|
| 1 | +import numpy as np |
| 2 | +import scipy.optimize as op |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +from matplotlib.ticker import MultipleLocator |
| 5 | +from alive_progress import alive_bar |
1 | 6 |
|
| 7 | +class stem: |
| 8 | + def discfloat(ci, cj, rmin, rmax, segments): |
| 9 | + # This is a helper function for polar transformation which generates a meshgrid |
| 10 | + # of float values corresponding to r and phi values back in a cartesian i, j frame. |
| 11 | + # These can (after rounding to integers) then be used to lookup all the right pixels |
| 12 | + # in a diffraction pattern to allow quick transformation from cartesian to polar |
| 13 | + # representations of the data using fancy lookup (i.e. passing lists of array indices |
| 14 | + # to slice an array). |
| 15 | + # I have chosen to use i and j to refer to vertical and horizontal axes in data |
| 16 | + # (rather than x and y, because some packages use x for horizontal, |
| 17 | + # and some use x for axis 0, which is vertical in python arrays) |
| 18 | + |
| 19 | + coords = np.zeros(shape=(2,rmax-rmin,segments)) |
| 20 | + phi = np.arange(0, 2*np.pi, 2*np.pi/segments) |
| 21 | + r = np.arange(rmin,rmax) |
| 22 | + r_phi_mesh = np.meshgrid(r,phi) |
| 23 | + i = -r_phi_mesh[0]*np.sin(r_phi_mesh[1]) + ci |
| 24 | + j = r_phi_mesh[0]*np.cos(r_phi_mesh[1]) + cj |
| 25 | + return np.array([i, j]) |
| 26 | + |
| 27 | + # returns array of dimensions: |
| 28 | + # 0 is the switch of i or j |
| 29 | + # 1 is the azimuth dimension |
| 30 | + # 2 is the radius / two theta dimension |
| 31 | + |
| 32 | + def polarttransform(DP, ci, cj, rmin, rmax, segments, simple=True): |
| 33 | + # Performs a polar transform of one single diffraction pattern |
| 34 | + disc = discfloat(ci, cj, rmin, rmax, segments) # get basic disc of all transform positions |
| 35 | + # Note: if segments are too few, then each segment will cover too many pixels in |
| 36 | + # original dataset, simple mapping will be a very poor representation and even |
| 37 | + # simple == False mapping won't really represent all intensity in that patch of the original |
| 38 | + # You are better off using an appropriate number of segments to approximately match the |
| 39 | + # 2*pi*r at the largest radius of interest in your analysis to get a good sampling of the |
| 40 | + # original data in your transform |
| 41 | + |
| 42 | + if simple==True: |
| 43 | + # simply works things out with nearest position to the r, theta positions mapped |
| 44 | + # back into Cartesian |
| 45 | + pos = np.round(disc,0).astype('int16') # round the disc array to nearest integer |
| 46 | + pos2 = pos.reshape((2,pos.shape[1]*pos.shape[2])) # turn to a 1D list |
| 47 | + pt = DP[pos2[0],pos2[1]].reshape(pos.shape[1],pos.shape[2]).T |
| 48 | + # calculate PT by using the pos2 array to slice the original array |
| 49 | + |
| 50 | + if simple==False: |
| 51 | + # works out the weighted average of the four pixels surrounding the float |
| 52 | + # r, theta positions mapped back into Cartesian |
| 53 | + shape = disc[0].shape[0]*disc[0].shape[1] |
| 54 | + disc0 = disc[0].reshape(shape) # turn into linear array of i positions |
| 55 | + disc1 = disc[1].reshape(shape) # turn into linear array of j positions |
