@@ -187,67 +187,98 @@ save(awc, file="AMWO_Marray.rda")
187
187
188
188
# ---------------------------------------------------------------------------
189
189
# need to add last column of unrecovered individuals to marray
190
- # THIS IS NOT FINISHED YET!! (ignore)
191
190
# ---------------------------------------------------------------------------
192
191
# bring in bandings file
193
- bands <- read.csv(" AMWO bandings.csv" )
192
+ bands <- read.csv(" AMWO bandings.csv" ) # 43,914 records
194
193
195
194
# need to summarize bandings according to: banding year, region, class, season
196
195
197
196
# only use status 3 birds
198
- bands <- subset(bands ,Status == 3 )
197
+ bands <- subset(bands ,Status == 3 ) # 43,351 records (563 excluded)
199
198
200
199
# only use B.Year from 1963 onwards
201
- bands <- subset(bands ,B.Year > = 1963 )
200
+ bands <- subset(bands ,B.Year > = 1963 ) # 40,734 (2617 excluded)
201
+
202
+ # subset B.Month between 4 and 9 to cover our 2 seasons
203
+ bands <- subset(bands ,B.Month > = 4 & B.Month < = 9 ) # 34,251 records (6483 excluded)
204
+
205
+ # # TA added
206
+ # remove radio transmitters (meta-analyses suggest survival and harvest effects)
207
+ bands <- subset(bands ,Add.Info != 89 )
208
+ bands <- subset(bands ,Add.Info != 81 ) # 32,827 records (1424 excluded)
202
209
203
210
# bring in B.month, convert to season
204
- clean <- matrix (NA ,nrow = length(bands $ B.Month ),ncol = 1 )
205
- clean <- data.frame (clean )
206
- clean [bands $ B.Month < = 6 ,]<- 1 # shouldn't we change this to between 4 and 6?
207
- clean [bands $ B.Month > 6 ,]<- 2 # shouldn't we change this to between 7 and 9?
211
+ clean.bands <- matrix (NA ,nrow = length(bands $ B.Month ),ncol = 1 )
212
+ clean.bands <- data.frame (clean.bands )
213
+ clean.bands [bands $ B.Month > = 4 & bands $ B.Month < = 6 ,]<- 1
214
+ clean.bands [bands $ B.Month > = 7 & bands $ B.Month < = 9 ,]<- 2 # 19,589 spring (Apr-Jun), 13,238 summer (Jul-Sep)
208
215
209
216
# Bring in B.year
210
- clean [,2 ]<- bands $ B.Year
217
+ clean.bands [,2 ]<- bands $ B.Year
211
218
212
219
# bring in B region
213
- clean [,3 ]<- 0
214
- clean [bands $ B.Flyway == 1 ,3 ]<- 1
215
- clean [bands $ B.Flyway %in% 2 : 3 ,3 ]<- 2
216
- clean [bands $ B.Flyway == 6 & bands $ BRegion..STA %in% c(" QC" ," NS" ," NB" ," PE" ," NF" ," PQ" ),3 ]<- 1
217
- clean [bands $ B.Flyway == 6 & bands $ BRegion..STA %in% c(" ONT" ),3 ]<- 2
220
+ clean.bands [,3 ]<- 0
221
+ clean.bands [bands $ B.Flyway == 1 ,4 ]<- 1 # # Eastern region, U.S
222
+ clean.bands [bands $ B.Flyway %in% 2 : 3 ,4 ]<- 2 # # Central region, U.S
223
+ clean.bands [bands $ B.Flyway == 6 & bands $ BRegion..STA %in% c(" QC" ," NS" ," NB" ," PE" ," NF" ," PQ" ),4 ]<- 1 # # Add eastern Canada (165)
224
+ clean.bands [bands $ B.Flyway == 6 & bands $ BRegion..STA %in% c(" ONT" ," MB" ),4 ]<- 2 # # 19 from ONT, added Manitoba to code (no recoveries, but some bandings)
225
+ # 1,663 eastern recoveries, 2,618 central recoveries
226
+
227
+ # bring in R region, this is only to exlude region crossers
228
+ clean [,5 ]<- 0 # specify different number from previous step to flag it in the next step
229
+ clean [raw $ R.Flyway == 1 ,5 ]<- 1
230
+ clean [raw $ R.Flyway %in% 2 : 3 ,5 ]<- 2
231
+ clean [raw $ R.Flyway == 6 & raw $ RRegion..STA %in% c(" QC" ," NS" ," NB" ," PE" ," NF" ," PQ" ),5 ]<- 1
232
+ clean [raw $ R.Flyway == 6 & raw $ RRegion..STA %in% c(" ONT" , " MB" ),5 ]<- 2
218
233
219
- # pull out places you don't care about
220
- bands <- bands [clean $ V3 != 0 ,]
221
- clean <- clean [clean $ V3 != 0 ,]
222
- clean <- clean [,1 : 3 ] # remove R.state becuase it is redundant
234
+ # removes lines of region crossers
235
+ raw <- raw [clean $ V4 == clean $ V5 ,]
236
+ clean <- clean [clean $ V4 == clean $ V5 ,]
237
+ clean <- clean [,1 : 4 ] # remove R.state becuase it is redundant
238
+ # 1,663 to 1595 eastern recoveries, 2,618 to 2604 central recoveries
239
+
240
+ # # TA's independent tally, 68 Eastern pop harvested in Central, 14 Central harvested in Eastern (perfect match!)
