-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlord_reinforce_train.py
184 lines (150 loc) · 6.83 KB
/
lord_reinforce_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
======================================================================
LORD_REINFORCE_TRAIN ---
new formatting Training that can be converged in multiple periods
Author: Zi Liang <zi1415926.liang@connect.polyu.hk>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 6 March 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
import torch
import json
from torch.utils.tensorboard import SummaryWriter
from torch.distributions import Categorical
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
import argparse
from transformers import AutoModelForCausalLM
from transformers import AutoModelForSequenceClassification
from transformers import AutoModelForTokenClassification
from transformers import AutoTokenizer, AutoConfig, AutoModel
from training_data_collecting_openai import load_raw_train_datals
from training_data_collecting_openai import load_steal_datals
from glue_process import load_glue_datals
from sequence_utils import my_padding, my_padding_logits
from sequence_utils import my_padding_token_dist
from sequence_utils import my_padding_logit
import torch.nn.functional as F
from rlhf_train import clip
def reinforce_train_one_period(args, lm,
lm_tokenizer,
loader, epoch, device,
tb_writer,
tensorboard_name,
save_path,
LR=3e-5,
acc_step=1,
log_step=100,
save_step=1000,
beta=0.7,
epsln=1e-6,
loss_type="cross",
):
overall_loss = 0.
overall_step = 0
pad_token_id = lm_tokenizer.pad_token_id
kl_loss = torch.nn.KLDivLoss(reduction="none")
opt1 = torch.optim.AdamW(lm.parameters(), lr=LR)
for e in tqdm(range(epoch), desc="epoch"):
for item in tqdm(loader, desc="loader"):
overall_step += 1
loss_constractive = 0.
loss_logits = 0.
# print(item)
idxs1, idxs2, mask1, mask2, old_logits1, old_logits2, vic_logits2, idxs2_dist = item
bs, sqlen1 = idxs1.shape
bs, sqlen2 = idxs2.shape
# print(sqlen1, sqlen2)
sqlen = min(sqlen1, sqlen2)
idxs1 = idxs1.to(device) # bs, sql
idxs2 = idxs2.to(device) # bs, sql
mask1 = mask1.to(device)
mask2 = mask2.to(device)
# already normalized by softmax
old_logits1 = old_logits1.to(device) # bs, sql,
old_logits2 = old_logits2.to(device) # bs, sql,
vic_logits2 = vic_logits2.to(device) # bs, sql, 5
# vic_logits2 = torch.exp(vic_logits2)
idxs2_dist = idxs2_dist.to(device)
print("idx1text: ", lm_tokenizer.decode(idxs1[0]))
print("idx2text: ", lm_tokenizer.decode(idxs2[0]))
with torch.no_grad():
logits1 = lm(idxs1).logits[:, :-1, :]
logits1 = F.log_softmax(logits1, dim=-1)
logits1 = logits1[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
idxs1[:, 1:sqlen]]
logits2 = lm(idxs2).logits[:, :-1, :]
logits2 = F.log_softmax(logits2, dim=-1)
logits2_cons = logits2[torch.arange(bs).unsqueeze(1),
torch.arange(sqlen-1).unsqueeze(0),
idxs2[:, 1:sqlen]]
logits2_dist = torch.gather(logits2, 2, idxs2_dist)
loss_constractive_good = -torch.sum(
(logits2_cons*2 - vic_logits2[:, :, 0]\
- old_logits2)*mask2[:, :-1])
loss_constractive_past = - torch.sum(
(logits1-old_logits1)
* mask1[:, :-1])
if args.use_old_logits!="1":
loss_constractive_past=0.
if args.use_vic_logits!="1":
loss_constractive_good=0.
loss_constractive = loss_constractive_good \
+ loss_constractive_past
vic_logits2=torch.softmax(torch.exp(vic_logits2)\
/args.temperature,
dim=-1)
logits2_dist=torch.log_softmax(torch.exp(logits2_dist)\
/args.temperature,
dim=-1)
# KL-Divengence
mask2l=mask2[:,:-1].unsqueeze(-1).expand(-1, -1, 5)
loss_logits=(kl_loss(logits2_dist,
vic_logits2)*mask2l).mean()*beta
# loss_logits = beta *\
# torch.sum(mask2[:, :-1]
# .unsqueeze(-1)
# .expand(-1, -1, logits2_dist.shape[2])
# * logits2_dist*torch.log(
# logits2_dist/(vic_logits2+epsln)
# + epsln))
if args.use_kld!="1":
loss_logits = 0.
overall_loss += loss_constractive + loss_logits
if overall_step % log_step == 0:
print(" LOSS: {}\tGoodRewardLoss: {}\tToPassRewardLoss: {}\tKL-D: {}".format(
overall_loss,
loss_constractive_good,
loss_constractive_past,
loss_logits
))
tb_writer.add_scalar("loss", overall_loss.item(),
overall_step)
if args.use_vic_logits=="1":
tb_writer.add_scalar("rewardloss_good",
loss_constractive_good.item(),
overall_step)
if args.use_old_logits=="1":
tb_writer.add_scalar("rewardloss_past",
loss_constractive_past.item(),
overall_step)
if args.use_kld=="1":
tb_writer.add_scalar("KLloss", loss_logits.item(),
overall_step)
if overall_step % save_step == 0:
print(" -->Regular Saving.")
print(f"in epoch {e}, step {overall_step}.")
lm_tokenizer.save_pretrained(save_path+"___"+str(overall_step))
lm.save_pretrained(save_path+"___"+str(overall_step))
if overall_step % acc_step == 0:
opt1.zero_grad()
overall_loss.backward()
opt1.step()
overall_loss = 0.
print(" -->Finally Saving.")
lm_tokenizer.save_pretrained(save_path+"___STEPfinally")
lm.save_pretrained(save_path+"___STEPfinally")
print("ONE PERIOD TRAINING DONE!")
return lm