-
Notifications
You must be signed in to change notification settings - Fork 378
/
Copy pathmain_slam.py
executable file
·319 lines (247 loc) · 14.4 KB
/
main_slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env -S python3 -O
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import cv2
import time
import os
import sys
import numpy as np
import json
import platform
from config import Config
from slam import Slam, SlamState
from slam_plot_drawer import SlamPlotDrawer
from camera import PinholeCamera
from ground_truth import groundtruth_factory
from dataset import dataset_factory, SensorType
from trajectory_writer import TrajectoryWriter
if platform.system() == 'Linux':
from display2D import Display2D # !NOTE: pygame generate troubles under macOS!
from viewer3D import Viewer3D
from utils_sys import getchar, Printer
from utils_img import ImgWriter
from utils_eval import eval_ate
from utils_geom_trajectory import find_poses_associations
from utils_colors import GlColors
from feature_tracker_configs import FeatureTrackerConfigs
from loop_detector_configs import LoopDetectorConfigs
from depth_estimator_factory import depth_estimator_factory, DepthEstimatorType
from utils_depth import img_from_depth, filter_shadow_points
from config_parameters import Parameters
from rerun_interface import Rerun
from datetime import datetime
import traceback
datetime_string = datetime.now().strftime("%Y%m%d_%H%M%S")
def draw_associated_cameras(viewer3D, assoc_est_poses, assoc_gt_poses, T_gt_est):
T_est_gt = np.linalg.inv(T_gt_est)
scale = np.mean([np.linalg.norm(T_est_gt[i, :3]) for i in range(3)])
R_est_gt = T_est_gt[:3, :3]/scale # we need a pure rotation to avoid camera scale changes
assoc_gt_poses_aligned = [np.eye(4) for i in range(len(assoc_gt_poses))]
for i in range(len(assoc_gt_poses)):
assoc_gt_poses_aligned[i][:3,3] = T_est_gt[:3, :3] @ assoc_gt_poses[i][:3, 3] + T_est_gt[:3, 3]
assoc_gt_poses_aligned[i][:3,:3] = R_est_gt @ assoc_gt_poses[i][:3,:3]
viewer3D.draw_cameras([assoc_est_poses, assoc_gt_poses_aligned], [GlColors.kCyan, GlColors.kMagenta])
if __name__ == "__main__":
config = Config()
metrics_save_dir = config.root_folder + '/results' + '/metrics_' + datetime_string
dataset = dataset_factory(config)
is_monocular=(dataset.sensor_type==SensorType.MONOCULAR)
online_trajectory_writer = None
final_trajectory_writer = None
if config.trajectory_saving_settings['save_trajectory']:
trajectory_online_file_path, trajectory_final_file_path = config.get_trajectory_saving_paths(datetime_string)
online_trajectory_writer = TrajectoryWriter(format_type=config.trajectory_saving_settings['format_type'], filename=trajectory_online_file_path)
final_trajectory_writer = TrajectoryWriter(format_type=config.trajectory_saving_settings['format_type'], filename=trajectory_final_file_path)
groundtruth = groundtruth_factory(config.dataset_settings)
camera = PinholeCamera(config)
num_features=2000
if config.num_features_to_extract > 0: # override the number of features to extract if we set something in the settings file
num_features = config.num_features_to_extract
# Select your tracker configuration (see the file feature_tracker_configs.py)
# FeatureTrackerConfigs: SHI_TOMASI_ORB, FAST_ORB, ORB, ORB2, ORB2_FREAK, ORB2_BEBLID, BRISK, AKAZE, FAST_FREAK, SIFT, ROOT_SIFT, SURF, KEYNET, SUPERPOINT, CONTEXTDESC, LIGHTGLUE, XFEAT, XFEAT_XFEAT
# WARNING: At present, SLAM does not support LOFTR and other "pure" image matchers (further details in the commenting notes about LOFTR in feature_tracker_configs.py).
feature_tracker_config = FeatureTrackerConfigs.ORB2
feature_tracker_config['num_features'] = num_features
Printer.green('feature_tracker_config: ',feature_tracker_config)
# Select your loop closing configuration (see the file loop_detector_configs.py). Set it to None to disable loop closing.
