-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_script.py
173 lines (132 loc) · 6.67 KB
/
train_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from datetime import datetime
import time
import argparse
import torch
from torch import optim
from sklearn import metrics
import pandas as pd
import numpy as np
import models
import custom_loss
from data_preprocessing import DrugDataset, DrugDataLoader, TOTAL_ATOM_FEATS
######################### Parameters ######################
parser = argparse.ArgumentParser()
parser.add_argument('--n_atom_feats', type=int, default=TOTAL_ATOM_FEATS, help='num of input features')
parser.add_argument('--n_atom_hid', type=int, default=64, help='num of hidden features')
parser.add_argument('--rel_total', type=int, default=86, help='num of interaction types')
parser.add_argument('--lr', type=float, default=1e-2, help='learning rate')
parser.add_argument('--n_epochs', type=int, default=300, help='num of epochs')
parser.add_argument('--kge_dim', type=int, default=64, help='dimension of interaction matrix')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--neg_samples', type=int, default=1)
parser.add_argument('--data_size_ratio', type=int, default=1)
parser.add_argument('--use_cuda', type=bool, default=True, choices=[0, 1])
args = parser.parse_args()
n_atom_feats = args.n_atom_feats
n_atom_hid = args.n_atom_hid
rel_total = args.rel_total
lr = args.lr
n_epochs = args.n_epochs
kge_dim = args.kge_dim
batch_size = args.batch_size
weight_decay = args.weight_decay
neg_samples = args.neg_samples
data_size_ratio = args.data_size_ratio
device = 'cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu'
print(args)
############################################################
###### Dataset
df_ddi_train = pd.read_csv('data/ddi_training.csv')
df_ddi_val = pd.read_csv('data/ddi_validation.csv')
df_ddi_test = pd.read_csv('data/ddi_test.csv')
train_tup = [(h, t, r) for h, t, r in zip(df_ddi_train['d1'], df_ddi_train['d2'], df_ddi_train['type'])]
val_tup = [(h, t, r) for h, t, r in zip(df_ddi_val['d1'], df_ddi_val['d2'], df_ddi_val['type'])]
test_tup = [(h, t, r) for h, t, r in zip(df_ddi_test['d1'], df_ddi_test['d2'], df_ddi_test['type'])]
train_data = DrugDataset(train_tup, ratio=data_size_ratio, neg_ent=neg_samples)
val_data = DrugDataset(val_tup, ratio=data_size_ratio, disjoint_split=False)
test_data = DrugDataset(test_tup, disjoint_split=False)
print(f"Training with {len(train_data)} samples, validating with {len(val_data)}, and testing with {len(test_data)}")
train_data_loader = DrugDataLoader(train_data, batch_size=batch_size, shuffle=True)
val_data_loader = DrugDataLoader(val_data, batch_size=batch_size *3)
test_data_loader = DrugDataLoader(test_data, batch_size=batch_size *3)
def do_compute(batch, device, training=True):
'''
*batch: (pos_tri, neg_tri)
*pos/neg_tri: (batch_h, batch_t, batch_r)
'''
probas_pred, ground_truth = [], []
pos_tri, neg_tri = batch
pos_tri = [tensor.to(device=device) for tensor in pos_tri]
p_score = model(pos_tri)
probas_pred.append(torch.sigmoid(p_score.detach()).cpu())
ground_truth.append(np.ones(len(p_score)))
neg_tri = [tensor.to(device=device) for tensor in neg_tri]
n_score = model(neg_tri)
probas_pred.append(torch.sigmoid(n_score.detach()).cpu())
ground_truth.append(np.zeros(len(n_score)))
probas_pred = np.concatenate(probas_pred)
ground_truth = np.concatenate(ground_truth)
return p_score, n_score, probas_pred, ground_truth
def do_compute_metrics(probas_pred, target):
pred = (probas_pred >= 0.5).astype(np.int)
acc = metrics.accuracy_score(target, pred)
auc_roc = metrics.roc_auc_score(target, probas_pred)
f1_score = metrics.f1_score(target, pred)
p, r, t = metrics.precision_recall_curve(target, probas_pred)
auc_prc = metrics.auc(r, p)
return acc, auc_roc, auc_prc
def train(model, train_data_loader, val_data_loader, loss_fn, optimizer, n_epochs, device, scheduler=None):
print('Starting training at', datetime.today())
for i in range(1, n_epochs+1):
start = time.time()
train_loss = 0
train_loss_pos = 0
train_loss_neg = 0
val_loss = 0
val_loss_pos = 0
val_loss_neg = 0
train_probas_pred = []
train_ground_truth = []
val_probas_pred = []
val_ground_truth = []
for batch in train_data_loader:
model.train()
p_score, n_score, probas_pred, ground_truth = do_compute(batch, device)
train_probas_pred.append(probas_pred)
train_ground_truth.append(ground_truth)
loss, loss_p, loss_n = loss_fn(p_score, n_score)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() * len(p_score)
train_loss /= len(train_data)
with torch.no_grad():
train_probas_pred = np.concatenate(train_probas_pred)
train_ground_truth = np.concatenate(train_ground_truth)
train_acc, train_auc_roc, train_auc_prc = do_compute_metrics(train_probas_pred, train_ground_truth)
for batch in val_data_loader:
model.eval()
p_score, n_score, probas_pred, ground_truth = do_compute(batch, device)
val_probas_pred.append(probas_pred)
val_ground_truth.append(ground_truth)
loss, loss_p, loss_n = loss_fn(p_score, n_score)
val_loss += loss.item() * len(p_score)
val_loss /= len(val_data)
val_probas_pred = np.concatenate(val_probas_pred)
val_ground_truth = np.concatenate(val_ground_truth)
val_acc, val_auc_roc, val_auc_prc = do_compute_metrics(val_probas_pred, val_ground_truth)
if scheduler:
# print('scheduling')
scheduler.step()
print(f'Epoch: {i} ({time.time() - start:.4f}s), train_loss: {train_loss:.4f}, val_loss: {val_loss:.4f},'
f' train_acc: {train_acc:.4f}, val_acc:{val_acc:.4f}')
print(f'\t\ttrain_roc: {train_auc_roc:.4f}, val_roc: {val_auc_roc:.4f}, train_auprc: {train_auc_prc:.4f}, val_auprc: {val_auc_prc:.4f}')
model = models.SSI_DDI(n_atom_feats, n_atom_hid, kge_dim, rel_total, heads_out_feat_params=[32, 32, 32, 32], blocks_params=[2, 2, 2, 2])
loss = custom_loss.SigmoidLoss()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: 0.96 ** (epoch))
# print(model)
model.to(device=device)
# if __name__ == '__main__':
train(model, train_data_loader, val_data_loader, loss, optimizer, n_epochs, device, scheduler)