~MH8%<>1cI*X=&T>xeI=MTaE3YY`apeGuyfXo zp|2NsBE|d+zzVEM?KRZEIeYtF=7q4o0{p)%ci~q8oV&E2(jP4pA9CV}X+9p^iv3#R zx=ySy5eEBat|GgDWq{{Sp*4JfG_iH#X7egYbx>8SA1QxO^21~wiPRc{kJv*Vgz1x~ zaUNvq{0=_TG4fg{Gjb^AIUr7_B;@@|`P$GtMx^eUk-}DfG#xKSfW^^u}j__j#K~|bbhhqj8ZQ-Oc>xO^KO0hg(J}oB$zZb!9U6hu&G2r@(oKqR3 z_4P4k!>rv_4_@fpI331JaZj2o>9h(N$AuTs>GuMY`^LxibWxHLQFFO-L*+bskJHW5 z4hWJfo&%R^-s7tcJm<5k9%BQA?=Bu)P7p9{ff%~r7tb|;$6xua7FqJqW&MNlJBOGSMjWIGjkbU`wNr$9}r5K5RRQl*}ZV2ue`6crz-kx8lZJ@6c^ zcC#DJvRTFJ>6qGJQF-2=?_Z5>FUuP)nG7@+7cBK3Us1}OO#P;q@BVi&{KhVW?b6V@ z%&ih-yA3W3zj;PH$6|5* zp^XF>gU#EBj9YiD%V>v@x|rux<=()w#MY_8=Gd!X^o3I1y>$3`VO^ZmmF_=hD=OKW z4yNYP{CMS~t`Jh_lXGFqiqyD}Q48+4FPAI@?N`U^$IAAod*IBA$?u%!dqS)(cKaPY zXqu0zHfnfYYTlVDFoM@A^R1L@#uc3j#TFH!Jm~)G-W?}Np-m9?a2zhT)=shGWLfXu z#ry6dMUEZ{u+w_%e_!*o9j$UPooo!P>D;4+H!4yF9FmR4T$8t&d0M1fY69guj`hPI zykugl1sNkI;*wyFgajfKkfm;Jnh9pTB`J5@20AbD8R&hEygW$B)?EK^%&e@)d#1Kd z;nt}>zS{2@S=+Gto{hC2jjZuv+8hThr1GL5UeC+SI|owB@)SB|^^_5T50j{h1Zuo@ z93P`B)OLXN(Tn-a*uz2(R~;4xG3Q)~r>nPW5JzH#zc=35^@<@c=pVhzC9-x zCqu8yEgllH_9V^w)x*6OQ;PR?J_L~78hIFKrjZYgW$({g7^!q>1yZ-3dO%X~7I0TJ zxhXHkX&dCNt7OCIazZ7K;AfKgjqW`zGgF3<^24yGZ-8}v>6uwrZLmAY_pTFC5IAV) zSHmvp2j)~JfU4?04Kl1Y-NQAlV-ml$v z5%u_Hf*c#I^Yi1oanwca_l)mVuFtcJs$c){upA4RAcIHjFM!T6@18cbfGN?!%N^*sr0QWYxF1iqX`nJ=oQuD0(PQFiVZR%kT-}}{%_RJ&O`?j4HicRhDE=CO;npmnV9b8h*X*GDQm*79^3iYeeCZs4cq4PC3G^_wR)0i4#HP8@39e-KGwvWu&SgBOJ zxh(?dlU0W{hl&OMC>wWB9Z1q})1=&1p%R0r-$AnW?6UM1fR4-`b2vrgnp)%eilNv# zFTrBgXX}_)mo^BSJ!f5+k(RwqbJiPm zM~7a}NghLUJ5C{TFL0;|N6o-V<%O>uDR*4fOTgg02J>sIU;WAILFSGR>)NKIq>o9l zezg{tW^4i@bjBS1Y}kgIa1x#nsW`iR!~j(|1Wn%h`FO6vX<+v`b&CyZbmn3e23Xb8 zKo6tYsgT{o%4x>=c7(}y$bIEPnEid$~o*xWM-!4(1(?8)81+&A*6Q zWe>$(;0=rZ$8vw1l2(GOJ$&23+$Hv?IP+PxcL8h bJ68=g>AEw<_85zgfj>|=71^SDPoDihmI+$B literal 0 HcmV?d00001 From b1f952086b4bd17abae025564d88352242279382 Mon Sep 17 00:00:00 2001 From: kenoharada Date: Sat, 3 Oct 2020 22:50:19 +0900 Subject: [PATCH 8/9] change sharing link (cherry picked from commit a730b94d9bbc1ceab58bebc089a890194de8a538) --- tutorial/English/04-DeepMarkovModel.ipynb | 2 +- tutorial/tutorial_figs/.DS_Store | Bin 6148 -> 0 bytes 2 files changed, 1 insertion(+), 1 deletion(-) delete mode 100644 tutorial/tutorial_figs/.DS_Store diff --git a/tutorial/English/04-DeepMarkovModel.ipynb b/tutorial/English/04-DeepMarkovModel.ipynb index a403b6e5..fe0c53cb 100644 --- a/tutorial/English/04-DeepMarkovModel.ipynb +++ b/tutorial/English/04-DeepMarkovModel.ipynb @@ -55,7 +55,7 @@ "source": [ "## Prepare Dataset \n", "you have to run prepare_cartpole_dataset.py or download from : \n", - "https://drive.google.com/drive/u/2/folders/1w_97RLFS--CpdUCNw1C-3yPLhceZxkO2\n" + "https://drive.google.com/drive/folders/1w_97RLFS--CpdUCNw1C-3yPLhceZxkO2?usp=sharing" ] }, { diff --git a/tutorial/tutorial_figs/.DS_Store b/tutorial/tutorial_figs/.DS_Store deleted file mode 100644 index 5008ddfcf53c02e82d7eee2e57c38e5672ef89f6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0 Date: Mon, 26 Oct 2020 16:16:51 +0900 Subject: [PATCH 9/9] put cond_var after var --- tutorial/English/00-PixyzOverview.ipynb | 8 ++++---- tutorial/English/01-DistributionAPITutorial.ipynb | 2 +- tutorial/English/03-ModelAPITutorial.ipynb | 8 ++++---- tutorial/English/04-DeepMarkovModel.ipynb | 8 ++++---- tutorial/Japanese/00-PixyzOverview.ipynb | 8 ++++---- tutorial/Japanese/01-DistributionAPITutorial.ipynb | 2 +- tutorial/Japanese/02-LossAPITutorial.ipynb | 8 ++++---- tutorial/Japanese/03-ModelAPITutorial.ipynb | 8 ++++---- 8 files changed, 26 insertions(+), 26 