diff --git a/README.md b/README.md index 4fd97fb25..9c7ecad99 100644 --- a/README.md +++ b/README.md @@ -145,7 +145,7 @@ The majority of scripts is licensed under ASL 2.0 (including codes from Diffuser - Setting mixed precision to `no` seems to use less memory than `fp16` or `bf16`. - Training is possible with a memory usage of about 17GB with a batch size of 1 and fp32. If you specify the `--full_bf16` option, you can further reduce the memory usage (but the accuracy will be lower). With the same memory usage as before, you can increase the batch size. - PyTorch 2.1 or later is required because it uses the new API `Tensor.register_post_accumulate_grad_hook(hook)`. - - Mechanism: Normally, backward -> step is performed for each parameter, so all gradients need to be temporarily stored in memory. "Fuse backward and step" reduces memory usage by performing backward/step for each parameter and reflecting the gradient immediately. + - Mechanism: Normally, backward -> step is performed for each parameter, so all gradients need to be temporarily stored in memory. "Fuse backward and step" reduces memory usage by performing backward/step for each parameter and reflecting the gradient immediately. The more parameters there are, the greater the effect, so it is not effective in other training scripts (LoRA, etc.) where the memory usage peak is elsewhere, and there are no plans to implement it in those training scripts. - Optimizer groups feature is added to SDXL training. PR [#1319](https://github.com/kohya-ss/sd-scripts/pull/1319) - Memory usage is reduced by the same principle as Fused optimizer. The training results and speed are the same as Fused optimizer. @@ -162,14 +162,14 @@ The majority of scripts is licensed under ASL 2.0 (including codes from Diffuser - mixed precision は `no` のほうが `fp16` や `bf16` よりも使用メモリ量が少ないようです。 - バッチサイズ 1、fp32 で 17GB 程度で学習可能なようです。`--full_bf16` オプションを指定するとさらに削減できます(精度は劣ります)。以前と同じメモリ使用量ではバッチサイズを増やせます。 - PyTorch 2.1 以降の新 API `Tensor.register_post_accumulate_grad_hook(hook)` を使用しているため、PyTorch 2.1 以降が必要です。 - - 仕組み:通常は backward -> step の順で行うためすべての勾配を一時的にメモリに保持する必要があります。「backward と step の統合」はパラメータごとに backward/step を行って、勾配をすぐ反映することでメモリ使用量を削減します。 + - 仕組み:通常は backward -> step の順で行うためすべての勾配を一時的にメモリに保持する必要があります。「backward と step の統合」はパラメータごとに backward/step を行って、勾配をすぐ反映することでメモリ使用量を削減します。パラメータ数が多いほど効果が大きいため、SDXL の学習以外(LoRA 等)ではほぼ効果がなく(メモリ使用量のピークが他の場所にあるため)、それらの学習スクリプトへの実装予定もありません。 - SDXL の学習時に optimizer group 機能を追加しました。PR [#1319](https://github.com/kohya-ss/sd-scripts/pull/1319) - Fused optimizer と同様の原理でメモリ使用量を削減します。学習結果や速度についても同様です。 - `sdxl_train.py` に `--fused_optimizer_groups 10` のようにグループ数を指定してください。グループ数を増やすとメモリ使用量が削減されますが、速度は遅くなります。ある程度の数までしか効果がないため、4~10 程度を指定すると良いでしょう。 - 任意の optimizer が使えますが、学習率を自動計算する optimizer (D-Adaptation や Prodigy など)は使えません。gradient accumulation は使えません。 - `--fused_optimizer_groups` は `--fused_backward_pass` と併用できません。AdaFactor 使用時は Fused optimizer よりも若干メモリ使用量は大きくなります。PyTorch 2.1 以降が必要です。 - - 仕組み:Fused optimizer が optimizer 内で個別のパラメータについて backward/step を行っているのに対して、optimizer groups はパラメータをグループ化して複数の optimizer を作成し、それぞれ backward/step を行うことでメモリ使用量を削減します。Fused optimizer は optimizer 側の実装が必要ですが、optimizer groups は学習スクリプト側のみで実装されています。 + - 仕組み:Fused optimizer が optimizer 内で個別のパラメータについて backward/step を行っているのに対して、optimizer groups はパラメータをグループ化して複数の optimizer を作成し、それぞれ backward/step を行うことでメモリ使用量を削減します。Fused optimizer は optimizer 側の実装が必要ですが、optimizer groups は学習スクリプト側のみで実装されています。やはり SDXL の学習でのみ効果があります。 - DeepSpeed 使用時のいくつかのバグを修正しました。関連 [#1247]