
Chapter 5

Real-time Tracking and

Reconstruction with Deep

Representation

In the previous chapters, we have introduced a complete pipeline for surface recon-

struction from a monocular endoscopic video with automatic video-CT registration.

The pipeline can provide a high-quality surface model of the anatomy and camera

trajectory. However, for some applications (e.g., surgical navigation) in endoscopy,

a real-time solution is needed so that the estimate of surface geometry and cam-

era trajectory can provide instant feedback (e.g., regions not yet inspected) to assist

the surgeon during the endoscopy procedure. This could also potentially enable au-
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tomatic applications such as intelligent endoscope holder and automatic endoscopy

inspection.

Simultaneous Localization and Mapping (SLAM) is a type of algorithm that can es-

timate geometry and trajectory estimates in real-time. Many monocular visual SLAM

methods have been developed for general scenes [53, 54, 56, 222–231] and clinical ap-

plications such as endoscopy [49, 110, 232–234]. Though such systems have been

studied and developed for decades, many practical and theoretical challenges remain.

Specifically for endoscopy, scarce texture, illumination variation, tissue deformation,

and surgical manipulation are several typical challenges. These challenges either

result in low robustness and accuracy of the system running or break certain as-

sumptions of the existing SLAM systems.

In this chapter, we exploit deep learning-based representations to handle the

scarce texture and illumination variation, to improve the robustness and accuracy

of the system. The deep representation also enables the system to produce surface

geometry of the anatomy. Based on our evaluation, the proposed SLAM system

generalizes well to unseen endoscopes and subjects and has superior performance

compared with a state-of-the-art feature-based SLAM system [54].
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5.1 Related Work

5.1.1 Representation Learning for Visual Tracking

and Mapping

In recent years, researchers have worked on exploiting prior information learned

from previous data to improve the performance of SLAM and Visual Odometry

(VO). Different forms of deep depth prior have been used, such as single depth

estimate [110, 224, 234], self-improving depth estimate [229], depth estimate with

uncertainty [235], and depth estimate with optimizable code [227, 231, 236].

Deep appearance representations have been studied to replace the role of RGB

image, which improves convergence basin and enables scenarios with no photometric

constancy. BA-Net [236] proposed representation learning with differentiable BA-

related loss. DeepSFM [237] extracted implicit feature representation and built cost

volume to jointly optimize depth map and relative pose. In this work, we use learning-

based viewpoint- and illumination-robust appearance representation and optimizable

depth to effectively integrate priors into the SLAM system.

There are also works exploiting other forms of priors for the VO and SLAM sys-

tems. For example, Yang et al. [235] exploit a pose prior to enable better convergence

and mitigate the scale-drift issue; Zhan et al. [238] estimate dense optical flow to gain
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more robustness towards camera tracking.

5.1.2 Simultaneous Localization and Mapping in

Endoscopy

Many SLAM systems have been studied and proposed for the general scene [53, 54,

56, 222–231]. In endoscopy, additional challenges exist compared with other SLAM

scenarios such as driving scenes, which are illumination changes, scarce textures,

deformation, etc.

Feature-based SLAM [49, 109, 239, 240] has been developed for its robustness to

illumination changes. However, these systems are not robust to scarce and repetitive

textures and thus not suitable for our application. To deal with the scarce texture that

causes inaccuracy in terms of trajectory and reconstruction, works have been pro-

posed using either hardware [51] or algorithmic [15, 234, 241] solution. However, the

estimated geometry from these systems is not dense and thus cannot allow for target

applications of this work that require such information. Deformation happens in en-

doscopy, especially in certain cases such as laparoscopy and when surgical operations

are applied. Works have been developed to confront this challenge [56, 57, 242, 243].

In this work, we exploit learning-based priors and dense geometry to improve the

robustness of the system to illumination changes and scarce texture.
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5.2 Contributions

In this work, we made the following contributions:

• An effective training scheme to jointly learn optimizable depth and illumination-

robust representations with differentiable non-linear optimization.

• A full-feature learning-based dense SLAM system is developed for endoscopy

with decent generalizability.

• We demonstrate the effectiveness of the proposed method on in vivo and ex

vivo nasal endoscopic videos, by comparing the performance with state-of-the-

art feature-based system ORB-SLAM v3 [54].

From the system point of view, this work presents a real-time option to estimate

camera trajectory and dense geometry with a slight sacrifice of accuracy. Many endo-

scopic applications require such a real-time solution. For example, it enables the sur-

geon to know which regions have not been observed from the endoscope yet, which in-

creases the chance to find pathology such as polyps, cancer, etc. It improves the aware-

ness of surgeons on the critical structures underlying the surface if pre-operative CT

imaging is available, which is enabled by the video-CT registration with the dense

geometry estimate from the SLAM.
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5.3 Representation Learning

In this section, we introduce the learning scheme of various representations used

in the proposed SLAM system.

5.3.1 Network Architecture

Two separate networks are used to learn geometry and appearance representa-

tions, respectively. In terms of geometry, a depth network is responsible for producing

an average depth estimate, which is correct up to a global scale, and a collection of

depth bases. The average depth estimate captures the expectation of the depth esti-

mate based on the input color image. However, the task of depth estimation from a

single image is ill-posed and therefore errors are expected. The depth bases consist of

a set of depth variations that could be used to explain the variation of geometry given

the appearance of the input. Therefore, such bases provide a way to further refine the

depth estimate, using information from other frames (e.g., geometric consistency),

during the optimization process in a SLAM system run.

As shown in Fig. 5.1, the depth network is close to UNet [244] with partial convo-

lution [245]. The endoscope image mask is used in the partial convolutions so that

input regions outside the mask do not contribute to the final output. There are two

output branches, where one, with absolute function as output activation, predicts the
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Figure 5.1: Network architecture for optimizable depth estimation. Each
ConvBlock consists of two partial convolution layers with kernel size as 3 and stride
as 1, one group normalization layer with a group size of 4, and one ReLU activation,
which are arranged in the way as the figure above. The number after the ConvBlock
means the size of the output channel dimension. Two output branches exist in the
network for the average depth estimate and the depth bases, described in Sec. 5.3.1.
Hyperbolic tangent and absolute functions are used as output activation in these
branches.

average depth estimate, and the other produces depth bases with hyperbolic tangent

as output activation. The architecture of the discriminator used for depth training is

shown in Fig. 5.2.

In terms of appearance, a feature network produces two types of representations.

One set of representations, named descriptor map, is used as image descriptors in

pair-wise feature matching that are involved in the Reprojection Factor and Sparse

Matched Geometry Factor, described in Sec. 5.4.2. A similar training approach as

Chapter 2 is used, except that we use point correspondences computed from the sur-
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face reconstruction and trajectory instead of the correspondences from SfM. The other

set, named feature map, is used for the computation of the Feature-metric Factor as

a drop-in replacement of the original video frame. In the image, the illumination of

the same location of the scene changes as the viewpoint varies because the lighting

source moves with the camera. On the other hand, feature maps can be robust to il-

lumination and viewpoint changes, if the feature network is trained correspondingly.

In this work, we use the task of pair-wise image alignment with differentiable non-

linear optimization to train both the appearance and geometry representations, with

more details in Sec. 5.3.4. The network architecture for the feature network is the

same as the depth network, except for the two output branches. The sizes of channel

dimension for the three layers in both the descriptor map and feature map output

branches (from hidden to output) are 64, 64, and 16; the output activation functions

are both hyperbolic tangent.

