-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path103-structure-sheaf-and-schemes.tex
120 lines (101 loc) · 7.34 KB
/
103-structure-sheaf-and-schemes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
% !TeX root = 000-main.tex
\documentclass[000-main.tex]{subfiles}
\begin{document}
\subsubsection{The Structure Sheaf and Schemes}%
\label{sec:structure-sheaf}
\begin{definition}
Let $\mathcal{O}_X$ be a sheaf on $X := \Spec A$ given by,
\[
\mathcal{O}_X(U) = \qty{
s \in \Gamma\qty(U, \bigsqcup_{\mathfrak{p} \in U} A_{\mathfrak{p}})
\middle\vert
s\text{ satisfies~\eqref{eq:str-sheaf-cond-harts}}
}
\]
where~\eqref{eq:str-sheaf-cond-harts} is the condition,
\begin{equation} \label{eq:str-sheaf-cond-harts}
\forall \mathfrak{p}\in U,
\exists f_{\ast} \not\in \mathfrak{p},
\exists V_{\ast}\in \mathcal{N}(\mathfrak{p}, U\cap D(f_{\ast})),
\exists \alpha_{\ast} \in A_{f_\ast},
\forall \mathfrak{q} \in V, s(\mathfrak{q}) = (\mathfrak{q}, \alpha_{\ast})
\end{equation}
$\mathcal{N}(p, U)$ being the set of open neighbourhoods of $p$ contained in $U$.
We see that $\mathcal{O}_X$ is a sheaf of rings by defining $s + t$ and $st$ pointwise on fibres.
\end{definition}
The condition~\eqref{eq:str-sheaf-cond-harts} just says that the function $s$ looks locally like a quotient, mimicking the definition of a regular function on a variety (which is locally a quotient of polynomials).
This is made precise in the following manner,
\begin{proposition}
For every $f\in A$, we have $\mathcal{O}_X(D(f)) \cong A_f$.
\end{proposition}
The proof below follows \citeauthor{hartshorneAlgebraicGeometry1977}~\cite[][71-72]{hartshorneAlgebraicGeometry1977} with some minor changes.
\begin{proof}\TOPROVE
Fix $f\in A$ and recall that for every $\mathfrak{p}\in D(f)$ we have a natural map $\imath_{\mathfrak{p}}: A_f \to A_\mathfrak{p}$.
Thus we define,
\begin{displaymath}
\begin{gathered}
\psi: A_f \to \Gamma\qty(D(f), \coprod_{\mathfrak{p}\in D(f)}A_\mathfrak{p})\\
\alpha \mapsto (\mathfrak{p}\mapsto (\mathfrak{p}, \imath_{\mathfrak{p}}(\alpha)))
\end{gathered}
\end{displaymath}
Note that for any $\alpha\in A_f$ and any $\mathfrak{p}\in D(f)$, we can just take $(f_\ast, V_\ast, \alpha_\ast) := (f, D(f), \alpha)$ and we satisfy~\eqref{eq:str-sheaf-cond-harts}.
Thus $\psi$ is a well defined map $\psi: A_f \to \mathcal{O}_X(D(f))$, the fact that it is a homomorphism of rings follows immediately from $\imath_{\mathfrak{p}}$ being a homomorphism of rings.
We first show that $\psi$ is injective.
Suppose $\psi(a/f^n) = \psi(b/f^m)$, then for any $\mathfrak{p}\in D(f)$, we must have $\imath_\mathfrak{p}(a/f^n) = \imath_\mathfrak{p}(b/f^m)$, i.e.\ letting $\mathfrak{a := }\Ann(af^m - bf^n)$, $(A\setminus \mathfrak{p})\cap \mathfrak{a} = \mathfrak{a}\setminus\mathfrak{p}\neq\varnothing$.
Thus,
\begin{align*}
\forall\mathfrak{p}\in D(f), \mathfrak{a} \not\subset \mathfrak{p}
&\implies \forall \mathfrak{p}\in D(f), \mathfrak{p}\not\in V(\mathfrak{a})\\
&\implies D(f)\cap V(\mathfrak{a}) = \varnothing\\
&\implies V(f) \supset V(\mathfrak{a})\\
&\implies f \in \sqrt{\mathfrak{a}}\\
&\implies \exists l\in\Zpl, f^l\in \mathfrak{a}\\
&\implies \exists l\in\Zpl, f^l(af^m - bf^n) = 0\\
&\implies a/f^n = b/f^m
\end{align*}
and we are done.
To show surjectivity, suppose $s\in \mathcal{O}_X(D(f))$.
By~\eqref{eq:str-sheaf-cond-harts}, for every $\mathfrak{p}\in D(f)$, there exists:
\begin{itemize}
\item $f_\mathfrak{p}\not\in \mathfrak{p}$,
\item $V_\mathfrak{p}\in \mathcal{N}(p, D(f)\cap D(f_\mathfrak{p}))$
\end{itemize}
such that $\exists \alpha_\mathfrak{p}\in A_{f_\mathfrak{p}}, \forall \mathfrak{q}\in V_\mathfrak{p}, s(\mathfrak{q}) = \alpha_\mathfrak{p}$.