deletions(-) diff --git a/tutorial/English/00-PixyzOverview.ipynb b/tutorial/English/00-PixyzOverview.ipynb index c45f31f2..aaa7eb24 100644 --- a/tutorial/English/00-PixyzOverview.ipynb +++ b/tutorial/English/00-PixyzOverview.ipynb @@ -189,7 +189,7 @@ "# inherit pixyz.Distribution Bernoulli class\n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -257,7 +257,7 @@ "# inherit pixyz.Distribution Normal class\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -852,7 +852,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -868,7 +868,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", diff --git a/tutorial/English/01-DistributionAPITutorial.ipynb b/tutorial/English/01-DistributionAPITutorial.ipynb index c2c5827e..062c64d6 100644 --- a/tutorial/English/01-DistributionAPITutorial.ipynb +++ b/tutorial/English/01-DistributionAPITutorial.ipynb @@ -532,7 +532,7 @@ " loc and scale are parameterized by theta given x\n", " \"\"\"\n", " def __init__(self):\n", - " super(ProbNorAgivX, self).__init__(cond_var=['x'], var=['a'])\n", + " super(ProbNorAgivX, self).__init__(var=['a'], cond_var=['x'])\n", " \n", " self.fc1 = nn.Linear(x_dim, 10)\n", " self.fc_loc = nn.Linear(10, a_dim)\n", diff --git a/tutorial/English/03-ModelAPITutorial.ipynb b/tutorial/English/03-ModelAPITutorial.ipynb index ca816c82..ced6e643 100644 --- a/tutorial/English/03-ModelAPITutorial.ipynb +++ b/tutorial/English/03-ModelAPITutorial.ipynb @@ -96,7 +96,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -112,7 +112,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -338,7 +338,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -354,7 +354,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", diff --git a/tutorial/English/04-DeepMarkovModel.ipynb b/tutorial/English/04-DeepMarkovModel.ipynb index fe0c53cb..1e02b337 100644 --- a/tutorial/English/04-DeepMarkovModel.ipynb +++ b/tutorial/English/04-DeepMarkovModel.ipynb @@ -190,7 +190,7 @@ " Given observed x, RNN output hidden state\n", " \"\"\"\n", " def __init__(self):\n", - " super(RNN, self).__init__(cond_var=[\"x\"], var=[\"h\"])\n", + " super(RNN, self).__init__(var=[\"h\"], cond_var=[\"x\"])\n", " \n", " # 28x28x3 → 32\n", " self.conv1 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)\n", @@ -225,7 +225,7 @@ " probabilities that parameterizes the bernlulli distribution p(x_t | z_t)\n", " \"\"\"\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"])\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"])\n", " self.fc1 = nn.Linear(z_dim, 256)\n", " self.fc2 = nn.Linear(256, 128*7*7)\n", " self.conv1 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)\n", @@ -247,7 +247,7 @@ " parameterize the gaussian distribution q(z_t | z_{t-1}, x_{t:T}, u)\n", " \"\"\"\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"h\", \"z_prev\", \"u\"], var=[\"z\"])\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"h\", \"z_prev\", \"u\"])\n", " self.fc1 = nn.Linear(z_dim+u_dim, h_dim*2)\n", " self.fc21 = nn.Linear(h_dim*2, z_dim)\n", " self.fc22 = nn.Linear(h_dim*2, z_dim)\n", @@ -267,7 +267,7 @@ " gaussian distribution p(z_t | z_{t-1}, u)\n", " \"\"\"\n", " def __init__(self):\n", - " super(Prior, self).__init__(cond_var=[\"z_prev\", \"u\"], var=[\"z\"])\n", + " super(Prior, self).