| 56 | + ui = np.floor(disc0).astype('int16') # find upper i pixel array |
| 57 | + li = np.ceil(disc0).astype('int16') # find lower i pixel array |
| 58 | + li = np.where(li==ui,li+1,li) # deals with the case of an exact hit on an i position |
| 59 | + lj = np.floor(disc1).astype('int16') # find left j pixel array |
| 60 | + rj = np.ceil(disc1).astype('int16') # find right j pixel array |
| 61 | + rj = np.where(rj==lj, lj+1, rj) # deals with the case of an exact hit on a j position |
| 62 | + wul = (1-(disc0-ui))*(1-(disc1-lj)) # weighting parameter upper left |
| 63 | + wur = (1-(disc0-ui))*(1-(rj-disc1)) # weighting parameter upper right |
| 64 | + wll = (1-(li -disc0))*(1-(disc1-lj)) # weighting parameter lower left |
| 65 | + wlr = (1-(li -disc0))*(1-(rj-disc1)) # weighting parameter lower right |
| 66 | + pt = ( |
| 67 | + DP[ui,lj]*wul + |
| 68 | + DP[ui,rj]*wur + |
| 69 | + DP[li,lj]*wll + |
| 70 | + DP[li,rj]*wlr |
| 71 | + ).reshape(disc[0].shape[0],disc[0].shape[1]).T |
| 72 | + |
| 73 | + # Now weight result by pixel area in transform image |
| 74 | + radweight = np.arange(rmin, rmax)*2*np.pi/segments |
| 75 | + azi = np.ones(shape=(segments)) |
| 76 | + rweighting = np.meshgrid(azi,radweight)[1] |
| 77 | + PTDP = pt*rweighting |
| 78 | + |
| 79 | + return PTDP |
| 80 | + |
| 81 | + def PT4Dinone(dataset, ci, cj, rmin, rmax, segments, simple=True): |
| 82 | + # This function runs the polar transform over an entire 4DSTEM dataset |
| 83 | + # dataset is a 4DSTEM dataset as a numpy array |
| 84 | + # dimensions 0 and 1 are the vertical and horizontal dimensions of the image |
| 85 | + # dimensions 2 and 3 are the vertical and horizontal dimensions of the diffraction patterns |
| 86 | + # ci and cj are the pattern centres, either as floats or as arrays of floats to match dataset |
| 87 | + # rmin and rmax are the minimum and maximum radii for the output transform |
| 88 | + # you will save time and memory if you do not transform everything but focus on the radii of most interest |
| 89 | + # segments is the number of segments in azimuthal angle to split into (e.g. 360 gives 1 degree segments) |
| 90 | + # simple == True just calculates mapping one pixel in dataset to one in output |
| 91 | + # simple == False maps a weighted average of four pixels in dataset to one in output |
| 92 | + |
| 93 | + Ri, Rj = dataset.shape[0], dataset.shape[1] |
| 94 | + with alive_bar(Ri*Rj, force_tty=True) as bar: |
| 95 | + PT4D = np.zeros(shape=(Ri,Rj,rmax-rmin,segments)) |
| 96 | + |
| 97 | + # version of calculation for a single value for pattern centre (probably okay if there is not much |
| 98 | + # movement of pattern centre in dataset). |
| 99 | + |
| 100 | + if isinstance(ci, int): |
| 101 | + for i in range(Ri): |
| 102 | + for j in range(Rj): |
| 103 | + PT4D[i,j,:,:] = polarttransform( |
| 104 | + dataset[i,j,:,:], |
| 105 | + ci, cj, |
| 106 | + rmin, rmax, |
| 107 | + segments, |
| 108 | + simple=simple |
| 109 | + ) |
| 110 | + bar() |
| 111 | + return PT4D |
| 112 | + |
| 113 | + # version of calculation for an array of pattern centres (more robust of there are some descan issues) |
| 114 | + |
| 115 | + elif isinstance(ci, np.ndarray): |
| 116 | + if ci.shape[0]==Ri and cj.shape[1]==Rj: |
