-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
612 lines (521 loc) · 29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import argparse
import copy
import math
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import torch
import copy
import torch.nn.functional as F
from einops import rearrange
from sklearn.metrics import average_precision_score, roc_auc_score
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataloaders.dataloader import initDataloader
from dataloaders.utlis import worker_init_fn_seed, BalancedBatchSampler
from datasets.base_dataset import Task_Dataset
from modeling.DRA_AHL import DRA
from modeling.Plain_AHL import Plain_Net
from modeling.aux_net import AUX_Model
from modeling.layers import build_criterion
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
torch.autograd.set_detect_anomaly(True)
class Trainer(object):
def __init__(self, args):
self.args = args
kwargs = {'num_workers': self.args.workers}
builder = initDataloader(self.args)
self.train_loader, self.test_loader, self.support_loader, self.query_loader = builder.build(ref = False,**kwargs)
if self.args.model_name == "DevNet":
self.model = Plain_Net(self.args)
elif self.args.model_name == "DRA":
if self.args.total_heads == 4:
temp_args = copy.deepcopy(self.args)
temp_args.batch_size = self.args.nRef
temp_args.nAnomaly = 0
temp_builder = initDataloader(temp_args)
self.ref_loader, _, _, _= temp_builder.build(ref=True, **kwargs)
self.ref = iter(self.ref_loader)
self.model = DRA(self.args, backbone=self.args.backbone)
else:
print("model_name error!")
self.max_auroc = 0
self.max_pr = 0
if self.args.pretrain_dir != None:
self.aux_model.load_state_dict(torch.load(self.args.pretrain_dir))
print('Load pretrain weight from: ' + self.args.pretrain_dir)
self.criterion = build_criterion(self.args.criterion)
self.mse_loss = torch.nn.MSELoss()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.002, weight_decay=1e-4)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=10, gamma=0.1)
if self.args.auxiliary == True:
self.aux_model = AUX_Model()
self.aux_optimizer = torch.optim.Adam(self.aux_model.parameters(), lr=0.002, weight_decay=0.001)
max_len_s = 0
max_len_q = 0
self.support_len = []
self.query_len = []
for episode in range(self.args.episode_num):
l_s = len(self.support_loader[episode][2])
self.support_len.append(l_s)
if l_s > max_len_s:
max_len_s = l_s
l_q = len(self.query_loader[episode][2])
self.query_len.append(l_q)
if l_q > max_len_q:
max_len_q = l_q
self.aux_support_feature = torch.zeros(self.args.episode_num, max_len_s, self.args.sequence_len, self.args.episode_num)
self.aux_query_feature = torch.zeros(self.args.episode_num, max_len_q, self.args.sequence_len, self.args.episode_num)
self.aux_support_current = torch.zeros(self.args.episode_num, max_len_s, self.args.sequence_len, self.args.episode_num)
self.aux_query_current = torch.zeros(self.args.episode_num, max_len_q, self.args.sequence_len, self.args.episode_num)
self.support_real_score = torch.zeros(self.args.episode_num, max_len_s, self.args.episode_num)
self.query_real_score = torch.zeros(self.args.episode_num, max_len_q, self.args.episode_num)
self.support_score = torch.zeros(self.args.episode_num, max_len_s, self.args.episode_num)
self.query_score = torch.zeros(self.args.episode_num, max_len_q, self.args.episode_num)
self.pred_score_support = torch.zeros(self.args.episode_num, max_len_s, self.args.episode_num)
self.pred_score_query = torch.zeros(self.args.episode_num, max_len_q, self.args.episode_num)
def generate_target(self, target, eval=False):
targets = list()
if eval:
targets.append(target == 0)
targets.append(target)
targets.append(target)
targets.append(target)
return targets
else:
temp_t = target != 0
targets.append(target == 0)
targets.append(temp_t[target != 2])
targets.append(temp_t[target != 1])
targets.append(target != 0)
return targets
def save_weights(self, filename):
torch.save(self.model.state_dict(), os.path.join(self.args.experiment_dir, filename))
def normalization(self, data):
return data
def get_reward(self, pred_score, ground_score, k=None):
ground_score = np.array(ground_score)
normal_idx = np.argwhere(ground_score == 0).flatten()
outlier_idx = np.argwhere(ground_score == 1).flatten()
aug_idx = np.argwhere(ground_score == 2).flatten()
normal_label = torch.zeros(len(normal_idx))
outlier_label = torch.ones(len(outlier_idx))
pesudo_label = torch.ones(len(aug_idx))
pred_normal = np.array([])
pred_outlier = np.array([])
pred_pesudo = np.array([])
for i in normal_idx:
pred_normal = np.append(pred_normal, pred_score[i][k].detach().numpy())
for i in outlier_idx:
pred_outlier = np.append(pred_outlier, pred_score[i][k].detach().numpy())
for i in aug_idx:
pred_pesudo = np.append(pred_pesudo, pred_score[i][k].detach().numpy())
pred_normal = torch.Tensor(pred_normal)
pred_outlier = torch.Tensor(pred_outlier)
pred_pesudo = torch.Tensor(pred_pesudo)
re_normal = self.mse_loss(pred_normal, normal_label)
if len(pred_pesudo) > 0:
re_pseudo = self.mse_loss(pred_pesudo, pesudo_label)
else:
re_pseudo = 0
re_abnormal = self.mse_loss(pred_outlier, outlier_label)
num_n = len(pred_normal)
num_a = len(pred_outlier)
num_p = len(pred_pesudo)
return re_normal, re_pseudo, re_abnormal, num_n, num_a, num_p
def train_unit(self, image, image_scale, image_targets, var = None, st = False):
if self.args.model_name == "DRA":
if self.args.total_heads == 4:
try:
ref_image = next(self.ref)['image']
ref_image_scale = next(self.ref)['image_scale']
except StopIteration:
self.ref = iter(self.ref_loader)
ref_image = next(self.ref)['image']
ref_image_scale = next(self.ref)['image_scale']
ref_image = ref_image.cuda()
ref_image_scale = ref_image_scale.cuda()
image = torch.cat([ref_image, image], dim=0)
image_scale = torch.cat([ref_image_scale, image_scale], dim=0)
if st is True:
targets = self.generate_target(image_targets, eval=True)
else:
targets = self.generate_target(image_targets)
outputs = self.model.forward(image=image, image_scale=image_scale, label=image_targets,
var=var, st=st)
losses = list()
for i in range(self.args.total_heads):
if self.args.criterion == 'CE':
prob = F.softmax(targets[i], dim=1)
losses.append(self.criterion(prob, targets[i].long()).view(-1, 1))
else:
losses.append(self.criterion(outputs[i], targets[i].float()).view(-1, 1))
loss = torch.cat(losses)
loss = torch.sum(loss)
else:
image_targets = image_targets.cpu()
aug_index = np.argwhere(image_targets == 2).flatten()
seen_index = np.argwhere(image_targets == 1).flatten()
for i in aug_index:
image_targets[i] = 1
targets = image_targets.clone()
outputs = self.model.forward(image=image, image_scale=image_scale, var=var)
outputs_aug = outputs.clone()
outputs_seen = outputs.clone()
for j in range(len(image_targets)):
if j in aug_index:
outputs_seen[j] = targets[j]
elif j in seen_index:
outputs_aug[j] = targets[j]
outputs_aug = outputs_aug.cuda()
outputs_seen = outputs_seen.cuda()
targets = targets.cuda()
losses_aug = self.criterion(outputs_aug, targets.unsqueeze(1).float())
losses_seen = self.criterion(outputs_seen, targets.unsqueeze(1).float())
loss = losses_aug + losses_seen
return outputs, loss
def training(self, epoch):
print("AHL training...")