223
241
224
242
# bring in age
225
243
# local = 1, hatch year = 2, adult = 3
226
- clean [,4 ]<- NA
227
- clean [bands $ Age..VAGE == " After Hatch Year" ,4 ]<- 3
228
- clean [bands $ Age..VAGE == " After Second Year" ,4 ]<- 3
229
- clean [bands $ Age..VAGE == " After Third Year" ,4 ]<- 3
230
- clean [bands $ Age..VAGE == " Second Year" ,4 ]<- 3
231
- clean [bands $ Age..VAGE == " Unknown" ,4 ]<- NA
232
- clean [bands $ Age..VAGE == " Hatch Year" ,4 ]<- 2
233
- clean [bands $ Age..VAGE == " Local" ,4 ]<- 1
244
+ clean [,5 ]<- NA
245
+ clean [raw $ Age..VAGE == " After Hatch Year" ,5 ]<- 3
246
+ clean [raw $ Age..VAGE == " After Second Year" ,5 ]<- 3
247
+ clean [raw $ Age..VAGE == " After Third Year" ,5 ]<- 3
248
+ clean [raw $ Age..VAGE == " Second Year" ,5 ]<- 3
249
+ clean [raw $ Age..VAGE == " Unknown" ,5 ]<- NA # #delete 39 unknown age at banding
250
+ clean [raw $ Age..VAGE == " Hatch Year" ,5 ]<- 2
251
+ clean [raw $ Age..VAGE == " Local" ,5 ]<- 1
234
252
# remove unknowns
235
- bands <- bands [! is.na(clean [,4 ]),]
236
- clean <- clean [! is.na(clean [,4 ]),]
237
-
238
- # get rid of hatch years in months 5 and 6
239
- clean <- clean [! (bands $ Age..VAGE == " Hatch Year" & bands $ B.Month %in% c(5 : 6 )),]
240
- bands <- bands [! (bands $ Age..VAGE == " Hatch Year" & bands $ B.Month %in% c(5 : 6 )),]
241
-
242
- # bring in sex and convert to age class
243
- # 1=local, 2=juv, 3=male, 4=female
253
+ raw <- raw [! is.na(clean [,5 ]),]
254
+ clean <- clean [! is.na(clean [,5 ]),] # # 1530 locals, 1504 HY, 1126 adults
244
255
256
+ # get rid of hatch years in months 4, 5 and 6
257
+ clean <- clean [! (raw $ Age..VAGE == " Hatch Year" & raw $ B.Month %in% c(4 : 6 )),]
258
+ raw <- raw [! (raw $ Age..VAGE == " Hatch Year" & raw $ B.Month %in% c(4 : 6 )),]
245
259
260
+ # # there are also 2 locals banded in month 7
261
+ clean <- clean [! (raw $ Age..VAGE == " Local" & raw $ B.Month %in% c(7 : 9 )),]
262
+ raw <- raw [! (raw $ Age..VAGE == " Local" & raw $ B.Month %in% c(7 : 9 )),] # # 1528 locals, 1350 HY, 1126 adults
246
263
264
+ # bring in sex and convert to age class so this is more like a sex-age class column
265
+ # 1=local, 2=juv, 3=male, 4=female
266
+ clean [,6 ]<- NA
267
+ clean [clean [,5 ]%in% 1 : 2 ,6 ]<- clean [clean [,5 ]%in% 1 : 2 ,5 ]
247
268
248
- # remove unknown adults for now? Can treat unknowns via mixtures acc. to Todd
269
+ # convert 2 juvenile ages to a single class ##(SS edit 13 Feb)
270
+ # now: 1=juv (both local and HY), 2=male, 3=female ##SS edit
271
+ clean [clean [,6 ]%in% 1 : 2 ,6 ]<- 1
249
272
273
+ # ## Sex from subsequent encounter means unknown at time of banding (== unknown if not recovered)
274
+ # ## So treat these as unknown and if marked as unknown-sex adult they get deleted (but probably all marked as local or HY)
275
+ clean [raw $ Sex..VSEX %in% c(" Male" )& clean [,5 ]== 3 ,6 ]<- 2
276
+ clean [raw $ Sex..VSEX %in% c(" Female" )& clean [,5 ]== 3 ,6 ]<- 3
277
+ # 465 males, 640 females, 2899 unknown
250
278
251
- # remove unwanted banding periods (Oct-Dec) for now
279
+ # remove unknown adults for now--only losing 21 individuals if we don't include them
280
+ raw <- raw [! (is.na(clean [,6 ])& clean [,5 ]== 3 ),]
281
+ clean <- clean [! (is.na(clean [,6 ])& clean [,5 ]== 3 ),]
282
+ # 465 males, 640 females, 2878 unknown
252
283
253
284
0 commit comments