-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmilvus_search.py
39 lines (27 loc) · 1.1 KB
/
milvus_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
from dotenv import load_dotenv
from langchain.retrievers import ContextualCompressionRetriever
from BGEReranker import BgeCompressor
from Utils.vector_store_utils import create_vector_store_from_env
if __name__ == '__main__':
load_dotenv(override=True)
if "COHERE_API_KEY" not in os.environ:
os.environ["COHERE_API_KEY"] = os.getenv("COHERE_API_KEY")
[model_name, vector_store] = create_vector_store_from_env()
reranker = BgeCompressor(model=os.getenv("RERANK_MODEL_NAME"))
base_retriever = vector_store.as_retriever()
retriever = ContextualCompressionRetriever(
base_compressor=reranker,
base_retriever=base_retriever
)
while True:
# read search query
search_query = input("Enter search query: ")
# search the query in the vector store
results = retriever.invoke(search_query)
for idx, result in enumerate(results):
print("=" * 50)
print(f"Document {idx}")
print("Metadata: ", result.metadata)
print("Content: ", result.page_content)
print("=" * 50)