__init__(var=[\"z\"], cond_var=[\"z_prev\", \"u\"])\n", " self.fc1 = nn.Linear(z_dim+u_dim, hidden_dim)\n", " self.fc21 = nn.Linear(hidden_dim, z_dim)\n", " self.fc22 = nn.Linear(hidden_dim, z_dim)\n", diff --git a/tutorial/Japanese/00-PixyzOverview.ipynb b/tutorial/Japanese/00-PixyzOverview.ipynb index 1ad2df1c..85ab0b70 100644 --- a/tutorial/Japanese/00-PixyzOverview.ipynb +++ b/tutorial/Japanese/00-PixyzOverview.ipynb @@ -188,7 +188,7 @@ "# inherit pixyz.Distribution Bernoulli class\n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -255,7 +255,7 @@ "# inherit pixyz.Distribution Normal class\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -854,7 +854,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -870,7 +870,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", diff --git a/tutorial/Japanese/01-DistributionAPITutorial.ipynb b/tutorial/Japanese/01-DistributionAPITutorial.ipynb index b2584ed7..8d4c79f3 100644 --- a/tutorial/Japanese/01-DistributionAPITutorial.ipynb +++ b/tutorial/Japanese/01-DistributionAPITutorial.ipynb @@ -530,7 +530,7 @@ " loc and scale are parameterized by theta given x\n", " \"\"\"\n", " def __init__(self):\n", - " super(ProbNorAgivX, self).__init__(cond_var=['x'], var=['a'])\n", + " super(ProbNorAgivX, self).__init__(var=['a'], cond_var=['x'])\n", " \n", " self.fc1 = nn.Linear(x_dim, 10)\n", " self.fc_loc = nn.Linear(10, a_dim)\n", diff --git a/tutorial/Japanese/02-LossAPITutorial.ipynb b/tutorial/Japanese/02-LossAPITutorial.ipynb index 14d9763e..9cb30597 100644 --- a/tutorial/Japanese/02-LossAPITutorial.ipynb +++ b/tutorial/Japanese/02-LossAPITutorial.ipynb @@ -853,8 +853,8 @@ "x_dim = 28\n", "h_dim = x_dim\n", "\n", - "decoder = Normal(cond_var=[\"h\"], var=[\"x\"], loc=\"h\", scale=torch.ones(1, x_dim))\n", - "prior = Normal(cond_var=[\"h_prev\"], var=[\"h\"], loc=\"h_prev\", scale=torch.ones(1, h_dim))\n", + "decoder = Normal(var=[\"x\"], cond_var=[\"h\"], loc=\"h\", scale=torch.ones(1, x_dim))\n", + "prior = Normal(var=[\"h\"], cond_var=[\"h_prev\"], loc=\"h_prev\", scale=torch.ones(1, h_dim))\n", "\n", "print_latex(decoder * prior)" ] @@ -880,7 +880,7 @@ ], "source": [ "# 損失の期待値を取る確率分布を定義\n", - "encoder = Normal(name='q', cond_var=[\"x\", \"h_prev\"], var=[\"h\"], loc=\"x\", scale=\"h_prev\")\n", + "encoder = Normal(name='q', var=[\"h\"], cond_var=[\"x\", \"h_prev\"], loc=\"x\", scale=\"h_prev\")\n", "\n", "print_latex(encoder)" ] @@ -1019,7 +1019,7 @@ "\n", "class SliceStep(Deterministic):\n", " def __init__(self):\n", - " super().__init__(cond_var=['t','x_all'], var=['x'])\n", + " super().__init__(var=['x'], cond_var=['t','x_all'])\n", " def forward(self, x_all, t):\n", " return {'x': x_all[t]}\n", "\n", diff --git a/tutorial/Japanese/03-ModelAPITutorial.ipynb b/tutorial/Japanese/03-ModelAPITutorial.ipynb index acb2a0ed..7a68ea93 100644 --- a/tutorial/Japanese/03-ModelAPITutorial.ipynb +++ b/tutorial/Japanese/03-ModelAPITutorial.ipynb @@ -96,7 +96,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -112,7 +112,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -347,7 +347,7 @@ "# inference model q(z|x)\n", "class Inference(Normal):\n", " def __init__(self):\n", - " super(Inference, self).__init__(cond_var=[\"x\"], var=[\"z\"], name=\"q\")\n", + " super(Inference, self).__init__(var=[\"z\"], cond_var=[\"x\"], name=\"q\")\n", "\n", " self.fc1 = nn.Linear(x_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n", @@ -363,7 +363,7 @@ "# generative model p(x|z) \n", "class Generator(Bernoulli):\n", " def __init__(self):\n", - " super(Generator, self).__init__(cond_var=[\"z\"], var=[\"x\"], name=\"p\")\n", + " super(Generator, self).__init__(var=[\"x\"], cond_var=[\"z\"], name=\"p\")\n", "\n", " self.fc1 = nn.Linear(z_dim, 512)\n", " self.fc2 = nn.Linear(512, 512)\n",