-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_noresize.py
195 lines (159 loc) · 7.27 KB
/
train_noresize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from cv2 import batchDistance
import numpy as np
import pandas as pd
import os
import json
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from torch.optim.lr_scheduler import ReduceLROnPlateau
from tqdm.auto import tqdm as tq
import segmentation_models_pytorch as smp
from data.data_loader import CloudDatasetNoResize
from utils.utils import create_log_folder, dice_coef, preprocessing_to_tensor
from loss.loss import BCEDiceLoss
from models.unet_noresize import UnetNoResize
MODEL_NAME = "Unet-ResNet50-Focal-20E-NoResize"
DATA_PATH = "./dataset"
EPOCHS = 20
BATCH_SIZE = 8
NUM_WORKERS = 0
LR_ENCODER = 1e-4
LR_DECODER = 1e-3
if __name__ == "__main__":
logs_path = create_log_folder(MODEL_NAME)
losses = {
"bce": smp.losses.SoftBCEWithLogitsLoss(),
"dice": smp.losses.DiceLoss(mode="binary"),
"focal": smp.losses.FocalLoss(mode="binary"),
"bceDice": BCEDiceLoss(lambda_bce=0.75, lambda_dice=0.25)
}
LOSS = "focal"
train_on_gpu = torch.cuda.is_available()
print(f"Train on GPU: {train_on_gpu}")
train = pd.read_csv(f"{DATA_PATH}/train.csv")
train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1])
train['im_id'] = train['Image_Label'].apply(lambda x: x.split('_')[0])
id_mask_count = train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[0]).value_counts().\
reset_index().rename(columns={'index': 'img_id', 'Image_Label': 'count'})
id_mask_count = id_mask_count.sort_values('img_id')
train_ids, valid_ids = train_test_split(id_mask_count['img_id'].values, random_state=42, stratify=id_mask_count['count'], test_size=0.1)
ENCODER = 'resnet50'
ENCODER_WEIGHTS = 'imagenet'
DEVICE = 'cuda'
model = UnetNoResize(encoder=ENCODER, encoder_weights=ENCODER_WEIGHTS)
if train_on_gpu:
model.cuda()
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
train_dataset = CloudDatasetNoResize(df=train, path=DATA_PATH, datatype='train', img_ids=train_ids,
preprocessing=preprocessing_to_tensor())
valid_dataset = CloudDatasetNoResize(df=train, path=DATA_PATH, datatype='valid', img_ids=valid_ids,
preprocessing=preprocessing_to_tensor())
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
# model, criterion, optimizer
optimizer = torch.optim.Adam([
{'params': model.main_model.encoder.parameters(), 'lr': LR_ENCODER},
{'params': model.main_model.decoder.parameters(), 'lr': LR_DECODER},
{'params': model.preprocess_model.parameters(), 'lr': LR_DECODER},
])
scheduler = ReduceLROnPlateau(optimizer, factor=0.15, patience=5)
criterion = losses[LOSS]
# number of epochs to train the model
train_loss_list = []
valid_loss_list = []
dice_score_list = []
lr_rate_list = []
valid_loss_min = np.Inf # track change in validation loss
sigmoid = nn.Sigmoid()
for epoch in range(EPOCHS):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
dice_score = 0.0
model.train()
bar = tq(train_loader, postfix={"train_loss":0.0})
for data, target in bar:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
#print(loss)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item()*data.size(0)
bar.set_postfix(ordered_dict={"train_loss":loss.item()})
model.eval()
del data, target
with torch.no_grad():
bar = tq(valid_loader, postfix={"valid_loss":0.0, "dice_score":0.0})
for data, target in bar:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update average validation loss
valid_loss += loss.item()*data.size(0)
output = sigmoid(output)
dice_cof = dice_coef(output.cpu(), target.cpu()).item()
dice_score += dice_cof * data.size(0)
bar.set_postfix(ordered_dict={"valid_loss":loss.item(), "dice_score":dice_cof})
# calculate average losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
dice_score = dice_score/len(valid_loader.dataset)
train_loss_list.append(train_loss)
valid_loss_list.append(valid_loss)
dice_score_list.append(dice_score)
lr_rate_list.append([param_group['lr'] for param_group in optimizer.param_groups])
# print training/validation statistics
print('Epoch: {} Training Loss: {:.6f} Validation Loss: {:.6f} Dice Score: {:.6f}'.format(
epoch, train_loss, valid_loss, dice_score))
# save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), os.path.join(logs_path, f'{MODEL_NAME}-checkpoint.pt'))
valid_loss_min = valid_loss
scheduler.step(valid_loss)
torch.save(model.state_dict(), os.path.join(logs_path, f'{MODEL_NAME}-final.pt'))
metadata = {
"model": MODEL_NAME,
"epochs": EPOCHS,
"batch_size": BATCH_SIZE,
"encoder": ENCODER,
"encoder_weights": ENCODER_WEIGHTS,
"lr_encoder": LR_ENCODER,
"lr_decoder": LR_DECODER,
"loss": LOSS,
"train_loss_list": train_loss_list,
"valid_loss_list": valid_loss_list,
"dice_score_list": dice_score_list,
"lr_rate_list": lr_rate_list,
}
with open(os.path.join(logs_path, "metadata.json"), "w+") as f:
json.dump(metadata, f)
plt.figure(figsize=(10,10))
plt.plot(train_loss_list, marker='o', label="Training Loss")
plt.plot(valid_loss_list, marker='o', label="Validation Loss")
plt.ylabel('loss', fontsize=22)
plt.legend()
plt.savefig(os.path.join(logs_path, "loss.png"))
plt.figure(figsize=(10,10))
plt.plot(dice_score_list)
plt.ylabel('Dice score')
plt.savefig(os.path.join(logs_path, "dice.png"))