-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment_q1.m
288 lines (249 loc) · 8.69 KB
/
assignment_q1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
function assignment_q1
% Given
M_o = 15000; % kg
M_p = 12000; % kg
t_b = 100; % sec
u_eq = 3048; % m/s
theta_o = 1; % degree
delta_t = 0.1; % sec
% Caculation
M_b = M_o - M_p; % kg
massRate = M_p / t_b; % kg/s
Thrust = massRate * u_eq; %N
R = M_o / M_b;
x_ = zeros(4, 1001);
y_ = zeros(4, 1001);
h_ = zeros(4, 1001);
u_ = zeros(4, 1001);
theta_ = zeros(4, 1001);
t_ = zeros(4, 1001);
% Question 1 Solution
solution('a');
% Question 2 Solution
solution('b');
% Question 3 Solution
solution('c');
% Question 4 Solution
solution('d');
% Plot between x vs y
save_fig = figure;
hold on
title('x vs y')
ylabel('x co-ordinate (in m)')
xlabel('y co-ordinate (in m)')
for k = 1:4
plot(x_(k, :), y_(k, :))
end
legend('Part A', 'Part B', 'Part C', 'Part D', 'Location', 'southeast')
hold off
saveas(save_fig, 'x_vs_y.png');
%%Plot speed vs time%%%
save_fig = figure;
hold on
title('u vs t')
ylabel('Velocity (in m/s)')
xlabel('Time (in sec)')
for k = 1:4
plot(t_(k, :), u_(k, :))
end
legend('Part A', 'Part B', 'Part C', 'Part D', 'Location', 'southeast')
hold off
saveas(save_fig, 'u_vs_t.png')
%Plot elevation angle vs time%%%
save_fig = figure;
hold on
title('theta vs t')
ylabel('Elevation angle (in degree)')
xlabel('Time (in sec)')
for k = 1:4
plot(t_(k, :), theta_(k, :))
end
legend('Part A', 'Part B', 'Part C', 'Part D', 'Location', 'southeast')
hold off
saveas(save_fig, 'theta_vs_t.png')
%Plot height vs time%%
save_fig = figure;
hold on
title('height vs t')
ylabel('Height (in m)')
xlabel('Time (in sec)')
for k = 1:4
plot(t_(k, :), h_(k, :))
end
legend('Part A', 'Part B', 'Part C', 'Part D', 'Location', 'southeast')
hold off
saveas(save_fig, 'height_vs_t.png')
function solution(part)
D = 0; % N
g_o = 9.81; % m/s^2
u_x(1) = 0; % m/s
u_y(1) = 0; % m/s
u(1) = 0; % m/s
u_n(1) = 0; % m/s
u_r(1) = 0; % m/s
x(1) = 0; % m
y(1) = 0; % m
h(1) = 0; % m
theta(1) = theta_o; % in degree
M(1) = M_o; % kg
t(1) = 0; % s
for i = 2:1001
t(i) = t(i - 1) + delta_t;
if (part == 'a')
% g = 9.81 (constant)
g = g_o;
% Drag = 0
D = 0;
elseif (part == 'b')
% g = 9.81 * (Re/ (Re + h))
g = get_g(g_o, h(i - 1));
% Drag = 0
D = 0;
elseif (part == 'c')
% g = 9.81 (constant)
g = g_o;
% Drag = C_d * (1/2) * rho_h * (u^2) * A_f;
D = get_D(h(i - 1), u(i -1));
elseif (part == 'd')
% g = 9.81 * (Re/ (Re + h))
g = get_g(g_o, h(i - 1));
% Drag = C_d * (1/2) * rho_h * (u^2) * A_f;
D = get_D(h(i - 1), u(i - 1));
end
delta_u_tOld = get_delta_u_tOld(massRate, u_eq, M(i -1), D, g, theta(i - 1), delta_t);
delta_un_tOld = get_delta_un_tOld(g, theta(i - 1), delta_t);
delta_ur_tOld = get_delta_ur_tOld(delta_u_tOld, delta_un_tOld);
delta_theta_tOld = get_delta_theta_tOld(delta_un_tOld, u_r(i - 1), delta_u_tOld);
delta_phi_tOld = get_delta_phi_tOld(delta_un_tOld, delta_u_tOld);
delta_ux_tOld = get_delta_ux_tOld(delta_ur_tOld, theta(i -1), delta_phi_tOld);
delta_uy_tOld = get_delta_uy_tOld(delta_ur_tOld, theta(i -1), delta_phi_tOld);
theta(i) = get_theta_tNew(theta(i - 1), delta_theta_tOld);
u_x(i) = get_ux_tNew(u_x(i - 1), delta_ux_tOld);
u_y(i) = get_uy_tNew(u_y(i - 1), delta_uy_tOld);
u_r(i) = get_ur_tNew(u_x(i), u_y(i));
u(i) = get_u_tNew(u_r(i));
delta_x_tOld = get_delta_x_tOld(u_x(i), delta_t);
delta_y_tOld = get_delta_y_tOld(u_y(i), delta_t);
delta_M_tOld = get_delta_M_tOld(massRate, delta_t);
x(i) = get_x_tNew(x(i - 1), delta_x_tOld);
y(i) = get_y_tNew(y(i - 1), delta_y_tOld);
