-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
52 lines (35 loc) · 1.34 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import datetime
from pathlib import Path
from gymnasium.wrappers import GrayScaleObservation, ResizeObservation, TransformObservation, FrameStack
from Config import Config
from agent import Agent
from environment import Environment
from metrics import MetricLogger
env = Environment().get_env()
save_dir = Path('checkpoints') / datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
save_dir.mkdir(parents=True)
env = GrayScaleObservation(env, keep_dim=False)
env = ResizeObservation(env, shape=84)
env = TransformObservation(env, f=lambda x: x / 255.)
env = FrameStack(env, num_stack=6)
checkpoint = None
agent = Agent(state_dim=6*84*84, action_dim=env.action_space.n, save_dir=save_dir, checkpoint=checkpoint)
logger = MetricLogger(save_dir)
episodes = Config.total_episode
for e in range(episodes):
state = env.reset()
# Play the game!
while True:
action = agent.action(state[0])
next_state, reward, done, truncated, info = env.step(action)
q, loss = agent.learn(state=state[0], next_state=next_state, action=action, reward=reward)
logger.log_step(reward, loss, q.cpu().detach().numpy())
if done or truncated:
break
logger.log_episode()
if e % 20 == 0:
logger.record(
episode=e,
epsilon=agent.exploration_rate,
step=agent.curr_step
)