| 117 | + for i in range(Ri): |
| 118 | + for j in range(Rj): |
| 119 | + PT4D[i,j,:,:] = polarttransform( |
| 120 | + dataset[i,j,:,:], |
| 121 | + ci[i,j], cj[i,j], |
| 122 | + rmin, rmax, |
| 123 | + segments, |
| 124 | + simple=simple |
| 125 | + ) |
| 126 | + bar() |
| 127 | + return PT4D |
| 128 | + else: |
| 129 | + print('The array size for the pattern centres does not match the dataset') |
| 130 | + return |
| 131 | + |
| 132 | + def plotpolar(polar, rmin, rmax, lines, title): |
| 133 | + # a little function for just plotting polar transformed datasets as a sanity check |
| 134 | + # no return, just an inline plot with appropriate angle labels |
| 135 | + |
| 136 | + # Parameters: |
| 137 | + # polar: a single polar transformed diffraction pattern |
| 138 | + # rmin: minimum radius of the transform in pixels |
| 139 | + # rmax: maximum radius of the transform in pixels |
| 140 | + # lines: a set of five line positions to delineate the Laue zone, between 2 and 3 is used |
| 141 | + # in this notebook for the fitted area |
| 142 | + fig, ax = plt.subplots(figsize=(12,6)) |
| 143 | + ax.imshow( |
| 144 | + polar, |
| 145 | + vmin=np.percentile(polar,5), |
| 146 | + vmax=np.percentile(polar,98), |
| 147 | + cmap='turbo', |
| 148 | + extent = [0, 360, rmax, rmin], |
| 149 | + aspect=3 |
| 150 | + ) #plotting transform |
| 151 | + #with some background removed |
| 152 | + ax.set_xlabel(r'$\phi,$ deg') |
| 153 | + ax.set_ylabel('radius, pixels') |
| 154 | + ax.yaxis.set_minor_locator(MultipleLocator(5)) |
| 155 | + ax.xaxis.set_minor_locator(MultipleLocator(10)) |
| 156 | + ax.xaxis.set_major_locator(MultipleLocator(60)) |
| 157 | + |
| 158 | + ax.hlines(lines+rmin,0,359,color=['m','k','w','w','m']) #adding lines to mark out position of HOLZ ring |
| 159 | + ax.set_title(title) |
| 160 | + |
| 161 | + def fun_cos_sq(phi,A2,phi2,A1,phi1,B): |
| 162 | + #intensity function for fitting of polar transformed data |
| 163 | + return (A2*np.cos(np.radians(phi-phi2))**2+ |
| 164 | + A1*np.cos(np.radians(phi-phi1))+ |
| 165 | + B) |
| 166 | + |
| 167 | +def fitIntensitypattern( |
| 168 | + func, |
| 169 | + pattern, |
| 170 | + p0=[2000,90,2000,0,1000], |
| 171 | + bounds=([0, 0, 0, -180, 0], [np.inf, 180, np.inf, 180, np.inf]) |
| 172 | +): |
| 173 | + ''' |
| 174 | + fit HOLZ ring intensity to a sinusoidal function in a single pattern |
| 175 | + |
| 176 | + Parameters |
| 177 | + ---------- |
| 178 | + |
| 179 | + func : sinusoidal function to fit data to |
| 180 | + |
| 181 | + pattern: 1D numpy array of intensity values as a function of i, j and azimuthal angle |
| 182 | + |
| 183 | + |
| 184 | + Returns |
| 185 | + ------- |
| 186 | + |
| 187 | + fitParams : 3D numpy array of fit parameters (i_max x j_max x 5 array) |
| 188 | + |
| 189 | + fitCov: 4D numpy array with covariance matrix of fitted parameters (i_max x j_max x 5 x 5 array) |
| 190 | +
|
| 191 | + Note |
| 192 | + ---- |
| 193 | +
|
| 194 | + p0 and bounds values are set to appropriate value for some experimental datasets of mine, but won't |
| 195 | + be suitable for everything. |
| 196 | + A2, A1 and B can range from 0 to infinity but a suitable starting value is best found by fitting one |
| 197 | + pattern and checking these parameters before fitting a dataset. |