M(i) = get_M_tNew(M(i - 1), delta_M_tOld);
h(i) = get_h_tNew(y(i));
end
%%%%%%%OUTPUT%%%%%%%%
%%%Answers%%%
% Burnout height for respective question
disp(['For Question 1 part ', part])
disp(['Burnout height(h_b) is ', num2str(h(end)), ' m']);
% Burnout speed for respective question
disp(['Burnout speed(v_b) is ', num2str(u(end)), ' m/s']);
% Burnout theta for respective question
disp(['Burnout angle(theta) is ', num2str(theta(end)), ' degree']);
if (part == 'a')
x_(1, :) = x;
y_(1, :) = y;
h_(1, :) = h;
u_(1, :) = u;
theta_(1, :) = theta;
t_(1, :) = t;
elseif (part == 'b')
x_(2, :) = x;
y_(2, :) = y;
h_(2, :) = h;
u_(2, :) = u;
theta_(2, :) = theta;
t_(2, :) = t;
elseif (part == 'c')
x_(3, :) = x;
y_(3, :) = y;
h_(3, :) = h;
u_(3, :) = u;
theta_(3, :) = theta;
t_(3, :) = t;
else
x_(4, :) = x;
y_(4, :) = y;
h_(4, :) = h;
u_(4, :) = u;
theta_(4, :) = theta;
t_(4, :) = t;
end
%%%Plots%%%
%%%Plot y-coordinate vs x-coordinate%%%
%save_fig = figure
%hold on
%plot(x, y)
%title(['x vs y for part ', part])
%ylabel('x co-ordinate (in m)')
%xlabel('y co-ordinate (in m)')
%hold off
%saveas(save_fig, ['x_vs_y_part_', part, '.png'])
end
%%%Functions%%%
function g = get_g(g_o, h)
g = g_o * (6400000 / (6400000 + h));
end
function D = get_D(h, u)
rho_h = 1.2 * exp(-2.9 * (10^(-5)) * (h^(1.15)));
A_f = 1;
C_d = 0.1;
D = C_d * (1/2) * rho_h * (u^2) * A_f;
end
function delta_u_tOld = get_delta_u_tOld(massRate_tOld, ueq_tOld, M_tOld, D_tOld, g_tOld, theta_tOld, delta_t)
delta_u_tOld = ( ((massRate_tOld * ueq_tOld) / M_tOld) - (D_tOld / M_tOld) - (g_tOld * cosd(theta_tOld)) ) * delta_t;
end
function delta_un_tOld = get_delta_un_tOld(g_tOld, theta_tOld, delta_t)
delta_un_tOld = g_tOld * sind(theta_tOld) * delta_t;
end
function delta_ur_tOld = get_delta_ur_tOld(delta_u_tOld, delta_un_tOld)
delta_ur_tOld = ( (delta_u_tOld)^2 + (delta_un_tOld)^2) ^ (1/2);
end
function delta_theta_tOld = get_delta_theta_tOld(delta_un_tOld, ur_tOld, delta_u_tOld)
delta_theta_tOld = atand((delta_un_tOld) / (ur_tOld + delta_u_tOld));
end
function delta_phi_tOld = get_delta_phi_tOld(delta_un_tOld, delta_u_tOld)
delta_phi_tOld = atand(delta_un_tOld / delta_u_tOld);
end
function delta_ux_tOld = get_delta_ux_tOld(delta_ur_tOld, theta_tOld, delta_phi_tOld)
delta_ux_tOld =delta_ur_tOld * (sind(theta_tOld + delta_phi_tOld));
end
function delta_uy_tOld = get_delta_uy_tOld(delta_ur_tOld, theta_tOld, delta_phi_tOld)
delta_uy_tOld =delta_ur_tOld * (cosd(theta_tOld + delta_phi_tOld));
end
function theta_tNew = get_theta_tNew(theta_tOld, delta_theta_tOld)
theta_tNew = theta_tOld + delta_theta_tOld;
end
function ux_tNew = get_ux_tNew(ux_tOld, delta_ux_tOld)
ux_tNew = ux_tOld + delta_ux_tOld;
end
function uy_tNew = get_uy_tNew(uy_tOld, delta_uy_tOld)
uy_tNew = uy_tOld + delta_uy_tOld;
end
function ur_tNew = get_ur_tNew(ux_tNew, uy_tNew)
ur_tNew = ((ux_tNew ^ 2) + (uy_tNew ^ 2))^(1/2);
end
function u_tNew = get_u_tNew(ur_tNew)
u_tNew = ur_tNew;
end
function delta_x_tOld = get_delta_x_tOld(ux_tNew, delta_t)
delta_x_tOld = ux_tNew * delta_t;
end
function delta_y_tOld = get_delta_y_tOld(uy_tNew, delta_t)
delta_y_tOld = uy_tNew * delta_t;
end
function delta_M_tOld = get_delta_M_tOld(massRate_tOld, delta_t)
delta_M_tOld = -massRate_tOld * delta_t;
end
function x_tNew = get_x_tNew(x_tOld, delta_x_tOld)
x_tNew = x_tOld + delta_x_tOld;
end
function y_tNew = get_y_tNew(y_tOld, delta_y_tOld)
y_tNew = y_tOld + delta_y_tOld;
end
function M_tNew = get_M_tNew(M_tOld, delta_M_tOld)
M_tNew = M_tOld + delta_M_tOld;
end
function h_tNew = get_h_tNew(y_tNew)
h_tNew = y_tNew;
end
end