-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodels.py
291 lines (226 loc) · 12.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from __future__ import print_function
import torch
from torch import nn
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import collections
import math
import copy
torch.manual_seed(1)
np.random.seed(1)
class BIN_Interaction_Flat(nn.Sequential):
'''
Interaction Network with 2D interaction map
'''
def __init__(self, **config):
super(BIN_Interaction_Flat, self).__init__()
self.max_d = config['max_drug_seq']
self.max_p = config['max_protein_seq']
self.emb_size = config['emb_size']
self.dropout_rate = config['dropout_rate']
#densenet
self.scale_down_ratio = config['scale_down_ratio']
self.growth_rate = config['growth_rate']
self.transition_rate = config['transition_rate']
self.num_dense_blocks = config['num_dense_blocks']
self.kernal_dense_size = config['kernal_dense_size']
self.batch_size = config['batch_size']
self.input_dim_drug = config['input_dim_drug']
self.input_dim_target = config['input_dim_target']
self.gpus = torch.cuda.device_count()
self.n_layer = 2
#encoder
self.hidden_size = config['emb_size']
self.intermediate_size = config['intermediate_size']
self.num_attention_heads = config['num_attention_heads']
self.attention_probs_dropout_prob = config['attention_probs_dropout_prob']
self.hidden_dropout_prob = config['hidden_dropout_prob']
self.flatten_dim = config['flat_dim']
# specialized embedding with positional one
self.demb = Embeddings(self.input_dim_drug, self.emb_size, self.max_d, self.dropout_rate)
self.pemb = Embeddings(self.input_dim_target, self.emb_size, self.max_p, self.dropout_rate)
self.d_encoder = Encoder_MultipleLayers(self.n_layer, self.hidden_size, self.intermediate_size, self.num_attention_heads, self.attention_probs_dropout_prob, self.hidden_dropout_prob)
self.p_encoder = Encoder_MultipleLayers(self.n_layer, self.hidden_size, self.intermediate_size, self.num_attention_heads, self.attention_probs_dropout_prob, self.hidden_dropout_prob)
self.icnn = nn.Conv2d(1, 3, 3, padding = 0)
self.decoder = nn.Sequential(
nn.Linear(self.flatten_dim, 512),
nn.ReLU(True),
nn.BatchNorm1d(512),
nn.Linear(512, 64),
nn.ReLU(True),
nn.BatchNorm1d(64),
nn.Linear(64, 32),
nn.ReLU(True),
#output layer
nn.Linear(32, 1)
)
def forward(self, d, p, d_mask, p_mask):
ex_d_mask = d_mask.unsqueeze(1).unsqueeze(2)
ex_p_mask = p_mask.unsqueeze(1).unsqueeze(2)
ex_d_mask = (1.0 - ex_d_mask) * -10000.0
ex_p_mask = (1.0 - ex_p_mask) * -10000.0
d_emb = self.demb(d) # batch_size x seq_length x embed_size
p_emb = self.pemb(p)
# set output_all_encoded_layers be false, to obtain the last layer hidden states only...
d_encoded_layers = self.d_encoder(d_emb.float(), ex_d_mask.float())
#print(d_encoded_layers.shape)
p_encoded_layers = self.p_encoder(p_emb.float(), ex_p_mask.float())
#print(p_encoded_layers.shape)
# repeat to have the same tensor size for aggregation
d_aug = torch.unsqueeze(d_encoded_layers, 2).repeat(1, 1, self.max_p, 1) # repeat along protein size
p_aug = torch.unsqueeze(p_encoded_layers, 1).repeat(1, self.max_d, 1, 1) # repeat along drug size
i = d_aug * p_aug # interaction
i_v = i.view(int(self.batch_size/self.gpus), -1, self.max_d, self.max_p)
# batch_size x embed size x max_drug_seq_len x max_protein_seq_len
i_v = torch.sum(i_v, dim = 1)
#print(i_v.shape)
i_v = torch.unsqueeze(i_v, 1)
#print(i_v.shape)
i_v = F.dropout(i_v, p = self.dropout_rate)
#f = self.icnn2(self.icnn1(i_v))
f = self.icnn(i_v)
#print(f.shape)
#f = self.dense_net(f)
#print(f.shape)
f = f.view(int(self.batch_size/self.gpus), -1)
#print(f.shape)
#f_encode = torch.cat((d_encoded_layers[:,-1], p_encoded_layers[:,-1]), dim = 1)
#score = self.decoder(torch.cat((f, f_encode), dim = 1))
score = self.decoder(f)
return score
# help classes
class LayerNorm(nn.Module):
def __init__(self, hidden_size, variance_epsilon=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(hidden_size))
self.beta = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class Embeddings(nn.Module):
"""Construct the embeddings from protein/target, position embeddings.
"""
def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
super(Embeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_size, hidden_size)
self.LayerNorm = LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
super(SelfAttention, self).__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class SelfOutput(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super(SelfOutput, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Attention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Attention, self).__init__()
self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
self.output = SelfOutput(hidden_size, hidden_dropout_prob)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class Intermediate(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super(Intermediate, self).__init__()
self.dense = nn.Linear(hidden_size, intermediate_size)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = F.relu(hidden_states)
return hidden_states
class Output(nn.Module):
def __init__(self, intermediate_size, hidden_size, hidden_dropout_prob):
super(Output, self).__init__()
self.dense = nn.Linear(intermediate_size, hidden_size)
self.LayerNorm = LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Encoder(nn.Module):
def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder, self).__init__()
self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.intermediate = Intermediate(hidden_size, intermediate_size)
self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)
def forward(self, hidden_states, attention_mask):
attention_output = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class Encoder_MultipleLayers(nn.Module):
def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder_MultipleLayers, self).__init__()
layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
#if output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
#if not output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
return hidden_states