5.3.2 Differentiable Optimization

To make the networks learn to master the task of pair-wise image alignment,

a differentiable non-linear optimization method is required. In this work, we use

Levenberg-Marquardt (LM) algorithm [75] as the optimization solver. LM is a trust-

region algorithm to find a minimum of a function over a space of parameters. It is also

known as a damped least-squares method because a damping factor is involved in the

120



CHAPTER 5

Figure 5.2: Network architecture of discriminator for depth estimation learn-
ing. The input is the RGB image and the normalized depth map, concatenated along
the channel dimension, with a resolution of 64 ⇥ 80. Each ConvBlock consists of two
normal convolution layers with kernel size as 3 and stride as 1, one group normaliza-
tion layer with a group size of 4, and two ReLU activation layers, which are arranged
in the way as the figure above. The number after the ConvBlock means the size of the
output channel dimension. The final convolution layer, with kernel size as 1, stride
as 1, and output channel size as 1, and linear layer, with input channel size as 20 and
output channel size as 1, converts the feature map to a scalar value used to indicate
the predicted validity of the input sample. Note that before being fed to the final lin-
ear layer, the output map from the final convolution layer is first flattened along the
sample-wise dimensions.

method that explicitly controls how large the trust region is. The damping factor will

decrease or increase based on whether the proposed parameter updates in a single

step results in a lower error or not. The larger the damping factor is, the closer LM

will be to the gradient descent method. On the other hand, the smaller the damp

is, the closer LM will be to the Gauss-Newton method [246], which is a quadratic

optimization method.

In the computation graph, all accepted steps are connected, while the accept de-

termination stage and rejected steps are not involved. This removes the need to have

an additional network, which is used in BA-Net [236], to predict the damping factor

of LM optimization for each iteration, and reduces the complexity of the computa-
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tion graph by removing those unnecessary steps. A differentiable solve method for

the linear system [82] is used to solve the variable update of a single iteration. With

gradient checkpoint technique [82], the number of accepted steps is almost not lim-

ited by the memory storage, because each added one will only require a negligible

amount of memory space. Therefore, in each iteration of the network training, a long

optimization chain can be used.

5.3.3 Loss Design

For each iteration, when the LM optimization converges, several outputs before,

during, and after the optimization process will be involved in the loss computation

for the network training. Both the average and the optimized depth estimate should

agree with the groundtruth depth map up to a global scale. We do not let the depth

network try to predict the correct scale and instead leave it to the optimization during

SLAM running because predicting a correct depth scale from a monocular endoscopic

image is nearly impossible. Therefore, a scale-invariant loss is used for this objective.

With a predicted depth map D 2 R1⇥H⇥W , the corresponding groundtruth depth map

D̃ 2 R1⇥H⇥W , and the binary video mask V 2 R1⇥H⇥W , the loss is defined as

Lsi =

P
D2

ratioP
V

+
(
P

Dratio)
2

(
P

V )
2 , (5.1)
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where Dratio = log (V D + ✏) � log

⇣
V D̃ + ✏

⌘
. Note all operations, except

P
, are

element-wise ones;
P

operation sums all elements along the sample-wise dimensions;

✏ 2 R is a small number to prevent logarithm over zero. Note that all groundtruth

data used in this work can be obtained from the surface reconstruction and camera

trajectory produced in Chapter 3.

To guide the intermediate depth maps during optimization, we additionally use

an adversarial loss. Intuitively, this loss functions as a regularizer and helps make

intermediate depth maps more physically feasible given the visual cues (e.g., illumi-

nation distribution) in the input color image. This should thus encourage the network

to produce a better set of depth bases to produce such depth estimates. The real sam-

ple for the GAN will be a color image and the corresponding normalized groundtruth

depth map; the fake sample will be the color image and the corresponding normalized

depth estimate. For normalization, these depth maps are divided by their maximum

value so that the discriminator judges the fidelity of the sample pair based only on

the relative geometry and not on the depth scale. The loss form in LS-GAN [247] is

used in this work.

For the descriptor map, the RR loss defined in Chapter 2 is used. Because a de-

scriptor map is also used for loop closure detection, besides producing good feature

matches on images with large scene overlap, having dissimilar descriptions for im-

ages with small or no scene overlap is also desired. A histogram loss is used to make
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sure the similarity between histograms of descriptor maps for the source and target

images is higher than that for the source and far images. The definitions of these

three images are in Sec. 5.3.4. The histogram loss is defined as

Lhist =
1

C

X

i2{1,...,C}

min

✓
1

K
dEMD

�
hsrc

i
,htgt

i

�
� 1

K
dEMD

�
hsrc

i
,hfar

i

�
+ ⌘hist, 0

◆
, (5.2)

where dEMD (h1,h2) = kCDF (h1)� CDF (h2)k22 measures the earth mover’s distance

between two histograms. CDF is the operation to produce cumulative density function

(CDF) from a histogram. hsrc
i

2 RK is the soft histogram of elements within the

valid region of source descriptor map Isrc 2 RC⇥H⇥W along the ith channel, which is

Isrc
i

2 R1⇥H⇥W ; K is the number of bins in each cumulative density function (CDF)

and C is the channel size of the descriptor map; ⌘hist 2 R is a constant margin.

To compute soft CDF differentiably, we refer to the method in [248]. The value of

kth bin in the histogram hsrc
i

can be written as follows

hsrc
i

(k) =
1

|⌦src|
X

x2⌦src

✓
�

✓
Isrc
i

(x)� µk + 1/K

�

◆
� �

✓
Isrc
i

(x)� µk � 1/K

�

◆◆
, (5.3)

where the center value of kth bin is µk = �1 + (2k + 1) /K 2 R; the kernel function is

� (a) = 1/ (1 + e
�a
). The values used in µk are related to that the descriptor map has

a value range of (�1, 1) because of the architectural design of the feature network.

The output activation function is hyperbolic tangent for the descriptor map. ⌦
src is a
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set consisting of all 2D locations within the source video mask; � 2 R is a bandwidth

parameter. The histograms for target and source images are the same as above except

the corresponding descriptor maps are used for calculation instead of the source one.

Intuitively, after the optimization process in Sec. 5.3.2, the source image should

be warped to the target frame with good alignment, using the estimate of status.

Such a warping process can be described with a 2D scene flow. Therefore, to guide

the learning process to produce better image alignment, another loss is to encourage

the similarity between the groundtruth 2D scene flow, and the one estimated after

the optimization process. This objective will provide signals to both the feature map

branch of the feature network and the depth network. This is because a reasonable

2D scene flow can only be achieved if the feature maps are expressive and the depth

estimates are accurate, especially when this loss is combined with the depth-related

losses above. The flow loss is defines as

Lflow =
1

!s!t
P

V

X
V
⇣
W̃

s!t �W s!t
⌘2

, (5.4)

where W̃
s!t 2 R2⇥H⇥W and W s!t 2 R2⇥H⇥W are the groundtruth and estimated 2D

scene flows from source to target frame, respectively. !s!t 2 R is a normalization

factor, defined as !s!t
=

1

2

P
V
⇣
(W̃

s!t
)
2
+ (W s!t

)
2
⌘

. The estimated flow W s!t at
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2D location xsrc is defined as

W s!t
(xsrc

) = ⇡
�
ps!t

�
� xsrc , where (5.5)

ps!t
= T tgt

src ⇡
�1

(xsrc,Dsrc
(xsrc

)) . (5.6)

ps!t 2 R3 is the 3D location of the lifted source 2D location xsrc 2 R2 in the target

coordinate system, based on the current estimate of status. ⇡ and ⇡�1 are the project

and unproject operation of the camera geometry. These two operations are the same

for all keyframes because camera intrinsics are assumed to be fixed throughout the

video. T tgt
src =

�
T wld
tgt

��1
T wld
src is the relative pose between target and source. Dsrc

(xsrc
) 2

R is the depth estimate at 2D location xsrc based on the current estimate of depth

scale and depth code. It is defined as Dsrc
(xsrc

) = ssrc
⇣
D̄

src
(xsrc

) + (csrc)| D̂
src

(xsrc
)

⌘
.

