-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_cell.py
65 lines (57 loc) · 2.5 KB
/
rnn_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
import numpy as np
class RNNCell(tf.nn.rnn_cell.RNNCell):
"""Wrapper around our RNN cell implementation that allows us to play
nicely with TensorFlow.
"""
def __init__(self, input_size, state_size):
self.input_size = input_size
self._state_size = state_size
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._state_size
def __call__(self, inputs, state, scope=None):
"""Updates the state using the previous @state and @inputs.
Remember the RNN equations are:
h_t = sigmoid(x_t W_x + h_{t-1} W_h + b)
TODO: In the code below, implement an RNN cell using @inputs
(x_t above) and the state (h_{t-1} above).
- Define W_x, W_h, b to be variables of the apporiate shape
using the `tf.get_variable' functions. Make sure you use
the names "W_x", "W_h" and "b"!
- Compute @new_state (h_t) defined above
Tips:
- Remember to initialize your matrices using the xavier
initialization as before.
Args:
inputs: is the input vector of size [None, self.input_size]
state: is the previous state vector of size [None, self.state_size]
scope: is the name of the scope to be used when defining the variables inside.
Returns:
a pair of the output vector and the new state vector.
"""
scope = scope or type(self).__name__
# It's always a good idea to scope variables in functions lest they
# be defined elsewhere!
with tf.variable_scope(scope):
W_h = tf.get_variable("W_h",
shape=[self.state_size, self.state_size],
initializer=tf.contrib.layers.xavier_initializer())
W_x = tf.get_variable("W_x",
shape=[self.input_size, self.state_size],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable("b",
shape=[self.state_size],
initializer=tf.constant_initializer(0.0))
z_x = tf.matmul(inputs, W_x)
z_h = tf.add(tf.matmul(state, W_h), b)
new_state = tf.nn.sigmoid(tf.add(z_x, z_h))
# For an RNN , the output and state are the same (N.B. this
# isn't true for an LSTM)
output = new_state
return output, new_state