# LoopDetectorConfigs: DBOW2, DBOW2_INDEPENDENT, DBOW3, DBOW3_INDEPENDENT, IBOW, OBINDEX2, VLAD, HDC_DELF, SAD, ALEXNET, NETVLAD, COSPLACE, EIGENPLACES etc.
# NOTE: under mac, the boost/text deserialization used by DBOW2 and DBOW3 may be very slow.
loop_detection_config = LoopDetectorConfigs.DBOW3
Printer.green('loop_detection_config: ',loop_detection_config)
# Select your depth estimator in the front-end (EXPERIMENTAL, WIP)
depth_estimator = None
if Parameters.kUseDepthEstimatorInFrontEnd:
Parameters.kVolumetricIntegrationUseDepthEstimator = False # Just use this depth estimator in the front-end (This is not a choice, we are imposing it for avoiding computing the depth twice)
# Select your depth estimator (see the file depth_estimator_factory.py)
# DEPTH_ANYTHING_V2, DEPTH_PRO, DEPTH_RAFT_STEREO, DEPTH_SGBM, etc.
depth_estimator_type = DepthEstimatorType.DEPTH_PRO
max_depth = 20
depth_estimator = depth_estimator_factory(depth_estimator_type=depth_estimator_type, max_depth=max_depth,
dataset_env_type=dataset.environmentType(), camera=camera)
Printer.green(f'Depth_estimator_type: {depth_estimator_type.name}, max_depth: {max_depth}')
# create SLAM object
slam = Slam(camera, feature_tracker_config,
loop_detection_config, dataset.sensorType(),
environment_type=dataset.environmentType(),
config=config)
slam.set_viewer_scale(dataset.scale_viewer_3d)
time.sleep(1) # to show initial messages
# load system state if requested
if config.system_state_load:
slam.load_system_state(config.system_state_folder_path)
viewer_scale = slam.viewer_scale() if slam.viewer_scale()>0 else 0.1 # 0.1 is the default viewer scale
print(f'viewer_scale: {viewer_scale}')
slam.set_tracking_state(SlamState.INIT_RELOCALIZE)
viewer3D = Viewer3D(scale=dataset.scale_viewer_3d)
if groundtruth is not None:
gt_traj3d, gt_poses, gt_timestamps = groundtruth.getFull6dTrajectory()
viewer3D.set_gt_trajectory(gt_traj3d, gt_timestamps, align_with_scale=is_monocular)
if platform.system() == 'Linux':
display2d = None # Display2D(camera.width, camera.height) # pygame interface
else:
display2d = None # enable this if you want to use opencv window
# if display2d is None:
# cv2.namedWindow('Camera', cv2.WINDOW_NORMAL) # to make it resizable if needed
plot_drawer = SlamPlotDrawer(slam, viewer3D)
img_writer = ImgWriter(font_scale=0.7)
do_step = False # proceed step by step on GUI
do_reset = False # reset on GUI
is_paused = False # pause/resume on GUI
is_map_save = False # save map on GUI
is_bundle_adjust = False # bundle adjust on GUI
key_cv = None
img_id = 0 #180, 340, 400 # you can start from a desired frame id if needed
while not viewer3D.is_closed():
img, img_right, depth = None, None, None
if do_step:
Printer.orange('do step: ', do_step)
if do_reset:
Printer.yellow('do reset: ', do_reset)
slam.reset()
if not is_paused or do_step:
if dataset.isOk():
print('..................................')