The source average depth estimate and depth bases are D̄
src 2 R1⇥H⇥W and D̂

src 2

RB⇥H⇥W . the source depth scale, depth code, and camera pose matrix are ssrc 2 R,

csrc 2 RB, and T wld
src 2 SE (3), respectively. Note that the forms of all definitions related

to the other images are the same as the source, except that the superscript symbol

should be changed correspondingly.
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5.3.4 Training Procedure

In each iteration, three images are used for training, which are the source, target,

and far images. Source and target are two images with a large scene overlap, while

the far image has a small or no scene overlap with the source. For the source and

target images, the depth network produces the average depth estimate and depth

bases, and the feature network produces a feature map and descriptor map. The far

image is only used in the second-stage training described later and is only involved

in the loss calculation for the descriptor map from the feature network.

The network training consists of two stages. At the first stage, the depth estimates

(excluding the depth bases) and the descriptor maps (excluding the feature map) are

trained separately with the scale-invariant loss and RR loss, respectively. After both

networks are trained to a reasonable state, the training moves to the second stage,

where two networks are jointly trained with the scheme below. The objective then be-

comes that, with good geometry and appearance representations produced from these

two networks, a source image should be well aligned to a target image with a non-

linear optimization. The variables that are optimized over are relative camera pose,

depth scale, and depth code associated with the source image. The factors involved

are pair-wise factors, FM, SMG, and GC, and prior factors, SC and CD. A random rela-

tive camera pose and all-zero depth code are initialized. The initial source depth scale

is computed so that the mean values of target and source depth maps are equal. After
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Figure 5.3: Diagram of representation learning. The network outputs for each
image (from top to bottom) are the depth bases, average depth estimate, feature map,
and descriptor map. Network outputs and the initial state of variables (relative pose,
depth scales, depth codes) are input to the differentiable optimization pipeline to ob-
tain optimized depth estimates and 2D flow map for loss computation. Descriptor
map for the far image is used in the histogram loss. More details are described in
Sec. 5.3.

these pre-processing, the optimization described in Sec. 5.3.2 is applied to minimize

the objective described by the factors.

With the optimization finished, the loss functions described in Sec. 5.3.3 are cal-

culated and the networks then get updated. Note that there is also a typical GAN-

related training cycle [247] involved because we use the adversarial loss for depth

training. The training diagram for the second stage is shown in Fig. 5.3.
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5.4 Simultaneous Localization and Map-

ping

5.4.1 Overview

The SLAM system modules are organized into frontend and backend threads.

Frontend consists of Camera Tracking and Keyframe Creation modules. The Camera

Tracking module is used to track the new video frame against the reference keyframe,

where the depth scale of the new frame and relative pose will be optimized over. The

Keyframe Creation module is used to determine if a new keyframe is needed. If so, a

new keyframe will be created and the connections to temporally close keyframes will

be built. For each keyframe, a bag-of-words description will be created for efficient

global loop detection later in the Loop Closure module.

Backend threads run Loop Closure and Mapping modules. The Loop Closure mod-

ule constantly detects both local and global connections between all keyframe pairs.

Whenever a global connection is detected, a lightweight pose-scale graph optimiza-

tion will be applied to close the loop by adjusting depth scales and camera poses.

The Mapping module runs full factor graph optimization constantly, where all depth

codes, depth scales, and camera poses are jointly optimized with all factors that are

described in Sec. 5.4.2. The overall diagram of the SLAM system is shown in Fig. 5.4.
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Figure 5.4: Overall diagram of SLAM system. The top left shows the module re-
lationship in the proposed SLAM system. The top right demonstrates the network
prediction and pose-scale optimization within the Camera Tracking module. Note
that only a subset of depth bases is displayed. The bottom left shows the process
of global loop detection and closure of the Loop Closure module. The bottom right
demonstrates factor graph optimization in the Mapping module. In the pose-scale
graph optimization of the global loop closure, only poses and depth scales are opti-
mized. Note that pair-wise factors only between adjacent keyframes are displayed for
simplicity.
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5.4.2 Factor Design

Feature-metric Factor. Intuitively, if all relevant variables are accurate, the

source image warped to the target image plane should align well with the target im-

age in terms of appearance. In this factor, the feature map from the feature network is

used as the appearance representation of a frame for reasons described in Sec. 5.3.1.

The feature map is pre-processed to form a Gaussian pyramid with a specified number

of levels to increase the convergence basin. To build a certain level of the Gaussian

pyramid, the Gaussian smoothing operation with a specified size and sigma, and 2-

time downsampling will be applied sequentially to the map in the previous level. Note

that the binary endoscope mask is also used in generating the Gaussian pyramid so

that invalid regions do not contribute to the Gaussian smoothing.

The source feature map pyramid is defined as F src
= {F src

i
|i = 1, . . . , L}, where L is

the number of levels and F src
i

2 RC⇥H/2i�1⇥W/2i�1 is the feature map at pyramid level i;

The objective of this factor is defined below.

Lfm =
1

L

LX

i=1

1

|⌦src,tgt|
X

xsrc2⌦src,tgt

��F tgt
i

�
⇡
�
ps!t

��
� F src

i
(xsrc

)
��2
2

, (5.7)

where ⌦src,tgt is the set of source 2D locations that can be projected onto the target

mask region given the estimate of the status.

Sparse Matched Geometry Factor. In cases where variables of two frames
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are far from being accurate, it is difficult to rely only on the Feature-metric Factor

to converge to the correct optimization minima. This is because, even though the

feature network is trained to produce feature maps with a better convergence ability,

it still has the issue of a relatively small convergence basin, which is common for the

appearance-warping based objectives [101].

The descriptor map from the feature network can estimate 2D point correspon-

dences between images through pair-wise feature matching described in Sec. 2.4.3.

This enables the objective to have global convergence characteristics. Because in this

work, each keyframe has a depth estimate, we can extend the 2D correspondences to

3D ones. Compared with 2D ones, this results in fewer outliers in the correspondences

after the geometric outlier removal, which follows the feature matching process. It is

because we have depth information available and the outlier removal based on point

cloud alignment has less ambiguity than the 2D filtering method based on epipolar ge-

ometry. Intuitively, if the depth estimates of two keyframes are correct up to a global

scale, a similarity transform estimated from the inlier matches should align two point

clouds well. After alignment, outlier matches are those whose spatial distances are

larger than the corresponding noise bounds.

The point cloud registration used in this work is Teaser++ [196], which is shown

to be robust to a large outlier rate. Teaser++ originally allows single noise bound

and we extend its implementation so that a point-wise noise bound can be used. For
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each feature match, we set the noise bound to be the depth value of the matched

point in the target image multiplying a specified constant factor. Geometrically, this

corresponds to how many pixels are allowed in the location difference between the

matched and projected 2D location. The definition of this factor is:

Lsmg =
1

|M|
X

(xsrc,xtgt)2M

⇢fair
⇣��ps!t � ⇡�1

�
xtgt,Dtgt

�
xtgt

����2
2
; �srcsmg

⌘
, (5.8)

where M is a set of feature matches consisting of pairs of 2D locations (xsrc,xtgt
) 2

R2 ⇥ R2, and �srcsmg =
�smg

|⌦src|
P

x2⌦src D̄
src

(x), which is the mean value of the source aver-

age depth estimate multiplying a constant factor �smg 2 R. The outlier-robust ”Fair”

loss [246] is used, which is defined as ⇢fair (a; b) = 2(
p
a/b� ln (1 +

p
a/b)).

Reprojection Factor. This factor behaves similarly to the Sparse Matched Ge-

ometry Factor except that the objective is changed from minimizing the average dis-

tance of 3D point sets to minimizing the average distance of projected source-to-target

2D locations and target 2D locations. The factor is defined as:

Lrp =
1

|M|
X

(xsrc,xtgt)2M

⇢fair
⇣��⇡

�
T tgt
src ⇡

�1
(xsrc,Dsrc

(xsrc
))
�
� xtgt

��2
2
; �rpW

2
⌘

, (5.9)

where �rp 2 R is a multiplying factor and W is the width of the involved depth map.

