-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsigmoid_baseline_tensorflow_refresh.py
138 lines (113 loc) · 4.19 KB
/
sigmoid_baseline_tensorflow_refresh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import print_function
from project_utils import *
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.sparse import csr
from sklearn.metrics import roc_auc_score
from sys import argv
import pandas as pd
myargs = getopts(argv)
APPROACH = "ngram"
CLASSIFIER = "sigmoid"
FLAVOR = "tensorflow-ADAM"
reg_level = int(myargs['-reglevel'])
if reg_level > 0:
FLAVOR = FLAVOR + '-reglevel' + str(reg_level)
else:
FLAVOR = FLAVOR + '-noReg'
# Parameters
learning_rate = 0.001
training_epochs = 50
beta_reg = 10**(-reg_level) * int(reg_level > 0)
batch_size = 100
display_step = 1
lr_decay = 1.0
if myargs['-dataset'] == 'attack':
vecpath = TFIDF_VECTORS_FILE_AGG
if not os.path.isfile(ATTACK_AGGRESSION_FN):
get_and_save_talk_data()
train, dev, test = get_TDT_split(
pd.read_csv(ATTACK_AGGRESSION_FN, index_col=0).fillna(' '))
cnames = train.columns.values[0:2]
aucfn = "auc_scores_attack_baseline_refresh.csv"
elif myargs['-dataset'] == 'toxic':
vecpath = TFIDF_VECTORS_FILE_TOXIC
train, dev, test = get_TDT_split(
pd.read_csv('train.csv').fillna(' ' ))
cnames = CLASS_NAMES
aucfn = "auc_scores_toxic_baseline_refresh.csv"
# Get data and featurizing
train, dev, test = get_TDT_split(pd.read_csv('train.csv').fillna(' '))
train_vecs, dev_vecs, test_vecs = vectorize_corpus_tf_idf(
train, dev, test, sparse=True
)
n_train = train_vecs.shape[0]
if batch_size is None:
batch_size = train.shape[0]
# tf Graph Input
x = tf.sparse_placeholder(tf.float32)
y = tf.placeholder(tf.float32, [None, 6])
lr = tf.placeholder(tf.float32, ())
# Set model weights
W = tf.get_variable("weights",
shape=[NUM_FEATURES, 6],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.zeros([6]))
# Final layer
theta = tf.sparse_tensor_dense_matmul(x, W) + b
# Get prediction (this will only be used for testing)
pred = tf.nn.sigmoid(theta)
# Get cost directly (without needing prediction above)
cost = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=theta, labels=y) + \
tf.nn.l2_loss(W) * beta_reg
)
# Gradient Descent
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost)
# Final scoring
def calc_auc_tf(X, Y):
return calc_auc(Y[:, 0], pred.eval({x: X})[:, 0])
# Making weight saving functionality
saver = tf.train.Saver()
save_fn = saver_fn(APPROACH, CLASSIFIER, FLAVOR)
max_auc = 0
# Initialize the variables (i.e. assign their default value)
global_init = tf.global_variables_initializer()
auc_scores = []
current_lr = learning_rate
# Start training
with tf.Session() as sess:
# Run initializer
sess.run(global_init)
# Training
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(n_train/batch_size)
# Loop over batches
current_lr = current_lr * lr_decay
train_target = train[CLASS_NAMES].as_matrix()
minibatches = minibatch(train_vecs, train_target, batch_size)
for batch_xs_mat, batch_ys in minibatches:
batch_xs = get_sparse_input(batch_xs_mat)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys,
lr: current_lr})
avg_cost += c / total_batch
# Display logs
if (epoch+1) % display_step == 0:
pred_mat = pred.eval({x: get_sparse_input(dev_vecs)})
AUC = calc_auc(dev[CLASS_NAMES].as_matrix(), pred_mat)
print("Epoch:", '%04d' % (epoch+1),
"cost=", avg_cost,
"dev.auc=", AUC,
"learning.rate=", current_lr)
if AUC > max_auc:
print ("New best AUC on dev!")
saver.save(sess, save_fn)
max_auc = AUC
print("Optimization Finished!")
# Computing final AUC scores
saver.restore(sess, save_fn)
pred_mat = pred.eval({x: get_sparse_input(test_vecs)})
auc_scores = calc_auc(test[CLASS_NAMES].as_matrix(), pred_mat, mean=False)
sess.close()
save_auc_scores(auc_scores, APPROACH, CLASSIFIER, FLAVOR, cnames=cnames, fn=aucfn)