-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdated_train.py
815 lines (638 loc) · 25.1 KB
/
updated_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import warnings
from collections import Counter
import torch
import tqdm.notebook
from datasets import load_dataset
from torch.nn import Transformer
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
warnings.simplefilter("ignore")
import gc
import math
import random
import numpy as np
import spacy
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torchtext.vocab import vocab
from tqdm import tqdm
# import seaborn as sns
# import matplotlib.pyplot as plt
print(torch.__version__)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
set_seed(42) # %% [markdown]
# ## Transformer Model (based on Attention is All you Need, Vaswani et. al.)
class Embeddings(nn.Module):
def __init__(self, vocab_size, embed_dim):
super(Embeddings, self).__init__()
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.embed_layer = nn.Embedding(
num_embeddings=self.vocab_size, embedding_dim=self.embed_dim
)
def forward(self, x):
# 3.5 In the embedding layers, we multiply those weights by √dmodel.
# Scale the embeddings by the square root of the embedding dimension
out = self.embed_layer(x) * math.sqrt(self.embed_dim)
# out = self.embed_layer(x)
return out
## Paper implementation (3.5)
class PositionalEmbedding(nn.Module):
def __init__(self, max_seq_len, embed_dim):
super(PositionalEmbedding, self).__init__()
self.embed_dim = embed_dim
self.max_seq_len = max_seq_len
# Create a new zeroed tensor for positional encoding with shape (max_seq_len, embed_dim)
pe = torch.zeros((self.max_seq_len, self.embed_dim))
# Calculate the positional encoding values as per the paper's formula
for pos in range(self.max_seq_len):
for i in range(
0, self.embed_dim // 2
): # use embed_dim // 2 for correct pairing of sine and cosine
# Sine for even indices (2i)
pe[pos, 2 * i] = math.sin(pos / (10000 ** (2 * i / self.embed_dim)))
# Cosine for odd indices (2i + 1)
pe[pos, 2 * i + 1] = math.cos(pos / (10000 ** (2 * i / self.embed_dim)))
pe = pe.unsqueeze(0) # Add a new dimension at the 0th position
# Register pe as a buffer that is not a parameter but should be part of the module's state
self.register_buffer("pe", pe)
def forward(self, x):
# Multiply the input by the square root of the embedding dimension
x = x * math.sqrt(self.embed_dim)
# Retrieve the sequence length from the input dimensions
seq_len = x.size(1)
# Add the positional encoding to the input embedding, ensuring no gradient is calculated for pe
x = x + self.pe[:, :seq_len]
return x
## Paper implementation (3.2.2)
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim=512, n_heads=8):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.embed_dim = embed_dim
self.head_dim = embed_dim // n_heads
assert (
self.head_dim * n_heads == embed_dim
), "embed_dim must be divisible by n_heads"
self.query_matrix = nn.Linear(embed_dim, embed_dim, bias=False)
self.key_matrix = nn.Linear(embed_dim, embed_dim, bias=False)
self.value_matrix = nn.Linear(embed_dim, embed_dim, bias=False)
self.out = nn.Linear(embed_dim, embed_dim)
def forward(self, key, query, value, mask=None):
batch_size = key.size(0)
# Project and split into heads
query = (
self.query_matrix(query)
.view(batch_size, -1, self.n_heads, self.head_dim)
.transpose(1, 2)
)
key = (
self.key_matrix(key)
.view(batch_size, -1, self.n_heads, self.head_dim)
.transpose(1, 2)
)
value = (
self.value_matrix(value)
.view(batch_size, -1, self.n_heads, self.head_dim)
.transpose(1, 2)
)
# Calculate dot-product attention
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores.masked_fill(mask == 0, float("-inf"))