print("Epoch: ", epoch)
self.model.train()
self.optimizer.step()
self.scheduler.step()
torch.cuda.empty_cache()
if self.args.auxiliary == True:
real_score_q = []
self.aux_query_feature = self.aux_query_feature.cuda()
if epoch > self.args.sequence_len + 1:
for episode in range(self.args.episode_num):
item_q = self.aux_model.forward(self.aux_query_feature[episode])
self.pred_score_query[episode] = item_q.clone()
reward = []
for e in range(self.args.episode_num):
r_n = 0.0
r_a = 0.0
r_p = 0.0
n_n = 0
n_a = 0
n_p = 0
for episode in range(self.args.episode_num):
re_normal, re_pseudo, re_abnormal, num_n, num_a, num_p = self.get_reward(self.pred_score_query[episode], self.query_loader[episode][2], k=e) #6*N*1
r_n = r_n + re_normal
r_a = r_a + re_abnormal
r_p = r_p + re_pseudo
n_n = n_n + num_n
n_a = n_a + num_a
n_p = n_p + num_p
r = -(0.5*(r_n/n_n) + 0.5*(r_p/n_p) + 1*(r_a/n_a))
reward.append(r)
s = 0
for i in reward:
s = s + math.exp(i)
reward = [math.exp(i)/s for i in reward]
loss_q = [0 for _ in range(self.args.update_step + 1)]
for episode in range(0, len(self.support_loader)):
print("task: ", episode)
torch.cuda.empty_cache()
image_s, image_scale_s, targets_s = self.support_loader[episode][0], self.support_loader[episode][1], \
self.support_loader[episode][2]
image_s, image_scale_s, targets_s = torch.Tensor(image_s), torch.Tensor(image_scale_s), torch.Tensor(targets_s)
train_set_s = Task_Dataset(image_s, image_scale_s, targets_s)
train_loader_s = DataLoader(train_set_s,
num_workers=self.args.workers,
worker_init_fn=worker_init_fn_seed,
batch_sampler=BalancedBatchSampler(self.args, train_set_s))
tbar = tqdm(train_loader_s)
for i, sample in enumerate(tbar):
image, image_scale, targets = sample['image'], sample['image_scale'], sample['label']
if self.args.cuda:
image, image_scale, targets = image.cuda(), image_scale.cuda(), targets.cuda()
_, loss = self.train_unit(image, image_scale, targets, var=self.model.parameters())
grad = torch.autograd.grad(loss, self.model.parameters(), create_graph=True)
adapt_weights = list(map(lambda p: p[1] - 0.0002 * p[0], zip(grad, self.model.parameters())))
image_q, image_scale_q, targets_q = self.query_loader[episode][0], self.query_loader[episode][1], \
self.query_loader[episode][2]
image_q, image_scale_q, targets_q = torch.Tensor(image_q), torch.Tensor(image_scale_q), torch.Tensor(targets_q)
train_set_q = Task_Dataset(image_q, image_scale_q, targets_q)
train_loader_q = DataLoader(train_set_q,
num_workers=self.args.workers,
worker_init_fn=worker_init_fn_seed,
batch_sampler=BalancedBatchSampler(args, train_set_q)
)
tbar = tqdm(train_loader_q)
for i, sample in enumerate(tbar):
image2, image_scale2, targets2 = sample['image'], sample['image_scale'], sample['label']
if self.args.cuda:
image2, image_scale2, targets2 = image2.cuda(), image_scale2.cuda(), targets2.cuda()
with torch.no_grad():
_, loss = self.train_unit(image2, image_scale2, targets2, var = self.model.parameters())
loss_q[0] = loss_q[0] + loss
with torch.no_grad():
_, loss = self.train_unit(image2, image_scale2, targets2, var = adapt_weights)
loss_q[1] = loss_q[1] + loss
for k in range(1, self.args.update_step):
torch.cuda.empty_cache()
tbar = tqdm(train_loader_s)
for i, sample in enumerate(tbar):
image, image_scale, targets = sample['image'], sample['image_scale'], sample['label']
if self.args.cuda:
image, image_scale, targets = image.cuda(), image_scale.cuda(), targets.cuda()
_, loss = self.train_unit(image, image_scale, targets, var=adapt_weights)
grad = torch.autograd.grad(loss, adapt_weights)
adapt_weights = list(map(lambda p: p[1] - 0.0002 * p[0], zip(grad, adapt_weights)))
tbar = tqdm(train_loader_q)
for i, sample in enumerate(tbar):
image2, image_scale2, targets2 = sample['image'], sample['image_scale'], sample['label']
if self.args.cuda:
image2, image_scale2, targets2 = image2.cuda(), image_scale2.cuda(), targets2.cuda()
_, loss = self.train_unit(image2, image_scale2, targets2, var = adapt_weights)
if self.args.auxiliary == True:
if epoch <= self.args.sequence_len + 1:
loss_q[k + 1] = loss_q[k + 1] + loss
else:
loss_q[k + 1] = loss_q[k + 1] + (0.5+0.5*reward[episode]) * loss
else:
loss_q[k + 1] = loss_q[k + 1] + loss
if self.args.auxiliary == True:
score_q = []
for i in range(self.args.episode_num):
if self.args.model_name == "DRA":
class_pred = list()
for k in range(self.args.total_heads):
class_pred.append(np.array([]))
else:
total_pred = np.array([])
image_q, image_scale_q, targets_q = self.query_loader[i][0], self.query_loader[i][1], \
self.query_loader[i][2]
image_q, image_scale_q, targets_q = torch.Tensor(image_q), torch.Tensor(image_scale_q), torch.Tensor(
targets_q)
image_q, image_scale_q, targets_q = image_q.cuda(), image_scale_q.cuda(), targets_q.cuda()
tmp_out, _ = self.train_unit(image_q, image_scale_q, targets_q, var=adapt_weights, st=True)
for k in range(self.args.total_heads):
if k == 0:
data = -1 * tmp_out[k].data.cpu().numpy()
else:
data = tmp_out[k].data.cpu().numpy()
class_pred[k] = np.append(class_pred[k], data)
total_pred = self.normalization(class_pred[0])
for k in range(1, self.args.total_heads):
total_pred = total_pred + self.normalization(class_pred[k])
score_q.append(total_pred)
arry_q = np.zeros([len(score_q), len(max(score_q, key = lambda x:len(x)))])
for i, j in enumerate(score_q):
arry_q[i][0:len(j)] = j
real_score_q.append(arry_q)
if self.args.auxiliary == True:
real_score_q = torch.Tensor(real_score_q)
real_score_q = rearrange(real_score_q, 'e k n-> k n e')
self.query_real_score = real_score_q.clone()
if epoch <= self.args.sequence_len - 1:
for episode in range(len(self.aux_support_feature)):
for i in range(len(self.aux_query_feature[1])):
self.aux_query_feature[episode][i][epoch] = real_score_q[episode][i].clone()
else:
self.aux_query_current = self.aux_query_feature.clone()
for episode in range(len(self.aux_support_feature)):
for i in range(len(self.aux_query_feature[1])):
self.aux_query_feature[episode][i][0] = self.aux_query_feature[episode][i][1].clone() # 6*n*3*6
self.aux_query_feature[episode][i][1] = self.aux_query_feature[episode][i][2].clone()
self.aux_query_feature[episode][i][2] = self.aux_query_feature[episode][i][3].clone()
self.aux_query_feature[episode][i][3] = self.aux_query_feature[episode][i][4].clone()
self.aux_query_feature[episode][i][4] = real_score_q[episode][i].clone()
if epoch >= self.args.sequence_len:
total_loss = 0.0
for episode in range(self.args.episode_num):
item_q = self.aux_model.forward(self.aux_query_current[episode][:self.query_len[episode]])
self.query_score = item_q.clone().cpu()
loss2 = self.mse_loss(
self.query_score,
self.query_real_score[episode][:self.query_len[episode]])
self.aux_optimizer.zero_grad()
loss2.backward()
self.aux_optimizer.step()
total_loss = total_loss + loss2.item()
print("aux_loss:", total_loss)
if epoch <= self.args.sequence_len + 1:
loss_f = loss_q[-1] / self.args.episode_num
else:
loss_f = loss_q[-1]
print("epoch_loss:", loss_f)
else:
loss_f = loss_q[-1] / self.args.episode_num
print("epoch_loss:", loss_f)
self.optimizer.zero_grad()
loss_f.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
print("AHL testing finished")
def eval_DRA(self):
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
test_loss = 0.0
class_pred = list()
for i in range(self.args.total_heads):
class_pred.append(np.array([]))
total_target = np.array([])
for i, sample in enumerate(tbar):
image, image_scale, target = sample['image'], sample["image_scale"], sample['label']
if self.args.cuda:
image, image_scale, target = image.cuda(), image_scale.cuda(), target.cuda()
if self.args.total_heads == 4:
try:
ref_image = next(self.ref)['image']
ref_image_scale = next(self.ref)['image_scale']
except StopIteration:
self.ref = iter(self.ref_loader)
ref_image = next(self.ref)['image']
ref_image_scale = next(self.ref)['image_scale']
ref_image = ref_image.cuda()
ref_image_scale = ref_image_scale.cuda()
image = torch.cat([ref_image, image], dim=0)
image_scale = torch.cat([ref_image_scale, image_scale], dim=0)
with torch.no_grad():
outputs = self.model.forward(image=image, image_scale=image_scale, label=target, var=self.model.parameters())
targets = self.generate_target(target, eval=True)
losses = list()
for i in range(self.args.total_heads):
if self.args.criterion == 'CE':
prob = F.softmax(outputs[i], dim=1)
losses.append(self.criterion(prob, targets[i].long()))
else:
losses.append(self.criterion(outputs[i], targets[i].float()))
loss = torch.stack(losses)
loss = torch.sum(loss)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
total_target = np.append(total_target, target.cpu().numpy())
for i in range(self.args.total_heads):
if i == 0:
data = -1 * outputs[i].data.cpu().numpy()
else:
data = outputs[i].data.cpu().numpy()
class_pred[i] = np.append(class_pred[i], data)
total_pred = self.normalization(class_pred[0])
for i in range(1, self.args.total_heads):
total_pred = total_pred + self.normalization(class_pred[i])
with open(self.args.experiment_dir + '/result.txt', mode='a+', encoding="utf-8") as w:
for label, score in zip(total_target, total_pred):
w.write(str(label) + ' ' + str(score) + "\n")
total_roc, total_pr = aucPerformance(total_pred, total_target)
if self.max_auroc < total_roc:
self.max_auroc = total_roc
self.max_pr = total_pr
return total_roc, total_pr
def eval_devnet(self):
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
test_loss = 0.0
total_pred = np.array([])
total_target = np.array([])
for i, sample in enumerate(tbar):
image, image_scale, target = sample['image'], sample["image_scale"], sample['label']
if self.args.cuda:
image, image_scale, target = image.cuda(), image_scale.cuda(), target.cuda()
with torch.no_grad():
outputs = self.model.forward(image=image, image_scale=image_scale, var=self.model.parameters())
if self.args.criterion == 'CE':
prob = F.softmax(outputs, dim=1)
losses = self.criterion(prob, target.long())
else:
losses = self.criterion(outputs, target.float())
test_loss = test_loss + losses
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
data = outputs.data.cpu().numpy()
total_pred = np.append(total_pred, data)
total_target = np.append(total_target, target.cpu().numpy())
with open(self.args.experiment_dir + '/result.txt', mode='a+', encoding="utf-8") as w:
for label, score in zip(total_target, total_pred):
w.write(str(label) + ' ' + str(score) + "\n")
total_roc, total_pr = aucPerformance(total_pred, total_target)
if self.max_auroc < total_roc:
self.max_auroc = total_roc
self.max_pr = total_pr
return total_roc, total_pr
def aucPerformance(mse, labels, prt=True):
roc_auc = roc_auc_score(labels, mse)
ap = average_precision_score(labels, mse)
if prt:
print("AUC-ROC: %.4f, AUC-PR: %.4f" % (roc_auc, ap))
return roc_auc, ap
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=48, help="batch size used in SGD")
parser.add_argument("--epochs", type=int, default=30, help="the number of epochs")
parser.add_argument("--steps_per_epoch", type=int, default=20, help="the number of batches per epoch")
parser.add_argument("--cont_rate", type=float, default=0.0, help="the outlier contamination rate in the training data")
parser.add_argument("--test_threshold", type=int, default=0,
help="the outlier contamination rate in the training data")
parser.add_argument("--test_rate", type=float, default=0.0,
help="the outlier contamination rate in the training data")
parser.add_argument("--dataset", type=str, default='mvtecad', help="a list of data set names")