| 198 | + phi2 ranges in a 180 degree range (being a 2-fold function). It's up to you what is the most sensible range. |
| 199 | + If the value is significantly away from 0, then 0-180 is probably sensible. But if around 0, then -90 to 90 |
| 200 | + is probably better. |
| 201 | + phi1 ranges in a 360 degree range, and it's up to you to work out if 0 - 360 or -180 - 180 (or some other range) |
| 202 | + is more sensible. |
| 203 | + ''' |
| 204 | + xDim, yDim, zDim = data.shape |
| 205 | + fitParams = np.zeros((xDim,yDim,5)) |
| 206 | + fitCov = np.zeros((xDim,yDim,5,5)) |
| 207 | + |
| 208 | + with alive_bar(yDim*xDim, force_tty=True) as bar: |
| 209 | + for i in range(yDim): |
| 210 | + for j in range(xDim): |
| 211 | + pop, pcov = op.curve_fit( |
| 212 | + fun_cos_sq, |
| 213 | + np.arange(zDim), |
| 214 | + data[j,i], |
| 215 | + p0=p0, |
| 216 | + bounds=bounds |
| 217 | + ) |
| 218 | + fitParams[j,i] = pop |
| 219 | + fitCov[j,i] = pcov |
| 220 | + bar() |
| 221 | + return fitParams, fitCov |
| 222 | + |
| 223 | +def fitIntensitydataset( |
| 224 | + func, |
| 225 | + data, |
| 226 | + p0=[2000,90,2000,0,1000], |
| 227 | + bounds=([0, 0, 0, -180, 0], [np.inf, 180, np.inf, 180, np.inf]) |
| 228 | +): |
| 229 | + ''' |
| 230 | + fit HOLZ ring intensity to a sinusoidal function over entire 3D dataset |
| 231 | + |
| 232 | + Parameters |
| 233 | + ---------- |
| 234 | + |
| 235 | + func : sinusoidal function to fit data to |
| 236 | + |
| 237 | + data: 3D numpy array of intensity values as a function of i, j and azimuthal angle |
| 238 | + |
| 239 | + |
| 240 | + Returns |
| 241 | + ------- |
| 242 | + |
| 243 | + fitParams : 3D numpy array of fit parameters (i_max x j_max x 5 array) |
| 244 | + |
| 245 | + fitCov: 4D numpy array with covariance matrix of fitted parameters (i_max x j_max x 5 x 5 array) |
| 246 | +
|
| 247 | + Note |
| 248 | + ---- |
| 249 | +
|
| 250 | + p0 and bounds values are set to appropriate value for some experimental datasets of mine, but won't |
| 251 | + be suitable for everything. |
| 252 | + A2, A1 and B can range from 0 to infinity but a suitable starting value is best found by fitting one |
| 253 | + pattern and checking these parameters before fitting a dataset. |
| 254 | + phi2 ranges in a 180 degree range (being a 2-fold function). It's up to you what is the most sensible range. |
| 255 | + If the value is significantly away from 0, then 0-180 is probably sensible. But if around 0, then -90 to 90 |
| 256 | + is probably better. |
| 257 | + phi1 ranges in a 360 degree range, and it's up to you to work out if 0 - 360 or -180 - 180 (or some other range) |
| 258 | + is more sensible. |
| 259 | + ''' |
| 260 | + xDim, yDim, zDim = data.shape |
| 261 | + fitParams = np.zeros((xDim,yDim,5)) |
| 262 | + fitCov = np.zeros((xDim,yDim,5,5)) |
| 263 | + |
| 264 | + with alive_bar(yDim*xDim, force_tty=True) as bar: |
| 265 | + for i in range(yDim): |
| 266 | + for j in range(xDim): |
| 267 | + pop, pcov = op.curve_fit( |
| 268 | + fun_cos_sq, |
| 269 | + np.arange(zDim), |
| 270 | + data[j,i], |
| 271 | + p0=p0, |
| 272 | + bounds=bounds |
| 273 | + ) |
| 274 | + fitParams[j,i] = pop |
| 275 | + fitCov[j,i] = pcov |
| 276 | + bar() |
| 277 | + return fitParams, fitCov |
0 commit comments