Skip to content

Commit 70292ee

Browse files
committed
to subset spare matrix, now PandasSeries boolean needs to be converted to numpy array first
1 parent a23ff2b commit 70292ee

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

src/oggmap/orthomap2tei.py

+15-15
Original file line numberDiff line numberDiff line change
@@ -1474,53 +1474,53 @@ def get_rematrix(adata,
14741474
if use == 'pmatrix':
14751475
for pk_idx, pk in enumerate(phylostrata):
14761476
if var_type == 'mean':
1477-
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1477+
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
14781478
.mean(1)).flatten()
14791479
if var_type == 'median':
14801480
rematrix[pk_idx, ] = np.apply_along_axis(
1481-
np.median, 1, pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])].toarray()).flatten()
1481+
np.median, 1, pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values].toarray()).flatten()
14821482
if var_type == 'sum':
1483-
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1483+
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
14841484
.sum(1)).flatten()
14851485
if var_type == 'min':
1486-
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1486+
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
14871487
.min(1).toarray()).flatten()
14881488
if var_type == 'max':
1489-
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1489+
rematrix[pk_idx, ] = np.array(pmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
14901490
.max(1).toarray()).flatten()
14911491
elif use == 'wmatrix':
14921492
for pk_idx, pk in enumerate(phylostrata):
14931493
if var_type == 'mean':
1494-
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1494+
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
14951495
.mean(1)).flatten()
14961496
if var_type == 'median':
14971497
rematrix[pk_idx, ] = np.apply_along_axis(
1498-
np.median, 1, wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])].toarray()).flatten()
1498+
np.median, 1, wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values].toarray()).flatten()
14991499
if var_type == 'sum':
1500-
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1500+
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15011501
.sum(1)).flatten()
15021502
if var_type == 'min':
1503-
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1503+
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15041504
.min(1).toarray()).flatten()
15051505
if var_type == 'max':
1506-
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1506+
rematrix[pk_idx, ] = np.array(wmatrix[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15071507
.max(1).toarray()).flatten()
15081508
else:
15091509
for pk_idx, pk in enumerate(phylostrata):
15101510
if var_type == 'mean':
1511-
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1511+
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15121512
.mean(1)).flatten()
15131513
if var_type == 'median':
15141514
rematrix[pk_idx, ] = np.apply_along_axis(
1515-
np.median, 1, adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk])].toarray()).flatten()
1515+
np.median, 1, adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values].toarray()).flatten()
15161516
if var_type == 'sum':
1517-
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1517+
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15181518
.sum(1)).flatten()
15191519
if var_type == 'min':
1520-
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1520+
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15211521
.min(1).toarray()).flatten()
15221522
if var_type == 'max':
1523-
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk])]
1523+
rematrix[pk_idx, ] = np.array(adata_counts[:, id_age_df_keep_subset['Phylostrata'].isin([pk]).values]
15241524
.max(1).toarray()).flatten()
15251525
rematrix_df = pd.DataFrame(rematrix)
15261526
rematrix_df['ps'] = phylostrata

0 commit comments

Comments
 (0)