-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
207 lines (174 loc) · 7.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn as nn
import numpy as np
import torchvision as tv
import torchvision.transforms as transforms
import torch.utils.data as data
import argparse
import logging
import torch.backends.cudnn as cudnn
import os
import time
from dataset.mnist import get_dataset
from torch import optim
from utils.criterion import accuracy, joint_loss, LogisticLoss
from utils.AverageMeter import AverageMeter
from models.lenet import Lenet
import random
logger = logging.getLogger()
logger.setLevel(logging.INFO)
T1 = 100
T2 = 600
def parse_args():
parser = argparse.ArgumentParser(description='command for train pseudo-labels model')
parser.add_argument('--lr', type=float, default=1.5, help='learning rate')
parser.add_argument('--size_labeled', type=int, default=32, help='#labeled images in each mini-batch')
parser.add_argument('--size_unlabeled', type=int, default=256, help='#unlabeled images in each mini-batch')
parser.add_argument('--batch_size', type=int, default=128, help='batch size for val/test')
parser.add_argument('--epoch', type=int, default=1000, help='#training epoches')
parser.add_argument('--gpu', type=int, default=None, help='GPU ID (negative value indicates CPU')
parser.add_argument('--out', type=str, default='./data/model_data', help='root of the output')
parser.add_argument('--train_root', type=str, default='./data/img_data/train', help='root of the train dataset')
parser.add_argument('--test_root', type=str, default='./data/img_data/test', help='root of the test dataset')
parser.add_argument('--download', type=bool, default=False, help='download dataset')
parser.add_argument('--seed', type=int, default=None, help='seed for initializing training')
parser.add_argument('--num_labeled', type=int, default=3000, help='#labeld samples in training set')
args = parser.parse_args()
return args
def data_config(args):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_labeled, train_unlabeled, val = get_dataset(args, transform, transform)
test = tv.datasets.MNIST(args.test_root, train=False, transform=transform, download=args.download)
train_labeled_loader = data.DataLoader(train_labeled, batch_size=args.size_labeled, shuffle=True, num_workers=4)
train_unlabeled_loader = data.DataLoader(train_unlabeled, batch_size=args.size_unlabeled, shuffle=True, num_workers=4)
val_loader = data.DataLoader(val, batch_size=args.size_labeled, shuffle=False, num_workers=4)
test_loader = data.DataLoader(test, batch_size=args.batch_size, shuffle=False, num_workers=4)
print('-------> Data loading')
return train_labeled_loader, train_unlabeled_loader, val_loader, test_loader
def network_config(args):
# Random seed
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
network = Lenet()
if args.gpu is not None:
network = network.cuda(args.gpu)
else:
network = nn.DataParallel(network).cuda()
print('Total params: %2.fM' % (sum(p.numel() for p in network.parameters()) / 1000000.0))
optimizer = optim.SGD(network.parameters(), lr=args.lr, momentum= 0.5)
cudnn.benchmark = True
return network, optimizer
def record_params(args):
dst_folder = args.out + '/lr-{}'.format(args.lr)
if not os.path.exists(dst_folder):
os.makedirs(dst_folder)
rd = open(dst_folder + '/config.txt', 'w')
rd.write('lr:%f' % args.lr + '\n')
rd.close()
handler = logging.FileHandler(dst_folder + '/train.log')
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return dst_folder
def record_result(dst_folder, best_ac):
dst = dst_folder + '/config.txt'
rd = open(dst, 'a+')
rd.write('best_ac:%3f' % best_ac + '\n')
rd.close()
def save_checkpoint(state, dst_folder, epoch):
dst = dst_folder + '/epoch-' + str(epoch) + '.pkl'
torch.save(state, dst)
def train(train_labeled_loader, train_unlabeled_loader, network, optimizer, epoch, args):
batch_time = AverageMeter()
train_loss = AverageMeter()
conditional_entropy = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
iter_labeled = iter(train_labeled_loader)
iter_unlabeled = iter(train_unlabeled_loader)
# switch to train mode
network.train()
# measure data loaading time
end = time.time()
for i in range(len(train_labeled_loader)):
img_labeled, labels = next(iter_labeled)
img_labeled = img_labeled.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
# compute output
outputs_labeled = network(img_labeled)
outputs_unlabeled = None
if epoch >= T1:
img_unlabeled, _ = next(iter_unlabeled)
img_unlabeled = img_unlabeled.cuda(args.gpu, non_blocking=True)
outputs_unlabeled = network(img_unlabeled)
loss = joint_loss(outputs_labeled, outputs_unlabeled, labels, epoch, args.gpu)
prec1, prec5 = accuracy(outputs_labeled, labels, top=[1,5])
train_loss.update(loss, img_labeled.size(0))
top1.update(prec1, img_labeled.size(0))
top5.update(prec5, img_labeled.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return train_loss.avg, top5.avg, top1.avg, batch_time.sum
def validate(val_loader, network, criterion):
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
val_loss = AverageMeter()
# switch to evaluate mode
network.eval()
with torch.no_grad():
end = time.time()
for images, labels in val_loader:
images = images.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
outputs = network(images)
prec1, prec5 = accuracy(outputs, labels, top=[1,5])
loss = criterion(outputs, labels) * images.size(1)
top1.update(prec1, images.size(0))
top5.update(prec5, images.size(0))
val_loss.update(loss, images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return top5.avg, top1.avg, batch_time.sum
def main(args, dst_folder):
# only record the best top1_ac for validation set.
best_ac = 0.0
# data loader
train_labeled_loader, train_unlabeled_loader, val_loader, test_loader = data_config(args)
# criterion
val_criterion = LogisticLoss(args.gpu)
# network config
network, optimizer = network_config(args)
for epoch in range(args.epoch):
train_loss, top5_train_ac, top1_train_ac, train_time = train(train_labeled_loader, train_unlabeled_loader, network, optimizer, epoch, args)
# evaluate on validation set
top5_val_ac, top1_val_ac, val_time = validate(val_loader, network, val_criterion)
# remember best prec@1, save checkpoint and logging to the console
if top1_val_ac >= best_ac:
state = {'state_dict': network.state_dict(), 'epoch': epoch, 'ac': [top5_val_ac, top1_val_ac], 'best_ac': best_ac}
best_ac = top1_val_ac
# save model
save_checkpoint(state, dst_folder, epoch)
# logging
logging.info('Epoch: [{}|{}], train_loss: {:.3f}, top1_train_ac: {:.3f}, top5_val_ac: {:.3f}, top1_val_ac: {:.3f}, val_time: {:.3f}, train_time: {:.3f}'.format(epoch, args.epoch, train_loss, top1_train_ac, top5_val_ac, top1_val_ac, val_time, train_time))
print('Best ac: %f' % best_ac)
record_result(dst_folder, best_ac)
if __name__ == '__main__':
args = parse_args()
logging.info(args)
# record params
dst_folder = record_params(args)
# train
main(args, dst_folder)