-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmetadata.py
162 lines (127 loc) · 5.61 KB
/
metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pandas as pd
import numpy as np
import ast
import sys
fdata_template = '../data/fma_metadata/{}'
modeldata_template = '../in/metadata/{}'
graphs_template = '../out/graphs/{}'
genres_fpath = fdata_template.format('genres.csv')
tracks_fpath = fdata_template.format('tracks.csv')
class DataSize:
"""
Helper class used to compare string values:
'small', 'medium' and 'large' more conveniently.
"""
SMALL = 'small'
MEDIUM = 'medium'
LARGE = 'large'
def __init__(self, size='medium'):
self.size = size
def __ge__(self, s2):
if self.size == self.LARGE:
return True
if self.size == self.MEDIUM:
if s2 == self.LARGE:
return False
else:
return True
if self.size == self.SMALL:
if s2 == self.MEDIUM or s2 == self.LARGE:
return False
else:
return True
data_size = DataSize('medium')
def _read_metaset(fpath):
"""
Reading metaset columns as x and y representing input and ouput.
:param fpath:
:return metaset_x, metaset_y:
"""
metaset = pd.read_csv(fpath, dtype={'track_id': object}) # read 'track_id' values as strings
metaset_x = metaset.track_id.as_matrix()
# convert from string representation of list to list for each element of the 'genres_all' column
genres_all_lists = [ast.literal_eval(x) for x in metaset.genres_all.tolist()]
metaset_y = np.vstack((metaset.genre_top.as_matrix(), genres_all_lists))
return metaset_x, metaset_y
def get_metadata():
"""
Public function reads metadata and returns it splitted.
:return train_x, train_y, valid_x, valid_y, test_x, test_y:
"""
train_x, train_y = _read_metaset(modeldata_template.format('train.csv'))
valid_x, valid_y = _read_metaset(modeldata_template.format('valid.csv'))
test_x, test_y = _read_metaset(modeldata_template.format('test.csv'))
return train_x, train_y, valid_x, valid_y, test_x, test_y
def __plot_column_freq(df, index_name):
"""
Plot values' frequencies for given column.
:param df:
:param index_name:
:return:
"""
ax = df[index_name].value_counts().plot('bar')
fig = ax.get_figure()
fig.savefig(graphs_template.format(index_name + '.png'))
def __extract_id_from_str_list(ids_string, top_ids):
"""
The idea is to return first top genre that is
found in the given list of track genres.
:param ids_string:
:param top_ids:
:return:
"""
for id in ids_string[1:-1].replace(' ', '').split(','):
if int(id) in top_ids:
return int(id)
return None
if __name__ == '__main__':
"""
Main module that generates train.csv, valid.csv and test.csv.
It uses :py:class:: DataSize to store only the data specified
by the dataset size (small, medium, large).
"""
if len(sys.argv) == 3:
data_size = DataSize(sys.argv[1])
genres_df = pd.read_csv(genres_fpath)
tracks_df = pd.read_csv(tracks_fpath, header=[1], low_memory=False) # header=[1]: take second level of multi index
tracks_df = tracks_df.rename(columns={'Unnamed: 0': 'track_id'}) # 'track_id' is originally one level lower
__plot_column_freq(tracks_df, 'genre_top')
new_df = tracks_df[['track_id', 'genre_top', 'genres_all', 'split', 'subset']].drop(0) # select relevant columns
top_genres = new_df.genre_top.unique()
top_genres = [genre for genre in top_genres if type(genre) == str] # get top genres list without illegal elements
top_genre_ids = [genres_df[genres_df['title'] == genre]['genre_id'].iloc[0] for genre in top_genres] # to genre ids
i = 0
for idx, row in new_df.iterrows():
genre_id = -1
# check 'subset' value; if the dataset size we are working with is smaller, skip
# also, if the track doesn't contain any genre tags, skip as it's useless for this problem
if not data_size.__ge__(row[4]) or row[2] == '[]':
new_df.drop(idx, inplace=True)
continue
if type(row[1]) != str: # not all values have 'genre_top' value assigned; fill in using 'genres_all'
genre_id = __extract_id_from_str_list(row[2], top_genre_ids)
if genre_id is None:
print('Note: unable to find top genre tag to assign - removing row')
new_df.drop(idx, inplace=True)
continue
else: # replace genre names with corresponding ids
genre_id = genres_df[genres_df['title'] == row[1]]['genre_id'].iloc[0]
new_df.loc[idx, 'genre_top'] = genre_id # replace dataframe values with ids
# append zeros if track_id is shorted than six characters
track_id = '0' * (6 - len(row[0])) + row[0]
if track_id == '065753':
print(row)
new_df.loc[idx, 'track_id'] = track_id
i += 1
if i % 1000 == 0:
print('{:.2f}%'.format(i / new_df.shape[0] * 100)) # not 100% accurate as the shape is changing
new_df = new_df.drop('subset', 1) # remove column that is now useless
train_df = new_df[new_df.split == 'training']
train_df = train_df.drop('split', 1) # remove useless columns
valid_df = new_df[new_df.split == 'validation']
valid_df = valid_df.drop('split', 1)
test_df = new_df[new_df.split == 'test']
test_df = test_df.drop('split', 1)
train_df.to_csv(modeldata_template.format('train.csv'), encoding='utf-8')
valid_df.to_csv(modeldata_template.format('valid.csv'), encoding='utf-8')
test_df.to_csv(modeldata_template.format('test.csv'), encoding='utf-8')