Assuming WLOG $V_\mathfrak{p} = D(h_\mathfrak{p})$, we see that $D(h_\mathfrak{p}) \subset D(f)\cap D(f_\mathfrak{p}) \implies h_\mathfrak{p}\in \sqrt{(f_\mathfrak{p})}$
\end{proof}
Moreover, the structure sheaf has the following important property,
\begin{lemma}
The stalk $\mathcal{O}_{\mathfrak{p}}$ is isomorphic to $A_{\mathfrak{p}}$, not just as a ring but as a local ring.
\end{lemma}
\begin{proof}\TOPROVE
Let $\mathfrak{p}\in\Spec A$, we then have $\mathcal{O}_{X,\mathfrak{p}} := \varinjlim_{U\ni\mathfrak{p}}\mathcal{O}_X(U) = \varinjlim_{D(f)\ni\mathfrak{p}}\mathcal{O}_X(D(f))$ which is isomorphic to $\varinjlim_{f\in A\setminus\mathfrak{p}}A_f$.
\end{proof}
We call the pair $(\Spec A, \mathcal{O})$ the \emph{spectrum} of $A$.
\begin{definition}
We shall call a pair $(X, \mathcal{O}_X)$, where $X$ is a topological space and $\mathcal{O}_X$ is a sheaf of rings over it, a \emph{ringed space}.
Define a morphism of ringed spaces to be a pair $(f : X \to Y, f^\sharp : \mathcal{O}_Y \to f_\ast \mathcal{O}_X)$, where $f, f^\sharp$ are morphisms in the corresponding categories.
We shall say that $(X, \mathcal{O}_X)$ is moreover a \emph{locally ringed space} if the stalk $\mathcal{O}_{X, P}$ at $P \in X$ is a local ring and $f^\sharp_P : \mathcal{O}_{Y, f(P)} \to \mathcal{O}_{X, P}$ is a local ring hom.
\end{definition}
\begin{lemma}
$(\Spec A, \mathcal{O})$ is a locally ringed space, and the assignment $A \mapsto (\Spec A , \mathcal{O})$ is a contravariant functor.
\end{lemma}
These brief preliminaries have led up to the definition we wanted in this section.
\begin{definition}
An \emph{affine scheme} is a locally ringed space $(X, \mathcal{O}_X)$ which is isomorphic to $(\Spec A, \mathcal{O})$ for some $A$.
A \emph{scheme} is a locally ringed space such that $\forall p \in X$, $\exists U \in \mathcal{N}(p, X)$ such that $(U, \left . \mathcal{O}_X \right \rvert_{U})$ is an affine scheme.
\end{definition}
\begin{example}\label{ex: gluing schemes}
One way to construct schemes which will allow us to get non-affine examples is by gluing. Recall that one of the constructions we had for sheaves was that, given sheaves $\mathcal{F}_i$ on $U_i \subset X$ open such that $\qty{U_i}$ is a cover of $X$, and moreover given isomorphisms $\phi_{ij} : \mathcal{F}_{i} |_{U_i \cap U_j} \to \mathcal{F}_j |_{U_i \cap U_j}$ such that the $\phi_{ij}$ satisfy cocycle conditions, then there exists a unique sheaf $\mathcal{F}$ on $X$ with isomorphisms $\psi_i : \mathcal{F} |_{U_i} \to \mathcal{F}_i$ related by the $\phi_{ij}$.
We will have a similar construction for schemes. Namely, given $X_i$ schemes and $U_{ij} \subset X_i$ with isomorphisms $\phi_{ij} : U_{ij} \to U_{ji}$ satisfying cocycle conditions, there exists a unique sheaf $X$ with morphisms $\psi_i : X_i \to X$ such that $\qty{\psi_i(X_i)}$ is an open cover of $X$ and the $\psi_i$ are related by the $\phi_{ij}$. (This is Hartshorne Exercise II.2.12).
\end{example}
One important example of a scheme that is not affine will be $\Proj$, defined as follows: given a graded ring $S$ (with $S_+ = \bigoplus_{d > 0 } S_d$) the underlying topological space is
\[
\Proj S = \left \lbrace \mathfrak{p} \text{ homogeneous prime ideal} \, | \, S_+ \subsetneq \mathfrak{p} \right \rbrace ,
\]
with topology and sheaf defined as before, but now with the sheaf given by maps into $\bigcup_{\mathfrak{p} \in U} S_{(\mathfrak{p})}$, where $S_{(\mathfrak{p})}$ is the ring of degree-0 elements of $T^{-1}S$ for $T$ the homogeneous elements not in $\mathfrak{p}$, and we require the sections to be locally a ration of element of the same fixed degree (equivalent to saying the map is into the degree 0 part).
\marginnote{GC: Discussion about why this is locally affine required.}
\end{document}
% Local Variables:
% TeX-master: "000-main.tex"
% TeX-engine: luatex
% End: