-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_denoising_4cards.py
199 lines (149 loc) · 7.3 KB
/
train_denoising_4cards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
from config import Config
opt = Config('training_4cards.yml')
gpus = ','.join([str(i) for i in opt.GPU])
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
import paddle
import paddle.optimizer as optim
from paddle.io import DataLoader
from paddle import nn
import random
import time
import numpy as np
import utils
from dataloaders.dataset import PairedImageDataset_SIDD
from networks.NAFNet_arch import NAFNet
from losses import PSNRLoss
import paddle.distributed as dist
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients
from visualdl import LogWriter
def main():
dist.init_parallel_env()
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
print(nranks)
######### Set Seeds ###########
random.seed(42)
np.random.seed(42)
paddle.seed(42)
mode = opt.MODEL.MODE
session = opt.MODEL.SESSION
result_dir = os.path.join(opt.TRAINING.SAVE_DIR, mode, 'results', session)
model_dir = os.path.join(opt.TRAINING.SAVE_DIR, mode, 'models', session)
log_dir = os.path.join(opt.TRAINING.SAVE_DIR, mode, 'logs', session)
if local_rank == 0:
utils.mkdir(result_dir)
utils.mkdir(model_dir)
utils.mkdir(log_dir)
######### Model ###########
img_channel = 3
width = 64
enc_blks = [2, 2, 4, 8]
middle_blk_num = 12
dec_blks = [2, 2, 2, 2]
model = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
model.train()
######### Scheduler ###########
new_lr = opt.OPTIM.LR_INITIAL
# scheduler = optim.lr.CosineAnnealingDecay(learning_rate=new_lr, T_max=opt.OPTIM.T_MAX, eta_min=1e-6)
# clip_grad_norm = nn.ClipGradByNorm(0.01)
# optimizer = optim.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=0.0, grad_clip=clip_grad_norm)
scheduler = optim.lr.CosineAnnealingDecay(learning_rate=new_lr, T_max=opt.OPTIM.T_MAX, eta_min=1e-7)
optimizer = optim.AdamW(parameters=model.parameters(), learning_rate=scheduler, weight_decay=0.0, beta1=0.9, beta2=0.9)
######### Resume ###########
if opt.TRAINING.RESUME:
# ckpt = paddle.load('model_best.pdparams')
ckpt = paddle.load('model_latest.pdparams')
model.set_state_dict(ckpt['state_dict'])
optimizer.set_state_dict(ckpt['optimizer'])
resume_iter = ckpt['iter']
resume_step = resume_iter // opt.TRAINING.PRINT_FREQ
#utils.load_checkpoint(model, ckpt)
######### Loss ###########
criterion = PSNRLoss()
######### DataLoaders ###########
train_dir = opt.TRAINING.TRAIN_DIR
val_dir = opt.TRAINING.VAL_DIR
train_dataset = PairedImageDataset_SIDD(train_dir, is_train=True)
batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=opt.OPTIM.BATCH_SIZE, shuffle=True, drop_last=False)
train_loader = DataLoader(dataset=train_dataset, batch_sampler=batch_sampler, num_workers=8)
val_dataset = PairedImageDataset_SIDD(val_dir, is_train=False)
val_loader = DataLoader(dataset=val_dataset, batch_size=8, shuffle=False, num_workers=4, drop_last=False)
if nranks > 1:
paddle.distributed.fleet.init(is_collective=True)
optimizer = paddle.distributed.fleet.distributed_optimizer(
optimizer) # The return is Fleet object
ddp_model = paddle.distributed.fleet.distributed_model(model)
with LogWriter(logdir=log_dir) as writer:
step = resume_step if opt.TRAINING.RESUME else 0
best_psnr = 0
best_iter = 0
eval_now = 1e4
print(f"\nEvaluation after every {eval_now} Iterations !!!\n")
current_iter = resume_iter if opt.TRAINING.RESUME else 0
total_iters = opt.OPTIM.NUM_ITERS
while current_iter <= total_iters:
epoch_start_time = time.time()
for data in train_loader:
current_iter += 1
if current_iter > total_iters:
break
input_lq = data[0]
gt = data[1]
# 由于PyLayer目前不支持数据并行
with ddp_model.no_sync():
outputs = ddp_model(input_lq)
l_total = 0.0
if not isinstance(outputs, list):
outputs = [outputs]
for output in outputs:
l_total += criterion(output, gt)
l_total.backward()
fused_allreduce_gradients(list(ddp_model.parameters()), None)
optimizer.step()
optimizer.clear_grad()
if current_iter % opt.TRAINING.PRINT_FREQ == 0 and local_rank == 0:
step += 1
writer.add_scalar(tag='loss', value=l_total.item(), step=step)
writer.add_scalar(tag='lr', value=optimizer.get_lr(), step=step)
print("Iter: {}\tTime: {:.4f}\tLoss: {:.4f}\tLR: {:.6f}".format(current_iter, time.time() - epoch_start_time, l_total.item(), optimizer.get_lr()))
if ((current_iter % eval_now == 0) and (local_rank == 0)):
model.eval()
with paddle.no_grad():
psnr_val_rgb = []
for data_val in val_loader:
input_lq = data_val[0]
gt = data_val[1]
output = model(input_lq)
output = paddle.clip(output, 0, 1)
psnr_val_rgb.append(utils.batch_PSNR(output, gt, 1.))
psnr_val_rgb = sum(psnr_val_rgb) / len(psnr_val_rgb)
if psnr_val_rgb > best_psnr:
best_psnr = psnr_val_rgb
best_iter = current_iter
paddle.save({'iter': current_iter,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, os.path.join(model_dir, "model_best.pdparams"))
print(
"[iter %d\t PSNR SIDD: %.4f\t] ---- [best_it_SIDD %d Best_PSNR_SIDD %.4f] " % (
current_iter, psnr_val_rgb, best_iter, best_psnr))
writer.add_scalar(tag='PSNR_val', value=psnr_val_rgb, step=step)
model.train()
# update lr
if isinstance(optimizer, paddle.distributed.fleet.Fleet):
lr_sche = optimizer.user_defined_optimizer._learning_rate
else:
lr_sche = optimizer._learning_rate
if isinstance(lr_sche, paddle.optimizer.lr.LRScheduler):
lr_sche.step()
if local_rank == 0:
paddle.save({'iter': current_iter,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, os.path.join(model_dir, "model_latest.pdparams"))
if __name__ == '__main__':
main()