-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscraper.py
156 lines (133 loc) · 4.17 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# import modules
import requests
from bs4 import BeautifulSoup
import datetime
import pandas as pd
import sys
import re
import string
import nltk
import spacy
from nltk.corpus import stopwords
#list declaration
cus_res1=[]
cus_res2=[]
cus_res3=[]
cus_res4=[]
cus_res5=[]
cus_res6=[]
#function to parse the required data from each review page
def cus_reviews(soup):
try:
review = soup.find("div",class_="a-section a-spacing-none reviews-content a-size-base")
for element in review.find_all("div",{'data-hook':"review"}):
item = element.find("span", class_="a-profile-name") #name
try:
cus_res1.append(item.get_text())
except:
cus_res1.append('xxx')
item = element.find("span", {'data-hook':"review-date"}) #date
try:
s=item.get_text()
x=s.find(" on ")
s=s[x+4:]
date=datetime.datetime.strptime(s,"%d %B %Y").strftime("%Y-%m-%d")
except:
date=datetime.datetime(2018, 9, 15)
cus_res2.append(date)
item = element.find("a", {'data-hook':"review-title"}) #title
try:
cus_res3.append(item.get_text().replace("\n",""))
except:
cus_res3.append('xxx')
item = element.find("span",{'data-hook':"review-body"}) #review
try:
s1=item.get_text()
s1= s1.replace("\xa0","").replace("\n\n","").lstrip()
except:
s1='xxx'
cus_res4.append(s1)
flag=0
for item in element.find_all("span", {'data-hook':"helpful-vote-statement"}): #vote
flag=1
try:
s=item.get_text()
if s[0]=="O":
s=1
else:
x=s.find("p")
s=int(s[:x-1].replace(",",""))
cus_res5.append(s)
except:
flag=0
if flag==0:
cus_res5.append(0)
item = element.find("i", {'data-hook':"review-star-rating"}) #rating
try:
cus_res6.append(int(item.get_text()[0]))
except:
cus_res6.append(1)
except:
print("Error in first function")
HEADERS = ({'User-Agent':
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \
AppleWebKit/537.36 (KHTML, like Gecko) \
Chrome/90.0.4430.212 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5'})
#make request to website
def getdata(url):
try:
r = requests.get(url, headers=HEADERS)
return r.text
except:
print("Error in getdata function")
#html code scraped into beautiful soup object
def html_code(url):
try:
htmldata = getdata(url)
soup = BeautifulSoup(htmldata, 'html.parser')
return (soup)
except:
print("Error in html_code function")
#url formatting
try:
ticker="&pageNumber="
url = sys.argv[1];
# url="https://www.amazon.in/Mediabridge-FLEX-Ethernet-Category-Certified/product-reviews/B004LTE5JI/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews"
url += ticker
except:
print("Error in url formatting")
try:
for i in range(1,51):
url1= "{}{}".format(url,i)
soup = html_code(url1)
cus_reviews(soup)
except:
print("Error in for loop")
# initialise the data dictionary
data = {'name': cus_res1,'date':cus_res2,'title':cus_res3,'review': cus_res4,'vote':cus_res5,'rating':cus_res6}
# Create DataFrame
df = pd.DataFrame(data)
for i,j in enumerate(df['review']):
if j=='':
df['review'][i]='xxx'
df["text_lower"] = df["review"].str.lower()
PUNCT_TO_REMOVE = string.punctuation
def remove_punctuation(text):
"""custom function to remove the punctuation"""
return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE))
df["text_wo_punct"] = df["text_lower"].apply(lambda text: remove_punctuation(text))
nltk.download('stopwords')
", ".join(stopwords.words('english'))
STOPWORDS = set(stopwords.words('english'))
def remove_stopwords(text):
"""custom function to remove the stopwords"""
return " ".join([word for word in str(text).split() if word not in STOPWORDS])
df["review_stopwords"] = df["text_wo_punct"].apply(lambda text: remove_stopwords(text.lower()))
for i,j in enumerate(df['review_stopwords']):
if j=='':
df['review_stopwords'][i]='xxx'
df.head()
# Save the output to csv file
df.to_csv('amazon_review.csv')
print(df.head())