attention = F.softmax(scores, dim=-1)
# Apply attention to value vector
context = torch.matmul(attention, value)
# Concatenate heads and put through final linear layer
context = (
context.transpose(1, 2).contiguous().view(batch_size, -1, self.embed_dim)
)
output = self.out(context)
return output
class TransformerBlock(nn.Module):
def __init__(self, embed_dim=512, n_heads=8, expansion_factor=4):
super(TransformerBlock, self).__init__()
self.embed_dim = embed_dim
self.n_heads = n_heads
self.expansion_factor = expansion_factor
self.multiheadattention = MultiHeadAttention(self.embed_dim, self.n_heads)
self.norm1 = nn.LayerNorm(self.embed_dim)
self.dropout1 = nn.Dropout(0.1)
self.feed_forward = nn.Sequential(
nn.Linear(self.embed_dim, self.embed_dim * self.expansion_factor),
nn.ReLU(),
nn.Linear(self.embed_dim * self.expansion_factor, self.embed_dim),
)
self.norm2 = nn.LayerNorm(self.embed_dim)
self.dropout2 = nn.Dropout(0.1)
def forward(self, key, query, value, mask=None):
attention_out = self.multiheadattention(key, query, value, mask)
attention_residual_out = attention_out + query
norm1_out = self.dropout1(self.norm1(attention_residual_out))
feed_forward_out = self.feed_forward(norm1_out)
feed_forward_residual_out = feed_forward_out + norm1_out
norm2_out = self.dropout2(self.norm2(feed_forward_residual_out))
return norm2_out
class TransformerEncoder(nn.Module):
def __init__(
self,
max_seq_len,
vocab_size,
embed_size=512,
num_layers=6,
n_heads=8,
expansion_factor=4,
):
super(TransformerEncoder, self).__init__()
self.embedding_layer = Embeddings(vocab_size, embed_size)
self.positional_embeddings = PositionalEmbedding(max_seq_len, embed_size)
self.layers = nn.ModuleList(
[
TransformerBlock(embed_size, n_heads, expansion_factor)
for i in range(num_layers)
]
)
def forward(self, x, mask=None):
embed = self.embedding_layer(x)
out = self.positional_embeddings(embed)
for layer in self.layers:
out = layer(out, out, out, mask)
return out
class DecoderBlock(nn.Module):
def __init__(self, embed_dim=512, n_heads=8, expansion_factor=4):
super(DecoderBlock, self).__init__()
self.embed_dim = embed_dim
self.n_heads = n_heads
self.expansion_factor = expansion_factor
self.transformer_block = TransformerBlock(embed_dim, n_heads, expansion_factor)
self.attention = MultiHeadAttention(embed_dim, n_heads)
self.norm = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(0.1)
def forward(self, key, value, x, tgt_mask, src_mask=None):
attention = self.attention(x, x, x, tgt_mask)
query = self.dropout(self.norm(attention + x))
out = self.transformer_block(key, query, value, src_mask)
return out
# Adding shared weights according to paper
class TransformerDecoder(nn.Module):
def __init__(
self,
max_seq_len,
target_vocab_size,
embed_dim=512,
num_layers=6,
expansion_factor=4,
n_heads=8,
):
super(TransformerDecoder, self).__init__()
self.word_embedding = Embeddings(target_vocab_size, embed_dim)
self.position_embedding = PositionalEmbedding(max_seq_len, embed_dim)
self.layers = nn.ModuleList(
[
DecoderBlock(
embed_dim, expansion_factor=expansion_factor, n_heads=n_heads
)
for _ in range(num_layers)
]
)
self.fc_out = nn.Linear(embed_dim, target_vocab_size)
# Share weights between embedding and pre-softmax linear transformation
self.fc_out.weight = self.word_embedding.embed_layer.weight
def forward(self, x, enc_out, tgt_mask, src_mask=None):
embed = self.word_embedding(x)
x = self.position_embedding(embed)
for layer in self.layers:
x = layer(enc_out, enc_out, x, tgt_mask, src_mask)
logits = self.fc_out(x)
return logits
class Transformer(nn.Module):
def __init__(
self,
embed_dim,
src_vocab_size,
target_vocab_size,
max_seq_length,
num_layers=6,
expansion_factor=4,
n_heads=8,
device="cpu",
):
super(Transformer, self).__init__()
self.src_pad_idx = -1
self.tgt_pad_idx = -1
self.device = device
self.encoder = TransformerEncoder(
max_seq_length,
src_vocab_size,
embed_dim,
num_layers=num_layers,
expansion_factor=expansion_factor,
n_heads=n_heads,
)
self.decoder = TransformerDecoder(
max_seq_length,
target_vocab_size,
embed_dim,
num_layers=num_layers,
expansion_factor=expansion_factor,
n_heads=n_heads,
)
def make_tgt_mask(self, tgt):
batch_size, tgt_len = tgt.shape
tgt_mask = (
torch.tril(torch.ones((tgt_len, tgt_len)))
.expand(batch_size, 1, tgt_len, tgt_len)
.bool()
)
tgt_pad_mask = (tgt.cpu() != self.tgt_pad_idx).unsqueeze(1).unsqueeze(2).bool()
tgt_mask = tgt_mask & tgt_pad_mask
return tgt_mask.to(self.device)
def make_pad_mask(self, inp, pad_idx):
mask = (inp != pad_idx).unsqueeze(1).unsqueeze(2).bool()
return mask.to(self.device)
def forward(self, src, tgt):
tgt_mask = self.make_tgt_mask(tgt)
src_mask = self.make_pad_mask(src, self.src_pad_idx)
enc_out = self.encoder(src)
outputs = self.decoder(tgt, enc_out, tgt_mask, src_mask)
return outputs
# install spacy datasets
# !python3 -m spacy download de_core_news_sm
# !python3 -m spacy download en_core_web_sm
iwslt_dataset = load_dataset("iwslt2017", "iwslt2017-en-de")
spacy_eng = spacy.load("en_core_web_sm")
spacy_ger = spacy.load("de_core_news_sm")
train, test = iwslt_dataset["train"], iwslt_dataset["test"]
def tokenizer_ger(text):
return [tok.text for tok in spacy_ger.tokenizer(text)]
def tokenizer_eng(text):
return [tok.text for tok in spacy_eng.tokenizer(text)]
ger_counter = Counter()
eng_counter = Counter()
for data in tqdm(train):
ger_counter.update(tokenizer_ger(data["translation"]["de"].lower()))
eng_counter.update(tokenizer_eng(data["translation"]["en"].lower()))
ger_vocab = vocab(
ger_counter, min_freq=2, specials=("<unk>", "<pad>", "<sos>", "<eos>")
)
eng_vocab = vocab(
eng_counter, min_freq=2, specials=("<unk>", "<pad>", "<sos>", "<eos>")
)
ger_vocab.set_default_index(ger_vocab["<unk>"])
eng_vocab.set_default_index(eng_vocab["<unk>"])
print(
f"Size of German Vocab : {len(ger_vocab)}\n Size of English Vocab : {len(eng_vocab)}"
)
text_transform_eng = (
lambda x: [eng_vocab["<sos>"]]
+ [eng_vocab[token.lower()] for token in tokenizer_eng(x)]
+ [eng_vocab["<eos>"]]
)
text_transform_ger = (
lambda x: [ger_vocab["<sos>"]]
+ [ger_vocab[token.lower()] for token in tokenizer_ger(x)]
+ [ger_vocab["<eos>"]]
)
def collate_batch(batch):
src_list, tgt_list = [], []
for data in batch:
src_list.append(torch.tensor(text_transform_eng(data["translation"]["en"])))
tgt_list.append(torch.tensor(text_transform_ger(data["translation"]["de"])))
src_list = pad_sequence(src_list, padding_value=eng_vocab["<pad>"]).T
tgt_list = pad_sequence(tgt_list, padding_value=ger_vocab["<pad>"]).T
inp = {"src": src_list, "tgt": tgt_list}
return inp
# Method to freeze all weights that are not in the feedforward layers, and then reset the weights in the feedforward layers
def freeze_and_init(model):
n_ff_weights = 0
n_other_weights = 0
for name, param in model.named_parameters():
if "feed_forward" in name:
if param.data.dim() > 1:
param.data = nn.init.xavier_uniform_(param.data)
else:
param.data = nn.init.normal_(param.data)
# Set bias requires grad to False
param.requires_grad = True # Ensure these are not frozen
n_ff_weights += param.numel()
else:
param.requires_grad = False # Otherwise, just freeze the existing weights
n_other_weights += param.numel()
print(f"Re-initialized {n_ff_weights} FF weights and froze the {n_other_weights} other weights.")
# ### Setting Training Parameters and DataLoader
num_epochs = 20
batch_size = 32
learning_rate = 1e-3
weight_decay = 0.001
writer = SummaryWriter(f"runs/loss")
train_dataloader = DataLoader(
train,
collate_fn=collate_batch,
shuffle=True,
batch_size=batch_size,
pin_memory=True,
)
test_dataloader = DataLoader(
test,
collate_fn=collate_batch,
shuffle=False,
batch_size=batch_size,
pin_memory=True,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transformer_model = Transformer(
embed_dim=512,
src_vocab_size=len(eng_vocab),
target_vocab_size=len(ger_vocab),
max_seq_length=200,
num_layers=6,
expansion_factor=4,
n_heads=8,
device=device,
)
transformer_model.src_pad_idx = eng_vocab["<pad>"]
transformer_model.tgt_pad_idx = ger_vocab["<pad>"]
total_steps = num_epochs * math.ceil(len(train) / batch_size)
# optimizer = torch.optim.Adam(transformer_model.parameters(), lr=learning_rate)
# scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
# max_lr=learning_rate,
# total_steps=total_steps,
# pct_start=0.33,
# div_factor=1e3,
# final_div_factor=1e2)
# this is bettter
optimizer = torch.optim.Adam(transformer_model.parameters(), lr=1e-4)
scheduler = False
criterion = nn.CrossEntropyLoss(ignore_index=ger_vocab["<pad>"])
transformer_model = transformer_model.to(device)
load_model = True
if load_model:
# transformer_model.load_state_dict(torch.load("/pscratch/sd/j/josh-ee/tf/model_ckpt/og_epoch5_checkpoint.pth.tar", map_location=device)['state_dict'])
checkpoint = torch.load(
"/pscratch/sd/j/josh-ee/tf/model_ckpt/no_scheduler_epoch39_checkpoint.pth.tar",
map_location=device,
)
# Load the model state dictionary
transformer_model.load_state_dict(checkpoint["state_dict"])
freeze_and_init(transformer_model)
# Saw some online posts about this, but not sure if it's needed since requires_grad is set to False
# optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, transformer_model.parameters()), lr=1e-4)
# Load the optimizer state
optimizer.load_state_dict(checkpoint["optimizer"])
# Retrieve the epoch number if needed
epoch = checkpoint["epoch"]
# ### Beam Search Code (Naive Implementation)
def translate_seq_beam_search(model, src, device, k=2, max_len=50):
model.eval()
src_mask = model.make_pad_mask(src, model.src_pad_idx)
with torch.no_grad():
enc_out = model.encoder(src, src_mask)
# beam search
candidates = [(torch.LongTensor([ger_vocab["<sos>"]]), 0.0)]
final_translations = []
for a in range(max_len):
input_batch = torch.concat([c[0].unsqueeze(0) for c in candidates], dim=0).to(
device
)
if a > 0:
enc_out_repeat = enc_out.repeat(input_batch.shape[0], 1, 1)
else:
enc_out_repeat = enc_out
with torch.no_grad():
output = (
model.decoder(
input_batch,
enc_out_repeat,
model.make_tgt_mask(input_batch),
src_mask,
)
.detach()
.cpu()
)
output[:, :, :2] = float("-1e20")
output = output[:, -1, :]
output = F.log_softmax(output, dim=-1)
topk_output = torch.topk(output, k, dim=-1)
topk_tokens = topk_output.indices
topk_scores = topk_output.values
new_seq = torch.concat(
[
torch.concat(
[
torch.vstack([c[0] for _ in range(k)]),
topk_tokens[i].reshape(-1, 1),
],
dim=-1,
)
for i, c in enumerate(candidates)
],
dim=0,
)
new_scores = torch.concat(
[c[1] + topk_scores[i] for i, c in enumerate(candidates)], dim=0
)
topk_new = torch.topk(new_scores, k=k).indices.tolist()
new_candidates = []
for i in range(k):
if new_seq[topk_new[i]][-1] == ger_vocab["<eos>"] or a == max_len - 1:
final_translations.append(
(new_seq[topk_new[i]].tolist(), int(new_scores[topk_new[i]]))
)
else:
new_candidate = (new_seq[topk_new[i]], new_scores[topk_new[i]])
new_candidates.append(new_candidate)
if len(new_candidates) > 0:
candidates = new_candidates
else:
break
return final_translations
# ### Greedy Sequence Generation
def translate_seq(model, src, device, max_len=50):
model.eval()
src_mask = model.make_pad_mask(src, model.src_pad_idx)
with torch.no_grad():
enc_src = model.encoder(src, src_mask)
tgt_indexes = [ger_vocab["<sos>"]]
for i in range(max_len):
tgt_tensor = torch.LongTensor(tgt_indexes).unsqueeze(0).to(device)
tgt_mask = model.make_tgt_mask(tgt_tensor)
with torch.no_grad():
output = model.decoder(tgt_tensor, enc_src, tgt_mask, src_mask)
output[:, :, :2] = float("-1e20") # cannot predict <unk>, <pad> token
output = output[:, -1, :] # pick the last token
output = F.softmax(output, dim=-1)
pred_token = output.argmax(-1).item()
tgt_indexes.append(pred_token)
if pred_token == ger_vocab["<eos>"]:
break
return tgt_indexes
# ### Helper Functions
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group["lr"]
class AvgMeter:
def __init__(self, name="Metric"):
self.name = name
self.reset()
def reset(self):
self.avg, self.sum, self.count = [0] * 3
def update(self, val, count=1):
self.count += count
self.sum += val * count
self.avg = self.sum / self.count
def __repr__(self):
text = f"{self.name}: {self.avg:.4f}"
return text
if load_model:
start = epoch + 1
end = start + num_epochs + 20
step = epoch
else:
start = 1
end = num_epochs + 1
# ## Start Training
step = 0
for epoch in range(start, end):
print(f"[Epoch {epoch} / {end}]")
loss_meter = AvgMeter()
transformer_model.train()
bar = tqdm(train_dataloader, total=math.ceil(len(train) / batch_size))
for idx, data in enumerate(bar):
english = data["src"].to(device)
german = data["tgt"].to(device)
count = english.shape[0]
output = transformer_model(english, german[:, :-1])
output = output.reshape(-1, output.shape[2])
german = german[:, 1:]
german = german.reshape(-1)
optimizer.zero_grad()
loss = criterion(output, german)
loss.backward()
torch.nn.utils.clip_grad_norm_(transformer_model.parameters(), max_norm=1)
optimizer.step()
if scheduler:
scheduler.step()
writer.add_scalar("Training loss", loss, global_step=step)
step += 1
loss_meter.update(loss.item(), count)
bar.set_postfix(loss=loss_meter.avg, lr=get_lr(optimizer), step=step)
checkpoint = {
"state_dict": transformer_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(
checkpoint,
f"/pscratch/sd/j/josh-ee/tf/model_ckpt/no_scheduler_epoch{epoch}_checkpoint.pth.tar",
)
# Example Generation (Greedy Decode)
ex = test[random.randint(0, len(test))]
sentence = ex["translation"]["en"]
src_indexes = torch.tensor(text_transform_eng(sentence)).unsqueeze(0).to(device)
translated_sentence_idx = translate_seq(
transformer_model, src_indexes, device=device, max_len=50
)
translated_sentence = [ger_vocab.get_itos()[i] for i in translated_sentence_idx]
print(f"\nExample sentence: \n {sentence}\n")
print(f"Original Translation : \n{ex['translation']['de']}\n")
print(f"Generated Translation : \n {' '.join(translated_sentence[1:-1])}\n")
del (
src_indexes,
ex,
sentence,
translated_sentence_idx,
translated_sentence,
checkpoint,
)
torch.cuda.empty_cache()
_ = gc.collect()
# ### Sample Beam Search Generation from Test Data
load_model = False
if load_model:
transformer_model.load_state_dict(
torch.load("og_epoch1_checkpoint.pth.tar", map_location=device)["state_dict"]
)
# Function to compute loss on the test set
def evaluate_model(model, dataloader, device, criterion):
model.eval() # Set the model to evaluation mode
total_loss = 0
total_items = 0
bar = tqdm(dataloader, total=math.ceil(len(train) / batch_size))
with torch.no_grad(): # No need to track gradients for evaluation
for idx, data in enumerate(bar):
src = data["src"]
tgt = data["tgt"]
src = src.to(device)
tgt_input = tgt[:, :-1].to(device)
tgt_output = tgt[:, 1:].to(device) # Shift for teacher forcing
# Forward pass
output = model(src, tgt_input)
output_dim = output.shape[-1]
# Reshape output for calculating loss
output = output.contiguous().view(-1, output_dim)
tgt_output = tgt_output.contiguous().view(-1)
# Calculate loss
loss = criterion(output, tgt_output)
total_loss += loss.item()
total_items += tgt_output.shape[0]
return total_loss / total_items
# Define the loss criterion, typically CrossEntropyLoss for classification tasks
criterion = torch.nn.CrossEntropyLoss(ignore_index=transformer_model.tgt_pad_idx)
# Example usage
test_loss = evaluate_model(transformer_model, test_dataloader, device, criterion)
print(f"Average loss on the test set: {test_loss:.3f}")
for n in range(5):
print(f"Example {n+1}\n")
ex = test[random.randint(0, len(test))]
sentence = ex["translation"]["en"]
src_indexes = torch.tensor(text_transform_eng(sentence)).unsqueeze(0).to(device)
k = 3
translated_sentence_ids = translate_seq_beam_search(
transformer_model, src_indexes, k=k, device=device, max_len=50
)
translated_sentence_ids = sorted(
translated_sentence_ids, key=lambda x: x[1], reverse=True
)
translations = [
[ger_vocab.get_itos()[i] for i in translated_sentence[0]]
for translated_sentence in translated_sentence_ids
]
print(f"English : {ex['translation']['en']}\n")
print(f"German : {ex['translation']['de']}")
print(f"German Translations generated:\n")
for i in range(k):
for w in translations[i]:
if w in ["<sos>", "<eos>", "<pad>", "<unk>"]:
continue
print(w, end=" ")
print()
print("---------------------------------------------------------------------\n")
del src_indexes, ex, sentence, translated_sentence_ids, translations
torch.cuda.empty_cache()
_ = gc.collect()
# ## Calculating Bleu Score
# !pip3 install 'sacrebleu'
import sacrebleu
def calculate_bleu(data, model, device, max_len=50):
tgts = []
preds = []
for datum in tqdm(data):
src = datum["translation"]["en"]
tgt = datum["translation"]["de"]
src_idx = torch.tensor(text_transform_eng(src)).unsqueeze(0).to(device)
pred_tgt = translate_seq(model, src_idx, device, max_len)
pred_tgt = pred_tgt[1:-1]
pred_sent = [ger_vocab.get_itos()[i] for i in pred_tgt]
preds.append(pred_sent)
tgts.append(tgt)
preds = [' '.join(tokens).replace(" ,", ",").replace(" .", ".").replace(" :", ":").replace(' "', '"').replace(" '", "'").replace(" ?", "?") for tokens in preds]
return sacrebleu.corpus_bleu(preds, tgts)
# bleu = calculate_bleu(Dataset.from_dict(test[:1000]), transformer_model, device)
bleu = calculate_bleu(test, transformer_model, device)
print("BLEU Score Achieved :", bleu)