diff --git a/experiments/lf_hf_transfer_exp/sweep_regression_exp_num_data_sergio.py b/experiments/lf_hf_transfer_exp/sweep_regression_exp_num_data_sergio.py index fbd39471..03262cd0 100644 --- a/experiments/lf_hf_transfer_exp/sweep_regression_exp_num_data_sergio.py +++ b/experiments/lf_hf_transfer_exp/sweep_regression_exp_num_data_sergio.py @@ -14,16 +14,18 @@ 'BNN_SVGD': { 'bandwidth_svgd': {'values': [10.]}, 'min_train_steps': {'values': [5_000]}, - 'num_epochs': {'values': [200]}, + 'num_epochs': {'values': [60]}, 'lr': {'values': [1e-3]}, # 'likelihood_reg': {'values': [10.0]}, }, 'BNN_FSVGD': { 'bandwidth_svgd': {'values': [2.0]}, - 'bandwidth_gp_prior': {'values': [0.4]}, 'min_train_steps': {'values': [5_000]}, - 'num_epochs': {'values': [200]}, - 'num_measurement_points': {'values': [128]}, + 'num_epochs': {'values': [60]}, + 'num_measurement_points': {'values': [32]}, + 'num_f_samples': {'values': [1028]}, + 'added_gp_lengthscale': {'values': [10.]}, + 'added_gp_outputscale': {'values': [0.5]}, 'lr': {'values': [1e-3]}, 'likelihood_reg': {'values': [10.0]}, }, @@ -31,23 +33,23 @@ 'BNN_FSVGD_SimPrior_gp': { 'bandwidth_svgd': {'values': [2.0]}, 'min_train_steps': {'values': [5_000]}, - 'num_epochs': {'values': [200]}, - 'num_measurement_points': {'values': [128]}, + 'num_epochs': {'values': [60]}, + 'num_measurement_points': {'values': [32]}, 'num_f_samples': {'values': [1028]}, - 'added_gp_lengthscale': {'values': [2.]}, - 'added_gp_outputscale': {'values': [2.0]}, + 'added_gp_lengthscale': {'values': [10.]}, + 'added_gp_outputscale': {'values': [0.5]}, 'lr': {'values': [1e-3]}, 'likelihood_reg': {'values': [10.0]}, }, 'BNN_FSVGD_SimPrior_no_add_gp': { - 'bandwidth_svgd': {'values': [2.0]}, + 'bandwidth_svgd': {'values': [10.0]}, 'min_train_steps': {'values': [5_000]}, 'num_epochs': {'values': [200]}, - 'num_measurement_points': {'values': [128]}, + 'num_measurement_points': {'values': [64]}, 'num_f_samples': {'values': [1028]}, - 'added_gp_lengthscale': {'values': [2.]}, - 'added_gp_outputscale': {'values': [2.0]}, + 'added_gp_lengthscale': {'values': [1.0]}, + 'added_gp_outputscale': {'values': [0.5]}, 'lr': {'values': [1e-3]}, 'likelihood_reg': {'values': [10.0]}, }, @@ -58,8 +60,8 @@ 'bandwidth_svgd': {'values': [2.0]}, 'bandwidth_gp_prior': {'values': [0.4]}, 'min_train_steps': {'values': [5_000]}, - 'num_epochs': {'values': [200]}, - 'num_measurement_points': {'values': [128]}, + 'num_epochs': {'values': [60]}, + 'num_measurement_points': {'values': [32]}, 'lr': {'values': [1e-3]}, 'likelihood_reg': {'values': [10.0]}, }, @@ -101,7 +103,7 @@ def main(args): elif args.data_source == 'real_racecar_v3': N_SAMPLES_LIST = [50, 100, 200, 400, 800, 1600, 3200, 6400] elif args.data_source == 'Sergio_hf': - N_SAMPLES_LIST = [200, 400, 800, 1600, 3200, 4800, 6400, 12800] + N_SAMPLES_LIST = [50, 100, 200, 400, 800, 1600, 3200, 4800, 6400] else: raise NotImplementedError(f'Unknown data source {args.data_source}.') @@ -124,14 +126,14 @@ def main(args): output_file_list.append(os.path.join(exp_result_folder, f'{model_seed}_{data_seed}.out')) generate_run_commands(command_list, output_file_list, num_cpus=args.num_cpus, - num_gpus=1 if args.gpu else 0, mode=args.run_mode, prompt=not args.yes) + num_gpus=1 if args.gpu else 0, mode=args.run_mode, prompt=not args.yes, duration='23:59:00') if __name__ == '__main__': current_date = datetime.datetime.now().strftime("%b%d").lower() parser = argparse.ArgumentParser(description='Meta-BO run') - # sweep args + # sweep argsx parser.add_argument('--num_hparam_samples', type=int, default=1) parser.add_argument('--num_model_seeds', type=int, default=5, help='number of model seeds per hparam') parser.add_argument('--num_data_seeds', type=int, default=5, help='number of model seeds per hparam')