In this work, we assume all keyframes have the same resolution.

Geometric Consistency Factor. In all factors above, only one depth estimate
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of the image pair is used, except the Sparse Matched Geometry Factor that is only

used in the geometric verification described in Sec. 5.4.6. Therefore, the geometric

consistency between two depth estimates is not enforced yet. On the other hand,

this factor ensures such consistency by encouraging the source depth estimate trans-

formed to the target coordinate to have consistent values as the target depth estimate.

The factor is defined as:

Lgc =
1

|M|
X

(xsrc,xtgt)2M

⇢cauchy
⇣��zs!t �Dtgt

�
⇡
�
ps!t

����2
2
; �srcgc

⌘
, (5.10)

where zs!t is the z-axis component of ps!t; �srcgc is the same as �srcsmg, except that �gc

is used instead of �smg. Cauchy loss [246] is used to increase the robustness of this

factor, which is defined as ⇢cauchy (a; b) = ln (1 + a/b).

Relative Pose Scale Factor. This factor is used only in the pose-scale graph

optimization over depth scales and camera poses for the global loop closure described

in Sec. 5.4.6. The intuition of this factor is the scale ambiguity of pair-wise factors

for a keyframe pair. The error value for the pair-wise factors above will not change

if depth scales and the translation component of the relative camera pose are scaled

jointly. In the stage of global loop closure, all frame pairs except the newly detected

global loop should have reasonably variable estimates. Therefore, the functionality of

this factor is to keep variable estimates in the previous links as close to the original
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estimates as possible up to a global scale and make the new global loop pair reach the

goal. Specifically, the overall objective is to make the ratio of depth scales, rotation of

the relative pose, and translation of the relative pose up to a scale reach the target

values. The factor is defined as follows:

Lrps =

�����
ttgtsrc

ssrc
� t̃

tgt
src

s̃ src

�����

2

2

+ !rot

���log
�
Rtgt

src

�
� log

⇣
R̃

tgt

src

⌘���
2

2
+

!scl

✓
log

✓
stgt

ssrc

◆
� log

✓
s̃ tgt

s̃ src

◆◆2

,

(5.11)

where ttgtsrc 2 R3 and Rtgt
src 2 SO (3) are the translation and rotation components of the

relative pose T tgt
src described above, respectively. Note that the logarithm operation on

the rotation components is the matrix logarithm of SO (3) [249]. !rot 2 R and !scl 2 R

are the weights for the rotation and scale components of this factor, respectively. In

this equation and the ones below, every symbol with ˜ on top represents the target

counterpart of the one without it.

Code Factor. This factor is used to keep the depth code of a keyframe within

a reasonable range. Each keyframe has this factor included in the full factor graph.

Note that this factor and the following Scale Factor and Pose Factor only involve one

keyframe per factor. It is defined as

Lcode =
1

B
kcsrc � c̃ srck22 . (5.12)
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Scale Factor. This factor is to make the depth scale of a keyframe as close to the

target scale as possible. It is used for the first keyframe in the full factor graph and

the new global loop pair in the pose-scale graph of the process of global loop closure.

It is defined as

Lscale = (log (ssrc)� log (s̃ src
))

2 . (5.13)

Pose Factor. This factor is used for the first keyframe to anchor the pose trajec-

tory of the entire graph. It is defined as

Lpose =
��pwld

src � p̃ wld
src

��2
2
+ !r

���log
�
Rwld

src

�
� log

⇣
R̃

wld

src

⌘���
2

2
, (5.14)

where !r 2 R is the weight of the rotation component of this factor.

5.4.3 Camera Tracking

This module is used to continuously track new video frames to provide a good

initialization point for the other modules, shown in Fig. 5.4. When a new frame

comes in, it will be tracked against the reference keyframe. The spatially closest

keyframe against the latest tracked frame is used as the reference, where the dis-

tance is based on the current estimates of camera poses. In some cases, the selection

could be wrong because of drifting errors, especially when it is temporally far from

the latest keyframe. To verify the selection, the feature matching inlier ratio between
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the new frame and the selected keyframe is computed as in the Reprojection Factor.

The same metric is also computed between the new frame and the latest keyframe. If

the former is smaller than the latter multiplying a factor, the latest keyframe will be

used instead as the reference.

Camera tracking is solved with LM optimization over the relative camera pose be-

tween the new frame and reference and the depth scale of the new frame. The factors

involved are the Feature-metric Factor and Reprojection Factor. The termination of

optimization is based on several criteria, which are the maximum number of itera-

tions, parameter update ratio threshold, and gradient threshold. In this module, only

the relative pose T tgt
src is optimized over. Once the optimization finishes, the pose of

the new frame, labeled as source, can be calculated as T wld
src = T wld

tgt T
tgt
src , where T wld

tgt is

the camera pose of the reference keyframe.

5.4.4 Keyframe Creation

This module is for handling keyframe creation and pre-processing. When the first

keyframe is created, the depth scale is initialized so that the median value of the aver-

age depth estimate is set to one. In this way, the global scale of the camera trajectory

is relatively stable. And thus the values of different components in the Relative Pose

Scale Factor, used in the Loop Closure module, are stable across different videos and

different trained models with a fixed parameter setting. This, in turn, results in more
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stable global loop closure performance. In terms of the prior factors, for the first

keyframe, all three prior factors, i.e., Code Factor, Scale Factor, and Pose Factor, are

integrated into the factor graph, while, for the other keyframes, only Code Factor will

be constructed.

For every tracked new frame, this module determines if a new keyframe is

needed. Because the global scale of the entire graph is ambiguous, no absolute

distance threshold can be relied on. Instead, we use a set of more intuitive criteria

that directly relate to the information gain of a new frame, which are scene overlap,

feature match inlier ratio, and the average magnitude of 2D scene flow. Scene

overlap measures the overlap between two frames and reflects how much new region

is observed from a new frame. Feature match inlier ratio is the ratio of inlier

matches over all the feature match candidates. This reflects how dissimilar the two

frames are in terms of appearance, which may be due to a small region overlap, a

dramatic texture change, etc. As for the texture change, it could be caused by auto

exposure adjustment, tissue bleeding, and so on. The average magnitude of 2D

scene flow measures how much movement the content of a frame has. It measures

one additional movement that is the in-plane camera rotation. This is to track the

camera movement of keyframes more continuously and to produce more consistent

descriptors and feature maps between keyframes.

For each keyframe, a bag-of-words description is computed from the descriptor
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map and added to the database for global loop indexing, described in Sec. 5.4.6. Tem-

poral connections will be added to the new keyframe. These only consist of temporally

close keyframes. The number of temporally connected keyframes depends on the fea-

ture match inlier ratio. At least one keyframe will be connected to the new one.

Additional keyframes, up to a specified maximum number, will be connected only if

the ratio between the additional keyframe and the new keyframe is larger than a

specified threshold. The factors involved in the pair-wise keyframe connections are

the Feature-metric Factor and Geometric Consistency Factor.

5.4.5 Mapping

Mapping is constantly running at the backend. The framework for factor graph

optimization is ISAM2 [250]. The entire factor graph consisting of pair-wise and

prior factors from all keyframes is optimized in this module, where Fig. 5.4 shows

an example of the factor graph. The variables jointly optimized are camera poses,

depth scales, and depth codes of all keyframes. Whenever a global loop closure in the

Loop Closure module finishes, all involved variables in the full factor graph will be

reinitialized with the new values.
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5.4.6 Loop Closure

As another backend module, the Loop Closure module constantly tries to find po-

tential keyframe pairs that can be local or global loop connections and handles the

closure correspondingly. For local loop detection, the keyframes, which are visited

before the query one within a specified temporal range, are searched. Because the

temporal window is set to be small, the trajectory drifting error will not be large, the

camera pose of each keyframe can still be roughly relied on for filtering candidates.

For this reason, the spatial distance between keyframe pairs is first used.

For the following verification steps, the query keyframe and the closest one within

its temporal connections are used as the reference pair. If the spatial distance be-

tween the candidate pair is smaller than the spatial distance between the reference

pair multiplying a constant factor, the pair will be kept. For pairs being kept after

distance filtering, the appearance verification will be run, where the feature match

inlier ratio is computed. The candidate pair will be kept if the inlier ratio is larger

than that of the reference pair multiplying a constant factor and a specified constant

inlier ratio. Lastly, a geometric verification is applied, where a pair-wise optimization

similar to the one in the Camera Tracking module is run. The difference in terms

of factors is that the Sparse Match Geometry Factor is used in place of the Reprojec-

tion Factor. It is because the Sparse Match Geometry Factor optimizes 3D distances

instead of 2D ones and therefore has higher robustness on variable initialization.
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The local connection will only be accepted if the overlap ratio and flow magnitude,

computed in the geometric verification, are larger and smaller than those of the refer-

ence pair multiplying a constant factor, respectively. After verification, only the best

candidate left, in terms of overlap ratio and flow magnitude, will be used to build the

local connection. The selected keyframe pairs are linked with pair-wise factors same

as the temporal connections.

Another part of this module is global loop connection and closure, as shown in

Fig. 5.4. Global loop detection searches for keyframe pairs whose interval is beyond

a specified temporal range. Unlike the local loop detection where camera poses can

still be relied on to choose candidates, global loop detection uses the appearance of

keyframes for the initial candidate selection. The descriptor map estimated by the

feature network per keyframe describes the point-wise appearance distinctively and

is suitable to be used as the representation to build a bag-of-words place recognition

model [251].

A hierarchical bag-of-words method [251] is used in this work, where the model is

built from the estimated descriptor maps of a training dataset. Whenever a keyframe

is created, the bag-of-words descriptor will be added to a database. When a global loop

connection is searched for a query keyframe, the database will be searched through

with the extracted bag-of-words descriptor. A specified number of keyframes that are

similar to the query keyframe in terms of bag-of-words descriptor will be selected
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as candidates. The candidates are then filtered so that the description similarities

between the query keyframe and candidates are larger than the similarity between

the reference pair multiplying a specified constant factor. One additional requirement

is that candidates should not be temporally close to the query keyframe, opposite to

the local loop connection. After that, the same appearance and geometric verification

as the local loop detection are used to verify the global loop candidates. The verified

candidates are ranked based on feature match inlier ratio and, from high to low, each

candidate that is temporally far enough from the selected candidates is added to avoid

connection redundancy.

Unlike the local loop connection, for the global one, the drifting error between the

global keyframe pair is often large. Therefore, it is slow to rely on the full graph opti-

mization in the Mapping module to close the gap. To this end, we design a lightweight

pose-scale graph optimization for the global loop closure, where the camera poses and

depth scales of all keyframes are optimized jointly. In this graph, a set of lightweight

factors are used. For the new global loop pair, the Scale Factor and Relative Pose

Scale Factor are used, where the target depth scales come from the geometric veri-

fication above; For all other keyframe connections, the Relative Pose Scale Factor is

used, where the current values are used as the target scales and poses in the factors.

The graph optimization terminates if one of two conditions is met: 1) the number

of iterations reaches a specified number and 2) the number of consecutive iterations
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with no relinearization reaches a specified number. After the optimization finishes,

depth scales and camera poses of all keyframes, in the full factor graph of the Map-

ping module, are reinitialized correspondingly with the estimates from the pose-scale

graph.

5.5 Experiments

5.5.1 Experiment Setup

The endoscopic videos used in the experiments were acquired from seven consent-

ing patients and four cadavers under an Institutional Review Boards (IRB)-approved

protocol. The anatomy captured in the videos is the nasal cavity. The total time du-

ration of videos is around 40 minutes. The input images to both networks are 8-time

spatially downsampled, resulting in a resolution of 128⇥ 160; the output maps of both

networks have a resolution of 64 ⇥ 80. Note that the binary masks with the same

resolution are also fed, together with images, into the networks to exclude contribu-

tions of invalid pixels. SGD optimizer with cyclic learning rate scheduler [84] is used

for network training, where the learning rate range is [1.0e�4, 5.0e�4
]. The weights

for scale-invariant loss, RR loss, flow loss, histogram loss, generator adversarial loss,

and discriminator adversarial loss are 20.0, 4.0, 10.0, 4.0, 1.0, and 1.0. In terms of the
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hyperparameters related to loss design, ✏ is 1.0e�4; ⌘hist is 0.3; � is
4

5K
; K is 100; C is

16; H is 64; W is 80; B is 16;

Full-range rotation augmentation is used for input images to the networks during

training. The first stage of training lasts for 40 epochs and the second stage lasts until

the loss curves plateau, where each epoch consists of 300 iterations with the batch size

of 1. Image pairs are selected so that the groundtruth ratio of scene overlap is larger

than 0.6; the initialized relative pose is randomized so that the initial ratio of scene

overlap is larger than 0.4.

In terms of the hyperparameters of the differentiable LM optimization, damp

value range is [1.0e�6, 1.0e�2
], with 1.0e�4 as the initial value. The increasing and

decreasing multiplier of the damp value is 11.0 and 9.0, respectively. LM optimization

terminates when one of the three below is met: 1) number of iterations reaching 40,

2) maximum gradient smaller than 1.0e�4, 3) maximum parameter increment ratio

smaller than 1.0e�2. Factors involved have the same parameter setting as the SLAM

system, which will be described below.

Below are the hyperparameters of the SLAM system. For the Camera Tracking

module, the multiplying factor used for the reference keyframe selection is 0.6; the

maximum number of iterations in the optimization is 40; the damp value range is

[1.0e�6, 1.0e�2
], with 1.0e�4 as the initial value; the increasing and decreasing multi-

plier is 100.0 and 10.0, respectively; the jacobian matrix recompute condition is when

144



CHAPTER 5

the error update between steps is larger than 1.0e�2 of the current error. As for fac-

tors in the Camera Tracking module, settings are as follows. In the Feature-metric

Factor, all samples within the video mask are used for computation; the weights for

all 4 pyramid levels (from high resolution to low one) are 10.0, 9.0, 8.0, and 7.0. In

the Reprojection Factor, the factor weight and �rp are 0.1 and 0.03, respectively. In

the Sparse Matched Geometry Factor, the factor weight and �smg are 0.1 and 0.1, re-

spectively; the number of feature match candidates before filtering is 256; in terms of

the Teaser++ filtering, the maximum clique time limit, rotation maximum iterations,

rotation graph, inlier selection mode, and noise bound multiplier are 50ms, 20, chain

mode, no inlier selection, and 2.0, respectively; Other parameters of Teaser++ are set

to the default ones.

For the Keyframe Creation module, settings are as below. The maximum ratios of

scene overlap in terms of the area and the number of point inliers within the video

mask for a new keyframe are 0.8 and 0.9, respectively; the maximum feature match

inlier ratio is 0.4; the minimum average magnitude of 2D flow is 0.08 of the image

width. For the temporal connection building in the Keyframe Creation module, the

maximum number of temporal connections per keyframe is 3; the minimum feature

match inlier ratio to connect a previous keyframe is 0.7.

For the Loop Closure module, settings are shown as follows. For the local loop de-

tection, the temporal window for searching is 9; the rotation and translation weights
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to compute pose distance for candidate filtering are both set to 1.0; the spatial distance

multiplier for candidate filtering is 5.0; the metric multiplier for verification is 0.7; the

minimum constant inlier ratio for verification is 0.2, which is the same in global loop

detection; the minimum ratios of scene overlap for verification in terms of the area

and the number of point inliers within the video mask are 0.5 and 0.5, respectively.

Regarding the global loop detection, only keyframes that are at least 10 keyframes

away are considered; the multiplier of description similarity for verification is 0.7; the

metric multiplier for verification is 0.7; a global loop candidate will be selected if it

is at least 10 keyframes away from the ones already selected in a single global loop

closure process. In the pose-scale graph optimization for loop closure, the weights of

the Relative Pose Scale Factor for non-global and global connections are 1.0 and 5.0,

respectively; within this factor, the weights of rotation and scale component, which

are !rot and !scl, are 5.0 and 0.5, respectively; the weight of the Scale Factor within

the loop closure optimization is 10.0; the number of maximum iterations of such opti-

mization is 200; the number of maximum iterations with no relinearization is 5; the

relinearization thresholds for pose and scale are 3.0e�3 and 1.0e�2.

For the Mapping module, settings are as follows. In terms of hyperparameters of

factors used in the full factor graph, the weights for the Pose Factor and Scale Factor

of the first keyframe are 1.0e4, which are used to anchor the graph in terms of camera

pose and depth scale; The Feature-metric Factor and Geometric Consistency Factor
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use all samples within the video mask for computation; the Feature-metric Factor has

the same weight as the one in camera tracking; the Geometric Consistency Factor has

the factor weight of 0.1 and �gc as 0.03; the weight of the Code Factor is 1.0e�4. In terms

of the hyperparameters in factor graph optimization algorithm ISAM2 [250], the re-

linearization thresholds for camera poses, depth scales, and depth codes are 1.0e�3,

1.0e�3, and 1.0e�2, respectively; partial relinearization check and relinearization skip-

ping are not used; Other parameters in ISAM2 are set to the default ones.

In cases where post-operative processing in a SLAM system is allowed, the Map-

ping and Loop Closure modules can be run for an additional amount of time after all

frames have been tracked. The Mapping module will continue refining the full factor

graph. The maximum number of iterations and consecutive no-relinearization itera-

tions are 20 and 5, respectively. In the meantime, the Loop Closure module will search

for loop pairs for the query keyframes that have not been processed before. When the

Mapping module finishes, the entire system run will end.

5.5.2 Evaluation Metrics

The metrics used for camera trajectory evaluation are absolute trajectory error

(ATE) and relative pose error (RPE) [252]. Note that only the frames that are treated

as keyframes by the SLAM system will be evaluated in terms of both trajectory error

and depth error. Therefore, synchronization needs to be done to associate the trajec-

147



CHAPTER 5

tory estimate with the groundtruth one. The trajectory estimate will also be spatially

aligned with the pseudo groundtruth trajectory from SfM results in Chapter 2, before

computing metrics. The transformation model used for spatial alignment is the simi-

larity transform, and all poses are used to estimate such a transform with the method

described in [252].

ATE is used to quantify the whole trajectory and here the form of Root Mean

Square Error is used. The rotation and translation components of this metric are

defined as

ATErot =
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2 R3 are

the groundtruth rotation and translation components of the ith pose in the trajectory,

respectively, while Rwld
i

2 SO (3) and twld
i

2 R3 are the estimated ones. N 2 R is the

number of poses in the synchronized and aligned trajectory estimate.

RPE measures the local accuracy of the trajectory over a fixed frame interval � 2

R. This measures the local drift of the trajectory, which is less affected by the loop

closure and emphasizes more on the other components of the system. The rotation
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and translation components of this metric are defined as

RPErot =
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RRPE
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2 R3 are the rotation and translation components of T RPE
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SE (3), respectively; T RPE
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To evaluate depth estimates, Absolute Relative Difference and Threshold [101]

are used. Before computing metrics, different pre-processing is applied for two sets

of metrics, which are ARDtraj and Thresholdtraj, and ARDframe and Thresholdframe. For

the former, the estimated depth per keyframe is re-scaled with the scale component

in the similarity transform obtained from the trajectory alignment above. For the

latter, the depth estimates are re-scaled so that each estimate has the same scale as

the groundtruth one, where the same scaling method in Sec. 3.4.2 is used. In terms
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of the definitions of these metrics, ARD is

ARD =
1

N
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Threshold is
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Note that ⌦i here is the region where both scaled depth estimate Di 2 R1⇥H⇥W

and groundtruth depth D̃i 2 R1⇥H⇥W , for the ith synchronized keyframe, have valid

depths; ✓ 2 R is the threshold used to determine if the depth ratio between the esti-

mate and groundtruth is small enough.

5.5.3 Cross-Subject Evaluation

To evaluate the performance of the SLAM system on endoscopic videos from un-

seen subjects, we run a cross-validation study. Four models are trained with differ-

ent train/test splits on the 11 subjects in total. With subjects named as consecutive

numbers, the test splits for 4 models are {1, 2, 3}, {4, 5, 6}, {7, 8, 11}, and {8, 9, 10},

and the train splits for each model are the subjects left. For each subject, several

video sequences are available. For evaluation, the proposed SLAM is run on each

150



CHAPTER 5

testing video and generates estimates of camera poses and dense depth maps for all

keyframes. Besides, we also compare against a state-of-the-art feature-based SLAM

system, ORB-SLAM3 [54], which we evaluate on all videos at once and use the same

set of metrics for evaluation. We adjust the parameters of ORB-SLAM3 so that more

keypoint candidates are detected per frame. The evaluation metrics, in Table 5.1,

are averaged over all the sequences within the corresponding test split for each of

our trained model. Table 5.2 shows the results by averaging each metric over all the

sequences for evaluation, where we conduct the paired t-test analysis between the

proposed system and ORB-SLAM v3. The results with ***, **, and * stand for p-value

smaller than 0.001, 0.01, and 0.05, respectively.

Note that, to make the metrics physically meaningful in terms of the values, we

roughly scaled all SfM results before evaluation based on the average size of an adult’s

nasal cavity. The metric values between methods are not strictly comparable. This is

because different sets of images within a sequence are used as keyframes by different

methods. However, considering the large number of point samples that are used for

computation, the values should approximately indicate the performance difference.

� in Eq. 5.16 is set to 7 for our results; for ORB-SLAM v3, � is set so that the number

of original video frames between T wld
i

and T wld
i+� is roughly the same.
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Subjects {1, 2, 3} {4, 5, 6} {7, 8, 11} {8, 9, 10}
Methods
/ Metrics Ours ORB-SLAM v3 [54] Ours ⇠ Ours ⇠ Ours ⇠

ATEtrans(mm) 1.4± 1.0 3.8± 2.7 1.3± 1.7 3.8± 4.6 2.2± 1.2 6.3± 4.8 1.6± 1.0 5.5± 3.0
ATErot(°) 19.7± 7.8 66.2± 59.5 22.8± 17.2 61.1± 68.1 25.3± 18.4 66.9± 48.9 19.4± 9.5 55.8± 22.4
RPEtrans(mm) 1.3± 0.4 2.5± 1.4 1.4± 0.7 2.7± 2.1 1.9± 0.6 4.8± 3.5 1.2± 0.5 3.6± 1.6
RPErot(°) 5.9± 1.7 6.4± 3.5 4.3± 2.0 3.8± 2.6 7.4± 2.6 7.7± 3.9 4.5± 1.1 8.5± 2.9
ARDtraj 0.39± 0.17 1.73± 1.02 0.34± 0.10 2.00± 1.82 0.38± 0.14 1.58± 1.42 0.29± 0.09 1.56± 1.20
ARDframe 0.17± 0.04 1.73± 1.02 0.17± 0.04 2.00± 1.82 0.18± 0.03 1.58± 1.42 0.15± 0.02 1.56± 1.20
Thresholdtraj

(✓ = 1.25)
0.39± 0.19 0.15± 0.13 0.46± 0.14 0.24± 0.21 0.38± 0.15 0.14± 0.14 0.49± 0.13 0.14± 0.15

Thresholdframe

(✓ = 1.25)
0.39± 0.19 0.15± 0.13 0.46± 0.14 0.24± 0.21 0.38± 0.15 0.14± 0.14 0.49± 0.13 0.14± 0.15

Thresholdtraj

(✓ = 1.252)
0.70± 0.22 0.28± 0.22 0.81± 0.13 0.38± 0.29 0.66± 0.16 0.27± 0.23 0.84± 0.10 0.27± 0.22

Thresholdframe

(✓ = 1.252)
0.70± 0.22 0.28± 0.22 0.81± 0.13 0.38± 0.29 0.66± 0.16 0.27± 0.23 0.84± 0.10 0.27± 0.22

Table 5.1: Cross-subject evaluation on SLAM systems per test split. Note that
⇠ is used as the name abbreviation of the comparison method.

Metrics
/ Methods

ATEtrans

(mm)

ATErot

(°)
RPEtrans

(mm)

RPErot

(°) ARDtraj ARDframe
Thresholdtraj

(✓ = 1.25)
Thresholdframe

(✓ = 1.25)
Thresholdtraj

(✓ = 1.252)
Thresholdframe

(✓ = 1.252)
Ours 1.6± 1.4 22.2± 15.1 1.5± 0.6 5.5± 2.4 0.36± 0.16 0.17± 0.03 0.42± 0.17 0.73± 0.08 0.74± 0.21 0.95± 0.04
ORB-SLAM v3 [54] 4.7± 4.2***

62.5± 55.5***
3.5± 2.5***

6.3± 3.6 1.76± 1.49***
24.27± 42.07**

0.17± 0.18***
0.37± 0.13***

0.31± 0.25***
0.56± 0.15***

Table 5.2: Cross-subject evaluation on SLAM systems.
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FT FM RT Local Global ATEtrans(mm) ATErot(°) RPEtrans(mm) RPErot(°)
X X X X X 1.6± 1.4 22.2± 15.1 1.5± 0.6 5.5± 2.4

X X X X 3.4± 2.7***
43.3± 27.9***

2.6± 1.4***
7.3± 3.0***

X X X 3.3± 2.8***
40.2± 23.6***

2.6± 1.2***
7.0± 2.6***

X X X X 2.7± 5.5 23.8± 14.5 2.1± 3.2 5.3± 2.1
X X X X 2.0± 1.9*

26.8± 21.2*
1.5± 0.7 5.5± 2.4

X X X 2.0± 1.9*
25.5± 18.5*

1.5± 0.7 5.4± 2.4

Table 5.3: Ablation study for the SLAM system on trajectory-related metrics.
FT, FM, RT, Local, Global stand for the Feature-metric Factor in the Camera Tracking
module, the Feature-metric Factor in the Mapping module, the Reprojection Factor
in the Camera Tracking module, local loop detection in the Loop Closure module, and
global loop detection and closure in the Loop Closure module, respectively. We conduct
the paired t-test analysis for results of all the sequences between an ablation run and
the standard run shown in the first row of this table. The results with ***, **, and *

stand for p-value smaller than 0.001, 0.01, and 0.05, respectively. As can be seen,
the Feature-metric Factor has a large impact on both trajectory and trajectory-scaled
depth metrics; the Reprojection Factor mainly affects trajectory metrics; the Loop
Closure module mainly affects the trajectory metrics ATEtrans and ATErot.

5.5.4 Ablation Study

We evaluate the contributions of several components in the SLAM system by

disabling some components in different runs. The components for ablation are the

Feature-metric Factor in the Camera Tracking and Mapping modules, Reprojection

Factor in the Camera Tracking module, local loop detection in the Loop Closure mod-

ule, and global loop detection and closure in the Loop Closure module. All metrics

described in Sec. 5.5.3 are evaluated in this ablation study. The results are shown

in Table 5.3 and 5.4. Note that the value of each metric is averaged over all the se-

quences from all subjects, where each subset of the sequences is evaluated with the

corresponding trained model so that all the sequences are unseen during training.
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FT FM RT Local Global ARDtraj ARDframe
Thresholdtraj

(✓ = 1.25)
Thresholdframe

(✓ = 1.25)
Thresholdtraj

(✓ = 1.252)
Thresholdframe

(✓ = 1.252)
X X X X X 0.36± 0.16 0.17± 0.03 0.42± 0.17 0.73± 0.08 0.74± 0.21 0.95± 0.04

X X X X 0.49± 0.19***
0.17± 0.03 0.29± 0.16***

0.73± 0.08 0.59± 0.23***
0.95± 0.04

X X X 0.50± 0.25**
0.17± 0.03 0.32± 0.17**

0.74± 0.08 0.61± 0.24**
0.95± 0.04

X X X X 0.35± 0.15 0.17± 0.03 0.43± 0.17 0.73± 0.08 0.76± 0.18 0.95± 0.04
X X X X 0.36± 0.16 0.17± 0.03 0.42± 0.17 0.73± 0.08 0.74± 0.21 0.95± 0.04
X X X 0.35± 0.16*

0.17± 0.03 0.42± 0.18 0.73± 0.08 0.74± 0.22 0.95± 0.04

Table 5.4: Ablation study for the SLAM system on depth-related metrics.
The settings and notations are the same as Table 5.3.

5.5.5 Evaluation with CT

This study uses the residual error metric described in Sec. 3.6.2. Before comput-

ing the residual error, several pre-processing steps are required. First, the method

described in Sec. 3.5.2 and 3.5.3 is applied to obtain a surface reconstruction from the

depth maps and camera poses estimated by the proposed SLAM system. The slope in

the truncated signed distance function is constant instead of the depth uncertainty

which is used in Sec. 3.5.2. Then a point cloud registration algorithm based on [120]

is applied between the surface reconstruction and the CT surface model, where a

similarity transform is estimated. Note that before the registration, a manual initial

alignment between these two models is applied. After the registration finishes, the

residual error is computed between the registered surface reconstruction and the CT

surface model.

In this study, we evaluate the accuracy of surface reconstructions from the videos

of the four cadavers, where for each subject, the metrics of all the sequences are
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averaged over to report here. The average residual errors for subject 7, 9, 10, and 11

are 0.83, 0.88, 0.78, and 0.86 mm, respectively.

5.6 Discussion

The accuracy of trajectory estimation depends on how consistent and distinctive

the feature and descriptor maps are, as well as the accuracy of the depth estimates.

Though the depth is optimizable during the SLAM running, the depth basis maps

estimated from the input image still bound the variation mode of the final depth esti-

mate. Therefore, if the depth network is not familiar with the scene, it is probable that

a depth estimate close to the truth will not be obtained. Therefore, a representative

collection of training data is crucial for the generalizability of such a learning-based

SLAM system.

For the current system that is trained on sinus endoscopy dataset, we would expect

the system generalizes decently to endoscopy on tubular structures, such as bron-

choscopy. It could be less generalizable to domain such as laparoscopy because the

overall geometry of the anatomy is unseen for the depth network. However, we would

still expect the appearance representation to generalize well to these more distant

cases because it only models texture instead of geometry. It is also expected the sys-

tem can generalize even better if the capacity of the network is configured to be larger
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with a larger dataset for training. The networks do not produce uncertainty estimates

for now, and those could potentially further improve the generalizability and benefit

the factor graph optimization if being accurate.