img = dataset.getImageColor(img_id)
depth = dataset.getDepth(img_id)
img_right = dataset.getImageColorRight(img_id) if dataset.sensor_type == SensorType.STEREO else None
if img is not None:
timestamp = dataset.getTimestamp() # get current timestamp
next_timestamp = dataset.getNextTimestamp() # get next timestamp
frame_duration = next_timestamp-timestamp if (timestamp is not None and next_timestamp is not None) else -1
print(f'image: {img_id}, timestamp: {timestamp}, duration: {frame_duration}')
time_start = None
if img is not None:
time_start = time.time()
if depth is None and depth_estimator is not None:
depth_prediction, pts3d_prediction = depth_estimator.infer(img, img_right)
if Parameters.kDepthEstimatorRemoveShadowPointsInFrontEnd:
depth = filter_shadow_points(depth_prediction)
else:
depth = depth_prediction
depth_img = img_from_depth(depth_prediction, img_min=0, img_max=50)
cv2.imshow("depth prediction", depth_img)
slam.track(img, img_right, depth, img_id, timestamp) # main SLAM function
# 3D display (map display)
if viewer3D is not None:
viewer3D.draw_map(slam)
img_draw = slam.map.draw_feature_trails(img)
img_writer.write(img_draw, f'id: {img_id}', (30, 30))
# 2D display (image display)
if display2d is not None:
display2d.draw(img_draw)
else:
cv2.imshow('Camera', img_draw)
# draw 2d plots
plot_drawer.draw(img_id)
if online_trajectory_writer is not None and slam.tracking.cur_R is not None and slam.tracking.cur_t is not None:
online_trajectory_writer.write_trajectory(slam.tracking.cur_R, slam.tracking.cur_t, timestamp)
if time_start is not None:
duration = time.time()-time_start
if(frame_duration > duration):
time.sleep(frame_duration-duration)
img_id += 1
else:
time.sleep(0.1) # img is None
# 3D display (map display)
if viewer3D is not None:
viewer3D.draw_dense_map(slam)
else:
time.sleep(0.1) # pause or do step on GUI
# get keys
key = plot_drawer.get_key()
if display2d is None:
key_cv = cv2.waitKey(1) & 0xFF
# manage SLAM states
if slam.tracking.state==SlamState.LOST:
if display2d is None:
#key_cv = cv2.waitKey(0) & 0xFF # useful when drawing stuff for debugging
key_cv = cv2.waitKey(500) & 0xFF
else:
#getchar()
time.sleep(0.5)
# manage interface infos
if is_map_save:
slam.save_system_state(config.system_state_folder_path)
dataset.save_info(config.system_state_folder_path)
groundtruth.save(config.system_state_folder_path)
Printer.green('uncheck pause checkbox on GUI to continue...\n')
if is_bundle_adjust:
slam.bundle_adjust()
Printer.green('uncheck pause checkbox on GUI to continue...\n')
if not is_paused and viewer3D.is_paused(): # when a pause is triggered
est_poses, timestamps, ids = slam.get_final_trajectory()
assoc_timestamps, assoc_est_poses, assoc_gt_poses = find_poses_associations(timestamps, est_poses, gt_timestamps, gt_poses)
ape_stats, T_gt_est = eval_ate(poses_est=assoc_est_poses, poses_gt=assoc_gt_poses, frame_ids=ids,
curr_frame_id=img_id, is_final=False, is_monocular=is_monocular, save_dir=None)
Printer.green(f"EVO stats: {json.dumps(ape_stats, indent=4)}")
#draw_associated_cameras(viewer3D, assoc_est_poses, assoc_gt_poses, T_gt_est)
if viewer3D is not None:
is_paused = viewer3D.is_paused()
is_map_save = viewer3D.is_map_save() and is_map_save == False
is_bundle_adjust = viewer3D.is_bundle_adjust() and is_bundle_adjust == False
do_step = viewer3D.do_step() and do_step == False
do_reset = viewer3D.reset() and do_reset == False
if key == 'q' or (key_cv == ord('q')):
break
# here we save the online estimated trajectory
online_trajectory_writer.close_file()
# compute metrics on the estimated final trajectory
try:
est_poses, timestamps, ids = slam.get_final_trajectory()
is_final = not dataset.isOk()
assoc_timestamps, assoc_est_poses, assoc_gt_poses = find_poses_associations(timestamps, est_poses, gt_timestamps, gt_poses)
ape_stats, T_gt_est = eval_ate(poses_est=assoc_est_poses, poses_gt=assoc_gt_poses, frame_ids=ids,
curr_frame_id=img_id, is_final=is_final, is_monocular=is_monocular, save_dir=metrics_save_dir)
Printer.green(f"EVO stats: {json.dumps(ape_stats, indent=4)}")
if final_trajectory_writer is not None:
final_trajectory_writer.write_full_trajectory(est_poses, timestamps)
final_trajectory_writer.close_file()
except Exception as e:
print('Exception while computing metrics: ', e)
print(f'traceback: {traceback.format_exc()}')
# close stuff
slam.quit()
if plot_drawer is not None:
plot_drawer.quit()
if display2d is not None:
display2d.quit()
if viewer3D is not None:
viewer3D.quit()
if display2d is None:
cv2.destroyAllWindows()