parser.add_argument("--ramdn_seed", type=int, default=42, help="the random seed number")
parser.add_argument('--workers', type=int, default=4, metavar='N', help='dataloader threads')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--savename', type=str, default='model.pkl', help="save modeling")
parser.add_argument('--dataset_root', type=str, default='../PDA/data/SDD_anomaly_detection/', help="dataset root")
parser.add_argument('--experiment_dir', type=str, default='./experiment', help="dataset root")
parser.add_argument('--classname', type=str, default='SDD', help="dataset class")
parser.add_argument('--img_size', type=int, default=448, help="dataset root")
parser.add_argument("--nAnomaly", type=int, default=10, help="the number of anomaly data in training set")
parser.add_argument("--n_scales", type=int, default=2, help="number of scales at which features are extracted")
parser.add_argument('--backbone', type=str, default='resnet18', help="backbone")
parser.add_argument('--criterion', type=str, default='deviation', help="loss")
parser.add_argument("--topk", type=float, default=0.1, help="topk in MIL")
parser.add_argument('--know_class', type=str, default=None, help="set the know class for hard setting")
parser.add_argument('--pretrain_dir', type=str, default=None, help="root of pretrain weight")
parser.add_argument("--total_heads", type=int, default=4, help="number of head in training")
parser.add_argument("--nRef", type=int, default=5, help="number of reference set")
parser.add_argument('--outlier_root', type=str, default=None, help="OOD dataset root")
parser.add_argument('--feat_classname', type=str, default='SDD', help="dataset class")
parser.add_argument('--cluster_num', type=int, default=3, help="number of normal clusters")
parser.add_argument('--AHL', type=bool, default=True, help="")
parser.add_argument('--auxiliary', type=bool, default=True, help="whether use auxiliary model or not")
parser.add_argument('--aug_task', type=bool, default=True, help="whether use different augmentation techniques in different tasks or not")
parser.add_argument('--aug_type_num', type=int, default=3, help="number of augmentation techniques")
parser.add_argument('--episode_num', type=int, default=6, help="number of episodes")
parser.add_argument('--sequence_len', type=int, default=5, help="size of sequence")
parser.add_argument('--update_step', type=int, default=3, help="number of inner loop")
parser.add_argument('--extract', type=bool, default=True, help="whether use extracted feature or not")
parser.add_argument('--save_feature', type=bool, default=False, help="whether save extracted feature or not")
parser.add_argument('--model_name', type=str, default="DRA", help="use which model to test AHL-learning")
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
setup_seed(args.ramdn_seed)
trainer = Trainer(args)
if args.cuda:
trainer.model = trainer.model.cuda()
if args.auxiliary == True:
trainer.aux_model = trainer.aux_model.cuda()
argsDict = args.__dict__
if not os.path.exists(args.experiment_dir):
os.makedirs(args.experiment_dir)
with open(args.experiment_dir + '/setting.txt', 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
print('Total Epoches:', trainer.args.epochs)
print("Model Name:", trainer.args.model_name)
print("Use Extracted Feature:", trainer.args.extract)
if args.cuda:
trainer.criterion = trainer.criterion.cuda()
trainer.mse_loss = trainer.mse_loss.cuda()
for epoch in range(0, trainer.args.epochs):
trainer.training(epoch)
if trainer.args.model_name == "DRA":
trainer.eval_DRA()
else:
trainer.eval_devnet()
args.savename = args.classname + "_ctest.pkl"
trainer.save_weights(args.savename)
if args.save_feature == True:
save_feature(args, trainer.model)
args.savename = args.classname + ".pkl"
trainer.save_weights(args.savename)