Currently, the system cannot recover from a spurious global loop connection and

therefore the global loop detection criteria need to be strict to keep the false positive

rate to zero. Such an error could potentially be detected by monitoring the overall

objective of the full factor graph after each global loop closure [223]. For now, cam-

era relocalization after tracking failure is not implemented and is likely required in

cases where images with bad conditions (e.g., image blurring) happen often, such

as laparoscopy; a method similar to the searching in the global loop detection could

be used. A keyframe culling method can be implemented to reduce the number of

keyframes to reduce the memory requirement and accelerate the computation. A

method similar to the reference keyframe selection in the Camera Tracking module

may be used to find redundant keyframes.

The proposed SLAM system is currently designed for static scenes. Nevertheless,

having additional optimization variables per keyframe to model geometry deforma-

tion could potentially make the system suitable for a deformable environment. As

for the robustness to a dynamic environment with changing textures (e.g., changing

illumination and bleeding), it depends on whether there are similar conditions in the

training dataset and how large the affected regions are within images. For example,

156



CHAPTER 5

if the bleeding region is small relative to the entire image, even if the blood moves

during the video capturing, the impact should be minimal because factors, such as

Feature-metric Factor, will focus on the large unaffected regions during optimization.

5.7 Conclusion

In this chapter, we propose a SLAM system that is robust to texture-scarce sce-

narios with learning-based appearance and geometric representations. An effective

training scheme is developed to learn such representations that are suitable for the

SLAM system run. In the experiments, we show that the proposed system performs

favorably compared with a state-of-the-art feature-based SLAM system in terms of

the accuracy of both camera trajectories and geometry estimates.

The proposed SLAM system currently only works in the static environment. How-

ever, it is feasible to add another type of optimization variable to factor graph opti-

mization to take care of the tissue deformation, such as the deformation-spline used

in [253], and therefore worthy of working on as a future direction. Similar to the

directions in Chapter 2, it is also worth exploring how to make such a SLAM system

work in scenarios where the topology of anatomy is changed due to surgical oper-

ations. An additional map for each keyframe to notate which part of the region is

unaffected could be one way to achieve this. Currently, the global loop closure needs
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to have a zero false-positive rate to have reasonable performance, it is desired to have

a failure-aware and recovery mechanism to relax such a constraint. Based on our ob-

servation, having enough global loop closures is critical for accurate estimation of the

camera trajectory, a study on what scoping path is the best for each type of endoscopy

could be worth exploring. Currently, for the robustness of the system, the local con-

nection only considers the spatially closest pairs because a keyframe connection with

a small scene overlap could be erroneous. Having accurate mid-range connections

could further improve the performance and reduce the drifting errors even when no

global loops are available, which was observed in [54].

For the task of surface reconstruction and endoscope tracking from a video with

pre-operative model alignment, with the works developed in this thesis, there are

in general one retrospective pipeline and one online one. The retrospective pipeline

can already be fully built with the works described in this thesis, as described in

Sec. 1.2.3. For the online pipeline described in this chapter, however, if an automatic

alignment between the pre-operative and intra-operative surface model with iterative

refinement is needed, some additional works are required. The registration method

developed in Chapter 4 considers one-time model alignment and did not exploit the

fact that a real-time SLAM system updates the map whenever a new scene is ob-

served. Integrating such surface update into the optimization step of a registration

method could potentially further improve the registration performance in terms of ac-
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curacy and processing speed. Besides, to align the pre-operative and intra-operative

models during a SLAM system run, a single surface model for the entire observed en-

vironment needs to be built and updated. In this work, the dense depth estimates are

not fused during the system run and a real-time depth fusion and surface extraction

method needs to be developed to obtain such a surface model.

159



Bibliography

[1] P. C. De Groen, “History of the endoscope [scanning our past],” Proceedings of

the IEEE, vol. 105, no. 10, pp. 1987–1995, 2017.

[2] C. Nezhat, “History of endoscopy,” http://sls.org/nezhats-history-of-endoscopy/,

2005.

[3] K. Ball, Endoscopic Surgery, ser. Mosby’s perioperative nursing series. Mosby,

1997.

[4] C. J. Powers, “A brief history of endoscopy,” Seminars in Perioperative Nursing,

vol. 2, no. 3, pp. 129–132, Jul. 1993.

[5] B. I. Hirschowitz, “A personal history of the fiberscope,” Gastroenterology,

vol. 76, no. 4, pp. 864–869, Apr. 1979.

[6] M. Finocchiaro, P. Cortegoso Valdivia, A. Hernansanz, N. Marino, D. Amram,

A. Casals, A. Menciassi, W. Marlicz, G. Ciuti, and A. Koulaouzidis, “Training

177



BIBLIOGRAPHY

simulators for gastrointestinal endoscopy: Current and future perspectives,”

Cancers, vol. 13, no. 6, Mar. 2021.

[7] L. X. Harrington, J. W. Wei, A. A. Suriawinata, T. A. Mackenzie, and S. Has-

sanpour, “Predicting colorectal polyp recurrence using time-to-event analysis of

medical records,” AMIA Jt Summits Transl Sci Proc, vol. 2020, pp. 211–220,

May 2020.

[8] W. Hong, J. Wang, F. Qiu, A. Kaufman, and J. Anderson, “Colonoscopy sim-

ulation,” in Medical Imaging 2007: Physiology, Function, and Structure from

Medical Images, vol. 6511. International Society for Optics and Photonics,

2007, p. 65110R.

[9] P. Fockens, “Endoscopic management of perforations in the gastrointestinal

tract,” Gastroenterol. Hepatol., vol. 12, no. 10, pp. 641–643, Oct. 2016.

[10] R. Eliashar, J.-Y. Sichel, M. Gross, E. Hocwald, I. Dano, A. Biron, A. Ben-Yaacov,

A. Goldfarb, and J. Elidan, “Image guided navigation system-a new technology

for complex endoscopic endonasal surgery,” Postgrad. Med. J., vol. 79, no. 938,

pp. 686–690, Dec. 2003.

[11] M. Hytönen, K. Blomgren, M. Lilja, and A. Mäkitie, “How we do it: septo-
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[241] M. Turan, E. P. Örnek, N. Ibrahimli, C. Giracoglu, Y. Almalioglu, M. Yanik, and

M. Sitti, “Unsupervised odometry and depth learning for endoscopic capsule

robots,” 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 1801–1807, 2018.

[242] M. Turan, Y. Almalioglu, H. Araujo, E. Konukoglu, and M. Sitti, “A non-rigid

map fusion-based direct SLAM method for endoscopic capsule robots,” Int J

Intell Robot Appl, vol. 1, no. 4, pp. 399–409, Nov. 2017.

[243] J. Song, L. Zhao, S. Huang, and G. Dissanayake, “An observable time series

based slam algorithm for deforming environment,” ArXiv, vol. abs/1906.08563,

2019.

[244] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” Lect. Notes Comput. Sci., vol. 9351, pp. 234–

241, 2015.

219



BIBLIOGRAPHY

[245] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image

inpainting for irregular holes using partial convolutions,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 85–100.

[246] M. Bosse, G. Agamennoni, I. Gilitschenski et al., Robust estimation and appli-

cations in robotics. Now Publishers, 2016.

[247] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares

generative adversarial networks,” in Proceedings of the IEEE international con-

ference on computer vision, 2017, pp. 2794–2802.

[248] M. Avi-Aharon, A. Arbelle, and T. R. Raviv, “Deephist: Differentiable joint and

color histogram layers for image-to-image translation,” 2020.

[249] J. Blanco, “A tutorial on se (3) transformation parameterizations and on-

manifold optimization,” University of Malaga, Tech. Rep, no. 3, 2010.

[250] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,

“ISAM2: Incremental smoothing and mapping using the bayes tree,” Int. J.

Rob. Res., vol. 31, no. 2, pp. 216–235, 2012.
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